FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Montella, S Amore, A Faraco, V AF Montella, Salvatore Amore, Antonella Faraco, Vincenza TI Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development SO CRITICAL REVIEWS IN BIOTECHNOLOGY LA English DT Review DE Biocatalysts; biorefinery; cellulases; hemicellulases; metagenome; nonedible biomasses ID UNCULTIVATED BACTERIAL SYMBIONT; ENVIRONMENTAL DNA LIBRARIES; CARBOHYDRATE-ACTIVE ENZYMES; BIOMASS-DEGRADING GENES; MICROBIAL COMMUNITIES; FERULOYL ESTERASE; BETA-GLUCOSIDASE; GLYCOSYL HYDROLASES; CELLULOLYTIC ENZYME; MOLECULAR-CLONING AB The world economy is moving toward the use of renewable and nonedible lignocellulosic biomasses as substitutes for fossil sources in order to decrease the environmental impact of manufacturing processes and overcome the conflict with food production. Enzymatic hydrolysis of the feedstock is a key technology for bio-based chemical production, and the identification of novel, less expensive and more efficient biocatalysts is one of the main challenges. As the genomic era has shown that only a few microorganisms can be cultured under standard laboratory conditions, the extraction and analysis of genetic material directly from environmental samples, termed metagenomics, is a promising way to overcome this bottleneck. Two screening methodologies can be used on metagenomic material: the function-driven approach of expression libraries and sequence-driven analysis based on gene homology. Both techniques have been shown to be useful for the discovery of novel biocatalysts for lignocellulose conversion, and they enabled identification of several (hemi)cellulases and accessory enzymes involved in (hemi)cellulose hydrolysis. This review summarizes the latest progress in metagenomics aimed at discovering new enzymes for lignocellulose saccharification. C1 [Montella, Salvatore; Amore, Antonella; Faraco, Vincenza] Univ Naples Federico II, Complesso Univ Monte S Angelo, Dept Chem Sci, Via Cintia 4, I-80126 Naples, Italy. [Amore, Antonella] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO USA. RP Faraco, V (reprint author), Univ Naples Federico II, Complesso Univ Monte S Angelo, Dept Chem Sci, Via Cintia 4, I-80126 Naples, Italy. EM vfaraco@unina.it FU Ministero dell'Universita e della Ricerca Scientific [PON03PE_00107_1, N. 713/Ric] FX This work was supported by a grant from the Ministero dell'Universita e della Ricerca Scientifica - Industrial research project "Development of green technologies for production of BIOchemicals and their use in preparation and industrial application of POLImeric materials from agricultural biomasses cultivated in a sustainable way in Campania region (BioPoliS)'' PON03PE_00107_1, funded in the frame of Operative National Programme Research and Competitiveness 2007-2013 D. D. Prot. N. 713/Ric. 29/10/2010. NR 141 TC 1 Z9 1 U1 31 U2 31 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0738-8551 EI 1549-7801 J9 CRIT REV BIOTECHNOL JI Crit. Rev. Biotechnol. PD DEC PY 2016 VL 36 IS 6 BP 998 EP 1009 DI 10.3109/07388551.2015.1083939 PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DZ3FY UT WOS:000385731800004 PM 26381035 ER PT J AU Lim, SJ Gim, B Fezzaa, K Weon, BM AF Lim, Su Jin Gim, Bopil Fezzaa, Kamel Weon, Byung Mook TI Short time dynamics of water coalescence on a flat water pool SO CURRENT APPLIED PHYSICS LA English DT Article DE Water; Coalescence; X-ray imaging; Hydrodynamics ID DROP; INTERFACES AB Coalescence is an important hydrodynamic event that frequently takes place in nature as well as in industry. Here we provide an experimental study on short time dynamics of water coalescence, particularly when a water droplet comes in contact with a flat water surface, by utilizing high-resolution high-penetration ultrafast X-ray microscopy. Our results demonstrate a possibility that an extreme curvature difference between a drop and a flat surface can significantly modify the hydrodynamics of water coalescence, which is unexpected in the existing theory. We suggest a plausible explanation for why coalescence can be modified by an extreme curvature difference. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lim, Su Jin; Weon, Byung Mook] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Sch Adv Mat Sci & Engn, Soft Matter Phys Lab, Suwon 16419, South Korea. [Gim, Bopil] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea. [Fezzaa, Kamel] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Weon, BM (reprint author), Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Sch Adv Mat Sci & Engn, Soft Matter Phys Lab, Suwon 16419, South Korea.; Gim, B (reprint author), Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea. EM bopil.gim@kaist.ac.kr; bmweon@skku.edu FU National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2015H1A2A1034133, NRF-2016R1D1A1B01007133, NRF-2012R1A6A3A04039257]; US DOE [DE-AC02-06CH11357] FX We would like to thank the APCTP for its hospitality. This research was supported by Global PH.D Fellowship and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015H1A2A1034133, NRF-2016R1D1A1B01007133, and NRF-2012R1A6A3A04039257). Use of the Advanced Photon Source, an Office of the Science User Facility operated by the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. NR 29 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 EI 1878-1675 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD DEC PY 2016 VL 16 IS 12 BP 1554 EP 1559 DI 10.1016/j.cap.2016.08.013 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EA6YY UT WOS:000386776300003 ER PT J AU Guo, HY Liu, PX Zheng, SC Zeng, SX Liu, N Hong, SB AF Guo, Haiyan Liu, Peixue Zheng, Shichao Zeng, Shixian Liu, Na Hong, Seungbum TI Re-entrant relaxor ferroelectricity of methylammonium lead iodide SO CURRENT APPLIED PHYSICS LA English DT Article DE Electronic materials; Atomic force microscopy; Ferroelectrics; Relaxor; Piezoresponse force microscopy ID PEROVSKITE SOLAR-CELLS; THIN-FILM CAPACITORS; HALIDE PEROVSKITES; POLARIZATION; EFFICIENT; GROWTH AB We have performed a piezoresponse force microscopy (PFM) study on methylammonium lead iodide (MAPbI(3)) thin films in normal (non-resonance, non-band-excitation) contact mode. In contrast to the ferroelectric Pb0.76Ca0.24TiO3 (PCT) control sample, a typical ferroelectric response was not observed. However, a nonlinear electric field dependence of the local PFM amplitude was found in MAPbI(3), similar to PCT. An analysis combining results on structure, dielectric dispersion, and weak ferroelectricity demonstrates that MAPbI3 is actually a re-entrant relaxor ferroelectric which, upon cooling, enters into a relaxor phase below its ferroelectric phase transition at similar to 327 K, due to the balance between the long range ferroelectric order and structural methylammonium group orientational disorder. The ferroelectricity at room temperature is compromised due to the re-entrant relaxor behavior, causing the poor polarization retention or weak ferroelectricity. Our findings essentially conciliate the conflicting experimental results on MAPbI(3)'s ferroelectricity and are beneficial both for basic understanding as well as for device applications. (C) 2016 Elsevier B.V. All rights reserved. C1 [Guo, Haiyan; Liu, Peixue; Zheng, Shichao; Zeng, Shixian; Liu, Na] Qingdao Huanghai Univ, Coll Electromech Engn, 3111 Linghai Rd, Qingdao 266427, Peoples R China. [Guo, Haiyan] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, POB 912, Beijing 100083, Peoples R China. [Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Hong, Seungbum] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. RP Guo, HY (reprint author), Qingdao Huanghai Univ, Coll Electromech Engn, 3111 Linghai Rd, Qingdao 266427, Peoples R China.; Hong, SB (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM hyguohhu@163.com; hong@anl.gov RI Hong, Seungbum/B-7708-2009 OI Hong, Seungbum/0000-0002-2667-1983 FU Chinese University of Hong Kong (CUHK); Research Grants Council of Hong Kong [T23-407/13-N, AoE/P-03/08]; CUHK Group Research Scheme; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX H.Y. Guo thanks the Chinese University of Hong Kong (CUHK) for a Visiting Scholarship. The work is partially supported by the Research Grants Council of Hong Kong (T23-407/13-N and AoE/P-03/08) and the CUHK Group Research Scheme. Work at Argonne (S. Hong, PFM analysis and contribution to manuscript writing) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 32 TC 0 Z9 0 U1 14 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 EI 1878-1675 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD DEC PY 2016 VL 16 IS 12 BP 1603 EP 1606 DI 10.1016/j.cap.2016.09.016 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EA6YY UT WOS:000386776300011 ER PT J AU Park, K Ravindran, S Ju, GW Min, JW Kang, S Myoung, N Yim, SY Jo, YR Kim, BJ Lee, YT AF Park, Kwangwook Ravindran, Sooraj Ju, Gun Wu Min, Jung-Wook Kang, Seokjin Myoung, NoSoung Yim, Sang-Youp Jo, Yong-Ryun Kim, Bong-Joong Lee, Yong Tak TI Optical properties and carrier dynamics of GaAs/GaInAs multiple-quantum-well shell grown on GaAs nanowire by molecular beam epitaxy SO CURRENT APPLIED PHYSICS LA English DT Article DE Molecular beam epitaxy; III-V semiconductors; Optical characterization; Epitaxy growth; Nanowire ID HETEROSTRUCTURES; TRANSISTORS AB GaAs/GaInAs multiple-quantum-well (MQW) shells having different GaInAs shell width formed on the surface of self-catalyzed GaAs core nanowires (NWs) are grown on (100) Si substrate using molecular beam epitaxy. The photoluminescence emission from GaAs/GaInAs MQW shells and the carrier lifetime could be varied by changing the width of GaInAs shell. Time-resolved photoluminescence measurements showed that the carrier lifetime had a fast and slow decay owing to the mixing of wurtzite and zinc-blende structures of the NWs. Furthermore, strain relaxation caused the carrier lifetime to decrease beyond a certain thickness of GaInAs quantum well shells. (C) 2016 Elsevier B.V. All rights reserved. C1 [Park, Kwangwook] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ravindran, Sooraj] Indian Inst Space Sci & Technol, Dept Avion, Trivandrum 695547, Kerala, India. [Ju, Gun Wu; Kang, Seokjin; Lee, Yong Tak] Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, Gwangju 61005, South Korea. [Min, Jung-Wook] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea. [Myoung, NoSoung; Yim, Sang-Youp] Gwangju Inst Sci & Technol, Adv Photon Res Inst, Gwangju 61005, South Korea. [Jo, Yong-Ryun; Kim, Bong-Joong] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Gwangju 61005, South Korea. RP Park, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Lee, YT (reprint author), Gwangju Inst Sci & Technol, Sch Elect Engn & Comp Sci, Gwangju 61005, South Korea. EM kwangwook.park@nrel.gov; ytlee@gist.ac.kr OI Park, Kwangwook/0000-0002-4600-4600 NR 24 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 EI 1878-1675 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD DEC PY 2016 VL 16 IS 12 BP 1622 EP 1626 DI 10.1016/j.cap.2016.08.025 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EA6YY UT WOS:000386776300015 ER PT J AU Baldwin, ET Grover, RO Parrish, SE Duke, DJ Matusik, KE Powell, CF Kastengrend, AL Schmidt, DP AF Baldwin, E. T. Grover, R. O., Jr. Parrish, S. E. Duke, D. J. Matusik, K. E. Powell, C. F. Kastengrend, A. L. Schmidt, D. P. TI String flash-boiling in gasoline direct injection simulations with transient needle motion SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Gasoline direct injection; Flash-boiling; Diffuse interface; CFD; Openfoam (R) ID EULERIAN ATOMIZATION MODEL; MULTI-HOLE SPRAYS; RELAXATION MODEL; N-PENTANE; NOZZLE; FLOW; VARIABILITY; ISOOCTANE; BEHAVIOR; ENGINES AB A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry. Transient needle lift and wobble were based upon ensemble averaged X-ray imaging preformed at Argonne National Lab. The minimum needle lift simulated was 5 pm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actuate the injection. Low needle lift is shown to result in vapor generation near the injector seat. Finally, the internal injector flow is shown to be highly complex, containing many transient and interacting vortices which result in perturbations in the spray angle and fluctuations in the mass flux. This complex internal flow also results in intermittent string flash-boiling when a strong vortex is injected and the resulting swirling spray contains a thermal non-equilibrium vapor core. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Baldwin, E. T.; Schmidt, D. P.] Univ Massachusetts, Amherst, MA 01003 USA. [Grover, R. O., Jr.; Parrish, S. E.] Gen Motors Res & Dev, Warren, MI 48090 USA. [Duke, D. J.; Matusik, K. E.; Powell, C. F.] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. [Kastengrend, A. L.] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. RP Baldwin, ET (reprint author), Univ Massachusetts, Amherst, MA 01003 USA. FU General Motors; U.S. Department of Energy (DOE) [DE-AC02- 06CH11357]; DOE FX The authors would like to acknowledge the financial support of General Motors, who has sponsored much of the development of this CFD solver.; The X-ray needle lift experiments were performed at the 32-ID beam line of the APS at Argonne National Laboratory. Use of the APS is supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02- 06CH11357. Argonne's fuel spray research is sponsored by the DOE Vehicle Technologies Program, under the direction of Gurpreet Singh and Leo Breton. NR 52 TC 0 Z9 0 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 EI 1879-3533 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD DEC PY 2016 VL 87 BP 90 EP 101 DI 10.1016/j.ijmultiphaseflow.2016.09.004 PG 12 WC Mechanics SC Mechanics GA EA5FR UT WOS:000386645300009 ER PT J AU Halls, BR Roy, S Gord, JR Kastengren, AL Meyer, TR AF Halls, B. R. Roy, S. Gord, J. R. Kastengren, A. L. Meyer, T. R. TI Quantitative imaging of single-shot liquid distributions in sprays using broadband flash x-ray radiography SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Flash x-ray; Synchrotron radiation; X-ray radiography; Impinging jet; Spray imaging; Liquid distribution ID FUEL SPRAYS; STRUCTURED ILLUMINATION; JETS; FLOW; TOMOGRAPHY; BREAKUP; LIGHT; CORE AB Flash x-ray radiography is used to capture quantitative, two-dimensional line-of-sight averaged, single shot liquid distribution measurements in impinging jet sprays. The accuracy of utilizing broadband x-ray radiation from compact flash tube sources is investigated for a range of conditions by comparing the data with radiographic high-speed measurements from a narrowband, high-intensity synchrotron x-ray facility at the Advanced Photon Source (APS) of Argonne National Laboratory. The path length of the liquid jets is varied to evaluate the effects of energy dependent x-ray attenuation, also known as spectral beam hardening. The spatial liquid distributions from flash x-ray and synchrotron-based radiography are compared, along with spectral characteristics using Taylor's hypothesis. The results indicate that quantitative, single-shot imaging of liquid distributions can be achieved using broadband x-ray sources with nanosecond temporal resolution. Practical considerations for optimizing the imaging system performance are discussed, including the coupled effects of x-ray bandwidth, contrast, sensitivity, spatial resolution, temporal resolution, and spectral beam hardening. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Halls, B. R.; Meyer, T. R.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Halls, B. R.; Gord, J. R.] US Air Force, Res Lab, Aerosp Syst Directorate, Wright Patterson AFB, OH 45433 USA. [Roy, S.] Spectral Energies LLC, Dayton, OH 45431 USA. [Kastengren, A. L.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Meyer, T. R.] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Meyer, TR (reprint author), Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA.; Meyer, TR (reprint author), Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. EM trmeyer@purdue.edu FU Air Force Research Laboratory [FA9300-14-C-2003]; Army Research Office; U. S. Department of Energy [DE-AC02-06CH11357] FX This work was funded, in part, by the Air Force Research Laboratory under Contract No. FA9300-14-C-2003 and the Army Research Office (Dr. Ralph Anthenien, Program Manager). A portion of this research was performed at the 7-BM beamline of the Advanced Photon Source, Argonne National Laboratory. Use of the APS is supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357. The authors express their gratitude to C. D. Radke and K. Weiser of Iowa State University for their technical assistance. NR 43 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 EI 1879-3533 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD DEC PY 2016 VL 87 BP 241 EP 249 DI 10.1016/j.ijmultiphaseflow.2016.09.007 PG 9 WC Mechanics SC Mechanics GA EA5FR UT WOS:000386645300021 ER PT J AU Camarillo, MK Domen, JK Stringfellow, WT AF Camarillo, Mary Kay Domen, Jeremy K. Stringfellow, William T. TI Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Review DE Hydraulic fracturing; Oil and gas production; Produced water; Wastewater treatment ID FIELD PRODUCED WATER; REVERSE-OSMOSIS MEMBRANES; ROTATING BIOLOGICAL CONTACTORS; QUATERNARY AMMONIUM-COMPOUNDS; SURFACTANT-MODIFIED ZEOLITE; NATURAL-GAS EXTRACTION; WASTE-WATER; SHALE GAS; ACTIVATED CARBON; FLOWBACK WATER AB Produced water is a significant waste stream that can be treated and reused; however, the removal of production chemicals-such as those added in hydraulic fracturing-must be addressed. One motivation for treating and reusing produced water is that current disposal methods-typically consisting of deep well injection and percolation in infiltration pits-are being limited. Furthermore, oil and gas production often occurs in arid regions where there is demand for new water sources. In this paper, hydraulic fracturing chemical additive data from California are used as a case study where physical-chemical and biodegradation data-are summarized and used to screen for appropriate produced water treatment technologies. The data indicate that hydraulic fracturing chemicals are largely treatable; however, data are missing for 24 of the 193 chemical additives identified. More than one-third of organic chemicals have data indicating biodegradability, suggesting biological treatment would be effective. Adsorption-based methods and partitioning of chemicals into oil for subsequent separation is expected to be effective for approximately one-third of chemicals. Volatilization-based treatment methods (e.g. air stripping) will only be effective for approximately 10% of chemicals. Reverse osmosis is a good catch-all with over 70% of organic chemicals expected to be removed efficiently. Other technologies such as electrocoagulation and advanced oxidation are promising but lack demonstration. Chemicals of most concern due to prevalence, toxicity, and lack of data include propargyl alcohol, 2-mercaptoethyl alcohol, tetrakis hydroxymethyl-phosphonium sulfate, thioglycolic acid, 2-bromo-3-nitrilopropionamide, formaldehyde polymers, polymers of acrylic acid, quaternary ammonium compounds, and surfactants (e.g. ethoxylated alcohols). Future studies should examine the fate of hydraulic fracturing chemicals in produced water treatment trains to demonstrate removal and clarify interactions between upstream and downstream processes. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Camarillo, Mary Kay; Domen, Jeremy K.; Stringfellow, William T.] Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, 3601 Pacific Ave, Stockton, CA 95211 USA. [Stringfellow, William T.] Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Camarillo, MK (reprint author), Univ Pacific, Sch Engn & Comp Sci, Ecol Engn Res Program, 3601 Pacific Ave, Stockton, CA 95211 USA. EM mcamarillo@pacific.edu RI Stringfellow, William/O-4389-2015 OI Stringfellow, William/0000-0003-3189-5604 NR 128 TC 1 Z9 1 U1 77 U2 80 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD DEC 1 PY 2016 VL 183 BP 164 EP 174 DI 10.1016/j.jenvman.2016.08.065 PN 1 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA EA2IE UT WOS:000386415200017 PM 27591844 ER PT J AU Rauglas, E Martin, S Bailey, K Magnuson, M Phillips, R Harper, WF AF Rauglas, Erik Martin, Seth Bailey, Kandace Magnuson, Matthew Phillips, Rebecca Harper, Willie F., Jr. TI The effect of malathion on the activity, performance, and microbial ecology of activated sludge SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Activated sludge; Respiration; Inhibition; Malathion; Ecology ID GEN. NOV.; BIODEGRADATION; PESTICIDES; DIVERSITY; TOXICITY; FATE AB This study evaluated the effect of a VX (0-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate) surrogate (malathion) on the activity, performance, and ecology of activated sludge bioreactors. In the presence of malathion, the maximum observed respiration rates varied between 43 and 53 mu g/O-2 min, generally similar to the 49 mu g O-2/min rates observed in controls. Malathion did not alter the respiration ratio of O-2 consumed-to-CO2 produced nor did it impact the shape of the oxygen,consumption curves during respirometry. Shorter term (12 h) batch tests showed that both chemical oxygen demand (COD) and ammonia removal were not negatively impacted by the presence of 0.1-3 mg/L malathion. Longer term continuous addition (i.e. 40 days) of 0.1 mg/L of malathion also had no effect on COD and ammonia removal. In contrast to shorter term exposures, longer term continuous addition of 3 mg/L of malathion negatively impacted both COD and nitrogen removal and was associated with shifts in the abundance of species that are common to activated sludge. These results illustrate the impact that chemicals like malathion may have on COD removal, and nitrification, as well as the robustness of activated sludge microbial communities. Published by Elsevier Ltd. C1 [Rauglas, Erik; Martin, Seth; Harper, Willie F., Jr.] Air Force Inst Technol, Dept Syst Engn & Management, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA. [Bailey, Kandace] Air Force Inst Technol, Oak Ridge Inst Sci & Educ Program, Dept Syst Engn & Management, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA. [Magnuson, Matthew] US EPA, Natl Homeland Secur Res Ctr, Water Infrastruct Protect Div, 26 W Martin Luther King Dr,Mailstop NG 16, Cincinnati, OH 45268 USA. [Phillips, Rebecca] US EPA, Oak Ridge Inst Sci & Educ Program, 1300 Penn Ave NW,ML 8801 RR, Washington, DC 20011 USA. RP Harper, WF (reprint author), Air Force Inst Technol, Dept Syst Engn & Management, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA. EM willie.harper@afit.edu OI Phillips, Rebecca/0000-0002-7270-7078 NR 34 TC 0 Z9 0 U1 7 U2 8 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD DEC 1 PY 2016 VL 183 BP 220 EP 228 DI 10.1016/j.jenvman.2016.08.076 PN 1 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA EA2IE UT WOS:000386415200023 PM 27594690 ER PT J AU Vetterick, GA El-Atwani, O Baldwin, JK Tonks, MR Taheri, ML AF Vetterick, G. A. El-Atwani, O. Baldwin, J. Kevin Tonks, M. R. Taheri, M. L. TI Quantification of void pinning effects during grain growth of nanocrystalline iron SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Grain boundary; Nanocrystalline iron; In-situ TEM; Void interaction ID RADIATION-DAMAGE; MICROSTRUCTURE; DIFFUSION; METALS; ENERGY AB In-situ transmission electron microscopy (TEM) annealing experiments, coupled with an analytical model, compared void pinning effects in nanocrystalline Fe films during grain growth. Voided grain boundaries were shown to have nearly four orders of magnitude less grain boundary mobility than void-free grain boundaries. However the coverage of the grain boundaries by pores was over three times that which would be required for static particles to completely halt grain boundary migration. Grain boundary migration continued because the pores were dragged by the grain boundaries and continued to evolve and coalesce. Thus, pores can slow grain boundary migration but are not an effective means of fully stabilizing nanocrystalline grain size at high temperatures. (C) 2016 Elsevier B.V. All rights reserved. C1 [Vetterick, G. A.; El-Atwani, O.; Taheri, M. L.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Baldwin, J. Kevin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. [Tonks, M. R.] Penn State Univ, Mech & Nucl Engn Dept, University Pk, PA 16802 USA. [Vetterick, G. A.] Terrapower LLC, Bellevue, WA USA. RP Taheri, ML (reprint author), Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. EM mtaheri@coe.drexel.edu OI El Atwani, Osman/0000-0002-1862-7018 FU DOE Basic Energy Sciences [DE-SC0008274]; Department of Energy Nuclear Energy Advanced Modeling and Simulation program FX The experimental part of this work is supported by the DOE Basic Energy Sciences under the Early Career program through contract DE-SC0008274. The modeling work is supported by the Department of Energy Nuclear Energy Advanced Modeling and Simulation program. NR 22 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2016 VL 481 BP 62 EP 65 DI 10.1016/j.jnucmat.2016.08.028 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EA7PF UT WOS:000386822900007 ER PT J AU Cooper, MWD Stanek, CR Turnbull, JA Uberuaga, BP Andersson, DA AF Cooper, M. W. D. Stanek, C. R. Turnbull, J. A. Uberuaga, B. P. Andersson, D. A. TI Simulation of radiation driven fission gas diffusion in UO2, ThO2 and PuO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID URANIUM-DIOXIDE; THERMAL-CONDUCTIVITY; MOLECULAR-DYNAMICS; IRRADIATION; PRODUCTS; RELEASE; FUELS; LATTICE; STATE; MODEL AB Below 1000 K it is thought that fission gas diffusion in nuclear fuel during irradiation occurs through atomic mixing due to radiation damage. Here we present a molecular dynamics (MD) study of Xe, Kr, Th, U, Pu and O diffusion due to irradiation. It is concluded that the ballistic phase does not sufficiently account for the experimentally observed diffusion. Thermal spike simulations are used to confirm that electronic stopping remedies the discrepancy with experiment and the predicted diffusivities lie within the scatter of the experimental data. Our results predict that the diffusion coefficients are ordered such that D-O* > D-Kr* > D-Xe* > D-U*. For all species >98.5% of diffusivity is accounted for by electronic stopping. Fission gas diffusivity was not predicted to vary significantly between ThO2, UO2 and PuO2, indicating that this process would not change greatly for mixed oxide fuels. Published by Elsevier B.V. C1 [Cooper, M. W. D.; Stanek, C. R.; Uberuaga, B. P.; Andersson, D. A.] Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. RP Cooper, MWD (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, POB 1663, Los Alamos, NM 87545 USA. EM cooper_m@lanl.gov FU U.S. department of Energy; Office of Nuclear Energy; Nuclear Energy Advanced Modeling Simulation (NEAMS) program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was funded by the U.S. department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling Simulation (NEAMS) program. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 41 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2016 VL 481 BP 125 EP 133 DI 10.1016/j.jnucmat.2016.09.013 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EA7PF UT WOS:000386822900015 ER PT J AU Garrison, LM Katoh, Y Snead, LL Byun, TS Reiser, J Rieth, M AF Garrison, L. M. Katoh, Y. Snead, L. L. Byun, T. S. Reiser, J. Rieth, M. TI Irradiation effects in tungsten-copper laminate composite SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article DE Plasma-facing material; Laminate composite; Fusion material; Tungsten; Neutron irradiation ID STRUCTURAL DIVERTOR APPLICATIONS; NEUTRON-IRRADIATION; MICROSTRUCTURAL EVOLUTION; TRANSMUTATION ELEMENTS; ELASTIC-MODULUS; ALLOYS; FOIL; INDENTATION; TEMPERATURE; HARDNESS AB Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410-780 degrees C and fast neutron fluences of 0.02-9.0 x 10(25) n/m(2), E > 0.1 MeV, 0.0039-1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 degrees C. After only 0.0039 dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 degrees C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile. (C) 2016 Elsevier B.V. All rights reserved. C1 [Garrison, L. M.; Katoh, Y.; Snead, L. L.; Byun, T. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Snead, L. L.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Byun, T. S.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Reiser, J.; Rieth, M.] Karlsruhe Inst Technol, Karlsruhe, Germany. RP Garrison, LM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM garrisonlm@ornl.gov RI Garrison, Lauren/S-2526-2016; Rieth, Michael/E-4245-2017 OI Garrison, Lauren/0000-0002-5673-8333; Rieth, Michael/0000-0002-6231-6241 FU U.S. Department of Energy, Office of Science, Fusion Energy Sciences; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the U.S. Department of Energy, Office of Science, Fusion Energy Sciences. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The authors would like to thank T. Colling, S. Curlin, M. Gussev, D. Lewis, M. McAlister, A. Williams, and S. Zinkle for their assistance with these experiments and manuscript. NR 36 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2016 VL 481 BP 134 EP 146 DI 10.1016/j.jnucmat.2016.09.020 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EA7PF UT WOS:000386822900016 ER PT J AU Brown, DW Bourke, MAM Clarke, AJ Field, RD Hackenberg, RE Hults, WL Thoma, DJ AF Brown, D. W. Bourke, M. A. M. Clarke, A. J. Field, R. D. Hackenberg, R. E. Hults, W. L. Thoma, D. J. TI The effect of low-temperature aging on the microstructure and deformation of uranium-6 wt% niobium: An in-situ neutron diffraction study SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID X-RAY-DIFFRACTION; U-NB ALLOYS; STRESS-RELAXATION; PHASE-TRANSFORMATIONS; MARTENSITIC-TRANSFORMATION; RIETVELD REFINEMENT; POWDER DIFFRACTION; METASTABLE PHASES; GAMMA-PHASE; DECOMPOSITION AB The mechanical properties of uranium-niobium alloys evolve with aging at relatively low temperatures due to subtle microstructural changes. In-situ neutron diffraction measurements during aging of a monoclinic U-6Nb alloy at temperatures to 573 K were performed to monitor these changes. Further, in-situ neutron diffraction studies during deformation of U-6Nb in the as-quenched state and after aging for two and eight hours at 473 K were completed to assess the influence of microstructural evolution on mechanical properties. With heating, large anisotropic changes in lattice parameter were observed followed by relaxation with time at the aging temperature. The lattice parameters return to nearly their initial values with cooling. The active plastic deformation mechanisms including, in order of occurrence, shape-memory de-twinning, mechanical twinning, and slip-mediated deformation do not change with prior aging. However, the resistance to motion of the as-quenched martensitic twin boundaries increases following aging, resulting in the observed increase in initial yield strength. (C) 2016 Elsevier B.V. All rights reserved. C1 [Brown, D. W.; Bourke, M. A. M.; Field, R. D.; Hackenberg, R. E.; Hults, W. L.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Clarke, A. J.] Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO USA. [Thoma, D. J.] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. RP Brown, DW (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM dbrown@lanl.gov FU Office of Basic Energy Sciences (DOE); DOE [DE-AC52-06NA25396] FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which was funded by the Office of Basic Energy Sciences (DOE). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 49 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2016 VL 481 BP 164 EP 175 DI 10.1016/j.jnucmat.2016.09.004 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EA7PF UT WOS:000386822900019 ER PT J AU Koyanagi, T Katoh, Y Terrani, KA Kim, YJ Kiggans, JO Hinoki, T AF Koyanagi, Takaaki Katoh, Yutai Terrani, Kurt A. Kim, Young-Jin Kiggans, James O. Hinoki, Tatsuya TI Hydrothermal corrosion of silicon carbide joints without radiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SIC/SIC COMPOSITES; ENERGY APPLICATIONS; OXIDATION BEHAVIOR; SIC CERAMICS; PHASE; IRRADIATION; FABRICATION; MOLYBDENUM; RESISTANCE; STRENGTH AB Hydrothermal corrosion of four types of the silicon carbide (SiC) to SiC plate joints were investigated under pressurized water reactor and boiling water reactor relevant chemical conditions without irradiation. The joints were formed by metal diffusion bonding using molybdenum or titanium interlayer, reaction sintering using TieSieC system, and SiC nanopowder sintering. Most of the joints withstood the corrosion tests for five weeks. The recession of the SiC substrates was limited. Based on the recession of the bonding layers, it was concluded that all the joints except for the molybdenum diffusion bond are promising under the reducing environments without radiation. The SiC nanopowder sintered joint was the most corrosion tolerant under the oxidizing environment among the four joints. (C) 2016 Elsevier B.V. All rights reserved. C1 [Koyanagi, Takaaki; Katoh, Yutai; Terrani, Kurt A.; Kiggans, James O.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kim, Young-Jin] GE Global Res Ctr, Schenectady, NY 12309 USA. [Hinoki, Tatsuya] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. RP Koyanagi, T (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM koyanagit@ornl.gov RI Koyanagi, Takaaki/D-9841-2017; kiggans, james/E-1588-2017 OI Koyanagi, Takaaki/0000-0001-7272-4049; kiggans, james/0000-0001-5056-665X FU U.S. Department of Energy, Office of Nuclear Energy, for Advanced Fuel Campaign of the Fuel Cycle Research & Development program [DE-AC050-0OR22725]; Oak Ridge National Laboratories FX This work was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, for Advanced Fuel Campaign of the Fuel Cycle Research & Development program under contact DE-AC050-0OR22725 with Oak Ridge National Laboratories managed by UT-Battelle, LLC. C. Ang provided useful comments on the manuscript. NR 37 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD DEC PY 2016 VL 481 BP 226 EP 233 DI 10.1016/j.jnucmat.2016.09.027 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA EA7PF UT WOS:000386822900025 ER PT J AU Wakelin, SA Cave, VM Dignam, BE D'Ath, C Tourna, M Condron, LM Zhou, J Van Nostrand, JD O'Callaghan, M AF Wakelin, S. A. Cave, V. M. Dignam, B. E. D'Ath, C. Tourna, M. Condron, L. M. Zhou, J. Van Nostrand, J. D. O'Callaghan, M. TI Analysis of soil eDNA functional genes: potential to increase profitability and sustainability of pastoral agriculture SO NEW ZEALAND JOURNAL OF AGRICULTURAL RESEARCH LA English DT Article DE Data analysis; eDNA; environmental genomics; GeoChip; soil ecosystem function ID PROKARYOTIC DIVERSITY; MICROBIAL COMMUNITIES; NEW-ZEALAND; MICROARRAY; BIODIVERSITY; AMPLIFICATION; ENVIRONMENT; IMPACTS; GEOCHIP; SYSTEMS AB Management of soil biological resources to optimise plant production, efficiency of nutrient inputs, and system sustainability is an emerging opportunity for pastoral agriculture. To achieve these goals, suitable tools that can assess the functional state of the soil ecosystem must be developed and standardised approaches to their application adopted. Towards this end, we have undertaken comprehensive, high-density functional-gene microarray analysis (GeoChip5) of environmental DNA (eDNA) extracted from 50 pastoral soils. When combined with soil, environmental and management metadata, the information can be used to provide insights into soil biological processes spanning greenhouse gas emissions, through to natural suppression of plant root diseases. To provide an example of a structured workflow of analysis in a pastoral system context, we analysed the GeoChip data using a combination of approaches spanning routine univariate methods through to more complex multivariate and network-based analysis. Analyses were restricted to comparing effects of land-use (dairy or other' farming systems), and exploring relationships of the GeoChip data with the soil properties from each sample. These exemplar analyses present a pathway for the application of eDNA approaches (GeoChip or others) to deliver outcomes for pastoral agricultural in New Zealand. C1 [Wakelin, S. A.; Cave, V. M.; Dignam, B. E.; D'Ath, C.; Tourna, M.; O'Callaghan, M.] AgResearch Ltd, Lincoln Sci Ctr, Christchurch, New Zealand. [Dignam, B. E.; Condron, L. M.] Lincoln Univ, Bioprotect Res Ctr, Canterbury, New Zealand. [Tourna, M.] Univ Thessaly, Dept Biochem & Biotechnol, Larisa, Greece. [Condron, L. M.] Lincoln Univ, Fac Agr & Life Sci, Christchurch, New Zealand. [Zhou, J.; Van Nostrand, J. D.] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Sci, Norman, OK 73019 USA. [Zhou, J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Zhou, J.] Tsinghau Univ, Sch Environm, Beijing, Peoples R China. RP Wakelin, SA (reprint author), AgResearch Ltd, Lincoln Sci Ctr, Christchurch, New Zealand. EM steve.wakelin@agresearch.co.nz FU mixture of AgResearch Ltd; BioProtection Research Centre (BPRC); Agricultural Marketing and Development Trust (AGMARDT) of New Zealand FX Funding for GeoChip analysis was obtained through a mixture of AgResearch Ltd curiosity funding, BioProtection Research Centre (BPRC) and the Agricultural Marketing and Development Trust (AGMARDT) of New Zealand. NR 38 TC 0 Z9 0 U1 26 U2 26 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0028-8233 EI 1175-8775 J9 NEW ZEAL J AGR RES JI N. Z. J. Agric. Res. PD DEC PY 2016 VL 59 IS 4 BP 333 EP 350 DI 10.1080/00288233.2016.1209529 PG 18 WC Agriculture, Multidisciplinary SC Agriculture GA EA4WP UT WOS:000386616900001 ER PT J AU Lee, J Gordon, AC Kim, H Park, W Cho, S Lee, B Larson, AC Rozhkova, EA Kim, DH AF Lee, Joonseok Gordon, Andrew C. Kim, Hacksung Park, Wooram Cho, Soojeong Lee, Byeongdu Larson, Andrew C. Rozhkova, Elena A. Kim, Dong-Hyun TI eTargeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance SO BIOMATERIALS LA English DT Article DE Upconversion nanoparticles; Medical imaging; Cancer; Interventional radiology; Multimodal probe ID UP-CONVERSION NANOPARTICLES; ELUTING MAGNETIC MICROSPHERES; GUIDED CANCER-SURGERY; POLY(LACTIDE-CO-GLYCOLIDE) MICROSPHERES; SHELL NANOPARTICLES; INFRARED-LIGHT; LIVER-TUMORS; FLUORESCENCE; DELIVERY; THERAPY AB Multimodal-imaging probes offer a novel approach, which can provide detail diagnostic information for the planning of image-guided therapies in clinical practice. Here we report targeted multimodal Nd3+-doped upconversion nanoparticle (UCNP) imaging reporters, integrating both magnetic resonance imaging (MRI) and real-time upconversion luminescence imaging (UCL) capabilities within a single platform. Nd3+-doped UCNPs were synthesized as a core shell structure showing a bright visible emission upon excitation at the near infrared (minimizing biological overheating and increasing tissue penetration depth) as well as providing strong MRI 1-2 contrast (high r(2)/r(1) ratio). Transcatheter intra-arterial infusion of Nd3+-doped UCNP5 conjugated with anti-CD44-monoclonal antibody allowed for high performance in vivo multimodal UCL and MR imaging of hepatocellular carcinoma (HCC) in an orthotopic rat model. The resulted in vivo multimodal imaging of Nd3+ doped core-shell UCNP5 combined with transcatheter intra-arterial targeting approaches successfully discriminated liver tumors from normal hepatic tissues in rats for surgical resection applications. The demonstrated multimodal UCL and MRI imaging capabilities of our multimodal UCNP5 reporters suggest strong potential for in vivo visualization of tumors and precise surgical guidance to fill the gap between pre-procedural imaging and intraoperative reality. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lee, Joonseok; Rozhkova, Elena A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Gordon, Andrew C.; Park, Wooram; Cho, Soojeong; Larson, Andrew C.; Kim, Dong-Hyun] Northwestern Univ, Feinberg Sch Med, Dept Radiol, Chicago, IL 60611 USA. [Kim, Hacksung] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Larson, Andrew C.; Kim, Dong-Hyun] Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA. [Gordon, Andrew C.; Larson, Andrew C.] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA. [Larson, Andrew C.] Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Larson, Andrew C.] Northwestern Univ, IIN, Evanston, IL 60208 USA. RP Rozhkova, EA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA.; Kim, DH (reprint author), Northwestern Univ, Feinberg Sch Med, Dept Radiol, Chicago, IL 60611 USA. EM rozhkova@anl.gov; dhkim@northwestern.edu FU ACS (American Cancer Society) [ACS 279148]; National Cancer Institute [R01CA141047, R21CA173491, R21EB017986, R21CA185274]; National Institute of Biomedical Imaging and Bioengineering; Center for Translational Imaging at Northwestern University; NASA Ames Research Center [NNA04CC36G]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Argonne National Laboratory FX This work was supported by Basic Research Grant from ACS (American Cancer Society, ACS 279148) and by four grants R01CA141047, R21CA173491, R21EB017986 and R21CA185274 from the National Cancer Institute and National Institute of Biomedical Imaging and Bioengineering. This work was supported by the Center for Translational Imaging at Northwestern University. Metal analysis was performed at the Northwestern University Quantitative Bio-element Imaging Center generously supported by NASA Ames Research Center Grant NNA04CC36G. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. J.L. acknowledges the Director's Postdoctoral Fellowship from Argonne National Laboratory. The authors thank V. Novosad (Materials Science Division, Argonne) for performing magnetic characterization and useful discussions. NR 37 TC 1 Z9 1 U1 50 U2 50 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 EI 1878-5905 J9 BIOMATERIALS JI Biomaterials PD DEC PY 2016 VL 109 BP 69 EP 77 DI 10.1016/j.biomaterials.2016.09.013 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA EA2FF UT WOS:000386407500007 PM 27673597 ER PT J AU Sun, YM Shen, YX Liang, P Zhou, JH Yang, YF Huang, X AF Sun, Yanmei Shen, Yue-xiao Liang, Peng Zhou, Jizhong Yang, Yunfeng Huang, Xia TI Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment SO BIORESOURCE TECHNOLOGY LA English DT Article DE Membrane bioreactors; Municipal wastewater; Multiple antibiotic resistance genes; GeoChip ID SEWAGE-TREATMENT PLANT; MICROBIAL COMMUNITY; ANAEROBIC-DIGESTION; RECEIVING RIVER; BACTERIA; SLUDGE; TETRACYCLINE; CHINA; FATE; SUSCEPTIBILITY AB Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three beta-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (P < 0.05) correlated to the multiple antibiotic resistance genes distribution in MBRs. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Sun, Yanmei; Shen, Yue-xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Bot & Microbiol, Norman, OK 73019 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Huang, X (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. EM xhuang@tsinghua.edu.cn RI Huang, Xia/E-7145-2011 FU Key Program of the National Natural Science Foundation of China [51238004]; Program for Outstanding PhD thesis of Beijing [20131000305] FX This work was supported by the Key Program of the National Natural Science Foundation of China (No. 51238004), and the Program for Outstanding PhD thesis of Beijing (No. 20131000305). NR 35 TC 0 Z9 0 U1 62 U2 62 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2016 VL 222 BP 100 EP 106 DI 10.1016/j.biortech.2016.09.117 PG 7 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DZ9ZV UT WOS:000386243600012 PM 27716561 ER PT J AU Bohutskyi, P Chow, S Ketter, B Shek, CF Yacar, D Tang, YT Zivojnovich, M Betenbaugh, MJ Bouwer, EJ AF Bohutskyi, Pavlo Chow, Steven Ketter, Ben Shek, Coral Fung Yacar, Dean Tang, Yuting Zivojnovich, Mark Betenbaugh, Michael J. Bouwer, Edward J. TI Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae SO BIORESOURCE TECHNOLOGY LA English DT Article DE Algal Turf Scrubber (R); Anaerobic digestion centrate; Biogas production; Nitrogen, Phosphorus and trace element recycling; Chlorella sorokiniana ID FRESH-WATER ALGAE; ANAEROBIC-DIGESTION; WASTE-WATER; METHANE PRODUCTION; TREATMENT SYSTEMS; MANURE NUTRIENTS; LOADING RATES; HEAVY-METALS; BIOMASS; MARINE AB An integrated system was implemented for water phytoremediation and biofuel production through sequential cultivation of filamentous algae followed by cultivation of lipid-producing microalgae Chlorella sorokiniana. Natural poly-culture of filamentous algae was grown in agricultural stormwater using the Algal Turf Scrubber (R), harvested and subjected for lipid extraction and/or methane production using anaerobic digestion (AD). While filamentous algae lipid content was too low for feasible biodiesel production (<2%), both whole biomass and lipid-extracted algal residues (LEA) yielded similar to 0.2 L methane per gVS at loading rates up to 5 g VS/L-day. Importantly, essential macro-nutrients and trace elements captured from stormwater were released into the AD effluent as soluble nutrients and were successfully tested as fertilizer replacement for cultivation of lipid-accumulating C. sorokiniana in a subsequent stage. Accordingly, filamentous algae poly-culture was exploited for waste nutrient capturing and biofuel feedstock generation. These nutrients were recovered and reused as a concentrated supplement for potentially high-value microalgae. Published by Elsevier Ltd. C1 [Bohutskyi, Pavlo; Chow, Steven; Yacar, Dean; Bouwer, Edward J.] Johns Hopkins Univ, Dept Geog & Environm Engn, 3400 North Charles St, Baltimore, MD 21218 USA. [Bohutskyi, Pavlo; Ketter, Ben; Shek, Coral Fung; Betenbaugh, Michael J.] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 North Charles St, Baltimore, MD 21218 USA. [Tang, Yuting] Nanjing Forestry Univ, Dept Chem Engn, 159 Longpan St, Nanjing 210037, Jiangsu, Peoples R China. [Zivojnovich, Mark] HydroMentia Technol LLC, Ocala, FL USA. RP Bohutskyi, P (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Div Biol Sci, Richland, WA 99352 USA. EM pavlo.bohutskyi@pnnl.gov RI Bouwer, Edward/A-3287-2010; OI Bohutskyi, Pavlo/0000-0002-0462-8132 FU U.S. EPA P3 Program [SU835717]; U.S. NSF CBET Program [1236691]; Indian River County, FL; Florida Department of Environmental Protection Grant (Egret Marsh Storm Water Park Algal Turf Scrubber(R)) [319(h)]; Bureau of Education and Cultural Affairs of the U.S. Department of State though an International Fulbright Science and Technology Award FX The authors gratefully acknowledge financial support from U.S. EPA P3 Program (Grant No. SU835717) and U.S. NSF CBET Program (Grant No. 1236691); Indian River County, FL and Florida Department of Environmental Protection Grant (Egret Marsh Storm Water Park Algal Turf Scrubber (R) 319(h) to HydroMentia); and the Bureau of Education and Cultural Affairs of the U.S. Department of State though an International Fulbright Science and Technology Award to Pavlo Bohutskyi. In addition, we would like to extend our sincere appreciation to Dr. Matthew Van Ert, from Van Ert-Nemoto, and Associates, LLC, for his help with handling the filamentous algae biomass that served as an impetus for the initiation of the project. NR 50 TC 1 Z9 1 U1 40 U2 40 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD DEC PY 2016 VL 222 BP 294 EP 308 DI 10.1016/j.biortech.2016.10.013 PG 15 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DZ9ZV UT WOS:000386243600036 PM 27728832 ER PT J AU Zhang, W Lu, WC Zhang, HX Ho, KM Wang, CZ AF Zhang, Wei Lu, Wen-Cai Zhang, Hong-Xing Ho, K. M. Wang, C. Z. TI Lattice distortion and electron charge redistribution induced by defects in graphene SO CARBON LA English DT Article ID SINGLE-LAYER GRAPHENE; STRAIN; STRENGTH; EDGES AB Lattice distortion and electronic charge localization induced by vacancy and embedded-atom defects in graphene were studied by tight-binding (TB) calculations using the recently developed three-center TB potential model. We showed that the formation energies of the defects are strongly correlated with the number of dangling bonds and number of embedded atoms, as well as the magnitude of the graphene lattice distortion induced by the defects. We also showed that the defects introduce localized electronic states in the graphene which would affect the electron transport properties of graphene. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing] Jilin Univ, Int Joint Res Lab Nanomicro Architecture Chem, Changchun 130023, Jilin, Peoples R China. [Zhang, Wei; Lu, Wen-Cai; Zhang, Hong-Xing] Jilin Univ, Inst Theoret Chem, Changchun 130023, Jilin, Peoples R China. [Zhang, Wei; Ho, K. M.; Wang, C. Z.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Zhang, Wei; Ho, K. M.; Wang, C. Z.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lu, Wen-Cai] Qingdao Univ, Dept Phys, Qingdao 266071, Shandong, Peoples R China. [Lu, Wen-Cai] Qingdao Univ, State Key Lab Cultivat Base Adv Fibers & Text Mat, Qingdao 266071, Shandong, Peoples R China. RP Zhang, W (reprint author), Jilin Univ, Int Joint Res Lab Nanomicro Architecture Chem, Changchun 130023, Jilin, Peoples R China.; Zhang, W (reprint author), Jilin Univ, Inst Theoret Chem, Changchun 130023, Jilin, Peoples R China.; Wang, CZ (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.; Wang, CZ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM zhangw_bxx@jlu.edu.cn; wangcz@ameslab.gov FU National Natural Science Foundation of China [21173096]; State Key Development Program for Basic Research of China [2013CB834801]; US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering; National Energy Research Supercomputing Centre (NERSC) in Berkeley, CA [DE-AC02-07CH11358] FX W. Zhang acknowledges the support by the National Natural Science Foundation of China (Grant No. 21173096), and supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB834801). Work at Ames Laboratory was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Supercomputing Centre (NERSC) in Berkeley, CA under Contract No. DE-AC02-07CH11358. NR 30 TC 0 Z9 0 U1 24 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD DEC PY 2016 VL 110 BP 330 EP 335 DI 10.1016/j.carbon.2016.09.031 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EA2DJ UT WOS:000386402700037 ER PT J AU Ye, JS Liu, J Ou, HS Wang, LL AF Ye, Jin-shao Liu, Juan Ou, Hua-se Wang, Lin-lin TI Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli SO CHEMOSPHERE LA English DT Article DE Ultraviolet activated persulfate; Antibiotics; Advanced oxidation process; Proteomics; Toxicological assessment; Water treatment ID ADVANCED OXIDATION PROCESSES; WASTE-WATER; SACCHAROMYCES-CEREVISIAE; TRANSFORMATION PRODUCTS; ANTIBACTERIAL ACTIVITY; ANTIMICROBIAL ACTIVITY; ANTIBIOTICS; MECHANISM; OFLOXACIN; UV/H2O2 AB In this study, the degradation of ciprofloxacin (CIP) was explored using ultraviolet activated persulfate (UV/PS) with 280 nm ultraviolet light-emitting diodes (UV-LEDs), and the toxicological assessment of degrading intermediates was performed using iTRAQ labeling quantitative proteomic technology. The quantitative mass spectrum results showed that 280 nm UV/PS treatment had a high transformation efficiency of CIP ([CIP] = 3 mu M, [S2O82-] = 210 mu M, apparent rate constants 0.2413 min(-1)). The high resolution mass spectrum analyses demonstrated that the primary intermediates included C15H16FN3O3 (m/z 306.1248) and C17H18FN3O4 (m/z 348.1354). The former one was formed by the cleavage of piperazine ring, while the later one was generated by the addition of a hydroxyl on the quinolone backbone. The toxicological assessment demonstrated that 56 and 110 proteins had significant up regulations and down regulations, respectively, in the Escherichia coli exposed to degraded CIP compared to untreated CIP. The majority of up-regulated proteins, such as GapA, SodC, were associated with primary metabolic process rather than responses to stress and toxic substance, inferring that the moderate UV/PS treatment can reduce the antibacterial activity of CIP by incomplete mineralization. Consequently, these results provided a novel insight into the application of UV-LED/PS treatment as a promising removal methodology for quinolones. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ye, Jin-shao; Liu, Juan; Ou, Hua-se; Wang, Lin-lin] Jinan Univ, Sch Environm, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou Key Lab Environm Exposure & Hlth, Guangzhou 510632, Guangdong, Peoples R China. [Ye, Jin-shao; Wang, Lin-lin] Lawrence Berkeley Natl Lab, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Ou, HS (reprint author), Jinan Univ, Sch Environm, Guangdong Key Lab Environm Pollut & Hlth, Guangzhou Key Lab Environm Exposure & Hlth, Guangzhou 510632, Guangdong, Peoples R China. EM touhuase@jnu.edu.cn FU National Natural Science Foundation of China [51308224, 21577049]; Science and Technology Planning Project of Guangdong Province, China [2014A020216014] FX This project was supported by the National Natural Science Foundation of China (Grant Nos. 51308224, 21577049), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2014A020216014). NR 37 TC 0 Z9 0 U1 56 U2 56 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD DEC PY 2016 VL 165 BP 311 EP 319 DI 10.1016/j.chemosphere.2016.09.031 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA EA2DE UT WOS:000386402200037 PM 27664520 ER PT J AU Li, WD Bei, HB Gao, YF AF Li, Weidong Bei, Hongbin Gao, Yanfei TI Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses SO INTERMETALLICS LA English DT Article DE Notch sensitivity; Cohesive crack; Shear bands ID DISTRIBUTED WEAK ZONES; FATIGUE-CRACK; FAILURE; LOCALIZATION; DEFORMATION; CAVITATION; FRACTURE; SIMULATIONS; PLASTICITY; MECHANISM AB Recent experiments in notched bulk metallic glasses have found reduced, or insensitive, or improved strengths, while in many of these cases the ductile strain prior to final failure is enhanced. First, although the inverse notch effect is explained by a shift from shear localization to cavitation failure, it is suggested in this work that the synergistic effect between cohesive fracture at the notched area and shear bands emanating from the notch roots may extend the parametric space for the notch insensitive behavior. Second, the dependence of shear band patterns on notch geometric factors is determined by the Rudnicki-Rice theory and the free-volume-based finite element simulations. These results suggest conditions for shear band multiplication to take place and for the shear-localization-induced failure to be delayed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Weidong; Gao, Yanfei] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Bei, Hongbin; Gao, Yanfei] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Gao, YF (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Bei, HB; Gao, YF (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM beih@ornl.gov; ygao7@utk.edu RI Gao, Yanfei/F-9034-2010; OI Gao, Yanfei/0000-0003-2082-857X; Bei, Hongbin/0000-0003-0283-7990 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This research was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 36 TC 1 Z9 1 U1 20 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0966-9795 EI 1879-0216 J9 INTERMETALLICS JI Intermetallics PD DEC PY 2016 VL 79 BP 12 EP 19 DI 10.1016/j.intermet.2016.09.001 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA EA2EU UT WOS:000386406400002 ER PT J AU Koohbor, B Kidane, A Lu, WY AF Koohbor, Behrad Kidane, Addis Lu, Wei-Yang TI Effect of specimen size, compressibility and inertia on the response of rigid polymer foams subjected to high velocity direct impact loading SO INTERNATIONAL JOURNAL OF IMPACT ENGINEERING LA English DT Article DE Polymeric foam; Direct impact; Digital image correlation; Non-parametric analysis; Constitutive response ID HOPKINSON PRESSURE BAR; REPRESENTATIVE VOLUME ELEMENT; STRAIN-RATE; BEHAVIOR; DEFORMATION; MICROSTRUCTURES; CRUSHABILITY; ALUMINUM; STRESS AB The influences of specimen length-to-diameter ratio, material compressibility, and inertia on direct impact response of high density closed-cell polymeric foam are investigated. High speed photography and stereovision digital image correlation are conducted to measure the full-field deformation response of the material subjected to direct impact. Inertia stress developed in the specimen is calculated from the acceleration distribution obtained from full-field measurements. Total axial stress magnitude along the axis of the specimen is then reconstructed from inertia and boundary-measured stresses. It is clearly shown that there is an appreciable degree of spatial variability in strains, strain rates and stresses developed in the impacted foam specimens, whereas the degree of such axial variability is more significant at higher length-to-diameter ratios. The study is further extended to take advantage of such spatial variability to identify the rate sensitivity of the examined material over a wide range of strain rates from 1000 s(-1) to 5000 s(-1). The approach proposed here is shown to facilitate the identification of viscoplastic constitutive response of low impedance materials using a minimum number of experiments. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Koohbor, Behrad; Kidane, Addis] Univ South Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. [Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA. RP Kidane, A (reprint author), Univ South Carolina, Dept Mech Engn, 300 Main St, Columbia, SC 29208 USA. EM kidanea@cec.sc.edu RI Koohbor, Behrad/F-9771-2015 OI Koohbor, Behrad/0000-0002-5787-4644 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 43 TC 0 Z9 0 U1 15 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-743X EI 1879-3509 J9 INT J IMPACT ENG JI Int. J. Impact Eng. PD DEC PY 2016 VL 98 BP 62 EP 74 DI 10.1016/j.ijimpeng.2016.08.006 PG 13 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA EA2IK UT WOS:000386415800007 ER PT J AU Sheldona, JP Miller, ST Pitt, JS AF Sheldona, Jason P. Miller, Scott T. Pitt, Jonathan S. TI A hybridizable discontinuous Galerkin method for modeling fluid-structure interaction SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Hybridizable discontinuous Galerkin; Fluid-structure interaction; HDG FSI; Monolithic coupling; Arbitrary Lagrangian-Eulerian Navier-Stokes; Elastodynamics ID INCOMPRESSIBLE FINITE-ELEMENTS; HDG METHODS; STOKES-FLOW; ELLIPTIC PROBLEMS; SPACE DIMENSIONS; PART II; SIMULATION; EQUATIONS; SYSTEM AB This work presents a novel application of the hybridizable discontinuous Galerkin (HDG) finite element method to the multi-physics simulation of coupled fluid-structure interaction (FSI) problems. Recent applications of the HDG method have primarily been for single-physics problems including both solids and fluids, which are necessary building blocks for FSI modeling. Utilizing these established models, HDG formulations for linear elastostatics, a nonlinear elastodynamic model, and arbitrary Lagrangian-Eulerian Navier-Stokes are derived. The elasticity formulations are written in a Lagrangian reference frame, with the nonlinear formulation restricted to hyperelastic materials. With these individual solid and fluid formulations, the remaining challenge in FSI modeling is coupling together their disparate mathematics on the fluid-solid interface. This coupling is presented, along with the resultant HDG FSI formulation. Verification of the component models, through the method of manufactured solutions, is performed and each model is shown to converge at the expected rate. The individual components, along with the complete FSI model, are then compared to the benchmark problems proposed by Turek and Hron [1]. The solutions from the HDG formulation presented in this work trend towards the benchmark as the spatial polynomial order and the temporal order of integration are increased. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sheldona, Jason P.; Pitt, Jonathan S.] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. [Miller, Scott T.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Pitt, JS (reprint author), Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. EM jsp203@psu.edu FU Applied Research Laboratory at The Pennsylvania State University; Naval Sea Systems Command, Advanced Submarine Systems Development Office [SEA073] FX J. Sheldon gratefully acknowledges financial support from Naval Sea Systems Command, Advanced Submarine Systems Development Office, Mr. Patrick Tyler (SEA073). S. Miller and J. Pitt acknowledge internal support for this research from the Applied Research Laboratory at The Pennsylvania State University. NR 69 TC 0 Z9 0 U1 6 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD DEC 1 PY 2016 VL 326 BP 91 EP 114 DI 10.1016/j.jcp.2016.08.037 PG 24 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DZ7SR UT WOS:000386067400006 ER PT J AU Wolfa, EM Causley, M Christlieb, A Bettencourt, M AF Wolfa, Eric M. Causley, Matthew Christlieb, Andrew Bettencourt, Matthew TI A particle-in-cell method for the simulation of plasmas based on an unconditionally stable field solver SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Computational plasma physics; Unconditionally stable field solver; Particle-in-cell ID DISCONTINUOUS GALERKIN METHODS; VLASOV-MAXWELL SYSTEM; TIME-DOMAIN METHOD; CHARGE CONSERVATION; NUMERICAL STABILITY; MESH REFINEMENT; PIC SIMULATIONS; 2 DIMENSIONS; HYBRID CODE; IMPLICIT AB We propose a new particle-in-cell (PIC) method for the simulation of plasmas based on a recently developed, unconditionally stable solver for the wave equation. This method is not subject to a CFL restriction, limiting the ratio of the time step size to the spatial step size, typical of explicit methods, while maintaining computational cost and code complexity comparable to such explicit schemes. We describe the implementation in one and two dimensions for both electrostatic and electromagnetic cases, and present the results of several standard test problems, showing good agreement with theory with time step sizes much larger than allowed by typical CFL restrictions. (C) 2016 Elsevier Inc. All rights reserved. C1 [Wolfa, Eric M.; Christlieb, Andrew] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA. [Causley, Matthew] Kettering Univ, Dept Math, Flint, MI 48504 USA. [Bettencourt, Matthew] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Wolfa, EM (reprint author), Michigan State Univ, Dept Math, E Lansing, MI 48824 USA. EM wolferi1@msu.edu; mcausley@kettering.edu; andrewch@math.msu.edu; mbetten@sandia.gov FU AFOSR [FA9550-11-1-0281, FA9550-12-1-0343, FA9550-12-1-0455]; NSF [DMS-1115709]; MSU Foundation [SPG-RG100059]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work has been supported in part by AFOSR grants FA9550-11-1-0281, FA9550-12-1-0343 and FA9550-12-1-0455, NSF grant DMS-1115709, and MSU Foundation grant SPG-RG100059.; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 84 TC 1 Z9 1 U1 12 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD DEC 1 PY 2016 VL 326 BP 342 EP 372 DI 10.1016/j.jcp.2016.08.006 PG 31 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DZ7SR UT WOS:000386067400020 ER PT J AU Turner, JA Clarno, K Sieger, M Bartlett, R Collins, B Pawlowski, R Schmidt, R Summers, R AF Turner, John A. Clarno, Kevin Sieger, Matt Bartlett, Roscoe Collins, Benjamin Pawlowski, Roger Schmidt, Rodney Summers, Randall TI The Virtual Environment for Reactor Applications (VERA): Design and architecture SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Nuclear reactor; Modeling; Simulation; Coupled physics; Multiphysics; Core simulator; Neutronics; Fluid flow; Thermal-hydraulics ID SIMULATIONS; ALGORITHMS; CHALLENGES; EQUATIONS; LIBRARY; SYSTEMS; CODE AB VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goals and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry. (C) 2016 Elsevier Inc. All rights reserved. C1 [Turner, John A.; Clarno, Kevin; Sieger, Matt; Bartlett, Roscoe; Collins, Benjamin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Pawlowski, Roger; Schmidt, Rodney; Summers, Randall] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Turner, JA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM turnerja@ornl.gov RI Sieger, Matthew/B-4261-2011; OI Sieger, Matthew/0000-0001-7387-3660; Turner, John/0000-0003-2521-4091 FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 73 TC 0 Z9 0 U1 6 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD DEC 1 PY 2016 VL 326 BP 544 EP 568 DI 10.1016/j.jcp.2016.09.003 PG 25 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DZ7SR UT WOS:000386067400028 ER PT J AU Collins, B Stimpson, S Kelley, BW Young, MTH Kochunas, B Graham, A Larsen, EW Downar, T Godfrey, A AF Collins, Benjamin Stimpson, Shane Kelley, Blake W. Young, Mitchell T. H. Kochunas, Brendan Graham, Aaron Larsen, Edward W. Downar, Thomas Godfrey, Andrew TI EStability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE 2D/1D method; MOC; MPACT ID WATER-REACTOR ANALYSIS; CODE; CAPABILITIES; SCALE AB A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data. (C) 2016 Elsevier Inc. All rights reserved. C1 [Collins, Benjamin; Stimpson, Shane; Godfrey, Andrew] Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Collins, Benjamin; Stimpson, Shane] Univ Michigan, Ann Arbor, MI 48109 USA. RP Collins, B (reprint author), Oak Ridge Natl Lab, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM collinsbs@ornl.gov; stimpsonsg@ornl.gov; kelleybl@umich.edu; youngmit@umich.edu; bkochuna@umich.edu; aarograh@umich.edu; edlarsen@umich.edu; downar@umich.edu; godfreyat@ornl.gov OI Collins, Benjamin/0000-0002-4191-8868; Stimpson, Shane/0000-0002-0120-9928; Graham, Aaron/0000-0002-3245-8441 FU Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy [DE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725.; This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 32 TC 1 Z9 1 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD DEC 1 PY 2016 VL 326 BP 612 EP 628 DI 10.1016/j.jcp.2016.08.022 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DZ7SR UT WOS:000386067400031 ER PT J AU Chacon, L Stanier, A AF Chacon, L. Stanier, A. TI A scalable, fully implicit algorithm for the reduced two-field low-beta extended MHD model SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Implicit algorithms; Extended MHD; JFNK; Physics-based preconditioning; Parallel multigrid ID HAMILTONIAN MAGNETIC RECONNECTION; TOKAMAK PLASMA; CHALLENGE; SOLVER AB We demonstrate a scalable fully implicit algorithm for the two-field low-beta extended MHD model. This reduced model describes plasma behavior in the presence of strong guide fields, and is of significant practical impact both in nature and in laboratory plasmas. The model displays strong hyperbolic behavior, as manifested by the presence of fast dispersive waves, which make a fully implicit treatment very challenging. In this study, we employ a Jacobian-free Newton-Krylov nonlinear solver, for which we propose a physics-based preconditioner that renders the linearized set of equations suitable for inversion with multigrid methods. As a result, the algorithm is shown to scale both algorithmically (i.e., the iteration count is insensitive to grid refinement and timestep size) and in parallel in a weak-scaling sense, with the wall-clock time scaling weakly with the number of cores for up to 4096 cores. For a 4096 x 4096 mesh, we demonstrate a wall-clock-time speedup of similar to 6700 with respect to explicit algorithms. The model is validated linearly (against linear theory predictions) and nonlinearly (against fully kinetic simulations), demonstrating excellent agreement. Published by Elsevier Inc. C1 [Chacon, L.; Stanier, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chacon, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM chacon@lanl.gov FU U.S. Department of Energy (DOE) National Nuclear Security Administration [DE-AC52-06NA25396]; DOE Offices of Fusion Energy Sciences and Applied Scientific Computing Research FX We acknowledge useful discussions with W. Daughton and A. Simakov. We would like to thank W. Daughton for his help in setting up and using the VPIC code. This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy (DOE) National Nuclear Security Administration under Contract No. DE-AC52-06NA25396. The work was funded by the DOE Offices of Fusion Energy Sciences and Applied Scientific Computing Research. NR 40 TC 0 Z9 0 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD DEC 1 PY 2016 VL 326 BP 763 EP 772 DI 10.1016/j.jcp.2016.09.007 PG 10 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DZ7SR UT WOS:000386067400038 ER PT J AU Fridrich, D Liska, R Wendroff, B AF Fridrich, David Liska, Richard Wendroff, Burton TI Some cell-centered Lagrangian Lax-Wendroff HLL hybrid schemes SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Lagrangian hydrodynamics; Lax-Wendroff; HLL; Artificial viscosity ID CONSERVATION-LAWS; ARTIFICIAL VISCOSITY; UNSTRUCTURED GRIDS; STRONG SHOCKS; GAS-DYNAMICS; HYDRODYNAMICS; EQUATIONS; SYSTEMS; FLOW AB Lagrangian hydrodynamics is treated by the Lax-Wendroff method with the dissipative fluxes in the HLL form, including both artificial viscosity and artificial energy flux. The symmetry of results for the Noh problem on a Cartesian mesh is very good. On material interfaces we employ the EUCCLHYD nodal solver at the interface nodes with 1D acoustic approximate Riemann solver on the interface edges. The proposed method works reasonably well on several hydrodynamic tests, including Noh, Sedov, Saltzman, Sod, Woodward-Collela and triple-point. (C) 2016 Elsevier Inc. All rights reserved. C1 [Fridrich, David; Liska, Richard] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague 1, Czech Republic. [Wendroff, Burton] Los Alamos Natl Lab, Los Alamos, NM USA. RP Fridrich, D (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague 1, Czech Republic. EM d.fridrich@volny.cz OI Fridrich, David/0000-0002-4155-1373 FU Czech Science Foundation [14-21318S]; Czech Ministry of Education [RVO 68407700]; Czech Technical University in Prague [SGS16/247/OHK4/3T/14] FX D.F. and R.L. have been partially supported by the Czech Science Foundation project 14-21318S and by the Czech Ministry of Education project RVO 68407700 and by the Czech Technical University in Prague project SGS16/247/OHK4/3T/14. NR 32 TC 0 Z9 0 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD DEC 1 PY 2016 VL 326 BP 878 EP 892 DI 10.1016/j.jcp.2016.09.022 PG 15 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DZ7SR UT WOS:000386067400045 ER PT J AU Rasmussen, M Hastings, A Smith, MJ Agusto, FB Chen-Charpentier, BM Hoffman, FM Jiang, J Todd-Brown, KEO Wang, Y Wang, YP Luo, YQ AF Rasmussen, Martin Hastings, Alan Smith, Matthew J. Agusto, Folashade B. Chen-Charpentier, Benito M. Hoffman, Forrest M. Jiang, Jiang Todd-Brown, Katherine E. O. Wang, Ying Wang, Ying-Ping Luo, Yiqi TI Transit times and mean ages for nonautonomous and autonomous compartmental systems SO JOURNAL OF MATHEMATICAL BIOLOGY LA English DT Article DE Carbon cycle; CASA model; Compartmental system; Exponential stability; Linear system; McKendrick-von Forster equation; Mean age; Nonautonomous dynamical system; Transit time ID CARBON-CYCLE; SOIL RESPIRATION; MODEL; CO2; DICHOTOMY AB We develop a theory for transit times and mean ages for nonautonomous compartmental systems. Using the McKendrick-von Forster equation, we show that the mean ages of mass in a compartmental system satisfy a linear nonautonomous ordinary differential equation that is exponentially stable. We then define a nonautonomous version of transit time as the mean age of mass leaving the compartmental system at a particular time and show that our nonautonomous theory generalises the autonomous case. We apply these results to study a nine-dimensional nonautonomous compartmental system modeling the terrestrial carbon cycle, which is a modification of the Carnegie-Ames-Stanford approach model, and we demonstrate that the nonautonomous versions of transit time and mean age differ significantly from the autonomous quantities when calculated for that model. C1 [Rasmussen, Martin] Imperial Coll London, Dept Math, London, England. [Hastings, Alan] Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA. [Smith, Matthew J.] Microsoft Res, Sci Computat Lab, Cambridge, England. [Agusto, Folashade B.] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA. [Chen-Charpentier, Benito M.] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA. [Hoffman, Forrest M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Jiang, Jiang; Todd-Brown, Katherine E. O.; Luo, Yiqi] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Todd-Brown, Katherine E. O.] Pacific Northwest Natl Lab, Div Biol Sci, Microbiol, Richland, WA USA. [Wang, Ying] Univ Oklahoma, Dept Math, Norman, OK 73019 USA. [Wang, Ying-Ping] CSIRO Oceans & Atmosphere, Aspendale, Vic, Australia. RP Rasmussen, M (reprint author), Imperial Coll London, Dept Math, London, England. EM m.rasmussen@imperial.ac.uk RI Hoffman, Forrest/B-8667-2012; wang, yp/A-9765-2011; OI Hoffman, Forrest/0000-0001-5802-4134; Todd-Brown, Katherine/0000-0002-3109-8130 FU EPSRC Career Acceleration Fellowship [EP/I004165/1]; European Union [643073]; Army Research Office [W911NF-13-1-0305]; Biogeochemistry-Climate Feedbacks Scientific Focus Area - Regional and Global Climate Modeling Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the U.S. Department of Energy Office; Oak Ridge National Laboratory [DE-AC05-00OR22725]; U.S. Department of Energy; Linus Pauling Distinguished Postdoctoral Fellowship program - Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; Ralph E. Powe Junior Faculty Enhancement Award from Oak Ridge Associated Universities; Research Council and College of Arts and Sciences of the University of Oklahoma Norman Campus; U.S. Department of Energy [DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601, DE-SC0010715]; U.S. National Science Foundation (NSF) [DBI 0850290, EPS 0919466, DEB 0840964, EF 1137293]; National Science Foundation; US Department of Homeland Security; US Department of Agriculture through NSF [EF-0832858]; University of Tennessee, Knoxville FX Martin Rasmussen was supported by an EPSRC Career Acceleration Fellowship EP/I004165/1 (2010-2015) and by funding from the European Union's Horizon 2020 research and innovation programme for the ITN CRITICS under Grant Agreement Number 643073. Alan Hastings was supported by Army Research Office Grant W911NF-13-1-0305. Forrest M. Hoffman was supported by the Biogeochemistry-Climate Feedbacks Scientific Focus Area, which is sponsored by the Regional and Global Climate Modeling Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the U.S. Department of Energy Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. Katherine E. O. Todd-Brown is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship program which is funded under the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. Ying Wang was supported by a Ralph E. Powe Junior Faculty Enhancement Award from Oak Ridge Associated Universities and by a Faculty Investment Program and a Junior Faculty Fellow Program grant from the Research Council and College of Arts and Sciences of the University of Oklahoma Norman Campus. Research in Yiqi Luo EcoLab was financially supported by U.S. Department of Energy grants DE-SC0006982, DE-SC0008270, DE-SC0014062, DE-SC0004601, and DE-SC0010715 and U.S. National Science Foundation (NSF) grants DBI 0850290, EPS 0919466, DEB 0840964, and EF 1137293. This work was assisted through participation of the authors in the working group Nonautonomous Systems and Terrestrial Carbon Cycle, at the National Institute for Mathematical and Biological Synthesis, an institute sponsored by the National Science Foundation, the US Department of Homeland Security, and the US Department of Agriculture through NSF award no. EF-0832858, with additional support from The University of Tennessee, Knoxville. The authors are grateful to two referees for useful comments that led to an improvement of this paper. NR 30 TC 1 Z9 1 U1 6 U2 6 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0303-6812 EI 1432-1416 J9 J MATH BIOL JI J. Math. Biol. PD DEC PY 2016 VL 73 IS 6-7 BP 1379 EP 1398 DI 10.1007/s00285-016-0990-8 PG 20 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA DZ7SE UT WOS:000386065900003 PM 27038163 ER PT J AU Young, DL Nemeth, W LaSalvia, V Page, MR Theingi, S Aguiar, J Lee, BG Stradins, P AF Young, David L. Nemeth, William LaSalvia, Vincenzo Page, Matthew R. Theingi, San Aguiar, Jeffery Lee, Benjamin G. Stradins, Paul TI Low-cost plasma immersion ion implantation doping for Interdigitated back passivated contact (IBPC) solar cells SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article; Proceedings Paper CT 6th International Conference on Crystalline Silicon Photovoltaics (SiliconPV) CY MAR 07-09, 2016 CL CEA INES, Chambery, FRANCE HO CEA INES DE Plasma immersion ion implantation; Passivated contacts; Silicon; Solar cells ID SI; NUCLEATION; EFFICIENCY; QUALITY; SILICON AB We present progress to develop low-cost interdigitated back contact solar cells with pc-Si/SiO2/c-Si passivated contacts formed by plasma immersion ion implantation (PIII). PIII is a lower-cost implantation technique than traditional beam line implantation due to its simpler design, lower operating costs, and ability to run high doses (1E14-1E18 cm(-2)) at low ion energies (20 eV-10 keV). These benefits make PHI ideal for high throughput production of patterned passivated contacts, where high-dose, low-energy implantations are made into thin (20-200 nm) a-Si layers instead of into the wafer itself. For this work symmetric passivated contact test structures (similar to 100 nm thick) grown on n-Cz wafers with pH(3) PIII doping gave implied open circuit voltage (iV(oc)) values of 730 mV with J(o) values of 2 fA/cm(2). Samples doped with B2H6 gave iV(oc) values of 690 mV and J(o) values of 24 fA/cm(2), outperforming BF3 doping, which gave iV(oc), values in the 660-680 mV range. Samples were further characterized by SIMS, photoluminescence, TEM, EELS, and post-metallization TLM to reveal micro- and macro-scopic structural, chemical and electrical information. Published by Elsevier B.V. C1 [Young, David L.; Nemeth, William; LaSalvia, Vincenzo; Page, Matthew R.; Theingi, San; Aguiar, Jeffery; Lee, Benjamin G.; Stradins, Paul] Natl Renewable Energy Lab, 15013 Denver West Pkwy,MS 3219, Golden, CO 80401 USA. RP Young, DL (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy,MS 3219, Golden, CO 80401 USA. EM David.young@nrel.gov OI Aguiar, Jeffery/0000-0001-6101-4762 NR 28 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 158 SI SI BP 68 EP 76 DI 10.1016/j.solmat.2016.05.044 PN 1 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EA2IB UT WOS:000386414900012 ER PT J AU Braiman, Y Nair, N Rezac, J Imam, N AF Braiman, Y. Nair, N. Rezac, J. Imam, N. TI Memory cell operation based on small Josephson junctions arrays SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE cryogenic memory; Josephson junction array; superconductive computing AB In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies. C1 [Braiman, Y.; Nair, N.] Oak Ridge Natl Lab, Div Math & Comp Sci, Comp & Computat Sci Directorate, Oak Ridge, TN 37831 USA. [Braiman, Y.; Nair, N.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Rezac, J.] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA. [Imam, N.] Oak Ridge Natl Lab, Comp & Computat Sci Directorate, Oak Ridge, TN 37831 USA. RP Braiman, Y (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Comp & Computat Sci Directorate, Oak Ridge, TN 37831 USA.; Braiman, Y (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM braimany@ornl.gov FU United States Department of Defense FX This work was supported by the United States Department of Defense and used resources from the Extreme Scale Systems Center, located at Oak Ridge National Laboratory. We would like to acknowledge very valuable conversation and constructive feedback from Steve Poole. NR 16 TC 0 Z9 0 U1 9 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD DEC PY 2016 VL 29 IS 12 AR 124003 DI 10.1088/0953-2048/29/12/124003 PG 14 WC Physics, Applied; Physics, Condensed Matter SC Physics GA EA2PN UT WOS:000386436800001 ER PT J AU Pan, MH Liang, LB Lin, WZ Kim, SM Li, Q Kong, J Dresselhaus, MS Meunier, V AF Pan, Minghu Liang, Liangbo Lin, Wenzhi Kim, Soo Min Li, Qing Kong, Jing Dresselhaus, Mildred S. Meunier, Vincent TI Modification of the electronic properties of hexagonal boron-nitride in BN/graphene vertical heterostructures SO 2D MATERIALS LA English DT Article DE graphene; heterostructure; STM/STS; DFT ID SCANNING-TUNNELING-MICROSCOPY; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; BAND-GAP; GRAPHENE; SUPERLATTICES AB Van der Waals (vdW) heterostructures consist of isolated atomic planar structures, assembled layer-by-layer into desired structures in a well-defined sequence. Graphene deposited on hexagonal boron nitride (h-BN) has been first considered as a testbed system for vdW heterostructures, and many others have been demonstrated both theoretically and experimentally, revealing many attractive properties and phenomena. However, much less emphasis has been placed on how graphene actively affects h-BN properties. Here, we perform local probe measurements on single-layer h-BN grown over graphene and highlight the manifestation of a proximity effect that significantly affects the electronic properties of h-BN due to its coupling with the underlying graphene. We find electronic states originating from the graphene layer and the Cu substrate to be injected into the wide electronic gap of the h-BN top layer. Such proximity effect is further confirmed in a study of the variation of h-BN in-gap states with interlayer couplings, elucidated using a combination of topographical/spectroscopic measurements and first-principles density functional theory calculations. The findings of this work indicate the potential of mutually engineering electronic properties of the components of vdW heterostructures. C1 [Pan, Minghu] Huazhong Univ Sci & Technol, Sch Phys, Wuhan 430074, Peoples R China. [Liang, Liangbo; Lin, Wenzhi] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Soo Min; Kong, Jing; Dresselhaus, Mildred S.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Li, Qing] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China. [Li, Qing] Soochow Univ, Collaborat Innovat Ctr Suzhou Sci & Technol, Suzhou 215123, Jiangsu, Peoples R China. [Dresselhaus, Mildred S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Meunier, V (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM meuniv@rpi.edu RI Liang, Liangbo/H-4486-2011 OI Liang, Liangbo/0000-0003-1199-0049 FU National Natural Science Foundation of China [11574095]; Oak Ridge National Laboratory (ORNL) by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; NSF [EFRI-1542707]; National Science Foundation [NSFDMR0845358]; Graphene Approaches to Terahertz Electronics (GATE)-MURI grant [N00014-09-1-1063] FX MP acknowledges financial support by National Natural Science Foundation of China (11574095). Part of this research was conducted at the Center for Nanophase Materials Sciences (CNMS) (QL, MP), which is sponsored at Oak Ridge National Laboratory (ORNL) by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The work at Rensselaer Polytechnic Institute (RPI) was supported by NSF Grant EFRI 2-DARE (EFRI-1542707). The computations were performed using the resources of the Center for Computational Innovation at RPI. L Liang was supported by Eugene P Wigner Fellowship at ORNL. SM Kim and J Kong acknowledge the support from the National Science Foundation under award number NSFDMR0845358. J Kong, and MS Dresselhaus acknowledge the Graphene Approaches to Terahertz Electronics (GATE)-MURI grant N00014-09-1-1063. NR 30 TC 0 Z9 0 U1 97 U2 97 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1583 J9 2D MATER JI 2D Mater. PD DEC PY 2016 VL 3 IS 4 AR 045002 DI 10.1088/2053-1583/3/4/045002 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA DY8ZP UT WOS:000385421700002 ER PT J AU Mannodi-Kanakkithodi, A Pilania, G Ramprasad, R Lookman, T Gubernatis, JE AF Mannodi-Kanakkithodi, Arun Pilania, Ghanshyam Ramprasad, Rampi Lookman, Turab Gubernatis, James E. TI Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Materials informatics; Density functional theory; Multi-objective optimization ID INITIO MOLECULAR-DYNAMICS; ALGORITHM AB We present two Monte Carlo algorithms to find the Pareto front of the chemical space of a class of dielectric polymers that is most interesting with respect to optimizing both the bandgap and dielectric constant. Starting with a dataset generated from density functional theory calculations, we used machine learning to construct surrogate models for the bandgaps and dielectric constants of all physically meaningful 4-block polymers (that is, polymer systems with a 4-block repeat unit). We parameterized these machine learning models in such a way that the surrogates built for the 4-block polymers were readily extendable to polymers beyond a 4-block repeat unit. By using translational invariance, chemical intuition, and domain knowledge, we were able to enumerate all possible 4, 6, and 8 block polymers and benchmark our Monte Carlo sampling of the chemical space against the exact enumeration of the surrogate predictions. We obtained exact agreement for the fronts of 4-block polymers and at least a 90% agreement for those of 6 and 8-block polymers. We present fronts for 10-block polymer that are not possible to obtain by direct enumeration. We note that our Monte Carlo methods also return polymers close to the predicted front and a measure of the closeness. Both quantities are useful information for the design and discovery of new polymers. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi] Univ Connecticut, Inst Mat Sci, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA. [Pilania, Ghanshyam] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Lookman, Turab; Gubernatis, James E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Mannodi-Kanakkithodi, A (reprint author), Univ Connecticut, Inst Mat Sci, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA. EM arun.mannodi_kanakkithodi@uconn.edu OI Pilania, Ghanshyam/0000-0003-4460-1572 FU Department of Energy's Laboratory Directed Research and Development program at LANL FX AMK would like to acknowledge the computational support provided by the Extreme Science and Engineering Discovery Environment (XSEDE) and by Los Alamos National Laboratory (LANL). The work of JEG, TL, and GP was supported by the Department of Energy's Laboratory Directed Research and Development program at LANL. NR 29 TC 1 Z9 1 U1 14 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD DEC PY 2016 VL 125 BP 92 EP 99 DI 10.1016/j.commatsci.2016.08.018 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA DZ4NN UT WOS:000385835500010 ER PT J AU Mannodi-Kanakkithodi, A Pilania, G Ramprasad, R AF Mannodi-Kanakkithodi, Arun Pilania, Ghanshyam Ramprasad, Rampi TI Critical assessment of regression-based machine learning methods for polymer dielectrics SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Materials informatics; Density functional theory; Regression AB The design of new and improved materials for different applications of interest is boosted by combining computations or experiments with machine learning techniques. Materials scientists seek to use learning algorithms that can easily and efficiently be applied to their data in order to obtain quantitative property prediction models. Here, we utilize a first principles generated dataset of the electronic and dielectric properties of a chemical space of polymers to test different kinds of regression algorithms used by the machine learning community today. We explore several possibilities for the hyper-parameters that go into such learning schemes, and establish optimal strategies and parameters for high-fidelity polymer dielectrics property prediction models. Published by Elsevier B.V. C1 [Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi] Univ Connecticut, Inst Mat Sci, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA. [Pilania, Ghanshyam] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Ramprasad, R (reprint author), Univ Connecticut, Inst Mat Sci, Dept Mat Sci & Engn, 97 North Eagleville Rd, Storrs, CT 06269 USA. EM rampi.ramprasad@uconn.edu OI Pilania, Ghanshyam/0000-0003-4460-1572 FU Multidisciplinary University Research Initiative (MURI) from the Office of Naval Research [N00014-10-1-0944]; U.S. Department of Energy through the LANL/LDRD Program FX This paper is based upon work supported by a Multidisciplinary University Research Initiative (MURI) grant (N00014-10-1-0944) from the Office of Naval Research. Computational support was provided by the Extreme Science and Engineering Discovery Environment (XSEDE) and the National Energy Research Scientific Computing Center (NERSC). G.P. acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program through a Director's postdoctoral fellowship. AMK would further like to thank LANL for providing computational resources. NR 21 TC 1 Z9 1 U1 15 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD DEC PY 2016 VL 125 BP 123 EP 135 DI 10.1016/j.commatsci.2016.08.039 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA DZ4NN UT WOS:000385835500015 ER PT J AU Dinan, J Balaji, P Buntinas, D Goodell, D Gropp, W Thakur, R AF Dinan, James Balaji, Pavan Buntinas, Darius Goodell, David Gropp, William Thakur, Rajeev TI An implementation and evaluation of the MPI 3.0 one-sided communication interface SO CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE LA English DT Article DE Message Passing Interface (MPI); one-sided communication; remote memory access (RMA); MPICH ID PERFORMANCE; SYNCHRONIZATION; OPTIONS AB The Message Passing Interface (MPI) 3.0 standard includes a significant revision to MPI's remote memory access (RMA) interface, which provides support for one-sided communication. MPI-3 RMA is expected to greatly enhance the usability and performance of MPI RMA. We present the first complete implementation of MPI-3 RMA and document implementation techniques and performance optimization opportunities enabled by the new interface. Our implementation targets messaging-based networks and is publicly available in the latest release of the MPICH MPI implementation. Using this implementation, we explore the performance impact of new MPI-3 functionality and semantics. Results indicate that the MPI-3 RMA interface provides significant advantages over the MPI-2 interface by enabling increased communication concurrency through relaxed semantics in the interface and additional routines that provide new window types, synchronization modes, and atomic operations. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [Dinan, James; Balaji, Pavan; Buntinas, Darius; Goodell, David; Thakur, Rajeev] Argonne Natl Lab, Lemont, IL 60439 USA. [Gropp, William] Univ Illinois, Urbana, IL USA. RP Dinan, J (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM dinan@mcs.anl.gov FU U.S. Department of Energy; Argonne Leadership Computing Facility [DE-AC02-06CH11357] FX This study was supported by the U.S. Department of Energy and Argonne Leadership Computing Facility (DE-AC02-06CH11357). NR 36 TC 1 Z9 1 U1 3 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1532-0626 EI 1532-0634 J9 CONCURR COMP-PRACT E JI Concurr. Comput.-Pract. Exp. PD DEC PY 2016 VL 28 IS 17 BP 4385 EP 4404 DI 10.1002/cpe.3758 PG 20 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA DZ4WA UT WOS:000385860300002 ER PT J AU Jin, SS Chen, YS Diao, RS Huang, Z Perkins, W Palmer, B AF Jin, Shuangshuang Chen, Yousu Diao, Ruisheng Huang, Zhenyu (Henry) Perkins, William Palmer, Bruce TI Power grid simulation applications developed using the GridPACK (TM) high performance computing framework SO ELECTRIC POWER SYSTEMS RESEARCH LA English DT Article DE High performance computing; Parallel programming; Power system computation; Power system dynamics; Dynamic simulation; Contingency analysis AB The need for accelerating power grid simulation through high performance computing (HPC) has long been recognized, and prior efforts have been devoted to developing one-off parallel computing applications for particular power grid functions. Non-transferable software codes and duplicated implementations in these prior efforts are a major barrier to more widespread HPC adoption in power grid applications. Modern HPC hardware and architecture require significant computing expertise for application development. The GridPACK (TM) software framework described in this paper provides an HPC-compatible software structure to access modern parallel solvers and HPC-ready modules for common components in power grid simulation applications. GridPACK hides the HPC details and enables power system developers to focus on applications instead of computational details. Several example applications of GridPACK are presented to demonstrate the capabilities of GridPACK and the performance of HPC simulations with large power grid networks. Examples discussed include: a dynamic simulation application capable of running a 17,156-bus Western Electricity Coordinating Council (WECC) system in a computational speed faster than real time (e.g., under 30 s for a 30-s simulation), a static contingency analysis application using a task manager, and a dynamic contingency analysis application utilizing two levels of parallelism. These example applications illustrate GridPACK's capabilities to support different types of simulations within a unified framework and. to support reuse of transferable software codes across power grid applications. The computational results indicate strong performance improvements for power grid simulations with GridPACK. (C) 2016 Elsevier B.V. All rights reserved. C1 [Jin, Shuangshuang; Chen, Yousu; Diao, Ruisheng; Huang, Zhenyu (Henry); Perkins, William; Palmer, Bruce] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Jin, SS (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM shuangshuang.jin@pnnl.gov; Yousu.chen@pnnl.gov FU U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability through Advanced Grid Modeling Program; Future Power Grid Initiative at Pacific Northwest National Laboratory through the Laboratory Directed Research and Development program; U.S. Department of Energy FX Funding for this work was provided by the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability through its Advanced Grid Modeling Program. Additional funding was provided by the Future Power Grid Initiative at Pacific Northwest National Laboratory through the Laboratory Directed Research and Development program. The authors gratefully acknowledge the support of Gilbert Bindewald with the U.S. Department of Energy. NR 18 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7796 EI 1873-2046 J9 ELECTR POW SYST RES JI Electr. Power Syst. Res. PD DEC PY 2016 VL 141 BP 22 EP 30 DI 10.1016/j.epsr.2016.06.024 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA DZ1KV UT WOS:000385598200003 ER PT J AU Petra, CG Zavala, VM Nino-Ruiz, ED Anitescu, M AF Petra, Cosmin G. Zavala, Victor M. Nino-Ruiz, Elias D. Anitescu, Mihai TI A high-performance computing framework for analyzing the economic impacts of wind correlation SO ELECTRIC POWER SYSTEMS RESEARCH LA English DT Article DE Covariance estimation; Correlation; Economic dispatch; Stochastic optimization; Wind power ID STOCHASTIC OPTIMIZATION; POWER; UNCERTAINTY; SCENARIOS; MARKET AB We analyze the impact of capturing spatiotemporal correlations between wind supply points on grid dispatch procedures. We first show analytically that over/underestimation of correlation leads to non-intuitive cost biases. A detailed computational study for the U.S. state of Illinois grid reveals similar conclusions. Our computing framework combines a stochastic dispatch formulation with correlation information derived from a Rao-Blackwell-Ledoit-Wolf estimator. The estimator approximates the covariance matrix from a small number of expensive wind ensembles generated with a numerical weather prediction model. The prediction model is validated with real meteorological data to obtain realistic correlation information. The resulting stochastic dispatch problems are solved with the parallel interior-point solver PIPS-IPM on the BlueGene/Q (Mira) supercomputer at Argonne National Laboratory. We use the correlation information to generate a larger set of scenarios and implement a fast inference analysis capability to assess the accuracy of the system cost. We demonstrate that the computing framework enables sophisticated system-wide analyses that can be performed in minutes (as opposed to days if computations would be performed in serial). We find that strong and persistent biases result from neglecting correlations and conclude that coordinating uncertainty characterizations for wind power producers is necessary. The framework is also used to quickly assess the impact of operating the grid under different correlation strengths. Our work seeks to highlight the scope of modern high-performance computing systems and computational optimization tools. Published by Elsevier B.V. C1 [Petra, Cosmin G.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Zavala, Victor M.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Nino-Ruiz, Elias D.] Univ Norte, Dept Comp Sci, Barranquilla, Atl, Colombia. [Anitescu, Mihai] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Petra, CG (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM petra1@llnl.gov; victor.zavala@wisc.edu; enino@uninorte.edu.co; anitescu@mcs.anl.gov OI Nino Ruiz, Elias David/0000-0001-7784-8163 FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357 and used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory. NR 26 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7796 EI 1873-2046 J9 ELECTR POW SYST RES JI Electr. Power Syst. Res. PD DEC PY 2016 VL 141 BP 372 EP 380 DI 10.1016/j.epsr.2016.08.010 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA DZ1KV UT WOS:000385598200036 ER PT J AU Krad, I Gao, DW Ibanez, E Ela, E AF Krad, Ibrahim Gao, David Wenzhong Ibanez, Eduardo Ela, Erik TI Three-stage variability-based reserve modifiers for enhancing flexibility reserve requirements under high variable generation penetrations SO ELECTRIC POWER SYSTEMS RESEARCH LA English DT Article DE Area control error (ACE); Flexibility reserves; Variable generation (VG); Operating reserves; Uncertainty; Variability ID SYSTEMS; MARKET AB The electric power system has continuously evolved in order to accommodate new technologies and operating strategies. As the penetration of integrated variable generation in the system increases, it is beneficial to develop strategies that can help mitigate their effect on the grid. Historically, power system operators have held excess capacity during the commitment and dispatch process to allow the system to handle unforeseen load ramping events. As variable generation resources increase, sufficient flexibility scheduled in the system is required to ensure that system performance is not deteriorated in the presence of additional variability and uncertainty. This paper presents a systematic comparison of various flexibility reserve strategies. Several of them are implemented and applied in a common test system, in order to evaluate their effect on the economic and reliable operations. Furthermore, a three stage reserve modifier algorithm is proposed and evaluated for its ability to improve system performance. Published by Elsevier B.V. C1 [Krad, Ibrahim] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Gao, David Wenzhong] Univ Denver, Denver, CO 80208 USA. [Ibanez, Eduardo] GE Energy Consulting, Schenectady, NY USA. [Ela, Erik] Elect Power Res Inst, Palo Alto, CA USA. RP Krad, I (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM ibrahim.krad@gmail.com FU U.S. Department of Energy [DE-AC36-08GO283 08]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO283 08 with the National Renewable Energy Laboratory. NR 24 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7796 EI 1873-2046 J9 ELECTR POW SYST RES JI Electr. Power Syst. Res. PD DEC PY 2016 VL 141 BP 522 EP 528 DI 10.1016/j.epsr.2016.08.021 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA DZ1KV UT WOS:000385598200050 ER PT J AU Castelluccio, GM Musinski, WD McDowell, DL AF Castelluccio, Gustavo M. Musinski, William D. McDowell, David L. TI Computational micromechanics of fatigue of microstructures in the HCF-VHCF regimes SO INTERNATIONAL JOURNAL OF FATIGUE LA English DT Article DE Very high cycle fatigue; Failure mechanisms; Microstructure effects; Mesoscale modeling ID HIGH-CYCLE FATIGUE; MINIMUM ENERGY FORMALISM; SHORT CRACK-PROPAGATION; SLIP BAND MODEL; N-GREATER-THAN-10(7) CYCLES; POLYCRYSTALLINE COPPER; PRIMARY INCLUSIONS; BASE SUPERALLOYS; GROWTH; NUCLEATION AB Advances in higher resolution experimental techniques have shown that metallic materials can develop fatigue cracks under cyclic loading levels significantly below the yield stress. Indeed, the traditional notion of a fatigue limit can be recast in terms of limits associated with nucleation and arrest of fatigue cracks at the microstructural scale. Although fatigue damage characteristically emerges from irreversible dislocation processes at sub-grain scales, the specific microstructure attributes, environment, and loading conditions can strongly affect the apparent failure mode and surface to subsurface transitions. In this paper we discuss multiple mechanisms that occur during fatigue loading in the high cycle fatigue (HCF) to very high cycle fatigue (VHCF) regimes. We compare these regimes, focusing on strategies to bridge experimental and modeling approaches exercised at multiple length scales and discussing particular challenges to modeling and simulation regarding microstructure-sensitive fatigue driving forces and thresholds. We conclude by discussing some of the challenges in predicting the transition of failure mechanisms at different stress and strain amplitudes. (C) 2016 Published by Elsevier Ltd. C1 [Castelluccio, Gustavo M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Musinski, William D.] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH USA. [McDowell, David L.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP McDowell, DL (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM david.mcdowell@me.gatech.edu FU NSF [CMMI-1333083]; Carter N. Paden, Jr. Distinguished Chair in Metals Processing at Georgia Tech. FX DLM is grateful for the support of NSF CMMI-1333083 on Microstructure-Sensitive Design of Multiphase Structural Alloys, as well as the Carter N. Paden, Jr. Distinguished Chair in Metals Processing at Georgia Tech. NR 73 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-1123 EI 1879-3452 J9 INT J FATIGUE JI Int. J. Fatigue PD DEC PY 2016 VL 93 SI SI BP 387 EP 396 DI 10.1016/j.ijfatigue.2016.05.019 PN 2 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DZ1NK UT WOS:000385604900020 ER PT J AU Min, T Gao, YM Chen, L Kang, QJ Tao, WQ AF Min, Ting Gao, Yimin Chen, Li Kang, Qinjun Tao, Wen-Quan TI Changes in porosity, permeability and surface area during rock dissolution: Effects of mineralogical heterogeneity SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Dissolution; Mineral heterogeneity; Reactive transport; Hydrologic properties; Pore-scale; Lattice Boltzmann method ID MULTIPHASE REACTIVE TRANSPORT; LATTICE BOLTZMANN METHOD; PORE-SCALE; REACTION-RATES; POROUS-MEDIA; PRECIPITATION; MODEL; FLOW; SIMULATION AB Effects of heterogeneity of mineral distribution and reaction rate on the rock dissolution process are investigated using a pore-scale reactive transport model based on the lattice Boltzmann method. Coupled fluid flow, species transport, chemical reaction and solid structure alternation due to dissolution are simulated. Effects of mineral distributions and chemical heterogeneity on the dissolution behaviors and evolutions of hydrologic properties are studied under different reactive transport conditions. Simulation results show that the coupling between advection, diffusion and reaction as well as the mineralogical heterogeneity leads to complex reactive transport behaviors and complicated temporal evolutions of hydrologic properties including porosity, permeability and reactive surface. Diverse relationships between surface area and volume are predicted, which cannot be described by simple models such as the spherical-grain model. Porosity-permeability relationships also differ under different mineral distributions and reactive transport conditions. Simulation results indicate that it is extremely challenging to propose general relationships for hydrologic properties for dissolution of rocks with mineralogical heterogeneity, due to the complicated interactions between reactive transport and mineralogical heterogeneity. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Min, Ting; Gao, Yimin] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China. [Chen, Li; Tao, Wen-Quan] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China. [Chen, Li] Los Alamos Natl Lab, Computat Earth Sci Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Chen, L (reprint author), Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn MOE, Xian 710049, Shaanxi, Peoples R China. EM min.ting@stu.xjtu.edu.cn; ymgao@mail.xjtu.edu.cn; lichennht08@mail.xjtu.edu.cn; qkang@lanl.gov; wqtao@mail.xjtu.edu.cn FU National Nature Science Foundation of China [51406145, 51272207]; Fundamental Research Funds for the Central Universities; Science and Technology Project of Guangdong Province in China [2015B010122003, 2015B090926009]; LANL's LDRD Program and Institutional Computing Program FX The authors thank the support of National Nature Science Foundation of China (51406145, 51272207), the Fundamental Research Funds for the Central Universities and the Science and Technology Project of Guangdong Province in China (2015B010122003, 2015B090926009). The authors also acknowledge the support of LANL's LDRD Program and Institutional Computing Program. NR 49 TC 0 Z9 0 U1 20 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD DEC PY 2016 VL 103 BP 900 EP 913 DI 10.1016/j.ijheatmasstransfer.2016.07.043 PG 14 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA DY0HL UT WOS:000384777800083 ER PT J AU Guo, HY Hill, DN Leonard, AW Allen, SL Stangeby, PC Thomas, D Unterberg, EA Abrams, T Boedo, J Briesemeister, AR Buchenauer, D Bykov, I Canik, M Chrobak, C Covele, B Ding, R Doerner, R Donovan, D Du, H Elder, D Eldon, D Lasa, A Groth, M Guterl, J Jarvinen, A Hinson, E Kolemen, E Lasnier, CJ Lore, J Makowski, MA McLean, A Meyer, B Moser, AL Nygren, R Owen, L Petrie, TW Porter, GD Rognlien, TD Rudakov, D Sang, CF Samuell, C Si, H Schmitz, O Sontag, A Soukhanovskii, V Wampler, W Wang, H Watkins, JG AF Guo, H. Y. Hill, D. N. Leonard, A. W. Allen, S. L. Stangeby, P. C. Thomas, D. Unterberg, E. A. Abrams, T. Boedo, J. Briesemeister, A. R. Buchenauer, D. Bykov, I. Canik, M. Chrobak, C. Covele, B. Ding, R. Doerner, R. Donovan, D. Du, H. Elder, D. Eldon, D. Lasa, A. Groth, M. Guterl, J. Jarvinen, A. Hinson, E. Kolemen, E. Lasnier, C. J. Lore, J. Makowski, M. A. McLean, A. Meyer, B. Moser, A. L. Nygren, R. Owen, L. Petrie, T. W. Porter, G. D. Rognlien, T. D. Rudakov, D. Sang, C. F. Samuell, C. Si, H. Schmitz, O. Sontag, A. Soukhanovskii, V. Wampler, W. Wang, H. Watkins, J. G. TI Developing and validating advanced divertor solutions on DIII-D for next-step fusion devices SO NUCLEAR FUSION LA English DT Article DE divertor concept; plasma-material interactions; DIII-D; advanced tokamak; fusion reactor AB A major challenge facing the design and operation of next-step high-power steady-state fusion devices is to develop a viable divertor solution with order-of-magnitude increases in power handling capability relative to present experience, while having acceptable divertor target plate erosion and being compatible with maintaining good core plasma confinement. A new initiative has been launched on DIII-D to develop the scientific basis for design, installation, and operation of an advanced divertor to evaluate boundary plasma solutions applicable to next step fusion experiments beyond ITER. Developing the scientific basis for fusion reactor divertor solutions must necessarily follow three lines of research, which we plan to pursue in DIII-D: (1) Advance scientific understanding and predictive capability through development and comparison between state-of-the art computational models and enhanced measurements using targeted parametric scans; (2) Develop and validate key divertor design concepts and codes through innovative variations in physical structure and magnetic geometry; (3) Assess candidate materials, determining the implications for core plasma operation and control, and develop mitigation techniques for any deleterious effects, incorporating development of plasma-material interaction models. These efforts will lead to design, installation, and evaluation of an advanced divertor for DIII-D to enable highly dissipative divertor operation at core density (ne/nGW), neutral fueling and impurity influx most compatible with high performance plasma scenarios and reactor relevant plasma facing components (PFCs). This paper highlights the current progress and near-term strategies of boundary/PMI research on DIII-D. C1 [Guo, H. Y.; Hill, D. N.; Leonard, A. W.; Thomas, D.; Abrams, T.; Ding, R.; Guterl, J.; Moser, A. L.; Petrie, T. W.; Sang, C. F.; Wang, H.] Gen Atom, San Diego, CA 92121 USA. [Allen, S. L.; Jarvinen, A.; Lasnier, C. J.; Makowski, M. A.; McLean, A.; Meyer, B.; Porter, G. D.; Rognlien, T. D.; Samuell, C.; Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stangeby, P. C.; Elder, D.] Univ Toronto, Toronto, ON, Canada. [Unterberg, E. A.; Briesemeister, A. R.; Canik, M.; Lasa, A.; Lore, J.; Owen, L.; Sontag, A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Boedo, J.; Bykov, I.; Chrobak, C.; Doerner, R.; Rudakov, D.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Buchenauer, D.; Nygren, R.; Wampler, W.; Watkins, J. G.] SNL Sandia Natl Lab, Albuquerque, NM USA. [Covele, B.] Univ Texas Austin, Austin, TX 78712 USA. [Donovan, D.] Univ Tennessee, Knoxville, TN USA. [Du, H.] Dalian Univ Technol, Dalian, Liaoning, Peoples R China. [Eldon, D.; Kolemen, E.] Princeton Univ, Princeton, NJ 08544 USA. [Groth, M.] Aalto Univ, Espoo 02015, Finland. [Hinson, E.; Schmitz, O.] Univ Wisconsin, Madison, WI USA. [Si, H.] Inst Plasma Phys, Hefei, Anhui, Peoples R China. RP Guo, HY (reprint author), Gen Atom, San Diego, CA 92121 USA. EM guohy@fusion.gat.com RI Groth, Mathias/G-2227-2013 FU US Department of Energy [DE-AC02-09CH11466, DE-AC04-94AL85000, DE-AC05-00OR22725, DE-AC52-07NA273441, DE-FC02-04ER54698, DE-FG02-07ER54917] FX This work was supported in part by the US Department of Energy under DE-AC02-09CH11466, DE-AC04-94AL85000, DE-AC05-00OR22725, DE-AC52-07NA273441, DE-FC02-04ER54698, and DE-FG02-07ER54917. NR 29 TC 1 Z9 1 U1 18 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2016 VL 56 IS 12 AR 126010 DI 10.1088/0029-5515/56/12/126010 PG 8 WC Physics, Fluids & Plasmas SC Physics GA DY8QJ UT WOS:000385394600002 ER PT J AU Zheng, GY Cai, LZ Duan, XR Xu, XQ Ryutov, DD Cai, LJ Liu, X Li, JX Pan, YD AF Zheng, G. Y. Cai, L. Z. Duan, X. R. Xu, X. Q. Ryutov, D. D. Cai, L. J. Liu, X. Li, J. X. Pan, Y. D. TI Investigations on the heat flux and impurity for the HL-2M divertor SO NUCLEAR FUSION LA English DT Article DE HL-2M; advanced divertor; heat load; impurity; divertor target geometry; SOLPS5.0 ID ITER AB The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with I-p = 0.5 MA at the first stage of HL-2M and the high parameters with I-p = 2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with d(x) = 30 cm present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, dx, to achieve a better performance in terms of the parameters of discharges. C1 [Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.] Southwestern Inst Phys, Chengdu, Peoples R China. [Xu, X. Q.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Zheng, GY (reprint author), Southwestern Inst Phys, Chengdu, Peoples R China. EM zgy@swip.ac.cn FU Chinese ITER Plan Project Foundation [2013GB113001, 2015GB105001, 2015GB106001]; National Science Foundation of China [11575056] FX The authors would like to acknowledge Dr T.N. Todd's valuable suggestions and help for the engineering design of the HL-2M divertor. Many thanks are given in particular to Dr Y. Liu for his support and encouragement for the HL-2M divertor design at SWIP. This work was supported by the Chinese ITER Plan Project Foundation (Grant No. 2013GB113001, 2015GB105001 and 2015GB106001) and the National Science Foundation of China (Grant No. 11575056). NR 13 TC 0 Z9 0 U1 8 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2016 VL 56 IS 12 AR 126013 DI 10.1088/0029-5515/56/12/126013 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DY8QJ UT WOS:000385394600005 ER PT J AU Mustafa, M AF Mustafa, Mustafa CA STAR Collaboration TI Overview of recent results from the STAR experiment SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Quark Gluon Plasma (QGP); heavy flavor; heavy quark diffusion; elliptic flow; nuclear modification factor; silicon pixel detector; jets; phase transition; critical point; chirality ID PLUS AU COLLISIONS; ENERGY-DEPENDENCE; DIFFUSION; AU+AU AB The Solenoidal Tracker at RHIC (STAR) experiment utilizes its excellent mid-rapidity tracking and particle identification capabilities to study the emergent properties of Quantum Chromodynamics (QCD). The STAR heavy-ion program at vanishingly small baryon density is aimed to address questions about the quantitative properties of the strongly interacting Quark Gluon Plasma (QGP) matter created in high energy collisions (eta/s, (q) over cap, chirality, transport parameters, heavy quark diffusion coefficients ...). At finite baryon density, the questions concern the phases of nuclear matter (the QCD phase diagram) and the nature of the phase transition, namely: what is the onset collision energy for the formation of QGP? What is the nature of phase transition in heavy-ion collisions? Are there two phase transition regions? If yes, where is the critical point situated? At Quark Matter 2015, the STAR collaboration has presented a wealth of new experimental results which address these questions. In these proceedings I highlight a few of those results. C1 [Mustafa, Mustafa; STAR Collaboration] Lawrence Berkeley Natl Lab, MS70R0319,1 Cycltron Rd, Berkeley, CA 94720 USA. RP Mustafa, M (reprint author), Lawrence Berkeley Natl Lab, MS70R0319,1 Cycltron Rd, Berkeley, CA 94720 USA. NR 32 TC 1 Z9 1 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 43 EP 50 DI 10.1016/j.nuclphysa.2016.02.023 PG 8 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600007 ER PT J AU Denicol, GS AF Denicol, Gabriel S. TI Theory of collective dynamics: flow, fluctuations and correlations in heavy ion collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan AB I review recent developments in the hydrodynamic modeling of ultra-relativistic heavy ion collisions and the extraction of the properties of bulk QCD matter from heavy ion collision measurements. I briefly summarize the current framework used for the theoretical modeling of heavy ion collisions and report the recent progress on the extraction of the temperature dependence of the shear and bulk viscosity coefficients, the development of statistical tools for data-to-model comparison, and anisotropic hydrodynamics. All these recent developments in our field pave the way for more quantitative determination of the transport properties of bulk QCD matter from the experimental heavy ion collision program. C1 [Denicol, Gabriel S.] Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA. [Denicol, Gabriel S.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. RP Denicol, GS (reprint author), Brookhaven Natl Lab, Dept Phys, Bldg 510A, Upton, NY 11973 USA.; Denicol, GS (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. NR 37 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 67 EP 74 DI 10.1016/j.nuclphysa.2016.04.030 PG 8 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600010 ER PT J AU Liao, JF AF Liao, Jinfeng TI Chiral Magnetic Effect in Heavy Ion Collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Chiral Magnetic Effect; Heavy Ion Collision; Chiral Anomaly; QCD Topology ID VIOLATION; TRANSPORT; QCD AB The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields vertical bar(B) over right arrow vertical bar similar to m(pi)(2) are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts. C1 [Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. RP Liao, JF (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Liao, JF (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Liao, JF (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. NR 31 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 99 EP 106 DI 10.1016/j.nuclphysa.2016.02.027 PG 8 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600014 ER PT J AU Li, Q Kharzeev, DE AF Li, Qiang Kharzeev, Dmitri E. TI Chiral magnetic effect in condensed matter systems SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Chiral magnetic effect; Dirac semimetals; Weyl fermions; quark-gluon plasma ID FIELDS AB The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly[1, 2] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly[3]. Recently, these novel materials so - called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [4]. C1 [Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Li, Q (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. NR 28 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 107 EP 111 DI 10.1016/j.nuclphysa.2016.03.055 PG 5 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600015 ER PT J AU Zhou, K Dai, W Xu, N Zhuang, PF AF Zhou, Kai Dai, Wei Xu, Nu Zhuang, Pengfei TI Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Heavy Flavor; Quarkonium; Transport; Nuclear Collision; Quark Gluon Plasma ID TRANSVERSE-MOMENTUM DISTRIBUTION; J/PSI-PRODUCTION; ION COLLISIONS; GLUON PLASMA; SUPPRESSION; SPS; RECOMBINATION; DISSOCIATION; DEPENDENCE; SYSTEMS AB The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies. C1 [Zhou, Kai; Dai, Wei; Zhuang, Pengfei] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Zhou, Kai; Dai, Wei; Zhuang, Pengfei] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Zhou, Kai] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Zhou, Kai] Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany. [Xu, Nu] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Xu, Nu] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Xu, Nu] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. RP Zhou, K (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China.; Zhou, K (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China.; Zhou, K (reprint author), Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany.; Zhou, K (reprint author), Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany. NR 74 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 120 EP 127 DI 10.1016/j.nuclphysa.2016.01.012 PG 8 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600017 ER PT J AU Stankus, P AF Stankus, Paul TI Experimental overview on small colliding systems at RHIC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan AB Beginning with the observation of ridge/flow-like features in pair correlations measurements in p+Pb, d+Au and high-density p+p events at RHIC and LHC, the last few years have seen a great surge of interest in the question of whether anything like a hot, locally-equilibrated QCD medium is formed in the small systems at collider energies. Many intriguing and suggestive results have been presented, but conclusions about medium formation must be approached with care. This presentation will attempt to summarize the experimental results from small colliding systems measured at RHIC, as part of a careful and objective evaluation of this question. C1 [Stankus, Paul] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stankus, P (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 192 EP 199 DI 10.1016/j.nuelphysa.2016.05.016 PG 8 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600026 ER PT J AU Loizides, C AF Loizides, Constantin TI Experimental overview on small collision systems at the LHC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE heavy-ion; collectivity; high multiplicity; QGP ID PB-PB COLLISIONS; TRANSVERSE-MOMENTUM DEPENDENCE; LEAD-LEAD COLLISIONS; ROOT-S(NN)=5.02 TEV; PPB COLLISIONS; ATLAS DETECTOR; ANISOTROPIC FLOW; MULTIPLICITY DEPENDENCE; ANGULAR-CORRELATIONS; CHARGED-PARTICLES AB These conferences proceedings summarize the experimental findings obtained in small collision systems at the LHC, as presented in the special session on "QGP in small systems?" at the Quark Matter 2015 conference. C1 [Loizides, Constantin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Loizides, C (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 131 TC 1 Z9 1 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 200 EP 207 DI 10.1016/j.nuclphysa.2016.04.022 PG 8 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600027 ER PT J AU Schlichting, S AF Schlichting, Soren TI Initial state and pre-equilibrium effects in small systems SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan ID RANGE ANGULAR-CORRELATIONS; PLUS PB COLLISIONS; LONG-RANGE; ROOT-S(NN)=5.02 TEV; SIDE; PPB AB We discuss the importance of initial state and early time effects with regard to the theoretical understanding of long range azimuthal correlations observed in high-multiplicity p + p and p + A collisions. C1 [Schlichting, Soren] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Schlichting, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 40 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 216 EP 221 DI 10.1016/j.nuclphysa.2016.02.026 PG 6 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600029 ER PT J AU Sichtermann, E AF Sichtermann, Ernst TI Gluon Saturation and EIC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE QCD; Gluon saturation; Electron Ion Collider ID COLOR GLASS CONDENSATE; RENORMALIZATION-GROUP; EVOLUTION; EQUATION AB The fundamental structure of nucleons and nuclear matter is described by the properties and dynamics of quarks and gluons in quantum chromodynamics. Electron-nucleon collisions are a powerful method to study this structure. As one increases the energy of the collisions, the interaction process probes regions of progressively higher gluon density. This density must eventually saturate. An high-energy polarized Electron-Ion Collider (EIC) has been proposed to observe and study the saturated gluon density regime. Selected measurements will be discussed, following a brief introduction. C1 [Sichtermann, Ernst] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Sichtermann, E (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 27 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 233 EP 239 DI 10.1016/j.nuclphysa.2016.03.009 PG 7 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600032 ER PT J AU Lomnitz, M AF Lomnitz, Michael CA STAR Collaboration TI Measurement of D-meson azimuthal anisotropy in Au+Au 200 GeV collisions at RHIC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Quark-gluon plasma; elliptic flow; Heavy Flavor Tracker AB Heavy quarks are produced through initial hard scatterings and they are affected by the hot and dense medium created in heavy-ion collisions throughout its whole evolution. Due to their heavy mass, charm quarks are expected to thermalize much more slowly than light flavor quarks. The charm quark flow is a unique tool to study the extent of thermalization of the bulk medium dominated by light quarks and gluons. At high (PT), D-meson azimuthal anisotropy is sensitive to the path length dependence of charm quark energy loss in the medium, which offers new insights into heavy quark energy loss mechanisms - gluon radiation vs. collisional processes. We present the STAR measurement of elliptic flow (v(2)) of D-0 and D-+/- mesons in Au+Au collisions at root s(NN) = 200 GeV, for a wide transverse momentum range. These results are obtained from the data taken in the first year of physics running of the new STAR Heavy Flavor Tracker detector, which greatly improves open heavy flavor hadron measurements by the topological reconstruction of secondary decay vertices. The D-meson v(2) is finite for (PT) > 2 GeV/c and systematically below the measurement of light particle species at the same energy. Comparison to a series of model calculations favors scenarios where charm flows with the medium and is used to infer a range for the charm diffusion coefficient 2 pi TDs. C1 [Lomnitz, Michael] Lawrence Berkeley Natl Lab, One Cyclotron Rd,MS 70R0319, Berkeley, CA 94720 USA. Kent State Univ, Dept Phys, 800 E Summit St, Kent, OH 44240 USA. RP Lomnitz, M (reprint author), Lawrence Berkeley Natl Lab, One Cyclotron Rd,MS 70R0319, Berkeley, CA 94720 USA. NR 11 TC 1 Z9 1 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 256 EP 259 DI 10.1016/j.nuclphysa.2016.04.027 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600035 ER PT J AU Pang, LG Petersen, H Qin, GY Roy, V Wang, XN AF Pang, Long-Gang Petersen, Hannah Qin, Guang-You Roy, Victor Wang, Xin-Nian TI Longitudinal fluctuations and decorrelation of anisotropic flow SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Relativistic Heavy-ion collisions; Longitudinal fluctuations; Factorization break down; Event plane decorrelation; Anisotropic flow AB We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (eta) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large eta gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies. C1 [Pang, Long-Gang; Petersen, Hannah] Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany. [Petersen, Hannah; Roy, Victor] Goethe Univ Frankfurt, Inst Theoret Phys, Max von Laue Str 1, D-60438 Frankfurt, Germany. [Petersen, Hannah] GSI Helmholtzzentrum Schwerionenforsch, Planckstr 1, D-64291 Darmstadt, Germany. [Qin, Guang-You; Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Qin, Guang-You; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Nucl Sci Div MS70R0319, Berkeley, CA 94720 USA. RP Pang, LG (reprint author), Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany. NR 15 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 272 EP 275 DI 10.1016/j.nuclphysa.2016.02.049 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600039 ER PT J AU Denicol, G Monnai, A Ryu, S Schenke, B AF Denicol, Gabriel Monnai, Akihiko Ryu, Sangwook Schenke, Bjorn TI New insights from 3D simulations of heavy ion collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan AB Viscous relativistic hydrodynamics in 3+1 dimensions is applied to describe heavy ion collisions at RHIC and LHC. We present calculations of observables that are sensitive to the longitudinal structure of the created system. In particular we present pseudo-rapidity correlations and demonstrate their dependence on both the initial state and short range correlations introduced via a microscopic transport description. We further demonstrate the effect of a varying temperature dependence of the shear viscosity to entropy density ratio on rapidity dependent flow harmonics. C1 [Denicol, Gabriel; Schenke, Bjorn] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Monnai, Akihiko] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Ryu, Sangwook] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. RP Denicol, G (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 22 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 288 EP 291 DI 10.1016/j.nuclphysa.2016.01.014 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600043 ER PT J AU Sakaguchi, T AF Sakaguchi, Takao CA PHENIX Collaboration TI PHENIX results on centrality dependence of yields and correlations in d plus Au collisions at root s(NN)=200 GeV SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Quark-gluon plasma; small systems; collective flow; high momentum hadrons AB PHENIX has measured the transverse momentum (p(T)) spectra and two particle angular correlations for high p(T) particles in d+Au collisions at root s(NN)=200 GeV using the RHIC Year-2008 run data. The azimuthal angle correlations for two particles with a large rapidity gap exhibit a ridge-like structure. Using the pi(0)s reconstructed in the EMCal, we have successfully extended the p(T) reach of the correlation up to 8 GeV/c. We find that the azimuthal anisotropy of hadrons found at low pi, persists up to 6 GeV/c with a significant centrality and p(T) dependence, similar to what was observed in A+A collisions. C1 [Sakaguchi, Takao; PHENIX Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Sakaguchi, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 10 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 300 EP 303 DI 10.1016/j.nuclphysa.2016.04.023 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600046 ER PT J AU Thader, J AF Thader, Jochen CA STAR Collaboration TI Higher Moments of Net-Particle Multiplicity Distributions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Quark-Gluon Plasma; QCD; Phase transition; Critical point ID QUANTUM CHROMODYNAMICS; ORDER; MODEL AB Studying fluctuations of conserved quantities, such as baryon number, strangeness, and charge, provides insights into the properties of matter created in high-energy nuclear collisions. Lattice QCD calculations suggest that higher moments of these quantities are sensitive to the phase structure of the hot and dense nuclear matter created in such collisions. In this paper, we present first experimental results of volume and temperature independent cumulant ratios of net-charge and net-proton distributions in Au+Au collisions at root S-NN = 14.5 GeV completing the first RHIC Beam Energy Scan (BES-I) program for root S-NN = 7.7 to 200 GeV, together with the first measurement of fully corrected net-kaon results, measured with the STAR detector at RHIC at mid-rapidity and a transverse momentum up to p(T) = 2 GeV/c. The pseudo rapidity dependence of the root S-NN = 14.5 GeV net-charge cumulant ratios is discussed. The estimated uncertainties on the ratio c(4)/c(2), the most statistics-hungry of the present observables, at root S-NN = 7.7 GeV in the upcoming RHIC BES-II program will also be presented. C1 [Thader, Jochen; STAR Collaboration] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Thader, J (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM jmthader@lbl.gov NR 18 TC 1 Z9 1 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 320 EP 323 DI 10.1016/j.nuclphysa.2016.02.047 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600051 ER PT J AU Karsch, F Bazavov, A Ding, HT Hegde, P Kaczmarek, O Laermann, E Mukherjee, S Ohno, H Petreczky, P Schmidt, C Sharma, S Soeldner, W Steinbrecher, P Wagner, M AF Karsch, F. Bazavov, A. Ding, H. -T. Hegde, P. Kaczmarek, O. Laermann, E. Mukherjee, Swagato Ohno, H. Petreczky, P. Schmidt, C. Sharma, S. Soeldner, W. Steinbrecher, P. Wagner, M. TI Conserved Charge Fluctuations from Lattice QCD and the Beam Energy Scan SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Quark-Gluon Plasma; Lattice QCD; Heavy Ion Collisions AB We discuss the next-to-leading order Taylor expansion of ratios of cumulants of net-baryon number fluctuations. We focus on the relation between the skewness ratio, S-B sigma(B) = chi(B)(3)/chi(B)(1) and the kurtosis ratio, KBol = chi(B)(4)/chi(B)(4). We show that differences in these two cumulant ratios are small for small values of the baryon chemical potential. The next-to-leading order correction to kappa(B)sigma(2)(B) however is approximately three times larger than that for S-B sigma(B). The former thus drops much more rapidly with increasing beam energy, root S-NN. We argue that these generic patterns are consistent with current data on cumulants of net-proton number fluctuations measured by the STAR Collaboration at root(SNN) >= 19.6 GeV. C1 [Karsch, F.; Mukherjee, Swagato; Ohno, H.; Petreczky, P.; Sharma, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Karsch, F.; Kaczmarek, O.; Laermann, E.; Schmidt, C.; Steinbrecher, P.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. [Bazavov, A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52240 USA. [Ding, H. -T.; Hegde, P.] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Ding, H. -T.; Hegde, P.] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Ohno, H.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Soeldner, W.] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany. [Wagner, M.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. RP Karsch, F (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.; Karsch, F (reprint author), Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. OI Schmidt, Christian/0000-0002-9071-4757 NR 7 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 352 EP 355 DI 10.1016/j.nuclphysa.2016.01.008 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600059 ER PT J AU Gursoy, U Kharzeev, D Marcus, E Rajagopal, K AF Gursoy, Umut Kharzeev, Dmitri Marcus, Eric Rajagopal, Krishna TI Magnetohydrodynamics and charged flow in heavy ion collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Magnetohydrodynamics; Quark Gluon Plasma; Heavy Ion Collisions AB Strong magnetic fields are generated in any heavy ion collision with a nonzero impact parameter. These magnetic fields induce electric currents in the hot QCD matter produced in these collisions on the reaction plane. We study the imprint of these electric currents on the azimuthal distributions and correlations of the produced charged hadrons. In particular we find that these currents result in a charge-dependent directed flow v(1) that is odd in rapidity and odd under charge exchange and a charge-dependent elliptic flow v(2) that is even in rapidity. They can be detected by measuring correlations between the directed flow of charged hadrons at different rapidities, (v(n)(+/-)(y(1))v(n)(+/-)(y(2))). C1 [Gursoy, Umut; Marcus, Eric] Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands. [Kharzeev, Dmitri] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Kharzeev, Dmitri] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Rajagopal, Krishna] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. RP Gursoy, U (reprint author), Univ Utrecht, Inst Theoret Phys, Leuvenlaan 4, NL-3584 CE Utrecht, Netherlands. NR 19 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 389 EP 392 DI 10.1016/j.nuclphysa.2016.01.058 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600068 ER PT J AU Hirono, Y Hirano, T Kharzeev, DE AF Hirono, Yuji Hirano, Tetsufumi Kharzeev, Dmitri E. TI Charge-dependent correlations from event-by-event anomalous hydrodynamics SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Chiral magnetic effect; Chiral anomaly; Heavy-ion collisions; Hydrodynamics ID VIOLATION; QCD AB We report on our recent attempt of quantitative modeling of the Chiral Magnetic Effect (CME) in heavy-ion collisions. We perform 3+1 dimensional anomalous hydrodynamic simulations on an event-by-event basis, with constitutive equations that contain the anomaly-induced effects. We also develop a model of the initial condition for the axial charge density that captures the statistical nature of random chirality imbalances created by the color flux tubes. Basing on the event-by-event hydrodynamic simulations for hundreds of thousands of collisions, we calculate the correlation functions that are measured in experiments, and discuss how the anomalous transport affects these observables. C1 [Hirono, Yuji; Kharzeev, Dmitri E.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Hirano, Tetsufumi] Sophia Univ, Dept Phys, Tokyo 1028554, Japan. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kharzeev, Dmitri E.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Hirono, Y (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. NR 16 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 393 EP 396 DI 10.1016/j.nuclphysa.2016.03.049 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600069 ER PT J AU Jia, JY Radhakrishnan, S Zhou, ML Huo, P AF Jia, Jiangyong Radhakrishnan, Sooraj Zhou, Mingliang Huo, Peng TI Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE forward-backward correlation; multiplicity fluctuation AB Forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions can be quantified by two-particle pseudo-rapidity correlation function and its expansion into Legendre polynomials. The corresponding coefficients represent different fluctuation modes in longitudinal direction. The leading term < a(1)(2)> corresponds to the asymmetry of numbers of the participants from the two colliding nuclei. This method is tested in events generated from AMPT and HIJING model. The an signal are found to be strongly dampened in AMPT than in HIJIGN, due to weaker short-range correlaitons and final-state effects in AMPT. Two-particle correlation also reveals an intresting shallow minimum around Delta eta approximate to 0 in AMPT events, which is absent in RUING results. The method opens a new avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions. C1 [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. [Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang; Huo, Peng] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Jia, JY (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA.; Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 401 EP 404 DI 10.1016/j.nuclphysa.2016.02.069 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600071 ER PT J AU Jia, JY AF Jia, Jiangyong CA ATLAS Collaboration TI Forward-backward multiplicity correlations in pp, p plus Pb and Pb plus Pb collisions with the ATLAS detector SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE heavy ion; pseudorapidity correlation; short-range correlation; long-range correlation AB Two-particle pseudorapidity correlations are measured in root S-NN = 2.76 TeV Pb+Pb, root S-NN = 5.02 TeV p+Pb and root s = 13 TeV pp collisions [1]. Correlation function is measured using charged particles in the pseudorapidity range vertical bar eta vertical bar < 2.4 with transverse momentum p(T) > 0.2 GeV, and it is measured as a function of event multiplicity, defined by number of charged particles with vertical bar eta vertical bar < 2.5 and p(T) > 0.4 GeV. The correlation function is decomposed into a short-range component (SRC) and a long-range component (LRC). The SRC differs significantly between the opposite-charge pairs and same-charge pairs, and between the three collision systems at similar multiplicity. The LRC is described approximately by 1+< a(1)(2)> eta(1)eta(2) in all collision systems over the full multiplicity range. The values of < a(1)(2)> are consistent between the opposite-charge and same-charge pairs, and are similar for the three collision systems at similar multiplicity. The values of < a(1)(2)> and the magnitude of the SRC both follow a power-law dependence on the event multiplicity. C1 [Jia, Jiangyong] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Jia, Jiangyong] Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. RP Jia, JY (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Jia, JY (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11796 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 405 EP 408 DI 10.1016/j.nuclphysa.2016.02.044 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600072 ER PT J AU Paquet, JF Shen, C Denicol, G Luzum, M Schenke, B Jeon, S Gale, C AF Paquet, Jean-Francois Shen, Chun Denicol, Gabriel Luzum, Matthew Schenke, Bjorn Jeon, Sangyong Gale, Charles TI Thermal and prompt photons at RHIC and the LHC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE ultrarelativistic heavy ion collisons; quark-gluon plasma; electromagnetic probes AB Thermal and prompt photon production in heavy ion collisions is evaluated and compared with measurements from both RHIC and the LHC. An event-by-event hydrodynamical model of heavy ion collisions that includes shear and bulk viscosities is used, along with up-to-date photon emission rates. Larger tension with measurements is observed at RHIC than at the LHC. The center-of-mass energy and centrality dependence of thermal and prompt photons is investigated. C1 [Paquet, Jean-Francois] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Paquet, Jean-Francois; Shen, Chun; Denicol, Gabriel; Jeon, Sangyong; Gale, Charles] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Denicol, Gabriel; Schenke, Bjorn] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Luzum, Matthew] Univ Santiago de Compostela, E-15706 Santiago De Compostela, Galicia, Spain. [Luzum, Matthew] Univ Sao Paulo, Rua Matao Travessa R 187,Cidade Univ, BR-05508090 Sao Paulo, Brazil. RP Paquet, JF (reprint author), SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA.; Paquet, JF (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. RI Luzum, Matthew/C-4986-2015 OI Luzum, Matthew/0000-0002-0367-7055 NR 30 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 409 EP 412 DI 10.1016/j.nuclphysa.2016.01.068 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600073 ER PT J AU Hattori, K McLerran, L Schenke, B AF Hattori, Koichi McLerran, Larry Schenke, Bjorn TI Geometrical scaling of jet fragmentation photons SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Photon production; Jet fragmentation; Geometrical scaling AB We discuss jet fragmentation photons in ultrarelativistic heavy-ion collisions. We argue that, if the jet distribution satisfies geometrical scaling and an anisotropic spectrum, these properties are transferred to photons during the jet fragmentation. C1 [Hattori, Koichi; McLerran, Larry] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Hattori, Koichi] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan. [McLerran, Larry; Schenke, Bjorn] Brookhaven Natl Lab, Dept Phys, Bdg 510A, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. RP Hattori, K (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA.; Hattori, K (reprint author), RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan. EM koichi.hattori@riken.jp; mclerran@bnl.gov; bschenke@bnl.gov NR 11 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 413 EP 416 DI 10.1016/j.nuclphysa.2016.05.004 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600074 ER PT J AU Petti, R AF Petti, Richard CA PHENIX Collaboration TI PHENIX results on low p(T) direct photons in Au plus Au collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan AB Since soft photons are unmodified once produced in heavy ion collisions, they give information about the entire thermal evolution of the medium. Excess photon yield over the expectation from initial hard scattering has been measured by PHENIX. In addition, PHENIX has measured a large azimuthal anisotropy, v(2), of these soft photons with respect to the reaction plane. The large yield and v(2) have been difficult to describe quantitatively and raise important questions about the early time dynamics in the medium. It is thus important to make more differential measurements to distinguish various potential explanations for this thermal photon puzzle. In this proceedings, we present yields, v(2), and v(3) of direct photons from root S-NN = 200GeV Au + Au collisions. C1 [Petti, Richard; PHENIX Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Petti, R (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 9 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 417 EP 420 DI 10.1016/j.nuclphysa.2016.04.004 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600075 ER PT J AU Yang, S AF Yang, Shuai CA STAR Collaboration TI System-size and energy dependences of dielectron excess invariant mass spectra at STAR SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Dielectron; LMR excess; Vector meson in-medium modification; Chiral symmetry restoration; Medium lifetime ID COLLISIONS; COLLABORATION AB We present the systematic study of dielectron production in U + U collisions at root S-NN = 193 GeV by Solenoidal Tracker At RHIC (STAR) experiment. Invariant mass, transverse momentum, and centrality differential measurements of dielectron yields are compared to Monte-Carlo hadronic contributions excluding rho-meson. In each comparison, there is an excess in the Low Mass Region (LMR) that can be described by a model calculation including a broadened rho spectral function. With detector acceptance correction applied, the dielectron excess invariant mass spectra in U + U collisions at,root S-NN = 193 GeV and in Au + Au collisions at root S-NN = 27, 39, and 62.4 GeV are reported. System-size and energy dependences of low mass excess yield are discussed together with model comparisons. C1 [Yang, Shuai] Univ Sci & Technol China, Hefei 230026, Peoples R China. Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yang, S (reprint author), Univ Sci & Technol China, Hefei 230026, Peoples R China. NR 16 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 429 EP 432 DI 10.1016/j.nuclphysa.2016.02.072 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600078 ER PT J AU Mukherjee, S Petreczky, P Sharma, S AF Mukherjee, Swagato Petreczky, Peter Sharma, Sayantan TI Charm hadrons above T-c(1) SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan ID SPECTRAL FUNCTIONS AB From the analysis of the lattice data on fluctuations and correlations of charm we conclude that open charm meson and baryon-like excitations exist above the QCD crossover temperature, and in fact are the dominant degrees of freedom for thermodynamics in the vicinity of the transition. Charm quarks become the dominant charm degrees of freedom only for temperatures T > 200 MeV. C1 [Mukherjee, Swagato; Petreczky, Peter; Sharma, Sayantan] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Mukherjee, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 18 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 465 EP 468 DI 10.1016/j.nuclphysa.2016.02.017 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600087 ER PT J AU Xie, GN AF Xie, Guannan CA STAR Collaboration TI Nuclear Modification Factor of D-0 Meson in Au plus Au Collisions at,root S-NN=200 GeV SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Quark-gluon plasma; Nuclear modification factor; Heavy Flavor Tracker AB Heavy-flavor quarks are dominantly produced in initial hard scattering processes and experience the whole evolution of the system in heavy-ion collisions at RHIC energies. Thus they are suggested to be an excellent probe to the medium properties through their interaction with the medium. In this proceedings, we report our first measurement of D-0 production via topological reconstruction using STAR's recently installed Heavy Flavor Tracker (HFT). We also report our new measurement of Nuclear Modification Factor (R-AA) of D-0 mesons in central Au+Au collisions at root S-NN = 200 GeV as a function of transverse momentum (p(T)). New results confirm the strong suppression at high Pr with a much improved precision, and show that the R-AA at high p(T) are comparable with light hadrons (pi) and with D meson measurements at the LHC. Furthermore, several theoretical calculations are compared to our data, and with charm diffusion coefficient 2 pi TDs similar to 2-12 can reproduce both the D-0 R-AA and v(2) data in Au+Au collisions at RHIC. C1 [Xie, Guannan] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Univ Sci & Technol China, Hefei 230026, Peoples R China. RP Xie, GN (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 13 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 473 EP 476 DI 10.1016/j.nuclphysa.2016.01.046 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600089 ER PT J AU Cao, SS Qin, GY Bass, SA AF Cao, Shanshan Qin, Guang-You Bass, Steffen A. TI Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE heavy flavor; nuclear modification; correlation function AB We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs. C1 [Cao, Shanshan] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Qin, Guang-You] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Qin, Guang-You] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Bass, Steffen A.] Duke Univ, Dept Phys, Durham, NC 27708 USA. RP Cao, SS (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. NR 14 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 505 EP 508 DI 10.1016/j.nuclphysa.2015.12.012 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600097 ER PT J AU Brooks, M AF Brooks, M. CA PHENIX Collaboration TI PHENIX Results on Heavy-Flavor Yields at Forward Rapidity SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE heavy flavor; quarkonia; B AB The PHENIX collaboration is actively pursuing a physics program to make precision open and closed heavy flavor measurements over a large rapidity range (-2.2 < y < 2.2). With the addition of silicon vertex tracking covering the full rapidity range of the central and forward detectors, we are now able to cleanly separate J/psi and psi' production at all rapidities and are expanding our measurements of inclusive open heavy flavor to separated charm and beauty measurements carried out via single lepton measurements and through the separation of prompt and B -> J/psi+X production. We present the current status of these measurements. C1 [Brooks, M.; PHENIX Collaboration] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Brooks, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Sullivan, John/0000-0002-9067-1531 NR 4 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 517 EP 520 DI 10.1016/j.nuclphysa.2016.01.054 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600100 ER PT J AU Blaizot, JP Liao, JF Mehtar-Tani, Y AF Blaizot, Jean-Paul Liao, Jinfeng Mehtar-Tani, Yacine TI The subtle interplay of elastic and inelastic collisions in the thermalization of the quark-gluon plasma SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE quark-gluon plasma; thermalization; heavy ion collisions ID BOSE-EINSTEIN CONDENSATION AB Using kinetic theory, we analyze the interplay of elastic and inelastic collisions in the thermalization of the quark-gluon plasma. The main focus is the dynamics and equilibration of long wavelength modes. C1 [Blaizot, Jean-Paul] CEA, Theoret Phys, Saclay, France. [Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN, BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. [Mehtar-Tani, Yacine] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. RP Blaizot, JP (reprint author), CEA, Theoret Phys, Saclay, France. NR 13 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 561 EP 564 DI 10.1016/j.nuclphysa.2016.02.032 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600111 ER PT J AU Luo, T He, YY Wang, EK Wang, XN AF Luo, Tan He, Yayun Wang, Enke Wang, Xin-Nian TI Modification of reconstructed gamma jets in heavy-ion collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Jet quenching; jet transport; quark-gluon plasma AB We use the Linear Boltzmann Transport model to study gamma-triggered jets in high-energy heavy-ion collisions. Since both recoiled partons from elastic scattering and radiated gluons from inelastic processes and their further propagation are considered, the model can provide a description of not only the medium modification of reconstructed jets but also the energy flow in the underlying hydrodynamic background. In this study, we discuss the modification of jet shape and jet fragmentation function of 7-jet in central Pb+Pb collisions and in particular the energy flow induced by the jet-medium interaction. C1 [Luo, Tan; He, Yayun; Wang, Enke; Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Luo, Tan; He, Yayun; Wang, Enke; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Mailstop 70R0319, Berkeley, CA 94740 USA. RP Luo, T (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.; Luo, T (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. NR 16 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 585 EP 588 DI 10.1016/j.nuclphysa.2016.04.007 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600117 ER PT J AU Zhang, X Apolinario, L Milhano, JG Ploskon, M AF Zhang, X. Apolinario, L. Milhano, J. G. Ploskon, M. TI Sub-jet structure as a discriminating quenching probe SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Heavy-ion collisions; jet quenching; sub-jet structure; Monte Carlo event generator AB In this work, we propose a new class of jet substructure observables which, unlike fragmentation functions, are largely insensitive to the poorly known physics of hadronization. We show that sub-jet structures provide us with a large discriminating power between different jet quenching Monte Carlo implementations. C1 [Zhang, X.; Ploskon, M.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Apolinario, L.; Milhano, J. G.] Univ Lisbon, Inst Super Tecn, CENTRA, Av Rovisco Pais, P-1049001 Lisbon, Portugal. [Milhano, J. G.] CERN, Theory Unit, Dept Phys, CH-1211 Geneva 23, Switzerland. RP Zhang, X (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 7 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 597 EP 600 DI 10.1016/j.nuclphysa.2016.02.028 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600120 ER PT J AU Chen, W Pang, LG Stoecker, H Luo, T Wang, EK Wang, XN AF Chen, Wei Pang, Long-Gang Stoecker, Horst Luo, Tan Wang, Enke Wang, Xin-Nian TI Jet-induced medium excitation in heavy-ion collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Linear Boltzmann Transport model; 3+1D hydrodynamic model; gamma-hadron correlation AB We use a Linear Boltzmann Transport (LBT) model coupled to the (3+1)D ideal hydrodynamic evolution in real time with fluctuating initial conditions to simulate both the transport of jet shower partons and jet-induced medium excitation. In this coupled approach, propagation of energetic shower partons are treated in the LBT model with the 3+1D hydrodynamic model providing the evolving bulk medium. Soft partons from both elastic and inelastic processes in the LBT are fed back into the medium as a source term in the 3+ID hydrodynamics leading to induced medium excitation. We study the effect of jet-induced medium excitation via gamma-hadron correlation within this coupled LBT-hydro (CoLBT-hydro) approach. C1 [Chen, Wei; Luo, Tan; Wang, Enke; Wang, Xin-Nian] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Chen, Wei; Luo, Tan; Wang, Enke; Wang, Xin-Nian] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Pang, Long-Gang; Stoecker, Horst] Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany. [Stoecker, Horst] Gesell Schwehrionenforsch, Planckstr 1, Darmstadt, Germany. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, Mailstop 70R0319, Berkeley, CA 94740 USA. RP Chen, W (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.; Chen, W (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. NR 13 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 605 EP 608 DI 10.1016/j.nuclphysa.2016.03.050 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600122 ER PT J AU Xu, JC Liao, JF Gyulassy, M AF Xu, Jiechen Liao, Jinfeng Gyulassy, Miklos TI Long wavelength perfect fluidity from short distance jet transport in quark-gluon plasmas SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Relativistic Heavy Ion Collisions; Jet Quenching; Perfect Fluidity; Quark-Gluon Plasmas ID ENERGY-LOSS; QCD MATTER AB We build a new phenomenological framework that bridges the long wavelength bulk viscous transport properties of the strongly-coupled quark-gluon plasma (sQGP) and short distance hard jet transport properties in the QGP. The full nonperturbative chromo-electric (E) and chromo-magnetic (M) structure of the near "perfect fluid" like sQGP in the critical transition region are integrated into a semi-Quark-Gluon-Monopole Plasma (sQGMP) model lattice-compatibly and implemented into the new CUJET3.0 jet quenching framework. All observables computed from CUJET3.0 are found to be consistent with available data at RHIC and LHC simultaneously. A quantitative connection between the shear viscosity and jet transport parameter is rigorously established within this framework. We deduce the T = 160-600 MeV dependence of the QGP's eta 7/s: its near vanishing value in the near T-c regime is determined by the composition of E and M charges, it increases as T rises, and its high T limit is fixed by color screening scales. C1 [Xu, Jiechen; Gyulassy, Miklos] Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA. [Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 North Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Indiana Univ, CEEM, 2401 North Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. RP Xu, JC (reprint author), Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA. NR 34 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 617 EP 620 DI 10.1016/j.nuclphysa.2016.02.021 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600125 ER PT J AU Jacobs, PM Schmah, A AF Jacobs, P. M. Schmah, A. CA STAR Collaboration TI Measurements of jet quenching with semi-inclusive charged jet distributions in Au plus Au collisions at root s(NN)=200 GeV SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE QCD; Jet Quenching; Quark-Gluon Plasma AB We report measurements of jet quenching in Au+Au collisions at root s(NN)=200 GeV, based on the semi-inclusive distribution of reconstructed charged particle jets recoiling from a high p(T) hadron trigger. Jets are reconstructed with the anti-k(T) algorithm (R=0.2 to 0.5), with low IR-cutoff of track constituents (p(T) > 0.2 GeV/c). Uncorrelated background is corrected using a novel mixed-event technique, with no fragmentation bias imposed by the correction procedure on the accepted recoil jet population. Corrected recoil jet distributions, reported in the range 0 < p(Tjet)(ch)t < 30 GeV/c, are used to measure jet yield suppression, jet energy loss, and intra-jet broadening. The first search for QCD Moliere scattering of jets in hot QCD matter at RHIC is reported. C1 [Jacobs, P. M.; Schmah, A.; STAR Collaboration] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Jacobs, PM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM pmjacobs@lbl.gov; aschmah@lbl.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 641 EP 644 DI 10.1016/j.nuclphysa.2016.02.050 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600131 ER PT J AU Perepelitsa, DV AF Perepelitsa, Dennis V. CA ATLAS Collaboration TI New results on fully corrected dijet asymmetry in Pb plus Pb collisions with ATLAS SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE heavy ion physics; jet quenching; dijet asymmetry; energy loss AB The phenomenon of events containing highly asymmetric dijet pairs is one of the most striking results in heavy ion physics, providing the first direct observation of in-medium jet energy loss at the Large Hadron Collider. Detailed measurements of a centrality-dependent dijet imbalance in 2.76 TeV Pb+Pb collisions using data collected by the ATLAS detector in the 2011 LHC heavy ion run are presented. The new analysis provides a measurement, fully corrected for detector effects to the particle level, of the centrality- and leading jet transverse momentum- (p(T)-) dependence of the dijet p(T) balance distribution, compared to an analogous measurement in pp collisions at the same center-of-mass energy. C1 [Perepelitsa, Dennis V.; ATLAS Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Perepelitsa, DV (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 18 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 653 EP 656 DI 10.1016/j.nuclphysa.2016.01.039 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600134 ER PT J AU Huang, XG Yin, Y Liao, JF AF Huang, Xu-Guang Yin, Yi Liao, Jinfeng TI In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Chiral magnetic effect; Charge separation; Anomalous hydrodynamics; Cu plus Au collisions ID HEAVY-ION COLLISIONS AB We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements. C1 [Huang, Xu-Guang] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. [Huang, Xu-Guang] Fudan Univ, Ctr Particle Phys & Field Theory, Shanghai 200433, Peoples R China. [Yin, Yi] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Bldg 510A, Upton, NY 11973 USA. RP Huang, XG (reprint author), Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China.; Huang, XG (reprint author), Fudan Univ, Ctr Particle Phys & Field Theory, Shanghai 200433, Peoples R China. RI Huang, Xu-Guang/J-4988-2014 OI Huang, Xu-Guang/0000-0001-6293-4843 NR 12 TC 1 Z9 1 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 661 EP 664 DI 10.1016/j.nuclphysa.2016.01.064 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600136 ER PT J AU Pisarski, RD Skokov, V AF Pisarski, Robert D. Skokov, Vladimir TI Chiral matrix model for the phase transition in QCD SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE semi-QGP; sigma model AB We discuss how to model chiral symmetry restoration with an effective theory of deconfinement. The model includes fluctuations in the quarks to one loop order, while the mesons of the sigma model are treated in mean field approximation. We note that a new counterterm is required at T = 0, and a novel form of symmetry breaking at T not equal 0. We discuss how to incorporate tetraquark states, representing J(P) = 0(+) scalar mesons, into a linear sigma model. We suggest that their effect upon the chiral phase transition is small. C1 [Pisarski, Robert D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Pisarski, Robert D.; Skokov, Vladimir] Brookhaven Natl Lab, RIKEN, Upton, NY 11973 USA. RP Pisarski, RD (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA.; Pisarski, RD (reprint author), Brookhaven Natl Lab, RIKEN, Upton, NY 11973 USA. EM pisarski@bnl.gov; vladi@skokov.net NR 8 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 673 EP 676 DI 10.1016/j.nuclphysa.2016.02.005 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600139 ER PT J AU Vitev, I AF Vitev, Ivan TI Soft-collinear effective theory for hadronic and nuclear collisions: The evolution of jet quenching from RHIC to the highest LHC energies SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE SCETG; Hadron suppression; QCD evolution; Reconstructed jet quenching; Jet shapes; gamma-tagged jets ID PB-PB COLLISIONS; ROOT-S(NN)=2.76 TEV; TRANSVERSE-MOMENTUM; SUPPRESSION; DEPENDENCE; PP AB In the framework of soft-collinear effective theory with Glauber gluons, results and predictions for inclusive hadron suppression, based upon in-medium parton shower evolution, are presented for Au+Au and Pb+Pb collisions at RHIC and LHC energies root s = 200 AGeV and root s = 2.76, 5.1 ATeV, respectively. The SCETG medium-induced splitting kernels are further implemented to evaluate the attenuation of reconstructed jet cross sections in such reactions and to examine their centrality and radius R dependence. Building upon a previously developed method to systematically resum the jet shape at next-to-leading logarithmic accuracy, a quantitative understanding of the jet shape modification measurement in Pb+Pb collisions at root s = 2.76 ATeV at the LHC can be achieved. Predictions for photon-tagged jet cross sections and shapes, that can shed light on the parton flavor dependence of in-medium parton shower modification, are also given. C1 [Vitev, Ivan] Los Alamos Natl Lab, Div Theoret, Mail Stop B283, Los Alamos, NM 87545 USA. RP Vitev, I (reprint author), Los Alamos Natl Lab, Div Theoret, Mail Stop B283, Los Alamos, NM 87545 USA. NR 23 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 677 EP 680 DI 10.1016/j.nuclphysa.2016.02.012 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600140 ER PT J AU Vogt, R AF Vogt, R. TI Cold nuclear matter effects on J/psi and Upsilon production in p plus Pb collisions at 5 TeV and Pb plus Pb collisions at 5.1 TeV SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE cold nuclear matter; quarkonia ID PARTON DISTRIBUTIONS AB We make a systematic study of the modifications of J/psi and Upsilon(1S) production in p+Pb collisions at root s(NN) = 5 TeV at the LHC. We compare the uncertainties in the EPS09 shadowing parameterization to the calculated mass and scale uncertainties obtained employing the EPS09 NLO central set. We study the dependence of the results on the proton parton density and the choice of the nuclear modifications. We check whether the results obtained are consistent at leading and next-to-leading order. The calculations are compared to the available ALICE and LHCb data on the nuclear modification factors, R-pA(y) and R-pA(p(T)), as well as the forward-backward asymmetries, R-FB(y) and R-FB(p(T)). Finally, we make predictions for the next Pb+Pb run at root s(NN) = 5.1 TeV in Run 2 of the LHC. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA.; Vogt, R (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 697 EP 700 DI 10.1016/j.nuclphysa.2015.12.013 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600145 ER PT J AU Ducloue, B Lappi, T Mantysaari, H AF Ducloue, B. Lappi, T. Mantysaari, H. TI Centrality dependence of forward J/psi suppression in high energy proton-nucleus collisions SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Quarkonia; Color Glass Condensate; Balitsky-Kovchegov equation ID QUARK PAIR PRODUCTION; DISTRIBUTIONS AB The production of forward J/psi mesons in proton-nucleus collisions can provide important information on gluon saturation. In a previous work we studied this process in the Color Glass Condensate framework, describing the target using a dipole cross section fitted to HERA inclusive data and extrapolated to the case of a nuclear target using the optical Glauber model. In this work we study the centrality dependence of the nuclear suppression in this model and compare our results with recent LHC data for this observable. C1 [Ducloue, B.; Lappi, T.] Univ Jyvaskyla, Dept Phys, POB 35, Jyvaskyla 40014, Finland. [Ducloue, B.; Lappi, T.] Univ Helsinki, Helsinki Inst Phys, POB 64, FIN-00014 Helsinki, Finland. [Mantysaari, H.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Ducloue, B (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, Jyvaskyla 40014, Finland.; Ducloue, B (reprint author), Univ Helsinki, Helsinki Inst Phys, POB 64, FIN-00014 Helsinki, Finland. NR 18 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 701 EP 704 DI 10.1016/j.nuclphysa.2016.01.061 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600146 ER PT J AU Kim, S Petreczky, P Rothkopf, A AF Kim, Seyong Petreczky, Peter Rothkopf, Alexander TI In-medium quarkonium properties from a lattice QCD based effective field theory SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Heavy Quarkonium; Quark-Gluon-Plasma; NRQCD; Bayesian Inference; Spectral Functions ID SUPPRESSION AB In order to understand the experimental data on heavy quarkonium production in heavy ion collisions at RHIC and LHC it is necessary (though not sufficient) to pinpoint the properties of heavy Q (Q) over bar bound states in the deconfined quark-gluon plasma, including their dissolution. Here we present recent results on the temperature dependence of bottomonium and charmonium correlators, as well as their spectral functions in a lattice QCD based effective field theory called NRQCD, surveying temperatures close to the crossover transition 140MeV < T < 249MeV. The spectra are reconstructed based on a novel Bayesian prescription, whose systematic uncertainties are assessed. We present indications for sequential melting of different quarkonium species with respect to their vacuum binding energies and give estimates on the survival of S-wave and P-wave ground states. C1 [Kim, Seyong] Sejong Univ, Dept Phys, Seoul 143747, South Korea. [Petreczky, Peter] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Rothkopf, Alexander] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 19, D-69120 Heidelberg, Germany. RP Rothkopf, A (reprint author), Heidelberg Univ, Inst Theoret Phys, Philosophenweg 19, D-69120 Heidelberg, Germany. NR 16 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 713 EP 716 DI 10.1016/j.nuclphysa.2015.12.011 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600149 ER PT J AU Ma, RR AF Ma, Rongrong CA STAR Collaboration TI J/psi and Upsilon measurements via the di-muon channel in Au plus Au collisions at root s(NN)=200 GeV with the STAR experiment SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Heavy-ion; Quarkonium; Muon Telescope Detector AB Measurements of quarkonium production in heavy-ion collisions have played an essential role in understanding the properties of the Quark Gluon Plasma created in such collisions. In early 2014, the Muon Telescope Detector, designed to trigger on and identify muons based on its precise timing information, was fully installed in STAR. It opens the door to measure quarkonia via the di-muon channel for the first time at the STAR experiment, with the potential to separate different Upsilon states. In this talk, we present the measurements of J/psi suppression and elliptic flow at mid-rapidity in Au+Au collisions at root s(NN) = 200 GeV down to low transverse momentum (p(T)). The suppression is found to decrease with increasing p(T) while the elliptic flow is consistent with 0 for p(T) above 2 GeV/c. Furthermore, the measurement of different Upsilon states is explored within the precision of the available statistics. C1 [Ma, Rongrong; STAR Collaboration] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ma, RR (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 725 EP 728 DI 10.1016/j.nuclphysa.2016.01.053 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600152 ER PT J AU Shen, C Park, C Paquet, JF Denicol, GS Jeon, SY Gale, C AF Shen, Chun Park, Chanwook Paquet, Jean-Francois Denicol, Gabriel S. Jeon, Sangyong Gale, Charles TI Direct photon production and jet energy-loss in small systems SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Direct photons; jet energy loss; small collision systems AB Two types of penetrating probes, direct photon and QCD jets, are investigated in the background of a small and rapidly expanding droplet of quark-gluon plasma. The additional thermal electromagnetic radiation results in a similar to 50% enhancement of the direct photons. In high multiplicity p+Pb collisions, jets can lose a sizeable fraction of their initial energy, leading to a charged hadron R-pA of similar to 0.8 at a transverse momentum around 10 GeV. Those two proposed measurements can help understand the apparent collective behaviour observed in small collision systems. C1 [Shen, Chun; Park, Chanwook; Paquet, Jean-Francois; Denicol, Gabriel S.; Jeon, Sangyong; Gale, Charles] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Paquet, Jean-Francois] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11733 USA. [Denicol, Gabriel S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Shen, C (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. NR 18 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 741 EP 744 DI 10.1016/j.nuclphysa.2016.02.016 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600156 ER PT J AU Sharma, S Dick, V Karsch, F Laermann, E Mukherjee, S AF Sharma, Sayantan Dick, Viktor Karsch, Frithjof Laermann, Edwin Mukherjee, Swagato TI The topological structures in strongly coupled QGP with chiral fermions on the lattice SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Chiral fermions; Axial anomaly; Gauge field topology; Topological susceptibility; Instantons ID PHASE-TRANSITION; QCD; CHROMODYNAMICS; INSTANTONS AB The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics. C1 [Sharma, Sayantan; Karsch, Frithjof; Mukherjee, Swagato] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Dick, Viktor; Karsch, Frithjof; Laermann, Edwin] Univ Bielefeld, Fak Phys, Univ Str 25, D-33619 Bielefeld, Germany. RP Sharma, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 19 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 793 EP 796 DI 10.1016/j.nuclphysa.2016.02.013 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600169 ER PT J AU Kojo, T Powell, PD Song, YF Baym, G AF Kojo, Toru Powell, Philip D. Song, Yifan Baym, Gordon TI Phenomenological QCD equations of state for neutron stars SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Neutron stars; QCD equations of state ID OF-STATE; DENSE MATTER AB We delineate the properties of QCD matter at baryon density n(B) = 1 - 10n(0) (n(0): nuclear saturation density), through the construction of neutron star equations of state that satisfy the neutron star mass-radius constraints as well as physical conditions on the speed of sound. The QCD matter is described in the 3-window modeling: at n(B) less than or similar to 2n(0) purely nuclear matter; at n(B) greater than or similar to 5n(0) percolated quark matter; and at 2n(0) less than or similar to n(B) less than or similar to 5n(0) matter intermediate between these two which are constructed by interpolation. Using a schematic quark model with effective interactions inspired from hadron and nuclear physics, we analyze the strength of interactions necessary to describe observed neutron star properties. Our finding is that the interactions should remain as strong as in the QCD vacuum, indicating that gluons at n(B) = 1 - 10n(0) remain non-perturbative even after quark matter formation. C1 [Kojo, Toru; Song, Yifan; Baym, Gordon] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Kojo, Toru] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Kojo, Toru] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Powell, Philip D.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Baym, Gordon] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan. RP Kojo, T (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA.; Kojo, T (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.; Kojo, T (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. NR 25 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 821 EP 825 DI 10.1016/j.nuclphysa.2016.02.008 PG 5 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600176 ER PT J AU Mukherjee, S Venugopalan, R Yin, Y AF Mukherjee, Swagato Venugopalan, Raju Yin, Yi TI Remembrance of things past: non-equilibrium effects and the evolution of critical fluctuations near the QCD critical point SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE QCD critical point; critical fluctuations; non-Gaussian cumulants; critical slowing down AB We report on recent progress in the study of the evolution of non-Gaussian cumulants of critical fluctuations. We explore the implications of non-equilibrium effects on the search for the QCD critical point. C1 [Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Venugopalan, Raju] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. RP Mukherjee, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 830 EP 833 DI 10.1016/j.nuclphysa.2016.02.009 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600178 ER PT J AU Mitchell, JT AF Mitchell, J. T. CA PHENIX Collaboration TI Transverse Energy Measurements from the Beam Energy Scan in PHENIX SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Multiplicity; Transverse energy; Quark-gluon plasma; Beam energy scan ID COLLISIONS AB Transverse energy distributions at midrapidity have been measured by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider (RHIC) for Au+Au, U+U, Cu+Au, Cu+Cu, 3He+Au, d+Au, and p+p collisions over a wide energy range from root(NN)-N-s= 7.7 GeV to root(NN)-N-s= 200 GeV as a function of centrality. For central Au+Au collisions, it is observed that the midrapidity Bjorken energy density demonstrates a power law behavior from root(NN)-N-s = 7.7 GeV to root(NN)-N-s = 2.76 TeV. At a given collision energy, the data presented as a function of N-part are independent of the size of the collision system. For Au+Au, Cu+Au, and Cu+Cu collisions, the centrality-dependent data are better described by scaling with the number of constituent quark participants than scaling with the number of nucleon participants. C1 [Mitchell, J. T.; PHENIX Collaboration] Brookhaven Natl Lab, Bldg 510C,POB 5000, Upton, NY 11973 USA. RP Mitchell, JT (reprint author), Brookhaven Natl Lab, Bldg 510C,POB 5000, Upton, NY 11973 USA. NR 12 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 842 EP 845 DI 10.1016/j.nuclphysa.2016.01.041 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600181 ER PT J AU Sako, H Harada, H Sakaguchi, T Chujo, T Esumi, S Gunji, T Hasegawa, S Hwang, SH Ichikawa, Y Imai, K Itakura, K Kaneta, M Kim, BC Kinsho, M Kitazawa, M Liu, Y Masui, H Nagamiya, S Nishio, K Okamura, M Oyama, K Ozawa, K Saha, PK Sakaguehi, A Sato, S Shigaki, K Sugimura, H Tanida, K Tamura, J Tamura, H Nara, Y Saito, TR AF Sako, H. Harada, H. Sakaguchi, T. Chujo, T. Esumi, S. Gunji, T. Hasegawa, S. Hwang, S. H. Ichikawa, Y. Imai, K. Itakura, K. Kaneta, M. Kim, B. C. Kinsho, M. Kitazawa, M. Liu, Y. Masui, H. Nagamiya, S. Nishio, K. Okamura, M. Oyama, K. Ozawa, K. Saha, P. K. Sakaguehi, A. Sato, S. Shigaki, K. Sugimura, H. Tanida, K. Tamura, J. Tamura, H. Nara, Y. Saito, T. R. CA J-PARC Heavy-Ion Collaboration TI Studies of high density baryon matter with high intensity heavy-ion beams at J-PARC SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE J-PARC; baryon density; critical point AB In J-PARC heavy-ion project, we aim at studies of QCD phase structures and hadron properties in high baryon density close to the neutron star core. We have developed a heavy-ion acceleration scheme with a new linac and a new booster with existing two synchrotrons with the goal beam rate of about 10(11) Hz. We have also designed a large acceptance spectrometer based on a toroidal magnet. We have evaluated the spectrometer performance, and demonstrated reconstructing dielectron and dimuon spectra with full detector simulations. Finally, we designed a hypernuclear spectrometer which can utilize the full intensity ion beams. C1 [Sako, H.; Hasegawa, S.; Hwang, S. H.; Ichikawa, Y.; Imai, K.; Nagamiya, S.; Nishio, K.; Sato, S.; Sugimura, H.; Tanida, K.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki, Japan. [Harada, H.; Kinsho, M.; Saha, P. K.; Tamura, J.] Japan Atom Energy Agcy, J PARC Ctr, Tokai, Ibaraki, Japan. [Sakaguchi, T.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chujo, T.; Esumi, S.; Kim, B. C.; Masui, H.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Gunji, T.] Univ Tokyo, Ctr Nucl Study, Tokyo 1138654, Japan. [Itakura, K.; Nagamiya, S.; Ozawa, K.] High Energy Accelerator Res Org, J PARC Ctr, Tsukuba, Ibaraki, Japan. [Kaneta, M.; Tamura, H.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Kitazawa, M.; Sakaguehi, A.] Osaka Univ, Suita, Osaka 565, Japan. [Nagamiya, S.] RIKEN, Wako, Saitama, Japan. [Oyama, K.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Shigaki, K.] Hiroshima Univ, Hiroshima 730, Japan. [Nara, Y.] Akita Int Univ, Akita, Japan. [Saito, T. R.] GSI, Kolkata, W Bengal, India. [Saito, T. R.] Johannes Gutenberg Univ Mainz, Mainz, Germany. RP Sako, H (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki, Japan. NR 4 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 850 EP 853 DI 10.1016/j.nuclphysa.2016.03.030 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600183 ER PT J AU Contin, G AF Contin, Giacomo CA STAR Collaboration TI The STAR Heavy Flavor Tracker and Upgrade Plan SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE Pixel; MAPS; Silicon Tracker; Vertex Detector; RHIC; STAR Experiment; Heavy Ions; Heavy Flavor ID MAPS AB The Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. The HFT is composed of two silicon PiXeL detector (PXL) layers, an Intermediate Silicon Tracker (IST) and a Silicon Strip Detector (SSD). It greatly improves the impact parameter resolution of STAR tracking and enables reconstruction of secondary decay vertices of open heavy hadrons in heavy ion collisions, providing unique probes for studying the Quark -Gluon Plasma. In these proceedings we discuss the HFT hardware design, and current detector status and performance. The HFT was successfully commissioned during the 2014 RHIC run, taking data in Au+Au collisions at 200 GeV. The HFT performance during this run matches the expected performance, most significantly for track pointing resolution. Preliminary results have been obtained from 2014 Au+Au data analyses, demonstrating the capabilities of open charm hadron reconstruction with the HFT. Modifications to HFT subsystems have been made to improve its performance in the 2015 run in p+p, p+Au and p+Al collisions at root(NN)-N-s = 200 GeV. In order to further improve such capabilities to measure bottom quark hadrons at RHIC energies, a faster heavy flavor tracker (HFT+) is needed to collect data at higher luminosity with good efficiency. The proposed HFT+ will be equipped with new generation of MAPS sensors with a much shorter integration time (<= 40 mu s) and possibly extend the current PXL detector acceptance with minimal modification to the original mechanical and air cooling infrastructure. Requirements for the upgraded HFT+ detector and expected performance are also presented in these proceedings. C1 [Contin, Giacomo; STAR Collaboration] Lawrence Berkeley Natl Lab, One Cyclotron Rd,MS 70R0319, Berkeley, CA 94720 USA. RP Contin, G (reprint author), Lawrence Berkeley Natl Lab, One Cyclotron Rd,MS 70R0319, Berkeley, CA 94720 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 858 EP 861 DI 10.1016/j.nuclphysa.2016.02.064 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600185 ER PT J AU Haggerty, JS AF Haggerty, John S. CA PHENIX sPHENIX Collaboration TI sPHENIX Calorimeter Design and Jet Performance SO NUCLEAR PHYSICS A LA English DT Article; Proceedings Paper CT 25th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions CY SEP 27-OCT 03, 2015 CL Sci Council Japan, Kobe, JAPAN SP Phys Soc Japan, Univ Tokyo, Sch Sci, Ctr Nucl Study, RIKEN Nishina Ctr HO Sci Council Japan DE RHIC; heavy ion; calorimeter; jets AB The PHENIX collaboration is planning a detector upgrade, sPHENIX, which consists of large acceptance calorimetry and tracking detectors built around the superconducting solenoid recently shipped to Brookhaven from the decommissioned BaBar experiment at SLAC. The sPHENIX calorimeter system includes three radial layers of sampling calorimeters, a tungsten-scintillating fiber electromagnetic calorimeter, and two longitudinally segmented sampling hadron calorimeters that are made of scintillator tiles and steel plates. Together, they provide hermetic coverage in vertical bar eta vertical bar < 1 for calorimetry based jet measurements as well as minimal bias jet trigger capability, which coupled with high resolution tracking, enable an extremely rich jet physics program at RHIC. C1 [Haggerty, John S.; PHENIX sPHENIX Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Haggerty, JS (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 862 EP 865 DI 10.1016/j.nuclphysa.2016.02.046 PG 4 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600186 ER PT J AU Ludlam, TW AF Ludlam, Thomas W. TI Recalling Quark Matter '83 and the birth of RHIC SO NUCLEAR PHYSICS A LA English DT Editorial Material DE Quark Matter; Relativistic Heavy Ion Collider AB I provide a brief review of the Quark Matter '83 meeting at Brookhaven, in the context of the decisive U.S. science policy actions during the summer of 1983 that led up to it. At the Brookhaven meeting a large community of nuclear and high energy physicists came together for the first time to examine the parameters for the Relativistic Heavy Ion Collider, setting the stage for decades of quark matter research to follow. C1 [Ludlam, Thomas W.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Ludlam, TW (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD DEC PY 2016 VL 956 BP 902 EP 904 DI 10.1016/j.nuclphysa.2016.01.071 PG 3 WC Physics, Nuclear SC Physics GA DZ5JO UT WOS:000385898600196 ER PT J AU Yatom, S Shlapakovski, A Beilin, L Stambulchik, E Tskhai, S Krasik, YE AF Yatom, S. Shlapakovski, A. Beilin, L. Stambulchik, E. Tskhai, S. Krasik, Ya E. TI Recent studies on nanosecond-timescale pressurized gas discharges SO PLASMA SOURCES SCIENCE & TECHNOLOGY LA English DT Article DE high-pressure nanosecond discharge; plasma diagnostics; runaway electrons; microwave discharge; plasma interference switch ID MICROWAVE PULSE COMPRESSOR; COHERENT RAMAN-SCATTERING; STARK-BROADENING TABLES; ELECTRIC-FIELD; LINE APPLICATION; PLASMA; DIAGNOSTICS; SWITCH AB The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, x-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The results obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases. C1 [Yatom, S.; Shlapakovski, A.; Beilin, L.; Krasik, Ya E.] Technion, Dept Phys, IL-32000 Haifa, Israel. [Yatom, S.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Stambulchik, E.] Weizmann Inst Sci, Fac Phys, IL-76100 Rehovot, Israel. [Tskhai, S.] Russian Acad Sci, Lebedev Phys Inst, GSP 1, Moscow 1199911, Russia. RP Krasik, YE (reprint author), Technion, Dept Phys, IL-32000 Haifa, Israel. RI Tskhai, Sergei/B-9698-2014 OI Tskhai, Sergei/0000-0003-3543-6990 NR 38 TC 1 Z9 1 U1 8 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0963-0252 EI 1361-6595 J9 PLASMA SOURCES SCI T JI Plasma Sources Sci. Technol. PD DEC PY 2016 VL 25 IS 6 AR 064001 DI 10.1088/0963-0252/25/6/064001 PG 15 WC Physics, Fluids & Plasmas SC Physics GA DZ5WF UT WOS:000385931900001 ER PT J AU Wages, PA Cheng, WY Gibbs-Flournoy, E Samet, JM AF Wages, Phillip A. Cheng, Wan-Yun Gibbs-Flournoy, Eugene Samet, James M. TI Live-cell imaging approaches for the investigation of xenobiotic-induced oxidant stress SO BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS LA English DT Article DE Live-cell imaging; Oxidant stress; Toxicology; Xenobiotic; Reactive oxygen species; Glutathione; Redox potential; Fluorescence ID GREEN FLUORESCENT PROTEIN; MITOCHONDRIAL-DNA DAMAGE; HYDROGEN-PEROXIDE PRODUCTION; OXYGEN SPECIES MEASUREMENT; INDUCED OXIDATIVE STRESS; DISULFIDE BOND FORMATION; AIRWAY EPITHELIAL-CELLS; SENSITIVE YFP SENSORS; NITRIC-OXIDE; LIVING CELLS AB Background: Oxidant stress is arguably a universal feature in toxicology. Research studies on the role of oxidant stress induced by xenobiotic exposures have typically relied on the identification of damaged biomolecules using a variety of conventional biochemical and molecular techniques. However, there is increasing evidence that low-level exposure to a variety of toxicants dysregulates cellular physiology by interfering with redox-dependent processes. Scope of review: The study of events involved in redox toxicology requires methodology capable of detecting transient modifications at relatively low signal strength. This article reviews the advantages of live-cell imaging for redox toxicology studies. Major conclusions: Toxicological studies with xenobiotics of supra-physiological reactivity require careful consideration when using fluorogenic sensors in order to avoid potential artifacts and false negatives. Fortunately, experiments conducted for the purpose of validating the use of these sensors in toxicological applications often yield unexpected insights into the mechanisms through which xenobiotic exposure induces oxidant stress. General significance: Live-cell imaging using a new generation of small molecule and genetically encoded fluorophores with excellent sensitivity and specificity affords unprecedented spatiotemporal resolution that is optimal for redox toxicology studies. Published by Elsevier B.V. C1 [Wages, Phillip A.] Univ North Carolina Chapel Hill, Curriculum Toxicol, Chapel Hill, NC USA. [Cheng, Wan-Yun; Gibbs-Flournoy, Eugene] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Cheng, Wan-Yun] Natl Hlth & Environm Effects Res Lab, Integrated Syst Toxicol Div, Res Triangle Pk, NC USA. [Gibbs-Flournoy, Eugene; Samet, James M.] Natl Hlth & Environm Effects Res Lab, Environm Publ Hlth Div, Res Triangle Pk, NC USA. RP Samet, JM (reprint author), EPA Human Studies Facil, 104 Mason Farm Rd, Chapel Hill, NC 27514 USA. EM Samet.James@epa.gov FU NIEHS NIH HHS [T32 ES007126] NR 215 TC 1 Z9 1 U1 25 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4165 EI 1872-8006 J9 BBA-GEN SUBJECTS JI Biochim. Biophys. Acta-Gen. Subj. PD DEC PY 2016 VL 1860 IS 12 SI SI BP 2802 EP 2815 DI 10.1016/j.bbagen.2016.05.017 PG 14 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DY1PK UT WOS:000384866700005 PM 27208426 ER PT J AU Pebay, P Terriberry, TB Kolla, H Bennett, J AF Pebay, Philippe Terriberry, Timothy B. Kolla, Hemanth Bennett, Janine TI Numerically stable, scalable formulas for parallel and online computation of higher-order multivariate central moments with arbitrary weights SO COMPUTATIONAL STATISTICS LA English DT Article DE Descriptive statistics; Statistical moments; Parallel computing; Large data analysis ID STATISTICS; ALGORITHMS; IDENTIFICATION; DECONVOLUTION; VARIANCE; CRITERIA; SPECTRA; FILTER AB Formulas for incremental or parallel computation of second order central moments have long been known, and recent extensions of these formulas to univariate and multivariate moments of arbitrary order have been developed. Such formulas are of key importance in scenarios where incremental results are required and in parallel and distributed systems where communication costs are high. We survey these recent results, and improve them with arbitrary-order, numerically stable one-pass formulas which we further extend with weighted and compound variants. We also develop a generalized correction factor for standard two-pass algorithms that enables the maintenance of accuracy over nearly the full representable range of the input, avoiding the need for extended-precision arithmetic. We then empirically examine algorithm correctness for pairwise update formulas up to order four as well as condition number and relative error bounds for eight different central moment formulas, each up to degree six, to address the trade-offs between numerical accuracy and speed of the various algorithms. Finally, we demonstrate the use of the most elaborate among the above mentioned formulas, with the utilization of the compound moments for a practical large-scale scientific application. C1 [Pebay, Philippe] Sandia Natl Labs, MS 9159,POB 969, Livermore, CA 94551 USA. [Terriberry, Timothy B.] Xiph Org Fdn, 2521 S Oxford St, Arlington, VA 22206 USA. [Kolla, Hemanth] Sandia Natl Labs, MS 9158,POB 969, Livermore, CA 94551 USA. [Bennett, Janine] Sandia Natl Labs, MS 9152,POB 969, Livermore, CA 94551 USA. RP Pebay, P (reprint author), Sandia Natl Labs, MS 9159,POB 969, Livermore, CA 94551 USA. EM pppebay@sandia.gov; tterribe@xiph.org; hnkolla@sandia.gov; jcbenne@sandia.gov OI Pebay, Philippe/0000-0002-2311-3775 FU United States Department of Energy, Office of Science, Office of Defense; Sandia LDRD Program; United States Department of Energy [DE-AC04-94-AL85000] FX Philippe Pebay, Hemanth Kolla and Janine Bennett: These authors were supported by the United States Department of Energy, Office of Science, Office of Defense, and Sandia LDRD Program. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL85000. NR 42 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0943-4062 EI 1613-9658 J9 COMPUTATION STAT JI Comput. Stat. PD DEC PY 2016 VL 31 IS 4 BP 1305 EP 1325 DI 10.1007/s00180-015-0637-z PG 21 WC Statistics & Probability SC Mathematics GA DY6FL UT WOS:000385201700004 ER PT J AU Granderson, J Lin, GJ AF Granderson, Jessica Lin, Guanjing TI Building energy information systems: synthesis of costs, savings, and best-practice uses SO ENERGY EFFICIENCY LA English DT Article DE Energy efficiency; Energy information systems; Commercial buildings; Costs and savings; Best practices AB Building energy information systems (EIS) are a powerful customer-facing monitoring and analytical technology that can enable up to 20 % site energy savings for buildings. Few technologies are as heavily marketed, but in spite of their potential, EIS remain an underadopted emerging technology. One reason is the lack of information on purchase costs and associated energy savings. While insightful, the growing body of individual case studies has not provided industry the information needed to establish the business case for investment. Vastly different energy and economic metrics prevent generalizable conclusions. This paper addresses three common questions concerning EIS use: what are the costs, what have users saved, and which best practices drive deeper savings? We present a large-scale assessment of the value proposition for EIS use based on data from over two-dozen organizations. Participants achieved year-over-year median site and portfolio savings of 17 and 8 %, respectively; they reported that this performance would not have been possible without the EIS. The median 5-year cost of EIS software ownership (up-front and ongoing costs) was calculated to be $1800 per monitoring point (kilowatt meter points were most common), with a median portfolio-wide implementation size of approximately 200 points. In this paper, we present an analysis of the relationship between key implementation factors and achieved energy reductions. Extent of efficiency projects, building energy performance prior to EIS installation, depth of metering, and duration of EIS were strongly correlated with greater savings. We also identify the best practices use of EIS associated with greater energy savings. C1 [Granderson, Jessica; Lin, Guanjing] Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Berkeley, CA 94720 USA. RP Granderson, J (reprint author), Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Berkeley, CA 94720 USA. EM jgranderson@lbl.gov FU Building Technologies Program of the US Department of Energy [DE-AC02-05CH11231] FX The work described in the paper was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 0 Z9 0 U1 17 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X EI 1570-6478 J9 ENERG EFFIC JI Energy Effic. PD DEC PY 2016 VL 9 IS 6 BP 1369 EP 1384 DI 10.1007/s12053-016-9428-9 PG 16 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA DY5PX UT WOS:000385154300009 ER PT J AU Debono, I Smoot, GF AF Debono, Ivan Smoot, George F. TI General Relativity and Cosmology: Unsolved Questions and Future Directions SO UNIVERSE LA English DT Article DE General Relativity; gravitation; cosmology; Concordance Model; dark energy; dark matter; inflation; large-scale structure ID PROBE WMAP OBSERVATIONS; LARGE-SCALE STRUCTURE; MATTER POWER SPECTRUM; NEWTONS GRAVITATIONAL CONSTANT; INFLATIONARY UNIVERSE SCENARIO; EXTRASOLAR PLANETARY SYSTEMS; BAYESIAN MODEL SELECTION; WEAK LENSING FORECASTS; NEUTRINO REST MASS; EQUATION-OF-STATE AB For the last 100 years, General Relativity (GR) has taken over the gravitational theory mantle held by Newtonian Gravity for the previous 200 years. This article reviews the status of GR in terms of its self-consistency, completeness, and the evidence provided by observations, which have allowed GR to remain the champion of gravitational theories against several other classes of competing theories. We pay particular attention to the role of GR and gravity in cosmology, one of the areas in which one gravity dominates and new phenomena and effects challenge the orthodoxy. We also review other areas where there are likely conflicts pointing to the need to replace or revise GR to represent correctly observations and consistent theoretical framework. Observations have long been key both to the theoretical liveliness and viability of GR. We conclude with a discussion of the likely developments over the next 100 years. C1 [Debono, Ivan; Smoot, George F.] Univ Paris Diderot, Paris Ctr Cosmol Phys, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Lrfu,Observ Paris,Sorbonne Par, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Smoot, George F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Smoot, George F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Smoot, George F.] Hong Kong Univ Sci & Technol, Large, Kowloon 999077, Hong Kong, Peoples R China. RP Debono, I (reprint author), Univ Paris Diderot, Paris Ctr Cosmol Phys, AstroParticule & Cosmol, APC,CNRS,IN2P3,CEA,Lrfu,Observ Paris,Sorbonne Par, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. EM ivan.debono@apc.univ-paris7.fr; gfsmoot@lbl.gov OI Debono, Ivan/0000-0002-4699-5408 NR 558 TC 4 Z9 4 U1 41 U2 41 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2218-1997 J9 UNIVERSE JI Universe PD DEC PY 2016 VL 2 IS 4 AR UNSP 23 DI 10.3390/universe2040023 PG 82 WC Physics, Particles & Fields SC Physics GA DY2PV UT WOS:000384935400001 ER PT J AU Bautista-Gomez, L Benoit, A Cavelan, A Raina, SK Robert, Y Sun, HY AF Bautista-Gomez, Leonardo Benoit, Anne Cavelan, Aurelien Raina, Saurabh K. Robert, Yves Sun, Hongyang TI Coping with recall and precision of soft error detectors SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Fault tolerance; High-performance computing; Silent data corruption; Partial verification; Recall and precision; Exascale ID OPTIMUM CHECKPOINT INTERVAL; FAULT-TOLERANCE; REDUNDANCY; SYSTEMS AB Many methods are available to detect silent errors in high-performance computing (HPC) applications. Each method comes with a cost, a recall (fraction of all errors that are actually detected, i.e., false negatives), and a precision (fraction of true errors amongst all detected errors, i.e., false positives). The main contribution of this paper is to characterize the optimal computing pattern for an application: which detector(s) to use, how many detectors of each type to use, together with the length of the work segment that precedes each of them. We first prove that detectors with imperfect precisions offer limited usefulness. Then we focus on detectors with perfect precision, and we conduct a comprehensive complexity analysis of this optimization problem, showing NP-completeness and designing an FPTAS (Fully Polynomial-Time Approximation Scheme). On the practical side, we provide a greedy algorithm, whose performance is shown to be close to the optimal fora realistic set of evaluation scenarios. Extensive simulations illustrate the usefulness of detectors with false negatives, which are available at a lower cost than the guaranteed detectors. (C) 2016 Elsevier Inc. All rights reserved. C1 [Bautista-Gomez, Leonardo] Argonne Natl Lab, Argonne, IL 60439 USA. [Benoit, Anne; Cavelan, Aurelien; Robert, Yves; Sun, Hongyang] Ecole Normale Super Lyon, Lyon, France. [Benoit, Anne; Cavelan, Aurelien; Robert, Yves; Sun, Hongyang] INRIA, Rocquencourt, France. [Raina, Saurabh K.] Jaypee Inst Informat Technol, Noida, Uttar Pradesh, India. [Robert, Yves] Univ Tennessee, Knoxville, TN USA. RP Sun, HY (reprint author), Ecole Normale Super Lyon, Lyon, France.; Sun, HY (reprint author), INRIA, Rocquencourt, France. EM hongyang.sun@ens-lyon.fr FU European project SCoRPiO; LABEX MILYON of Universite de Lyon, within the program "Investissements d'Avenir" [ANR-10-LABX-0070, ANR-11-IDEX-0007]; PIA ELCI project; US Department of Energy, Office of Science, Advanced Scientific Computing Research Program [DE-AC02-06CH11357]; INRIA-Illinois-ANL-BSC Joint Laboratory on Extreme Scale Computing; Center for Exascale Simulation of Advanced Reactors at Argonne FX We would like to thank the reviewers for their valuable comments and suggestions, which greatly helped improve the quality of this paper. This research was funded in part by the European project SCoRPiO, by the LABEX MILYON (ANR-10-LABX-0070) of Universite de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), by the PIA ELCI project, by the US Department of Energy, Office of Science, Advanced Scientific Computing Research Program, under Contract DE-AC02-06CH11357, by the INRIA-Illinois-ANL-BSC Joint Laboratory on Extreme Scale Computing, and by the Center for Exascale Simulation of Advanced Reactors at Argonne. Yves Robert is with Institut Universitaire de France. NR 41 TC 0 Z9 0 U1 5 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD DEC PY 2016 VL 98 BP 8 EP 24 DI 10.1016/j.jpdc.2016.07.007 PG 17 WC Computer Science, Theory & Methods SC Computer Science GA DX8JD UT WOS:000384633000002 ER PT J AU Murshed, MM Zhao, P Fischer, M Huq, A Alekseev, EV Gesing, TM AF Murshed, M. Mangir Zhao, P. Fischer, Michael Huq, Ashfia Alekseev, Evgeny V. Gesing, Thorsten M. TI Thermal expansion modeling of framework-type Na[AsW2O9] and K[AsW2O9] SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Inorganic compound; Neutron diffraction; Elastic properties; Lattice dynamics; Thermal expansion ID NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE; OPTICAL PHONONS; SOLIDS; SCATTERING; CADMIUM; ZINK AB We report lattice thermal expansion of two alkali metal arsenotungstates possessing framework-type structures. Rietveld refinement analysis of the temperature-dependent neutron time-of-flight diffraction data revealed that K[AsW2O9] exhibits positive thermal expansion in the a- and c-directions, and negative thermal expansion in the b-direction. Opposite, the isostructural Na[AsW2O9] shows positive thermal expansion in all three directions. Using the quasi-harmonic approximation DFT calculations demonstrate that both acoustic and optic negative mode Gruneisen parameters contribute to the phonon density of states (PDOS). The lattice thermal expansion was fitted using Gruneisen first order approximation for the zero pressure equation of state at OK, where the vibrational energy was calculated using the Debye-Einstein-Anharmonicity model. The thermodynamic Gruneisen parameter accounts for the isothermal anharmonicity while an anharmonicity parameter measures the isochoric anharmonicity. The magnitude and the sign of the cross-linking values (linear compressibility multiplied by axial Gruneisen parameter) helped understand the associated axial negative thermal expansion. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Murshed, M. Mangir; Zhao, P.; Gesing, Thorsten M.] Univ Bremen, Inst Anorgan Chem & Kristallog, Chem Kristallog Fester Stoffe, FB2,MAPEX Ctr Mat & Proc, Leobener Str NW2,Bibliothekstr 1, D-28359 Bremen, Germany. [Fischer, Michael] Univ Bremen, Kristallog, FB Geowissensch, MAPEX Ctr Mat & Proc, Klagenfurter Str,Bibliothekstr 1, D-28359 Bremen, Germany. [Huq, Ashfia] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Alekseev, Evgeny V.] Forschungszentrum Julich, Inst Energy & Climate Res IEK 6, D-52428 Julich, Germany. [Alekseev, Evgeny V.] Rhein Westfal TH Aachen, Inst Kristallog, Jagerstr 17-19, D-52066 Aachen, Germany. RP Murshed, MM (reprint author), Univ Bremen, Inst Anorgan Chem & Kristallog, Chem Kristallog Fester Stoffe, FB2,MAPEX Ctr Mat & Proc, Leobener Str NW2,Bibliothekstr 1, D-28359 Bremen, Germany. EM murshed@uni-bremen.de RI Huq, Ashfia/J-8772-2013; Fischer, Michael/B-2731-2010 OI Huq, Ashfia/0000-0002-8445-9649; Fischer, Michael/0000-0001-5133-1537 FU Deutsche Forschungsgemeinschaft (DFG) [GE1981/4-1, GE1981/4-2]; DFG [GE1981/3-1, GE1981/3-2]; Bundesministerium fur Bildung and Forschung (BMBF young researcher group NEOTHERM) [03SF0450]; Central Research Development Fund (CRDF) of the University of Bremen; CSC FX We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for the financial support through the mullite-LEP project GE1981/4-1 and GE1981/4-2. TMG especially acknowledges the DFG for a support in the Heisenberg program (GE1981/3-1 and GE1981/3-2). M.F. gratefully acknowledges Dr. Alexandra Lieb (Magdeburg University) for enabling the CASTEP calculations of the elastic constants. The software used for these calculations was funded by the Bundesministerium fur Bildung and Forschung (BMBF young researcher group NEOTHERM, grant number 03SF0450). Dr. Rolf Arvidson and Prof. Dr. Andreas Luttge (Marum, Bremen) provided access to the Asgard cluster on which the remaining CASTEP calculations were run. M.F. is funded by the Central Research Development Fund (CRDF) of the University of Bremen (Funding line 04-Independent Projects for Post-Docs). P.Z. acknowledges the financial support from CSC. NR 46 TC 0 Z9 0 U1 12 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 EI 1873-4227 J9 MATER RES BULL JI Mater. Res. Bull. PD DEC PY 2016 VL 84 BP 273 EP 282 DI 10.1016/j.materresbull.2016.08.020 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA DY0GZ UT WOS:000384776600035 ER PT J AU Kim, SH Bulmer, RH Campbell, DJ Casper, TA LoDestro, LL Meyer, WH Pearlstein, LD Snipes, JA AF Kim, S. H. Bulmer, R. H. Campbell, D. J. Casper, T. A. LoDestro, L. L. Meyer, W. H. Pearlstein, L. D. Snipes, J. A. TI CORSICA modelling of ITER hybrid operation scenarios SO NUCLEAR FUSION LA English DT Article DE ITER; CORSICA; hybrid operation scenario ID CONTROL-SYSTEM; SIMULATION; TOKAMAK; PLASMAS; DISCHARGES; TRANSPORT; STABILITY AB The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000s) with a moderate fusion power multiplication factor, Q, of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. C1 [Kim, S. H.; Campbell, D. J.; Casper, T. A.; Snipes, J. A.] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France. [Bulmer, R. H.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA USA. [Casper, T. A.] 1166 Bordeaux St, Pleasanton, CA 94566 USA. RP Kim, SH (reprint author), ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France. EM sunhee.kim@iter.org FU Principality of Monaco/ITER Postdoctoral Research Fellowship Program FX The authors wish to thank Drs C.E. Kessel and J. Garcia for fruitful discussions, Dr P.B. Snyder for providing EPED1 results, and Drs M. Henderson and T. Oikawa for providing ITER EC and NB design parameters. This work was partly supported by the Principality of Monaco/ITER Postdoctoral Research Fellowship Program. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization. NR 48 TC 0 Z9 0 U1 8 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2016 VL 56 IS 12 AR 126002 DI 10.1088/0029-5515/56/12/126002 PG 19 WC Physics, Fluids & Plasmas SC Physics GA DW9DK UT WOS:000383955700002 ER PT J AU Wu, Y Stevens, E Kim, K Maisonnier, D Kalashnikov, A Tobita, K Jackson, D Alejaldre, C Perrault, D Panayotov, D Merrill, B Grisolia, C Zucchetti, M Pinna, T van Houtte, D Konishi, S Kolbasov, B AF Wu, Y. Stevens, E. Kim, K. Maisonnier, D. Kalashnikov, A. Tobita, K. Jackson, D. Alejaldre, C. Perrault, D. Panayotov, D. Merrill, B. Grisolia, C. Zucchetti, M. Pinna, T. van Houtte, D. Konishi, S. Kolbasov, B. TI Summary of the 1st International Workshop on Environmental, Safety and Economic Aspects of Fusion Power SO NUCLEAR FUSION LA English DT Article DE DEMO safety; safety gaps; IEA ESEFP AB The 1st International workshop on Environmental, Safety and Economic Aspects of Fusion Power (ESEFP) was held on 13 September 2015 at Jeju Island, South Korea. The workshop was initiated by the International Energy Agency Implementing Agreement on a Co-operative Program on ESEFP. The workshop was well attended with about forty participants representing twelve institutions in ten countries. The presentations covered safety issues and environmental impacts, availability improvement and risk control and socio-economic aspects of fusion power. Safety and licensing gaps between DEMO and ITER were discussed in depth with the consensus output presented as a plenary presentation at the 12th International Symposium on Fusion Nuclear Technology (ISFNT-12). The next workshop is planned to be held in conjunction with the ISFNT-13 in 2017. C1 [Wu, Y.] Chinese Acad Sci, Inst Nucl Energy Safety Technol, Key Lab Neutron & Radiat Safety, Hefei 230031, Anhui, Peoples R China. [Stevens, E.] US DOE, SC-24,Germantown Bldg 1000,Independence Ave SW, Washington, DC 20585 USA. [Kim, K.] Natl Fus Res Inst, Daejeon 305806, South Korea. [Maisonnier, D.] European Commiss, Rue Champs Mars 21, B-1050 Brussels, Belgium. [Kalashnikov, A.] State Atom Energy Corp, 24 Bolshaya Ordynka Str, Moscow 119017, Russia. [Tobita, K.] Natl Inst Quantum & Radiol Sci & Technol, Rokkasho, Aomori 0393212, Japan. [Jackson, D.] McMaster Univ, Dept Engn Phys, 1280 Main St W, Hamilton, ON L8S 4L7, Canada. [Alejaldre, C.] ITER Org, Route Vinon Verdon, F-13115 St Paul Les Durance, France. [Perrault, D.] Inst Radioprotect & Surete Nucl, Villeneuve Les Avignon, France. [Panayotov, D.] Fus Energy, Josep Pla 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain. [Merrill, B.] Idaho Natl Lab, POB 1625, Idaho Falls, ID USA. [Grisolia, C.; van Houtte, D.] CEA, F-13108 St Paul Les Durance, France. [Zucchetti, M.] Politecn Torino, Corso Duca Abruzzi 24, I-10129 Turin, Italy. [Pinna, T.] ENEA, Via Enrico Fermi 45, I-00044 Rome, Italy. [Konishi, S.] Kyoto Univ, Inst Adv Energy, Kyoto, Japan. [Kolbasov, B.] NRC Kurchatov Inst, Pl Akad Kurchatova 1, Moscow 123182, Russia. RP Wu, Y (reprint author), Chinese Acad Sci, Inst Nucl Energy Safety Technol, Key Lab Neutron & Radiat Safety, Hefei 230031, Anhui, Peoples R China. EM yican.wu@fds.org.cn RI Zucchetti, Massimo/P-9229-2016 OI Zucchetti, Massimo/0000-0003-4457-3321 FU National Magnetic Confinement Fusion Energy Program of China [2014GB112000, 2014GB112001]; local organizing committee of ISFNT-12 FX The authors wish to thank all the participants in the workshop, especially those who made presentations and kindly made their materials available for the authors' use in preparing this summary. The authors also would like to express their gratitude to the local organizers from INEST CAS who made significant efforts that led to the success of the meeting. The support of the local organizing committee of ISFNT-12 through Kijung Jung and Hyejin Yun is also highly appreciated. This work is supported by the National Magnetic Confinement Fusion Energy Program of China (Grant Numbers 2014GB112000 and 2014GB112001). NR 12 TC 1 Z9 1 U1 27 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD DEC PY 2016 VL 56 IS 12 AR 127001 DI 10.1088/0029-5515/56/12/127001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DX1BF UT WOS:000384099800001 ER PT J AU Ristova, MM Zhu, W Yu, KM Walukiewicz, W AF Ristova, Mimoza M. Zhu, Wei Yu, Kin Man Walukiewicz, Wladyslaw TI Semiempirical modeling of a three sublayer photoanode for highly efficient photoelectrochemical water splitting: Parameter and electrolyte optimizations SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE CdZnO/NiCdO; Photoanodes; Photosensitivity; Water splitting; Voltammetry; IPCE ID VISIBLE-LIGHT-DRIVEN; HYDROGEN GENERATION; OXIDATION; NANOSTRUCTURES; PHOTOCATALYST; DEPOSITION; REDUCTION; STABILITY; ARRAYS; FILMS AB Below we present semiempirical modeling of conceptually new three-sublayer photoanode, composed of Absorber, Grading and Barrier sublayers, for highly efficient photoelectrochemical water dissociation. The modeling resulted into Absorber (Sub-A) made of Cd0.55Zn0.45O due to its favorable positions of the band extrema to the water splitting potentials and a band gap similar to 2.0 eV. The Grading layer (Sub-G) was composed of CdxZn1-xO with a gradual decrease of x across the profile, changing from 0.2 to 0.55, aiming to photon absorption from 2.0 to 3.0 eV. At the same time, Sub-G furnishes the profile with an implanted electrical field that improves the hole-transport. The electron Barrier layer (Sub-B) deposited above the Sub-A, was engineered to provide 1 eV high barrier in the conduction band. It comprised of a 50 nm thick Ni0.4Cd0.6O film with E-g similar to 3.0 eV with a valence band aligned to the one of the Sub-A, providing a barrier free hole-flow. In this paper, we provide evidence that the proposed three-sublayer concept clearly represents a new paradigm for an improved efficiency for photocatalytic water dissociation. The highest photocatalytic activity of the optimized profile was achieved with an optimized electrolyte: 87% 1 M K2HPO4 and 13% 1 M Na2SO3 (known to act as a hole scavenger or sacrificial agent) at pH=10. A noteworthy feature of this study is that under optimized profile parameters and customized electrolyte conditions the photocurrent yields increased from similar to 0.05 mA/cm(2) to similar to 20 mA/cm(2) at +1.2 V for visible light. The observed Incident Photon-to-Current Efficiency (IPCE) was about 50% measured at a photon energy of 3 eV. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ristova, Mimoza M.; Zhu, Wei; Yu, Kin Man; Walukiewicz, Wladyslaw] Lawrence Berkeley Natl Lab, Solar Energy Mat Div, 1 Cyclotron Rd,B2, Berkeley, CA 94720 USA. [Ristova, Mimoza M.] Univ Skopje, Inst Phys, Fac Nat Sci & Math, Arhimedova 10, Skopje 1000, Macedonia. [Zhu, Wei] Univ Sci & Technol, Hefei, Peoples R China. [Yu, Kin Man] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China. RP Ristova, MM (reprint author), Lawrence Berkeley Natl Lab, Solar Energy Mat Div, 1 Cyclotron Rd,B2, Berkeley, CA 94720 USA. OI Yu, Kin Man/0000-0003-1350-9642 FU Fulbright Visiting Scholar Program at the US Department of State [68130116]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was performed at the EMAT, LBNL. It was supported by the Director's Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. Dr. Ristova kindly expresses her gratitude to the Fulbright Visiting Scholar Program at the US Department of State for supporting her stay/research at the Lawrence Berkeley National Laboratory, Grant # 68130116 during entire 2014. We kindly thank Douglas Detert and Francesca Toma from LBNL for our fruitful discussions. NR 37 TC 2 Z9 2 U1 35 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 190 EP 199 DI 10.1016/j.solmat.2016.05.030 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700025 ER PT J AU Gomez-Vidal, JC Tirawat, R AF Gomez-Vidal, Judith C. Tirawat, Robert TI Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Concentrating solar power; Heat transfer fluid; Thermal energy storage; Molten salts; Corrosion; Chlorides ID HOT CORROSION; BEHAVIOR AB Next-generation solar power conversion systems in concentrating solar power (CSP) applications require high-temperature advanced fluids in the range of 600-800 degrees C. Current commercial CSP plants use molten nitrate salt mixtures as the heat transfer fluid and the thermal energy storage (TES) media while operating with multiple hours of energy capacity and at temperatures lower than 565 degrees C. At higher temperatures, the nitrates cannot be used because they decompose. Molten chloride salts are candidates for CSP applications because of their high decomposition temperatures and good thermal properties; but they can be corrosive to common alloys used in vessels, heat exchangers, and piping at these elevated temperatures. In this article, we present the results of the corrosion evaluations of several alloys in eutectic 34.42 wt% NaCl - 65.58 wt% LiCl at 650-700 degrees C in nitrogen atmosphere. Electrochemical evaluations were performed using open-circuit potential followed by a potentiodynamic polarization sweep. Corrosion rates were determined using Tafel slopes and Faraday's law. A temperature increase of as little as 50 degrees C more than doubled the corrosion rate of AISI stainless steel 310 and Incoloy 800H compared to the initial 650 degrees C test. These alloys exhibited localized corrosion. Inconel 625 was the most corrosion resistant alloy with a corrosion rate of 2.80 +/- 0.38 mm/year. For TES applications, corrosion rates with magnitudes of a few millimeters per year are not acceptable because of economic considerations. Additionally, localized corrosion (intergranular or pitting) can be catastrophic. Thus, corrosion-mitigation approaches are required for advanced CSP plants to be commercially viable. (C) 2016 Elsevier B.V. All rights reserved. C1 [Gomez-Vidal, Judith C.; Tirawat, Robert] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Gomez-Vidal, JC (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM judith.vidal@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308] FX The work at NREL was supported financially by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. NR 16 TC 0 Z9 0 U1 36 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 234 EP 244 DI 10.1016/j.solmat.2016.05.052 PG 11 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700030 ER PT J AU Meysing, DM Reese, MO Warren, CW Abbas, A Burst, JM Mahabaduge, HP Metzger, WK Walls, JM Lonergan, MC Barnes, TM Wolden, CA AF Meysing, Daniel M. Reese, Matthew O. Warren, Charles W. Abbas, Ali Burst, James M. Mahabaduge, Hasitha P. Metzger, Wyatt K. Walls, John M. Lonergan, Mark C. Barnes, Teresa M. Wolden, Colin A. TI Evolution of oxygenated cadmium sulfide (CdS:O) during high-temperature CdTe solar cell fabrication SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Cadmium telluride; Cadmium sulfide; Oxygen; Interdiffusion; Liftoff; Characterization ID THIN-FILMS; HIGH-EFFICIENCY; STABILITY; WINDOW; IMPURITIES; DEPOSITION; DIFFUSION; THICKNESS; LAYER AB Oxygenated cadmium sulfide (CdS:O) produced by reactive sputtering has emerged as a promising alternative to conventional CdS for use as the n-type window layer in CdTe solar cells. Here, com-, plementary techniques are used to expose the window layer (CdS or CdS:O) in completed superstrate devices and combined with a suite of materials characterization to elucidate its evolution during high temperature device processing. During device fabrication amorphous CdS:O undergoes significant interdiffusion with CdTe and recrystallization, forming CdS1-yTey nanocrystals whose Te fraction approaches solubility limits. Significant oxygen remains after processing, concentrated in sulfate clusters dispersed among the CdS1-yTey alloy phase, accounting for similar to 30% of the post-processed window layer based on cross-sectional microscopy. Interdiffusion and recrystallization are observed in devices with unoxygenated CdS, but to a much lesser extent. Etching experiments suggest that the CdS thickness is minimally changed during processing, but the CdS:0 window layer is reduced from 100 nm to 60-80 nm, which is confirmed by microscopy. Alloying reduces the band gap of the CdS:O window layer to 2.15 eV, but reductions in thickness and areal density improve its transmission spectrum, which is well matched to device quantum efficiency. The changes to the window layer in the reactive environments of device fabrication are profoundly different than what occurs by thermal annealing in an inert environment, which produced films with a band gap of 2.4 eV for both CdS and CdS:O. These results illustrate for the first time the significant changes that occur to the window layer during processing that are critical to the performance of CdTe solar cells. (C) 2016 Elsevier B.V. All rights reserved. C1 [Meysing, Daniel M.; Wolden, Colin A.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Meysing, Daniel M.; Reese, Matthew O.; Burst, James M.; Mahabaduge, Hasitha P.; Metzger, Wyatt K.; Barnes, Teresa M.] Natl Renewable Energy Lab, Golden, CO USA. [Warren, Charles W.] Univ Oregon, Dept Phys, Eugene, OR 97403 USA. [Abbas, Ali; Walls, John M.] Univ Loughborough, Loughborough LE11 3TU, Leics, England. [Lonergan, Mark C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. RP Wolden, CA (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM cwolden@mines.edu OI Walls, John/0000-0003-4868-2621 FU U.S. Department of Energy [DE-AC36-08-GO28308]; Bay Area Photovoltaic Consortium (BAPVC) [DE-EE0004946]; UKERC through the SuperSolar Solar Energy Hub [EP/N510014/1] FX DMM, MOR, JMB, HPM, WKM, and TMB gratefully acknowledge funding from the U.S. Department of Energy through the SunShot Foundational Program to Advance Cell Efficiency (F-PACE) under Contract no. DE-AC36-08-GO28308. CWW, MCL and CAW were funded by the Bay Area Photovoltaic Consortium (BAPVC, Award no. DE-EE0004946). The Loughborough authors are grateful to UKERC for funding through the SuperSolar Solar Energy Hub grant EP/N510014/1. We thank F. Fumasi and Dr. S. Golledge for assistance with SIMS, and K. Langworthy for assistance with SEM. NR 52 TC 0 Z9 0 U1 20 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 276 EP 285 DI 10.1016/j.solmat.2016.05.038 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700035 ER PT J AU Berdahl, P Chen, SS Destaillats, H Kirchstetter, TW Levinson, RM Zalich, MA AF Berdahl, Paul Chen, Sharon S. Destaillats, Hugo Kirchstetter, Thomas W. Levinson, Ronnen M. Zalich, Michael A. TI Fluorescent cooling of objects exposed to sunlight - The ruby example SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Fluorescent cooling; Al2O3:Cr; Ruby; Quantum efficiency ID SPECTRAL OPTICAL-PROPERTIES; HEAT GAIN; PART I; PIGMENTS; SPECTROSCOPY; BUILDINGS; EMISSION; SURFACES AB Particularly in hot climates, various pigments are used to formulate desired non-white colors that stay cooler in the sun than alternatives. These cool pigments provide a high near-infrared (NIR) reflectance in the solar infrared range of 700-2500 nm, and also a color specified by a reflectance spectrum in the 400700 nm visible range. Still cooler materials can be formulated by also utilizing the phenomenon of fluorescence.(photoluminescence). Ruby, Al2O3:Cr, is a prime example, with efficient emission in the deep red (similar to 694 nm) and near infrared (700-800 nm). A layer of synthetic ruby crystals on a white surface having an attractive red color can remain cooler in the sun than conventional red materials. Ruby particles can also be used as a red/pink pigment. Increasing the Cr:Al ratio produces a stronger (darker) pigment but doping above similar to 3 wt% Cr2O3 causes concentration quenching of the fluorescence. The system quantum efficiency for lightly doped ruby-pigmented coatings over white is high, 0.83 +/- 0.10. (C) 2016 Elsevier B.V. All rights reserved. C1 [Berdahl, Paul; Chen, Sharon S.; Destaillats, Hugo; Kirchstetter, Thomas W.; Levinson, Ronnen M.] Lawrence Berkeley Natl Lab, Energy Technol Area, Heat Isl Grp, Berkeley, CA 94720 USA. [Zalich, Michael A.] PPG Ind Inc, Coatings Innovat Ctr, Allison Pk, PA 15101 USA. RP Berdahl, P (reprint author), Lawrence Berkeley Natl Lab, Energy Technol Area, Heat Isl Grp, Berkeley, CA 94720 USA. EM paul.berdahl@gmail.com FU California Energy Commission [EPC-14-010]; Energy Efficiency and Renewable Energy, Building Technologies Office of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Office of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. Additional support was provided by the California Energy Commission under Agreement EPC-14-010. NR 28 TC 2 Z9 2 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 312 EP 317 DI 10.1016/j.solmat.2016.05.058 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700039 ER PT J AU Cai, C Miller, DC Tappan, IA Dauskardt, RH AF Cai, Can Miller, David C. Tappan, Ian A. Dauskardt, Reinhold H. TI Degradation of thermally-cured silicone encapsulant under terrestrial UV SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Silicone; UV degradation; Adhesion; Reliability ID POLYDIMETHYLSILOXANE OILS; SURFACE MODIFICATION; ADHESION; ELASTOMERS; PHOTOOXIDATION; STRENGTH; POLY(DIMETHYLSILOXANE); INTERFACE; BEHAVIOR AB Concentrator photovoltaic (CPV) modules operate in extreme conditions, including enhanced solar flux, elevated operating temperature, and frequent thermal cycling. Coupled with active environmental species such as oxygen and moisture, the operating conditions pose a unique materials challenge for guaranteeing operational lifetimes of greater than 25 years. Specifically, the encapsulants used in the optical elements are susceptible to environmental degradation during operation. For example, the interfaces must remain in contact to prevent optical attenuation and thermal runaway. We developed fracture mechanics based metrologies to characterize the adhesion of the silicone encapsulant and its adjacent surfaces, as well as the cohesion of the encapsulant. Further, we studied the effects of weathering on adhesion using an outdoor concentrator operating in excess of 1100 times the AM1.5 direct irradiance and in indoor environmental chambers with broadband ultraviolet (UV) irradiation combined with controlled temperature and humidity. We observed a sharp initial increase in adhesion energy followed by a gradual decrease in adhesion as a result of both outdoor concentrator exposure and indoor UV weathering. We characterized changes in mechanical properties and chemical structures using XPS, FTIR, and DMA to understand the fundamental connection between mechanical strength and the degradation of the silicone encapsulant. We developed physics based models to explain the change in adhesion and to predict operational lifetimes of the materials and their interfaces. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cai, Can; Dauskardt, Reinhold H.] Stanford Univ, Dept Mat Sci & Engn, 496 Lomita Mall,Durand Bldg, Stanford, CA 94305 USA. [Miller, David C.; Tappan, Ian A.] Natl Renewable Energy Lab, Natl Ctr Photovolta, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Dauskardt, RH (reprint author), Stanford Univ, Dept Mat Sci & Engn, 496 Lomita Mall,Durand Bldg, Stanford, CA 94305 USA. FU Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) SunShot Initiative, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program [DE-EE0006343]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This project was funded through Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) SunShot Initiative, under the Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program: DE-EE0006343. The work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 25 TC 1 Z9 1 U1 13 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 346 EP 353 DI 10.1016/j.solmat.2016.05.065 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700044 ER PT J AU Gomez-Vidal, JC Noel, J Weber, J AF Gomez-Vidal, Judith C. Noel, John Weber, Jacob TI Corrosion evaluation of alloys and MCrAlX coatings in molten carbonates for thermal solar applications SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Molten salts; Corrosion; Carbonates; Coating; Alumina; Oxidation ID HOT CORROSION; INTERMETALLIC ALLOY; HEAT-STORAGE; SALT; OXIDATION; BEHAVIOR; ALUMINA; STEELS; WATER AB Stainless steels (SS) 310, 321, 347, Incoloy 800H (In800H), alumina-forming austenitic (AFA-OC6), Ni superalloy Inconel 625 (IN625), and MCrAIX (M: Ni, and/or Co; X: Y, Hf, Si, and/or Ta) coatings were corroded in molten carbonates in N-2 and bone-dry CO2 atmospheres. Electrochemical tests in molten eutectics K2CO3-Na2CO3 and Na2CO3-K2CO3-Li2CO3 at temperatures higher than 600 degrees C were evaluated using an open-circuit potential followed by a potentiodynamic polarization sweep to determine the corrosion rates. Because the best-performing alloys at 750 degrees C were In800H followed by SS310, these two alloys were selected as the substrate material for the MCrAIX coatings. The coatings were able to mitigate corrosion in molten carbonates environments. The corrosion of substrates SS310 and In800H was reduced from similar to 2500 mu m/year to 34 mu m/year when coated with high-velocity oxyfuel (HVOF) NiCo-CrAlHfSiY and pre-oxidized (air, 900 degrees C, 24 h, 0.5 degrees C/min) before molten carbonate exposure at 700 degrees C in bone-dry CO2 atmosphere. Metallographic characterization of the corroded surfaces showed that the formation of a uniform alumina scale during the pre-oxidation seems to protect the alloy from the molten carbonate attack. (C) 2016 Elsevier B.V. All rights reserved. C1 [Gomez-Vidal, Judith C.; Noel, John; Weber, Jacob] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Gomez-Vidal, JC (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM judith.vidal@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308] FX The work at NREL was supported financially by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. NR 30 TC 0 Z9 0 U1 18 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 517 EP 525 DI 10.1016/j.solmat.2016.07.029 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700062 ER PT J AU Shin, D Kim, J Gershon, T Mankad, R Hopstaken, M Guha, S Ahn, BT Shin, B AF Shin, Donghyeop Kim, Jekyung Gershon, Talia Mankad, Ravin Hopstaken, Marinus Guha, Supratik Ahn, Byung Tae Shin, Byungha TI Effects of the incorporation of alkali elements on Cu(In,Ga)Se-2 thin film solar cells SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Post-deposition KF treatment; Alkali element; Surface; Passivation; Cu(In,Ga)Se-2 solar cells ID SURFACE MODIFICATION; MO FILM; NA; DEPOSITION; POLYCRYSTALLINE; PERFORMANCE; GROWTH; SODIUM; LAYER AB This study describes in detail the effects of sodium and potassium on Cu(In,Ga)Se-2 (CIGS) absorbers and solar cells. We report on the influence of these species on the surface and bulk composition as well as bulk defect structure of CIGS films as revealed by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and photoluminescence (PL). From the XPS studies it is found that Na and K promote oxygen absorption onto the CIGS films. Furthermore, potassium accelerates the formation of indium and gallium oxides on the film surface, making the surface Cu-deficient. Low temperature PL studies suggest that (i) Na and K help passivate non-radiative recombination centers, presumably at the grain boundaries, and (ii) Na further impacts the bulk defect structure inside of CIGS grains, which is not observed with K. This change in bulk defect structure is attributed to the greater diffusivity of Na in CIGS relative to K due to the smaller atomic size. This in-depth study (integration of XPS, SIMS, PL, and device characteristics) reveals that the surface chemistry and the grain boundary passivation have stronger influences on the device performance than the bulk defect structure. (C) 2016 Elsevier B.V. All rights reserved. C1 [Shin, Donghyeop] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA. [Kim, Jekyung; Ahn, Byung Tae; Shin, Byungha] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Gershon, Talia; Mankad, Ravin; Hopstaken, Marinus] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Guha, Supratik] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Guha, Supratik] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Ahn, BT; Shin, B (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. EM btahn@kaist.ac.kr; byungha@kaist.ac.kr RI Shin, Byungha/E-8602-2014; Ahn, Byung Tae/C-2025-2011; Shin, Donghyeop/A-2007-2015 OI Shin, Donghyeop/0000-0003-0103-0458 FU National Research Foundation of Korea (NRF) [2014R1A1A1004282]; Climate Change Research Hub of KAIST [N11160017] FX This research was supported by the National Research Foundation of Korea (NRF) (Grant No. 2014R1A1A1004282) and by the Climate Change Research Hub of KAIST (Grant No. N11160017). NR 28 TC 2 Z9 2 U1 45 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 695 EP 702 DI 10.1016/j.solmat.2016.07.015 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700082 ER PT J AU Paolini, R Sleiman, M Pedeferri, M Diamanti, MV AF Paolini, Riccardo Sleiman, Mohamad Pedeferri, MariaPia Diamanti, Maria Vittoria TI TiO2 alterations with natural aging: Unveiling the role of nitric acid on NIR reflectance SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE TiO2; Near-infrared reflectance; Nitric acid; Aging; P25 ID TITANIUM-DIOXIDE; HEAT-ISLAND; CEMENTITIOUS MATERIALS; COMMERCIAL BUILDINGS; SOLAR REFLECTANCE; SURFACES; PHOTOCATALYSIS; ADSORPTION; MITIGATION; NOX AB The development of photoactive materials with self-cleaning and depolluting qualities is a hot topic in materials science, given their impact on several technologies, in a wide range of contexts of applications. Anatase phase titanium dioxide (TiO2) is the largest used photocatalyst, with increasing applications ranging from air quality control to renewable energies, to green building materials for zero energy communities. Yet, it is partially transmissive in the near infrared (NIR), which negatively affects the solar reflectance of TiO2 containing materials. In this contribution we describe an unexpected increase in anatase near infrared (NIR) reflectance observed during environmental exposure. We unveil its complex mechanisms, based on the contact with nitric acid generated by NOx photocatalytic degradation, which causes partial reduction and decrease in crystallinity to TiO2. This may open the way for introducing multiple environmentally beneficial effects on TiO2 pollutants degradation, self-cleaning, and energy performance. (C) 2016 Elsevier B.V. All rights reserved. C1 [Paolini, Riccardo] Politecn Milan, Dept Architecture Built Environm & Construct Engn, Via Ponzio 31, I-20133 Milan, Italy. [Sleiman, Mohamad] Lawrence Berkeley Natl Lab, Indoor Environm Grp, 1 Cyclotron Rd,MS 70-108B, Berkeley, CA USA. [Sleiman, Mohamad] Clermont Univ, ENSCCF, Inst Chim Clermont Ferrand, BP 10448, F-63000 Clermont Ferrand, France. [Sleiman, Mohamad] CNRS, UMR 6296, ICCF, BP 80026, F-63177 Aubiere, France. [Pedeferri, MariaPia; Diamanti, Maria Vittoria] Politecn Milan, Dept Chem Mat & Chem Engn G Natta, Via Mancinelli 7, I-20131 Milan, Italy. [Pedeferri, MariaPia; Diamanti, Maria Vittoria] INSTM Natl Interuniv Consortium Mat Sci & Technol, Via G Giusti 9, I-50121 Florence, Italy. RP Paolini, R (reprint author), Politecn Milan, Dept Architecture Built Environm & Construct Engn, Via Ponzio 31, I-20133 Milan, Italy.; Diamanti, MV (reprint author), Politecn Milan, Dept Chem Mat & Chem Engn G Natta, Via Mancinelli 7, I-20131 Milan, Italy. EM riccardo.paolini@polimi.it; mariavittoria.diamanti@polimi.it RI Paolini, Riccardo/I-6937-2015 OI Paolini, Riccardo/0000-0001-8365-6811 FU Politecnico di Milano & Agenzia delle Entrate (Italian Revenue Agency) with the project "Cinque per mine junior - Rivestimenti fluorurati avanzati per superfici edilizie ad alte prestazioni" FX This work was in part supported by Politecnico di Milano & Agenzia delle Entrate (Italian Revenue Agency) with the project "Cinque per mine junior - Rivestimenti fluorurati avanzati per superfici edilizie ad alte prestazioni". The authors gratefully acknowledge Nicola Bonato of Index S.p.a. for having supplied the roofing membranes, and the PIZ division of Zecca Prefabbricati S.p. A. for the fibre-reinforced mortars. The authors also thankfully acknowledge Marta Rossini (Politecnico di Milano) who contributed to the UV-vis-NIR measurements on the membranes; and Maria Grazia Garavaglia (Perkin Elmer Italia) for the ATR-FTIR measurements.. NR 42 TC 0 Z9 0 U1 24 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD DEC PY 2016 VL 157 BP 791 EP 797 DI 10.1016/j.solmat.2016.07.052 PG 7 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA DX5AH UT WOS:000384391700094 ER PT J AU Aufiero, M Palmiotti, G Salvatores, M Sen, S AF Aufiero, M. Palmiotti, G. Salvatores, M. Sen, S. TI Coupled reactors analysis: New needs and advances using Monte Carlo methodology SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Reactor design; Monte Carlo; Coupled reactors; Sensitivity analysis ID KINETICS; SERPENT; CODE AB Coupled reactors and the coupling features of large or heterogeneous core reactors can be investigated with the Avery's theory; however, the complex geometries that are often encountered in association with coupled reactors, require a detailed geometry description that can be easily provided by modern Monte Carlo (MC) codes. The results presented in this paper show that the MC code SERPENT has been successfully modified in order to compute the needed quantities like coupling coefficients. Moreover, the capability for calculating sensitivities to the quantities of interest for coupling reactors has been developed and implemented in SERPENT. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Aufiero, M.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Palmiotti, G.; Salvatores, M.; Sen, S.] Idaho Natl Lab, NSDA Div, POB 1625, Idaho Falls, ID 83415 USA. RP Palmiotti, G (reprint author), Idaho Natl Lab, NSDA Div, POB 1625, Idaho Falls, ID 83415 USA. EM Giuseppe.Palmiotti@inl.gov FU U.S. Government under DOE [DE-AC07-05ID14517] FX This submitted manuscript was authored by a contractor of the U.S. Government under DOE Contract No. DE-AC07-05ID14517. Accordingly, the U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 17 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD DEC PY 2016 VL 98 BP 218 EP 225 DI 10.1016/j.anucene.2016.08.002 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DW7GY UT WOS:000383820400021 ER PT J AU Haddix, ML Magrini-Bair, K Evans, RJ Conant, RT Wallenstein, MD Morris, SJ Calderon, F Paul, EA AF Haddix, Michelle L. Magrini-Bair, Kim Evans, Robert J. Conant, Richard T. Wallenstein, Matthew D. Morris, Sherri J. Calderon, Francisco Paul, Eldor A. TI Progressing towards more quantitative analytical pyrolysis of soil organic matter using molecular beam mass spectroscopy of whole soils and added standards SO GEODERMA LA English DT Article DE Analytical pyrolysis; Molecular beam mass spectroscopy; Soil organic matter chemistry; Pyrolysis standards ID PARTICLE-SIZE FRACTIONS; SPECTROMETRY PY-MBMS; C-13 CPMAS NMR; K-EDGE XANES; HUMIC SUBSTANCES; CHEMICAL-COMPOSITION; FOREST SOILS; TEMPERATURE SENSITIVITY; AGRICULTURAL SOILS; GC-MS AB Soil organic matter (SOM) is extremely complex. It is composed of hundreds of different organic substances and it has been difficult to quantify these diverse substances in a dynamic-ecosystem functioning standpoint. Analytical pyrolysis has been used to compare chemical differences between soils, but its ability to measure the absolute amount of a specific compound in the soil is still in question. Our objective was to assess whether utilizing pyrolysis -molecular beam mass spectroscopy (py-MBMS) to define the signature of known reference compounds (adenine, indole, palmitic add, etc. ) and biological samples (chitin, fungi, cellulose, etc. ) separately and when added to whole soils it was possible to make py-MBMS more quantitative. Reference compounds, spanning a wide variety of compound categories, and biological samples, expected to be present in SOM, were added to three soils from Colorado, Ohio, and Massachusetts that have varying total C, % clay, and clay type. Py-MBMS, a rapid analysis technique originally developed to analyze complex biomolecules, flash pyrolyzes soil organic matter to form products that are often considered characteristic of the original molecular structure. Samples were pyrolyzed at 550 C by py-MBMS. All samples were weighed and %C and %N determined both before and after pyrolysis to evaluate mass loss, C loss, and N loss for the samples. An average relationship of r(2) = 0. 76 (P = 0. 005) was found for the amount of cellulose added to soil at 25, 50, and 100% of soil C relative to the ion intensity of select mass/charge of the compound. There was a relationship of r(2) = 0. 93 (P<0.001) for the amount of indole added to soil at 25, 50, and 100% of soil C and the ion intensity of the associated mass variables (mass/charge). Comparing spectra of pure compounds with the spectra of the compounds added to soil and isolated clay showed that interference could occur based on soil type and compound with the Massachusetts soil with high C (55.8 g C kg(-1)) and low % clay (5.4%) having the least interference and the Colorado soil with low C (14.6 g C kg(-1)) and a moderate smectite day content of 14% having the greatest soil interference. Due to soil interference from clay type and content and varying optimum temperatures of pyrolysis for different compounds it is unlikely that analytical pyrolysis can be quantitative for all types of compounds. Select compound categories such as carbohydrates have the potential to be quantified in soil with analytical pyrolysis due to the fact that they: 1) almost fully pyrolyzed, 2) were represented by a limited number of m/z, and 3) had a strong relationship with the amount added and the total ion intensity produced. The three different soils utilized in this study had similar proportions of C pyrolyzed in the whole soil (54-57%) despite differences in %C and %clay between the soils. Mid-infrared spectroscopic analyses of the soil before and after pyrolysis showed that pyrolysis resulted in reductions in the 3400, 29302870, 1660 and 1430 cm(-1) bands. These bands are primarily representative of O-H and N-H bonds, C-H stretch, and delta (CH2) in polysaccharides/lipid and are associated with mineralizable SOM. The incorporation of standards into routine analytical pyrolysis allowed us to assess the quantitative potential of py-MBMS along with the effect of the mineral matrix, which we believe is applicable to all forms of analytical pyrolysis. (C) 2016 Elsevier B.V. All rights reserved. C1 [Haddix, Michelle L.; Conant, Richard T.; Wallenstein, Matthew D.; Paul, Eldor A.] Colorado State Univ, Nat Resource Ecol Lab, 200 West Lake St, Ft Collins, CO 80523 USA. [Magrini-Bair, Kim] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Evans, Robert J.] MicroChem Technol Inc, 8999 W Harvard Pl, Lakewood, CO 80227 USA. [Morris, Sherri J.] Bradley Univ, Dept Biol, 1501 W Bradley Ave, Peoria, IL 61625 USA. [Calderon, Francisco] USDA ARS, Cent Great Plains Res Stn, Akron, CO 80720 USA. [Paul, Eldor A.] Colorado State Univ, Dept Soil & Crop Sci, 200 West Lake St, Ft Collins, CO 80523 USA. RP Haddix, ML (reprint author), Colorado State Univ, Nat Resource Ecol Lab, 200 West Lake St, Ft Collins, CO 80523 USA. EM michelle.haddix@colostate.edu FU National Science Foundation Division of Environmental Biology [0842315]; Office of Science (BER), U.S. Department of Energy FX We would like to thank Sean Maloney for his assistance with sample preparation, Robert Sykes for his assistance with instrument operation, Dr. Dukes for the use of soil from his experimental site, Dr. Jessica Ernakovich for her review of this manuscript, and the valuable insights of two anonymous reviewers. This research was supported by the National Science Foundation Division of Environmental Biology under grant number 0842315 and the Office of Science (BER), U.S. Department of Energy. NR 70 TC 0 Z9 0 U1 27 U2 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 EI 1872-6259 J9 GEODERMA JI Geoderma PD DEC 1 PY 2016 VL 283 BP 88 EP 100 DI 10.1016/j.geoderma.2016.07.027 PG 13 WC Soil Science SC Agriculture GA DV9XZ UT WOS:000383296800010 ER PT J AU Meyer, KE Cheaito, R Paisley, E Shelton, CT Braun, JL Maria, JP Ihlefeld, JF Hopkins, PE AF Meyer, Kelsey E. Cheaito, Ramez Paisley, Elizabeth Shelton, Christopher T. Braun, Jeffrey L. Maria, Jon-Paul Ihlefeld, Jon F. Hopkins, Patrick E. TI Crystalline coherence length effects on the thermal conductivity of MgO thin films SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID PICOSECOND LIGHT-PULSES; MAGNESIUM-OXIDE; ESHELBY TWIST; NANOWIRES; GROWTH; TEMPERATURES; GENERATION; SILICON; SIZE AB Phonon scattering in crystalline systems can be strongly dictated by a wide array of defects, many of which can be difficult to observe via standard microscopy techniques. We experimentally demonstrate that the phonon thermal conductivity of MgO thin films is proportional to the crystal's coherence length, a property of a solid that quantifies the length scale associated with crystalline imperfections. Sputter-deposited films were prepared on (100)-oriented silicon and then annealed to vary the crystalline coherence, as characterized using x-ray diffraction line broadening. We find that the measured thermal conductivity of the MgO films varies proportionally with crystalline coherence length, which is ultimately limited by the grain size. The microstructural length scales associated with crystalline defects, such as small-angle tilt boundaries, dictate this crystalline coherence length, and our results demonstrate the role that this length scale has on the phonon thermal conductivity of thin films. Our results suggest that this crystalline coherence length scale provides a measure of the limiting phonon mean free path in crystalline solids, a quantity that is often difficult to measure and observe with more traditional imagining techniques. C1 [Meyer, Kelsey E.; Cheaito, Ramez; Braun, Jeffrey L.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Cheaito, Ramez] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Paisley, Elizabeth; Ihlefeld, Jon F.] Sandia Natl Labs, Elect Opt & Nano Mat Dept, Albuquerque, NM 87185 USA. [Shelton, Christopher T.; Maria, Jon-Paul] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA. RP Hopkins, PE (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM phopkins@virginia.edu FU NSF [DMR 1337694, DMR 1108071]; Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories; Office of Naval Research [N00014-15-12769]; National Science Foundation [EECS-1509362]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank J. T. Gaskins for electron beam evaporation of the aluminum transducers. The authors acknowledge the use of the Analytical Instrument Facility (AIF) at North Carolina State University, which is supported by NSF contracts DMR 1337694 and DMR 1108071. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories, the Office of Naval Research (N00014-15-12769), and the National Science Foundation (EECS-1509362). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 1 Z9 1 U1 19 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 EI 1573-4803 J9 J MATER SCI JI J. Mater. Sci. PD DEC PY 2016 VL 51 IS 23 BP 10408 EP 10417 DI 10.1007/s10853-016-0261-5 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA DV7FS UT WOS:000383102400008 ER PT J AU Sun, H Kim, ES Nowakowski, G Mauer, E Bernitsas, MM AF Sun, Hai Kim, Eun Soo Nowakowski, Gary Mauer, Erik Bernitsas, Michael M. TI Effect of mass-ratio, damping, and stiffness on optimal hydrokinetic energy conversion of a single, rough cylinder in flow induced motions SO RENEWABLE ENERGY LA English DT Article DE Hydrokinetic energy; Virtual spring-damping; Flow induced motions; Vortex induced vibrations; Galloping; VIVACE converter ID VORTEX-INDUCED VIBRATIONS; CIRCULAR-CYLINDER; BODIES; VIV AB Flow Induced Motions (FIMs) of a single, rigid, circular cylinder with end-springs are investigated for Reynolds number 30,000 <= Re <= 120,000 with mass ratio, damping, and stiffness as parameters. Selective roughness is applied to enhance FIM and increase the hydrokinetic energy captured by the VIVACE (Vortex Induced Vibration for Aquatic Clean Energy) Converter at higher Reynolds numbers. The second generation of virtual spring-damping system Vck, recently developed in the Marine Renewable Energy Laboratory (MRELab), enables embedded computer-controlled change of viscous-damping and spring stiffness for fast and precise oscillator modeling. Experimental results for amplitude response, frequency response, energy harvesting, and efficiency are presented and discussed. All experiments were conducted in the Low Turbulence Free Surface Water (LTFSW) Channel of the MRELab of the University of Michigan. The main conclusions are: (1) The oscillator can harness energy from flows as slow as 0.3946 m/s with no upper limit. (2) Increasing the spring stiffness, shifts the VIV synchronization range to higher flow velocities, resulting in reduced gap between VIV and galloping, where the harnessed power drops. (3) In galloping, the harnessed power increases with the mass ratio. (4) Local optima in energy conversion efficiency appear at the beginning of the VIV upper branch and at the beginning of galloping. (5) Local optima in power appear at the end VIV upper branch and at the beginning of galloping. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Sun, Hai] Harbin Engn Univ, Harbin, Peoples R China. [Sun, Hai] Univ Michigan, MRELab, 2600 Draper Rd, Ann Arbor, MI 48109 USA. [Sun, Hai; Kim, Eun Soo; Bernitsas, Michael M.] Univ Michigan, Dept Naval Architecture & Marine Engn, Marine Renewable Energy Lab, 2600 Draper Rd, Ann Arbor, MI 48109 USA. [Nowakowski, Gary; Mauer, Erik] US DOE, Wind & Water Power Technol Off, Golden Field Off, Washington, DC 20585 USA. [Mauer, Erik] Allegheny Sci & Technol, Bridgeport, WV USA. [Kim, Eun Soo; Bernitsas, Michael M.] Univ Michigan, Dept Mech Engn, 2600 Draper Rd, Ann Arbor, MI 48109 USA. [Bernitsas, Michael M.] Vortex Hydro Energy, Ann Arbor, MI USA. RP Sun, H (reprint author), Harbin Engn Univ, Coll Aerosp & Civil Engn, 154 Nantong Ave, Harbin 150001, Heilongjiang, Peoples R China. EM sunhai2009@gmail.com FU agency of the United States Government FX This paper was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government Or any agency thereof. NR 41 TC 1 Z9 1 U1 36 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD DEC PY 2016 VL 99 BP 936 EP 959 DI 10.1016/j.renene.2016.07.024 PG 24 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA DW7DI UT WOS:000383811000090 ER PT J AU Fu, T Deng, ZD Duncan, JP Zhou, DQ Carlson, TJ Johnson, GE Hou, HF AF Fu, Tao Deng, Zhiqun Daniel Duncan, Joanne P. Zhou, Daqing Carlson, Thomas J. Johnson, Gary E. Hou, Hongfei TI Assessing hydraulic conditions through Francis turbines using an autonomous sensor device SO RENEWABLE ENERGY LA English DT Article DE Francis turbine; Turbine evaluation; Fish-friendly turbine; Turbine passage; Turbine operations ID HYDROTURBINE PASSAGE; BLADE-STRIKE; FISH; BAROTRAUMA; SURVIVAL; DECOMPRESSION; STRATEGIES; MODELS; DEPTH AB Fish can be injured or killed during turbine passage. This paper reports the first in-situ evaluation of hydraulic conditions that fish experienced during passage through Francis turbines using an autonomous sensor device at Arrowrock, Cougar, and Detroit Dams. Among different turbine passage regions, most of the severe events occurred in the stay vane/wicket gate and the runner regions. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, both severe collisions and severe shear events occurred. At Cougar Dam, at least 50% fewer releases experienced severe collisions in the runner region operating at peak efficiency than at the minimum and maximum opening, indicating the wicket gate opening could affect hydraulic conditions in the runner region. A higher percentage of releases experienced severe events in the runner region when passing through the Francis turbines than through an advanced hydropower Kaplan turbine (AHT) at Wanapum Dam. The nadir pressures of the three Francis turbines were more than 50% lower than those of the AHT. The three Francis turbines had much higher magnitudes and rates of pressure change than the AHT. This study provides critical information on hydraulic conditions and fish passage information of Francis turbines, which can help guide future laboratory studies of fish passing through Francis turbine, design fish-friendly turbines, and optimize the operation of existing turbines for better fish passage conditions. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Fu, Tao; Deng, Zhiqun Daniel; Duncan, Joanne P.; Zhou, Daqing; Carlson, Thomas J.; Johnson, Gary E.; Hou, Hongfei] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Deng, ZD (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM Zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers, Portland District; Boise Project Board of Control; U.S. Department of Energy Wind and Water Power Technologies Office FX The field data collection and initial data analysis at Cougar Dam and Detroit Dam was funded by the U.S. Army Corps of Engineers, Portland District. The field data collection and initial data analysis at Arrowrock was funded by the Boise Project Board of Control. The detailed analysis and writing of this article was funded by the U.S. Department of Energy Wind and Water Power Technologies Office. The study was conducted at Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy. NR 42 TC 0 Z9 0 U1 10 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD DEC PY 2016 VL 99 BP 1244 EP 1252 DI 10.1016/j.renene.2016.08.029 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA DW7DI UT WOS:000383811000118 ER PT J AU He, MR Wang, S Jin, K Bei, HB Yasuda, K Matsumura, S Higashida, K Robertson, IM AF He, Mo-Rigen Wang, Shuai Jin, Ke Bei, Hongbin Yasuda, Kazuhiro Matsumura, Syo Higashida, Kenji Robertson, Ian M. TI Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation SO SCRIPTA MATERIALIA LA English DT Article DE Concentrated solid solution alloys; Radiation; Defects; Transmission electron microscopy ID HIGH-ENTROPY ALLOYS; ION IRRADIATION; NICKEL; MICROSCOPE; SIMULATION; BOUNDARIES; EVOLUTION; VACANCIES; CRYSTALS; BEHAVIOR AB Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400-1250 kV and 400 degrees C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is >40 times slower than the linear defect growth in pure Ni. This result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [He, Mo-Rigen; Wang, Shuai; Robertson, Ian M.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Jin, Ke; Bei, Hongbin] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yasuda, Kazuhiro; Matsumura, Syo] Kyushu Univ, Ultramicroscopy Res Ctr, Fukuoka 8190395, Japan. [Yasuda, Kazuhiro; Matsumura, Syo] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Fukuoka 8190395, Japan. [Higashida, Kenji] Kyushu Univ, Dept Mat Sci & Engn, Fukuoka 8190395, Japan. RP Robertson, IM (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM irobertson@wisc.edu RI Wang, Shuai/D-7212-2017; OI Robertson, Ian/0000-0002-4923-0400; Bei, Hongbin/0000-0003-0283-7990 FU Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences; MEXT of the Japanese Government FX The work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The electron microscopy with in situ electron irradiation was accomplished at Ultramicroscopy Research Center at Kyushu University, Japan with technical assistance from Dr. Tomokazu Yamamoto, as a project of the HVEM Collaborative Research Program sponsored by MEXT of the Japanese Government. Instrument support was also provided by Materials Research Science and Engineering Center (DMR-1121288) and Nanoscale Science and Engineering Center (DMR-0832760) at University of Wisconsin-Madison. NR 30 TC 1 Z9 1 U1 56 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2016 VL 125 BP 5 EP 9 DI 10.1016/j.scriptamat.2016.07.023 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DW8YA UT WOS:000383940200002 ER PT J AU Tang, M Valdez, JA Wang, YQ Zhang, J Uberuaga, BP Sickafus, KE AF Tang, Ming Valdez, James A. Wang, Yongqiang Zhang, Jian Uberuaga, Blas P. Sickafus, Kurt E. TI Ion irradiation-induced crystal structure changes in inverse spinel MgIn2O4' SO SCRIPTA MATERIALIA LA English DT Article DE Spinel; Rocksalt phase; MgIn2O4; Irradiation ID MAGNESIUM ALUMINATE SPINEL; ZNAL2O4 SPINELS; SINGLE-CRYSTAL; SWIFT IONS; MGAL2O4; DISORDER; CERAMICS; DAMAGE AB 400 keV Ne and 200 keV He ion irradiations were performed on fully inverse MgIn2O4 samples at cryogenic temperature (similar to 77 K), in order to examine the influence of radiation-induced cation disordering on crystal structure. In the case of MgIn2O4 samples irradiated with Ne ions to a peak displacement damage dose of 4 displacements per atom (dpa), a spinel-to-rocksalt phase transformation was observed. By contrast, for MgIn2O4 samples irradiated with He ions to a peak displacement damage dose of 5 dpa, the only observed structural effect involved cation rearrangements from an inverse to a "random" spinel structure. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tang, Ming; Valdez, James A.; Wang, Yongqiang; Zhang, Jian; Uberuaga, Blas P.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Zhang, Jian] Xiamen Univ, Coll Energy, Xiamen 361005, Fujian, Peoples R China. [Sickafus, Kurt E.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Tang, M (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM mtang@lanl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Nuclear Security Administration of the US DOE [DE-AC52-06NA25396] FX This work was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396. We thank Professor Karl Whittle for useful discussions. NR 25 TC 0 Z9 0 U1 29 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2016 VL 125 BP 10 EP 14 DI 10.1016/j.scriptamat.2016.07.009 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DW8YA UT WOS:000383940200003 ER PT J AU Koyanagi, T Lance, MJ Katoh, Y AF Koyanagi, T. Lance, M. J. Katoh, Y. TI Quantification of irradiation defects in beta-silicon carbide using Raman spectroscopy SO SCRIPTA MATERIALIA LA English DT Article DE Silicon carbide; Irradiation defects; Raman spectroscopy ID ELEVATED-TEMPERATURES; SCATTERING; CREEP AB Raman spectra from polycrystalline beta-silicon carbide (SiC) were collected following neutron irradiation at 380-1180 degrees C to 0.011-1.87 displacement per atom. The longitudinal optical (LO) peak shifted to a lower frequency and broadened as a result of the irradiation. The changes observed in the LO phonon line shape and position in neutron-irradiated SiC are explained by a combination of changes in the lattice constant and Young's modulus, and the phonon confinement effect. The phonon confinement model reasonably estimates the defect-defect distance in the irradiated SiC, which is consistent with results from previous experimental studies and simulations. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Koyanagi, T.; Lance, M. J.; Katoh, Y.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Koyanagi, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM koyanagit@ornl.gov RI Koyanagi, Takaaki/D-9841-2017 OI Koyanagi, Takaaki/0000-0001-7272-4049 FU U.S. Department of Energy (DOE), Office of Fusion Energy Sciences; U.S. Department of Energy (DOE), Office of Nuclear Energy for the Fuel Cycle Research & Development program [DE-AC05-00OR22725]; Oak Ridge National Laboratory; High Flux Isotope Reactor - DOE Office of Basic Energy Sciences; U.S. DOE FX This work is supported by the U.S. Department of Energy (DOE), Office of Fusion Energy Sciences and Office of Nuclear Energy for the Fuel Cycle Research & Development program under contact DE-AC05-00OR22725 with Oak Ridge National Laboratory managed by UT Battelle, LLC. The research is also supported in part by the High Flux Isotope Reactor, which is sponsored by the DOE Office of Basic Energy Sciences. The authors are grateful to A. A. Campbell and J. Nanda (ORNL) for their valuable comments. The XRD experiment shown in this paper was carried out at the National Synchrotron Light Source-II at Brookhaven National Laboratory (BNL), which is supported by the U.S. DOE. The authors would like to thank D. Sprouster and L. Ecker (BNL) for their invaluable efforts and time given to the XRD experiment and the analysis. NR 31 TC 0 Z9 0 U1 15 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD DEC PY 2016 VL 125 BP 58 EP 62 DI 10.1016/j.scriptamat.2016.08.004 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA DW8YA UT WOS:000383940200013 ER PT J AU Benipal, N Qi, J Johnston, PA Gentile, JC Brown, RC Li, WZ AF Benipal, Neeva Qi, Ji Johnston, Patrick A. Gentile, Jacob C. Brown, Robert C. Li, Wenzhen TI Direct fast pyrolysis bio-oil fuel cell SO FUEL LA English DT Article DE Fuel cell; Pyrolysis bio-oil; Anion-exchange membrane; Catalysts; Biomass; Renewables ID ANION-EXCHANGE MEMBRANE; ELECTROCATALYTIC OXIDATION; ALKALINE ELECTROLYTE; ALCOHOL OXIDATION; ANODE CATALYSTS; BIOFUEL CELLS; D-GLUCOSE; PERFORMANCE; GLYCEROL; BIOMASS AB Bio-oil derived from the pyrolysis of lignocellulosic biomass shows a great promise, however, needs further upgrading to potentially serve as an alternative to fossil fuels. Herein, we demonstrate that crude fast pyrolysis bio-oil can be directly used as a fuel for anion exchange membrane fuel cells (AEMFCs) to generate high power density electrical energy at low temperature (<= 80 degrees C). A simple aqueous-phase reduction method was used to prepare carbon nanotube (CNT) supported noble metal (Pt, Pd, Au, and Ag) nanoparticles with average particle sizes: 1.4 nm, 2.0 nm, 3.8 nm, and 12.9 nm for Pt/CNT, Pd/CNT, Au/CNT, and Ag/CNT, respectively. Direct fast pyrolysis bio-oil AEMFCs with the Pd/CNT anode catalyst and a commercial Fe-based cathode catalyst exhibit a remarkable peak power density of 42.7 mW cm(-2) at 80 degrees C using 30 wt% bio-oil + 6.0 M KOH electrolyte. Levoglucosan was identified as the major sugar compound with 11.1 wt% of the bio-oil composition, along with disaccharides, pyrolytic lignin, and oligomer of lignin-derived phenolic compounds. Cyclic voltammetry (CV) studies investigated the electrocatalytic oxidation of high purity levoglucosan over the four noble metal catalysts in half cell, as levoglucosan is the dominant sugar component in bio-oil. Pd/CNT, compared to other catalysts, displayed the highest activity and lowest onset potential of electrocatalytic oxidation of levoglucosan. AEMFC with high purity sugars shows similar to 1.2 to 3 times higher power density than that with fast pyrolysis bio-oil fuel. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Benipal, Neeva; Qi, Ji; Gentile, Jacob C.; Li, Wenzhen] Iowa State Univ, Biorenewables Res Lab, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Johnston, Patrick A.; Brown, Robert C.] Iowa State Univ, Dept Mech Engn, Ames, IA 50011 USA. [Brown, Robert C.] Iowa State Univ, Bioecon Inst, Ames, IA 50011 USA. [Li, Wenzhen] US DOE, Ames Lab, Ames, IA 50011 USA. RP Li, WZ (reprint author), Iowa State Univ, Biorenewables Res Lab, Dept Chem & Biol Engn, Ames, IA 50011 USA. EM wzli@iastate.edu OI Qi, Ji/0000-0002-4435-8181 FU US National Science Foundation [CBET-1501124]; Iowa State University startup fund; Iowa Energy Center Opportunity Grant fund FX We acknowledge financial support from the US National Science Foundation (CBET-1501124) and the Iowa State University startup fund. The authors would like to thank Ryan Smith for supplying bio-oil and John Matthiesen, and Dr. Robert L. Johnson of Iowa State University for assistance in understanding NMR data analysis. W. Li is grateful to his Richard Seagrave Professorship and the Iowa Energy Center Opportunity Grant fund. NR 56 TC 0 Z9 0 U1 67 U2 99 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD DEC 1 PY 2016 VL 185 BP 85 EP 93 DI 10.1016/j.fuel.2016.07.091 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DU5JT UT WOS:000382248700010 ER PT J AU Thompson, RL Bank, T Roth, E Granite, E AF Thompson, Robert L. Bank, Tracy Roth, Elliot Granite, Evan TI Resolution of rare earth element interferences in fossil energy by-product samples using sector-field ICP-MS SO FUEL LA English DT Article DE Rare earth elements; Produced water; Flowback water; Isobaric interferences; Barium Quadrupole inductively coupled plasma mass spectrometry; Sector field inductively coupled plasma mass spectrometry ID PLASMA-MASS-SPECTROMETRY; GEOLOGICAL SAMPLES; TRACE-ELEMENTS; SHALE; YTTRIUM; GAS; CHROMATOGRAPHY; EXTRACTION; HYDROXIDE; ROCKS AB The supply and price of rare earth elements (REEs) have become a concern to many countries in the world, which has led to renewed interest in exploration and recovery of REEs from secondary or waste sources. Potential high REE waste sources that are of particular interest are coal mining, preparation, combustion, and other fossil energy by-products, including those from natural gas production. In this work, we have examined a set of five solid samples from the treatment of produced and flowback water containing elevated concentrations of barium. In order to confirm the correct concentrations of Eu, we studied these materials using sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), which is capable of resolving species of nearly identical masses, including Eu and BaO. While the use of quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) for the REE analysis of most geological sample matrices should pose no problem, the presence of large amounts of Ba, as encountered in water treatment solids from natural gas produced and flowback samples may require SF-ICP-MS for accurate determination of all REEs. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Thompson, Robert L.; Bank, Tracy; Roth, Elliot; Granite, Evan] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. [Thompson, Robert L.; Bank, Tracy] AECOM, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. RP Thompson, RL (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM robert.thompson@netl.doe.gov FU National Energy Technology Laboratory's ongoing research under the RES contract [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. NR 40 TC 0 Z9 0 U1 39 U2 57 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD DEC 1 PY 2016 VL 185 BP 94 EP 101 DI 10.1016/j.fuel.2016.07.093 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DU5JT UT WOS:000382248700011 ER PT J AU Zhang, XS Moon, S Gao, J Dufresne, EM Fezzaa, K Wang, J AF Zhang, Xusheng Moon, Seoksu Gao, Jian Dufresne, Eric M. Fezzaa, Kamel Wang, Jin TI Experimental study on the effect of nozzle hole-to-hole angle on the near-field spray of diesel injector using fast X-ray phase-contrast imaging SO FUEL LA English DT Article DE Near-field spray; Spray morphology; Hole-to-hole angle; Biodiesel; X-ray phase-contrast imaging ID INTERNAL FLOW; VORTEX FLOW; CAVITATION; GEOMETRY; PRESSURE AB Fuel atomization and vaporization process play a critical role in determining the engine combustion and emission. The primary near-nozzle breakup is the vital link between the fuel emerging from the nozzle and the fully atomized spray. In this study, the near-nozzle spray characteristics of diesel injectors with different umbrella angle (UA) were investigated using fast X-ray phase-contrast imaging and quantitative image processing. A classic 'dumbbell' profile of spray width (SW) composed of three stages: opening stage, semi-steady stage and closing stage. The SW peaks of two-hole injectors were more than twice of that of single-hole injector at the opening and closing stages, corresponding to the hollow-cone spray. This indicated the vortex flow was formed with the increase of the UA. The higher injection pressure had little influence on the SW while led to earlier breakup closer to the nozzle at lower needle lift. Significant fuel effect on the SW at higher needle lift was found. However, this effect could be neglect at lower needle lift due to the leading role of internal flow and cavitation on the near-field spray characteristics. In addition, the morphology-based breakup process was observed, which highlighted the important effect of internal flow on the spray development. The possibility of using hollow-cone spray in diesel injector was also discussed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhang, Xusheng] Shanghai Maritime Univ, Merchant Marine Coll, Shanghai 201306, Peoples R China. [Moon, Seoksu] Natl Inst Adv Ind Sci & Technol, Res Ctr New Fuels & Vehicle Technol, Tsukuba, Ibaraki, Japan. [Gao, Jian] Gen Motors Global Res & Dev, Prop Syst Res Lab, Warren, MI USA. [Dufresne, Eric M.; Fezzaa, Kamel; Wang, Jin] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zhang, XS (reprint author), Shanghai Maritime Univ, Merchant Marine Coll, Shanghai 201306, Peoples R China. EM sjtu.zhang@gmail.com FU National Natural Science Foundation of China [51309149]; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (No. 51309149). This work and the use of the APS were supported by the DOE, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. Great thanks to DENSO CORPORATION for providing the injectors. NR 43 TC 1 Z9 1 U1 32 U2 35 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD DEC 1 PY 2016 VL 185 BP 142 EP 150 DI 10.1016/j.fuel.2016.07.114 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DU5JT UT WOS:000382248700016 ER PT J AU Wolk, B Ekoto, I Northrop, WF Moshammer, K Hansen, N AF Wolk, Benjamin Ekoto, Isaac Northrop, William F. Moshammer, Kai Hansen, Nils TI Detailed speciation and reactivity characterization of fuel-specific in-cylinder reforming products and the associated impact on engine performance SO FUEL LA English DT Article DE Low temperature gasoline combustion; Negative valve overlap; Gasoline; Reforming; Photoionization mass spectrometry ID COMPRESSION IGNITION; COMBUSTION AB In-cylinder reforming of a gasoline pilot fuel injection during the negative valve overlap (NVO) period of an engine cycle can be used to alter the fuel-air mixture reactivity in low-temperature gasoline combustion (LTGC). In the present study, the impact of the NVO reformate on main-period engine performance was evaluated experimentally for four single-component surrogate gasoline fuels (iso-octane, n-heptane, ethanol, and 1-hexene) using a custom alternate-fire sequence. For each fuel, the NVO injection mass was held constant as the main-period injection mass was varied. The constant NVO injection mass allowed the NVO reformate product stream to be separately characterized in detail using photoionization mass spectrometry (PIMS). PIMS measurements were performed to characterize the NVO reformates of the four fuels used for main-period engine performance testing, as well as two additional fuels: cyclohexane and a toluene/n-heptane blend. All experiments were conducted using a direct-injection, single-cylinder research engine equipped with a custom dump valve apparatus used to perform bulk gas sampling at the end of the NVO period. A constant volume, adiabatic, single-zone reactor model with detailed chemical kinetic mechanisms was used to evaluate the reactivity of each NVO reformate compared to the unreformed parent fuel, the impact of specific species on reformate reactivity, and to examine the factors that influence main-period engine performance. The PIMS measurements and reactor model analysis indicated that all tested fuels (except n-heptane) exhibit increased reformate reactivity as compared to the unreacted parent fuel through production of more reactive species, namely acetylene, acetaldehyde, propene, and allene. Main-period engine performance was impacted by changes in reactivity from the reformate fraction of total fueling and compressed temperature (through the ratio of specific heats and differences in charge cooling from the main injection). iso-Octane was found to have the largest benefit in reactivity as the reformate fraction of total fueling increased. Alternatively, increases in reactivity for ethanol were primarily due to decreased charge cooling while reactivity increases for 1-hexene were dictated by increased ratio of specific heats. This paper demonstrates that NVO-generated reformate can improve main-period reactivity through both chemical and thermal effects, although significant NVO-period heat losses reduce total-cycle engine thermal efficiency. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wolk, Benjamin; Ekoto, Isaac; Moshammer, Kai; Hansen, Nils] Sandia Natl Labs, Combust Res Facil, 7011 East Ave, Livermore, CA 94550 USA. [Northrop, William F.] Univ Minnesota, Dept Mech Engn, 111 Church St SE, Minneapolis, MN 55455 USA. RP Wolk, B (reprint author), POB 969,MS 9053, Livermore, CA 94551 USA. EM bmwolk@sandia.gov RI Hansen, Nils/G-3572-2012; OI Wolk, Benjamin/0000-0002-9690-9459 FU U.S. Department of Energy, Office of Vehicle Technologies; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Alberto Garcia FX Some of the work presented in this paper was performed at the Combustion Research Facility, Sandia National Laboratories, Liver-more, CA. Financial support was provided by the U.S. Department of Energy, Office of Vehicle Technologies. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors also gratefully acknowledge contributions from Marco Mehl of LLNL and the engineering support provided by Alberto Garcia. NR 24 TC 0 Z9 0 U1 19 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD DEC 1 PY 2016 VL 185 BP 348 EP 361 DI 10.1016/j.fuel.2016.07.103 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DU5JT UT WOS:000382248700038 ER PT J AU Zheng, JT Ju, Y Liu, HH Zheng, LG Wang, MR AF Zheng, Jiangtao Ju, Yang Liu, Hui-Hai Zheng, Liange Wang, Moran TI Numerical prediction of the decline of the shale gas production rate with considering the geomechanical effects based on the two-part Hooke's model SO FUEL LA English DT Article DE Shale gas; Production rate decline; Two-part Hooke's model; Stress-sensitive permeability; Numerical estimation ID EFFECTIVE STRESS LAW; FLUID-FLOW; HYDRAULIC CONDUCTIVITY; CUBIC LAW; PERMEABILITY; ROCK; RESERVOIRS; POROSITY; PORES; DEFORMATION AB The production rate of a typical shale gas well generally has steep decline trend at the initial stage but small declines at later times. Some empirical relationships have been proposed to describe the declining production rates and thus forecast the final cumulative production of a shale gas well. However, these empirical relationships can hardly elucidate the mechanisms that cause the special shale gas production trend. In this study, a novel two-part Hooke's model (TPHM) for the permeability and effective stress relationship is developed and incorporated into the hydro-mechanical COMSOL solver to determine the production rate of shale gas wells against time. The TPHM conceptualizes shale rock into soft part and hard part, which comply with the natural-strain-based and engineering-strain-based Hooke's laws, respectively, and contribute differently to the decreasing permeability with increasing effective stresses. The simulation results are analyzed and compared with those for which the permeability change effect is not considered. The analysis indicates that the decrease in stress-induced permeability plays a non-negligible part in the decline of the production rate. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zheng, Jiangtao; Ju, Yang] China Univ Min & Technol, State Key Lab Coal Resources & Safe Min, Beijing 100083, Peoples R China. [Zheng, Jiangtao; Wang, Moran] Tsinghua Univ, Sch Aerosp, Dept Engn Mech, Beijing 100084, Peoples R China. [Ju, Yang] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, 1 Univ Ave, Xuzhou 221006, Peoples R China. [Liu, Hui-Hai] Aramco Res Ctr, Houston, TX 77084 USA. [Zheng, Liange] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Ju, Y (reprint author), China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, State Key Lab Coal Resources & Safe Min, D11 Xueyuan Rd, Beijing 100083, Peoples R China. EM yju@icloud.com RI zheng, liange/B-9748-2011; Wang, Moran/A-1150-2010 OI zheng, liange/0000-0002-9376-2535; FU National Natural Science Foundation of China [51374213]; National Natural Science Funds for Distinguished Young Scholars of China [51125017]; Innovative Team Project of Jiangsu Province of China; Science Fund for Creative Research Groups of the National Natural Science Foundation of China [51421003] FX The authors are grateful to the National Natural Science Foundation of China (Grant No. 51374213), the National Natural Science Funds for Distinguished Young Scholars of China (Grant No. 51125017), the 2014 Innovative Team Project of Jiangsu Province of China and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51421003) for the financial supports. Hui-Hai Liu also would like to thank the management of Aramco Research Center (Houston) for its approval to publish this work. We appreciate Dr. Jia-Jyun Dong from National Central University, Taiwan, for kindly providing their data sets used in Figs. 1 and 2 of this paper. The authors would also like to express their gratitude to the editors and the anonymous reviewers for their valuable comments, which have greatly improved this paper. NR 60 TC 0 Z9 0 U1 48 U2 49 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD DEC 1 PY 2016 VL 185 BP 362 EP 369 DI 10.1016/j.fuel.2016.07.112 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DU5JT UT WOS:000382248700039 ER PT J AU Nguyen, NN Nguyen, AV Nguyen, KT Rintoul, L Dang, LX AF Nguyen, Ngoc N. Nguyen, Anh V. Nguyen, Khoi T. Rintoul, Llew Dang, Liem X. TI Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure SO FUEL LA English DT Article DE TBAB; Gas hydrate; CO2; Water structure; SFG; FTIR; MD ID SUM-FREQUENCY GENERATION; CARBON-DIOXIDE CAPTURE; PRE-COMBUSTION CAPTURE; AIR/WATER INTERFACE; CLATHRATE PROCESS; AQUEOUS-SOLUTIONS; SODIUM-HALIDES; FORCE-FIELD; SPECTROSCOPY; SURFACE AB Gas hydrates formed under moderated conditions open up novel approaches to tackling issues related to energy supply, gas separation, and CO2 sequestration. Several additives such as tetra-n-butylammonium bromide (TBAB) have been empirically developed and used to promote gas hydrate formation. Here we report unexpected experimental results which show that TBAB inhibits CO2 gas hydrate formation when used at minuscule concentration. We also used spectroscopic techniques and molecular dynamics simulation to gain further insights and explain the experimental results. They have revealed the critical role of water alignment at the gas-water interface induced by surface adsorption of tetra-n-butylammonium cation (TBA(+)) which gives rise to the unexpected inhibition of dilute TBAB solution. The water perturbation by TBA(+) in the bulk is attributed to the promotion effect of high TBAB concentration on gas hydrate formation. We explain our finding using the concept of activation energy of gas hydrate formation. Our results provide a step toward to mastering the control of gas hydrate formation. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Nguyen, Ngoc N.; Nguyen, Anh V.; Nguyen, Khoi T.] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia. [Rintoul, Llew] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia. [Dang, Liem X.] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Nguyen, Khoi T.] Vietnam Natl Univ HCMC, Int Univ, Sch Biotechnol, Hcmc, Vietnam. RP Nguyen, AV (reprint author), Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia. EM anh.nguyen@eng.uq.edu.au OI Nguyen, Ngoc Nguyen/0000-0002-0999-1176 FU Australian Government; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences FX Ngoc N. Nguyen gratefully acknowledges the Australian Government for the Australian Awards Scholarship (AusAID Scholarship). The U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences funded the work performed by Liem X. Dang. NR 50 TC 1 Z9 1 U1 50 U2 59 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD DEC 1 PY 2016 VL 185 BP 517 EP 523 DI 10.1016/j.fuel.2016.08.006 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DU5JT UT WOS:000382248700054 ER PT J AU Bader, S AF Bader, Sam TI Editorial: Obituary of Founding Editor Arthur J. Freeman SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Biographical-Item C1 [Bader, Sam] Argonne Natl Lab, Div Mat Sci 223, Argonne, IL 60439 USA. RP Bader, S (reprint author), Argonne Natl Lab, Div Mat Sci 223, Argonne, IL 60439 USA. EM jmmmagma@gmail.com NR 1 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD DEC 1 PY 2016 VL 419 BP IX EP X DI 10.1016/S0304-8853(16)31504-9 PG 2 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA DT1GE UT WOS:000381228900001 ER PT J AU Snow, RJ Bhatkar, H N'Diaye, AT Arenholz, E Idzerda, YU AF Snow, R. J. Bhatkar, H. N'Diaye, A. T. Arenholz, E. Idzerda, Y. U. TI Enhanced moments in bcc Co1-xMnx on MgO(001) SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Magnetism; CoMn alloy; XMCD; XAS ID CO-MN ALLOYS; THIN-FILMS; DISTRIBUTIONS; CO(001); COBALT; GAAS AB A 40% enhancement of the Co magnetic moment has been found for thin films of bcc Co1-xMnx grown by molecular beam epitaxy on a 2 nm bcc Fe buffer layer on MgO(001). Although the bcc phase cannot be stabilized in the bulk, we confirm that it is stable as an epitaxial film in the composition range x=0-0.7. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, we show that the Co moment is a maximum of 2.38 mu(B) at x=0.24, while the net Mn moment remains roughly constant until x=0.24, then drops steadily. Mn is found to align parallel with Co for all ferromagnetic concentrations, up to x=0.7, where the total moment of the film abruptly collapses to zero, most likely due to the onset of the observed structural instability. (C) 2016 Elsevier B.V. All rights reserved. C1 [Snow, R. J.; Bhatkar, H.; Idzerda, Y. U.] Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. [N'Diaye, A. T.; Arenholz, E.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Idzerda, YU (reprint author), Montana State Univ, Dept Phys, Bozeman, MT 59715 USA. EM Idzerda@montana.edu FU National Science Foundation [ECCS-1542210]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the National Science Foundation under Grant ECCS-1542210. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 EI 1873-4766 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD DEC 1 PY 2016 VL 419 BP 490 EP 493 DI 10.1016/j.jmmm.2016.06.072 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA DT1GE UT WOS:000381228900064 ER PT J AU Lakkaraju, K AF Lakkaraju, Kiran TI Modeling attitude diffusion and agenda setting: the MAMA model SO SOCIAL NETWORK ANALYSIS AND MINING LA English DT Article ID SMALL-WORLD NETWORKS; VOTER MODEL; CONSISTENCY; DYNAMICS; BEHAVIOR; CHILDREN; PARENTS AB Attitude diffusion is where "attitudes" (general, relatively enduring evaluative responses to a topic) spread through a population. Attitudes play an incredibly important role in human decision-making (for instance, in health care decisions) and are a critical part of social psychology. However, existing models of diffusion do not account for key differentiating aspects of attitudes. In this work, we develop the "{Multi-Agent, Multi-Attitude" (MAMA) model which incorporates several key factors of attitude diffusion: (1) multiple, interacting attitudes; (2) social influence between individuals; and (3) media influence. All three components have strong support from the social science community. Using the MAMA model, we re-visit the problem of influence maximization in a attitude diffusion setting where media influence is possible-we show that strategic manipulation of the media can lead to statistically significant decreases in diffusion of attitudes. Finally, to better understand the dynamics of the model, we use an absorbing Markov chain to characterize state transitions in the model. C1 [Lakkaraju, Kiran] Sandia Natl Labs, POB 5800,MS 1327, Albuquerque, NM 87185 USA. RP Lakkaraju, K (reprint author), Sandia Natl Labs, POB 5800,MS 1327, Albuquerque, NM 87185 USA. EM klakkar@sandia.gov NR 50 TC 0 Z9 0 U1 26 U2 26 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 1869-5450 EI 1869-5469 J9 SOC NETW ANAL MIN JI Soc. Netw. Anal. Min. PD DEC PY 2016 VL 6 IS 1 AR UNSP 21 DI 10.1007/s13278-016-0322-4 PG 13 WC Computer Science, Information Systems SC Computer Science GA DT1CY UT WOS:000381220500021 ER PT J AU Allen, AJ Singh, M Muljadi, E Santoso, S AF Allen, Alicia J. Singh, Mohit Muljadi, Eduard Santoso, Surya TI Measurement-based investigation of inter- and intra-area effects of wind power plant integration SO INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS LA English DT Article DE Electromechanical dynamics; Doubly fed induction generators; Two-area system; Inertia; Wind power; PMU ID PRIMARY FREQUENCY CONTROL; OSCILLATIONS; TURBINES; GENERATION; INERTIA; SUPPORT AB This paper has a two pronged objective: the first objective is to analyze the general effects of wind power plant (WPP) integration and the resulting displacement of conventional power plant (CPP) inertia on power system stability and the second is to demonstrate the efficacy of PMU data in power system stability analyses, specifically when knowledge of the network is incomplete. Traditionally modal analysis applies small signal stability analysis based on Eigenvalues and the assumption of complete knowledge of the network and all of its components. The analysis presented here differs because it is a measurement-based investigation and employs simulated measurement data. Even if knowledge of the network were incomplete, this methodology would allow for monitoring and analysis of modes. This allows non-utility entities and study of power system stability. To generate inter- and intra-area modes, Kundur's well-known two-area four-generator system is modeled in PSCAD/EMTDC. A doubly-fed induction generator based WPP model, based on the Western Electricity Coordination Council (WECC) standard model, is included to analyze the effects of wind power on system modes. The two-area system and WPP are connected in various configurations with respect to WPP placement, CPP inertia and WPP penetration level. Analysis is performed on the data generated by the simulations. For each simulation run, a different configuration is chosen and a large disturbance is applied. The sampling frequency is set to resemble the sampling frequency at which data is available from phasor measurement units (PMUs). The estimate of power spectral density of these signals is made using the Yule-Walker algorithm. The resulting analysis shows that the presence of a WPP does not, of itself, lead to the introduction of new modes. The analysis also shows however that displacement of inertia may lead to introduction of new modes. The effects of location of inertia displacement (i.e. the effects on modes if WPP integration leads to displacement of inertia in its own region or in another region) and of WPP controls such as droop control and synthetic inertia are also examined. In future work, the methods presented here will be applied to real-world phasor data to examine the effects of integration of variable generation and displacement of CPP inertia on inter- and intra-area modes. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Allen, Alicia J.; Singh, Mohit; Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Santoso, Surya] Univ Texas Austin, Austin, TX 78712 USA. [Allen, Alicia J.] Sargent & Lundy LLC, Chicago, IL USA. [Singh, Mohit] ComEd, Chicago, IL 60618 USA. RP Singh, M (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Singh, M (reprint author), ComEd, Chicago, IL 60618 USA. FU U.S. Department of Energy FX This paper was first submitted for review on 7th May 2013. This work was supported in part by the U.S. Department of Energy. NR 30 TC 0 Z9 0 U1 22 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-0615 EI 1879-3517 J9 INT J ELEC POWER JI Int. J. Electr. Power Energy Syst. PD DEC PY 2016 VL 83 BP 450 EP 457 DI 10.1016/j.ijepes.2016.04.025 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA DS2IC UT WOS:000380591500045 ER PT J AU Moawad, A Balaprakash, P Rousseau, A Wild, S AF Moawad, A. Balaprakash, P. Rousseau, A. Wild, S. TI Novel large scale simulation process to support dot's cafe modeling system SO INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY LA English DT Article DE Large scale simulation; Hybrid vehicles; CAFE; High performance computing; Autonomie AB This paper demonstrates a new process that has been specifically designed for the support of the U.S. Department of Transportation's (DOT's) Corporate Average Fuel Economy (CAFE) standards. In developing the standards, DOT's National Highway Traffic Safety Administration made use of the CAFE Compliance and Effects Modeling System (the "Volpe model" or the "CAFE model"), which was developed by DOT's Volpe National Transportation Systems Center for the 2005-2007 CAFE rulemaking and has been continuously updated since. The model is the primary tool used by the agency to evaluate potential CAFE stringency levels by applying technologies incrementally to each manufacturer's fleet until the requirements under consideration are met. The Volpe model relies on numerous technology-related and economic inputs, such as market forecasts, technology costs, and effectiveness estimates; these inputs are categorized by vehicle classification, technology synergies, phase-in rates, cost learning curve adjustments, and technology "decision trees". Part of the model's function is to estimate CAFE improvements that a given manufacturer could achieve by applying additional technology to specific vehicles in its product line. A significant number of inputs to the Volpe decision-tree model are related to the effectiveness (fuel consumption reduction) of each fuel-saving technology. Argonne National Laboratory has developed a fullvehicle simulation tool named Autonomie, which has become one of the industry's standard tools for analyzing vehicle energy consumption and technology effectiveness. Full-vehicle simulation tools use physics-based mathematical equations, engineering characteristics (e.g., engine maps, transmission shift points, and hybrid vehicle control strategies), and explicit drive cycles to predict the effectiveness of individual and combined fuel-saving technologies. The Large-Scale Simulation Process accelerates and facilitates the assessment of individual technological impacts on vehicle fuel economy. This paper will show how Argonne efficiently simulates hundreds of thousands of vehicles to model anticipated future vehicle technologies. C1 [Moawad, A.; Balaprakash, P.; Rousseau, A.; Wild, S.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Moawad, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM amoawad@anl.gov RI Wild, Stefan/P-4907-2016 OI Wild, Stefan/0000-0002-6099-2772 FU U.S. Department of Transportation's Volpe Center; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Transportation's Volpe Center under the direction of Ryan Harrington and Kevin Green. The authors would also like to thank John Whitefoot and Lixin Zhao from the U.S. Department of Transportation, NHTSA. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 6 TC 0 Z9 0 U1 29 U2 73 PU KOREAN SOC AUTOMOTIVE ENGINEERS-KSAE PI SEOUL PA #1301, PARADISE VENTURE TOWER, 52-GIL 21, TEHERAN-RO, GANGNAM-GU, SEOUL 135-919, SOUTH KOREA SN 1229-9138 EI 1976-3832 J9 INT J AUTO TECH-KOR JI Int. J. Automot. Technol. PD DEC PY 2016 VL 17 IS 6 BP 1067 EP 1077 DI 10.1007/s12239-016-0104-z PG 11 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA DS3FF UT WOS:000380667800014 ER PT J AU Li, ST Li, H AF Li, Shengtai Li, Hui TI Modified FARGO algorithm and its combination with adaptive mesh refinement SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article; Proceedings Paper CT 1st Annual Meeting of SIAM-Central-States-Section CY APR 11-12, 2015 CL Missouri Univ Sci & Technol, Rolla, MO SP SIAM, Cent States Sect HO Missouri Univ Sci & Technol DE Acrretion disks; Hydrodynamics; Numerical method; Proto-planetary disk system; Planet formation ID PLANET INTERACTION; DISKS; MIGRATION; GROWTH AB Fast advection in rotating gaseous objects (FARGO, Masset (2000)) algorithm has been widely used in simulating disk-type object in computational astrophysics. In this paper, we revisit this algorithm and propose some improvement. We also propose a semi-Lagrangian adaptive mesh refinement for this algorithm to enhance resolution locally near the embedded proto-planet.-Numerical tests are provided to demonstrate the effectiveness of our method. Published by Elsevier B.V. C1 [Li, Shengtai; Li, Hui] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Li, ST (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM sli@lanl.gov OI Li, Shengtai/0000-0002-4142-3080 NR 17 TC 0 Z9 0 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 EI 1879-1778 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD DEC 1 PY 2016 VL 307 BP 170 EP 182 DI 10.1016/j.cam.2016.02.030 PG 13 WC Mathematics, Applied SC Mathematics GA DQ1JK UT WOS:000378957100016 ER PT J AU Mu, L Wang, JP Ye, X AF Mu, Lin Wang, Junping Ye, Xiu TI A hybridized formulatibn for the weak Galerkin mixed finite element method SO JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS LA English DT Article; Proceedings Paper CT 1st Annual Meeting of SIAM-Central-States-Section CY APR 11-12, 2015 CL Missouri Univ Sci & Technol, Rolla, MO SP SIAM, Cent States Sect HO Missouri Univ Sci & Technol DE Weak Galerkin; Finite element methods; Discrete weak divergence; Second-order elliptic problems; Hybridized mixed finite element methods ID 2ND-ORDER ELLIPTIC PROBLEMS; LAGRANGIAN-MULTIPLIERS; MESHES AB This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising from the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. Some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mu, Lin] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Wang, Junping] Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA. [Ye, Xiu] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA. RP Ye, X (reprint author), Univ Arkansas, Dept Math, Little Rock, AR 72204 USA. EM mul1@ornl.gov; jwang@nsf.gov; xxye@ualr.edu NR 21 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0427 EI 1879-1778 J9 J COMPUT APPL MATH JI J. Comput. Appl. Math. PD DEC 1 PY 2016 VL 307 BP 335 EP 345 DI 10.1016/j.cam.2016.01.004 PG 11 WC Mathematics, Applied SC Mathematics GA DQ1JK UT WOS:000378957100026 ER PT J AU Chkhaidze, L Chlachidze, G Djobava, T Galoyan, A Kharkhelauri, L Togoo, R Uzhinsky, V AF Chkhaidze, L. Chlachidze, G. Djobava, T. Galoyan, A. Kharkhelauri, L. Togoo, R. Uzhinsky, V. TI Study of collective flows of protons and pi(-)-mesons in p plus C, Ta and He plus Li, C collisions at momenta of 4.2, 4.5 and 10 AGeV/c SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID HEAVY-ION COLLISIONS; RELATIVISTIC NUCLEAR COLLISIONS; MOLECULAR-DYNAMICS MODEL; OUT-OF-PLANE; PION-PRODUCTION; ELLIPTIC FLOW; AU COLLISIONS; HIGH-ENERGY; EMISSION; GEV/NUCLEON AB Collective flows of protons and pi(-)-mesons are studied at the momenta of 4.2, 4.5 and 10AGeV/c for p+C, Ta and He+Li, C interactions. The data were obtained from the streamer chamber (SKM-200-GIBS) and from the Propane Bubble Chamber (PBC-500) systems utilized at JINR. A method of Danielewicz and Odyniec has been employed in determining a directed transverse flow of particles. The values of the transverse flow parameter and the strength of the anisotropic emission were defined for each interacting nuclear pair. It is found that the directed flows of protons and pions decrease with increasing the energy and the mass numbers of colliding nucleus pairs. The pi(-)-meson and proton flows exhibit opposite directions in all studied interactions, and the flows of protons are directed in the reaction plane. The Ultra-relativistic Quantum Molecular Dynamical Model (UrQMD) coupled with the Statistical Multifragmentation Model (SMM), satisfactorily describes the obtained experimental results. C1 [Chkhaidze, L.; Djobava, T.; Kharkhelauri, L.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Chlachidze, G.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Galoyan, A.] Joint Inst Nucl Res, Veksler & Baldin Lab High Energy Phys, Dubna, Russia. [Togoo, R.] Mongolian Acad Sci, Inst Phys & Technol, Ulaanbaatar, Mongol Peo Rep. [Uzhinsky, V.] Joint Inst Nucl Res, Informat Technol Lab, Dubna, Russia. RP Chkhaidze, L (reprint author), Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. EM ichkhaidze@yahoo.com; galoyan@lxpub01.jinr.ru; uzhinsky@jinr.ru FU Georgian Shota Rustaveli National Science Foundation [DI/38/6-200/13] FX One of us (LC) would like to thank the board of directors of the Laboratory of Information Technologies (LIT) of JINR for the warm hospitality. This work was partially supported by the Georgian Shota Rustaveli National Science Foundation under Grant DI/38/6-200/13. The authors are thankful to heterogeneous computing (HybriLIT) team of the Laboratory of Information Technologies of JINR for support of our calculations. NR 43 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD NOV 30 PY 2016 VL 52 IS 11 AR 351 DI 10.1140/epja/i2016-16351-3 PG 9 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EH5JT UT WOS:000391809900001 ER PT J AU Altmannshofer, W Carena, M Crivellin, A AF Altmannshofer, Wolfgang Carena, Marcela Crivellin, Andreas TI L-mu - L-tau theory of Higgs flavor violation and (g-2)(mu) SO PHYSICAL REVIEW D LA English DT Article ID ANOMALOUS MAGNETIC-MOMENT; QUASI-DEGENERATE NEUTRINOS; LHC RUN 1; STANDARD MODEL; COLLISION DATA; 8 TEV; BOSON; PHYSICS; SEARCH; DECAYS AB Several experiments reported hints for the violation of lepton flavor or lepton flavor universality in processes involving muons. Most prominently, there is the hint for a nonzero rate of the flavor violating Higgs decay h -> tau mu at the LHC, as well as the hint for lepton flavor universality violation in rare B meson decays at the LHCb. In addition, also the long-standing discrepancy in the anomalous magnetic moment of the muon motivates new physics connected to muons. A symmetry which violates lepton flavor universality is L-mu - L-tau: the difference of muon number and tau number. We show that adding vectorlike fermions to a L-mu - L-tau theory generates naturally an effect in the anomalous magnetic moment of the muon and h -> tau mu, while effects in other tau -> mu transitions are systematically suppressed by symmetry arguments. We find that if L-mu - L-tau is gauged it is possible to also accommodate the discrepant b -> s mu mu data while predicting a tau -> 3 mu and a modified h -> mu mu rate within reach of upcoming experiments. C1 [Altmannshofer, Wolfgang] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Carena, Marcela] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Carena, Marcela] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carena, Marcela] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Crivellin, Andreas] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. RP Altmannshofer, W (reprint author), Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. EM altmanwg@ucmail.uc.edu; carena@fnal.gov; andreas.crivellin@cern.ch FU Ambizione fellowship of the Swiss National Science Foundation; United States Department of Energy [DE-AC02- 07CH11359] FX We thank Stefania Gori and Michael Spira for useful discussions. A. Crivellin is supported by an Ambizione fellowship of the Swiss National Science Foundation. We acknowledge the hospitality of the Aspen Center for Physics where this project was initiated. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the United States Department of Energy. NR 101 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 30 PY 2016 VL 94 IS 9 AR 095026 DI 10.1103/PhysRevD.94.095026 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED4MX UT WOS:000388824300004 ER PT J AU Huang, K Eley, S Rosa, PFS Civale, L Bauer, ED Baumbach, RE Maple, MB Janoschek, M AF Huang, K. Eley, S. Rosa, P. F. S. Civale, L. Bauer, E. D. Baumbach, R. E. Maple, M. B. Janoschek, M. TI Quantum Critical Scaling in the Disordered Itinerant Ferromagnet UCo1-xFexGe SO PHYSICAL REVIEW LETTERS LA English DT Article ID NON-FERMI-LIQUID; TRANSITIONS; POINTS; PHASE; MNSI AB The Belitz-Kirkpatrick-Vojta ( BKV) theory shows in excellent agreement with experiment that ferromagnetic quantum phase transitions ( QPTs) in clean metals are generally first order due to the coupling of the magnetization to electronic soft modes, in contrast to the classical analogue that is an archetypical second-order phase transition. For disordered metals the BKV theory predicts that the second-order nature of the QPT is restored because the electronic soft modes change their nature from ballistic to diffusive. Our low-temperature magnetization study identifies the ferromagnetic QPT in the disordered metal UCo(1-x)FexGe as the first clear example that exhibits the associated critical exponents predicted by the BKV theory. C1 [Huang, K.; Eley, S.; Rosa, P. F. S.; Civale, L.; Bauer, E. D.; Baumbach, R. E.; Janoschek, M.] Los Alamos Natl Lab, Condensed Matter & Magnet Sci, Los Alamos, NM 87545 USA. [Huang, K.; Maple, M. B.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Baumbach, R. E.] Florida State Univ, Natl High Magnet Field Lab, Condensed Matter Grp, Tallahassee, FL 32310 USA. RP Janoschek, M (reprint author), Los Alamos Natl Lab, Condensed Matter & Magnet Sci, Los Alamos, NM 87545 USA. EM mjanoschek@lanl.gov OI Ferrari Silveira Rosa, Priscila/0000-0002-3437-548X FU U.S. DOE, OBES, Division of Materials Sciences and Engineering; U.S. DOE, BES [DE-FG02-04ER46105]; Seaborg Institute Research Fellowship FX We are grateful to Dietrich Belitz and Ted Kirkpatrick for useful discussions. Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the U.S. DOE, OBES, Division of Materials Sciences and Engineering. Research at UCSD was supported by the U.S. DOE, BES under Grant No. DE-FG02-04ER46105. K.H. acknowledges financial support through a Seaborg Institute Research Fellowship. NR 25 TC 0 Z9 0 U1 13 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2016 VL 117 IS 23 AR 237202 DI 10.1103/PhysRevLett.117.237202 PG 5 WC Physics, Multidisciplinary SC Physics GA EG9PN UT WOS:000391391400017 PM 27982631 ER PT J AU Poudel, L May, AF Koehler, MR McGuire, MA Mukhopadhyay, S Calder, S Baumbach, RE Mukherjee, R Sapkota, D de la Cruz, C Singh, DJ Mandrus, D Christianson, AD AF Poudel, L. May, A. F. Koehler, M. R. McGuire, M. A. Mukhopadhyay, S. Calder, S. Baumbach, R. E. Mukherjee, R. Sapkota, D. de la Cruz, C. Singh, D. J. Mandrus, D. Christianson, A. D. TI Candidate Elastic Quantum Critical Point in LaCu6-xAux SO PHYSICAL REVIEW LETTERS LA English DT Article ID STRUCTURAL PHASE-TRANSITIONS; CRITICAL-BEHAVIOR; CRITICAL-DYNAMICS; SOFT-MODE; SUPERCONDUCTIVITY; CECU6; FLUCTUATIONS; PRCU6; DIFFRACTION; SUPPRESSION AB The structural properties of LaCu6-xAux are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x(c) = 0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x(c). The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. The data and calculations presented here are consistent with the zero temperature termination of a continuous structural phase transition suggesting that the LaCu6-xAux series hosts an elastic quantum critical point. C1 [Poudel, L.; Sapkota, D.; Mandrus, D.; Christianson, A. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. [Poudel, L.; Calder, S.; de la Cruz, C.; Christianson, A. D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [May, A. F.; McGuire, M. A.; Mukhopadhyay, S.; Mandrus, D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Koehler, M. R.; Mukherjee, R.; Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37966 USA. [Baumbach, R. E.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Singh, D. J.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RP Poudel, L (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA.; Poudel, L (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM lpoudel@vols.utk.edu RI McGuire, Michael/B-5453-2009; May, Andrew/E-5897-2011 OI McGuire, Michael/0000-0003-1762-9406; May, Andrew/0000-0003-0777-8539 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; DOE through the S3TEC Energy Frontier Research Center Award [DE-SC0001299/DE-FG02-09ER46577]; National Science Foundation (NSF) [DMR-1157490]; State of Florida; U.S. Department of Energy (DOE NNSA) [DE-NA0001979]; UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy FX We acknowledge V. Keppens, V. Fanelli, T. Williams, and P. Whitfield for useful discussions, F. Ye for help with sample characterization, and M. Suchomel for assistance with the synchrotron x-ray measurements. The research at the High Flux Isotope Reactor (ORNL) is supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. A.F.M., M.A.M., S.M., and D.M. acknowledge the support of the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at the University of Missouri was supported by DOE through the S3TEC Energy Frontier Research Center Award No. DE-SC0001299/DE-FG02-09ER46577. Work performed at the National High Magnetic Field Laboratory is supported by National Science Foundation (NSF) Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. Department of Energy (DOE NNSA DE-NA0001979).; This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government or any U.S. Government agency. NR 58 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2016 VL 117 IS 23 AR 235701 DI 10.1103/PhysRevLett.117.235701 PG 6 WC Physics, Multidisciplinary SC Physics GA EG9PN UT WOS:000391391400013 PM 27982606 ER PT J AU Song, HJ Hoyt, JJ AF Song, Huajing Hoyt, Jeffrey J. TI Barrier-Free Nucleation at Grain-Boundary Triple Junctions During Solid-State Phase Transformations SO PHYSICAL REVIEW LETTERS LA English DT Article ID AUSTENITE-FERRITE INTERFACE; EQUILIBRIUM SHAPE; HETEROGENEOUS NUCLEATION; MOLECULAR-DYNAMICS; PURE FE; SIMULATION; ALLOYS; GROWTH; KINETICS; ENERGY AB Molecular dynamics simulations are used to provide strong evidence for barrier-free nucleation events in a heterogeneous solid-solid system. The barrier-free events are characterized by an absence of an incubation time and a growth rate of the emerging phase that is independent of the system size. Furthermore, an analysis of the size and shape of the critical nucleus using the Winterbottom construction indicates that no solution exists for these barrier-free cases. We propose that barrier-free nucleation, which will have a profound effect on phase transformation kinetics, may be a general phenomenon for any polycrystalline material. C1 [Song, Huajing; Hoyt, Jeffrey J.] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L9H 4L7, Canada. [Song, Huajing] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. RP Song, HJ (reprint author), McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L9H 4L7, Canada.; Song, HJ (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. EM songhw@ameslab.gov; hoytj@mcmaster.ca FU Natural Sciences and Engineering Research Council (NSERC, Canada); NSERC postgraduate doctoral scholarship (NSERC PGS-D) FX The authors acknowledge the support of a Natural Sciences and Engineering Research Council (NSERC, Canada) Strategic Project grant entitled "Simulation of complex microstructure path way for alloy design" and the computing resources of the Shared Hierarchical Academic Research Computing Network (Sharcnet) of Ontario. We gratefully acknowledge numerous helpful discussions with Dr. Gary Purdy and Dr. Hatem S. Zurob. H.S. acknowledges financial support from a NSERC postgraduate doctoral scholarship (NSERC PGS-D). NR 42 TC 0 Z9 0 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 30 PY 2016 VL 117 IS 23 AR 238001 DI 10.1103/PhysRevLett.117.238001 PG 5 WC Physics, Multidisciplinary SC Physics GA EG9PN UT WOS:000391391400019 PM 27982609 ER PT J AU Yang, B Dyck, O Ming, WM Du, MH Das, S Rouleau, CM Duscher, G Geohegan, DB Xiao, K AF Yang, Bin Dyck, Ondrej Ming, Wenmei Du, Mao-Hua Das, Sanjib Rouleau, Christopher M. Duscher, Gerd Geohegan, David B. Xiao, Kai TI Observation of Nanoscale Morphological and Structural Degradation in Perovskite Solar Cells by in Situ TEM SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE perovskite solar cell; organometallic halide perovskite; degradation; transmission electron microscopy; electron energy loss spectroscopy ID CH3NH3PBI3; PERFORMANCE; STABILITY; AIR; EFFICIENCY; LAYERS; FILMS; DYNAMICS; EXPOSURE; GROWTH AB High-resolution in situ transmission electron microscopy (TEM) and electron energy loss spectroscopy were applied to systematically investigate morphological and structural degradation behaviors in perovskite films during different environmental exposure treatments. In situ TEM experiment indicates that vacuum itself is not likely to cause degradation in perovskites. In addition, these materials were found to degrade significantly when they were heated to similar to 50-60 degrees C (i.e., a solar cell's field operating temperature) under illumination. This observation thus conveys a critically important message that the instability of perovskite solar cells at such a low temperature may limit their real field commercial applications. It was further unveiled that oxygen most likely attacks the CH3NH3+ organic moiety rather than the PbI6 component of perovskites during ambient air exposure at room temperature. This finding grants a deeper understanding of the perovskite degradation mechanism and suggests a way to prevent degradation of perovskites by tailoring the organic moiety component. C1 [Yang, Bin; Dyck, Ondrej; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Dyck, Ondrej; Duscher, Gerd] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Ming, Wenmei; Du, Mao-Hua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Das, Sanjib] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Yang, B; Xiao, K (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM yangbl@oml.gov; xiaok@ornl.gov; xiaok@ornl.gov RI Das, Sanjib/A-9255-2017; Du, Mao-Hua/B-2108-2010 OI Das, Sanjib/0000-0002-5281-4458; Du, Mao-Hua/0000-0001-8796-167X FU Sustainable Energy and Education Research Center (SEERC); Tennessee Solar Conversion and Storage using Outreach, Research and Education (TN-SCORE); Department of Energy, Basic Energy Sciences (DOE-BES); Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX Part of this research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. O.D. and G.D. are thankful for the financial support from the Sustainable Energy and Education Research Center (SEERC), Tennessee Solar Conversion and Storage using Outreach, Research and Education (TN-SCORE), the Department of Energy, Basic Energy Sciences (DOE-BES). M.-H.D. and W.M. are supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 43 TC 1 Z9 1 U1 25 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 30 PY 2016 VL 8 IS 47 BP 32333 EP 32340 DI 10.1021/acsami.6b11341 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA ED9AF UT WOS:000389161600027 PM 27933837 ER PT J AU Chen, T Zhang, QL Pan, J Xu, JG Liu, YY Al-Shroofy, M Cheng, YT AF Chen, Tao Zhang, Qinglin Pan, Jie Xu, Jiagang Liu, Yiyang Al-Shroofy, Mohanad Cheng, Yang-Tse TI Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE lithium-ion battery; anode material; binder-free anode; biorenewable; silicon-carbon composite; lignin ID HIGH-CAPACITY ANODES; CARBON-FIBERS; NEGATIVE ELECTRODES; STRUCTURAL-CHANGES; ELASTIC-MODULUS; ENERGY-STORAGE; POLYMER BINDER; FULL CELLS; PERFORMANCE; INDENTATION AB This work demonstrates a high-performance and durable silicon nanoparticle-based negative electrode in which conventional polymer binder and carbon black additive are replaced with lignin. The mixture of silicon nanoparticles and lignin, a low cost, renewable, and widely available biopolymer, was coated on a copper substrate using the conventional slurry mixing and coating method and subsequently heat-treated to form the composite electrode. The composite electrode showed excellent electrochemical performance with an initial discharge capacity of up to 3086 mAh g(-1) and retaining 2378 mAh g(-1) after 100 cycles at 1 A g(-1). Even at a relatively high areal loading of similar to 1 mg cm(-2), an areal capacity of similar to 2 mAh cm(-2) was achieved. The composite electrode also displayed excellent rate capability and performance in a full-cell setup. Through synergistic analysis of X-ray photoelectron spectroscopy, Raman, and nanoindentation experiment results, we attribute the amazing properties of Si/lignin electrodes to the judicious choice of heat treatment temperature at 600 degrees C. At this temperature, lignin undergoes complex compositional change during which a balance between development of conductivity and retaining of polymer flexibility is realized. We hope this work could lead to practicable silicon-based negative electrodes and stimulate the interest in the utilization of biorenewable resources in advanced energy applications. C1 [Chen, Tao; Zhang, Qinglin; Pan, Jie; Xu, Jiagang; Al-Shroofy, Mohanad; Cheng, Yang-Tse] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. [Liu, Yiyang] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Zhang, Qinglin] Optimal CAE, 47802 West Anchor Court, Plymouth, MI 48170 USA. [Pan, Jie] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chen, T (reprint author), Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA. EM tao.chen@uky.edu OI Xu, Jiagang/0000-0002-2736-1733 FU National Science Foundation [1355438] FX We would like to thank Long Zhang for XPS measurements, Yikai Wang for nanoindentation experiments, Dali Qian for the help with SEM and TEM, and Laura Grueneberg for discussions. We are grateful for the financial support from the National Science Foundation Grant No. 1355438 (Powering the Kentucky Bioeconomy for a Sustainable Future). NR 61 TC 0 Z9 0 U1 53 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 30 PY 2016 VL 8 IS 47 BP 32341 EP 32348 DI 10.1021/acsami.6b11500 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA ED9AF UT WOS:000389161600028 PM 27933840 ER PT J AU Talin, AA Ruzmetov, D Kolmakov, A McKelvey, K Ware, N El Gabaly, F Dunn, B White, HS AF Talin, A. Alec Ruzmetov, Dmitry Kolmakov, Andrei McKelvey, Kim Ware, Nicholas El Gabaly, Farid Dunn, Bruce White, Henry S. TI Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE solid-state battery; three-dimensional; thin film; inhomogeneity; experiment and modeling ID LITHIUM BATTERIES; MICROBATTERIES; ARRAYS; CATHODES; LICOO2 AB Demonstration of three-dimensional all-solid-state Li-ion batteries (3D SSLIBs) has been a long-standing goal for numerous researchers in the battery community interested in developing high power and high areal energy density storage solutions for a variety of applications. Ideally, the 3D geometry maximizes the volume of active material per unit area, while keeping its thickness small to allow for fast Li diffusion. In this paper, we describe experimental testing and simulation of 3D SSLIBs fabricated using materials and thin-film deposition methods compatible with semiconductor device processing. These 3D SSLIBs consist of Si microcolumns onto which the battery layers are sequentially deposited using physical vapor deposition. The power performance of the 3D SSLIBs lags significantly behind that of similarly prepared planar SSLIBs. Analysis of the experimental results using finite element modeling indicates that the origin of the poor power performance is the structural inhomogeneity of the 3D SSLIB, coupled with low electrolyte ionic conductivity and diffusion rate in the cathode, which lead to highly nonuniform internal current density distribution and poor cathode utilization. C1 [Talin, A. Alec; El Gabaly, Farid] Sandia Natl Labs, Livermore, CA 94551 USA. [Ruzmetov, Dmitry; Kolmakov, Andrei] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [McKelvey, Kim; White, Henry S.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Ware, Nicholas; Dunn, Bruce] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Ruzmetov, Dmitry] US Army Res Lab, Adelphi, MD USA. RP Talin, AA (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM aatalin@sandia.gov RI Kolmakov, Andrei/B-1460-2017 OI Kolmakov, Andrei/0000-0001-5299-4121 FU Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center - U.S. DOE, Office of Science, Office of Basic Energy Sciences [DESC0001160]; University of Maryland [70NANB10H193]; National Institute of Standards and Technology Center for Nanoscale Science and Technology [70NANB10H193]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX A.A.T., KM., N.W., F.E.G., B.D., and H.S.W. were supported by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under award DESC0001160. The authors acknowledge CNST NIST NanoFab personnel for help in fabrications and tests of the 3D batteries. D.R acknowledges support under the Cooperative Research Agreement between the University of Maryland and the National Institute of Standards and Technology Center for Nanoscale Science and Technology, Award 70NANB10H193, through the University of Maryland. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 18 TC 0 Z9 0 U1 58 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 30 PY 2016 VL 8 IS 47 BP 32385 EP 32391 DI 10.1021/acsami.6b12244 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA ED9AF UT WOS:000389161600033 PM 27933836 ER PT J AU Chekanov, SV Demarteau, M AF Chekanov, S. V. Demarteau, M. TI Conceptual design studies for a CEPC detector SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE e(+)e(-); jets; Monte Carlo; CEPC AB The physics potential of the Circular Electron Positron Collider (CEPC) can be significantly strengthened by two detectors with complementary designs. A promising detector approach based on the Silicon Detector (SiD) designed for the International Linear Collider (ILC) is presented. Several simplifications of this detector for the lower energies expected at the CEPC are proposed. A number of cost optimizations of this detector are illustrated using full detector simulations. We show that the proposed changes will enable one to reach the physics goals at the CEPC. C1 [Chekanov, S. V.; Demarteau, M.] Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Chekanov, SV (reprint author), Argonne Natl Lab, HEP Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chekanov@anl.gov; demarteau@anl.gov FU National Science Foundation; U.S. Department of Energy's Office of Science; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357] FX This research was done using resources provided by the Open Science Grid, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Argonne National Laboratory's work was supported by the U.S. Department of Energy under contract DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 13 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 30 PY 2016 VL 31 IS 33 SI SI AR 1644021 DI 10.1142/S0217751X16440218 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EE5NR UT WOS:000389655400021 ER PT J AU Ge, SF He, HJ Xiao, RQ AF Ge, Shao-Feng He, Hong-Jian Xiao, Rui-Qing TI Testing Higgs coupling precision and new physics scales at lepton colliders SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Lepton collider; dimension-6 operator; collider phenomenology ID BROKEN SYMMETRIES; LHC; BOSON; MASS AB The next-generation lepton colliders, such as CEPC, FCC-ee, and ILC will make precision measurement of the Higgs boson properties. We first extract the Higgs coupling precision from Higgs observables at CEPC to illustrate the potential of future lepton colliders. Depending on the related event rates, the precision can reach percentage level for most couplings. Then, we try to estimate the new physics scales that can be indirectly probed with Higgs and electroweak precision observables. The Higgs observables, together with the existing electroweak precision observables, can probe new physics up to 10 TeV (40 TeV for the gluon-related operator O-g) at 95% C.L. Including the Z/W mass measurements and Z-pole observables at CEPC further pushes the limit up to 35 TeV. Although Z-pole running is originally for the purpose of machine calibration, it can be as important as the Higgs observables for probing the new physics scales indirectly. The indirect probe of new physics scales at lepton colliders can mainly cover the energy range to be explored by the following hadron colliders of pp (50-100 TeV), such as SPPC and FCC-hh. C1 [Ge, Shao-Feng] Max Planck Inst Kernphys, Heidelberg, Germany. [He, Hong-Jian; Xiao, Rui-Qing] Tsinghua Univ, Inst Modern Phys, Beijing 100084, Peoples R China. [He, Hong-Jian; Xiao, Rui-Qing] Tsinghua Univ, Ctr High Energy Phys, Beijing 100084, Peoples R China. [He, Hong-Jian] Peking Univ, Ctr High Energy Phys, Beijing 100871, Peoples R China. [Xiao, Rui-Qing] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ge, SF (reprint author), Max Planck Inst Kernphys, Heidelberg, Germany. EM gesf02@gmail.com; hjhe@tsinghua.edu.cn; ruiqingxiao@lbl.gov NR 51 TC 0 Z9 0 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 30 PY 2016 VL 31 IS 33 SI SI AR 1644004 DI 10.1142/S0217751X16440048 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EE5NR UT WOS:000389655400005 ER PT J AU Li, YJ Yang, LY AF Li, Yongjun Yang, Lingyun TI Multi-objective dynamic aperture optimization for storage rings SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Multi-objective optimization; dynamic aperture; storage ring AB We report an efficient dynamic aperture (DA) optimization approach using multi objective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA. C1 [Li, Yongjun; Yang, Lingyun] Brookhaven Natl Lab, NSLS Dept 2, Energy Sci Directorate, Upton, NY 11973 USA. RP Li, YJ (reprint author), Brookhaven Natl Lab, NSLS Dept 2, Energy Sci Directorate, Upton, NY 11973 USA. FU Department of Energy [DE-AC02-98CH10886] FX This work was supported by Department of Energy with Contract No. DE-AC02-98CH10886. NR 10 TC 0 Z9 0 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 30 PY 2016 VL 31 IS 33 SI SI AR 1644019 DI 10.1142/S0217751X1644019X PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EE5NR UT WOS:000389655400019 ER PT J AU Liu, Z AF Liu, Zhen TI Probing the Higgs with angular observables at future e(+)e(-) colliders SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Asymmetries; Higgs boson; collider; ILC; CEPC; FCC; EFT; higher-dimensional operators ID BOSON; LHC AB I summarize our recent works on using differential observables to explore the physics potential of future e(+)e-colliders in the framework of Higgs effective field theory. This proceeding is based upon Refs. 1 and 2. We study angular observables in the e(+)e--> Z Hl(+)l(-)b (b) over bar channel at future circular e(+)e-colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy root s = 240 GeV and 5 (30) ab(-1) integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgsstrahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of constraining the "blind spot" in indirect limits on supersymmetric scalar top partners. We also discuss the possibility of using ZZ-fusion at e(+)e-machines at different energies to probe new operators. C1 [Liu, Zhen] Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. RP Liu, Z (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM zliu2@fnal.gov OI Liu, Zhen/0000-0002-3143-1976 NR 26 TC 0 Z9 0 U1 3 U2 3 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 30 PY 2016 VL 31 IS 33 SI SI AR 1644005 DI 10.1142/S0217751X1644005X PG 12 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EE5NR UT WOS:000389655400006 ER PT J AU Quigg, C AF Quigg, Chris TI Future colliders symposium in Hong Kong: Scientific overview SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Article DE Higgs boson; hadron colliders; electron positron colliders ID HIGGS-BOSON; ATLAS DETECTOR; CONSTRAINTS; MASS; LHC AB Opening Lecture at the Hong Kong University of Science and Technology Jockey Club Institute for Advanced Study Program on High Energy Physics Conference, January 18-21, 2016. C1 [Quigg, Chris] Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. RP Quigg, C (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM quigg@fnal.gov FU United States Department of Energy [De-AC02-07CH11359] FX Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. I thank the conference organizers for the kind invitation to speak. I am grateful to Henry Tye and members of the Jockey Club Institute for Advanced Study for their generous hospitality, to the participants for their contributions to a stimulating environment, and to Prudence Wong for her gracious practical assistance. I thank John Campbell for providing Fig. 3, and for helpful discussions. NR 46 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 30 PY 2016 VL 31 IS 33 SI SI AR 1644001 DI 10.1142/S0217751X16440012 PG 17 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EE5NR UT WOS:000389655400002 ER PT J AU Gimbert-Surinach, C Moonshiram, D Francas, L Planas, N Bernales, V Bozoglian, F Guda, A Mognon, L Lopez, I Hogue, MA Gagliardi, L Cramer, CJ Llobet, A AF Gimbert-Surinach, Carolina Moonshiram, Dooshaye Francas, Laia Planas, Nora Bernales, Varinia Bozoglian, Fernando Guda, Alexander Mognon, Lorenzo Lopez, Isidoro Hogue, Md Asmaul Gagliardi, Laura Cramer, Christopher J. Llobet, Antoni TI Structural and Spectroscopic Characterization of Reaction Intermediates Involved in a Dinuclear Co-Hbpp Water Oxidation Catalyst SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID K-EDGE; COMPLEX; SITE; O-2; CYTOCHROME-P450; IDENTIFICATION; PHOTOANODES; MECHANISM; RAMAN AB An end-on superoxido complex with the formula {[Co-III(OH2) (trpy)] [Co-III(OO center dot) (trpy) (mu-bpp)}(4+) (3(4+)) (bpp(-) = bis(2-pyridyl)-3,5-pyrazolate; trpy = 2,2';6':2 ''-terpyridine) has been characterized by resonance Raman, electron paramagnetic resonance, and X-ray absorption spectroscopies. These results together with online mass spectrometry experiments using O-17 and O-18 isotopically labeled compounds prove that this compound is a key intermediate of the water oxidation reaction catalyzed by the peroxido-bridged complex {[Co-III(trpy)](2)(mu-bpp) (mu-OO)}(3+) (1(3+)). DFT calculations agree with and complement the experimental data, offering a complete description of the transition states and intermediates involved in the catalytic cycle. C1 [Gimbert-Surinach, Carolina; Francas, Laia; Bozoglian, Fernando; Mognon, Lorenzo; Lopez, Isidoro; Hogue, Md Asmaul; Llobet, Antoni] Barcelona Inst Sci & Technol, Inst Chem Res Catalonia ICIQ, Ave Paisos Catalans 16, Tarragona 43007, Spain. [Moonshiram, Dooshaye] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Lemont, IL 60439 USA. [Planas, Nora; Bernales, Varinia; Gagliardi, Laura; Cramer, Christopher J.] Univ Minnesota, Dept Chem, Supercomp Inst, 207 Pleasant St SE, Minneapolis, MN 55455 USA. [Planas, Nora; Bernales, Varinia; Gagliardi, Laura; Cramer, Christopher J.] Univ Minnesota, Chem Theory Ctr, 207 Pleasant St SE, Minneapolis, MN 55455 USA. [Guda, Alexander] Southern Fed Univ, Int Res Ctr Smart Mat, Rostov Na Donu 344090, Russia. [Llobet, Antoni] Univ Autonoma Barcelona, Dept Quim, E-08193 Barcelona, Spain. RP Llobet, A (reprint author), Barcelona Inst Sci & Technol, Inst Chem Res Catalonia ICIQ, Ave Paisos Catalans 16, Tarragona 43007, Spain.; Cramer, CJ (reprint author), Univ Minnesota, Dept Chem, Supercomp Inst, 207 Pleasant St SE, Minneapolis, MN 55455 USA.; Cramer, CJ (reprint author), Univ Minnesota, Chem Theory Ctr, 207 Pleasant St SE, Minneapolis, MN 55455 USA.; Llobet, A (reprint author), Univ Autonoma Barcelona, Dept Quim, E-08193 Barcelona, Spain. EM cramer@umn.edu; allobet@iciq.cat RI Cramer, Christopher/B-6179-2011; OI Cramer, Christopher/0000-0001-5048-1859; Moonshiram, Dooshaye/0000-0002-9075-3035; Mognon, Lorenzo/0000-0001-8501-9234; Francas Forcada, Laia/0000-0001-9171-6247 FU MINECO; FEDER [CTQ2016-80058-R, SEV-2013-0319, CTQ2014-52974-REDC]; EU COST Actions [CM1202, CM1205]; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), CSGB Division [DE-AC02-06CH11357]; U.S. DOE; Canadian Light Source; U.S. NSF [CHE-1361595]; U.S. DOE, Basic Energy Sciences, under SciDAC [DE-SC0008666]; Russian Ministry of Education and Science [14.587.21.0002, RFMEFI58714X0002] FX Financial support from MINECO and FEDER (CTQ2016-80058-R, SEV-2013-0319, and CTQ2014-52974-REDC) and EU COST Actions CM1202 and CM1205 is acknowledged. D.M. thanks the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), CSGB Division (Contract DE-AC02-06CH11357) and resources of the Advanced Photon Source (APS) and Center of Nanoscale Materials both at Argonne National Laboratory (ANL). Dr. Sun from Sector 20 (APS), supported by U.S. DOE and the Canadian Light Source, is also acknowledged. C.J.C. thanks the U.S. NSF for support (CHE-1361595). L.G. was partially supported by the U.S. DOE, Basic Energy Sciences, under SciDAC (Grant No. DE-SC0008666). A.G. thanks the Russian Ministry of Education and Science for the financial support (Agreement No. 14.587.21.0002, unique identifier RFMEFI58714X0002). NR 32 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 30 PY 2016 VL 138 IS 47 BP 15291 EP 15294 DI 10.1021/jacs.6b08532 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA ED8ZV UT WOS:000389160500002 PM 27933924 ER PT J AU Bruns, CJ Liu, HW Francis, MB AF Bruns, Carson J. Liu, Hanwei Francis, Matthew B. TI Near-Quantitative Aqueous Synthesis of Rotaxanes via Bioconjugation to Oligopeptides and Proteins SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CLICK CHEMISTRY; MOLECULAR MACHINES; BIOCLEAVABLE POLYROTAXANE; TEMPLATED SYNTHESIS; DRUG-DELIVERY; AMINO-ACIDS; HOST; PEPTIDES; WATER; BINDING AB In spite of widespread interest in rotaxane-based molecular machines and materials, rotaxanes have not been attached covalently to proteins. We describe the near-quantitative aqueous synthesis of [2]rotaxanes based on neutral and charged aqueous hosts-cucurbit[7]uril (CB7) and cyclobis(paraquat-p-phenylene) (CBPQT(4+)), respectively using the thiol-ene addition of cysteine and maleimide as a stoppering protocol. After verifying the high efficiency of the reaction using glutathione (GSH) as an oligopeptide stopper, we have employed cytochrome C (CytC) as a protein stopper to produce the first well characterized protein-rotaxane bioconjugates. We anticipate that this methodology will enable the preparation of novel materials that combine the unique properties of proteins and mechanical bonds. C1 [Bruns, Carson J.; Liu, Hanwei; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bruns, Carson J.] Univ Calif Berkeley, Miller Inst, Berkeley, CA 94720 USA. [Francis, Matthew B.] Lawrence Berkeley Natl Lab, Dept Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Francis, MB (reprint author), Lawrence Berkeley Natl Lab, Dept Mat Sci, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU NSF [CHE-1413666]; Miller Institute for Basic Research in Science at UC Berkeley FX This work was supported by the NSF (CHE-1413666). C.J.B. was supported by the Miller Institute for Basic Research in Science at UC Berkeley. NR 81 TC 0 Z9 0 U1 33 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 30 PY 2016 VL 138 IS 47 BP 15307 EP 15310 DI 10.1021/jacs.6b10231 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA ED8ZV UT WOS:000389160500006 PM 27933926 ER PT J AU Ming, W Yoon, M Du, MH Lee, K Kim, SW AF Ming, Wenmei Yoon, Mina Du, Mao-Hua Lee, Kimoon Kim, Sung Wng TI First-Principles Prediction of Thermodynamically Stable Two-Dimensional Electrides SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PBFCL-TYPE COMPOUNDS; HIGH-PRESSURE; INORGANIC ELECTRIDE; AMMONIA-SYNTHESIS; ROOM-TEMPERATURE; WORK FUNCTION; ANIONS; SR; CA; CATALYST AB Two-dimensional (2D) electrides, emerging as a new type of layered material whose electrons are confined in interlayer spaces instead of at atomic proximities, are receiving interest for their high performance in various (opto)electronics and catalytic applications. Experimentally, however, 2D electrides have been only found in a couple of layered nitrides and carbides. Here, we report new thermodynamically stable alkaline-earth based 2D electrides by using a first-principles global structure optimization method, phonon spectrum analysis, and molecular dynamics simulation. The method was applied to binary compounds consisting of alkaline-earth elements as cations and group VA, VIA, or VITA nonmetal elements as anions. We revealed that the stability of a layered 2D electride structure is closely related to the cation/anion size ratio; stable 2D electrides possess a sufficiently large cation/anion size ratio to minimize electrostatic energy among cations, anions, and anionic electrons. Our work demonstrates a new avenue to the discovery of thermodynamically stable 2D electrides beyond experimental material databases and provides new insight into the principles of electride design. C1 [Ming, Wenmei; Yoon, Mina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ming, Wenmei; Du, Mao-Hua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yoon, Mina] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37916 USA. [Lee, Kimoon] Kunsan Natl Univ, Dept Phys, Gunsan 573701, Jeonbuk, South Korea. [Kim, Sung Wng] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, Gyeonggi Do, South Korea. RP Yoon, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Yoon, M (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37916 USA.; Kim, SW (reprint author), Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, Gyeonggi Do, South Korea. EM myoon@ornl.gov; kimsungwng@sldw.edu RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X FU Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2015M3D1A1070639]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Research (W.M. and M.Y.) was performed at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. This research was supported by Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015M3D1A1070639). W.M. was partly supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battle, LLC, for the U.S. DOE. M.-H.D. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Computing resources were provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 0 Z9 0 U1 36 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 30 PY 2016 VL 138 IS 47 BP 15336 EP 15344 DI 10.1021/jacs.6b05586 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA ED8ZV UT WOS:000389160500011 PM 27764942 ER PT J AU Meehan, TD Gratton, C AF Meehan, Timothy D. Gratton, Claudio TI A Landscape View of Agricultural Insecticide Use across the Conterminous US from 1997 through 2012 SO PLOS ONE LA English DT Article ID GEOGRAPHICALLY WEIGHTED REGRESSION; NATURAL PEST-CONTROL; SPATIAL AUTOCORRELATION; CLIMATE-CHANGE; SOYBEAN APHID; CROP PEST; SIMPLIFICATION; MODELS; NONSTATIONARITY; BIODIVERSITY AB Simplification of agricultural landscapes is expected to have positive effects on many crop pests and negative effects on their natural enemies, potentially leading to increased pest pressure, decreased crop yield, and increased insecticide use. While many intermediate links in this causal chain have empirical support, there is mixed evidence for ultimate relationships between landscape simplification, crop yield, and insecticide use, especially at large spatial and temporal scales. We explored relationships between landscape simplification (proportion of a county in harvested cropland) and insecticide use (proportion of harvested cropland treated with insecticides), using county-level data from the US Census of Agriculture and a variety of standard and spatiotemporal regression techniques. The best model indicated that insecticide use across the US has increased between 1997 and 2012, was strongly dependent on the crops grown in a county, increased with average farm income and size, and increased with annual growing degree days. After accounting for those variables, and other unidentified spatial and temporal structure in the data, there remained a statistically significant, moderate, positive relationship between insecticide use and landscape simplification. These results lend general support to the causal chain outlined above, and to the notion that a landscape perspective is useful for managing ecosystem services that are provided by mobile organisms and valuable to agriculture. C1 [Meehan, Timothy D.] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA. Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Meehan, Timothy D.] Natl Audubon Soc, Div Sci, Boulder, CO 80302 USA. RP Meehan, TD (reprint author), Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA.; Meehan, TD (reprint author), Natl Audubon Soc, Div Sci, Boulder, CO 80302 USA. EM tmeehan@audubon.org FU US Department of Energy (DOE) Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; US DOE OBP Office of Energy and Renewable Energy [DE-AC05-76RL01830] FX This work was funded by the US Department of Energy (DOE) Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and by the US DOE OBP Office of Energy and Renewable Energy (DE-AC05-76RL01830). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 0 Z9 0 U1 7 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 30 PY 2016 VL 11 IS 11 AR e0166724 DI 10.1371/journal.pone.0166724 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EE3FV UT WOS:000389474100034 PM 27902726 ER PT J AU Nakajima, T Tokunaga, Y Matsuda, M Dissanayake, S Fernandez-Baca, J Kakurai, K Taguchi, Y Tokura, Y Arima, TH AF Nakajima, Taro Tokunaga, Yusuke Matsuda, Masaaki Dissanayake, Sachith Fernandez-Baca, Jaime Kakurai, Kazuhisa Taguchi, Yasujiro Tokura, Yoshinori Arima, Taka-hisa TI Magnetic structures and excitations in a multiferroic Y-type hexaferrite BaSrCo2Fe11AlO22 SO PHYSICAL REVIEW B LA English DT Article ID HELIMAGNET; POLARIZATION AB We have investigated magnetic orders and excitations in a Y-type hexaferrite BaSrCo2Fe11AlO22 (BSCoFAO), which was reported to exhibit spin-driven ferroelectricity at room temperature [S. Hirose, K. Haruki, A. Ando, and T. Kimura, Appl. Phys. Lett. 104, 022907 (2014)]. By means of magnetization, electric polarization, and neutron-diffraction measurements using single-crystal samples, we establish a H-T magnetic phase diagram for magnetic field perpendicular to the c axis (H-perpendicular to c). This system exhibits an alternating longitudinal conical (ALC) magnetic structure in the ground state, and it turns into a non-co-planar commensurate magnetic order with spin-driven ferroelectricity under H-perpendicular to c. The field-induced ferroelectric phase remains as a metastable state after removing magnetic field below similar to 250 K. This metastability is the key to understanding of magnetic field reversal of the spin-driven electric polarization in this system. Inelastic polarized neutron-scattering measurements in the ALC phase reveal a magnetic excitation at around 7.5 meV, which is attributed to spin components oscillating in a plane perpendicular to the cone axis. This phasonlike excitation is expected to be an electric-field active magnon, i.e., electromagnon excitation, in terms of the magnetostriction mechanism. C1 [Nakajima, Taro; Tokunaga, Yusuke; Kakurai, Kazuhisa; Taguchi, Yasujiro; Tokura, Yoshinori; Arima, Taka-hisa] RIKEN Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan. [Tokunaga, Yusuke; Arima, Taka-hisa] Univ Tokyo, Dept Adv Mat Sci, Kashiwa, Chiba 2778561, Japan. [Matsuda, Masaaki; Dissanayake, Sachith; Fernandez-Baca, Jaime] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Fernandez-Baca, Jaime] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Kakurai, Kazuhisa] Japan Atom Energy Agcy, Quantum Beam Sci Ctr, Tokai, Ibaraki 3191195, Japan. [Tokura, Yoshinori] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan. [Tokura, Yoshinori] Univ Tokyo, Quantum Phase Elect Ctr, Tokyo 1138656, Japan. [Kakurai, Kazuhisa] Comprehens Res Org Sci & Soc, Neutron Sci & Technol Ctr, Tokai, Ibaraki 3191106, Japan. RP Nakajima, T (reprint author), RIKEN Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan. EM taro.nakajima@riken.jp RI Tokunaga, Yusuke/B-3008-2013; Taguchi, Yasujiro/A-3048-2010; Tokura, Yoshinori/C-7352-2009; Matsuda, Masaaki/A-6902-2016; Nakajima, Taro/G-5191-2010; Arima, Taka-hisa/G-9217-2012 OI Matsuda, Masaaki/0000-0003-2209-9526; Nakajima, Taro/0000-0001-6557-5508; FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S.-Japan Cooperative Program on Neutron Scattering FX The neutron-scattering work at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This study was supported in part by the U.S.-Japan Cooperative Program on Neutron Scattering. The images of the crystal and magnetic structures in this paper were depicted using the software VESTA [30] developed by K. Momma. NR 29 TC 1 Z9 1 U1 21 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 30 PY 2016 VL 94 IS 19 AR 195154 DI 10.1103/PhysRevB.94.195154 PG 11 WC Physics, Condensed Matter SC Physics GA ED4LG UT WOS:000388819100001 ER PT J AU Hartley, DJ Janssens, RVF Riedinger, LL Riley, MA Wang, X Miller, SL Ayangeakaa, AD Bertone, PF Carpenter, MP Chiara, CJ Chowdhury, P Garg, U Gurdal, G Hota, SS Kondev, FG Lauritsen, T Ma, WC Matta, J McCutchan, EA Mukhopadhyay, S Pedicini, EE Vanhoy, JR Zhu, S AF Hartley, D. J. Janssens, R. V. F. Riedinger, L. L. Riley, M. A. Wang, X. Miller, S. L. Ayangeakaa, A. D. Bertone, P. F. Carpenter, M. P. Chiara, C. J. Chowdhury, P. Garg, U. Gurdal, G. Hota, S. S. Kondev, F. G. Lauritsen, T. Ma, W. C. Matta, J. McCutchan, E. A. Mukhopadhyay, S. Pedicini, E. E. Vanhoy, J. R. Zhu, S. TI First observation of rotational structures in Re-168 SO PHYSICAL REVIEW C LA English DT Article ID DOUBLY ODD NUCLEI; SIGNATURE INVERSION; COINCIDENCE DATA; TRIAXIALITY; DECAY AB The first rotational sequences have been assigned to the odd-odd nucleus Re-168. Coincidence relationships of these structures with rhenium x rays confirm the isotopic assignment, while arguments based on the gamma-ray multiplicity (K-fold) distributions observed with the new bands lead to the mass assignment. Configurations for the two bands were determined through analysis of the rotational alignments of the structures and a comparison of the experimental B(M1)/B(E2) ratios with theory. Tentative spin assignments are proposed for the pi h(11/2)nu i(13/2) band, based on energy level systematics for other known sequences in neighboring odd-odd rhenium nuclei, as well as on systematics seen for the signature inversion feature that is well known in this region. The spin assignment for the pi h(11/2)nu(h(9/2)/f(7/2)) structure provides additional validation of the proposed spins and configurations for isomers in the Au-176 -> Ir-172 -> Re-168 alpha-decay chain. C1 [Hartley, D. J.; Pedicini, E. E.; Vanhoy, J. R.; Zhu, S.] US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. [Janssens, R. V. F.; Ayangeakaa, A. D.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Lauritsen, T.; McCutchan, E. A.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Riedinger, L. L.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Riley, M. A.; Wang, X.; Miller, S. L.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Ayangeakaa, A. D.; Garg, U.; Matta, J.; Mukhopadhyay, S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chiara, C. J.; Gurdal, G.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chowdhury, P.; Hota, S. S.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Ma, W. C.] Mississippi State Univ, Dept Phys, Mississippi State, MS 39762 USA. [Wang, X.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Bertone, P. F.] Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Chiara, C. J.] US Army, Res Lab, Adelphi, MD 20783 USA. [Gurdal, G.] Millsaps Coll, Dept Phys, Jackson, MS 39210 USA. [Hota, S. S.] Australian Natl Univ, Dept Nucl Phys, RSPE, Canberra, ACT 2601, Australia. [Matta, J.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [McCutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Mukhopadhyay, S.] Bhabha Atom Res Ctr, Div Nucl Phys, Mumbai 400085, Maharashtra, India. RP Hartley, DJ (reprint author), US Naval Acad, Dept Phys, Annapolis, MD 21402 USA. FU National Science Foundation [PHY-1203100, PHY-0754674, PHY10-68192]; US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40848, DE-FG02-96ER40983, DE-FG02-95ER40939, DE-FG02-94ER40834] FX The authors thank the ANL operations staff at Gammasphere and gratefully acknowledge the efforts of J. P. Greene for target preparation. We thank D. C. Radford and H. Q. Jin for their software support. This work is funded by the National Science Foundation under GrantS No. PHY-1203100 (USNA), No. PHY-0754674 (FSU), and No. PHY10-68192 (ND), as well as by the US Department of Energy, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (ANL), No. DE-FG02-94ER40848 (UML), No. DE-FG02-96ER40983 (UT), No. DE-FG02-95ER40939 (MSU), and No. DE-FG02-94ER40834 (UMCP). This research used resources of Argonne National Laboratory's ATLAS facility, which is a DOE Office of Science User Facility. NR 22 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 30 PY 2016 VL 94 IS 5 AR 054329 DI 10.1103/PhysRevC.94.054329 PG 7 WC Physics, Nuclear SC Physics GA ED4ML UT WOS:000388822700002 ER PT J AU Braiman, Y Neschke, B Nair, N Imam, N Glowinski, R AF Braiman, Y. Neschke, B. Nair, N. Imam, N. Glowinski, R. TI Memory states in small arrays of Josephson junctions SO PHYSICAL REVIEW E LA English DT Article ID RAM AB We study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations. C1 [Braiman, Y.; Neschke, B.; Nair, N.] Oak Ridge Natl Lab, Comp Sci & Math Div, Comp & Computat Sci Directorate, Oak Ridge, TN 37831 USA. [Braiman, Y.; Neschke, B.; Nair, N.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Imam, N.] Oak Ridge Natl Lab, Comp & Computat Sci Directorate, Oak Ridge, TN 37831 USA. [Glowinski, R.] Univ Houston, Dept Math, Houston, TX 77204 USA. [Neschke, B.] Raytheon Missile Syst, Tucson, AZ 85730 USA. RP Braiman, Y (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Comp & Computat Sci Directorate, Oak Ridge, TN 37831 USA.; Braiman, Y (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. FU United States Department of Defense; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by the United States Department of Defense and used resources from the Extreme Scale Systems Center, located at Oak Ridge National Laboratory. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We would like to acknowledge very valuable conversations and constructive feedback from Stephen Poole. NR 23 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 30 PY 2016 VL 94 IS 5 AR 052223 DI 10.1103/PhysRevE.94.052223 PG 13 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA ED4QM UT WOS:000388835200004 PM 27967037 ER PT J AU Pedersen, TS Otte, M Lazerson, S Helander, P Bozhenkov, S Biedermann, C Klinger, T Wolf, RC Bosch, HS AF Pedersen, T. Sunn Otte, M. Lazerson, S. Helander, P. Bozhenkov, S. Biedermann, C. Klinger, T. Wolf, R. C. Bosch, H. -S. CA Wendelstein 7-X Team TI Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000 SO NATURE COMMUNICATIONS LA English DT Article ID STELLARATOR; SURFACES; TORSATRON AB Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy. C1 [Pedersen, T. Sunn; Otte, M.; Helander, P.; Bozhenkov, S.; Biedermann, C.; Klinger, T.; Wolf, R. C.; Bosch, H. -S.] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. [Pedersen, T. Sunn; Helander, P.; Klinger, T.] Ernst Moritz Arndt Univ Greifswald, Domstr 11, D-17489 Greifswald, Germany. [Lazerson, S.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Wolf, R. C.; Bosch, H. -S.] Tech Univ Berlin, Str 17 Juni 135, D-10623 Berlin, Germany. RP Pedersen, TS (reprint author), Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany.; Pedersen, TS (reprint author), Ernst Moritz Arndt Univ Greifswald, Domstr 11, D-17489 Greifswald, Germany. EM thomas.sunn.pedersen@ipp.mpg.de RI Calvo, Ivan/B-3444-2009; Velasco, Jose/F-9486-2012; Pastor, Ignacio/C-4279-2017; Hidalgo, Carlos/H-6109-2015; van Milligen, Boudewijn/H-5121-2015; Cappa, Alvaro/C-5614-2017; Ascasibar, Enrique/B-7498-2014; Goncalves, Bruno/H-8679-2012; OI Neubauer, Olaf/0000-0002-4516-4397; garcia-munoz, manuel/0000-0002-3241-502X; Castejon, Francisco/0000-0002-4654-0542; Calvo, Ivan/0000-0003-3118-3463; Velasco, Jose/0000-0001-8510-1422; Pastor, Ignacio/0000-0003-0891-0941; van Milligen, Boudewijn/0000-0001-5344-6274; Cappa, Alvaro/0000-0002-2250-9209; Ascasibar, Enrique/0000-0001-8124-0994; Goncalves, Bruno/0000-0003-0670-1214; Estrada, Teresa/0000-0001-6205-2656 FU Euratom research and training programme [633053]; US DOE grant [DE-AC02-09CH11466] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. S.L. acknowledges support from US DOE grant DE-AC02-09CH11466. T.S.P. thanks U. Nielsen and K. Sondergaard Larsen for useful suggestions to improve the text. NR 33 TC 2 Z9 2 U1 16 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 30 PY 2016 VL 7 AR 13493 DI 10.1038/ncomms13493 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4HY UT WOS:000388809900001 PM 27901043 ER PT J AU Yu, Y Nikiforov, AY Kaspar, TC Woicik, JC Ludwig, KF Gopalan, S Pal, UB Basu, SN AF Yu, Yang Nikiforov, Alexey Y. Kaspar, Tiffany C. Woicik, Joseph C. Ludwig, Karl F. Gopalan, Srikanth Pal, Uday B. Basu, Soumendra N. TI Chemical characterization of surface precipitates in La0.7Sr0.3Co0.2Fe0.8O3-delta as cathode material for solid oxide fuel cells SO JOURNAL OF POWER SOURCES LA English DT Article DE Solid oxide fuel cells; Strontium doped lanthanum cobalt ferrite; Strontium surface segregation; Transmission electron microscope; Total reflection X-ray fluorescence; Hard X-ray photoelectron spectroscopy ID PEROVSKITE-TYPE OXIDES; SITU X-RAY; FILM CATHODES; SOFC CATHODES; LA0.6SR0.4CO0.2FE0.8O3-DELTA; DEGRADATION; SPECTROSCOPY; SEGREGATION; PERFORMANCE; TRANSPORT AB In this study, a strontium doped lanthanum cobalt ferrite thin film with 30% Sr on A-site, denoted as La0.7Sr0.3Co0.2Fe0.8O3-delta or LSCF-7328, is investigated before and after annealing at 800 degrees C under CO2 containing atmosphere for 9 h. The formation of secondary phases on surface of post-annealed LSCF-7328 is observed using atomic force microscope (AFM) and scanning electron microscope (SEM). The extent of Sr segregation at the film surface is monitored using the synchrotron-based total reflection Xray fluorescence (TXRF) technique. The bonding environment of the secondary phases formed on the surface is investigated by synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Scanning transmission electron microscopy (STEM) and related spectroscopy techniques are used for micro structural and quantitative elemental analyses of the secondary phases on surface. These studies reveal that the secondary phases on surface consist of SrO covered with a capping layer of SrCO3. The formation of Co-rich phases is observed on the surface of post-annealed LSCF-7328. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yu, Yang; Ludwig, Karl F.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.] Boston Univ, Div Mat Sci & Engn, Brookline, MA 02446 USA. [Nikiforov, Alexey Y.] Boston Univ, Photon Ctr, Boston, MA 02215 USA. [Kaspar, Tiffany C.] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99354 USA. [Woicik, Joseph C.] Natl Inst Stand & Technol, Mat Measurement Lab, Gaithersburg, MD 20899 USA. [Ludwig, Karl F.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA. RP Basu, SN (reprint author), Boston Univ, Div Mat Sci & Engn, Brookline, MA 02446 USA. EM basu@bu.edu FU DOE SECA program [DEFC2612FE0009656]; Office of Biological and Environmental Research; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work is supported through the DOE SECA program under Grant DEFC2612FE0009656. A portion of the research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors acknowledge the use of the FIB/TEM Facility in the Photonics Center of Boston University. The authors would like to acknowledge the contribution of Mr. Barry Karlin at NIST. NR 30 TC 0 Z9 0 U1 38 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD NOV 30 PY 2016 VL 333 BP 247 EP 253 DI 10.1016/j.jpowsour.2016.09.166 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA EA2DT UT WOS:000386403700027 ER PT J AU Kumar, CMN Xiao, Y Nair, HS Voigt, J Schmitz, B Chatterji, T Jalarvo, NH Bruckel, T AF Kumar, C. M. N. Xiao, Y. Nair, H. S. Voigt, J. Schmitz, B. Chatterji, T. Jalarvo, N. H. Brueckel, Th TI Hyperfine and crystal field interactions in multiferroic HoCrO3 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE multiferroics; crystal field levels; nuclear hyperfine splitting; specific heat; inelastic neutron scattering ID TEMPERATURE SPECIFIC-HEAT; RARE-EARTH ORTHOFERRITES; METAL-INSULATOR-TRANSITION; POLAR OCTAHEDRAL ROTATIONS; NEUTRON-DIFFRACTION; MAGNETIC-STRUCTURES; ORTHOCHROMITES; CHROMITES; HOLMIUM; FERROELECTRICITY AB We report a comprehensive specific heat and inelastic neutron scattering study to explore the possible origin of multiferroicity in HoCrO3. We have performed specific heat measurements in the temperature range 100 mK-290 K and inelastic neutron scattering measurements were performed in the temperature range 1.5-200 K. From the specific heat data we determined hyperfine splitting at 22.5(2) mu eV and crystal field transitions at 1.379(5) meV, 10.37(4) meV, 15.49(9) meV and 23.44(9) meV, indicating the existence of strong hyperfine and crystal field interactions in HoCrO3. Further, an effective hyperfine field is determined to be 600(3) T. The quasielastic scattering observed in the inelastic scattering data and a large linear term gamma = 6.3(8) mJ mol(-1) K-2 in the specific heat is attributed to the presence of short range exchange interactions, which is understood to be contributing to the observed ferroelectricity. Further the nuclear and magnetic entropies were computed to be, similar to 17.2 Jmol(-1) K-1 and similar to 34 Jmol(-1) K-1, respectively. The entropy values are in excellent agreement with the limiting theoretical values. An anomaly is observed in the peak position of the temperature dependent crystal field spectra around 60 K, at the same temperature an anomaly in the pyroelectric current is reported. From this we could elucidate a direct correlation between the crystal electric field excitations of Ho3+ and ferroelectricity in HoCrO3. Our present study, along with recent reports, confirm that HoCrO3, and RCrO3 (R = rare earth) in general, possess more than one driving force for the ferroelectricity and multiferroicity. C1 [Kumar, C. M. N.; Xiao, Y.; Voigt, J.; Schmitz, B.; Brueckel, Th] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany. [Kumar, C. M. N.; Xiao, Y.; Voigt, J.; Schmitz, B.; Brueckel, Th] Forschungszentrum Julich, Peter Grunberg Inst PGI, JARA FIT, D-52425 Julich, Germany. [Kumar, C. M. N.; Jalarvo, N. H.] Forschungszentrum Julich, Oak Ridge Natl Lab, Outstn SNS, Julich Ctr Neutron Sci JCNS, Oak Ridge, TN 37831 USA. [Kumar, C. M. N.; Jalarvo, N. H.] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Nair, H. S.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Chatterji, T.] Inst Laue Langevin, BP 156, F-38042 Grenoble 9, France. RP Kumar, CMN (reprint author), Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany.; Kumar, CMN (reprint author), Forschungszentrum Julich, Peter Grunberg Inst PGI, JARA FIT, D-52425 Julich, Germany.; Kumar, CMN (reprint author), Forschungszentrum Julich, Oak Ridge Natl Lab, Outstn SNS, Julich Ctr Neutron Sci JCNS, Oak Ridge, TN 37831 USA. EM n.kumar@fz-juelich.de; y.xiao@fz-juelich.de RI Xiao, Yinguo/N-9069-2015; OI Jalarvo, Niina/0000-0003-0644-6866 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; European Project EU NMI3 FX We thank the expert assistance of T Strassle, SINQ, Paul Scherrer Institute. Part of the research conducted at SNS was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. This work is partially based on the experiments performed at the Swiss Spallation Neutron Source SINQ, instrument FOCUS (Proposal ID 20090536). Financial support from the European Project EU NMI3 is acknowledged. NR 49 TC 0 Z9 0 U1 11 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 30 PY 2016 VL 28 IS 47 AR 476001 DI 10.1088/0953-8984/28/47/476001 PG 9 WC Physics, Condensed Matter SC Physics GA DY9IX UT WOS:000385448300001 PM 27633731 ER PT J AU Lee, M Choi, ES Ma, J Sinclair, R Dela Cruz, CR Zhou, HD AF Lee, M. Choi, E. S. Ma, J. Sinclair, R. Dela Cruz, C. R. Zhou, H. D. TI Magnetism and multiferroicity of an isosceles triangular lattice antiferromagnet Sr3NiNb2O9 SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE geometrically frustrated systems; triangular lattice antiferromagnets; multiferroicity; noncollinear magnets ID HEISENBERG-ANTIFERROMAGNET; MAGNETIZATION PLATEAUS; FIELD; TRANSITIONS; CS2CUBR4 AB Various experimental measurements were performed to complete the phase diagram of a weakly distorted triangular lattice system, Sr3NiNb2O9 with Ni2+, spin-1 magnetic ions. This compound possesses an isosceles triangular lattice with two shorter bonds and one longer bond. It shows a two-step magnetic phase transition at T-N1 similar to 5.1 K and T-N2 similar to 5.5 K at zero magnetic field, characteristic of an easy-axis anisotropy. In the magnetization curves, a series of magnetic phase transitions was observed such as an up-up-down phase at mu H-0(c1) similar to 10.5 T with 1/3 of the saturation magnetization (M-sat) and an oblique phase at mu H-0(c2) similar to 16 T with root 3/3 M-sat. Intriguingly, the magnetic phase transition below T-N2 is in tandem with the ferroelectricity, which demonstrates multiferroic behaviors. Moreover, the multiferroic phase persists in all magnetically ordered phases regardless of the spin structure. The comparison between the phase diagrams of Sr3NiNb2O9 and its sister compound with an equilateral triangular lattice antiferromagnet Ba3NiNb2O9 (Hwang et al 2012 Phys. Rev. Lett. 109 257205), illustrates how a small imbalance among exchange interactions change the magnetic ground states of the TLAFs. C1 [Lee, M.] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Lee, M.; Choi, E. S.; Zhou, H. D.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Ma, J.; Zhou, H. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Dela Cruz, C. R.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37381 USA. RP Choi, ES (reprint author), Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. EM echoi@magnet.fsu.edu; hzhou10@utk.edu RI Zhou, Haidong/O-4373-2016; Lee, Minseong/D-5371-2016; Ma, Jie/C-1637-2013 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy; State of Florida; NHMFL User Collaboration Grant Program; [NSF-DMR-1157490]; [NSF-DMR 1309146]; [NSF-DMR-1350002] FX Research at Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy. The work at NHMFL is supported by NSF-DMR-1157490, NSF-DMR 1309146, the State of Florida and additional funding from NHMFL User Collaboration Grant Program. JM, RS and HDZ thank the support of NSF-DMR-1350002. NR 30 TC 0 Z9 0 U1 15 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 30 PY 2016 VL 28 IS 47 AR 476004 DI 10.1088/0953-8984/28/47/476004 PG 7 WC Physics, Condensed Matter SC Physics GA DY9IX UT WOS:000385448300004 PM 27661860 ER PT J AU Tedesco, JCG Pedro, SS Vivas, RJC Cruz, C Andrade, VM dos Santos, AM Carvalho, AMG Costa, M Venezuela, P Rocco, DL Reis, MS AF Tedesco, J. C. G. Pedro, S. S. Vivas, R. J. Caraballo Cruz, C. Andrade, V. M. dos Santos, A. M. Carvalho, A. M. G. Costa, M. Venezuela, P. Rocco, D. L. Reis, M. S. TI Chemical disorder determines the deviation of the Slater-Pauling rule for Fe2MnSi-based Heusler alloys: evidences from neutron diffraction and density functional theory SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE full Heusler compounds; intermetallics materials; ferromagnetism; Slater-Pauling rule; neutron powder diffraction ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; MAGNETIC-PROPERTIES AB Fe2MnSi fails to follow the Slater-Pauling rule. This phenomenon is thought to originate from either: (i) an antiferromagnetic arrangement of Mn ions at low temperature and/or (ii) chemical disorder. An important insight on this issue could be achieved by considering Fe2MnSi1-xGax compounds, thoroughly studied here by means of magnetization, neutron diffraction and density functional calculations (DFT). Our results indicate that chemical disorder (and not the antiferromagnetic arrangement) is responsible for the deviation of the Slater-Pauling rule on Fe2MnSi-based Heusler alloys. Furthermore, evidences suggest that Ga substitution into Si site favors the Fe/Mn disorder, further enhancing the observed deviation. C1 [Tedesco, J. C. G.] Univ Estado Rio de Janeiro, Inst Politecn Rio de Janeiro, Rua Bonfim 25, BR-28625570 Nova Friburgo, RJ, Brazil. [Tedesco, J. C. G.; Vivas, R. J. Caraballo; Cruz, C.; Andrade, V. M.; Costa, M.; Venezuela, P.; Rocco, D. L.; Reis, M. S.] Univ Fed Fluminense, Inst Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil. [Pedro, S. S.] Univ Estado Rio de Janeiro, Inst Fis, Rua Sao Francisco Xavier 524, BR-20559900 Rio De Janeiro, RJ, Brazil. [Andrade, V. M.] Univ Porto, Fac Sci, IFIMUP Dept Phys, PT-4169007 Oporto, Portugal. [dos Santos, A. M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Carvalho, A. M. G.] CNPEM, Brazilian Synchrotron Light Lab, Caixa Postal 6192, BR-13083970 Campinas, SP, Brazil. RP Tedesco, JCG (reprint author), Univ Estado Rio de Janeiro, Inst Politecn Rio de Janeiro, Rua Bonfim 25, BR-28625570 Nova Friburgo, RJ, Brazil.; Tedesco, JCG (reprint author), Univ Fed Fluminense, Inst Fis, Av Gal Milton Tavares de Souza S-N, BR-24210346 Niteroi, RJ, Brazil. EM marior@if.uff.br RI Carvalho, Alexandre/M-7818-2013; OI Caraballo Vivas, Richard Javier/0000-0001-7980-4535 FU Brazilian agency CNPq; Brazilian agency CAPES; Brazilian agency FAPERJ; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors thank Brazilian agencies CNPq, CAPES and FAPERJ for financial support. Portions of this research were conducted at ORNL's Spallation Neutron Source and the Center for Nanophase Materials Sciences. Both of these are sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 21 TC 0 Z9 0 U1 9 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 30 PY 2016 VL 28 IS 47 AR 476002 DI 10.1088/0953-8984/28/47/476002 PG 6 WC Physics, Condensed Matter SC Physics GA DY9IX UT WOS:000385448300002 PM 27633814 ER PT J AU Barbieri, R Hall, LJ Harigaya, K AF Barbieri, Riccardo Hall, Lawrence J. Harigaya, Keisuke TI Minimal mirror twin Higgs SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Cosmology of Theories beyond the SM ID STRONG-CP PROBLEM; DARK MATTER; PARTICLES; AXION; WORLD; MODEL; BARYOGENESIS; NUCLEON; LHC AB In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z(2) parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z(2) breaking, can generate the Z(2) breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals in Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z2 breaking from the vacuum expectation values of B - L breaking fields are also discussed. C1 [Barbieri, Riccardo] Swiss Fed Inst Technol, Inst Theoret Studies, CH-8092 Zurich, Switzerland. [Barbieri, Riccardo] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. [Hall, Lawrence J.; Harigaya, Keisuke] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Hall, Lawrence J.; Harigaya, Keisuke] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Barbieri, R (reprint author), Swiss Fed Inst Technol, Inst Theoret Studies, CH-8092 Zurich, Switzerland.; Barbieri, R (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. EM riccardo.barbieri@sns.it; ljhall@lbl.gov; keisukeharigaya@berkeley.edu FU Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231]; National Science Foundation [PHY-1316783, PHY-1521446, PHY-1066293]; Walter Haefner Foundation; ETH Zurich Foundation FX The work of L. J. Hall and K. Harigaya was supported in part by the Department of Energy, Office of Science, Office of High Energy Physics, under contract No. DE-AC02-05CH11231, and by the National Science Foundation under grants PHY-1316783 and PHY-1521446. R. Barbieri wants to thank Dr. Max Rossler, the Walter Haefner Foundation and the ETH Zurich Foundation for support. The work of L. J. Hall was performed in part at the Institute for Theoretical Studies ETH and at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1066293. NR 76 TC 1 Z9 1 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 29 PY 2016 IS 11 AR 172 DI 10.1007/JHEP11(2016)172 PG 35 WC Physics, Particles & Fields SC Physics GA EE5FO UT WOS:000389631100002 ER PT J AU Hea, R Kraemer, D Mao, J Zeng, L Jie, Q Lan, YC Li, CH Shuai, J Kim, HS Liu, Y Broido, D Chu, CW Chen, G Ren, Z AF Hea, Ran Kraemer, Daniel Mao, Jun Zeng, Lingping Jie, Qing Lan, Yucheng Li, Chunhua Shuai, Jing Kim, Hee Seok Liu, Yuan Broido, David Chu, Ching-Wu Chen, Gang Ren, Zhifeng TI Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE half-Heusler; thermoelectric; power factor; carrier mobility; output power density ID HIGH-THERMOELECTRIC PERFORMANCE; THERMAL-CONDUCTIVITY; CONVERSION EFFICIENCY; HIGH FIGURE; MERIT; ALLOYS; BAND; GENERATION; TRANSPORT; CRYSTALS AB Improvements in thermoelectric material performance over the past two decades have largely been based on decreasing the phonon thermal conductivity. Enhancing the power factor has been less successful in comparison. In this work, a peak power factor of similar to 106 mu W.cm(-1).K-2 is achieved by increasing the hot pressing temperature up to 1,373 K in the p-type half-Heusler Nb0.95Ti0.05FeSb. The high power factor subsequently yields a record output power density of similar to 22 W.cm(-2) based on a single-leg device operating at between 293 K and 868 K. Such a high-output power density can be beneficial for large-scale power generation applications. C1 [Hea, Ran; Mao, Jun; Jie, Qing; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Chu, Ching-Wu; Ren, Zhifeng] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Hea, Ran; Mao, Jun; Jie, Qing; Shuai, Jing; Kim, Hee Seok; Liu, Yuan; Chu, Ching-Wu; Ren, Zhifeng] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Kraemer, Daniel; Zeng, Lingping; Chen, Gang] MIT, Dept Mech Engn, Cambridge, MA 02139 USA. [Lan, Yucheng] Morgan State Univ, Dept Phys & Engn Phys, Baltimore, MD 21251 USA. [Li, Chunhua; Broido, David] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Chu, Ching-Wu] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Chu, CW; Ren, Z (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA.; Chu, CW; Ren, Z (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.; Chen, G (reprint author), MIT, Dept Mech Engn, Cambridge, MA 02139 USA.; Chu, CW (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cwchu@uh.edu; gchen2@mit.edu; zren@uh.edu RI Chen, Gang/J-1325-2014 OI Chen, Gang/0000-0002-3968-8530 FU US Department of Energy [DE-SC0010831]; "Solid State Solar Thermal Energy Conversion Center," an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Science [DE-SC0001299]; US Air Force Office of Scientific Research Grant [FA9550-15-1-0236]; T. L. L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity at the University of Houston FX This work is funded in part by the US Department of Energy under Contract DE-SC0010831 (materials synthesis and characterizations) and in part by the "Solid State Solar Thermal Energy Conversion Center," an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Science under Award DE-SC0001299 (output power density measurement), as well as by US Air Force Office of Scientific Research Grant FA9550-15-1-0236, T. L. L. Temple Foundation, John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston. NR 64 TC 2 Z9 2 U1 20 U2 20 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 29 PY 2016 VL 113 IS 48 BP 13576 EP 13581 DI 10.1073/pnas.1617663113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4QR UT WOS:000388835700038 ER PT J AU Kang, M Christian, S Celia, MA Mauzerall, DL Bill, M Miller, AR Chen, Y Conrad, ME Darrah, TH Jackson, RB AF Kang, Mary Christian, Shanna Celia, Michael A. Mauzerall, Denise L. Bill, Markus Miller, Alana R. Chen, Yuheng Conrad, Mark E. Darrah, Thomas H. Jackson, Robert B. TI Identification and characterization of high methane-emitting abandoned oil and gas wells SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE abandoned wells; oil and gas development; methane emissions; high emitters; climate change ID DRINKING-WATER WELLS; NATURAL GASES; NOBLE-GAS; PENNSYLVANIA; EMISSIONS; GEOCHEMISTRY; MARCELLUS; ORIGINS AB Recent measurements of methane emissions from abandoned oil/gas wells show that these wells can be a substantial source of methane to the atmosphere, particularly from a small proportion of high-emitting wells. However, identifying high emitters remains a challenge. We couple 163 well measurements of methane flow rates; ethane, propane, and n-butane concentrations; isotopes of methane; and noble gas concentrations from 88 wells in Pennsylvania with synthesized data from historical documents, field investigations, and state databases. Using our databases, we (i) improve estimates of the number of abandoned wells in Pennsylvania; (ii) characterize key attributes that accompany high emitters, including depth, type, plugging status, and coal area designation; and (iii) estimate attribute-specific and overall methane emissions from abandoned wells. High emitters are best predicted as unplugged gas wells and plugged/vented gas wells in coal areas and appear to be unrelated to the presence of underground natural gas storage areas or unconventional oil/gas production. Repeat measurements over 2 years show that flow rates of high emitters are sustained through time. Our attribute-based methane emission data and our comprehensive estimate of 470,000-750,000 abandoned wells in Pennsylvania result in estimated state-wide emissions of 0.04-0.07 Mt (10(12) g) CH4 per year. This estimate represents 5-8% of annual anthropogenic methane emissions in Pennsylvania. Our methodology combining new field measurements with data mining of previously unavailable well attributes and numbers of wells can be used to improve methane emission estimates and prioritize cost-effective mitigation strategies for Pennsylvania and beyond. C1 [Kang, Mary; Jackson, Robert B.] Stanford Univ, Earth Syst Sci, Stanford, CA 94305 USA. [Christian, Shanna; Chen, Yuheng] Princeton Univ, Geosci, Princeton, NJ 08544 USA. [Celia, Michael A.; Mauzerall, Denise L.; Miller, Alana R.] Princeton Univ, Civil & Environm Engn, Princeton, NJ 08544 USA. [Mauzerall, Denise L.] Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Princeton, NJ 08544 USA. [Bill, Markus; Conrad, Mark E.] Lawrence Berkeley Natl Lab, Earth & Environm Sci, Berkeley, CA 94720 USA. [Darrah, Thomas H.] Ohio State Univ, Div Solid Earth Dynam & Water Climate & Environm, Columbus, OH 43210 USA. [Jackson, Robert B.] Stanford Univ, Woods Inst Environm, Stanford, CA 94305 USA. [Jackson, Robert B.] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA. RP Kang, M (reprint author), Stanford Univ, Earth Syst Sci, Stanford, CA 94305 USA. EM cm1kang@gmail.com FU National Oceanic and Atmospheric Administration Grant [NA140AR4310131]; Princeton Environmental Institute; Vulcan Inc. FX We thank the Stanford Natural Gas Initiative, Princeton University, the Andlinger Center for Energy and the Environment, Stanford University, and the Precourt Institute for Energy. We also thank Venango Senior Environmental Corps (John and Ev Kolojejchick, Charlie, and Steve), Clearfield Senior Environmental Corps (Lyle Milland and Rick and Marianne Atkinson), Save Our Streams PA, Joann Parrick, Joe and Cheryl Thomas, Bill Peiffer, Camille Sage Lagron, and Bo Guo for help in the field. For valuable field, laboratory, and planning assistance, we thank David Pal, Ryan Edwards, Ashwin Venkatramen, Matthew Reid, Ejeong Baik, Christianese Kaiser, Eugene Cho, Daniel Ma, Kenneth Campbell, Colin J. Whyte, Myles Moore, and Ben Grove. For assistance in the laboratory and/or helpful comments, we thank Peter Jaffe, Tullis Onstott, Maggie Lau, Tsering W. Shawa, Joseph Vocaturo, Harmony Lu, Eric Lebel, Kristin Boye, and Scott Fendorf. Finally, we thank the PA DEP (Stewart Beattie, Scott Perry, Seth Pelepko, and John Quigley) for providing assistance with obtaining data and helpful insights on the data. We acknowledge National Oceanic and Atmospheric Administration Grant NA140AR4310131, the Princeton Environmental Institute, and Vulcan Inc. for supporting this research. NR 38 TC 0 Z9 0 U1 11 U2 11 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 29 PY 2016 VL 113 IS 48 BP 13636 EP 13641 DI 10.1073/pnas.1605913113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4QR UT WOS:000388835700048 PM 27849603 ER PT J AU Lawson, MR Dyer, K Berger, JM AF Lawson, Michael R. Dyer, Kevin Berger, James M. TI Ligand-induced and small-molecule control of substrate loading in a hexameric helicase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE antibiotic; ATPase; helicase; motor protein; transcription ID TRANSCRIPTION TERMINATION FACTOR; NUCLEIC-ACID TRANSLOCASES; RNA-BINDING SITE; FACTOR-RHO; ANTIBIOTIC BICYCLOMYCIN; STRUCTURAL BASIS; MESSENGER-RNA; MECHANISM; DEGRADATION; RECOGNITION AB Processive, ring-shaped protein and nucleic acid protein translocases control essential biochemical processes throughout biology and are considered high-prospect therapeutic targets. The Escherichia coli Rho factor is an exemplar hexameric RNA translocase that terminates transcription in bacteria. As with many ring-shaped motor proteins, Rho activity is modulated by a variety of poorly understood mechanisms, including small-molecule therapeutics, protein-protein interactions, and the sequence of its translocation substrate. Here, we establish the mechanism of action of two Rho effectors, the antibiotic bicyclomycin and nucleic acids that bind to Rho's primary RNA recruitment site. Using small-angle X-ray scattering and a fluorescence-based assay to monitor the ability of Rho to switch between open-ring (RNA-loading) and closed-ring (RNA-translocation) states, we found bicyclomycin to be a direct antagonist of ring closure. Reciprocally, the binding of nucleic acids to its N-terminal RNA recruitment domains is shown to promote the formation of a closed-ring Rho state, with increasing primary-site occupancy providing additive stimulatory effects. This study establishes bicyclomycin as a conformational inhibitor of Rho ring dynamics, highlighting the utility of developing assays that read out protein conformation as a prospective screening tool for ring-ATPase inhibitors. Our findings further show that the RNA sequence specificity used for guiding Rho-dependent termination derives in part from an intrinsic ability of the motor to couple the recognition of pyrimidine patterns in nascent transcripts to RNA loading and activity. C1 [Lawson, Michael R.; Berger, James M.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Dyer, Kevin] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Berger, James M.] Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA. RP Berger, JM (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Berger, JM (reprint author), Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA. EM jmberger@jhmi.edu FU National Institute of General Medical Science [R01-GM071747, T32-GM066698]; G. Harold and Leila Y. Mathers Foundation; National Science Foundation Graduate Research Fellowship FX We thank members of the J.M.B. laboratory, Andreas Martin's laboratory (University of California, Berkeley and Howard Hughes Medical Institute), Nathan Thomsen, and Michael Bellecourt (University of Wisconsin-Madison) for helpful discussions and careful reading of the manuscript and Greg Hura and Michal Hammel at the ALS BL 12.3.1, Lawrence Berkeley National Laboratory, for guidance on SAXS sample preparation and data processing. This research was supported by National Institute of General Medical Science Grants R01-GM071747 (to J.M.B.) and T32-GM066698 (to the Department of Molecular and Cell Biology, University of California, Berkeley), and by the G. Harold and Leila Y. Mathers Foundation (J.M.B.). M.R.L. is the recipient of a National Science Foundation Graduate Research Fellowship. NR 39 TC 0 Z9 0 U1 2 U2 2 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 29 PY 2016 VL 113 IS 48 BP 13714 EP 13719 DI 10.1073/pnas.1616749113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4QR UT WOS:000388835700061 PM 27821776 ER PT J AU Banco, MT Mishra, V Ostermann, A Schrader, TE Evans, GB Kovalevsky, A Ronning, DR AF Banco, Michael T. Mishra, Vidhi Ostermann, Andreas Schrader, Tobias E. Evans, Gary B. Kovalevsky, Andrey Ronning, Donald R. TI Neutron structures of the Helicobacter pylori 5 '-methylthioadenosine nucleosidase highlight proton sharing and protonation states SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE neutron diffraction; enzyme mechanism; proton transfer; nucleosidase; Helicobacter ID COLI 5'-METHYLTHIOADENOSINE/S-ADENOSYLHOMOCYSTEINE NUCLEOSIDASE; RAY-DIFFRACTION DATA; TRANSITION-STATE; ESCHERICHIA-COLI; X-RAY; ANALOG INHIBITORS; ENZYME; CRYSTALLOGRAPHY; BINDING; ADENOSYLHOMOCYSTEINE AB MTAN (5'-methylthioadenosine nucleosidase) catalyzes the hydrolysis of the N-ribosidic bond of a variety of adenosine-containing metabolites. The Helicobacter pylori MTAN (HpMTAN) hydrolyzes 6-amino-6-deoxyfutalosine in the second step of the alternative menaquinone biosynthetic pathway. Substrate binding of the adenine moiety is mediated almost exclusively by hydrogen bonds, and the proposed catalytic mechanism requires multiple proton-transfer events. Of particular interest is the protonation state of residue D198, which possesses a pK(a) above 8 and functions as a general acid to initiate the enzymatic reaction. In this study we present three corefined neutron/X-ray crystal structures of wildtype HpMTAN cocrystallized with S-adenosylhomocysteine (SAH), Formycin A (FMA), and (3R, 4S)-4-(4-Chlorophenylthiomethyl)-1-[(9-deaza-adenin-9-yl) methyl]-3-hydroxypyrrolidine (p-ClPh-Thio-DADMe-ImmA) as well as one neutron/X-ray crystal structure of an inactive variant (HpMTAN-D198N) cocrystallized with SAH. These results support a mechanism of D198 pKa elevation through the unexpected sharing of a proton with atom N7 of the adenine moiety possessing unconventional hydrogen-bond geometry. Additionally, the neutron structures also highlight active site features that promote the stabilization of the transition state and slight variations in these interactions that result in 100-fold difference in binding affinities between the DADMe-ImmA and ImmA analogs. C1 [Banco, Michael T.; Mishra, Vidhi; Ronning, Donald R.] Univ Toledo, Dept Chem & Biochem, 2801 W Bancroft St, Toledo, OH 43606 USA. [Ostermann, Andreas] Tech Univ Munich, Heinz Maier Leibnitz Zentrum, D-85748 Garching, Germany. [Schrader, Tobias E.] Forschungszentrum Julich GmbH, Heinz Maier Leibnitz Zentrum, Julich Ctr Neutron Sci, D-85747 Garching, Germany. [Evans, Gary B.] Victoria Univ Wellington, Ferrier Res Inst, Wellington 5010, New Zealand. [Kovalevsky, Andrey] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Ronning, DR (reprint author), Univ Toledo, Dept Chem & Biochem, 2801 W Bancroft St, Toledo, OH 43606 USA. EM donald.ronning@utoledo.edu FU Center for the Advancement of Science in Space; National Aeronautics and Space Administration [N-123528-01]; National Institute of Allergy and Infectious Disease/NIH [AI105084]; DOE Office of Science [DE-AC02-06CH11357]; Michigan Economic Development Corporation; Michigan Technology Tri-Corridor [085P1000817]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [0922719] FX We thank Heinz Maier-Leibnitz Zentrum and Oak Ridge National Laboratory for graciously providing the beam time that was essential for this work. This work was supported by the Center for the Advancement of Science in Space via a cooperative agreement with National Aeronautics and Space Administration Grant N-123528-01 (to D.R.R) and by National Institute of Allergy and Infectious Disease/NIH Grant AI105084 (to D.R.R.). This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and by Grant 085P1000817 from the Michigan Technology Tri-Corridor. The research was sponsored in part by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The IMAGINE Project was partially supported by the National Science Foundation (Grant 0922719). NR 40 TC 0 Z9 0 U1 3 U2 3 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 29 PY 2016 VL 113 IS 48 BP 13756 EP 13761 DI 10.1073/pnas.1609718113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4QR UT WOS:000388835700068 PM 27856757 ER PT J AU Jiang, YQ Lu, Z Liu, XH Qian, Y Zhang, K Wang, YH Yang, XQ AF Jiang, Yiquan Lu, Zheng Liu, Xiaohong Qian, Yun Zhang, Kai Wang, Yuhang Yang, Xiu-Qun TI Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5 SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; LIGHT-ABSORBING IMPURITIES; BIOMASS BURNING EMISSIONS; BLACK CARBON; SOUTHERN AFRICA; SMOKE AEROSOLS; CLIMATE MODEL; EARTH SYSTEM; SNOW; PRECIPITATION AB Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol-radiation interactions (REari) of all fire aerosols is 0.16 +/- 0.01 W m(-2) (1 sigma uncertainty), mainly due to the absorption of fire BC (0.25 +/- 0.01 W m(-2)), while fire POM induces a small effect (-0.05 and 0.04 +/- 0.01 W m(-2) based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol-cloud interactions (REaci) of all fire aerosols is -0.70 +/- 0.05 W m(-2), resulting mainly from the fire POM effect (-0.59 +/- 0.03 W m(-2)). REari (0.43 +/- 0.03 W m(-2)) and REaci (-1.38 +/- 0.23 W m(-2)) in the Arctic are stronger than in the tropics (0.17 +/- 0.02 and -0.82 +/- 0.09 W m(-2) for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 W m(-2)) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 +/- 0.10 W m(-2)) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m(-2)) with the maximum albedo effect occurring in spring (0.12 W m(-2)) when snow starts to melt. C1 [Jiang, Yiquan; Yang, Xiu-Qun] Nanjing Univ, CMA NJU Joint Lab Climate Predict Studies, Inst Climate & Global Change Res, Sch Atmospher Sci, Nanjing, Jiangsu, Peoples R China. [Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. [Qian, Yun; Zhang, Kai] Pacific Northwest Natl Lab, Richland, WA USA. [Wang, Yuhang] Georgia Inst Technol, Sch Earth & Atmospher Sci, Atlanta, GA 30332 USA. RP Liu, XH (reprint author), Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA. EM xliu6@uwyo.edu RI qian, yun/E-1845-2011; Liu, Xiaohong/E-9304-2011; Zhang, Kai/F-8415-2010; jiang, yiquan/L-6888-2016 OI Liu, Xiaohong/0000-0002-3994-5955; Zhang, Kai/0000-0003-0457-6368; FU Office of Science of the US Department of Energy (DOE) as the NSF-DOE-USDA Joint Earth System Modeling (EaSM) Program; National Key Basic Research Program (973 Program) of China [2010CB428504]; National Natural Science Foundation of China (NSFC) [41505062]; Battelle Memorial Institute [DE-AC05-76RL01830]; NCAR's Computational and Information Systems Laboratory FX This work is supported by the Office of Science of the US Department of Energy (DOE) as the NSF-DOE-USDA Joint Earth System Modeling (EaSM) Program, the National Key Basic Research Program (973 Program) of China under Grant No. 2010CB428504, and the National Natural Science Foundation of China (NSFC) under Grant No. 41505062. The Pacific Northwest National Laboratory is operated for the DOE by the Battelle Memorial Institute under contract DE-AC05-76RL01830. The authors would like to acknowledge the use of computational resources (ark:/85065/d7wd3xhc) at the NCAR-Wyoming Supercomputing Center provided by the National Science Foundation and the State of Wyoming, and supported by NCAR's Computational and Information Systems Laboratory. The fire emission data were obtained from the Global Fire Emissions Database (GFED, http://www.globalfiredata.org). The AERONET data were obtained from http://aeronet.gsfc.nasa.gov. We thank Xiangjun Shi for the help with processing the AERONET data. NR 78 TC 2 Z9 2 U1 20 U2 20 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 29 PY 2016 VL 16 IS 22 BP 14805 EP 14824 DI 10.5194/acp-16-14805-2016 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2TT UT WOS:000388702900001 ER PT J AU Aliaga, L Kordosky, M Golan, T Altinok, O Bellantoni, L Bercellie, A Betancourt, M Bravar, A Budd, H Carneiro, MF Dytman, S Diaz, GA Endress, E Felix, J Fields, L Fine, R Gago, AM Galindo, R Gallagher, H Gran, R Harris, DA Higuera, A Hurtado, K Kiveni, M Kleykamp, J Le, T Maher, E Manly, S Mann, WA Marshall, CM Caicedo, DAM McFarland, KS McGivern, CL McGowan, AM Messerly, B Miller, J Mislivec, A Morfin, JG Mousseau, J Naples, D Nelson, JK Norrick, A Paolone, V Park, J Patrick, CE Perdue, GN Ransome, RD Ray, H Ren, L Rimal, D Rodrigues, PA Ruterbories, D Schellman, H Salinas, CJS Falero, SS Tice, BG Valencia, E Walton, T Wolcott, J Wospakrik, M Zhang, D AF Aliaga, L. Kordosky, M. Golan, T. Altinok, O. Bellantoni, L. Bercellie, A. Betancourt, M. Bravar, A. Budd, H. Carneiro, M. F. Dytman, S. Diaz, G. A. Endress, E. Felix, J. Fields, L. Fine, R. Gago, A. M. Galindo, R. Gallagher, H. Gran, R. Harris, D. A. Higuera, A. Hurtado, K. Kiveni, M. Kleykamp, J. Le, T. Maher, E. Manly, S. Mann, W. A. Marshall, C. M. Martinez Caicedo, D. A. McFarland, K. S. McGivern, C. L. McGowan, A. M. Messerly, B. Miller, J. Mislivec, A. Morfin, J. G. Mousseau, J. Naples, D. Nelson, J. K. Norrick, A. Paolone, V. Park, J. Patrick, C. E. Perdue, G. N. Ransome, R. D. Ray, H. Ren, L. Rimal, D. Rodrigues, P. A. Ruterbories, D. Schellman, H. Solano Salinas, C. J. Sanchez Falero, S. Tice, B. G. Valencia, E. Walton, T. Wolcott, J. Wospakrik, M. Zhang, D. TI Neutrino flux predictions for the NuMI beam SO PHYSICAL REVIEW D LA English DT Article ID ABSORPTION CROSS-SECTIONS; HIGH-ENERGY; MOMENTUM RANGE; GEV-C; INCLUSIVE PRODUCTION; P+C COLLISIONS; PROTONS; NUCLEI; PIONS; ANTIPROTONS AB Knowledge of the neutrino flux produced by the Neutrinos at the Main Injector (NuMI) beamline is essential to the neutrino oscillation and neutrino interaction measurements of the MINERvA, MINOS+ NOvA and MicroBooNE experiments at Fermi National Accelerator Laboratory. We have produced a flux prediction which uses all available and relevant hadron production data, incorporating measurements of particle production off of thin targets as well as measurements of particle yields from a spare NuMI target exposed to a 120 GeV proton beam. The result is the most precise flux prediction achieved for a neutrino beam in the one to tens of GeV energy region. We have also compared the prediction to in situ measurements of the neutrino flux and find good agreement. C1 [Aliaga, L.; Kordosky, M.; Nelson, J. K.; Norrick, A.; Zhang, D.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. [Golan, T.; Bercellie, A.; Budd, H.; Diaz, G. A.; Fine, R.; Higuera, A.; Kleykamp, J.; Manly, S.; Marshall, C. M.; McFarland, K. S.; McGowan, A. M.; Mislivec, A.; Park, J.; Perdue, G. N.; Rodrigues, P. A.; Ruterbories, D.; Wolcott, J.] Univ Rochester, Rochester, NY 14627 USA. [Golan, T.; Bellantoni, L.; Betancourt, M.; Fields, L.; Harris, D. A.; Kiveni, M.; McFarland, K. S.; Morfin, J. G.; Perdue, G. N.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Altinok, O.; Gallagher, H.; Le, T.; Mann, W. A.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Bravar, A.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Carneiro, M. F.; Hurtado, K.; Martinez Caicedo, D. A.] Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Rio De Janeiro, Brazil. [Diaz, G. A.; Endress, E.; Gago, A. M.; Sanchez Falero, S.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Apartado 1761, Lima, Peru. [Felix, J.; Higuera, A.; Valencia, E.] Univ Guanajuato, Campus Leon & Campus Guanajuato, Guanajuato 36000, Guanajuato, Mexico. [Fields, L.; Patrick, C. E.; Schellman, H.] Northwestern Univ, Evanston, IL 60208 USA. [Galindo, R.; Miller, J.; Norrick, A.] Univ Tecn Federico Santa Maria, Dept Fis, Ave Espana 1680 Casilla 110-5, Valparaiso, Chile. [Gran, R.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Hurtado, K.; Solano Salinas, C. J.] Univ Nacl Ingn, Apartado 31139, Lima, Peru. [Le, T.; Norrick, A.; Ransome, R. D.; Tice, B. G.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Maher, E.] Massachusetts Coll Liberal Arts, 375 Church St, North Adams, MA 01247 USA. [Dytman, S.; McGivern, C. L.; Messerly, B.; Naples, D.; Paolone, V.; Ren, L.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Mousseau, J.; Ray, H.; Rimal, D.; Wospakrik, M.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Schellman, H.] Oregon State Univ, Dept Phys, Corvallis, OR 97331 USA. [Walton, T.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Higuera, A.] Univ Houston, Houston, TX 77204 USA. [Martinez Caicedo, D. A.] IIT, Chicago, IL 60616 USA. [McGivern, C. L.] Iowa State Univ, Ames, IA 50011 USA. [Mousseau, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Walton, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Wolcott, J.] Tufts Univ, Medford, MA 02155 USA. RP Aliaga, L (reprint author), Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. OI Solano Salinas, Carlos Javier/0000-0001-7821-498X FU Fermi National Accelerator Laboratory under U.S. Department of Energy (DOE) [DE-AC02-07CH11359]; United States National Science Foundation (NSF) [PHY-0619727]; University of Rochester; NSF (USA); DOE (USA); Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior fundacao do Ministerio da Educacao (CAPES) (Brazil); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (Brazil); Consejo Nacional de Ciencia y Tecnologia (CoNaCyT) (Mexico); Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) (Chile); Consejo Nacional de Ciencia, Tecnologia e Innovacion Tecnologica (CONCYTEC) (Peru); Direccion de Gestion de la Investigacion de la Pontificia Universidad Catolica del Peru (DGI-PUCP) (Peru); Instituto General de Investigacion de la Universidad Nacional de Ingenieria (IDI/IGI-UNI) (Peru); Latin American Center for Physics (CLAF) FX This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy (DOE) Award No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support was also granted by the United States National Science Foundation (NSF) under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior fundacao do Ministerio da Educacao (CAPES) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) (Brazil), Consejo Nacional de Ciencia y Tecnologia (CoNaCyT) (Mexico), Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT), programs including Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) (Chile), by Consejo Nacional de Ciencia, Tecnologia e Innovacion Tecnologica (CONCYTEC), Direccion de Gestion de la Investigacion de la Pontificia Universidad Catolica del Peru (DGI-PUCP) and Instituto General de Investigacion de la Universidad Nacional de Ingenieria (IDI/IGI-UNI) (Peru), and the Latin American Center for Physics (CLAF). We thank the MINOS Collaboration for use of its near detector data. We acknowledge the dedicated work of the Fermilab staff responsible for the operation and maintenance of the beamline and detector and the Fermilab Computing Division for support of data processing. NR 42 TC 1 Z9 1 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 29 PY 2016 VL 94 IS 9 AR 092005 DI 10.1103/PhysRevD.94.092005 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED4MU UT WOS:000388823900001 ER PT J AU Campbell, JM Wackeroth, D Zhou, J AF Campbell, John M. Wackeroth, Doreen Zhou, Jia TI Study of weak corrections to Drell-Yan, top-quark pair, and dijet production at high energies with MCFM SO PHYSICAL REVIEW D LA English DT Article ID ELECTROWEAK RADIATIVE-CORRECTIONS; FORWARD-BACKWARD ASYMMETRY; LOOP LEADING LOGARITHMS; JET CROSS-SECTIONS; HADRON COLLIDERS; SUDAKOV LOGARITHMS; ANGULAR-DISTRIBUTIONS; PARTON DISTRIBUTIONS; RESONANCE REGION; PP COLLISIONS AB Electroweak (EW) corrections can be enhanced at high energies due to the soft or collinear radiation of virtual and real W and Z bosons that result in Sudakov-like corrections of the form alpha(l)(W) log(n)(Q(/)(2)M(W,Z)(2)), where alpha(W) = alpha/(4 pi sin(2)theta(W)) and n <= 2l - 1. The inclusion of EW corrections in predictions for hadron colliders is therefore especially important when searching for signals of possible new physics in distributions probing the kinematic regime Q(2) >> M-V(2). Next-to-leading order (NLO) EW corrections should also be taken into account when their size [O(alpha)] is comparable to that of QCD corrections at next-to-next-to-leading order (NNLO) [O(alpha(2)(s))]. To this end we have implemented the NLO weak corrections to the Neutral-Current Drell-Yan process, top-quark pair production and dijet production in the parton-level Monte-Carlo program MCFM. This enables a combined study with the corresponding QCD corrections at NLO and NNLO. We provide both the full NLO weak corrections and their Sudakov approximation since the latter is often used for a fast evaluation of weak effects at high energies and can be extended to higher orders. With both the exact and approximate results at hand, the validity of the Sudakov approximation can be readily quantified. C1 [Campbell, John M.; Wackeroth, Doreen] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Wackeroth, Doreen; Zhou, Jia] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. RP Campbell, JM; Wackeroth, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA.; Wackeroth, D; Zhou, J (reprint author), SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA. EM johnmc@fnal.gov; dow@ubpheno.physics.buffalo.edu; jiazhou@buffalo.edu FU US Department of Energy [DE-AC02-07CH11359]; National Science Foundation (NSF) [PHY-1118138, PHY-1417317]; NSF [PHY11-25915]; Fermilab Graduate Student Research Program in Theoretical Physics FX This research is supported in part by the US Department of Energy under Contract No. DE-AC02-07CH11359 and the National Science Foundation (NSF) under Grants No. PHY-1118138 and No. PHY-1417317. Part of this work was carried out at the KITP workshop LHC Run II and the Precision Frontier which is supported by NSF Grant No. PHY11-25915. J.Z.'s work was supported in part by the Fermilab Graduate Student Research Program in Theoretical Physics. NR 148 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 29 PY 2016 VL 94 IS 9 AR 093009 DI 10.1103/PhysRevD.94.093009 PG 36 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED4MU UT WOS:000388823900005 ER PT J AU Wang, XG Ji, CR Melnitchouk, W Salamu, Y Thomas, AW Wang, P AF Wang, X. G. Ji, Chueng-Ryong Melnitchouk, W. Salamu, Y. Thomas, A. W. Wang, P. TI Strange-quark asymmetry in the proton in chiral effective theory SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; VIOLATING ELECTRON-SCATTERING; PERTURBATION-THEORY; ELASTIC-SCATTERING; PARTON DISTRIBUTIONS; NUCLEON SCATTERING; SYMMETRY-BREAKING; POLARIZED PROTONS; FLAVOR ASYMMETRY; MATRIX-ELEMENTS AB We perform a comprehensive analysis of the strange-antistrange parton distribution function (PDF) asymmetry in the proton in the framework of chiral effective theory, including the full set of lowest-order kaon loop diagrams with off-shell and contact interactions, in addition to the usual on-shell contributions previously discussed in the literature. We identify the presence of delta-function contributions to the (s) over bar PDF at x = 0, with a corresponding valencelike component of the s-quark PDF at larger x, which allows greater flexibility for the shape of s - (s) over bar. Expanding the moments of the PDFs in terms of the pseudoscalar kaon mass, we compute the leading nonanalytic behavior of the number and momentum integrals of the s and (s) over bar distributions, consistent with the chiral symmetry of QCD. We discuss the implications of our results for the understanding of the NuTeV anomaly and for the phenomenology of strange-quark PDFs in global QCD analysis. C1 [Wang, X. G.; Thomas, A. W.] Univ Adelaide, CoEPP, Adelaide, SA 5005, Australia. [Wang, X. G.; Thomas, A. W.] Univ Adelaide, CSSM, Adelaide, SA 5005, Australia. [Ji, Chueng-Ryong] North Carolina State Univ, Raleigh, NC 27695 USA. [Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Salamu, Y.; Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wang, P.] Chinese Acad Sci, Theoret Phys Ctr Sci Facil, Beijing 100049, Peoples R China. RP Wang, XG (reprint author), Univ Adelaide, CoEPP, Adelaide, SA 5005, Australia.; Wang, XG (reprint author), Univ Adelaide, CSSM, Adelaide, SA 5005, Australia. FU DOE [DE-AC05-06OR23177, DE-FG02-03ER41260]; Australian Research Council through the ARC Centre of Excellence for Particle Physics at the Terascale [CE110001104]; Australian Research Council an ARC Australian Laureate Fellowship [FL0992247, DP151103101]; CNPq (Brasil) [313800/2014-6, 400826/2014-3]; NSFC [11475186]; DFG [CRC 110] FX We thank T.J. Hobbs and J.T. Londergan for helpful discussions regarding many aspects of strange asymmetries in the nucleon and N. Sato for helpful communications. This work was supported by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, operates Jefferson Lab, DOE Contract No. DE-FG02-03ER41260; the Australian Research Council through the ARC Centre of Excellence for Particle Physics at the Terascale (CE110001104), an ARC Australian Laureate Fellowship FL0992247 and DP151103101; by CNPq (Brasil) Grants No. 313800/2014-6 and No. 400826/2014-3, and by NSFC under Grant No. 11475186, CRC 110 by DFG and NSFC. NR 87 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 29 PY 2016 VL 94 IS 9 AR 094035 DI 10.1103/PhysRevD.94.094035 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED4MU UT WOS:000388823900007 ER PT J AU Won, E Adachi, I Aihara, H Al Said, S Asner, DM Aushev, T Ayad, R Badhrees, I Bakich, AM Bansal, V Barberio, E Behera, P Bhuyan, B Biswal, J Bobrov, A Bozek, A Bracko, M Cervenkov, D Chekelian, V Chen, A Cheon, BG Chilikin, K Chistov, R Cho, K Chobanova, V Choi, Y Cinabro, D Dash, N Di Carlo, S Dolezal, Z Drsal, Z Dutta, D Eidelman, S Epifanov, D Farhat, H Fast, JE Ferber, T Fulsom, BG Gaur, V Gabyshev, N Garmash, A Gillard, R Goldenzweig, P Greenwald, D Haba, J Hayasaka, K Hayashii, H Hou, WS Iijima, T Inami, K Inguglia, G Ishikawa, A Itoh, R Iwasaki, Y Jaegle, I Jeon, HB Joffe, D Joo, KK Julius, T Kang, KH Kawasaki, T Kim, DY Kim, JB Kim, KT Kim, MJ Kim, SH Kim, YJ Kinoshita, K Kodys, P Krizan, P Krokovny, P Kuhr, T Kulasiri, R Kwon, YJ Lange, JS Lee, IS Li, CH Li, L Li, Y Gioi, LL Libby, J Liventsev, D Luo, T Masuda, M Matsuda, T Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Nakano, E Nakao, M Nakazawa, H Nanut, T Nath, KJ Natkaniec, Z Nayak, M Nishida, S Ogawa, S Okuno, S Pakhlov, P Pal, B Park, CS Paul, S Pedlar, TK Piilonen, LE Pulvermacher, C Rauch, J Ritter, M Sahoo, H Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schluter, T Schneider, O Schnell, G Schwanda, C Seino, Y Semmler, D Senyo, K Seon, O Seong, IS Shebalin, V Shen, CP Shibata, TA Shiu, JG Simon, F Staric, M Sumiyoshi, T Takizawa, M Tamponi, U Tenchini, F Trabelsi, K Uchida, M Uehara, S Uglov, T Unno, Y Uno, S Urquijo, P Usov, Y Van Hulse, C Varner, G Varvell, KE Vorobyev, V Wang, CH Wang, MZ Watanabe, M Watanabe, Y Widmann, E Yamaoka, J Ye, H Yook, Y Yuan, CZ Yusa, Y Zhang, ZP Zhilich, V Zhukova, V Zhulanov, V Zupanc, A AF Won, E. Adachi, I. Aihara, H. Al Said, S. Asner, D. M. Aushev, T. Ayad, R. Badhrees, I. Bakich, A. M. Bansal, V. Barberio, E. Behera, P. Bhuyan, B. Biswal, J. Bobrov, A. Bozek, A. Bracko, M. Cervenkov, D. Chekelian, V. Chen, A. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Chobanova, V. Choi, Y. Cinabro, D. Dash, N. Di Carlo, S. Dolezal, Z. Drsal, Z. Dutta, D. Eidelman, S. Epifanov, D. Farhat, H. Fast, J. E. Ferber, T. Fulsom, B. G. Gaur, V. Gabyshev, N. Garmash, A. Gillard, R. Goldenzweig, P. Greenwald, D. Haba, J. Hayasaka, K. Hayashii, H. Hou, W. -S. Iijima, T. Inami, K. Inguglia, G. Ishikawa, A. Itoh, R. Iwasaki, Y. Jaegle, I. Jeon, H. B. Joffe, D. Joo, K. K. Julius, T. Kang, K. H. Kawasaki, T. Kim, D. Y. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kinoshita, K. Kodys, P. Krizan, P. Krokovny, P. Kuhr, T. Kulasiri, R. Kwon, Y. -J. Lange, J. S. Lee, I. S. Li, C. H. Li, L. Li, Y. Gioi, L. Li Libby, J. Liventsev, D. Luo, T. Masuda, M. Matsuda, T. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Nakano, E. Nakao, M. Nakazawa, H. Nanut, T. Nath, K. J. Natkaniec, Z. Nayak, M. Nishida, S. Ogawa, S. Okuno, S. Pakhlov, P. Pal, B. Park, C. -S. Paul, S. Pedlar, T. K. Piilonen, L. E. Pulvermacher, C. Rauch, J. Ritter, M. Sahoo, H. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schluter, T. Schneider, O. Schnell, G. Schwanda, C. Seino, Y. Semmler, D. Senyo, K. Seon, O. Seong, I. S. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Simon, F. Staric, M. Sumiyoshi, T. Takizawa, M. Tamponi, U. Tenchini, F. Trabelsi, K. Uchida, M. Uehara, S. Uglov, T. Unno, Y. Uno, S. Urquijo, P. Usov, Y. Van Hulse, C. Varner, G. Varvell, K. E. Vorobyev, V. Wang, C. H. Wang, M. -Z. Watanabe, M. Watanabe, Y. Widmann, E. Yamaoka, J. Ye, H. Yook, Y. Yuan, C. Z. Yusa, Y. Zhang, Z. P. Zhilich, V. Zhukova, V. Zhulanov, V. Zupanc, A. TI Search for a dark vector gauge boson decaying to pi(+)pi(-) using eta ->pi(+)pi(-) gamma decays SO PHYSICAL REVIEW D LA English DT Article ID KLOE DETECTOR; PACKAGE; PHOTON; MATTER; ETA AB We report a search for a dark vector gauge boson U' that couples to quarks in the decay chain D*(+) -> D-0 pi(+), D-0 -> K-S(0) eta, eta -> U'gamma, U' -> pi(+)pi- No signal is found and we set a mass-dependent limit on the baryonic fine structure constant of 10(-3)-10(-2) in the U' mass range of 290 to 520 MeV/c(2). This analysis is based on a data sample of 976 fb(-1) collected by the Belle experiment at the KEKB asymmetric-energy e(+)e(-) collider. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Bobrov, A.; Eidelman, S.; Epifanov, D.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Matvienko, D.; Shebalin, V.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Cervenkov, D.; Dolezal, Z.; Drsal, Z.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Joo, K. K.] Chonnam Natl Univ, Kwangju 660701, South Korea. [Kinoshita, K.; Pal, B.; Sandilya, S.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Ferber, T.; Inguglia, G.; Ye, H.] DESY, D-22607 Hamburg, Germany. [Jaegle, I.] Univ Florida, Gainesville, FL 32611 USA. [Lange, J. S.; Semmler, D.] Justus Liebig Univ Giessen, D-35392 Giessen, Germany. [Adachi, I.; Haba, J.; Itoh, R.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uehara, S.; Uno, S.] SOKENDAI Grad Univ Adv Studies, Hayama 2400193, Japan. [Cheon, B. G.; Kim, S. H.; Lee, I. S.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Sahoo, H.; Seong, I. S.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nayak, M.; Nishida, S.; Pulvermacher, C.; Sakai, Y.; Santelj, L.; Trabelsi, K.; Uehara, S.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Takizawa, M.] High Energy Accelerator Res Org KEK, KEK Theory Ctr, J PARC Branch, Tsukuba, Ibaraki 3050801, Japan. [Schnell, G.] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain. [Dash, N.] Indian Inst Technol Bhubaneswar, Satya Nagar 751007, India. [Bhuyan, B.; Nath, K. J.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Behera, P.; Libby, J.] Indian Inst Technol Madras, Chennai 600036, Tamil Nadu, India. [Yuan, C. Z.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Biswal, J.; Bracko, M.; Krizan, P.; Nanut, T.; Staric, M.; Zupanc, A.] J Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Goldenzweig, P.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Joffe, D.; Kulasiri, R.] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Badhrees, I.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. [Al Said, S.] King Abdulaziz Univ, Dept Phys, Fac Sci, Jeddah 21589, Saudi Arabia. [Cho, K.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Won, E.; Kim, J. B.; Kim, K. T.] Korea Univ, Seoul 02841, South Korea. [Jeon, H. B.; Kang, K. H.; Kim, M. J.] Kyungpook Natl Univ, Daegu 702701, South Korea. [Schneider, O.] EPFL, F-1015 Lausanne, France. [Chilikin, K.; Chistov, R.; Mizuk, R.; Pakhlov, P.; Uglov, T.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia. [Krizan, P.; Zupanc, A.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Kuhr, T.; Ritter, M.; Schluter, T.] Ludwig Maximilians Univ Munchen, D-80539 Munich, Germany. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Chobanova, V.; Gioi, L. Li; Simon, F.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barberio, E.; Julius, T.; Li, C. H.; Tenchini, F.; Urquijo, P.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Matsuda, T.] Miyazaki Univ, Miyazaki 8892192, Japan. [Chilikin, K.; Chistov, R.; Kodys, P.; Mizuk, R.; Pakhlov, P.; Zhukova, V.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Aushev, T.; Mizuk, R.; Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Inami, K.; Sato, Y.; Seon, O.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Hou, W. -S.; Nakazawa, H.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Hayasaka, K.; Kawasaki, T.; Miyata, H.; Seino, Y.; Watanabe, M.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Bobrov, A.; Eidelman, S.; Epifanov, D.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Matvienko, D.; Shebalin, V.; Usov, Y.; Vorobyev, V.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Nakano, E.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Bansal, V.; Fast, J. E.; Fulsom, B. G.; Yamaoka, J.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Luo, T.; Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Takizawa, M.] RIKEN, Nishina Ctr, Theoret Res Div, Saitama 3510198, Japan. [Li, L.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Takizawa, M.] Showa Pharmaceut Univ, Tokyo 1948543, Japan. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Widmann, E.] Stefan Meyer Inst Subat Phys, A-1090 Vienna, Austria. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Varvell, K. E.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Al Said, S.; Ayad, R.; Badhrees, I.] Univ Tabuk, Dept Phys, Fac Sci, Tabuk 71451, Saudi Arabia. [Dutta, D.; Gaur, V.; Mohanty, G. B.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Greenwald, D.; Paul, S.; Rauch, J.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Ishikawa, A.; Sanuki, T.] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Masuda, M.] Univ Tokyo, Earthquake Res Inst, Tokyo 1130032, Japan. [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Li, Y.; Liventsev, D.; Piilonen, L. E.] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Cinabro, D.; Di Carlo, S.; Farhat, H.; Gillard, R.; Nayak, M.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kwon, Y. -J.; Park, C. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. RP Won, E (reprint author), Korea Univ, Seoul 02841, South Korea. EM eunil@hep.korea.ac.kr RI Won, Eunil/G-9657-2011; Chistov, Ruslan/B-4893-2014; Chilikin, Kirill/B-4402-2014; Mizuk, Roman/B-3751-2014; Uglov, Timofey/B-2406-2014; Zhukova, Valentina/C-8878-2016; Pakhlov, Pavel/K-2158-2013; Cervenkov, Daniel/D-2884-2017; Widmann, Eberhard/G-2545-2011 OI Chistov, Ruslan/0000-0003-1439-8390; Chilikin, Kirill/0000-0001-7620-2053; Uglov, Timofey/0000-0002-4944-1830; Zhukova, Valentina/0000-0002-8253-641X; Pakhlov, Pavel/0000-0001-7426-4824; Cervenkov, Daniel/0000-0002-1865-741X; Widmann, Eberhard/0000-0003-0486-6023 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Austrian Science Fund [P 22742-N16, P 26794-N20]; National Natural Science Foundation of China [10575109, 10775142, 10875115, 11175187, 11475187, 11575017]; Chinese Academy of Science Center for Excellence in Particle Physics; Ministry of Education, Youth and Sports of the Czech Republic [LG14034]; Carl Zeiss Foundation; Deutsche Forschungsgemeinschaft; Excellence Cluster Universe; VolkswagenStiftung; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; World Class University program of the Ministry of Education; National Research Foundation (NRF) of Korea [2011-0029457, 2012-0008143, 2012R1A1A2008330, 2013R1A1A3007772, 2014R1A2A2A01005286, 2014R1A2A2A01002734, 2015R1A2A2A01003280, 2015H1A2A1033649]; Basic Research Lab program under NRF [KRF-2011-0020333]; Center for Korean J-PARC Users [NRF-2013K1A3A7A06056592]; Brain Korea 21-Plus program; Radiation Science Research Institute; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Foundation for Basic Research; Slovenian Research Agency; Ikerbasque; Basque Foundation for Science (Spain); Euskal Herriko Unibertsitatea (UPV/EHU) (Spain) [UFI 11/55 (Spain)]; Swiss National Science Foundation; Ministry of Education; Ministry of Science and Technology of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT; JSPS; NRF grant of Korea [NRF-2011-0030865]; Korea University Future Research grant FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council; Austrian Science Fund under Grants No. P 22742-N16 and No. P 26794-N20; the National Natural Science Foundation of China under Contracts No. 10575109, No. 10775142, No. 10875115, No. 11175187, No. 11475187 and No. 11575017; the Chinese Academy of Science Center for Excellence in Particle Physics; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LG14034; the Carl Zeiss Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the World Class University program of the Ministry of Education, National Research Foundation (NRF) of Korea Grants No. 2011-0029457, No. 2012-0008143, No. 2012R1A1A2008330, No. 2013R1A1A3007772, No. 2014R1A2A2A01005286, No. 2014R1A2A2A01002734, No. 2015R1A2A2A01003280 and No. 2015H1A2A1033649; the Basic Research Lab program under NRF Grant No. KRF-2011-0020333, Center for Korean J-PARC Users, Grant No. NRF-2013K1A3A7A06056592; the Brain Korea 21-Plus program and Radiation Science Research Institute; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and the Euskal Herriko Unibertsitatea (UPV/EHU) under program UFI 11/55 (Spain); the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics") and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). E.W. acknowledges a partial NRF grant of Korea Grant No. NRF-2011-0030865 and Korea University Future Research grant, and thanks B. R. Ko for his suggestion on an inclusive version of this analysis. NR 30 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 29 PY 2016 VL 94 IS 9 AR 092006 DI 10.1103/PhysRevD.94.092006 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED4MU UT WOS:000388823900002 ER PT J AU Muckley, ES Lynch, J Kumar, R Sumpter, B Ivanov, IN AF Muckley, Eric S. Lynch, James Kumar, Rajeev Sumpter, Bobby Ivanov, Ilia N. TI PEDOT: PSS/QCM-based multimodal humidity and pressure sensor SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE PEDOT: PSS; QCM; QCM response modeling; Neural network; Humidity; Pressure ID QUARTZ-CRYSTAL MICROBALANCE; ARTIFICIAL NEURAL-NETWORKS; GAS SENSOR; OXIDE; LIQUID; TECHNOLOGIES; TEMPERATURE; CONTACT; POLYMER; ARRAY AB A room temperature multimodal sensor composed of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) deposited on an AT-cut quartz crystal microbalance (QCM) crystal was fabricated. The sensor's nonlinear motional resistance and frequency responses are deconvoluted using a feedforward backpropagation neural network (FBN), which allows a single sensor to function simultaneously as a relative humidity (RH) sensor and a pressure sensor using only two electrodes. We demonstrate that the predictive ability of the sensor is highly influenced by the data used to train the FBN. When training sets are tailored to resemble the operating conditions of the sensor, the sensor achieves an average resolution of <4% RH from 0 to 100% RH, even after H2O saturation occurs on the surface. Our results indicate that FBNs show strong promise for improving the resolution of low cost gas sensors and for expanding the range of environmental conditions in which a given sensor can operate. (C) 2016 Elsevier B.V. All rights reserved. C1 [Muckley, Eric S.; Lynch, James; Kumar, Rajeev; Sumpter, Bobby; Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Muckley, Eric S.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Kumar, Rajeev; Sumpter, Bobby] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Muckley, ES; Ivanov, IN (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM muckleyes@ornl.gov; ivanovin@ornl.gov RI Kumar, Rajeev/Q-2255-2015; Sumpter, Bobby/C-9459-2013; OI Kumar, Rajeev/0000-0001-9494-3488; Sumpter, Bobby/0000-0001-6341-0355; Muckley, Eric/0000-0001-7114-5424; ivanov, ilia/0000-0002-6726-2502 FU Science Undergraduate Laboratory Interships (SULI) program of the DOE FX This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. James Lynch acknowledges support from the Science Undergraduate Laboratory Interships (SULI) program of the DOE. NR 38 TC 2 Z9 2 U1 16 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD NOV 29 PY 2016 VL 236 BP 91 EP 98 DI 10.1016/j.snb.2016.05.054 PG 8 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA DU5CM UT WOS:000382229700012 ER PT J AU Hofinann, L Tsybovsky, Y Alexander, NS Babino, D Leung, NY Montell, C Banerjee, S von Lintig, J Palczewski, K AF Hofmann, Lukas Tsybovsky, Yaroslav Alexander, Nathan S. Babino, Darwin Leung, Nicole Y. Montell, Craig Banerjee, Surajit von Lintig, Johannes Palczewski, Krzysztof TI Structural Insights into the Drosophila melanogaster Retinol Dehydrogenase, a Member of the Short-Chain Dehydrogenase/Reductase Family SO BIOCHEMISTRY LA English DT Article ID POLARIZABLE CONTINUUM MODEL; LEBER CONGENITAL AMAUROSIS; MOLECULAR-ORBITAL METHODS; EXTENDED BASIS-SETS; VALENCE BASIS-SETS; MASS-SPECTROMETRY DATA; ALDEHYDE DEHYDROGENASE; ALCOHOL-DEHYDROGENASE; ORGANOMETALLIC COMPOUNDS; RDH12 MUTATIONS AB The 11-cis-retinylidene chromophore of visual pigments isomerizes upon interaction with a photon, initiating a downstream cascade of signaling events that ultimately lead to visual perception. 11-cis-Retinylidene is regenerated through enzymatic transformations collectively called the visual cycle. The first and rate-limiting enzymatic reaction within this cycle, i.e., the reduction of all-trans-retinal to all-trans-retinol, is catalyzed by retinol dehydrogenases. Here, we determined the structure of Drosophila melanogaster photoreceptor retinol dehydrogenase (PDH) isoform C that belongs to the short-chain dehydrogenase/reductase (SDR) family. This is the first reported structure of a SDR that possesses this biologically important activity. Two crystal structures of the same enzyme grown under different conditions revealed a novel conformational change of the NAD(+) cofactor, likely representing a change during catalysis. Amide hydrogen deuterium exchange of PDH demonstrated changes in the structure of the enzyme upon dinucleotide binding. In D. melanogaster, loss of PDH activity leads to photoreceptor degeneration that can be partially rescued by transgenic expression of human RDH12. Based on the structure of PDH, we analyzed mutations causing Leber congenital amaurosis 13 in a homology model of human RDH12 to obtain insights into the molecular basis of RDH12 disease-causing mutations. C1 [Hofmann, Lukas; Tsybovsky, Yaroslav; Alexander, Nathan S.; Babino, Darwin; von Lintig, Johannes; Palczewski, Krzysztof] Case Western Reserve Univ, Sch Med, Dept Pharmacol, 10900 Euclid Ave, Cleveland, OH 44106 USA. [Hofmann, Lukas; Tsybovsky, Yaroslav; Alexander, Nathan S.; Babino, Darwin; von Lintig, Johannes; Palczewski, Krzysztof] Case Western Reserve Univ, Sch Med, Cleveland Ctr Membrane & Struct Biol, 10900 Euclid Ave, Cleveland, OH 44106 USA. [Leung, Nicole Y.; Montell, Craig] Univ Calif Santa Barbara, Neurosci Res Inst, Santa Barbara, CA 93106 USA. [Leung, Nicole Y.; Montell, Craig] Univ Calif Santa Barbara, Dept Mol Cellular & Dev Biol, Santa Barbara, CA 93106 USA. [Banerjee, Surajit] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14850 USA. [Banerjee, Surajit] Argonne Natl Lab, Northeastern Collaborat Access Team, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Palczewski, K (reprint author), Case Western Reserve Univ, Sch Med, Dept Pharmacol, 10900 Euclid Ave, Cleveland, OH 44106 USA. EM Icxp65@case.edu FU Swiss National Science Foundation [P1SKP3_158634]; National Institutes of Health [EY008117, EY020551, EY009339, EY21126]; Arnold and Mabel Beckman Foundation; Canadian Institute for Advanced Research (CIFAR); National Institute of General Medical Sciences of the National Institutes of Health [P41 GM103403]; DOE Office of Science [DE-AC02-06CH11357] FX L.H. is supported by the Swiss National Science Foundation Doc.Mobility fellowship (P1SKP3_158634). Work in the laboratory of C.M. was supported by National Institutes of Health Grant EY008117. Work in the laboratory of J.v.L. was supported by National Institutes of Health Grant EY020551. This research also was supported by National Institutes of Health Grants EY009339 (K.P.) and EY21126 (K.P.), the Arnold and Mabel Beckman Foundation, and the Canadian Institute for Advanced Research (CIFAR). K.P. is the John Hord Professor of Pharmacology. This work is based upon research conducted at the Northeastern Collaborative Access Team beamlines, which is funded by the National Institute of General Medical Sciences of the National Institutes of Health (P41 GM103403). This research used resources from the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. NR 117 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 29 PY 2016 VL 55 IS 47 BP 6545 EP 6557 DI 10.1021/acs.biochem.6b00907 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA ED8IY UT WOS:000389116400009 ER PT J AU Bordovsky, SS Wong, CS Bachand, GD Stachowiak, JC Sasaki, DY AF Bordovsky, Stefan S. Wong, Christopher S. Bachand, George D. Stachowiak, Jeanne C. Sasaki, Darryl Y. TI Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase SO LANGMUIR LA English DT Article ID AIR-WATER-INTERFACE; VESICLES; DOMAINS; MICROSCOPY; MODEL; RAFT; CELL; REORGANIZATION; MONOLAYERS; SEPARATION AB The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L-o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L-o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L-d). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L-o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L-o phase. C1 [Bordovsky, Stefan S.; Wong, Christopher S.; Sasaki, Darryl Y.] Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA. [Bachand, George D.] Sandia Natl Labs, Nanosyst Synthesis Anal Dept, POB 5800, Albuquerque, NM 87185 USA. [Bordovsky, Stefan S.; Stachowiak, Jeanne C.] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78705 USA. RP Sasaki, DY (reprint author), Sandia Natl Labs, Biotechnol & Bioengn Dept, Livermore, CA 94551 USA. EM dysasak@sandia.gov FU National Science Foundation [DMR1352487]; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division [KC0203010]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dr. Ryan W. Davis of the Biomass Science & Conversion Technology Department at Sandia National Laboratories for the mass spectral analyses of the lipids and Prof. Steve Boxer for insightful discussions. J.C.S. acknowledges support from the National Science Foundation under grant DMR1352487. S.S.B., C.S.W., G.D.B., and D.Y.S. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division (KC0203010). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 33 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 29 PY 2016 VL 32 IS 47 SI SI BP 12527 EP 12533 DI 10.1021/acs.langmuir.6b02636 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED8JK UT WOS:000389117600032 PM 27564087 ER PT J AU Battat, JBR Irastorza, IG Aleksandrov, A Asada, T Baracchini, E Billard, J Bosson, G Bourrion, O Bouvier, J Buonaura, A Burdge, K Cebrian, S Colas, P Consiglio, L Dafni, T D'Ambrosio, N Deaconu, C De Lellis, G Descombes, T Di Crescenzo, A Di Marco, N Druitt, G Eggleston, R Ferrer-Ribas, E Fusayasu, T Galan, J Galati, G Garcia, JA Garza, JG Gentile, V Garcia-Sciveres, M Giomataris, Y Guerrero, N Guillaudin, O Guler, AM Harton, J Hashimoto, T Hedges, MT Iguaz, FJ Ikeda, T Jaegle, I Kadyk, JA Katsuragawa, T Komura, S Kubo, H Kuge, K Lamblin, J Lauria, A Lee, ER Lewis, P Leyton, M Loomba, D Lopez, JP Luzon, G Mayet, F Mirallas, H Miuchi, K Mizumoto, T Mizumura, Y Monacelli, P Monroe, J Montesi, MC Naka, T Nakamura, K Nishimura, H Ochi, A Papevangelou, T Parker, JD Phan, NS Pupilli, F Richer, JP Riffard, Q Rosa, G Santos, D Sawano, T Sekiya, H Seong, IS Snowden-Ifft, DP Spooner, NJC Sugiyama, A Taishaku, R Takada, A Takeda, A Tanaka, M Tanimori, T Thorpe, TN Tioukov, V Tomita, H Umemoto, A Vahsen, SE Yamaguchi, Y Yoshimoto, M Zayas, E AF Battat, J. B. R. Irastorza, I. G. Aleksandrov, A. Asada, T. Baracchini, E. Billard, J. Bosson, G. Bourrion, O. Bouvier, J. Buonaura, A. Burdge, K. Cebrian, S. Colas, P. Consiglio, L. Dafni, T. D'Ambrosio, N. Deaconu, C. De Lellis, G. Descombes, T. Di Crescenzo, A. Di Marco, N. Druitt, G. Eggleston, R. Ferrer-Ribas, E. Fusayasu, T. Galan, J. Galati, G. Garcia, J. A. Garza, J. G. Gentile, V. Garcia-Sciveres, M. Giomataris, Y. Guerrero, N. Guillaudin, O. Guler, A. M. Harton, J. Hashimoto, T. Hedges, M. T. Iguaz, F. J. Ikeda, T. Jaegle, I. Kadyk, J. A. Katsuragawa, T. Komura, S. Kubo, H. Kuge, K. Lamblin, J. Lauria, A. Lee, E. R. Lewis, P. Leyton, M. Loomba, D. Lopez, J. P. Luzon, G. Mayet, F. Mirallas, H. Miuchi, K. Mizumoto, T. Mizumura, Y. Monacelli, P. Monroe, J. Montesi, M. C. Naka, T. Nakamura, K. Nishimura, H. Ochi, A. Papevangelou, T. Parker, J. D. Phan, N. S. Pupilli, F. Richer, J. P. Riffard, Q. Rosa, G. Santos, D. Sawano, T. Sekiya, H. Seong, I. S. Snowden-Ifft, D. P. Spooner, N. J. C. Sugiyama, A. Taishaku, R. Takada, A. Takeda, A. Tanaka, M. Tanimori, T. Thorpe, T. N. Tioukov, V. Tomita, H. Umemoto, A. Vahsen, S. E. Yamaguchi, Y. Yoshimoto, M. Zayas, E. TI Readout technologies for directional WIMP Dark Matter detection SO PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS LA English DT Review DE Dark Matter detectors; Time Projection Chambers; Gaseous imaging and tracking detectors; Wire chambers; Micropattern gaseous detectors; Nuclear emulsions ID MULTIWIRE PROPORTIONAL CHAMBERS; TIME PROJECTION CHAMBER; MICRO-PIXEL CHAMBER; HIGH-INTENSITY EXPERIMENT; IMAGING DETECTOR; GASEOUS DETECTOR; FRONT-END; SCINTILLATION DETECTOR; ELECTRON MULTIPLIERS; NUCLEAR-EMULSIONS AB The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies. (C) 2016 Elsevier B.V. All rights reserved. C1 [Battat, J. B. R.] Wellesley Coll, Dept Phys, 106 Cent St, Wellesley, MA 02481 USA. [Irastorza, I. G.; Cebrian, S.; Dafni, T.; Galan, J.; Garcia, J. A.; Garza, J. G.; Iguaz, F. J.; Luzon, G.; Mirallas, H.] Univ Zaragoza, Dept Fis Teor, Grp Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Aleksandrov, A.; Buonaura, A.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Lauria, A.; Montesi, M. C.; Tioukov, V.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Guler, A. M.] METU Middle East Tech Univ, TR-06531 Ankara, Turkey. [Asada, T.; Katsuragawa, T.; Naka, T.; Umemoto, A.; Yoshimoto, M.] Nagoya Univ, J-4648602 Nagoya, Japan. [Baracchini, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Descombes, T.; Lamblin, J.; Mayet, F.; Richer, J. P.; Santos, D.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, 53 Ave Martyrs, Grenoble, France. [Billard, J.] Univ Lyon 1, CNRS, IN2P3, IPNL, 4 Rue E Fermi, F-69622 Villeurbanne, France. [Buonaura, A.; De Lellis, G.; Galati, G.; Lauria, A.; Montesi, M. C.] Univ Naples Federico II, Dipartimento Fis, I-80125 Naples, Italy. [Burdge, K.; Deaconu, C.; Guerrero, N.; Leyton, M.; Lopez, J. P.; Tomita, H.; Zayas, E.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Burdge, K.] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA. [Colas, P.; Ferrer-Ribas, E.; Giomataris, Y.; Papevangelou, T.] Univ Paris Saclay, CEA, IRFU, Gif Sur Yvette, France. [Consiglio, L.; D'Ambrosio, N.; Di Marco, N.; Pupilli, F.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, Italy. [Deaconu, C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Druitt, G.; Eggleston, R.; Guerrero, N.; Leyton, M.; Monroe, J.] Royal Holloway Univ London, Dept Phys, Egham Hill, Surrey TW20 0EX, England. [Fusayasu, T.; Sugiyama, A.] Saga Univ, Fac Sci & Engn, Dept Phys, Saga 8408502, Japan. [Gentile, V.] Ist Nazl Fis Nucl, Gran Sasso Sci Inst, Laquila, Italy. [Garcia-Sciveres, M.; Kadyk, J. A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Harton, J.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Hashimoto, T.; Ikeda, T.; Miuchi, K.; Ochi, A.; Taishaku, R.; Yamaguchi, Y.] Kobe Univ, Dept Phys, Rokkodai Cho, Kobe, Hyogo 6578501, Japan. [Hedges, M. T.; Lewis, P.; Seong, I. S.; Thorpe, T. N.; Vahsen, S. E.] Univ Hawaii, 2505 Correa Rd, Honolulu, HI 96822 USA. [Jaegle, I.] Univ Florida, Dept Phys, POB 118440, Gainesville, FL 32611 USA. [Komura, S.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Nakamura, K.; Nishimura, H.; Sawano, T.; Takada, A.; Tanimori, T.] Kyoto Univ, Dept Phys, Sakyo Ku, Kyoto, Kyoto 6068502, Japan. [Kuge, K.] Chiba Univ, J-2638522 Chiba, Japan. [Loomba, D.; Phan, N. S.] Univ New Mexico, Dept Phys & Astron, 1919 Lomas Blvd NE, Albuquerque, NM 87131 USA. [Lopez, J. P.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Monacelli, P.; Rosa, G.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Monroe, J.; Tanaka, M.] KEK, Inst Particle & Nucl Studies, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. [Parker, J. D.] Comprehens Res Org Sci & Soc, Neutron Sci & Technol Ctr, Tokai, Ibaraki 3191106, Japan. [Riffard, Q.] Univ Paris Diderot, CNRS, IN2P3, CEA Irfu,Obs Paris,Sorbonne Paris Cite,APC, F-75205 Paris, France. [Rosa, G.] Univ Roma Sapienza, Dipartmento Fis, I-00185 Rome, Italy. [Sekiya, H.; Takeda, A.] Univ Tokyo, ICRR, Kamioka Observ, Gifu 5061205, Japan. [Snowden-Ifft, D. P.] Occidental Coll, Dept Phys, Los Angeles, CA 90041 USA. [Spooner, N. J. C.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Tomita, H.] Silverside Detectors Inc, Cambridge, MA USA. RP Battat, JBR (reprint author), Wellesley Coll, Dept Phys, 106 Cent St, Wellesley, MA 02481 USA. EM jbattat@wellesley.edu RI Irastorza, Igor/B-2085-2012; Iguaz Gutierrez, Francisco Jose/F-4117-2016; Alexandrov, Andrey/D-9723-2014; OI Irastorza, Igor/0000-0003-1163-1687; Iguaz Gutierrez, Francisco Jose/0000-0001-6327-9369; Alexandrov, Andrey/0000-0002-1813-1485; D'Ambrosio, Nicola/0000-0001-9849-8756 FU Alfred P. Sloan Foundation [BR2012-011]; National Science Foundation [PHY-1649966]; Research Corporation for Science Advancement [23325]; Massachusetts Space Grant Consortium [NNX16AH49H]; Wellesley College Summer Science Research program [26179]; European Research Council (ERC) [ERC-2009-StG-240054]; Spanish Ministry of Economy and Competitiveness [FPA2008-03456, FPA2011-24058, FPA2013-41085-P]; European Union's Horizon research and innovation programme under the Marie Sklodowska-Curie Grant [657751]; Office of High Energy Physics of the U.S. Department of Energy (DoE) [DE-AC02-05CH11231]; Juan de la Cierva program [JCI-2012-13882]; National Science Foundation (NSF) [1407773, 1506329]; KAKENHI from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [16684004, 19684005, 23684014, 15H05446, 26104005, 16H02189, 21340063, 23654084, 15K13485, 23-812]; Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, JSPS, Japan [R2607]; ERC [ERC StG 279980]; STFC [ST/N00034X/1]; NSF [1407754, 1103511, 1521027, 1506237]; Occidental College Undergraduate Research Center summer program; U.S. Department of Homeland Security [2011-DN-077-ARI050-03]; DoE [DE-SC0007852, DE-SC0010504] FX J.B.R.B. acknowledges the support of the Alfred P. Sloan Foundation (BR2012-011), the National Science Foundation (PHY-1649966), the Research Corporation for Science Advancement (Award #23325), the Massachusetts Space Grant Consortium (NNX16AH49H), and the Wellesley College Summer Science Research program (26179). I.G.I. and the Zaragoza group acknowledges support from the European Research Council (ERC) through the ERC-2009-StG-240054 grant (T-REX project) as well as from the Spanish Ministry of Economy and Competitiveness under grants FPA2008-03456, FPA2011-24058, and FPA2013-41085-P. This work was partially supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 657751. This work was supported in part by the Office of High Energy Physics of the U.S. Department of Energy (DoE) under contract DE-AC02-05CH11231. F.I. acknowledges the support from the Juan de la Cierva program (JCI-2012-13882). D.L. acknowledges support from the National Science Foundation (NSF) under grants 1407773 and 1506329. This work was partially supported by KAKENHI Grant-in-Aids for Young Scientist(A) (16684004, 19684005, 23684014, 15H05446) KAKENHI Grant-in-Aid for Scientific Research on Innovative Area (26104005); KAKENHI Grant-in-Aids for Scientific Research(A) (16H02189); KAKENHI Grant in-Aids for Scientific Research(B) (21340063); KAKENHI Grant-in-Aids for Challenging Exploratory Research (23654084, 15K13485); KAKENHI Grant-in-Aids for JSPS Fellows (23-812); from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. This work was partially supported by Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers, JSPS, Japan (R2607). The Royal Holloway, University of London group is supported by ERC Starting Grant number ERC StG 279980 and STFC grant ST/N00034X/1. D.P.S.I. acknowledges support from the NSF under grants 1407754, 1103511, 1521027 and 1506237, and undergraduate student support from Occidental College Undergraduate Research Center summer program. S.V. and the Hawaii group acknowledge support from the U.S. Department of Homeland Security under Award Number 2011-DN-077-ARI050-03 and the DoE under Award Numbers DE-SC0007852 and DE-SC0010504. Finally, we thank the anonymous referee for their helpful comments. NR 243 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-1573 EI 1873-6270 J9 PHYS REP JI Phys. Rep.-Rev. Sec. Phys. Lett. PD NOV 29 PY 2016 VL 662 BP 1 EP 46 DI 10.1016/j.physrep.2016.10.001 PG 46 WC Physics, Multidisciplinary SC Physics GA ED8FO UT WOS:000389107600001 ER PT J AU Chen, P Chan, YH Fang, XY Mo, SK Hussain, Z Fedorov, AV Chou, MY Chiang, TC AF Chen, P. Chan, Y. -H. Fang, X. -Y. Mo, S. -K. Hussain, Z. Fedorov, A. -V. Chou, M. Y. Chiang, T. -C. TI Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe2 SO SCIENTIFIC REPORTS LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; TOTAL-ENERGY CALCULATIONS; BASIS-SET; TRANSITION; YBA2CU3O6.67; 1T-TISE2; DYNAMICS; METALS AB Charge density wave (CDW) formation, a key physics issue for materials, arises from interactions among electrons and phonons that can also lead to superconductivity and other competing or entangled phases. The prototypical system TiSe2, with a particularly simple (2 x 2 x 2) transition and no Kohn anomalies caused by electron-phonon coupling, is a fascinating but unsolved case after decades of research. Our angle-resolved photoemission measurements of the band structure as a function of temperature, aided by first-principles calculations, reveal a hitherto undetected but crucial feature: a (2 x 2) electronic order in each layer sets in at similar to 232 K before the widely recognized three-dimensional structural order at similar to 205 K. The dimensional crossover, likely a generic feature of such layered materials, involves renormalization of different band gaps in two stages. C1 [Chen, P.; Fang, X. -Y.; Chiang, T. -C.] Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA. [Chen, P.; Fang, X. -Y.; Chiang, T. -C.] Univ Illinois, Frederick Seitz Mat Res Lab, 104 South Goodwin Ave, Urbana, IL 61801 USA. [Chen, P.; Mo, S. -K.; Hussain, Z.; Fedorov, A. -V.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Chan, Y. -H.; Chou, M. Y.] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Chou, M. Y.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Chou, M. Y.; Chiang, T. -C.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. RP Chiang, TC (reprint author), Univ Illinois, Dept Phys, 1110 West Green St, Urbana, IL 61801 USA.; Chiang, TC (reprint author), Univ Illinois, Frederick Seitz Mat Res Lab, 104 South Goodwin Ave, Urbana, IL 61801 USA.; Chou, MY (reprint author), Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan.; Chou, MY (reprint author), Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA.; Chou, MY; Chiang, TC (reprint author), Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. EM mychou6@sinica.edu.tw; tcchiang@illinois.edu RI Mo, Sung-Kwan/F-3489-2013; Chou, Mei-Yin/D-3898-2012 OI Mo, Sung-Kwan/0000-0003-0711-8514; FU U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-FG02-07ER46383]; National Science Foundation [EFMA-1542747]; Office of Science, Office of Basic Energy Sciences, U.S. DOE [DE-AC02-05CH11231]; Thematic Project at Academia Sinica FX This work is supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Grant No. DE-FG02-07ER46383 (TCC) and the National Science Foundation Grant No. EFMA-1542747 (MYC). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, U.S. DOE under Contract No. DE-AC02-05CH11231. YHC is supported by a Thematic Project at Academia Sinica. NR 32 TC 0 Z9 0 U1 26 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 29 PY 2016 VL 6 AR 37910 DI 10.1038/srep37910 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED6VQ UT WOS:000388995200001 PM 27897228 ER PT J AU Shiell, TB McCulloch, DG Bradby, JE Haberl, B Boehler, R McKenzie, DR AF Shiell, Thomas. B. McCulloch, Dougal G. Bradby, Jodie E. Haberl, Bianca Boehler, Reinhard McKenzie, David. R. TI Nanocrystalline hexagonal diamond formed from glassy carbon SO SCIENTIFIC REPORTS LA English DT Article ID ENERGY-LOSS SPECTROSCOPY; RAY-DIFFRACTION DATA; SHOCK-COMPRESSION; PHASE-TRANSITION; RAMAN-SPECTROSCOPY; AMORPHOUS-CARBON; GRAPHITE; LONSDALEITE; NUCLEATION; PARAMETERS AB Carbon exhibits a large number of allotropes and its phase behaviour is still subject to significant uncertainty and intensive research. The hexagonal form of diamond, also known as lonsdaleite, was discovered in the Canyon Diablo meteorite where its formation was attributed to the extreme conditions experienced during the impact. However, it has recently been claimed that lonsdaleite does not exist as a well-defined material but is instead defective cubic diamond formed under high pressure and high temperature conditions. Here we report the synthesis of almost pure lonsdaleite in a diamond anvil cell at 100 GPa and 400 degrees C. The nanocrystalline material was recovered at ambient and analysed using diffraction and high resolution electron microscopy. We propose that the transformation is the result of intense radial plastic flow under compression in the diamond anvil cell, which lowers the energy barrier by "locking in" favourable stackings of graphene sheets. This strain induced transformation of the graphitic planes of the precursor to hexagonal diamond is supported by first principles calculations of transformation pathways and explains why the new phase is found in an annular region. Our findings establish that high purity lonsdaleite is readily formed under strain and hence does not require meteoritic impacts. C1 [Shiell, Thomas. B.; Bradby, Jodie E.] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia. [McCulloch, Dougal G.] RMIT Univ, Sch Sci, Melbourne, Vic 3001, Australia. [Haberl, Bianca] Oak Ridge Natl Lab, Neutron Sci Directorate, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Boehler, Reinhard] Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. [McKenzie, David. R.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. RP McKenzie, DR (reprint author), Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. EM David.McKenzie@Sydney.edu.au RI McCulloch, Dougal/G-7039-2012 FU Australian Research Council (ARC) [FT130101355]; ARC [DP140102331]; Alvin M. Weinberg Fellowship (ORNL); Spallation Neutron Source (ORNL) - U.S. Department of Energy, Office of Basic Energy Sciences; DOE-BES [DE-AC05-00OR22725, DE-FG02-99ER45775]; Scientific User Facilities division, DOE-BES [DE-AC05-00OR22725]; Alvin M. Weinberg Fellowship by the ORNL LDRD scheme [7620]; Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0001057]; DOE-NNSA [DE-NA0001974]; NSF; U.S. Department of Energy (DOE) Office of Science User Facility [DE-AC02-06CH11357] FX JEB would like to acknowledge the Australian Research Council (ARC) for a Future Fellowship (FT130101355) and JEB and DGM funding under the ARC Discovery Project scheme (DP140102331). The authors gratefully acknowledge Dr Matthew Field and the facilities provided by the RMIT Microscopy and Microanalysis Facility, Dr Stanislav Sinogeikin (HPCAT) and Dr Jamie J. Molaison (ORNL) for their assistance during the HPCAT beamtime, and Larissa Huston (ANU) for the schematic in Fig. 1. BH gratefully acknowledges current funding from an Alvin M. Weinberg Fellowship (ORNL) and the Spallation Neutron Source (ORNL), sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences. ORNL is funded under DOE-BES Contract No., DE-AC05-00OR22725, the SNS is supported by the Scientific User Facilities division, DOE-BES under Contract No. DE-AC05-00OR22725 and the Alvin M. Weinberg Fellowship by the ORNL LDRD scheme under Project No. 7620. Work by RB was fully supported by the Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under award number DE-SC0001057. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 34 TC 0 Z9 0 U1 22 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 29 PY 2016 VL 6 AR 37232 DI 10.1038/srep37232 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED6XV UT WOS:000389001200001 PM 27897174 ER PT J AU Nguyen, TKV Ghate, VP Carlton, AG AF Nguyen, Thien Khoi V. Ghate, Virendra P. Carlton, Annmarie G. TI Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID SOUTHEASTERN UNITED-STATES; THERMODYNAMIC-EQUILIBRIUM MODEL; ATMOSPHERIC AEROSOL; HYGROSCOPIC GROWTH; ORGANIC-COMPOUNDS; LIGHT-SCATTERING; GRAND-CANYON; RELATIVE-HUMIDITY; SPECIES CONTRIBUTIONS; INORGANIC AEROSOLS AB Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements. C1 [Nguyen, Thien Khoi V.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ USA. [Ghate, Virendra P.] Argonne Natl Lab, Div Environm Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Carlton, Annmarie G.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. RP Carlton, AG (reprint author), Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. EM agcarlto@uci.edu OI Carlton, Annmarie/0000-0002-8574-1507 FU EPA [R835041]; NSF [AGS-1242155, AGS-1445831]; U.S. Department of Energy's (DOE) Atmospheric System Research (ASR); Office of Science, Office of Biological and Environmental Research (BER) program [DE-AC02-06CH11357] FX This research was funded, in part, by the EPA's Science to Achieve Results (STAR) grant R835041 and NSF grants AGS-1242155 and AGS-1445831. V.G. was supported by the U.S. Department of Energy's (DOE) Atmospheric System Research (ASR), an Office of Science, Office of Biological and Environmental Research (BER) program, under contract DE-AC02-06CH11357 awarded to Argonne National Laboratory. The views expressed in this manuscript are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. The IMPROVE database can be found at http://vista.cira.colostate.edu/improve/. NCEP Reanalysis data were provided by the NOAA/OAR/ESRL PSD in Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. The CALIPSO data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. We also thank Athanasios Nenes for developing ISORROPIA and providing it to the community and Alan Robock for useful conversations about meteorology and the NARR. The authors thank Alan Robock and Ralph Kahn for useful conversations. NR 80 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV 28 PY 2016 VL 43 IS 22 BP 11903 EP 11912 DI 10.1002/2016GL070994 PG 10 WC Geosciences, Multidisciplinary SC Geology GA EJ4SV UT WOS:000393208100049 ER PT J AU Salomon, RL Valbuena-Carabana, M Gil, L McGuire, MA Teskey, RO Aubrey, DP Gonzalez-Doncel, I Rodriguez-Calcerrada, J AF Salomon, Roberto L. Valbuena-Carabana, Maria Gil, Luis McGuire, Mary Anne Teskey, Robert O. Aubrey, Doug P. Gonzalez-Doncel, Ines Rodriguez-Calcerrada, Jesus TI Temporal and spatial patterns of internal and external stem CO2 fluxes in a sub-Mediterranean oak SO TREE PHYSIOLOGY LA English DT Article DE carbon balance; carbon loss; daytime CO2 depression; forest decline; seasonal variation; stem CO2 efflux; summer drought; xylem CO2 transport ID QUERCUS-PYRENAICA WILLD.; BETWEEN-TREE VARIATION; CARBON-DIOXIDE EFFLUX; LOBLOLLY-PINE TREES; SAP-FLOW; NORWAY SPRUCE; SEASONAL-VARIATION; RESPIRATION; XYLEM; FOREST AB To accurately estimate stem respiration (R-S), measurements of both carbon dioxide (CO2) efflux to the atmosphere (E-A) and internal CO2 flux through xylem (F-T) are needed because xylem sap transports respired CO2 upward. However, reports of seasonal dynamics of F-T and E-A are scarce and no studies exist in Mediterranean species under drought stress conditions. Internal and external CO2 fluxes at three stem heights, together with radial stem growth, temperature, sap flow and shoot water potential, were measured in Quercus pyrenaica Willd. in four measurement campaigns during one growing season. Substantial daytime depressions in temperature-normalized E-A were observed throughout the experiment, including prior to budburst, indicating that diel hysteresis between stem temperature and E-A cannot be uniquely ascribed to diversion of CO2 in the transpiration stream. Low internal [CO2] (<0.5%) resulted in low contributions of F-T to R-S throughout the growing season, and R-S was mainly explained by E-A (>90%). Internal [CO2] was found to vary vertically along the stems. Seasonality in resistance to radial CO2 diffusion was related to shoot water potential. The low internal [CO2] and F-T observed in our study may result from the downregulation of xylem respiration in response to a legacy of coppicing as well as high radial diffusion of CO2 through cambium, phloem and bark tissues, which was related to low water content of stems. Long-term studies analyzing temporal and spatial variation in internal and external CO2 fluxes and their interactions are needed to mechanistically understand and model respiration of woody tissues. C1 [Salomon, Roberto L.; Valbuena-Carabana, Maria; Gil, Luis; Gonzalez-Doncel, Ines; Rodriguez-Calcerrada, Jesus] Tech Univ Madrid, Forest Genet & Ecophysiol Res Grp, ETS Forestry Engn, Ciudad Univ S-N, Madrid 28040, Spain. [McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.] Univ Georgia, Warnell Sch Forestry & Nat Resources, 180 East Green St, Athens, GA 30602 USA. [Aubrey, Doug P.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Rodriguez-Calcerrada, J (reprint author), Tech Univ Madrid, Forest Genet & Ecophysiol Res Grp, ETS Forestry Engn, Ciudad Univ S-N, Madrid 28040, Spain. EM jesus.rcalcerrada@upm.es FU Comunidad de Madrid [CAM P2009/AMB-1668, P2013/MAE-2760]; Universidad Politecnica de Madrid; Juan de la Cierva from Spanish Ministry of Economy and Competitiveness FX This work was funded by the Comunidad de Madrid through CAM P2009/AMB-1668 and P2013/MAE-2760 projects. R.L.S. was supported by a Ph.D. scholarship from the Universidad Politecnica de Madrid. J.R.-C. was supported by a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitiveness. NR 56 TC 0 Z9 0 U1 4 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0829-318X EI 1758-4469 J9 TREE PHYSIOL JI Tree Physiol. PD NOV 28 PY 2016 VL 36 IS 11 BP 1409 EP 1421 DI 10.1093/treephys/tpw029 PG 13 WC Forestry SC Forestry GA EJ2PH UT WOS:000393052100010 PM 27126229 ER PT J AU Adare, A Aidala, C Ajitanand, NN Akiba, Y Akimoto, R Alexander, J Alfred, M Aoki, K Apadula, N Asano, H Atomssa, ET Awes, TC Azmoun, B Babintsev, V Bai, M Bai, X Bandara, NS Bannier, B Barish, KN Bathe, S Baublis, V Baumann, C Baumgart, S Bazilevsky, A Beaumier, M Beckman, S Belmont, R Berdnikov, A Berdnikov, Y Black, D Blau, DS Bok, JS Boyle, K Brooks, ML Bryslawskyj, J Buesching, H Bumazhnov, V Butsyk, S Campbell, S Chen, CH Chi, CY Chiu, M Choi, IJ Choi, JB Choi, S Christiansen, P Chujo, T Cianciolo, V Citron, Z Cole, BA Cronin, N Crossette, N Csanad, M Csorgo, T Danley, TW Datta, A Daugherity, MS David, G DeBlasio, K Dehmelt, K Denisov, A Deshpande, A Desmond, EJ Ding, L Dion, A Diss, PB Do, JH D'Orazio, L Drapier, O Drees, A Drees, KA Durham, JM Durum, A Engelmore, T Enokizono, A Esumi, S Eyser, KO Fadem, B Feege, N Fields, DE Finger, M Finger, M Fleuret, F Fokin, SL Frantz, JE Franz, A Frawley, AD Fukao, Y Fusayasu, T Gainey, K Gal, C Gallus, P Garg, P Garishvili, A Garishvili, I Ge, H Giordano, F Glenn, A Gong, X Gonin, M Goto, Y de Cassagnac, RG Grau, N Greene, SV Perdekamp, MG Gu, Y Gunji, T Guragain, H Hachiya, T Haggerty, JS Hahn, KI Hamagaki, H Hamilton, HF Han, SY Hanks, J Hasegawa, S Haseler, TOS Hashimoto, K Hayano, R He, X Hemmick, TK Hester, T Hill, JC Hollis, RS Homma, K Hong, B Hoshino, T Hotvedt, N Huang, J Huang, S Ichihara, T Ikeda, Y Imai, K Imazu, Y Inaba, M Iordanova, A Isenhower, D Isinhue, A Ivanishchev, D Jacak, BV Jeon, SJ Jezghani, M Jia, J Jiang, X Johnson, BM Joo, KS Jouan, D Jumper, DS Kamin, J Kanda, S Kang, BH Kang, JH Kang, JS Kapustinsky, J Kawall, D Kazantsev, AV Key, JA Khachatryan, V Khandai, PK Khanzadeev, A Kijima, KM Kim, C Kim, DJ Kim, EJ Kim, GW Kim, M Kim, YJ Kim, YK Kimelman, B Kistenev, E Kitamura, R Klatsky, J Kleinjan, D Kline, P Koblesky, T Kofarago, M Komkov, B Koster, J Kotchetkov, D Kotov, D Krizek, F Kurita, K Kurosawa, M Kwon, Y Lacey, R Lai, YS Lajoie, JG Lebedev, A Lee, DM Lee, GH Lee, J Lee, KB Lee, KS Lee, S Lee, SH Leitch, MJ Leitgab, M Lewis, B Li, X Lim, SH Liu, MX Lynch, D Maguire, CF Makdisi, YI Makek, M Manion, A Manko, VI Mannel, E Maruyama, T McCumber, M McGaughey, PL McGlinchey, D McKinney, C Meles, A Mendoza, M Meredith, B Miake, Y Mibe, T Mignerey, AC Milov, A Mishra, DK Mitchell, JT Miyasaka, S Mizuno, S Mohanty, AK Mohapatra, S Montuenga, P Moon, T Morrison, DP Moskowitz, M Moukhanova, TV Murakami, T Murata, J Mwai, A Nagae, T Nagamiya, S Nagashima, K Nagle, JL Nagy, MI Nakagawa, I Nakagomi, H Nakamiya, Y Nakamura, KR Nakamura, T Nakano, K Nattrass, C Netrakanti, PK Nihashi, M Niida, T Nishimura, S Nouicer, R Novak, T Novitzky, N Nyanin, AS O'Brien, E Ogilvie, CA Oide, H Okada, K Koop, JDO Osborn, JD Oskarsson, A Ozawa, K Pak, R Pantuev, V Papavassiliou, V Park, IH Park, JS Park, S Park, SK Pate, SF Patel, L Patel, M Peng, JC Perepelitsa, DV Perera, GDN Peressounko, DY Perry, J Petti, R Pinkenburg, C Pinson, R Pisani, RP Purschke, ML Qu, H Rak, J Ramson, BJ Ravinovich, I Read, KF Reynolds, D Riabov, V Riabov, Y Richardson, E Rinn, T Riveli, N Roach, D Rolnick, SD Rosati, M Rowan, Z Rubin, JG Ryu, MS Sahlmueller, B Saito, N Sakaguchi, T Sako, H Samsonov, V Sarsour, M Sato, S Sawada, S Schaefer, B Schmoll, BK Sedgwick, K Seele, J Seidl, R Sekiguchi, Y Sen, A Seto, R Sett, P Sexton, A Sharma, D Shaver, A Shein, I Shibata, TA Shigaki, K Shimomura, M Shoji, K Shukla, P Sickles, A Silva, CL Silvermyr, D Singh, BK Singh, CP Singh, V Skolnik, M Slunecka, M Snowball, M Solano, S Soltz, RA Sondheim, WE Sorensen, SP Sourikova, IV Stankus, PW Steinberg, P Stenlund, E Stepanov, M Ster, A Stoll, SP Stone, MR Sugitate, T Sukhanov, A Sumita, T Sun, J Sziklai, J Takahara, A Taketani, A Tanaka, Y Tanida, K Tannenbaum, MJ Tarafdar, S Taranenko, A Tennant, E Tieulent, R Timilsina, A Todoroki, T Tomasek, M Torii, H Towell, CL Towell, R Towell, RS Tserruya, I van Hecke, HW Vargyas, M Vazquez-Zambrano, E Veicht, A Velkovska, J Vertesi, R Virius, M Vrba, V Vznuzdaev, E Wang, XR Watanabe, D Watanabe, K Watanabe, Y Watanabe, YS Wei, F Whitaker, S White, AS Wolin, S Woody, CL Wysocki, M Xia, B Xue, L Yalcin, S Yamaguchi, YL Yanovich, A Yokkaichi, S Yoo, JH Yoon, I You, Z Younus, I Yu, H Yushmanov, IE Zajc, WA Zelenski, A Zhou, S Zou, L AF Adare, A. Aidala, C. Ajitanand, N. N. Akiba, Y. Akimoto, R. Alexander, J. Alfred, M. Aoki, K. Apadula, N. Asano, H. Atomssa, E. T. Awes, T. C. Azmoun, B. Babintsev, V. Bai, M. Bai, X. Bandara, N. S. Bannier, B. Barish, K. N. Bathe, S. Baublis, V. Baumann, C. Baumgart, S. Bazilevsky, A. Beaumier, M. Beckman, S. Belmont, R. Berdnikov, A. Berdnikov, Y. Black, D. Blau, D. S. Bok, J. S. Boyle, K. Brooks, M. L. Bryslawskyj, J. Buesching, H. Bumazhnov, V. Butsyk, S. Campbell, S. Chen, C. -H. Chi, C. Y. Chiu, M. Choi, I. J. Choi, J. B. Choi, S. Christiansen, P. Chujo, T. Cianciolo, V. Citron, Z. Cole, B. A. Cronin, N. Crossette, N. Csanad, M. Csorgo, T. Danley, T. W. Datta, A. Daugherity, M. S. David, G. DeBlasio, K. Dehmelt, K. Denisov, A. Deshpande, A. Desmond, E. J. Ding, L. Dion, A. Diss, P. B. Do, J. H. D'Orazio, L. Drapier, O. Drees, A. Drees, K. A. Durham, J. M. Durum, A. Engelmore, T. Enokizono, A. Esumi, S. Eyser, K. O. Fadem, B. Feege, N. Fields, D. E. Finger, M. Finger, M., Jr. Fleuret, F. Fokin, S. L. Frantz, J. E. Franz, A. Frawley, A. D. Fukao, Y. Fusayasu, T. Gainey, K. Gal, C. Gallus, P. Garg, P. Garishvili, A. Garishvili, I. Ge, H. Giordano, F. Glenn, A. Gong, X. Gonin, M. Goto, Y. de Cassagnac, R. Granier Grau, N. Greene, S. V. Perdekamp, M. Grosse Gu, Y. Gunji, T. Guragain, H. Hachiya, T. Haggerty, J. S. Hahn, K. I. Hamagaki, H. Hamilton, H. F. Han, S. Y. Hanks, J. Hasegawa, S. Haseler, T. O. S. Hashimoto, K. Hayano, R. He, X. Hemmick, T. K. Hester, T. Hill, J. C. Hollis, R. S. Homma, K. Hong, B. Hoshino, T. Hotvedt, N. Huang, J. Huang, S. Ichihara, T. Ikeda, Y. Imai, K. Imazu, Y. Inaba, M. Iordanova, A. Isenhower, D. Isinhue, A. Ivanishchev, D. Jacak, B. V. Jeon, S. J. Jezghani, M. Jia, J. Jiang, X. Johnson, B. M. Joo, K. S. Jouan, D. Jumper, D. S. Kamin, J. Kanda, S. Kang, B. H. Kang, J. H. Kang, J. S. Kapustinsky, J. Kawall, D. Kazantsev, A. V. Key, J. A. Khachatryan, V. Khandai, P. K. Khanzadeev, A. Kijima, K. M. Kim, C. Kim, D. J. Kim, E. -J. Kim, G. W. Kim, M. Kim, Y. -J. Kim, Y. K. Kimelman, B. Kistenev, E. Kitamura, R. Klatsky, J. Kleinjan, D. Kline, P. Koblesky, T. Kofarago, M. Komkov, B. Koster, J. Kotchetkov, D. Kotov, D. Krizek, F. Kurita, K. Kurosawa, M. Kwon, Y. Lacey, R. Lai, Y. S. Lajoie, J. G. Lebedev, A. Lee, D. M. Lee, G. H. Lee, J. Lee, K. B. Lee, K. S. Lee, S. Lee, S. H. Leitch, M. J. Leitgab, M. Lewis, B. Li, X. Lim, S. H. Liu, M. X. Lynch, D. Maguire, C. F. Makdisi, Y. I. Makek, M. Manion, A. Manko, V. I. Mannel, E. Maruyama, T. McCumber, M. McGaughey, P. L. McGlinchey, D. McKinney, C. Meles, A. Mendoza, M. Meredith, B. Miake, Y. Mibe, T. Mignerey, A. C. Milov, A. Mishra, D. K. Mitchell, J. T. Miyasaka, S. Mizuno, S. Mohanty, A. K. Mohapatra, S. Montuenga, P. Moon, T. Morrison, D. P. Moskowitz, M. Moukhanova, T. V. Murakami, T. Murata, J. Mwai, A. Nagae, T. Nagamiya, S. Nagashima, K. Nagle, J. L. Nagy, M. I. Nakagawa, I. Nakagomi, H. Nakamiya, Y. Nakamura, K. R. Nakamura, T. Nakano, K. Nattrass, C. Netrakanti, P. K. Nihashi, M. Niida, T. Nishimura, S. Nouicer, R. Novak, T. Novitzky, N. Nyanin, A. S. O'Brien, E. Ogilvie, C. A. Oide, H. Okada, K. Koop, J. D. Orjuela Osborn, J. D. Oskarsson, A. Ozawa, K. Pak, R. Pantuev, V. Papavassiliou, V. Park, I. H. Park, J. S. Park, S. Park, S. K. Pate, S. F. Patel, L. Patel, M. Peng, J. -C. Perepelitsa, D. V. Perera, G. D. N. Peressounko, D. Yu. Perry, J. Petti, R. Pinkenburg, C. Pinson, R. Pisani, R. P. Purschke, M. L. Qu, H. Rak, J. Ramson, B. J. Ravinovich, I. Read, K. F. Reynolds, D. Riabov, V. Riabov, Y. Richardson, E. Rinn, T. Riveli, N. Roach, D. Rolnick, S. D. Rosati, M. Rowan, Z. Rubin, J. G. Ryu, M. S. Sahlmueller, B. Saito, N. Sakaguchi, T. Sako, H. Samsonov, V. Sarsour, M. Sato, S. Sawada, S. Schaefer, B. Schmoll, B. K. Sedgwick, K. Seele, J. Seidl, R. Sekiguchi, Y. Sen, A. Seto, R. Sett, P. Sexton, A. Sharma, D. Shaver, A. Shein, I. Shibata, T. -A. Shigaki, K. Shimomura, M. Shoji, K. Shukla, P. Sickles, A. Silva, C. L. Silvermyr, D. Singh, B. K. Singh, C. P. Singh, V. Skolnik, M. Slunecka, M. Snowball, M. Solano, S. Soltz, R. A. Sondheim, W. E. Sorensen, S. P. Sourikova, I. V. Stankus, P. W. Steinberg, P. Stenlund, E. Stepanov, M. Ster, A. Stoll, S. P. Stone, M. R. Sugitate, T. Sukhanov, A. Sumita, T. Sun, J. Sziklai, J. Takahara, A. Taketani, A. Tanaka, Y. Tanida, K. Tannenbaum, M. J. Tarafdar, S. Taranenko, A. Tennant, E. Tieulent, R. Timilsina, A. Todoroki, T. Tomasek, M. Torii, H. Towell, C. L. Towell, R. Towell, R. S. Tserruya, I. van Hecke, H. W. Vargyas, M. Vazquez-Zambrano, E. Veicht, A. Velkovska, J. Vertesi, R. Virius, M. Vrba, V. Vznuzdaev, E. Wang, X. R. Watanabe, D. Watanabe, K. Watanabe, Y. Watanabe, Y. S. Wei, F. Whitaker, S. White, A. S. Wolin, S. Woody, C. L. Wysocki, M. Xia, B. Xue, L. Yalcin, S. Yamaguchi, Y. L. Yanovich, A. Yokkaichi, S. Yoo, J. H. Yoon, I. You, Z. Younus, I. Yu, H. Yushmanov, I. E. Zajc, W. A. Zelenski, A. Zhou, S. Zou, L. CA PHENIX Collaboration TI Measurements of directed, elliptic, and triangular flow in Cu plus Au collisions at root sNN=200 GeV SO PHYSICAL REVIEW C LA English DT Article ID QUARK-GLUON PLASMA; RELATIVISTIC NUCLEAR COLLISIONS; COLLABORATION; MATTER AB Measurements of anisotropic flow Fourier coefficients (upsilon(n)) for inclusive charged particles and identified hadrons pi(+/-), K-+/-, p, and (p) over bar produced at midrapidity in Cu + Au collisions at root s(NN) = 200 GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy-Ion Collider (RHIC). The particle azimuthal distributions with respect to different-order symmetry planes psi(n), for n = 1, 2, and 3 are studied as a function of transverse momentum p(T) over a broad range of collision centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared with hydrodynamical and transport model calculations. We also compare these Cu + Au results with those in Cu + Cu and Au + Au collisions at the same root s(NN) and find that the upsilon(2) and upsilon(3), as a function of transverse momentum, follow a common scaling with 1/(epsilon N-n(part)1/3). C1 [Daugherity, M. S.; Gainey, K.; Hamilton, H. F.; Isenhower, D.; Pinson, R.; Qu, H.; Towell, C. L.; Towell, R.; Towell, R. S.] Abilene Christian Univ, Abilene, TX 79699 USA. [Grau, N.] Augustana Univ, Dept Phys, Sioux Falls, SD 57197 USA. [Garg, P.; Khandai, P. K.; Singh, B. K.; Singh, C. P.; Singh, V.; Tarafdar, S.] Banaras Hindu Univ, Dept Phys, Varanasi 221005, Uttar Pradesh, India. [Mishra, D. K.; Mohanty, A. K.; Netrakanti, P. K.; Sett, P.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Bathe, S.; Bryslawskyj, J.; Rowan, Z.] CUNY, Baruch Coll, New York, NY 10010 USA. [Bai, M.; Drees, K. A.; Makdisi, Y. I.; Zelenski, A.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Adare, A.; Azmoun, B.; Baumann, C.; Bazilevsky, A.; Buesching, H.; Chiu, M.; David, G.; Desmond, E. J.; Eyser, K. O.; Franz, A.; Haggerty, J. S.; Huang, J.; Jia, J.; Johnson, B. M.; Kistenev, E.; Lynch, D.; Mannel, E.; Mitchell, J. T.; Morrison, D. P.; Nouicer, R.; O'Brien, E.; Pak, R.; Perepelitsa, D. V.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Sakaguchi, T.; Sickles, A.; Sourikova, I. V.; Steinberg, P.; Stoll, S. P.; Sukhanov, A.; Tannenbaum, M. J.; Woody, C. L.] Dept Phys, Brookhaven Natl Lab, Upton, NY 11973 USA. [Barish, K. N.; Beaumier, M.; Black, D.; Bryslawskyj, J.; Hester, T.; Hollis, R. S.; Iordanova, A.; Kleinjan, D.; Mendoza, M.; Rolnick, S. D.; Sedgwick, K.; Seto, R.; Zou, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Finger, M.; Finger, M., Jr.; Slunecka, M.] Charles Univ Prague, Ovocny Trh 5, Prague 11163 1, Czech Republic. [Choi, J. B.; Kim, E. -J.; Lee, G. H.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Bai, X.; Li, X.; Zhou, S.] China Inst Atom Energy, Sci & Technol Nucl Data Lab, Beijing 102413, Peoples R China. [Adare, A.; Akimoto, R.; Gunji, T.; Hamagaki, H.; Hayano, R.; Kanda, S.; Kitamura, R.; Nishimura, S.; Oide, H.; Sekiguchi, Y.; Takahara, A.; Torii, H.; Watanabe, Y. S.; Yamaguchi, Y. L.] Univ Tokyo, Grad Sch Sci, Ctr Nucl Study, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. [Adare, A.; Beckman, S.; Belmont, R.; Koblesky, T.; McCumber, M.; McGlinchey, D.; Nagle, J. L.; Koop, J. D. Orjuela; Perepelitsa, D. V.; Stone, M. R.] Univ Colorado, Boulder, CO 80309 USA. [Campbell, S.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Lai, Y. S.; Perepelitsa, D. V.; Vazquez-Zambrano, E.; Veicht, A.; Zajc, W. A.] Columbia Univ, New York, NY 10027 USA. [Campbell, S.; Chi, C. Y.; Cole, B. A.; Engelmore, T.; Lai, Y. S.; Perepelitsa, D. V.; Vazquez-Zambrano, E.; Veicht, A.; Zajc, W. A.] Nevis Labs, Irvington, NY 10533 USA. [Gallus, P.; Tomasek, M.; Virius, M.; Vrba, V.] Czech Tech Univ, Zikova 4, Prague 16636 6, Czech Republic. [Csanad, M.; Kofarago, M.; Nagy, M. I.; Vargyas, M.] Eotvos Lorand Univ, ELTE, Pazmany PS 1-A, H-1117 Budapest, Hungary. [Hahn, K. I.; Han, S. Y.; Kim, G. W.; Lee, J.; Park, I. H.] Ewha Womans Univ, Seoul 120750, South Korea. [Frawley, A. D.; Klatsky, J.; McGlinchey, D.] Florida State Univ, Tallahassee, FL 32306 USA. [Guragain, H.; Haseler, T. O. S.; He, X.; Jezghani, M.; Johnson, B. M.; Patel, L.; Sarsour, M.; Sen, A.; Tieulent, R.; Xue, L.] Georgia State Univ, Atlanta, GA 30303 USA. [Kang, B. H.; Kang, J. S.; Kim, Y. K.; Ryu, M. S.] Hanyang Univ, Seoul 133792, South Korea. [Homma, K.; Hoshino, T.; Kijima, K. M.; Nagashima, K.; Nakamiya, Y.; Nihashi, M.; Shigaki, K.; Sugitate, T.; Watanabe, D.] Hiroshima Univ, Higashihiroshima 7398526, Japan. [Alfred, M.] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA. [Babintsev, V.; Bumazhnov, V.; Denisov, A.; Durum, A.; Shein, I.; Yanovich, A.] State Res Ctr Russian Federat, IHEP Protvino, Inst High Energy Phys, Protvino 142281, Russia. [Choi, I. J.; Giordano, F.; Perdekamp, M. Grosse; Jumper, D. S.; Kim, Y. -J.; Leitgab, M.; McKinney, C.; Meredith, B.; Montuenga, P.; Peng, J. -C.; Sickles, A.; Wolin, S.] Univ Illinois, Urbana, IL 61801 USA. [Pantuev, V.] Russian Acad Sci, Inst Nucl Res, Prospekt 60 Letiya Oktyabrya 7A, Moscow 117312, Russia. [Tomasek, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic. [Apadula, N.; Campbell, S.; Ding, L.; Hill, J. C.; Hotvedt, N.; Lajoie, J. G.; Lebedev, A.; Ogilvie, C. A.; Patel, M.; Perry, J.; Rinn, T.; Rosati, M.; Sen, A.; Shaver, A.; Shimomura, M.; Timilsina, A.; Whitaker, S.] Iowa State Univ, Ames, IA 50011 USA. [Hasegawa, S.; Imai, K.; Maruyama, T.; Sako, H.; Sato, S.] Japan Atom Energy Agcy, Adv Sci Res Ctr, 2-4 Shirakata Shirane,Tokai Mura, Naka, Ibaraki 3191195, Japan. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Helsinki Inst Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Kim, D. J.; Krizek, F.; Novitzky, N.; Rak, J.] Univ Jyvaskyla, POB 35, FI-40014 Jyvaskyla, Finland. [Novak, T.] Karoly Roberts Univ Coll, Matrai Ut 36, H-3200 Gynogyos, Hungary. [Aoki, K.; Fukao, Y.; Kanda, S.; Mibe, T.; Nagamiya, S.; Ozawa, K.; Saito, N.; Sawada, S.; Watanabe, Y. S.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki 3050801, Japan. [Hong, B.; Kim, C.; Lee, K. S.; Park, S. K.; Yoo, J. H.] Korea Univ, Seoul 136701, South Korea. [Blau, D. S.; Fokin, S. L.; Kazantsev, A. V.; Manko, V. I.; Moukhanova, T. V.; Nyanin, A. S.; Peressounko, D. Yu.; Yushmanov, I. E.] Natl Res Ctr, Kurchatov Inst, Moscow 123098, Russia. [Asano, H.; Murakami, T.; Nagae, T.; Nakamura, K. R.] Kyoto Univ, Kyoto 6068502, Japan. [Drapier, O.; Fleuret, F.; Gonin, M.; de Cassagnac, R. Granier] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Route Saclay, F-91128 Palaiseau, France. [Younus, I.] Lahore Univ Management Sci, Dept Phys, Lahore 54792, Pakistan. [Garishvili, I.; Glenn, A.; Soltz, R. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Aidala, C.; Brooks, M. L.; Durham, J. M.; Huang, J.; Jiang, X.; Kapustinsky, J.; Lee, D. M.; Lee, K. B.; Leitch, M. J.; Liu, M. X.; McCumber, M.; McGaughey, P. L.; Silva, C. L.; Snowball, M.; Sondheim, W. E.; van Hecke, H. W.; You, Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Christiansen, P.; Oskarsson, A.; Silvermyr, D.; Stenlund, E.] Lund Univ, Dept Phys, Box 118, SE-22100 Lund, Sweden. [Diss, P. B.; D'Orazio, L.; Mignerey, A. C.; Moskowitz, M.; Richardson, E.; Sexton, A.] Univ Maryland, College Pk, MD 20742 USA. [Bandara, N. S.; Kawall, D.; Stepanov, M.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Aidala, C.; Belmont, R.; Cronin, N.; Osborn, J. D.; Ramson, B. J.; Rubin, J. G.; White, A. S.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Crossette, N.; Fadem, B.; Isinhue, A.; Kimelman, B.; Skolnik, M.; Solano, S.] Muhlenberg Coll, Allentown, PA 18104 USA. [Jeon, S. J.; Joo, K. S.] Myongji Univ, Yongin 449728, Kyonggido, South Korea. [Fusayasu, T.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki 8510193, Japan. [Shimomura, M.] Nara Womens Univ, Kita Uoya Nishi Machi, Nara 6308506, Japan. [Riabov, V.; Samsonov, V.; Taranenko, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst, MEPhI, Moscow 115409, Russia. [Butsyk, S.; Datta, A.; DeBlasio, K.; Fields, D. E.; Key, J. A.; Younus, I.] Univ New Mexico, Albuquerque, NM 87131 USA. [Bok, J. S.; Meles, A.; Papavassiliou, V.; Pate, S. F.; Perera, G. D. N.; Tennant, E.; Wang, X. R.; Wei, F.; Yu, H.] New Mexico State Univ, Las Cruces, NM 88003 USA. [Danley, T. W.; Frantz, J. E.; Kotchetkov, D.; Riveli, N.; Xia, B.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Awes, T. C.; Cianciolo, V.; Read, K. F.; Silvermyr, D.; Stankus, P. W.; Wysocki, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Jouan, D.] Univ Paris Saclay, Univ Paris Sud, IPN Orsay, CNRS IN2P3, BP1, F-91406 Orsay, France. [Yu, H.] Peking Univ, Beijing 100871, Peoples R China. [Baublis, V.; Ivanishchev, D.; Khanzadeev, A.; Komkov, B.; Kotov, D.; Riabov, V.; Riabov, Y.; Samsonov, V.; Vznuzdaev, E.] PNPI, Petersburg Nucl Phys Inst, Gatchina 188300, Leningrad Regio, Russia. [Akiba, Y.; Aoki, K.; Asano, H.; Baumgart, S.; Enokizono, A.; Goto, Y.; Hachiya, T.; Hashimoto, K.; Ichihara, T.; Ikeda, Y.; Imazu, Y.; Kurosawa, M.; Miyasaka, S.; Mizuno, S.; Murakami, T.; Murata, J.; Nagamiya, S.; Nakagawa, I.; Nakagomi, H.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nihashi, M.; Seidl, R.; Shibata, T. -A.; Shoji, K.; Sumita, T.; Taketani, A.; Todoroki, T.; Watanabe, K.; Watanabe, Y.; Yokkaichi, S.] RIKEN Nishina Ctr Accelerator Based Sci, Wako, Saitama 3510198, Japan. [Adare, A.; Akiba, Y.; Bathe, S.; Boyle, K.; Chen, C. -H.; Deshpande, A.; Goto, Y.; Hachiya, T.; Ichihara, T.; Koster, J.; Kurosawa, M.; Nakagawa, I.; Nouicer, R.; Okada, K.; Seele, J.; Seidl, R.; Taketani, A.; Tanida, K.; Wang, X. R.; Watanabe, Y.; Yokkaichi, S.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Enokizono, A.; Hashimoto, K.; Kurita, K.; Murata, J.; Watanabe, K.] Rikkyo Univ, Dept Phys, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan. [Berdnikov, A.; Berdnikov, Y.; Kotov, D.; Riabov, Y.] St Petersburg State Polytech Univ, St Petersburg 195251, Russia. [Choi, S.; Kim, M.; Park, J. S.; Park, S.; Tanida, K.; Yoon, I.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151742, South Korea. [Ajitanand, N. N.; Alexander, J.; Gong, X.; Gu, Y.; Jia, J.; Lacey, R.; Mohapatra, S.; Mwai, A.; Reynolds, D.; Taranenko, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Adare, A.; Apadula, N.; Atomssa, E. T.; Bannier, B.; Bazilevsky, A.; Cronin, N.; Dehmelt, K.; Deshpande, A.; Dion, A.; Drees, A.; Feege, N.; Gal, C.; Ge, H.; Hanks, J.; Hemmick, T. K.; Jacak, B. V.; Kamin, J.; Khachatryan, V.; Kline, P.; Lee, S. H.; Lewis, B.; Manion, A.; Novitzky, N.; Petti, R.; Sahlmueller, B.; Sharma, D.; Sun, J.; Yalcin, S.; Yamaguchi, Y. L.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Lee, J.; Park, I. H.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Garishvili, A.; Nattrass, C.; Read, K. F.; Schmoll, B. K.; Sen, A.; Sorensen, S. P.] Univ Tennessee, Knoxville, TN 37996 USA. [Miyasaka, S.; Nakano, K.; Shibata, T. -A.] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan. [Adare, A.; Chujo, T.; Esumi, S.; Inaba, M.; Miake, Y.; Mizuno, S.; Nakagomi, H.; Niida, T.; Todoroki, T.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki 305, Japan. [Adare, A.; Belmont, R.; Csorgo, T.; Greene, S. V.; Huang, S.; Maguire, C. F.; Roach, D.; Schaefer, B.; Tarafdar, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Citron, Z.; Makek, M.; Milov, A.; Ravinovich, I.; Tarafdar, S.; Tserruya, I.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Novak, T.; Ster, A.; Sziklai, J.; Vertesi, R.] Hungarian Acad Sci Wigner RCP, Inst Particle & Nucl Phys, Wigner Res Ctr Phys, RMKI, Budapest 114,POB 49, H-1525 Budapest, Hungary. [Adare, A.; Do, J. H.; Kang, J. H.; Kwon, Y.; Lee, S.; Lim, S. H.; Moon, T.] Yonsei Univ, IPAP, Seoul 120749, South Korea. [Makek, M.] Univ Zagreb, Fac Sci, Dept Phys, Bijenicka 32, HR-10002 Zagreb, Croatia. RP Adare, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. RI Durum, Artur/C-3027-2014; Yokkaichi, Satoshi/C-6215-2017; Hayano, Ryugo/F-7889-2012; Taketani, Atsushi/E-1803-2017 OI Hayano, Ryugo/0000-0002-1214-7806; Taketani, Atsushi/0000-0002-4776-2315 FU Office of Nuclear Physics in the Office of Science of the Department of Energy (USA); National Science Foundation (USA); Abilene Christian University Research Council (USA); Research Foundation of SUNY (USA); College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology (Japan); Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Croatian Science Foundation (Croatia); Ministry of Science, Education, and Sports (Croatia); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique (France); Commissariat a l' Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); National Science Fund (Hungary); OTKA (Hungary); Karoly Robert University College (Hungary); Ch. Simonyi Fund (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); Basic Science Research Program through NRF of the Ministry of Education (Korea); Physics Department, Lahore University of Management Sciences (Pakistan); Ministry of Education and Science (Russia); Russian Academy of Sciences (Russia); Federal Agency of Atomic Energy (Russia); Wallenberg Foundation (Sweden); US Civilian Research and Development Foundation; Hungarian American Enterprise Scholarship Fund; US-Israel Binational Science Foundation; Deutscher Akademischer Austausch Dienst (Germany); Alexander von Humboldt Stiftung (Germany); Department of Science and Technology (India); VR (Sweden) FX We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Croatian Science Foundation and Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l' Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), National Science Fund, OTKA, Karoly Robert University College, and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US-Israel Binational Science Foundation. NR 49 TC 1 Z9 1 U1 19 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 28 PY 2016 VL 94 IS 5 AR 054910 DI 10.1103/PhysRevC.94.054910 PG 18 WC Physics, Nuclear SC Physics GA ED4MD UT WOS:000388821800010 ER PT J AU Piarulli, M Girlanda, L Schiavilla, R Kievsky, A Lovato, A Marcucci, LE Pieper, SC Viviani, M Wiringa, RB AF Piarulli, M. Girlanda, L. Schiavilla, R. Kievsky, A. Lovato, A. Marcucci, L. E. Pieper, Steven C. Viviani, M. Wiringa, R. B. TI Local chiral potentials with Delta-intermediate states and the structure of light nuclei SO PHYSICAL REVIEW C LA English DT Article ID TO-LEADING ORDER; ASYMPTOTIC D-STATE; MONTE-CARLO; ELASTIC-SCATTERING; 2-NUCLEON SYSTEM; LOW ENERGIES; DEUTERON; FORCES; 3-BODY; SYMMETRY AB We present fully local versions of the minimally nonlocal nucleon-nucleon potentials constructed in a previous paper [Piarulli et al., Phys. Rev. C 91, 024003 (2015)], and use them in hypersperical harmonics and quantum Monte Carlo calculations of ground and excited states of H-3, He-3, He-4, He-6, and Li-6 nuclei. The long-range part of these local potentials includes one- and two-pion exchange contributions without and with Delta isobars in the intermediate states up to order Q(3) (Q denotes generically the low momentum scale) in the chiral expansion, while the short-range part consists of contact interactions up to order Q(4). The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database in two different ranges of laboratory energies, either 0-125 MeV or 0-200 MeV, and to the deuteron binding energy and nn singlet scattering length. Fits to these data are performed for three models characterized by long- and short-range cutoffs, R-L and R-S, respectively, ranging from (R-L, R-S) = (1.2,0.8) fm down to (0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential. C1 [Piarulli, M.; Lovato, A.; Pieper, Steven C.; Wiringa, R. B.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Girlanda, L.] Univ Salento, Dept Math & Phys, I-73100 Lecce, Italy. [Girlanda, L.] INFN Lecce, I-73100 Lecce, Italy. [Schiavilla, R.] Jefferson Lab, Theory Ctr, Newport News, VA 23606 USA. [Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Kievsky, A.; Marcucci, L. E.; Viviani, M.] INFN Pisa, I-56127 Pisa, Italy. [Marcucci, L. E.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. RP Piarulli, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU NUclear Computational Low-Energy Initiative (NUCLEI) SciDAC project; US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357, DE-AC05-06OR23177] FX Conversations and e-mail exchanges with J. Carlson and S. Gandolfi are gratefully acknowledged. Thework of M.P., A.L., S.C.P., and R.B.W. has been supported by the NUclear Computational Low-Energy Initiative (NUCLEI) SciDAC project. This research is supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contracts No. DE-AC02-06CH11357 (M.P., A.L., S.C.P., and R.B.W.) and No. DE-AC05-06OR23177 (R.S.). This research also used resources provided by Argonne's Laboratory Computing Resource Center and the National Energy Research Scientific Computing Center (NERSC). NR 79 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 28 PY 2016 VL 94 IS 5 AR 054007 DI 10.1103/PhysRevC.94.054007 PG 12 WC Physics, Nuclear SC Physics GA ED4MD UT WOS:000388821800002 ER PT J AU Recchia, F Weisshaar, D Gade, A Tostevin, JA Janssens, RVF Albers, M Bader, VM Baugher, T Bazin, D Berryman, JS Brown, BA Campbell, CM Carpenter, MP Chen, J Chiara, CJ Crawford, HL Hoffman, CR Kondev, FG Korichi, A Langer, C Lauritsen, T Liddick, SN Lunderberg, E Noji, S Prokop, C Stroberg, SR Suchyta, S Wimmer, K Zhu, S AF Recchia, F. Weisshaar, D. Gade, A. Tostevin, J. A. Janssens, R. V. F. Albers, M. Bader, V. M. Baugher, T. Bazin, D. Berryman, J. S. Brown, B. A. Campbell, C. M. Carpenter, M. P. Chen, J. Chiara, C. J. Crawford, H. L. Hoffman, C. R. Kondev, F. G. Korichi, A. Langer, C. Lauritsen, T. Liddick, S. N. Lunderberg, E. Noji, S. Prokop, C. Stroberg, S. R. Suchyta, S. Wimmer, K. Zhu, S. TI Neutron single-particle strengths at N=40, 42: Neutron knockout from Ni-68,Ni-70 ground and isomeric states SO PHYSICAL REVIEW C LA English DT Article ID NUCLEI; ARRAY; BEAMS AB The distribution of single-particle strength in Ni-67,Ni-69 was characterized with one-neutron knockout reactions from intermediate-energy Ni-68,Ni-70 secondary beams, selectively populating neutron-hole configurations at N = 39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their gamma-ray decays, are used to identify and quantify neutron configurations in the wave functions. While Ni-69 compares well with shell-model predictions, the results for Ni-67 challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. These results suggest that our understanding of the low-lying states in the neutron-rich, semimagic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides. C1 [Recchia, F.; Weisshaar, D.; Gade, A.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Chen, J.; Langer, C.; Liddick, S. N.; Lunderberg, E.; Noji, S.; Prokop, C.; Stroberg, S. R.; Suchyta, S.; Wimmer, K.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Recchia, F.] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy. [Recchia, F.] INFN Padova, I-35131 Padua, Italy. [Gade, A.; Bader, V. M.; Baugher, T.; Brown, B. A.; Lunderberg, E.; Stroberg, S. R.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Tostevin, J. A.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Janssens, R. V. F.; Albers, M.; Carpenter, M. P.; Chiara, C. J.; Hoffman, C. R.; Korichi, A.; Lauritsen, T.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Campbell, C. M.; Crawford, H. L.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Chen, J.; Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Korichi, A.] CNRS, CSNSM, IN2P3, Orsay Campus, F-91405 Orsay, France. [Liddick, S. N.; Prokop, C.; Suchyta, S.] Michigan State Univ, Dept Phys, E Lansing, MI 48824 USA. [Wimmer, K.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Baugher, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Chiara, C. J.] US Army Res Lab, Adelphi, MD 20783 USA. [Stroberg, S. R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Suchyta, S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Wimmer, K.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. RP Recchia, F (reprint author), Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA.; Recchia, F (reprint author), Univ Padua, Dipartimento Fis & Astron Galileo Galilei, I-35131 Padua, Italy.; Recchia, F (reprint author), INFN Padova, I-35131 Padua, Italy. EM francesco.recchia@unipd.it RI Gade, Alexandra/A-6850-2008; OI Gade, Alexandra/0000-0001-8825-0976; Recchia, Francesco/0000-0002-8428-0112 FU National Science Foundation (NSF) [PHY-1102511]; U.S. Department of Energy (DOE), Office of Nuclear Physics [DE-FG02-08ER41556, DE-FG02-94-ER40834, DE-AC02-06CH11357]; DOE, National Nuclear Security Administration [DE-NA0000979]; DOE, Office of Science; NSF [PHY-1102511, PHY-1404442]; DOE [DE-AC02-05CH11231]; United Kingdom Science and Technology Facilities Council (STFC) [ST/L005743/1]; GRETINA campaign at NSCL FX We thank the staff of the Coupled Cyclotron Facility for the delivery of high-quality beams. We are grateful for Augusto Macchiavelli's support of the GRETINA campaign at NSCL. This work was supported in part by the the National Science Foundation (NSF) under Contract No. PHY-1102511, by the U.S. Department of Energy (DOE), Office of Nuclear Physics, under Grants No. DE-FG02-08ER41556 (Michigan State University) and No. DE-FG02-94-ER40834 (University of Maryland), and Contract No. DE-AC02-06CH11357 (Argonne National Laboratory), and by the DOE, National Nuclear Security Administration, under Award No. DE-NA0000979. GRETINA was funded by the DOE, Office of Science. Operation of the array at NSCL was supported by the NSF under Cooperative Agreement No. PHY-1102511 (NSCL) and DOE under Grant No. DE-AC02-05CH11231 (LBNL). B.A.B. acknowledges support from NSF Grant No. PHY-1404442 and J.A.T. from the United Kingdom Science and Technology Facilities Council (STFC) Grant No. ST/L005743/1. NR 48 TC 1 Z9 1 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 28 PY 2016 VL 94 IS 5 AR 054324 DI 10.1103/PhysRevC.94.054324 PG 9 WC Physics, Nuclear SC Physics GA ED4MD UT WOS:000388821800006 ER PT J AU Armstrong, AM Allerman, AA AF Armstrong, Andrew M. Allerman, Andrew A. TI Polarization-induced electrical conductivity in ultra-wide band gap AlGaN alloys SO APPLIED PHYSICS LETTERS LA English DT Article ID SI-DOPED ALN; SEMICONDUCTORS; MOBILITY; DIODES; HEMTS AB Unintentionally doped (UID) AlGaN epilayers graded over Al compositions of 80%-90% and 80%-100% were grown by metal organic vapor phase epitaxy and were electrically characterized using contactless sheet resistance (R-sh) and capacitance-voltage (C-V) measurements. Strong electrical conductivity in the UID graded AlGaN epilayers resulted from polarization-induced doping and was verified by the low resistivity of 0.04 Omega cm for the AlGaN epilayer graded over 80%-100% Al mole fraction. A free electron concentration (n) of 4.8 x 10(17) cm(-3) was measured by C-V for Al compositions of 80%-100%. Average electron mobility ((mu) over bar) was calculated from R-sh and n data for three ranges of Al composition grading, and it was found that UID AlGaN graded from 88%-96% had (mu) over bar = 509 cm(2)/V s. The combination of very large band gap energy, high (mu) over bar, and high n for UID graded AlGaN epilayers make them attractive as a building block for high voltage power electronic devices such as Schottky diodes and field effect transistors. Published by AIP Publishing. C1 [Armstrong, Andrew M.; Allerman, Andrew A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Armstrong, AM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM aarmstr@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 32 TC 0 Z9 0 U1 11 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 28 PY 2016 VL 109 IS 22 AR 222101 DI 10.1063/1.4969062 PG 4 WC Physics, Applied SC Physics GA EF3RW UT WOS:000390243100021 ER PT J AU Van Rynbach, A Maunz, P Kim, J AF Van Rynbach, Andre Maunz, Peter Kim, Jungsang TI An integrated mirror and surface ion trap with a tunable trap location SO APPLIED PHYSICS LETTERS LA English DT Article ID ENTANGLEMENT; MICROMOTION; CAVITY AB We report a demonstration of a surface ion trap fabricated directly on a highly reflective mirror surface, which includes a secondary set of radio frequency (RF) electrodes allowing for translation of the quadrupole RF null location. We introduce a position-dependent photon scattering rate for a Yb-174(+) ion in the direction perpendicular to the trap surface using a standing wave of retroreflected light off the mirror surface directly below the trap. Using this setup, we demonstrate the capability of fine-tuning the RF trap location with nanometer scale precision and characterize the charging effects of the dielectric mirror surface upon exposure to ultra-violet light. Published by AIP Publishing. C1 [Van Rynbach, Andre; Kim, Jungsang] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Maunz, Peter] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Van Rynbach, A (reprint author), Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. EM ajv6@duke.edu FU ARO Grant [W911NF-15-1-0213]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the ARO Grant No. W911NF-15-1-0213. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 28 PY 2016 VL 109 IS 22 AR 221108 DI 10.1063/1.4970542 PG 5 WC Physics, Applied SC Physics GA EF3RW UT WOS:000390243100008 ER PT J AU Hu, X Phillips, PJ Mazumdar, D Idrobo, JC Kolesnik, S Gupta, A Ogut, S Klie, RF AF Hu, Xuan Phillips, Patrick J. Mazumdar, Dipanjan Idrobo, Juan Carlos Kolesnik, Stanislaw Gupta, Arunava Ogut, Serdar Klie, Robert F. TI Atomic and electronic structure of Ti substitution in Ca3Co4O9 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID THERMOELECTRIC PROPERTIES; SINGLE-CRYSTALS; COBALTITE; SYSTEM AB We examine the role of Ti doping in the incommensurately layered thermoelectric oxide material Ca3Co4O9 (CCO). The measured Seebeck coefficient of S = 135 mu V/K in Ti-doped CCO thin films of composition Ca3Co3.8Ti0.2O9 indicates no significant enhancement of S compared to pristine CCO, thus confirming prior experimental results. Using a combination of aberration-corrected scanning transmission electron microscopy, electron energy-loss spectroscopy and first-principles computations, we determine the atomic and electronic structures of Ti-doped CCO, including the preferred location of Ti dopants and valence states of Ti and Co atoms. Our findings on the structural, electronic, and transport properties of the Ti-doped CCO are discussed in light of the previously published results. Published by AIP Publishing. C1 [Hu, Xuan; Phillips, Patrick J.; Ogut, Serdar; Klie, Robert F.] Univ Illinois, Dept Phys, Chicago, IL 60607 USA. [Mazumdar, Dipanjan] Southern Illinois Univ, Dept Phys, Carbondale, IL 62901 USA. [Idrobo, Juan Carlos] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Kolesnik, Stanislaw] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Gupta, Arunava] Univ Alabama, Ctr Mat Informat Technol, Tuscaloosa, AL 35401 USA. RP Hu, X (reprint author), Univ Illinois, Dept Phys, Chicago, IL 60607 USA. FU National Science Foundation [DMR-1408427]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX X.H. and R.F.K. acknowledge support from the National Science Foundation (Grant No DMR-1408427). Electron microscopy research was conducted as part of a user project through Oak Ridge National Laboratory's Center for Nanophase Materials Sciences (CNMS), which is a U.S. Department of Energy Office of Science User Facility.; This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (X.H., S.O.). NR 39 TC 0 Z9 0 U1 10 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 28 PY 2016 VL 120 IS 20 AR 205105 DI 10.1063/1.4966938 PG 8 WC Physics, Applied SC Physics GA EF3NQ UT WOS:000390231700021 ER PT J AU Kim, G Yoon, J Yang, H Lim, H Lee, H Jeong, C Yun, H Jeong, B Crumlin, E Lee, J Lee, J Ju, H Mun, BS AF Kim, Geonhwa Yoon, Joonseok Yang, Hyukjun Lim, Hojoon Lee, Hyungcheol Jeong, Changkil Yun, Hyungjoong Jeong, Beomgyun Crumlin, Ethan Lee, Jouhahn Lee, Jaeyoung Ju, Honglyoul Mun, Bongjin Simon TI Observation of in situ oxidation dynamics of vanadium thin film with ambient pressure X-ray photoemission spectroscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID METAL-INSULATOR-TRANSITION; PHASE-TRANSITION; PHOTOELECTRON-SPECTROSCOPY; ELECTRICAL-PROPERTIES; VO2 FILMS; DIOXIDE; OXIDES; TEMPERATURE; V2O3 AB The evolution of oxidation/reduction states of vanadium oxide thin film was monitored in situ as a function of oxygen pressure and temperature via ambient pressure X-ray photoemission spectroscopy. Spectra analysis showed that VO2 can be grown at a relatively low temperature, T similar to 523 K, and that V2O5 oxide develops rapidly at elevated oxygen pressure. Raman spectroscopy was applied to confirm the formation of VO2 oxide inside of the film. In addition, the temperature-dependent resistivity measurement on the grown thin film, e.g., 20 nm exhibited a desirable metal-insulator transition of VO2 with a resistivity change of similar to 1.5 x 10(3) times at 349.3 K, displaying typical characteristics of thick VO2 film, e.g., 100 nm thick. Our results not only provide important spectroscopic information for the fabrication of vanadium oxides, but also show that high quality VO2 films can be formed at relatively low temperature, which is highly critical for engineering oxide film for heat-sensitive electronic devices. Published by AIP Publishing. C1 [Kim, Geonhwa; Lee, Hyungcheol; Jeong, Changkil; Mun, Bongjin Simon] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju, South Korea. [Yoon, Joonseok; Ju, Honglyoul] Yonsei Univ, Dept Phys, Seoul, South Korea. [Yang, Hyukjun; Lim, Hojoon] Gwangju Inst Sci & Technol, Gwangju, South Korea. [Yun, Hyungjoong; Lee, Jouhahn] Korea Basic Sci Inst, Adv Nanosurface Res Grp, Daejeon, South Korea. [Jeong, Beomgyun; Crumlin, Ethan] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lee, Jaeyoung] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Gwangju 500712, South Korea. [Mun, Bongjin Simon] Gwangju Inst Sci & Technol, Ertl Ctr Electrochem & Catalysis, Gwangju, South Korea. RP Mun, BS (reprint author), Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju, South Korea.; Ju, H (reprint author), Yonsei Univ, Dept Phys, Seoul, South Korea.; Mun, BS (reprint author), Gwangju Inst Sci & Technol, Ertl Ctr Electrochem & Catalysis, Gwangju, South Korea. EM tesl@yonsei.ac.kr; bsmun@gist.ac.kr OI Yoon, Joonseok/0000-0001-5937-1787 FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Korean Government (MOE) [NRF-2015R1D1A1A01059297, NRF-2015R1A2A2A01004084]; SRC (C-AXS) [NRF-2015R1A5A1009962]; Korea Basic Science Institute [E35800]; "GRI (GIST Research Institute)" Project through GIST; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX H. L. Ju and B. S. Mun would like to thank the Basic Science Research Program for supporting through grants from the National Research Foundation of Korea (NRF) funded by the Korean Government (MOE) (NRF-2015R1D1A1A01059297 and NRF-2015R1A2A2A01004084). B. S. Mun would like to acknowledge the support from SRC (C-AXS, NRF-2015R1A5A1009962), Korea Basic Science Institute Research Grant (E35800), and "GRI (GIST Research Institute)" Project through a grant provided by GIST in 2016. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 38 TC 0 Z9 0 U1 13 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 28 PY 2016 VL 120 IS 20 AR 205305 DI 10.1063/1.4967994 PG 7 WC Physics, Applied SC Physics GA EF3NQ UT WOS:000390231700030 ER PT J AU Lim, H Yang, HJ Kim, JW Bae, JS Kim, JW Jeong, B Crumlin, E Park, S Mun, BS AF Lim, Hojoon Yang, Hyeok-Jun Kim, Ji Woong Bae, Jong-Seung Kim, Jin-Woo Jeong, Beomgyun Crumlin, Ethan Park, Sungkyun Mun, Bongjin Simon TI In situ analysis of post-annealing effect on Sn-doped indium oxide films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TIN OXIDE; OPTICAL-PROPERTIES; THIN-FILMS; SURFACE; SPECTROSCOPY AB Oxygen post-annealing effects on tin (Sn) doped indium oxide (ITO) film are investigated with various analytical tools as a function of temperature, including in situ XRD, ambient pressure XPS (AP-XPS), and Hall measurement. As the annealing temperature increases up to 200 degrees C under the oxygen pressure of 100 mTorr, the in situ XRD shows the evidence of crystallization of the film while the AP-XPS reveals the formation of oxygen vacancy and Sn4+ states on surface. In addition, the mobility of ITO thin film is increased as the post-annealing temperature increases, supporting the results of both in situ XRD and AP-XPS. The results of angle-resolved XPS reveal that the degree of Sn segregation changes little after post-annealing procedure. Published by AIP Publishing. C1 [Lim, Hojoon; Kim, Jin-Woo; Mun, Bongjin Simon] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea. [Yang, Hyeok-Jun] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea. [Kim, Ji Woong; Park, Sungkyun] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea. [Bae, Jong-Seung] Korea Basic Sci Inst, Busan Ctr, Busan 66742, South Korea. [Jeong, Beomgyun; Crumlin, Ethan] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Mun, Bongjin Simon] Gwangju Inst Sci & Technol, Ertl Ctr Electrochem & Catalysis, Gwangju 61005, South Korea. RP Mun, BS (reprint author), Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea.; Park, S (reprint author), Pusan Natl Univ, Dept Phys, Busan 46241, South Korea.; Mun, BS (reprint author), Gwangju Inst Sci & Technol, Ertl Ctr Electrochem & Catalysis, Gwangju 61005, South Korea. EM psk@pusan.ac.kr; bsmun@gist.ac.kr FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Korean Government (MOE) [NRF-2015R1A2A2A01004084, NRF-2015R1D1A1A01058672]; Korea Basic Science Institute [E36800]; SRC (C-AXS) [NRF-2015R1A5A1009962]; "GRI (GIST Research Institute)" Project through GIST; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study is supported in part by the Basic Science Research Program through grants from the National Research Foundation of Korea (NRF) funded by the Korean Government (MOE) (NRF-2015R1A2A2A01004084, NRF-2015R1D1A1A01058672 and Korea Basic Science Institute Research Grant (E36800). B. S. Mun would like to acknowledge the support from SRC (C-AXS, NRF-2015R1A5A1009962) and "GRI (GIST Research Institute)" Project through a grant provided by GIST in 2016. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. NR 21 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 28 PY 2016 VL 120 IS 20 AR 205306 DI 10.1063/1.4968010 PG 6 WC Physics, Applied SC Physics GA EF3NQ UT WOS:000390231700031 ER PT J AU Jackson, NE Kohlstedt, KL Chen, LX Ratner, MA AF Jackson, Nicholas E. Kohlstedt, Kevin L. Chen, Lin X. Ratner, Mark A. TI A n-vector model for charge transport in molecular semiconductors SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID FIELD-EFFECT TRANSISTORS; ORGANIC SEMICONDUCTORS; CONJUGATED POLYMERS; REORGANIZATION ENERGY; CARRIER MOBILITY; SOLAR-CELLS; THIN-FILMS; DISORDER; ACCEPTORS; CRYSTAL AB We develop a lattice model utilizing coarse-grained molecular sites to study charge transport in molecular semiconducting materials. The model bridges atomistic descriptions and structureless lattice models by mapping molecular structure onto sets of spatial vectors isomorphic with spin vectors in a classical n-vector Heisenberg model. Specifically, this model incorporates molecular topology-dependent orientational and intermolecular coupling preferences, including the direct inclusion of spatially correlated transfer integrals and site energy disorder. This model contains the essential physics required to explicitly simulate the interplay of molecular topology and correlated structural disorder, and their effect on charge transport. As a demonstration of its utility, we apply this model to analyze the effects of long-range orientational correlations, molecular topology, and intermolecular interaction strength on charge motion in bulk molecular semiconductors. Published by AIP Publishing. C1 [Jackson, Nicholas E.; Kohlstedt, Kevin L.; Chen, Lin X.; Ratner, Mark A.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Kohlstedt, KL; Ratner, MA (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM kkohlstedt@northwestern.edu; ratner@northwestern.edu FU ANSER Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Division of Chemical Sciences, Office of Basic Energy Sciences, the U.S. Department of Energy [DE-AC02-06CH11357]; AFOSR MURI Grant [FA9550-11-1-0275] FX The authors thank Brett Savoie for his thoughtful conversations. This research was supported through the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001059, and the lab equipment was supported through the Division of Chemical Sciences, Office of Basic Energy Sciences, the U.S. Department of Energy, under Contract No. DE-AC02-06CH11357. K.L.K. would also like to thank the AFOSR MURI Grant No. FA9550-11-1-0275 for their support. NR 53 TC 1 Z9 1 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 28 PY 2016 VL 145 IS 20 AR 204102 DI 10.1063/1.4967865 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EF1XJ UT WOS:000390118200004 PM 27908101 ER PT J AU Womack, JC Mardirossian, N Head-Gordon, M Skylaris, CK AF Womack, James C. Mardirossian, Narbe Head-Gordon, Martin Skylaris, Chris-Kriton TI Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; KINETIC-ENERGY DENSITY; EXCHANGE-CORRELATION FUNCTIONALS; COORDINATE-SPACE MODEL; NONCOVALENT INTERACTIONS; BINDING APPLICATION; LOCALIZED FUNCTIONS; PROGRAM PACKAGE; MATRIX METHOD; ACCURATE AB Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, tau, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of tau-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for tau-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement tau-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the tau-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the tau-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms. Published by AIP Publishing. C1 [Womack, James C.; Skylaris, Chris-Kriton] Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. [Mardirossian, Narbe; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Skylaris, CK (reprint author), Univ Southampton, Sch Chem, Southampton SO17 1BJ, Hants, England. EM C.Skylaris@soton.ac.uk OI Womack, James/0000-0001-5497-4482 FU Engineering and Physical Sciences Research Council (EPSRC) UK [EP/K039156/1, EP/J015059/1]; Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences division of the U.S. Department of Energy [DE-AC02-05CH11231]; UKCP consortium (EPSRC Grant) [EP/K013556/1] FX J.C.W. acknowledges the Engineering and Physical Sciences Research Council (EPSRC) UK for postdoctoral funding (EPSRC Grant Nos. EP/K039156/1 and EP/J015059/1). N.M. and M.H.G. were supported by the Director, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would like to acknowledge the IRIDIS High Performance Computing Facility at the University of Southampton, which provided the resources used to perform the large scale calculations presented in this work. J.C.W. would like to thank Dr. Jacek Dziedzic for helpful discussions during the software development and testing phases of this work. J.C.W. and C.K.S. would also like to thank the UKCP consortium (EPSRC Grant No. EP/K013556/1) which has provided us with ongoing access to the UK's ARCHER national supercomputer. NR 114 TC 1 Z9 1 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 28 PY 2016 VL 145 IS 20 AR 204114 DI 10.1063/1.4967960 PG 20 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EF1XJ UT WOS:000390118200016 PM 27908114 ER PT J AU Zhang, Y Ashcraft, R Mendelev, MI Wang, CZ Kelton, KF AF Zhang, Y. Ashcraft, R. Mendelev, M. I. Wang, C. Z. Kelton, K. F. TI Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID INTERATOMIC POTENTIALS; NI-NB; GLASSES; METALS; AL AB The state-of-the-art experimental and atomistic simulation techniques were utilized to study the structure of the liquid and amorphous Ni62Nb38 alloy. First, the ab initio molecular dynamics (AIMD) simulation was performed at rather high temperature where the time limitations of the AIMD do not prevent to reach the equilibrium liquid structure. Asemi-empirical potential of the Finnis-Sinclair (FS) type was developed to almost exactly reproduce the AIMD partial pair correlation functions (PPCFs) in a classical molecular dynamics simulation. This simulation also showed that the FS potential well reproduces the bond angle distributions. The FS potential was then employed to elongate the AIMD PPCFs and determine the total structure factor (TSF) which was found to be in excellent agreement with X-ray TSF obtained within the present study demonstrating the reliability of the AIMD for the simulation of the structure of the liquid Ni-Nb alloys as well as the reliability of the developed FS potential. The glass structure obtained with the developed potential was also found to be in excellent agreement with the X-ray data. The analysis of the structure revealed that a network of the icosahedra clusters centered on Ni atoms is forming during cooling the liquid alloy down to T-g and the Nb Z14, Z15, and Z16 clusters are attached to this network. This network is the main feature of the Ni62Nb38 alloy and further investigations of the properties of this alloy should be based on study of the behavior of this network. Published by AIP Publishing. C1 [Zhang, Y.; Mendelev, M. I.; Wang, C. Z.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Ashcraft, R.; Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Ashcraft, R.; Kelton, K. F.] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA. RP Zhang, Y (reprint author), Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science, and Engineering Division; U.S. DOE [DE-AC02-07CH11358]; National Science Foundation [DMR-1506553] FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science, and Engineering Division. The research was performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. The work at Washington University was partially supported by the National Science Foundation under Grant No. DMR-1506553. NR 36 TC 0 Z9 0 U1 11 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 28 PY 2016 VL 145 IS 20 AR 204505 DI 10.1063/1.4968212 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EF1XJ UT WOS:000390118200032 PM 27908127 ER PT J AU Oakdale, JS Ye, JC Smith, WL Biener, J AF Oakdale, James S. Ye, Jianchao Smith, William L. Biener, Juergen TI Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography SO OPTICS EXPRESS LA English DT Article ID POLYMERIZATION; FABRICATION; SHRINKAGE; METAMATERIALS; RESINS; NANOSTRUCTURES; RADIATION; SURFACES AB Two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures. (C) 2016 Optical Society of America C1 [Oakdale, James S.; Ye, Jianchao; Smith, William L.; Biener, Juergen] Lawrence Livermore Natl Lab, Div Mat Sci, 7000 East Ave, Livermore, CA 94550 USA. RP Oakdale, JS (reprint author), Lawrence Livermore Natl Lab, Div Mat Sci, 7000 East Ave, Livermore, CA 94550 USA. EM oakdale1@llnl.gov FU US Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) programs of Lawrence Livermore National Laboratory (LLNL) [15-ERD-019] FX US Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under contract No. DE-AC52-07NA27344; Laboratory Directed Research and Development (LDRD) programs of Lawrence Livermore National Laboratory (LLNL) (15-ERD-019). NR 48 TC 0 Z9 0 U1 6 U2 6 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 28 PY 2016 VL 24 IS 24 BP 27077 EP 27086 DI 10.1364/OE.24.027077 PG 10 WC Optics SC Optics GA EE3DU UT WOS:000389468200003 PM 27906282 ER PT J AU Wang, XX Aguinaldo, R Lentine, A DeRose, C Starbuck, AL Trotter, D Pomerene, A Mookherjea, S AF Wang, Xiaoxi Aguinaldo, Ryan Lentine, Anthony DeRose, Christopher Starbuck, Andrew L. Trotter, Douglas Pomerene, Andrew Mookherjea, Shayan TI Compact silicon photonic resonance-assisted variable optical attenuator SO OPTICS EXPRESS LA English DT Article ID WAVE-GUIDES; PERFORMANCE; MODULATION AB A two-part silicon photonic variable optical attenuator is demonstrated in a compact footprint which can provide a high extinction ratio at wavelengths between 1520 nm and 1620 nm. The device was made by following the conventional p-i-n waveguide section by a high-extinction- ratio second-order microring filter section. The rings provide additional on-off contrast by utilizing a thermal resonance shift, which harvested the heat dissipated by current injection in the p-i-n junction. We derive and discuss a simple thermal-resistance model in explanation of these effects. (C) 2016 Optical Society of America C1 [Wang, Xiaoxi; Aguinaldo, Ryan; Mookherjea, Shayan] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L.; Trotter, Douglas; Pomerene, Andrew] Sandia Natl Labs, Appl Photon Microsyst, POB 5800, Albuquerque, NM 87185 USA. RP Mookherjea, S (reprint author), Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. EM smookherjea@ucsd.edu FU National Science Foundation (NSF) [EEC-0812072, 1525090]; National Aeronautics and Space Administration (NASA); National Aeronautics and Space Administration (Space Technology Research Grants Program); National Aeronautics and Space Administration (Early Stage Innovations); Texas Instruments Kilby Labs FX National Science Foundation (NSF) (EEC-0812072, 1525090); National Aeronautics and Space Administration (NASA, Space Technology Research Grants Program, Early Stage Innovations); Texas Instruments Kilby Labs. NR 23 TC 0 Z9 0 U1 4 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 28 PY 2016 VL 24 IS 24 BP 27600 EP 27613 DI 10.1364/OE.24.027600 PG 14 WC Optics SC Optics GA EE3DU UT WOS:000389468200052 PM 27906331 ER PT J AU Nozka, L Adamczyk, L Avoni, G Brandt, A Buglewicz, P Cavallaro, E Chiodini, G Chytka, L Ciesla, K Davis, PM Dyndal, M Grinstein, S Hamal, P Hrabovsky, M Janas, K Jirakova, K Kocian, M Komarek, T Korcyl, K Lange, J Mandat, D Michalek, V Paz, IL Northacker, D Rijssenbeek, M Seabra, L Schovanek, P Staszewski, R Swierska, P Sykora, T AF Nozka, L. Adamczyk, L. Avoni, G. Brandt, A. Buglewicz, P. Cavallaro, E. Chiodini, G. Chytka, L. Ciesla, K. Davis, P. M. Dyndal, M. Grinstein, S. Hamal, P. Hrabovsky, M. Janas, K. Jirakova, K. Kocian, M. Komarek, T. Korcyl, K. Lange, J. Mandat, D. Michalek, V. Paz, I. Lopez Northacker, D. Rijssenbeek, M. Seabra, L. Schovanek, P. Staszewski, R. Swierska, P. Sykora, T. TI Construction of the optical part of a time-of-flight detector prototype for the AFP detector SO OPTICS EXPRESS LA English DT Article AB We present the construction of the optical part of the ToF (time-of-flight) subdetector prototype for the AFP (ATLAS Forward Proton) detector. The ToF detector in conjunction with a 3D silicon pixel tracker will tag and measure protons originating in central exclusive interactions p + p -> p + X + p, where the two outgoing protons are scattered in the very forward directions. The ToF is required to reduce so-called pileup backgrounds that arise from multiple proton interactions in the same bunch crossing at high luminosity. The background can fake the signal of interest, and the extra rejection from the ToF allows the proton tagger to operate at the high luminosity required for measurement of the processes. The prototype detector uses fused silica bars emitting Cherenkov radiation as a relativistic particle passes through it. The emitted Cherenkov photons are detected by a micro-channel plate multi-anode Photomultiplier Tube (MCP-PMT) and processed by fast electronics. (C) 2016 Optical Society of America C1 [Nozka, L.; Chytka, L.; Hamal, P.; Hrabovsky, M.; Jirakova, K.; Mandat, D.; Michalek, V.; Schovanek, P.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Adamczyk, L.; Dyndal, M.; Janas, K.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Al Mickiewicza 30, PL-30059 Krakow, Poland. [Avoni, G.] Ist Nazl Fis Nucl, Viale C Berti Pichat 6-2, IT-40127 Bologna, Italy. [Avoni, G.] Univ Bologna, Dipartimento Fis, Viale C Berti Pichat 6-2, IT-40127 Bologna, Italy. [Brandt, A.] Univ Texas Arlington, Dept Phys, Box 19059, Arlington, TX 76019 USA. [Buglewicz, P.; Ciesla, K.; Korcyl, K.; Staszewski, R.; Swierska, P.] H Niewodniczanski Inst Nucl Phys PAN, Krakow, Poland. [Cavallaro, E.; Grinstein, S.; Lange, J.; Paz, I. Lopez] Univ Autonoma Barcelona, Inst Fis Altes Energies, Edifici Cn, ES-08193 Bellaterra, Barcelona, Spain. [Chiodini, G.] Ist Nazl Fis Nucl, Via Arnesano, IT-73100 Lecce, Italy. [Chiodini, G.] Univ Salento, Dipartimento Fis, Via Arnesano, IT-73100 Lecce, Italy. [Davis, P. M.] Univ Alberta, Dept Phys, Ctr Particle Phys, Edmonton, AB T6G 2G7, Canada. [Kocian, M.] Stanford Linear Accelerator Ctr, Stanford, CA 94309 USA. [Northacker, D.; Rijssenbeek, M.] SUNY Stony Brook, Dept Phys & Astron, Nicolls Rd, Stony Brook, NY 11794 USA. [Seabra, L.] LIP, Lab Instrumentacao & Fis Expt Particulas, Av Elias Garcia 14, Lisbon, Portugal. [Sykora, T.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, V Holesovickach 2, CZ-18000 Prague 8, Czech Republic. RP Nozka, L (reprint author), Palacky Univ, RCPTM, Olomouc, Czech Republic. EM libor.nozka@upol.cz RI Michalek, Vaclav/G-5956-2014 FU MSMT of Czech Republic (INGO II) [LG15052]; Palacky University [IGA_PrF_2016_002]; Horizon 2020 [654168]; MSMT of Czech Republic (RCPTM-NPU) [LO1305] FX MSMT of Czech Republic (INGO II no. LG15052, RCPTM-NPU no. LO1305), Palacky University (IGA_PrF_2016_002), Horizon 2020 (654168). NR 13 TC 0 Z9 0 U1 7 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 28 PY 2016 VL 24 IS 24 BP 27951 EP 27960 DI 10.1364/OE.24.027951 PG 10 WC Optics SC Optics GA EE3DU UT WOS:000389468200083 PM 27906363 ER PT J AU Blyth, SC Chan, YL Chen, XC Chu, MC Cui, KX Hahn, RL Ho, TH Hor, YK Hsiung, YB Hu, BZ Kwan, KK Kwok, MW Kwok, T Lau, YP Lee, KP Leung, JKC Leung, KY Lin, GL Lin, YC Luk, KB Luk, WH Ngai, HY Ngai, WK Ngan, SY Pun, CSJ Shih, K Tam, YH Tsang, RHM Wang, CH Wong, CM Wong, HHC Wong, HLH Wong, KK Yeh, M AF Blyth, S. C. Chan, Y. L. Chen, X. C. Chu, M. C. Cui, K. X. Hahn, R. L. Ho, T. H. Hor, Y. K. Hsiung, Y. B. Hu, B. Z. Kwan, K. K. Kwok, M. W. Kwok, T. Lau, Y. P. Lee, K. P. Leung, J. K. C. Leung, K. Y. Lin, G. L. Lin, Y. C. Luk, K. B. Luk, W. H. Ngai, H. Y. Ngai, W. K. Ngan, S. Y. Pun, C. S. J. Shih, K. Tam, Y. H. Tsang, R. H. M. Wang, C. H. Wong, C. M. Wong, H. H. C. Wong, H. L. H. Wong, K. K. Yeh, M. CA Aberdeen Tunnel Expt Collaboration TI Measurement of cosmic-ray muons and muon-induced neutrons in the Aberdeen Tunnel Underground Laboratory (vol 93, 072005, 2016) SO PHYSICAL REVIEW D LA English DT Correction C1 [Blyth, S. C.; Wang, C. H.] Natl United Univ, Dept Electroopt Engn, Miaoli 36063, Taiwan. [Chan, Y. L.; Chen, X. C.; Chu, M. C.; Hor, Y. K.; Kwan, K. K.; Kwok, M. W.; Lin, Y. C.; Luk, W. H.; Ngai, W. K.; Ngan, S. Y.; Shih, K.; Tam, Y. H.; Wong, C. M.; Wong, K. K.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Cui, K. X.; Kwok, T.; Lau, Y. P.; Lee, K. P.; Leung, J. K. C.; Leung, K. Y.; Ngai, H. Y.; Pun, C. S. J.; Tsang, R. H. M.; Wong, H. H. C.; Wong, H. L. H.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Hahn, R. L.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ho, T. H.; Hsiung, Y. B.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Hu, B. Z.; Lin, G. L.] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan. [Luk, K. B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Blyth, SC (reprint author), Natl United Univ, Dept Electroopt Engn, Miaoli 36063, Taiwan. NR 1 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 28 PY 2016 VL 94 IS 9 AR 099906 DI 10.1103/PhysRevD.94.099906 PG 1 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED4MT UT WOS:000388823800018 ER PT J AU Chen, SY Kaeppler, SM Vogel, KP Casler, MD AF Chen, Shiyu Kaeppler, Shawn M. Vogel, Kenneth P. Casler, Michael D. TI Selection Signatures in Four Lignin Genes from Switchgrass Populations Divergently Selected for In Vitro Dry Matter Digestibility SO PLOS ONE LA English DT Article ID LOLIUM-PERENNE L.; FESCUE FESTUCA-ARUNDINACEA; TRANSGENIC DOWN-REGULATION; TERM ARTIFICIAL SELECTION; FERMENTABLE SUGAR YIELDS; ACID-O-METHYLTRANSFERASE; HERBAGE QUALITY TRAITS; CELL-WALL COMPOSITION; PANICUM-VIRGATUM L.; COMPREHENSIVE ANALYSIS AB Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four loci in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. This study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality. C1 [Chen, Shiyu; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. [Kaeppler, Shawn M.; Casler, Michael D.] Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA. [Vogel, Kenneth P.] USDA ARS, Grain Forage & Bioenergy Res Unit, Lincoln, NE USA. [Vogel, Kenneth P.] Univ Nebraska, Dept Agron & Hort, Lincoln, NE USA. [Casler, Michael D.] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. RP Casler, MD (reprint author), Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA.; Casler, MD (reprint author), USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. EM mdcasler@wisc.edu FU U.S. Department of Energy Great Lakes Bioenergy Research Center in Madison, WI; USDA-ARS in Madison, WI; University of Wisconsin, Department of Agricultural Research Stations; U.S. Department of Energy Great Lakes Bioenergy Research Center in East Lansing, MI; USDA-ARS in Lincoln, NE; [DE-FC02-07ER64494] FX This research was funded principally by the U.S. Department of Energy Great Lakes Bioenergy Research Center located in Madison, WI and East Lansing, MI and supported by Grant DE-FC02-07ER64494. Secondary funding was provided by USDA-ARS in Madison, WI and Lincoln, NE, and by the University of Wisconsin, Department of Agricultural Research Stations. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 0 Z9 0 U1 0 U2 0 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 28 PY 2016 VL 11 IS 11 AR e0167005 DI 10.1371/journal.pone.0167005 PG 19 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EE3FE UT WOS:000389472400068 PM 27893787 ER PT J AU Zajac, DM Hazard, TM Mi, X Nielsen, E Petta, JR AF Zajac, D. M. Hazard, T. M. Mi, X. Nielsen, E. Petta, J. R. TI Scalable Gate Architecture for a One-Dimensional Array of Semiconductor Spin Qubits SO PHYSICAL REVIEW APPLIED LA English DT Article ID QUANTUM DOTS; ELECTRON-SPIN; SILICON; COMPUTATION; OSCILLATIONS; FIELD AB We demonstrate a 12-quantum-dot device fabricated on an undoped Si/SiGe heterostructure as a proof of concept for a scalable, linear gate architecture for semiconductor quantum dots. The device consists of nine quantum dots in a linear array and three single-quantum-dot charge sensors. We show reproducible single-quantum-dot charging and orbital energies, with standard deviations less than 20% relative to the mean across the nine-dot array. The single-quantum-dot charge sensors have a charge sensitivity of 8.2 x 10(-4) e/root Hz and allow for the investigation of real-time charge dynamics. As a demonstration of the versatility of this device, we use single-shot readout to measure the spin-relaxation time T-1 = 170 ms at a magnetic field B = 1 T. By reconfiguring the device, we form two capacitively coupled double quantum dots and extract a mutual charging energy of 200 mu eV, which indicates that 50-GHz two-qubit gate-operation speeds are feasible. C1 [Zajac, D. M.; Hazard, T. M.; Mi, X.; Petta, J. R.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Nielsen, E.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Zajac, DM (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. FU ARO [W911NF-15-1-0149]; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4535]; NSF [DMR-1409556, DMR-1420541] FX This work is funded by the ARO through Grant No. W911NF-15-1-0149, the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant No. GBMF4535, and the NSF (Grants No. DMR-1409556 and No. DMR-1420541). Devices were fabricated in the Princeton University Quantum Device Nanofabrication Laboratory. NR 42 TC 4 Z9 4 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2331-7019 J9 PHYS REV APPL JI Phys. Rev. Appl. PD NOV 28 PY 2016 VL 6 IS 5 AR 054013 DI 10.1103/PhysRevApplied.6.054013 PG 8 WC Physics, Applied SC Physics GA ED4RH UT WOS:000388837600001 ER PT J AU Choi, YS Jiang, XJ Bi, WL Lapa, P Chouhan, RK Paudyal, D Varga, T Popov, D Cui, J Haskel, D Jiang, JS AF Choi, Yongseong Jiang, Xiujuan Bi, Wenli Lapa, Pavel Chouhan, Rajiv K. Paudyal, D. Varga, Tamas Popov, Dmitry Cui, Jun Haskel, Daniel Jiang, J. S. TI Element-resolved magnetism across the temperature- and pressure-induced spin reorientation in MnBi SO PHYSICAL REVIEW B LA English DT Article ID FULL-POTENTIAL CALCULATIONS; RAY CIRCULAR-DICHROISM; ELECTRONIC-STRUCTURE; MAGNETOOPTICAL PROPERTIES; INTERMETALLIC COMPOUND; BI; TRANSFORMATION; EDGE; IRON; MNSB AB Rare-earth free permanent magnet MnBi (NiAs-type crystal structure) displays strong uniaxial magnetic anisotropy above its similar to 90 K spin reorientation transition (SRT). X-ray magnetic circular dichroism (XMCD) measurements at the Mn K and Bi L-2,(3) edges show induced magnetism in Bi, which is strongly coupled to the magnetism of Mn. Temperature- and pressure-dependent XMCD results reveal that hydrostatic pressure mimics the effect of temperature, driving a transition from uniaxial to in-plane anisotropy. The pressure and temperature transitions are shown to be connected to an anisotropic lattice contraction in NiAs-type structures. Temperature and pressure, hence, induce coupled structural and magnetic responses, highlighting the importance of both anisotropic lattice change and Mn-Bi hybridization in leading to the magnetic anisotropy change across the SRT. The dependence of magnetic anisotropy on the anisotropic lattice change is confirmed by density functional theory. C1 [Choi, Yongseong; Bi, Wenli; Haskel, Daniel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Jiang, Xiujuan; Cui, Jun] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Bi, Wenli] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Lapa, Pavel; Jiang, J. S.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chouhan, Rajiv K.; Paudyal, D.; Cui, Jun] US DOE, Ames Lab, Ames, IA 50011 USA. [Varga, Tamas] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Popov, Dmitry] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA. [Cui, Jun] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Choi, YS (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. FU US Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF; Consortium for Materials Properties Research in Earth Sciences (COMPRES); US Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) [REACT 11/CJ000/09/03, REACT 11/CJ000/11/02]; US DOE by Iowa State University [DE-AC02-07CH1358]; Critical Materials Institute, an Energy Innovation Hub - US DOE, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office FX The work performed at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. W.B. would like to acknowledge support from the Consortium for Materials Properties Research in Earth Sciences (COMPRES). The US Department of Energy Advanced Research Projects Agency-Energy (ARPA-E) supported research at Pacific Northwest National Laboratory (REACT 11/CJ000/09/03) and at Ames Laboratory (REACT 11/CJ000/11/02) which is operated for the US DOE by Iowa State University under Contract No. DE-AC02-07CH1358. The theory portion of the work performed at the Ames Laboratory is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US DOE, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. NR 36 TC 0 Z9 0 U1 14 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 18 AR 184433 DI 10.1103/PhysRevB.94.184433 PG 7 WC Physics, Condensed Matter SC Physics GA ED4KH UT WOS:000388816200007 ER PT J AU Eknapakul, T Fongkaew, I Siriroj, S Vidyasagar, R Denlinger, JD Bawden, L Mo, SK King, PDC Takagi, H Limpijumnong, S Meevasana, W AF Eknapakul, T. Fongkaew, I. Siriroj, S. Vidyasagar, R. Denlinger, J. D. Bawden, L. Mo, S. -K. King, P. D. C. Takagi, H. Limpijumnong, S. Meevasana, W. TI Nearly-free-electron system of monolayer Na on the surface of single-crystal HfSe2 SO PHYSICAL REVIEW B LA English DT Article ID BAND-STRUCTURE; CU(111); LAYER; MOS2; HETEROSTRUCTURES; TEMPERATURE; ADSORPTION; RU(0001); SODIUM; WSE2 AB The electronic structure of a single Na monolayer on the surface of single-crystal HfSe2 is investigated using angle-resolved photoemission spectroscopy. We find that this system exhibits an almost perfect "nearly-freeelectron" behavior with an extracted effective mass of similar to 1m(e), in contrast to heavier masses found previously for alkali-metal monolayers on other substrates. Our density-functional-theory calculations indicate that this is due to the large lattice constant, causing both exchange and correlation interactions to be suppressed, and to the weak hybridization between the overlayer and the substrate. This is therefore an ideal model system for understanding the properties of two-dimensional materials. C1 [Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Vidyasagar, R.; Limpijumnong, S.; Meevasana, W.] Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand. [Fongkaew, I.] Synchrotron Light Res Inst, Nakhon Ratchasima 30000, Thailand. [Denlinger, J. D.; Mo, S. -K.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [King, P. D. C.] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Takagi, H.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Takagi, H.] RIKEN, Magnet Mat Lab, Adv Sci Inst, Wako, Saitama 3510198, Japan. [Limpijumnong, S.; Meevasana, W.] Suranaree Univ Technol, NANOTEC SUT Ctr Excellence Adv Funct Nanomat, Nakhon Ratchasima 30000, Thailand. RP Meevasana, W (reprint author), Suranaree Univ Technol, Sch Phys, Nakhon Ratchasima 30000, Thailand.; Meevasana, W (reprint author), Suranaree Univ Technol, NANOTEC SUT Ctr Excellence Adv Funct Nanomat, Nakhon Ratchasima 30000, Thailand. EM worawat@g.sut.ac.th RI Mo, Sung-Kwan/F-3489-2013 OI Mo, Sung-Kwan/0000-0003-0711-8514 FU Suranaree University of Technology; Higher Education Research Promotion; NRU Project of Thailand, Office of the Higher Education Commission; Office of Basic Energy Science of the U.S. DOE [DE-AC02-05CH11231]; Engineering and Physical Sciences Research Council, U.K. [EP/G03673X/1]; Royal Society through a University Research Fellowship; EPSRC [EP/I031014/1] FX We acknowledge S. Chaiyachad, W. Jindata, C. Jaisuk, Y. Kaekhamchan, and P. Chanprakhon for useful information. This work was supported by Suranaree University of Technology and by the Higher Education Research Promotion and NRU Project of Thailand, Office of the Higher Education Commission. The Advanced Light Source is supported by the Office of Basic Energy Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. L.B. acknowledges studentship funding from the Engineering and Physical Sciences Research Council, U.K., through Grant No. EP/G03673X/1. P.D.C.K. acknowledges support from the Royal Society through a University Research Fellowship and the EPSRC (Grant No. EP/I031014/1). NR 47 TC 0 Z9 0 U1 10 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 20 AR 201121 DI 10.1103/PhysRevB.94.201121 PG 5 WC Physics, Condensed Matter SC Physics GA ED4LP UT WOS:000388820200002 ER PT J AU Ho, PC Singleton, J Goddard, PA Balakirev, FF Chikara, S Yanagisawa, T Maple, MB Shrekenhamer, DB Lee, X Thomas, AT AF Ho, Pei Chun Singleton, John Goddard, Paul A. Balakirev, Fedor F. Chikara, Shalinee Yanagisawa, Tatsuya Maple, M. Brian Shrekenhamer, David B. Lee, Xia Thomas, Avraham T. TI Fermi-surface topologies and low-temperature phases of the filled skutterudite compounds CeOs4Sb12 and NdOs4Sb12 SO PHYSICAL REVIEW B LA English DT Article ID 1ST-ORDER VALENCE TRANSITION; MAGNETIC-FIELDS; YBINCU4; SUPERCONDUCTIVITY; PROS4AS12; SMOS4SB12; BEHAVIOR; STATE AB MHz conductivity, torque magnetometer, and magnetization measurements are reported on single crystals of CeOs4Sb12 and NdOs4Sb12 using temperatures down to 0.5 K and magnetic fields of up to 60 tesla. The field-orientation dependence of the de Haas-van Alphen and Shubnikov-de Haas oscillations is deduced by rotating the samples about the [010] and [0 (1) over bar1] directions. The results indicate that NdOs4Sb12 has a similar Fermi surface topology to that of the unusual superconductor PrOs4Sb12, but with significantly smaller effective masses, supporting the importance of local phonon modes in contributing to the low-temperature heat capacity of NdOs4Sb12. By contrast, CeOs4Sb12 undergoes a field-induced transition from an unusual semimetal into a high-field, high-temperature state characterized by a single, almost spherical Fermi-surface section. The behavior of the phase boundary and comparisons with models of the band structure lead us to propose that the field-induced phase transition in CeOs4Sb12 is similar in origin to the well- known alpha-gamma transition in Ce and its alloys. C1 [Ho, Pei Chun] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Singleton, John; Balakirev, Fedor F.; Chikara, Shalinee] Los Alamos Natl Lab, Natl High Magnet Field Lab, MS-E536, Los Alamos, NM 87545 USA. [Singleton, John] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. [Goddard, Paul A.] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. [Yanagisawa, Tatsuya] Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan. [Maple, M. Brian; Shrekenhamer, David B.; Lee, Xia; Thomas, Avraham T.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Maple, M. Brian] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Shrekenhamer, David B.] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Thomas, Avraham T.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RP Ho, PC (reprint author), Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. EM pcho@csufresno.edu; jsingle@lanl.gov RI Chikara, Shalinee/E-4654-2017; OI Goddard, Paul/0000-0002-0666-5236 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-04ER46105]; National Science Foundation [DMR 1206553, DMR-1157490]; JSPS KAKENHI [26400342, 15K05882, 15K21732]; EPSRC; State of Florida; US Department of Energy (DoE); DoE Basic Energy Science Field Work Proposal "Science in 100 T"; [NSF DMR-1506677] FX Research at CSU-Fresno is supported by Grant No. NSF DMR-1506677. Work at UCSD is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Grant No. DEFG02-04ER46105 (single crystal growth) and the National Science Foundation under Grant No. DMR 1206553 (sample characterization). The portion of this work done at Hokkaido University is supported by JSPS KAKENHI Grants No. 26400342, No. 15K05882, and No. 15K21732. P.A.G. would like to thank the EPSRC for support. Data presented in this paper resulting from the UK effort will be made available at http://wrap.warwick.ac.uk/82201. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the US Department of Energy (DoE) and through the DoE Basic Energy Science Field Work Proposal "Science in 100 T". J.S. thanks the University of Oxford for provision of a visiting professorship that permitted the low-field measurements featured in this paper. We are very grateful to H. Harima for many illuminating comments on an earlier version of this manuscript. NR 51 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 20 AR 205140 DI 10.1103/PhysRevB.94.205140 PG 10 WC Physics, Condensed Matter SC Physics GA ED4LP UT WOS:000388820200006 ER PT J AU Noad, H Spanton, EM Nowack, KC Inoue, H Kim, M Merz, TA Bell, C Hikita, Y Xu, RQ Liu, WJ Vailionis, A Hwang, HY Moler, KA AF Noad, Hilary Spanton, Eric M. Nowack, Katja C. Inoue, Hisashi Kim, Minu Merz, Tyler A. Bell, Christopher Hikita, Yasuyuki Xu, Ruqing Liu, Wenjun Vailionis, Arturas Hwang, Harold Y. Moler, Kathryn A. TI Variation in superconducting transition temperature due to tetragonal domains in two-dimensionally doped SrTiO3 SO PHYSICAL REVIEW B LA English DT Article ID LAYER FESE FILMS; STRONTIUM-TITANATE; SEMICONDUCTING SRTIO3; DIELECTRIC-PROPERTIES; LAALO3/SRTIO3; DEPENDENCE; MECHANISM; BENEATH; STATE; DOME AB Strontium titanate is a low-temperature, non-Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO3 embedded in undoped SrTiO3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperature T-c greater than or similar to 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects T-c. Our results suggest that the anisotropic dielectric properties of SrTiO3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity. C1 [Noad, Hilary; Spanton, Eric M.; Kim, Minu; Merz, Tyler A.; Bell, Christopher; Hikita, Yasuyuki; Hwang, Harold Y.; Moler, Kathryn A.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Noad, Hilary; Nowack, Katja C.; Inoue, Hisashi; Merz, Tyler A.; Hwang, Harold Y.; Moler, Kathryn A.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Spanton, Eric M.; Moler, Kathryn A.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Bell, Christopher] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England. [Xu, Ruqing; Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Vailionis, Arturas] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. RP Moler, KA (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA.; Moler, KA (reprint author), Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA.; Moler, KA (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM kmoler@stanford.edu RI Hikita, Yasuyuki/F-5600-2011; Bell, Christopher/B-8785-2009; Merz, Tyler/B-2582-2012 OI Hikita, Yasuyuki/0000-0002-7748-8329; Bell, Christopher/0000-0003-4732-0354; FU Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-76SF00515]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; Stanford Graduate Fellowship; Natural Sciences and Engineering Council of Canada; National Science Foundation [DGE-114747] FX We thank J. Berlinsky, R. Laughlin, S. Kivelson, S. Raghu, and A. Maharaj for helpful discussions and C. Watson for feedback on our manuscript. This work was supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-76SF00515. Differential aperture x-ray microdiffraction was carried out at the Advanced Photon Source, a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. H.N. acknowledges support from a Stanford Graduate Fellowship and a Natural Sciences and Engineering Council of Canada PGS D. T.A.M. also acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. NR 62 TC 1 Z9 1 U1 17 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 17 AR 174516 DI 10.1103/PhysRevB.94.174516 PG 12 WC Physics, Condensed Matter SC Physics GA ED4KA UT WOS:000388815300010 ER PT J AU Nocera, A Patel, ND Fernandez-Baca, J Dagotto, E Alvarez, G AF Nocera, A. Patel, N. D. Fernandez-Baca, J. Dagotto, E. Alvarez, G. TI Magnetic excitation spectra of strongly correlated quasi-one-dimensional systems: Heisenberg versus Hubbard-like behavior SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM RENORMALIZATION-GROUPS; SPIN LADDERS; ANTIFERROMAGNETIC CHAIN; NEUTRON-SCATTERING; 2-LEG LADDER; GROUND-STATE; BOUND-STATES; SUPERCONDUCTIVITY; S=1/2; IRON AB We study the effects of charge degrees of freedom on the spin excitation dynamics in quasi-one-dimensional magnetic materials. Using the density matrix renormalization group method, we calculate the dynamical spin structure factor of the Hubbard model at half electronic filling on a chain and on a ladder geometry, and compare the results with those obtained using the Heisenberg model, where charge degrees of freedom are considered frozen. For both chains and two-leg ladders, we find that the Hubbard model spectrum qualitatively resembles the Heisenberg spectrum-with low-energy peaks resembling spinonic excitations-already at intermediate on-site repulsion as small as U/t similar to 2-3, although ratios of peak intensities at different momenta continue evolving with increasing U/t converging only slowly to the Heisenberg limit. We discuss the implications of these results for neutron scattering experiments and we propose criteria to establish the values of U/t of quasi-one-dimensional systems described by one-orbital Hubbard models from experimental information. C1 [Nocera, A.; Alvarez, G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Nocera, A.; Alvarez, G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Patel, N. D.; Fernandez-Baca, J.; Dagotto, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Patel, N. D.; Dagotto, E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Fernandez-Baca, J.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Nocera, A (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.; Nocera, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. FU Scientific User Facilities Division (SUFD), BES, DOE; UT-Battelle; Early Career Research program, SUFD, BES, DOE; National Science Foundation (NSF) [DMR-1404375]; U.S. Department of Energy (DOE), Office of Basic Energy Science (BES), Materials Science and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was conducted at the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division (SUFD), BES, DOE, under contract with UT-Battelle. A.N. and G.A. acknowledge support by the Early Career Research program, SUFD, BES, DOE. N.P. and E.D. were supported by the National Science Foundation (NSF) under Grant No. DMR-1404375. N.P. was also partially supported by the U.S. Department of Energy (DOE), Office of Basic Energy Science (BES), Materials Science and Engineering Division. Research at ORNL's HFIR and SNS (J.F.-B.) was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 69 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 20 AR 205145 DI 10.1103/PhysRevB.94.205145 PG 10 WC Physics, Condensed Matter SC Physics GA ED4LP UT WOS:000388820200011 ER PT J AU Prieto, JE Chen, G Schmid, AK de la Figuera, J AF Prieto, J. E. Chen, Gong Schmid, A. K. de la Figuera, J. TI Magnetism of epitaxial Tb films on W(110) studied by spin-polarized low-energy electron microscopy SO PHYSICAL REVIEW B LA English DT Article ID GADOLINIUM; PHOTOEMISSION; ANISOTROPY; TERBIUM; SURFACE; METAL; IRON; GD AB Thin epitaxial films of Tb metal were grown on a clean W(110) substrate in ultrahigh vacuum and studied in situ by low-energy electron microscopy. Annealed films present magnetic contrast in spin-polarized low-energy electron microscopy. The energy dependence of the electron reflectivity was determined and a maximum value of its spin asymmetry of about 1% was measured. The magnetization direction of the Tb films is in-plane. Upon raising the temperature, no change in the domain distribution is observed, while the asymmetry in the electron reflectivity decreases when approaching the critical temperature, following a power law similar to(1-T/TC)(beta) with a critical exponent beta of 0.39. C1 [Prieto, J. E.] Univ Autonoma Madrid, IFIMAC, Dept Fis Mat Condensada, Ctr Microanal Mat, E-28049 Madrid, Spain. [Chen, Gong; Schmid, A. K.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de la Figuera, J.] CSIC, Inst Quim Fis Rocasolano, Madrid 28006, Spain. RP Prieto, JE (reprint author), Univ Autonoma Madrid, IFIMAC, Dept Fis Mat Condensada, Ctr Microanal Mat, E-28049 Madrid, Spain. EM joseemilio.prieto@uam.es FU Spain (MINECO) [MAT2014-52477-C5-5-P, MAT2015-64110-C02-1-P]; Spain (MICINN) [FIS2008-01431]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was partly supported by Spain under Projects No. MAT2014-52477-C5-5-P, No. MAT2015-64110-C02-1-P (MINECO), and No. FIS2008-01431 (MICINN). Experiments were performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 17 AR 174445 DI 10.1103/PhysRevB.94.174445 PG 6 WC Physics, Condensed Matter SC Physics GA ED4KA UT WOS:000388815300007 ER PT J AU Tasolamprou, AC Tsilipakos, O Kafesaki, M Soukoulis, CM Economou, EN AF Tasolamprou, Anna C. Tsilipakos, Odysseas Kafesaki, Maria Soukoulis, Costas M. Economou, Eleftherios N. TI Toroidal eigenmodes in all-dielectric metamolecules SO PHYSICAL REVIEW B LA English DT Article ID PARITY NONCONSERVATION; ANAPOLE MOMENTS; STATE; NANOPARTICLES; METAMATERIAL; GENERATION; DIPOLE; FIELD; RING AB We present a thorough investigation of the electromagnetic resonant modes supported by systems of polaritonic rods placed at the vertices of canonical polygons. The study is conducted with rigorous finite-element eigenvalue simulations. To provide physical insight, the simulations are complemented with coupled mode theory (the analog of LCAO in molecular and solid state physics) and a lumped wire model capturing the coupling-caused reorganizations of the currents in each rod. The systems of rods, which form all-dielectric cyclic metamolecules, are found to support the unconventional toroidal dipole mode, consisting of the magnetic dipole mode in each rod. Besides the toroidal modes, the spectrally adjacent collective modes are identified. The evolution of all resonant frequencies with rod separation is examined. They are found to oscillate about the single-rod magnetic dipole resonance, a feature attributed to the leaky nature of the constituent modes. Importantly, we observe that ensembles of an odd number of rods produce larger frequency separation between the toroidal mode and its neighbor than the ones with an even number of rods. This increased spectral isolation, along with the low quality factor exhibited by the toroidal mode, favors the coupling of the commonly silent toroidal dipole to the outside world, rendering the proposed structure a prime candidate for controlling the observation of toroidal excitations and their interaction with the usually present electric dipole. C1 [Tasolamprou, Anna C.; Tsilipakos, Odysseas; Kafesaki, Maria; Soukoulis, Costas M.; Economou, Eleftherios N.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Kafesaki, Maria] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Crete, Greece. [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Economou, Eleftherios N.] Univ Crete, Dept Phys, Iraklion 71003, Crete, Greece. RP Tasolamprou, AC (reprint author), FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. EM atasolam@iesl.forth.gr RI Tsilipakos, Odysseas/C-1275-2011; Kafesaki, Maria/E-6843-2012; Economou, Eleftherios /E-6374-2010; Soukoulis, Costas/A-5295-2008 OI Tsilipakos, Odysseas/0000-0003-4770-0955; Kafesaki, Maria/0000-0002-9524-2576; FU European Research Council (Belgium) under ERC Advanced Grant [320081]; U.S. Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) [DE-AC02-07CH11358] FX This work was supported by the European Research Council (Belgium) under ERC Advanced Grant No. 320081 (PHOTOMETA). Work at Ames Laboratory was partially supported by the U.S. Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) under Contract No. DE-AC02-07CH11358. NR 48 TC 0 Z9 0 U1 24 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 20 AR 205433 DI 10.1103/PhysRevB.94.205433 PG 14 WC Physics, Condensed Matter SC Physics GA ED4LP UT WOS:000388820200019 ER PT J AU Tsvelik, AM AF Tsvelik, A. M. TI Universality classes of order parameters composed of many-body bound states SO PHYSICAL REVIEW B LA English DT Article ID ISOTROPIC HEISENBERG CHAIN; MULTICHANNEL KONDO PROBLEM; ARBITRARY SPINS; FIELD-THEORY; MODEL; INTEGRABILITY; SYMMETRY; SPECTRUM; BEHAVIOR AB This theoretical paper discusses microscopic models giving rise to special types of order in which conduction electrons are bound together with localized spins to create composite order parameters. It is shown that composite order is related to the formation of a spin liquid with gapped excitations carrying quantum numbers that are a fraction of those of an electron. These spin liquids are special in the sense that their formation necessarily involves spin degrees of freedom of both the conduction and the localized electrons and can be characterized by nonlocal order parameters. A detailed description of such spin-liquid states is presented with a special care given to a demonstration of their robustness against local perturbations preserving the Lie group symmetry and the translational invariance. C1 [Tsvelik, A. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA. RP Tsvelik, AM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA. FU Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE grant [DE-FOA-0001276] FX I am grateful to E. Fradkin for asking the right question, for C. Chamon, L. Fidkowski, G. Kotliar, P. Lecheminant, G. Mussardo, and T. M. Rice for interesting discussions. The work was supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE grant DE-FOA-0001276. NR 36 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 20 AR 205141 DI 10.1103/PhysRevB.94.205141 PG 12 WC Physics, Condensed Matter SC Physics GA ED4LP UT WOS:000388820200007 ER PT J AU Vilmercati, P Mo, SK Fedorov, A McGuire, MA Sefat, A Sales, B Mandrus, D Singh, DJ Ku, W Johnston, S Mannella, N AF Vilmercati, Paolo Mo, Sung-Kwan Fedorov, Alexei McGuire, Michael A. Sefat, Athena Sales, Brian Mandrus, David Singh, David J. Ku, Wei Johnston, Steve Mannella, Norman TI Nonrigid band shift and nonmonotonic electronic structure changes upon doping in the normal state of the pnictide high-temperature superconductor Ba(Fe1-xCox)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article ID PHOTOEMISSION; TRANSITION; METALS AB We report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba(Fe1-xCox)(2)As-2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energy effects due to impurity scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-T-C unconventional superconductors. C1 [Vilmercati, Paolo; Johnston, Steve; Mannella, Norman] Univ Tennessee Knoxville, Dept Phys & Astron, 1408 Circle Dr, Knoxville, TN 37996 USA. [Vilmercati, Paolo; Mandrus, David; Johnston, Steve; Mannella, Norman] Univ Tennessee, Joint Inst Adv Mat, 2641 Osprey Vista Way, Knoxville, TN 37996 USA. [Mo, Sung-Kwan; Fedorov, Alexei] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [McGuire, Michael A.; Sefat, Athena; Sales, Brian; Mandrus, David] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Mandrus, David] Univ Tennessee Knoxville, Dept Mat Sci & Engn, 1512 Middle Dr, Knoxville, TN 37996 USA. [Singh, David J.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. [Ku, Wei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ku, Wei] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11790 USA. [Mannella, Norman] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. RP Vilmercati, P (reprint author), Univ Tennessee Knoxville, Dept Phys & Astron, 1408 Circle Dr, Knoxville, TN 37996 USA.; Vilmercati, P (reprint author), Univ Tennessee, Joint Inst Adv Mat, 2641 Osprey Vista Way, Knoxville, TN 37996 USA. EM pvilmer1@utk.edu; nmannell@utk.edu RI McGuire, Michael/B-5453-2009; Mo, Sung-Kwan/F-3489-2013; Vilmercati, Paolo/E-5655-2017 OI McGuire, Michael/0000-0003-1762-9406; Mo, Sung-Kwan/0000-0003-0711-8514; Vilmercati, Paolo/0000-0002-3872-8828 FU National Science Foundation, Division of Material Research [DMR-1151687]; US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation, Division of Material Research, Grant No. DMR-1151687 (N.M.). M.A.McG., A.S., B.C.S., and D.M. are supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 36 TC 0 Z9 0 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 28 PY 2016 VL 94 IS 19 AR 195147 DI 10.1103/PhysRevB.94.195147 PG 14 WC Physics, Condensed Matter SC Physics GA ED4KW UT WOS:000388818000005 ER PT J AU Schmittfull, M Vlah, Z AF Schmittfull, Marcel Vlah, Zvonimir TI y Reducing the two-loop large-scale structure power spectrum to low-dimensional, radial integrals SO PHYSICAL REVIEW D LA English DT Article ID COSMOLOGICAL PERTURBATION-THEORY; GRAVITATIONAL-INSTABILITY; NONLINEAR EVOLUTION; LOOP CORRECTIONS; REDSHIFT-SPACE; REAL-SPACE; OSCILLATIONS; UNIVERSE; MODES AB Modeling the large-scale structure of the universe on nonlinear scales has the potential to substantially increase the science return of upcoming surveys by increasing the number of modes available for model comparisons. One way to achieve this is to model nonlinear scales perturbatively. Unfortunately, this involves high-dimensional loop integrals that are cumbersome to evaluate. Trying to simplify this, we show how two-loop (next-to-next-to-leading order) corrections to the density power spectrum can be reduced to low-dimensional, radial integrals. Many of those can be evaluated with a one-dimensional fast Fourier transform, which is significantly faster than the five-dimensional Monte-Carlo integrals that are needed otherwise. The general idea of this fast fourier transform perturbation theory method is to switch between Fourier and position space to avoid convolutions and integrate over orientations, leaving only radial integrals. This reformulation is independent of the underlying shape of the initial linear density power spectrum and should easily accommodate features such as those from baryonic acoustic oscillations. We also discuss how to account for halo bias and redshift space distortions. C1 [Schmittfull, Marcel] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Schmittfull, Marcel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Vlah, Zvonimir] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Vlah, Zvonimir] Stanford Univ, Dept Phys, Stanford, CA 94306 USA. [Vlah, Zvonimir] SLAC, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Vlah, Zvonimir] Stanford Univ, Menlo Pk, CA 94025 USA. [Schmittfull, Marcel] Inst Adv Study, Einstein Dr, Princeton, NJ 08540 USA. RP Schmittfull, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.; Schmittfull, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-76SF00515] FX We thank Pat McDonald, Tobias Baldauf, Simon Foreman, Marko Simonovich and Matias Zaldarriaga for very useful discussions related to this work. We also thank Simon Foreman for comments on the manuscript. Z. V. is supported in part by the U.S. Department of Energy Contract to SLAC No. DE-AC02-76SF00515. NR 87 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 28 PY 2016 VL 94 IS 10 AR 103530 DI 10.1103/PhysRevD.94.103530 PG 25 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED4NA UT WOS:000388824700008 ER PT J AU Kinaci, A Narayanan, B Sen, FG Davis, MJ Gray, SK Sankaranarayanan, SKRS Chan, MKY AF Kinaci, Alper Narayanan, Badri Sen, Fatih G. Davis, Michael J. Gray, Stephen K. Sankaranarayanan, Subramanian K. R. S. Chan, Maria K. Y. TI Unraveling the Planar-Globular Transition in Gold Nanoclusters through Evolutionary Search SO SCIENTIFIC REPORTS LA English DT Article ID DENSITY-FUNCTIONAL CALCULATIONS; ION MOBILITY MEASUREMENTS; LOWEST-ENERGY STRUCTURES; DER-WAALS FORCES; GENETIC-ALGORITHM; GLOBAL OPTIMIZATION; CLUSTERS; SIZE; 1ST-PRINCIPLES; NANOPARTICLES AB Au nanoclusters are of technological relevance for catalysis, photonics, sensors, and of fundamental scientific interest owing to planar to globular structural transformation at an anomalously high number of atoms i.e. in the range 12-14. The nature and causes of this transition remain a mystery. In order to unravel this conundrum, high throughput density functional theory (DFT) calculations, coupled with a global structural optimization scheme based on a modified genetic algorithm (GA) are conducted. More than 20,000 Au-12, Au-13, and Au-14 nanoclusters are evaluated. With any DFT functional, globular and planar structures coexist across the size range of interest. The planar-globular transition is gradual at room temperature rather than a sharp transition as previously believed. The effects of anionicity, s-d band hybridization and long range interactions on the dimensional transition are quantified by using the structures adjacent to the minima. Anionicity marginally changes the relative stability of the clusters. The degree of s-d hybridization is varied via changing the Hubbard U value which corroborate that s-d hybridization alone does not stabilize planar structures. van der Waals interactions, on the other hand, stabilize globular structures. These results elucidate the balance between the different reasons of the dimensional transition in gold nanoclusters. C1 [Kinaci, Alper; Narayanan, Badri; Sen, Fatih G.; Gray, Stephen K.; Sankaranarayanan, Subramanian K. R. S.; Chan, Maria K. Y.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Davis, Michael J.] Argonne Natl Lab, Div Chem Sci, Lemont, IL 60439 USA. RP Chan, MKY (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. EM mchan@anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation [ACI-105357559] FX Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. M.J.D. was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy, under contract number DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided on Blues and Fusion, high-performance computing clusters operated by the Laboratory Computing Resource Center at Argonne National Laboratory. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-105357559. NR 59 TC 0 Z9 0 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 28 PY 2016 VL 6 AR 34974 DI 10.1038/srep34974 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED7JE UT WOS:000389039300001 PM 27892462 ER PT J AU Safronova, UI Safronova, AS Beiersdorfer, P AF Safronova, U. I. Safronova, A. S. Beiersdorfer, P. TI Excitation energies, radiative and autoionization rates, dielectronic satellite lines, and dielectronic recombination rates for excited states of Rb-like W from Kr-like W SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE atomic theory; dielectronic recombination; dielectronic satellite spectra; perturbation theory ID CHARGED TUNGSTEN IONS; ALKALI-METAL ATOMS; RATE COEFFICIENTS; HIGH-TEMPERATURE; MATRIX-ELEMENTS; SPECTRA; PLASMA; EUV; CU AB Energy levels, radiative transition probabilities, and autoionization rates for [Ni]4s(2)4p(6)nl, [Ni]4s(2)4p(5)4l ' nl (l ' = d, f, n = 4-7), [Ni]4s4p(6)4l ' nl, (l ' = d, f, n = 4-7), [Ni]4s(2)4p(5)5l ' nl (n = 5-7), and [Ni]4s(4)p(6)6l ' nl (n = 6-7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree-Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]4s(2)4p(6) threshold are considered. It is found that configuration mixing among [Ni]4s(2)4p(5)4l ' nl and [Ni]4s4p(6)4l ' nl plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]4s(2)4p(6)nl (n = 4-7) singly excited states, as well as the [Ni]4s(2)4p(5)4dnl, [Ni]4s(2)4p(5)4fnl, [Ni]4s4p(6)4dnl, [Ni]4s(2)4p(6)4fnl, (n = 4-6), and [Ni]4s(2)4p(5)5l ' 5l doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]4s(2)4p(6)4fnl (n - 6-7), [Ni] 4s(2)4p(5)5l ' nl (n - 5-6), and [Ni]4s(2)4p(5)6l ' nl (n = 6-7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 angstrom. These calculations provide highly accurate values for a number of W37+ properties useful for a variety of applications including for fusion applications. C1 [Safronova, U. I.; Safronova, A. S.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. RP Safronova, UI (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. EM usafrono@nd.edu FU DOE under the NNSA under DOE [DE-NA0002954]; US DOE [DE-AC52-07NA27344] FX This research was supported by DOE under the NNSA under DOE grant DE-NA0002954. Work at LLNL was performed under auspices of the US DOE under Contract No. DE-AC5207NA27344. NR 43 TC 0 Z9 0 U1 8 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2016 VL 49 IS 22 AR 225002 DI 10.1088/0953-4075/49/22/225002 PG 16 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EC0MZ UT WOS:000387796600001 ER PT J AU Slaughter, DS Belkacem, A McCurdy, CW Rescigno, TN Haxton, DJ AF Slaughter, D. S. Belkacem, A. McCurdy, C. W. Rescigno, T. N. Haxton, D. J. TI Ion-momentum imaging of dissociative attachment of electrons to molecules SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Review DE dissociative electron attachment; Born-Oppenheimer; non-Born-Oppenheimer; dissociation; anions; electron scattering; momentum imaging ID LOW-ENERGY ELECTRONS; CROSS-SECTIONS; VIBRATIONAL-EXCITATION; ANGULAR-DISTRIBUTION; GAS-PHASE; MULTIPHOTON IONIZATION; CHEMICAL-REACTIONS; BOOMERANG MODEL; CARBON-DIOXIDE; NEGATIVE-IONS AB We present an overview of experiments and theory relevant to dissociative electron attachment studied by momentum imaging. We describe several key examples of characteristic transient anion dynamics in the form of small polyatomic electron-molecule systems. In each of these examples the so-called axial recoil approximation is found to break down due to correlation of the electronic and nuclear degrees of freedom of the transient anion. Guided by anion fragment momentum measurements and predictions of the electron scattering attachment probability in the molecular frame, we demonstrate that accurate predictions of the dissociation dynamics can be achieved without a detailed investigation of the surface topology of the relevant electronic states or the fragment trajectories on those surfaces. C1 [Slaughter, D. S.; Belkacem, A.; McCurdy, C. W.; Rescigno, T. N.; Haxton, D. J.] Lawrence Berkeley Natl Lab, Chem Sci, Berkeley, CA 94720 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Slaughter, DS (reprint author), Lawrence Berkeley Natl Lab, Chem Sci, Berkeley, CA 94720 USA. EM dsslaughter@lbl.gov; abelkacem@lbl.gov; cwmccurdy@lbl.gov; tnrescigno@lbl.gov; danhax@gmail.com OI Slaughter, Daniel/0000-0002-4621-4552 FU US DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC02-05CH11231] FX This work is supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under contract DE-AC02-05CH11231. NR 108 TC 0 Z9 0 U1 11 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 28 PY 2016 VL 49 IS 22 AR 222001 DI 10.1088/0953-4075/49/22/222001 PG 14 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EB1WD UT WOS:000387146000001 ER PT J AU Wild, B Daval, D Guyot, F Knauss, KG Pollet-Villard, M Imfeld, G AF Wild, Bastien Daval, Damien Guyot, Francois Knauss, Kevin G. Pollet-Villard, Marion Imfeld, Gwenael TI pH-dependent control of feldspar dissolution rate by altered surface layers SO CHEMICAL GEOLOGY LA English DT Article DE Feldspar; Ageing; Surface layer; Passivation; Weathering; Dissolution rates ID 200 DEGREES-C; ALKALI FELDSPARS; LABRADORITE DISSOLUTION; FORSTERITE DISSOLUTION; HYDROTHERMAL SYNTHESIS; SILICATE MINERALS; CHEMICAL AFFINITY; AQUEOUS-SOLUTIONS; LEACHED LAYERS; FREE-ENERGY AB Relevant modeling of mass and energy fluxes involved in pedogenesis, sequestration of atmospheric CO2 or geochemical cycling of elements partly relies on kinetic rate laws of mineral dissolution obtained in the laboratory. Deriving an accurate and unified description of mineral dissolution has therefore become a prerequisite of crucial importance. However, the impact of amorphous silica-rich surface layers on the dissolution kinetics of silicate minerals remains poorly understood, and ignored in most reactive transport codes. In the present study, the dissolution of oriented cleavage surfaces and powders of labradorite feldspar was investigated as a function of pH and time at 80 degrees C in batch reactors. Electron microscopy observations confirmed the formation of silica-rich surface layers on all samples. At pH = 1.5, the dissolution rate of labradorite remained constant over time. In contrast, at pH = 3, both the dissolution rates at the external layer/solution interface and the internal layer/mineral interface dramatically decreased over time. The dissolution rate at the external interfacewas hardly measurable after 4 weeks of reaction, and decreased by an order of magnitude at the internal interface. In another set of experiments conducted in aqueous silica-rich solutions, the stabilization of silica-rich surface layers controlled the dissolution rate of labradorite at pH = 3. The reduction of labradorite dissolution rate may result from a gradual modification of the textural properties of the amorphous surface layer at the fluid/mineral interface. The passivation of the main cleavage of labradorite feldspar was consistent with that observed on powders. Overall, our results demonstrate that the nature of the fluid/mineral interface to be considered in the rate limiting step of the process, as well as the properties of the interfacial layer (i.e. its chemical composition, structure and texture) to be taken into account for an accurate determination of the dissolution kinetics may depend on several parameters, such as pH or time. The dramatic impact of the stabilization of surface layers with increasing pH implies that the formation and the role of surface layers on dissolving feldspar minerals should be accounted for in the future. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wild, Bastien; Daval, Damien; Pollet-Villard, Marion; Imfeld, Gwenael] Univ Strasbourg, EOST CNRS UMR 7517, Lab Hydrol & Geochim Strasbourg LHyGeS, 1 Rue Blessig, F-67000 Strasbourg, France. [Guyot, Francois] UPMC, Inst Mineral Phys Mat & Cosmochim, CNRS UMR 7590, Museum Natl Hist Nat,Sorbonne Univ, 61 Rue Buffon, F-75005 Paris, France. [Knauss, Kevin G.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Wild, B (reprint author), Univ Strasbourg, EOST CNRS UMR 7517, Lab Hydrol & Geochim Strasbourg LHyGeS, 1 Rue Blessig, F-67000 Strasbourg, France. EM bastien.wild@unistra.fr FU VALVE project (EC2CO-BIOHEFECT program); U.S. Department of Energy [DE-AC02-05CH11231]; PhD fellowship of the Ecole Doctorale "Sciences de la Terre et Environnement" [413] FX The authors wish to warmly acknowledge Martiane Cabie, Giuseppe Saldi, Niklas Mundhenk, Gilles Morvan, Rene Boutin and Helline Maison for fruitful discussions and analytical support. Constructive review and positive comments by two anonymous reviewers and the editor (Jeremy Fein) were much appreciated and helped improve the manuscript. This research has been funded through a grant attributed to Damien Daval under the framework of the VALVE project (EC2CO-BIOHEFECT program coordinated by the CNRS-INSU). Kevin G. Knauss effort at LBL was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Bastien Wild was supported by a PhD fellowship of the Ecole Doctorale "Sciences de la Terre et Environnement" (ED no 413). NR 76 TC 0 Z9 0 U1 22 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD NOV 28 PY 2016 VL 442 BP 148 EP 159 DI 10.1016/j.chemgeo.2016.08.035 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EA3QD UT WOS:000386517900015 ER PT J AU Xu, L Cameron-Smith, P Russell, LM Ghan, SJ Liu, Y Elliott, S Yang, Y Lou, S Lamjiri, MA Manizza, M AF Xu, Li Cameron-Smith, Philip Russell, Lynn M. Ghan, Steven J. Liu, Ying Elliott, Scott Yang, Yang Lou, Sijia Lamjiri, Maryam A. Manizza, Manfredi TI DMS role in ENSO cycle in the tropics SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; CLOUD CONDENSATION NUCLEI; EQUATORIAL PACIFIC-OCEAN; EARTH SYSTEM MODEL; GENERAL-CIRCULATION MODEL; 1997-98 EL-NINO; CLIMATE SIMULATIONS; AEROSOL PRODUCTION; DIMETHYL-SULFIDE; SULFATE AEROSOL AB We examined the multiyear mean and variability of dimethyl sulfide (DMS) and its relationship to sulfate aerosols, as well as cloud microphysical and radiative properties. We conducted a 150 year simulation using preindustrial conditions produced by the Community Earth System Model embedded with a dynamic DMS module. The model simulated the mean spatial distribution of DMS emissions and burden, as well as sulfur budgets associated with DMS, SO2, H2SO4, and sulfate that were generally similar to available observations and inventories for a variety of regions. Changes in simulated sea-to-air DMS emissions and associated atmospheric abundance, along with associated aerosols and cloud and radiative properties, were consistently dominated by El Nino-Southern Oscillation (ENSO) cycle in the tropical Pacific region. Simulated DMS, aerosols, and clouds showed a weak positive feedback on sea surface temperature. This feedback suggests a link among DMS, aerosols, clouds, and climate on interannual timescales. The variability of DMS emissions associated with ENSO was primarily caused by a higher variation in wind speed during La Nina events. The simulation results also suggest that variations in DMS emissions increase the frequency of La Nina events but do not alter ENSO variability in terms of the standard deviation of the Nino 3 sea surface temperature anomalies. C1 [Xu, Li; Russell, Lynn M.; Yang, Yang; Lou, Sijia; Lamjiri, Maryam A.; Manizza, Manfredi] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Xu, Li] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Cameron-Smith, Philip] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA USA. [Ghan, Steven J.; Liu, Ying; Yang, Yang; Lou, Sijia] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. [Elliott, Scott] Los Alamos Natl Lab, Climate Ocean Sea Ice Modeling, Los Alamos, NM USA. RP Russell, LM (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. EM lmrussell@ucsd.edu RI Cameron-Smith, Philip/E-2468-2011; Ghan, Steven/H-4301-2011; OI Cameron-Smith, Philip/0000-0002-8802-8627; Ghan, Steven/0000-0001-8355-8699; liu, ying/0000-0001-5685-7423 FU NSF [AGS1048995]; DOE as part of the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Decadal and Regional Climate Prediction using Earth System Models (EaSM) program [DE-SC0006679]; DOE by Battelle Memorial Institute [DE-AC05-76RLO1830]; Department of Energy ACME, HiLAT; Benchmarking-Feedbacks Earth System Modeling projects within the Office of Biology and Environmental Science; Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research and performed under the LLNL [DE-AC52-07NA27344]; Office of Science of the U.S. Department of Energy at the National Center for Computational Sciences at Oak Ridge National Laboratory [DE-AC0500OR22725]; National Energy Research Scientific Computing Center [DE-AC02-05CH11231]; National Science Foundation FX This research was supported by NSF AGS1048995 and by DOE DE-SC0006679 as part of the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RLO1830. SE was supported by the Department of Energy ACME, HiLAT, and Benchmarking-Feedbacks Earth System Modeling projects within the Office of Biology and Environmental Science. P.C. was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research and performed under the auspices of LLNL under contract DE-AC52-07NA27344. The simulations used the supercomputing resources of the Office of Science of the U.S. Department of Energy at the National Center for Computational Sciences at Oak Ridge National Laboratory, under contract DE-AC0500OR22725 and National Energy Research Scientific Computing Center under contract DE-AC02-05CH11231. We are grateful for atmospheric DMS measurements aboard on the NOAA ship Discoverer taken by Timothy Bates of NOAA PMEL and taken in Cape Grim and Macquarie Island during the ACE-1 campaign provided by NCAR/EOL under the sponsorship of the National Science Foundation (http://data.eol.ucar.edu/) and those taken in Pacific Ocean provided by the UCI Saltzman/Aydin research group (http://www.ess.uci.edu/researchgrp/esaltzman/data). L.X. thanks Xiaohong Liu of University of Wyoming and Minghuai Wang of Nanjing University in China for useful discussions on sulfur budgets presented in this work. All model simulations and the codes to produce the results shown here are available at http://portal.nersc.gov/project/m1374/DMS/ from the National Energy Research Scientific Computing Center (NERSC). NR 70 TC 0 Z9 0 U1 11 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13537 EP 13558 DI 10.1002/2016JD025333 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800018 ER PT J AU Gao, WH Sui, CH Fan, JW Hu, ZQ Zhong, LZ AF Gao, Wenhua Sui, Chung-Hsiung Fan, Jiwen Hu, Zhiqun Zhong, Lingzhi TI A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID RAINDROP SIZE DISTRIBUTION; DOUBLE-MOMENT MICROPHYSICS; DEEP CONVECTIVE CLOUDS; ASIAN SUMMER MONSOON; PART I; NUMERICAL SIMULATIONS; MESOSCALE MODEL; CLIMATE MODELS; LAND-SURFACE; SOUTH CHINA AB Cloud microphysical properties and precipitation over the Tibetan Plateau are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment, the simulated microphysics and precipitation by the Weather Research and Forecasting (WRF) model with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24 h accumulated precipitation but has limitations in simulating time evolution of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. In addition, the warm rain processes generate heavier precipitation than the cold rain processes do over the rainfall centers during weak convection period. The sensitivity of precipitation to perturbing the warm rain microphysical processes show that doubling droplet condensation increases precipitation significantly and produces the best area-averaged rain rate, suggesting biases in thermodynamics in the baseline simulation. Halving raindrop evaporation results in an increase in weak rainfall areas along with a warmer subcloud layer. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation. C1 [Gao, Wenhua; Hu, Zhiqun; Zhong, Lingzhi] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China. [Gao, Wenhua; Fan, Jiwen] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Sui, Chung-Hsiung] Natl Taiwan Univ, Dept Atmospher Sci, Taipei, Taiwan. RP Gao, WH (reprint author), Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China.; Gao, WH (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM gaowh@cma.gov.cn FU National Natural Science Foundation of China [91437101, 91437106]; China Meteorological Administration Special Public Welfare Research Fund [GYHY201406001]; National (Key) Basic Research and Development (973) Program of China [2015CB452805] FX This research is sponsored by the National Natural Science Foundation of China 91437101 and 91437106, China Meteorological Administration Special Public Welfare Research Fund GYHY201406001, and National (Key) Basic Research and Development (973) Program of China 2015CB452805. The authors thank three anonymous reviewers for their insightful comments and helpful suggestions. The observation and model data can be obtained by contacting W.H. Gao at gaowh@cma.gov.cn. NR 61 TC 0 Z9 0 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13735 EP 13752 DI 10.1002/2015JD024196 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800029 ER PT J AU Johnson, MS Xi, X Jeong, S Yates, EL Iraci, LT Tanaka, T Loewenstein, M Tadic, JM Fischer, ML AF Johnson, Matthew S. Xi, Xin Jeong, Seongeun Yates, Emma L. Iraci, Laura T. Tanaka, Tomoaki Loewenstein, Max Tadic, Jovan M. Fischer, Marc L. TI Investigating seasonal methane emissions in Northern California using airborne measurements and inverse modeling SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID GREENHOUSE GASES; SATELLITE-OBSERVATIONS; UNITED-STATES; STILT MODEL; CLOUD MODEL; CO2; TRANSPORT; GOSAT; STEP; CONVECTION AB Seasonal methane (CH4) emissions in Northern California are evaluated during this study by using airborne measurement data and inverse model simulations. This research applies Alpha Jet Atmospheric eXperiment (AJAX) measurements obtained during January-February 2013, July 2014, and October-November 2014 over the San Francisco Bay Area (SFBA) and northern San Joaquin Valley (SJV) in order to constrain seasonal CH4 emissions in Northern California. The California Greenhouse Gas Emissions Measurement (CALGEM) a priori emission inventory was applied in conjunction with the Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport model and inverse modeling techniques to optimize CH4 emissions. Comparing model-predicted CH4 mixing ratios with airborne measurements, we find substantial underestimates suggesting that CH4 emissions were likely larger than the year 2008 a priori CALGEM emission inventory in Northern California. Using AJAX measurements to optimize a priori emissions resulted in CH4 flux estimates from the SFBA/SJV of 1.77 +/- 0.41, 0.83 +/- 0.31, and 1.06 +/- 0.39 Tg yr(-1) when using winter, summer, and fall flight data, respectively. Averaging seasonal a posteriori emission estimates (weighted by posterior uncertainties) results in SFBA/SJV annual CH4 emissions of 1.28 +/- 0.38 Tg yr(-1). A posteriori uncertainties are reduced more effectively in the SFBA/SJV region compared to state-wide values indicating that the airborne measurements are most sensitive to emissions in this region. A posteriori estimates during this study suggest that dairy livestock was the source with the largest increase relative to the a priori CALGEM emission inventory during all seasons. C1 [Johnson, Matthew S.; Xi, Xin; Yates, Emma L.; Iraci, Laura T.; Tanaka, Tomoaki; Loewenstein, Max; Tadic, Jovan M.] NASA Ames Res Ctr, Earth Sci Div, Moffett Field, CA 94035 USA. [Jeong, Seongeun; Fischer, Marc L.] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA USA. [Tadic, Jovan M.] Lawrence Berkeley Natl Lab, Climate Sci Dept, Berkeley, CA USA. RP Johnson, MS (reprint author), NASA Ames Res Ctr, Earth Sci Div, Moffett Field, CA 94035 USA. EM matthew.s.johnson@nasa.gov OI XI, XIN/0000-0003-3804-2735; Tadic, Jovan/0000-0003-4655-5063 FU NASA High-End Computing Program through the NASA Advanced Supercomputing Division at NASA Ames Research Center; NASA Postdoctoral Program at the NASA Ames Research Center; NASA; University of California; California Energy Commission; California Air Resources Board [DE-AC02-05CH11231]; NASA's Earth Science Division at Ames Research Center; [H211 LLC] FX The authors gratefully recognize the support and partnership of H211 LLC, with particular thanks to K. Ambrose, R. Simone, B. Quiambao, J. Lee, and R. Fisher. Technical contributions from W. Gore, A. Trias, M. Roby, Z. Young, E. Quigley, R. Walker, R. Belme, and L. Sharma made this project possible. We would also like to acknowledge the NOAA Earth System Research Laboratory Global Modeling Division-Carbon Cycle Group for producing the Greenhouse Gas Marine Boundary Layer Reference data. Resources supporting this work were provided by the NASA High-End Computing Program through the NASA Advanced Supercomputing Division at NASA Ames Research Center. X. Xi is supported by the NASA Postdoctoral Program at the NASA Ames Research Center, administered by Oak Ridge Associated Universities through a contract with NASA. Efforts by Lawrence Berkeley National Laboratory employees were supported by the University of California, the California Energy Commission, and the California Air Resources Board under contract number DE-AC02-05CH11231. All the authors express gratitude to the support from the NASA's Earth Science Division at Ames Research Center. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official NASA or United States Government position, policy, or decision. In accordance with the data policy of the Journal of Geophysical Research: Atmospheres, the AJAX data used during this study are available upon request to the corresponding author (matthew.s.johnson@nasa.gov). Finally, the authors would like to thank three anonymous reviewers for their useful comments which greatly improved the manuscript. NR 45 TC 1 Z9 1 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 27 PY 2016 VL 121 IS 22 BP 13753 EP 13767 DI 10.1002/2016JD025157 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EJ3QX UT WOS:000393127800030 ER PT J AU Corgnale, C Hardy, B Motyka, T Zidan, R AF Corgnale, Claudio Hardy, Bruce Motyka, Theodore Zidan, Ragaiy TI Metal hydride based thermal energy storage system requirements for high performance concentrating solar power plants SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Concentrating solar power plants; Thermal energy storage; Metal hydride materials; Hydrogen storage; Techno-economic analysis ID HEAT-STORAGE AB High temperature concentrating solar power plants require suitable thermal energy storage systems to produce electric power efficiently. Thermochemical energy storage based on metal hydrides represents a very appealing prospect for low cost and high efficient solar storage systems. The objective of the paper is to assess the properties required by the metal hydride systems to achieve the U.S. Department of Energy's SunShot techno-economic targets. A simplified model has been developed to evaluate the cost and the exergetic efficiency of hydride-based storage systems. Results demonstrate that metal hydride materials, operating at temperatures higher than 650 degrees C, with reaction enthalpy on the order of 95-110 kJ/molH(2), raw material cost on the order of 1.4-2 $/kg, weight capacities on the order of 3-4% and operating pressures on the order of tens of bars have the potential to closely approach the targets. Selected sensitivity analyses have also been carried out showing that the raw material cost, the material weight capacity and the metal hydride reaction enthalpy are the properties that strongly affect the performance of the storage system. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. C1 [Corgnale, Claudio; Hardy, Bruce; Motyka, Theodore; Zidan, Ragaiy] Savannah River Natl Lab, 999-2W, Aiken, SC 29808 USA. RP Corgnale, C (reprint author), Savannah River Natl Lab, 999-2W, Aiken, SC 29808 USA. EM claudio.corgnale@greenway-energy.com NR 27 TC 0 Z9 0 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 EI 1879-3487 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV 26 PY 2016 VL 41 IS 44 BP 20217 EP 20230 DI 10.1016/j.ijhydene.2016.09.108 PG 14 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA EB6UU UT WOS:000387521900034 ER PT J AU Taprogge, J Jungclaus, A Grawe, H Borzov, IN Nishimura, S Doornenbal, P Lorusso, G Simpson, GS Soderstrom, PA Sumikama, T Xu, ZY Baba, H Browne, F Fukuda, N Gernhauser, R Gey, G Inabe, N Isobe, T Jung, HS Kameda, D Kim, GD Kim, YK Kojouharov, I Kubo, T Kurz, N Kwon, YK Li, Z Sakurai, H Schaffner, H Shimizu, Y Steiger, K Suzuki, H Takeda, H Vajta, Z Watanabe, H Wu, J Yagi, A Yoshinaga, K Benzoni, G Bonig, S Chae, K Coraggio, L Daugas, JM Drouet, F Gadea, A Gargano, A Ilieva, S Itaco, N Kondev, FG Kroll, T Lane, GJ Montaner-Piza, A Moschner, K Mucher, D Naqvi, F Niikura, M Nishibata, H Odahara, A Orlandi, R Patel, Z Podolyak, Z Wendt, A AF Taprogge, J. Jungclaus, A. Grawe, H. Borzov, I. N. Nishimura, S. Doornenbal, P. Lorusso, G. Simpson, G. S. Soderstrom, P. -A. Sumikama, T. Xu, Z. Y. Baba, H. Browne, F. Fukuda, N. Gernhaeuser, R. Gey, G. Inabe, N. Isobe, T. Jung, H. S. Kameda, D. Kim, G. D. Kim, Y. -K. Kojouharov, I. Kubo, T. Kurz, N. Kwon, Y. K. Li, Z. Sakurai, H. Schaffner, H. Shimizu, Y. Steiger, K. Suzuki, H. Takeda, H. Vajta, Zs. Watanabe, H. Wu, J. Yagi, A. Yoshinaga, K. Benzoni, G. Boenig, S. Chae, K. Y. Coraggio, L. Daugas, J. -M. Drouet, F. Gadea, A. Gargano, A. Ilieva, S. Itaco, N. Kondev, F. G. Kroell, T. Lane, G. J. Montaner-Piza, A. Moschner, K. Muecher, D. Naqvi, F. Niikura, M. Nishibata, H. Odahara, A. Orlandi, R. Patel, Z. Podolyak, Zs. Wendt, A. TI Proton-hole and core-excited states in the semi-magic nucleus In-131(82) SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID BETA-DECAY; SHELL; SN-132 AB The decay of the N = 83 nucleus Cd-131 has been studied at the RIBF facility at the RIKEN Nishina Center. The main purpose of the study was to identify the position of the and proton-hole states and the energies of core-excited configurations in the semi-magic nucleus In-131. From the radiation emitted following the decay, a level scheme of In-131 was established and the feeding to each excited state determined. Similarities between the single-particle transitions observed in the decays of the N = 83 isotones In-132 and Cd-131 are discussed. Finally the excitation energies of several core-excited configurations in In-131 are compared to QRPA and shell-model calculations. C1 [Taprogge, J.; Jungclaus, A.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. [Taprogge, J.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Taprogge, J.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Soderstrom, P. -A.; Baba, H.; Browne, F.; Fukuda, N.; Gey, G.; Inabe, N.; Isobe, T.; Kameda, D.; Kubo, T.; Sakurai, H.; Shimizu, Y.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.] RIKEN, RIKEN Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Grawe, H.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Borzov, I. N.] Kurchatov Inst, Moscow 123182, Russia. [Borzov, I. N.; Kojouharov, I.; Kurz, N.; Schaffner, H.] Joint Inst Nucl Res, Dubna 141980, Russia. [Lorusso, G.] NPL Teddington, Natl Phys Lab, Teddington TW11 0LW, Middx, England. [Lorusso, G.; Patel, Z.; Podolyak, Zs.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Simpson, G. S.; Gey, G.; Drouet, F.] Univ Joseph Fourier Grenoble 1, LPSC, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Sumikama, T.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Xu, Z. Y.; Sakurai, H.; Niikura, M.] Univ Tokyo, Dept Phys, Bunkyo Ku, Hongo 7-3-1, Tokyo 1130033, Japan. [Browne, F.] Univ Brighton, Sch Comp Engn & Math, Brighton BN2 4GJ, E Sussex, England. [Gernhaeuser, R.; Steiger, K.; Muecher, D.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Gey, G.] Inst Laue Langevin, BP 156, F-38042 Grenoble 9, France. [Jung, H. S.] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. [Kim, G. D.; Kim, Y. -K.; Kwon, Y. K.] Inst for Basic Sci Korea, Rare Isotope Sci Project, Daejeon 305811, South Korea. [Kim, Y. -K.] Hanyang Univ, Dept Nucl Engn, Seoul 133791, South Korea. [Li, Z.; Wu, J.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Li, Z.; Wu, J.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Vajta, Zs.] MTA Atomki, POB 51, H-4001 Debrecen, Hungary. [Yagi, A.; Nishibata, H.; Odahara, A.] Osaka Univ, Dept Phys, Machikaneyama Machi 1-1, Toyonaka, Osaka 5600043, Japan. [Yoshinaga, K.] Tokyo Univ Sci, Fac Sci & Technol, Dept Phys, 2641 Yamazaki, Noda, Chiba, Japan. [Benzoni, G.] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Boenig, S.; Ilieva, S.; Kroell, T.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Chae, K. Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Coraggio, L.; Gargano, A.] Complesso Univ Monte S Angelo, Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Daugas, J. -M.] CEA, DAM, DIF, F-91297 Arpajon, France. [Gadea, A.; Montaner-Piza, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Paterna 46980, Spain. [Itaco, N.] Univ Naples 2, Dipartimento Matemat & Fis, I-81100 Caserta, Italy. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Lane, G. J.] Australian Natl Univ, Res Sch Phys Sci & Engn, Dept Nucl Phys, Canberra, ACT 0200, Australia. [Moschner, K.; Wendt, A.] Univ Cologne, IKP, D-50937 Cologne, Germany. [Naqvi, F.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Orlandi, R.] Katholieke Univ Leuven, Inst Kern StralingsFys, B-3001 Heverlee, Belgium. [Orlandi, R.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Jung, H. S.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RP Jungclaus, A (reprint author), CSIC, Inst Estruct Mat, E-28006 Madrid, Spain. EM andrea.jungclaus@csic.es RI SAKURAI, HIROYOSHI/G-5085-2014 FU Spanish Ministerio de Ciencia e Innovacion [FPA2011-29854-C04]; Spanish Ministerio de Economia y Competitividad [FPA2014-57196-C5-4-P]; Generalitat Valenciana (Spain) [PROMETEO/2010/101]; National Research Foundation of Korea (NRF) - Korea government (MEST) [NRF-2014S1A2A2028636]; Priority Centers Research Program in Korea [2009-0093817]; OTKA [K-100835]; JSPS KAKENHI [25247045]; IN2P3-RFBR [110291054]; STFC (UK); European Commission [300096]; U.S. Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; RIKEN foreign research program; German BMBF [05P12RDCIA, 05P12RDNUP]; HIC for FAIR FX We thank the staff of the RIKEN Nishina Center accelerator complex for providing stable beams with high intensities for the experiment. We acknowledge the EUROBALL Owners Committee for the loan of germanium detectors and the PreSpec Collaboration for the readout electronics of the cluster detectors. This work was supported by the Spanish Ministerio de Ciencia e Innovacion under contract FPA2011-29854-C04 and the Spanish Ministerio de Economia y Competitividad under contract FPA2014-57196-C5-4-P, the Generalitat Valenciana (Spain) under grant PROMETEO/2010/101, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2014S1A2A2028636), the Priority Centers Research Program in Korea (2009-0093817), OTKA contract number K-100835, JSPS KAKENHI (Grant No. 25247045), the Grant by IN2P3-RFBR under Agreement No. 110291054, the STFC (UK), the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF under Contract No. 300096, the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, the "RIKEN foreign research program" and the German BMBF (No. 05P12RDCIA and 05P12RDNUP) and HIC for FAIR. NR 48 TC 1 Z9 1 U1 11 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD NOV 25 PY 2016 VL 52 IS 11 AR 347 DI 10.1140/epja/i2016-16347-y PG 10 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EH0BM UT WOS:000391427400001 ER PT J AU Balaguru, K Foltz, GR Leung, LR Emanuel, KA AF Balaguru, Karthik Foltz, Gregory R. Leung, L. Ruby Emanuel, Kerry A. TI Global warming-induced upper-ocean freshening and the intensification of super typhoons SO NATURE COMMUNICATIONS LA English DT Article ID TROPICAL CYCLONE INTENSIFICATION; DATA ASSIMILATION; HURRICANE INTENSITY; MODEL; VARIABILITY; REANALYSIS; TEMPERATURE; PROJECT; SYSTEM AB Super typhoons (STYs), intense tropical cyclones of the western North Pacific, rank among the most destructive natural hazards globally. The violent winds of these storms induce deep mixing of the upper ocean, resulting in strong sea surface cooling and making STYs highly sensitive to ocean density stratification. Although a few studies examined the potential impacts of changes in ocean thermal structure on future tropical cyclones, they did not take into account changes in near-surface salinity. Here, using a combination of observations and coupled climate model simulations, we show that freshening of the upper ocean, caused by greater rainfall in places where typhoons form, tends to intensify STYs by reducing their ability to cool the upper ocean. We further demonstrate that the strengthening effect of this freshening over the period 1961-2008 is similar to 53% stronger than the suppressive effect of temperature, whereas under twenty-first century projections, the positive effect of salinity is about half of the negative effect of ocean temperature changes. C1 [Balaguru, Karthik] Pacific Northwest Natl Lab, Marine Sci Lab, 1100 Dexter Ave North, Seattle, WA 98109 USA. [Foltz, Gregory R.] NOAA, Phys Oceanog Div, Atlantic Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Leung, L. Ruby] Pacific Northwest Natl Lab, Atmospher Sci & Global Change, Richland, WA 99352 USA. [Emanuel, Kerry A.] MIT, Lorenz Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Balaguru, K (reprint author), Pacific Northwest Natl Lab, Marine Sci Lab, 1100 Dexter Ave North, Seattle, WA 98109 USA. EM Karthik.Balaguru@pnnl.gov RI Foltz, Gregory/B-8710-2011 OI Foltz, Gregory/0000-0003-0050-042X FU Office of Science of the U.S. Department of Energy (DOE), Regional and Global Climate Modeling programme; DOE [DE-AC05-76RL01830] FX This research was supported by the Office of Science of the U.S. Department of Energy (DOE) as part of the Regional and Global Climate Modeling programme. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. G.F. was funded by base funds to NOAA/AOML's Physical Oceanography Division. We thank the editor and three anonymous reviewers whose comments improved the quality of our manuscript significantly. NR 41 TC 0 Z9 0 U1 16 U2 16 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 25 PY 2016 VL 7 AR 13670 DI 10.1038/ncomms13670 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED1ZD UT WOS:000388642500001 PM 27886199 ER PT J AU Kugai, J Miller, JT Fox, EB Song, CS AF Kugai, Junichiro Miller, Jeffrey T. Fox, Elise B. Song, Chunshan TI In-situ X-ray absorption study of ceria-supported Pd-Cu nanoparticles for oxygen-enhanced water gas shift SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Extended X-ray absorption fine structure (EXAFS); CeO2-supported Pd-Cu; Bimetallic catalyst; Pd-Cu alloy; Oxygen-enhanced water gas shift (OWGS) ID FORMIC-ACID OXIDATION; BIMETALLIC CATALYSTS; CO OXIDATION; CEO2 SUPPORT; REDUCTION; PLATINUM; COPPER; ELECTROCATALYSTS; PERFORMANCE; MORPHOLOGY AB The detailed structures of bimetallic Pd-Cu on various CeO2 and Al2O3 supports were investigated by X-ray absorption technique in-situ in hydrogen and WGS conditions. No indication of the neighboring Pd atoms in both Pd-K edge and Cu-K edge EXAFS fittings showed that Pd is highly dispersed in the lattice of metallic Cu. The Cu-Cu bond distance was markedly shortened by alloying with Pd and correlated to decrease of coordination number, which reflects particle size. A higher coordination number for Pd-Cu than that for Cu-Cu on Al2O3 support suggested that Pd is in the interior of the nanoparticles on Al2O3 while these coordination numbers were close on CeO2 support indicating a uniform distribution of Pd and Cu atoms. The CO shift activity was not simply correlated to the Cu-Cu bond distance or particle size, but the high activity of Pd-Cu/CeO2 was attributed to surface Pd interacting with Cu on CeO2 surface. (C) 2016 Published by Elsevier B.V. C1 [Kugai, Junichiro; Song, Chunshan] Penn State Univ, Clean Fuels & Catalysis Program, EMS Energy Inst, 209 Acad Projects Bldg, University Pk, PA 16802 USA. [Kugai, Junichiro; Song, Chunshan] Penn State Univ, Dept Energy & Mineral Engn, 209 Acad Projects Bldg, University Pk, PA 16802 USA. [Miller, Jeffrey T.] Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. [Fox, Elise B.] Savannah River Natl Lab, Mat Sci & Technol, Aiken, SC 29808 USA. [Kugai, Junichiro] Kobe City Coll Technol, Dept Appl Chem, Nishi Ku, 8-3 Gakuen Higashimachi, Kobe, Hyogo 6512194, Japan. RP Kugai, J; Song, CS (reprint author), Penn State Univ, Clean Fuels & Catalysis Program, EMS Energy Inst, 209 Acad Projects Bldg, University Pk, PA 16802 USA.; Kugai, J; Song, CS (reprint author), Penn State Univ, Dept Energy & Mineral Engn, 209 Acad Projects Bldg, University Pk, PA 16802 USA.; Kugai, J (reprint author), Kobe City Coll Technol, Dept Appl Chem, Nishi Ku, 8-3 Gakuen Higashimachi, Kobe, Hyogo 6512194, Japan. EM jkugai@kobe-kosen.ac.jp; csong@psu.edu RI Song, Chunshan/B-3524-2008; BM, MRCAT/G-7576-2011 OI Song, Chunshan/0000-0003-2344-9911; FU U.S. Department of Energy, National Energy Technology Laboratory; US Office of Naval Research; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy; MRCAT member institutions; U.S. Department of Energy [DE-AC09-08SR22470] FX We wish to thank the U.S. Department of Energy, National Energy Technology Laboratory and US Office of Naval Research for partial support of this work on liquid fuel processing for fuel cells. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the U.S. Department of Energy and the MRCAT member institutions. Savannah River National Laboratory is operated by Savannah River Nuclear Solutions. This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. We also thank Rhodia Co. for generously supplying CeO2 support. Analysis of catalyst composition was conducted with help of the group of Prof. Takao Yamamoto at Osaka University. NR 39 TC 0 Z9 0 U1 26 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X EI 1873-3875 J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD NOV 25 PY 2016 VL 528 BP 67 EP 73 DI 10.1016/j.apcata.2016.09.010 PG 7 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA EC5DM UT WOS:000388153300008 ER PT J AU Wickenburg, S Lu, J Lischner, J Tsai, HZ Omrani, AA Riss, A Karrasch, C Bradley, A Jung, HS Khajeh, R Wong, D Watanabe, K Taniguchi, T Zettl, A Neto, AHC Louie, SG Crommie, MF AF Wickenburg, Sebastian Lu, Jiong Lischner, Johannes Tsai, Hsin-Zon Omrani, Arash A. Riss, Alexander Karrasch, Christoph Bradley, Aaron Jung, Han Sae Khajeh, Ramin Wong, Dillon Watanabe, Kenji Taniguchi, Takashi Zettl, Alex Neto, A. H. Castro Louie, Steven G. Crommie, Michael F. TI Tuning charge and correlation effects for a single molecule on a graphene device SO NATURE COMMUNICATIONS LA English DT Article ID ATOMIC-FORCE MICROSCOPY; JUNCTIONS; TRANSISTOR; ELECTRONICS; IDENTIFICATION; CONDUCTIVITY; CONDUCTANCE; TRANSPORT; DESIGN AB The ability to understand and control the electronic properties of individual molecules in a device environment is crucial for developing future technologies at the nanometre scale and below. Achieving this, however, requires the creation of three-terminal devices that allow single molecules to be both gated and imaged at the atomic scale. We have accomplished this by integrating a graphene field effect transistor with a scanning tunnelling microscope, thus allowing gate-controlled charging and spectroscopic interrogation of individual tetrafluoro-tetracyanoquinodimethane molecules. We observe a non-rigid shift in the molecule's lowest unoccupied molecular orbital energy (relative to the Dirac point) as a function of gate voltage due to graphene polarization effects. Our results show that electron-electron interactions play an important role in how molecular energy levels align to the graphene Dirac point, and may significantly influence charge transport through individual molecules incorporated in graphene-based nanodevices. C1 [Wickenburg, Sebastian; Lu, Jiong; Lischner, Johannes; Tsai, Hsin-Zon; Omrani, Arash A.; Riss, Alexander; Karrasch, Christoph; Bradley, Aaron; Jung, Han Sae; Khajeh, Ramin; Wong, Dillon; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wickenburg, Sebastian; Zettl, Alex; Louie, Steven G.; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lu, Jiong] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore. [Lu, Jiong; Neto, A. H. Castro] Natl Univ Singapore, Ctr Adv Mat & Graphene Res 2D, 6 Sci Dr 2, Singapore 117546, Singapore. [Lischner, Johannes] Imperial Coll London, Dept Mat, Prince Consort Rd, London SW7 2BB, England. [Riss, Alexander] Tech Univ Munich, Phys Dept E20, D-85748 Garching, Germany. [Karrasch, Christoph] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst & Fachbereich Phy, D-14195 Berlin, Germany. [Watanabe, Kenji; Taniguchi, Takashi] Natl Inst Mat Sci, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan. [Zettl, Alex; Crommie, Michael F.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Neto, A. H. Castro] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. RP Lu, J; Louie, SG; Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Louie, SG; Crommie, MF (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Lu, J (reprint author), Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore.; Lu, J (reprint author), Natl Univ Singapore, Ctr Adv Mat & Graphene Res 2D, 6 Sci Dr 2, Singapore 117546, Singapore.; Crommie, MF (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Crommie, MF (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM chmluj@nus.edu.sg; sglouie@berkeley.edu; crommie@berkeley.edu RI Karrasch, Christoph/S-5716-2016 OI Karrasch, Christoph/0000-0002-6475-3584 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231, KC1203]; Molecular Foundry; National Science Foundation [DMR-1206512, DRM-1508412]; Elemental Strategy Initiative; JSPS; National Research Foundation, Prime Minister Office, Singapore [R-144-000-295-281]; EPSRC [EP/N005244/1]; Austrian Science Fund (FWF) [J3026-N16] FX This research was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract no. DE-AC02-05CH11231 (Nanomachine program-KC1203) (STM imaging and spectroscopy, cumulant-expansion studies of spectral line shapes and phonon sidebands), Molecular Foundry (graphene growth, growth characterization), National Science Foundation grant DMR-1206512 (sample fabrication) and National Science Foundation grant DRM-1508412 (electron-phonon coupling calculations). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and a Grant-in-Aid for Scientific Research on Innovative Areas 'Science of Atomic Layers' from JSPS. J. Lu and A.H.C.N. acknowledge the support from the National Research Foundation, Prime Minister Office, Singapore, under its Medium Sized Centre Programme and CRP award no. R-144-000-295-281. J. Lischner acknowledges support from EPSRC under grant no. EP/N005244/1 (development of image charge model). Computational resources have been provided by DOE at NERSC. A.R. acknowledges fellowship support by the Austrian Science Fund (FWF): J3026-N16. NR 55 TC 2 Z9 2 U1 53 U2 53 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 25 PY 2016 VL 7 AR 13553 DI 10.1038/ncomms13553 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED0TV UT WOS:000388555900001 PM 27886170 ER PT J AU Wang, TS Du, X Yuan, W Duan, BH Zhang, JD Chen, L Peng, HB Yang, D Zhang, GF Zhu, ZH AF Wang, T. S. Du, X. Yuan, W. Duan, B. H. Zhang, J. D. Chen, L. Peng, H. B. Yang, D. Zhang, G. F. Zhu, Z. H. TI Morphological study of borosilicate glass surface irradiated by heavy ions SO SURFACE & COATINGS TECHNOLOGY LA English DT Article; Proceedings Paper CT 19th International Conference on Surface Modification of Materials by Ion Beams (SMMIB) CY NOV 22-27, 2015 CL Chiang Mai, THAILAND SP Chiang Mai Univ, Plasma & Beam Phys Res Facil, Thailand Ctr Excellence Phys, MRS, PINK GmbH Thermosysteme, Plasma Technol Ltd, Thai Unique Co Ltd, TISTR DE Borosilicate glasses; Surface morphology; Heavy ion irradiation; Micro-bumps; Phase separation ID ELECTRON-IRRADIATION; VOLUME; AR AB Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiation with 5 MeV Xeq+ over 5 x 10(13) ions.cm(-2). The size and density of the bumps increases with increasing irradiation dose. At a low dose, bumps are on the nanometer (nm) scale and rather rare. While the dose is higher than 9 x 10(15) ions.cm(-2), the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases from a few nm to over 150 nm with further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEM diffraction pattern. Element migration and concentrations are observed with SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; Zhang, J. D.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. [Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; Zhang, J. D.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.] Minist Educ, Key Lab Special Funct Mat & Struct Design, Lanzhou 730000, Peoples R China. [Zhang, J. D.; Zhu, Z. H.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Zhang, G. F.] Univ South China, Hengyang 421001, Hu Nan, Peoples R China. RP Du, X (reprint author), Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China. EM dux2014@lzu.edu.cn RI Zhu, Zihua/K-7652-2012 NR 15 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0257-8972 J9 SURF COAT TECH JI Surf. Coat. Technol. PD NOV 25 PY 2016 VL 306 BP 245 EP 250 DI 10.1016/j.surfcoat.2016.06.018 PN A PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA EB6WL UT WOS:000387526200047 ER PT J AU Ziatdinov, M Maksov, A Li, L Sefat, AS Maksymovych, P Kalinin, SV AF Ziatdinov, Maxim Maksov, Artem Li, Li Sefat, Athena S. Maksymovych, Petro Kalinin, Sergei V. TI Deep data mining in a real space: separation of intertwined electronic responses in a lightly doped BaFe2As2 SO NANOTECHNOLOGY LA English DT Article DE data mining; statistical learning; signal unmixing; strongly correlated systems; scanning tunneling microscopy ID C SUPERCONDUCTOR BI2SR2CACU2O8+DELTA; GRAPHENE; FLUCTUATIONS; PSEUDOGAP; SURFACE; ORIGIN; STATE AB Electronic interactions present in material compositions close to the superconducting dome play a key role in the manifestation of high-T-c superconductivity. In many correlated electron systems, however, the parent or underdoped states exhibit strongly inhomogeneous electronic landscape at the nanoscale that may be associated with competing, coexisting, or intertwined chemical disorder, strain, magnetic, and structural order parameters. Here we demonstrate an approach based on a combination of scanning tunneling microscopy/ spectroscopy and advanced statistical learning for an automatic separation and extraction of statistically significant electronic behaviors in the spin density wave regime of a lightly (similar to 1%) gold-doped BaFe2As2. We show that the decomposed STS spectral features have a direct relevance to fundamental physical properties of the system, such as SDW-induced gap, pseudogap-like state, and impurity resonance states. C1 [Ziatdinov, Maxim; Maksov, Artem; Maksymovych, Petro; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ziatdinov, Maxim; Maksymovych, Petro; Kalinin, Sergei V.] ORNL, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. [Maksov, Artem; Kalinin, Sergei V.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res, Knoxville, TN 37996 USA. [Li, Li; Sefat, Athena S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Ziatdinov, M (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Ziatdinov, M (reprint author), ORNL, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. EM ziatdinovma@ornl.gov; sergei2@ornl.gov RI Sefat, Athena/R-5457-2016; OI Sefat, Athena/0000-0002-5596-3504; Maksov, Artem/0000-0002-6033-8391 FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Science and Engineering Division FX i This work was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Science and Engineering Division. Research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 42 TC 1 Z9 1 U1 16 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 EI 1361-6528 J9 NANOTECHNOLOGY JI Nanotechnology PD NOV 25 PY 2016 VL 27 IS 47 AR 475706 DI 10.1088/0957-4484/27/47/475706 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EB1YB UT WOS:000387151500002 PM 27780159 ER PT J AU Kim, DK Woo, W Hwang, JH An, K Choi, SH AF Kim, Dong-Kyu Woo, Wanchuck Hwang, Ji-Hyun An, Ke Choi, Shi-Hoon TI Stress partitioning behavior of an AlSi10Mg alloy produced by selective laser melting during tensile deformation using in situ neutron diffraction SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Selective laser melting; Neutron diffraction; Aluminum alloy; Plastic deformation ID MECHANICAL-PROPERTIES; MICROSTRUCTURE; FABRICATION; NANOCOMPOSITES; COMPOSITES; POWDER AB Micromechanical stress partitioning between Al and Si constituents in an AlSi10Mg alloy fabricated by selective laser melting was determined during uniaxial tensile loading. In situ neutron diffraction method was utilized for the measurements of the lattice strains from a set of Al and Si grains separately and the strain components were correlated to the stress evolution of each alloy constituent. The elastic strain of the Al matrix saturated at about 3800 mu epsilon while it continuously increases up to 9000 mu epsilon in the plastic deformation region of the Si particles. The stress partitioning was estimated as 260 MPa for the Al matrix and 680 MPa for the Si particles on fracture. Microstructure of the fracture surface shows a number of large voids and cracks propagated along the soft Al matrix. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kim, Dong-Kyu; Woo, Wanchuck] Korea Atom Energy Res Inst, Div Neutron Sci, Daejeon 34057, South Korea. [Hwang, Ji-Hyun; Choi, Shi-Hoon] Sunchon Natl Univ, Dept Printed Elect Engn, Sunchon 57922, South Korea. [An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Woo, W (reprint author), Korea Atom Energy Res Inst, Div Neutron Sci, Daejeon 34057, South Korea.; Choi, SH (reprint author), Sunchon Natl Univ, Dept Printed Elect Engn, Sunchon 57922, South Korea. EM chuckwoo@kaeri.re.kr; shihoon@sunchon.ac.kr RI An, Ke/G-5226-2011 OI An, Ke/0000-0002-6093-429X FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2015R1D1A1A01057208] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01057208). NR 22 TC 1 Z9 1 U1 31 U2 37 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 25 PY 2016 VL 686 BP 281 EP 286 DI 10.1016/j.jallcom.2016.06.011 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DU5BZ UT WOS:000382228300036 ER PT J AU Andersson, MS Pappas, SD Stopfel, H Ostman, E Stein, A Nordblad, P Mathieu, R Hjorvarsson, B Kapaklis, V AF Andersson, M. S. Pappas, S. D. Stopfel, H. Ostman, E. Stein, A. Nordblad, P. Mathieu, R. Hjorvarsson, B. Kapaklis, V. TI Thermally induced magnetic relaxation in square artificial spin ice SO SCIENTIFIC REPORTS LA English DT Article ID DYNAMICS; GLASS; BEHAVIOR AB The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations. C1 [Andersson, M. S.; Nordblad, P.; Mathieu, R.] Uppsala Univ, Dept Engn Sci, Box 534, SE-75121 Uppsala, Sweden. [Pappas, S. D.; Stopfel, H.; Ostman, E.; Hjorvarsson, B.; Kapaklis, V.] Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. [Stein, A.] Brookhaven Natl Lab, Ctr Funct Nanomat, POB 5000, Upton, NY 11973 USA. RP Andersson, MS (reprint author), Uppsala Univ, Dept Engn Sci, Box 534, SE-75121 Uppsala, Sweden.; Kapaklis, V (reprint author), Uppsala Univ, Dept Phys & Astron, Box 516, SE-75120 Uppsala, Sweden. EM Mikael.Andersson@angstrom.uu.se; Vassilios.Kapaklis@physics.uu.se OI Hjorvarsson, Bjorgvin/0000-0003-1803-9467; Stopfel, Henry/0000-0002-1527-8668 FU Knut and Alice Wallenberg Foundation; Swedish Research Council; Goran Gustafsson Foundation; Swedish Foundation for International Cooperation in Research; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX The authors thank Dr. Volker Neu for VSM measurements on the continuous delta-doped Pd(Fe) thin films, Dr. Rimantas Brucas for sample treatment and Dr. Petra E. Jonsson for discussions and advice concerning the preliminary SQUID measurements. The authors acknowledge support from the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Goran Gustafsson Foundation, and the Swedish Foundation for International Cooperation in Research. The patterning was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 29 TC 1 Z9 1 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 24 PY 2016 VL 6 AR 37097 DI 10.1038/srep37097 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH8ZO UT WOS:000392061500001 PM 27883013 ER PT J AU Christoffersen, BO Gloor, M Fauset, S Fyllas, NM Galbraith, DR Baker, TR Kruijt, B Rowland, L Fisher, RA Binks, OJ Sevanto, S Xu, CG Jansen, S Choat, B Mencuccini, M McDowell, NG Meir, P AF Christoffersen, Bradley O. Gloor, Manuel Fauset, Sophie Fyllas, Nikolaos M. Galbraith, David R. Baker, Timothy R. Kruijt, Bart Rowland, Lucy Fisher, Rosie A. Binks, Oliver J. Sevanto, Sanna Xu, Chonggang Jansen, Steven Choat, Brendan Mencuccini, Maurizio McDowell, Nate G. Meir, Patrick TI Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro) SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID AMAZONIAN RAIN-FOREST; THROUGHFALL EXCLUSION EXPERIMENT; PLANT-ATMOSPHERE CONTINUUM; SOIL-MOISTURE DEFICIT; BASIN-WIDE VARIATIONS; STOMATAL CONDUCTANCE; CLIMATE-CHANGE; WOOD DENSITY; EXPERIMENTAL DROUGHT; WATER TRANSPORT AB Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point pi(tlp), bulk elastic modulus epsilon, hydraulic capacitance C-ft, xylem hydraulic conductivity k(s,max), water potential at 50% loss of conductivity for both xylem (P-50,P-x) and stomata (P-50,P-gs), and the leaf : sapwood area ratio Lambda(l) : Lambda(s)). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (A(max)), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux. Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait-trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted. C1 [Christoffersen, Bradley O.; Sevanto, Sanna; Xu, Chonggang; McDowell, Nate G.] Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM 87544 USA. [Christoffersen, Bradley O.; Rowland, Lucy; Binks, Oliver J.; Mencuccini, Maurizio; Meir, Patrick] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. [Gloor, Manuel; Fauset, Sophie; Galbraith, David R.; Baker, Timothy R.] Univ Leeds, Sch Geog, Leeds, W Yorkshire, England. [Fyllas, Nikolaos M.] Univ Athens, Dept Systemat & Ecol, Athens, Greece. [Kruijt, Bart] Wageningen Environm Res ALTERRA, Wageningen, Netherlands. [Rowland, Lucy] Univ Exeter, Coll Life & Environm Sci, Geog, Exeter, Devon, England. [Fisher, Rosie A.] Natl Ctr Atmospher Res, Climate & Global Dynam, POB 3000, Boulder, CO 80307 USA. [Jansen, Steven] Univ Ulm, Inst Systemat Bot & Ecol, Ulm, Germany. [Choat, Brendan] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW 2753, Australia. [Mencuccini, Maurizio] CREAF, ICREA, Barcelona 08193, Spain. [Meir, Patrick] Australian Natl Univ, Res Sch Biol, Canberra, ACT, Australia. RP Christoffersen, BO (reprint author), Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM 87544 USA.; Christoffersen, BO (reprint author), Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland. EM bradley@lanl.gov RI Jansen, Steven/A-9868-2012; OI Jansen, Steven/0000-0002-4476-5334; Xu, Chonggang/0000-0002-0937-5744 FU European Union [282664]; Next-Generation Ecosystem Experiments (NGEE-Tropics) project - U.S. Department of Energy, Office of Biological and Environmental Research; Los Alamos National Laboratory LDRD program; Los Alamos Survival-Mortality Experiment (SUMO) - U.S. DOE, Office of Science, BER; UK NERC [NE/J011002/1]; ARC [FT110100457]; NERC [NE/K01644X/1, NE/F005806/1] FX This research was supported in part by the European Union Seventh Framework Programme, under the project AMAZALERT (grant agreement no. 282664 to Patrick Meir supporting Bradley O. Christoffersen; overall grant led by Bart Kruijt, and also supporting Manuel Gloor, Sophie Fauset, David R. Galbraith, and Timothy R. Baker) and by the Next-Generation Ecosystem Experiments (NGEE-Tropics) project, funded by the U.S. Department of Energy, Office of Biological and Environmental Research (supporting Bradley O. Christoffersen, Chonggang Xu, and Nate G. McDowell). The Los Alamos National Laboratory LDRD program also partially supported Chonggang Xu, Bradley O. Christoffersen, and Sanna Sevanto. Sanna Sevanto was also partially supported by The Los Alamos Survival-Mortality Experiment (SUMO) funded by the U.S. DOE, Office of Science, BER. The UK NERC grant NE/J011002/1 partially supported Patrick Meir and Maurizio Mencuccini. Patrick Meir also acknowledges ARC support from FT110100457. Sophie Fauset was supported by the NERC grants "ECOFOR" (grant ref: NE/K01644X/1) and "AMAZONICA" (NE/F005806/1). This submission is under public release with the approved LA-UR-16-20338. We thank all colleagues who contributed data to the Xylem Functional Traits Database, as well as Rick Meinzer for sharing ancillary LMA data and Megan Bartlett for answering clarifying questions. We additionally thank Brett Wolfe, Rafael Oliveira, Yadvinder Malhi, Ethan Coon, Dan Johnson, and John Sperry for helpful discussions, and Mark Decker and Guo-Yue Niu for helpful discussions regarding the use of the mass-based solution to the Richards equation. We are grateful for the constructive criticisms of two anonymous referees, which improved the overall clarity of this manuscript. NR 183 TC 0 Z9 0 U1 18 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD NOV 24 PY 2016 VL 9 IS 11 BP 4227 EP 4255 DI 10.5194/gmd-9-4227-2016 PG 29 WC Geosciences, Multidisciplinary SC Geology GA ED3AY UT WOS:000388722800001 ER PT J AU Luo, Y Benali, A Shulenburger, L Krogel, JT Heinonen, O Kent, PRC AF Luo, Ye Benali, Anouar Shulenburger, Luke Krogel, Jaron T. Heinonen, Olle Kent, Paul R. C. TI Phase stability of TiO2 polymorphs from diffusion Quantum Monte Carlo SO NEW JOURNAL OF PHYSICS LA English DT Article DE titanium dioxide; phase stability; finite temperature; lattice dynamics; density functional theory; electronic structure; quantum Monte Carlo ID NONCOVALENT INTERACTIONS; TITANIUM-DIOXIDE; HIGH-PRESSURE; RUTILE; ANATASE; SYSTEMS; PSEUDOPOTENTIALS; NANOPARTICLES; SIMULATIONS; TRANSITIONS AB Titanium dioxide, TiO2, has multiple applications in catalysis, energy conversion and memristive devices because of its electronic structure. Most of these applications utilize the naturally existing phases: rutile, anatase and brookite. Despite the simple form of TiO2 and its wide uses, there is long-standing disagreement between theory and experiment on the energetic ordering of these phases that has never been resolved. We present the first analysis of phase stability at zero temperature using the highly accurate many-body fixed node diffusion Quantum Monte Carlo (QMC) method. We also include the effects of temperature by calculating the Helmholtz free energy including both internal energy and vibrational contributions from density functional perturbation theory based quasi harmonic phonon calculations. Our QMC calculations find that anatase is the most stable phase at zero temperature, consistent with many previous mean-field calculations. However, at elevated temperatures, rutile becomes the most stable phase. For all finite temperatures, brookite is always the least stable phase. C1 [Luo, Ye; Benali, Anouar] Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. [Shulenburger, Luke] Sandia Natl Labs, HEDP Theory Dept, POB 5800, Albuquerque, NM 87185 USA. [Krogel, Jaron T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Heinonen, Olle] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Heinonen, Olle] Northwestern Univ, Northwestern Argonne Inst Sci & Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kent, Paul R. C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Luo, Y (reprint author), Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yeluo@anl.gov RI Kent, Paul/A-6756-2008; OI Kent, Paul/0000-0001-5539-4017; Krogel, Jaron/0000-0002-1859-181X FU Argonne Leadership Computing Facility; DOE Office of Science User Facility [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Predictive Theory and Modeling for Materials and Chemical Science program by the U.S. Department of Energy Office of Science, Basic Energy Sciences (BES); U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; U.S Department of Energy [DE-AC05-00OR22725, DE-AC04-94AL85000]; DOE Public Access Plan FX An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research has been funded in part and used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. AB, LS, JK and PK are supported through Predictive Theory and Modeling for Materials and Chemical Science program by the U.S. Department of Energy Office of Science, Basic Energy Sciences (BES). OH was supported by the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.; This manuscript has been authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the U.S Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a U.S Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up non-exclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan http://energy.gov/downloads/doe-public-access-plan.; This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 72 TC 0 Z9 0 U1 10 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 24 PY 2016 VL 18 AR 113049 DI 10.1088/1367-2630/18/11/113049 PG 11 WC Physics, Multidisciplinary SC Physics GA EE0HA UT WOS:000389253700001 ER PT J AU Royappa, AT Royappa, AD Moral, RF Rheingold, AL Papoular, RJ Blum, DM Duong, TQ Stepherson, JR Vu, OD Chen, BH Suchomel, MR Golen, JA Andre, G Kourkoumelis, N Mercer, AD Pekarek, AM Kelly, DC AF Royappa, A. Timothy Royappa, Andrew D. Moral, Raphael F. Rheingold, Arnold L. Papoular, Robert J. Blum, Deke M. Duong, Tien Q. Stepherson, Jacob R. Vu, Oliver D. Chen, Banghao Suchomel, Matthew R. Golen, James A. Andre, Gilles Kourkoumelis, Nikolaos Mercer, Andrew D. Pekarek, Allegra M. Kelly, Dylan C. TI Copper(I) oxalate complexes: Synthesis, structures and surprises SO POLYHEDRON LA English DT Article DE Copper(I) oxide; Oxalate complexes; Coordination compounds; Chemical vapor deposition; Oxalic acid ID II MU-THIOLATE; BRIDGED DICOPPER(I) COMPLEXES; TRANSITION-METAL COMPLEXES; ATMOSPHERIC CO2; CRYSTAL-STRUCTURE; CU-II; BIS(MU-THIOLATO)DICOPPER(II) COMPLEX; MAGNETIC-PROPERTIES; POWDER DIFFRACTION; THIOUREA COMPLEXES AB A series of dinuclear copper(I) oxalate complexes was synthesized by the direct acid-base reaction of Cu2O with oxalic acid in ethanol with a ligand, or in neat ligand. The complexes incorporated a variety of ligands L(L = triphenylphosphine, 1,2-bis(diphenylphosphino)ethane, triphenylphosphite, diisopropyl sulfide, cyclooctadiene and cyclohexylisocyanide) and had the general formula LnCu(mu(2)-C2O4)CuLn (n =1 or 2). The Cu-I/Cu-II mixed-valence trinuclear compound (iPr(2)S)(2)Cu-I(C2O4)Cu-II(C2O4)Cu-I(iPr(2)S)(2) was formed concomitantly with the target dinuclear Cu2C2O4(iPr(2)S)(4) complex, shedding light on the mechanism of disproportionation of this family of complexes. With norbornadiene (nbd) as a ligand, however, a coordination polymer Cu2C2O4(nbd) was formed. Also, the same reaction with L = 2,9-dimethyl-1,10-phenanthroline or pyridine resulted in the known tetrahedral complex ions [CuLm](+) (m = 2 or 4). Lastly, the ligand di-2-(1-di-(2-picolyl)amino)propyl disulfide produced not the expected Cu(I) oxalate complex, but a Cu(II) picolylamine oxalate coordination polymer. All products were structurally characterized by single-crystal X-ray diffraction if soluble, and by powder X-ray diffraction methods if not. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Royappa, A. Timothy; Royappa, Andrew D.; Moral, Raphael F.; Blum, Deke M.; Duong, Tien Q.; Stepherson, Jacob R.; Vu, Oliver D.; Mercer, Andrew D.; Pekarek, Allegra M.; Kelly, Dylan C.] Univ West Florida, Dept Chem, 11000 Univ Pkwy, Pensacola, FL 32514 USA. [Rheingold, Arnold L.] Univ Calif San Diego, Dept Chem, Urey Hall 5128,Mail Code 0358,9500 Gilman Dr, La Jolla, CA 92093 USA. [Papoular, Robert J.; Andre, Gilles] CEA Saclay, Leon Brillouin Lab, IRAMIS, F-91191 Gif Sur Yvette, France. [Chen, Banghao] Florida State Univ, Dept Chem & Biochem, 102 Vars Way, Tallahassee, FL 32306 USA. [Suchomel, Matthew R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Golen, James A.] Univ Massachusetts Dartmouth, Dept Chem, 285 Old Westport Rd, N Dartmouth, MA 02747 USA. [Kourkoumelis, Nikolaos] Univ Ioannina, Dept Med Phys, Sch Med, GR-45110 Ioannina, Greece. RP Royappa, AT (reprint author), Univ West Florida, Dept Chem, 11000 Univ Pkwy, Pensacola, FL 32514 USA. EM royappa@uwf.edu FU University of West Florida through Office of Research and Sponsored Programs; Office of Undergraduate Research; CAPES Foundation, Brazil; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This project was supported by grants from the University of West Florida through the Office of Research and Sponsored Programs and the Office of Undergraduate Research. RFM acknowledges scholarship support from the CAPES Foundation, Brazil. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We also thank Dr. Amy A. Sarjeant for conducting preliminary powder diffraction measurements during the 2013 ACA Summer Course in Crystallography at Northwestern University. NR 70 TC 0 Z9 0 U1 22 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD NOV 24 PY 2016 VL 119 BP 563 EP 574 DI 10.1016/j.poly.2016.09.043 PG 12 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA ED9BP UT WOS:000389165400064 ER PT J AU Faria, JP Davis, JJ Edirisinghe, JN Taylor, RC Weisenhorn, P Olson, RD Stevens, RL Rocha, M Rocha, I Best, AA DeJongh, M Tintle, NL Parrello, B Overbeek, R Henry, CS AF Faria, Jose P. Davis, James J. Edirisinghe, Janaka N. Taylor, Ronald C. Weisenhorn, Pamela Olson, Robert D. Stevens, Rick L. Rocha, Miguel Rocha, Isabel Best, Aaron A. DeJongh, Matthew Tintle, Nathan L. Parrello, Bruce Overbeek, Ross Henry, Christopher S. TI Computing and Applying Atomic Regulons to Understand Gene Expression and Regulation SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE atomic regulon; clustering; gene expression analysis; transcriptomic data; Escherichia coli; hierarchical clustering; CLR; k-means clustering ID PROTON-TRANSLOCATING NADH; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; BACILLUS-SUBTILIS; DATABASE; RECONSTRUCTION; OXIDOREDUCTASE; ANNOTATION; INFERENCE; NETWORKS AB Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets, Atomic Regulons (ARs), represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here, we describe an approach for inferring ARs that leverages large-scale expression data sets, gene context, and functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene expression experiments and compared our results with gene clusters produced by two prevalent data-driven methods: Hierarchical clustering and k-means clustering. We compared ARs and purely data-driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB, showing that ARs are more consistent with gold standard regulons than are data-driven gene clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of gene interactions predicted by Context Likelihood of Relatedness (CLR) analysis, finding that the ARs show better agreement with CLR predicted interactions. We determined the impact of increasing amounts of expression data on AR construction and find that while more data improve ARs, it is not necessary to use the full set of gene expression experiments available for E. coli to produce high quality ARs. In order to explore the conservation of co-regulated gene sets across different organisms, we computed ARs for Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus, each of which represents increasing degrees of phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed that the consistency of AR gene membership correlates with phylogenetic distance, but there is clear variability in the regulatory networks of closely related organisms. As large scale expression data sets become increasingly common for model and non-model organisms, comparative analyses of atomic regulons will provide valuable insights into fundamental regulatory modules used across the bacterial domain. C1 [Faria, Jose P.; Davis, James J.; Edirisinghe, Janaka N.; Olson, Robert D.; Stevens, Rick L.; Overbeek, Ross; Henry, Christopher S.] Univ Chicago, Computat Inst, Chicago, IL USA. [Faria, Jose P.; Davis, James J.; Edirisinghe, Janaka N.; Olson, Robert D.; Stevens, Rick L.; Parrello, Bruce; Overbeek, Ross] Argonne Natl Lab, Comp Environm & Life Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Faria, Jose P.; Rocha, Miguel; Rocha, Isabel] Univ Minho, Ctr Biol Engn, Campus Gualtar, Braga, Portugal. [Faria, Jose P.; Weisenhorn, Pamela; Henry, Christopher S.] Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Taylor, Ronald C.] US DOE, Computat Biol & Bioinformat Grp, Pacific Northwest Natl Lab, Richland, WA USA. [Stevens, Rick L.] Univ Chicago, Dept Comp Sci, Ryerson Phys Lab, Chicago, IL 60637 USA. [Best, Aaron A.] Hope Coll, Dept Biol, Holland, MI 49423 USA. [DeJongh, Matthew] Hope Coll, Dept Comp Sci, Holland, MI 49423 USA. [Tintle, Nathan L.] Dordt Coll, Dept Math Stat & Comp Sci, Sioux Ctr, IA USA. [Parrello, Bruce; Overbeek, Ross] Fellowship Interpretat Genomes, Burr Ridge, IL USA. RP Faria, JP; Henry, CS (reprint author), Univ Chicago, Computat Inst, Chicago, IL USA.; Faria, JP (reprint author), Argonne Natl Lab, Comp Environm & Life Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Faria, JP (reprint author), Univ Minho, Ctr Biol Engn, Campus Gualtar, Braga, Portugal.; Faria, JP; Henry, CS (reprint author), Argonne Natl Lab, Math & Comp Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jpfaria@anl.gov; chenry@mcs.anl.gov RI Rocha, Miguel/B-9404-2011; OI Rocha, Miguel/0000-0001-8439-8172; Taylor, Ronald/0000-0001-9777-9767 FU FCT (Portuguese Foundation for Science and Technology) PhD program [FRH/BD/70824/2010]; National Science Foundation [EFRI-MIKS-1137089]; Genomic Science Program (GSP); Office of Biological and Environmental Research (OBER); U.S. Department of Energy (DOE); National Science Foundation (NSF) [ABI-0850546]; United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Service [HHSN272201400027C] FX JF acknowledges funding from [FRH/BD/70824/2010] of the FCT (Portuguese Foundation for Science and Technology) PhD program. CH and PW were supported by the National Science Foundation under grant number EFRI-MIKS-1137089. RT was supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE), and his work is a contribution of the Pacific Northwest National Laboratory (PNNL) Foundational Scientific Focus Area. This work was partially supported by an award from the National Science Foundation to MD, AB, NT, and RO (NSF ABI-0850546). This work was also supported by the United States National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Service [Contract No. HHSN272201400027C]. NR 35 TC 0 Z9 0 U1 2 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD NOV 24 PY 2016 VL 7 AR 1819 DI 10.3389/fmicb.2016.01819 PG 14 WC Microbiology SC Microbiology GA ED3PD UT WOS:000388760100001 PM 27933038 ER PT J AU Penton, CR Yang, CY Wu, LY Wang, Q Zhang, J Liu, FF Qin, YJ Deng, Y Hemme, CL Zheng, TL Schuur, EAG Tiedje, J Zhou, JZ AF Penton, C. Ryan Yang, Caiyun Wu, Liyou Wang, Qiong Zhang, Jin Liu, Feifei Qin, Yujia Deng, Ye Hemme, Christopher L. Zheng, Tanling Schuur, Edward A. G. Tiedje, James Zhou, Jizhong TI NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE nifH; nitrogen-fixing; permafrost; diazotroph; nitrogen; microbial ID NITROGEN-FIXATION; ARCTIC TUNDRA; SPECIES COMPOSITION; CARBON STORAGE; DIVERSITY; SOILS; ECOSYSTEM; GENES; DENITRIFICATION; VEGETATION AB Since nitrogen (N) is often limiting in permafrost soils, we investigated the N-2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes with those most closely related to group I nifH-harboring Alpha- and Beta-Proteobacteria in higher abundance above water table depth while those related to group Ill nifH harboring Delta Proteobacteria more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N(2-)fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites. C1 [Penton, C. Ryan] Arizona State Univ, Coll Integrat Sci & Arts, Mesa, AZ 85212 USA. [Penton, C. Ryan] Arizona State Univ, Ctr Fundamental & Appl Microbiom, Tempe, AZ 85212 USA. [Yang, Caiyun; Wu, Liyou; Zhang, Jin; Liu, Feifei; Qin, Yujia; Deng, Ye; Hemme, Christopher L.; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Yang, Caiyun; Zheng, Tanling] Xiamen Univ, Sch Environm Sci, Key Lab, Minist Educ Coastal & Wetland Ecosyst, Xiamen, Peoples R China. [Wang, Qiong; Tiedje, James] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Schuur, Edward A. G.] No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. RP Penton, CR (reprint author), Arizona State Univ, Coll Integrat Sci & Arts, Mesa, AZ 85212 USA.; Penton, CR (reprint author), Arizona State Univ, Ctr Fundamental & Appl Microbiom, Tempe, AZ 85212 USA. EM crpenton@asu.edu FU Office of Science (BER), U.S. Department of Energy [DE-SC0004601, DE-FG02-99ER62818] FX This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant Nos. DE-SC0004601 and DE-FG02-99ER62818. NR 67 TC 0 Z9 0 U1 8 U2 8 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD NOV 24 PY 2016 VL 7 AR 1894 DI 10.3389/fmicb.2016.01894 PG 11 WC Microbiology SC Microbiology GA ED3PB UT WOS:000388759900001 PM 27933054 ER PT J AU Bourgalais, J Spencer, M Osborn, DL Goulay, F Le Picard, SD AF Bourgalais, J. Spencer, Michael Osborn, David L. Goulay, F. Le Picard, S. D. TI Reactions of Atomic Carbon with Butene Isomers: Implications for Molecular Growth in Carbon-Rich Environments SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CROSSED-BEAM REACTION; RESONANCE-ABSORPTION SPECTROSCOPY; PRODUCT BRANCHING RATIOS; VACUUM ULTRA-VIOLET; TITANS ATMOSPHERE; RATE COEFFICIENTS; HYDROCARBON MOLECULES; INTERSTELLAR-MEDIUM; CHEMICAL-DYNAMICS; AB-INITIO AB Product detection studies of C(P-3) atom reactions with butene (C4H8) isomers (but-1-ene, cis-but-2-ene, trans-but-2-ene) are carried out in a flow tube reactor at 353 K and 4 Torr under multiple collision conditions. Ground state carbon atoms are generated by 248 nm laser photolysis of tetrabromomethane, CBr4, in a buffer of helium. Thermalized reaction products are detected using synchrotron tunable VUV photoionization and time-of-flight mass spectrometry. The temporal profiles of the detected ions are used to discriminate products from side or secondary reactions. For the C(P-3) + trans-but-2-ene and C(P-3) + cis-but-2-ene reactions, various isomers of C4H5 and C5H7 are identified as reaction products formed via CH3 and H elimination. Assuming equal ionization cross sections for all C4H5 and C5H7 isomers, C4H5:C5H7 branching ratios the C(P-3) + trans-but-2-ene and the C(3P) + cis-but-2-ene reactions, respectively. For the C(P-3) + but-1-ene reaction, two reaction channels are observed: the H-elimination channel, leading to the formation of the ethylpropargyl isomer, and the C3H3 + C2H5 channel. Assuming equal ionization cross sections for ethylpropargyl and C3H3 radicals, a branching ratio of 1:0.95 for the C3H3 + C2H5 and H + ethylpropargyl channels is derived. The experimental results are compared to previous H atom branching ratios and used to propose the most likely mechanisms for the reaction of ground state carbon atoms with butene isomers. C1 [Bourgalais, J.; Le Picard, S. D.] Univ Rennes 1, Inst Phys Rennes, Dept Mol Phys, Astrophys Lab,UMR CNRS 6251, Campus Beaulieu, F-35042 Rennes, France. [Spencer, Michael; Goulay, F.] West Virginia Univ, Dept Chem, Morgantown, WV 26506 USA. [Osborn, David L.] Sandia Natl Labs, Combust Res Facil, Mail Stop 9055, Livermore, CA 94551 USA. RP Le Picard, SD (reprint author), Univ Rennes 1, Inst Phys Rennes, Dept Mol Phys, Astrophys Lab,UMR CNRS 6251, Campus Beaulieu, F-35042 Rennes, France.; Goulay, F (reprint author), West Virginia Univ, Dept Chem, Morgantown, WV 26506 USA. EM Fabien.Goulay@mail.wvu.edu; Sebastien.le-picard@univ-rennes1.fr FU Agence Nationale de la Recherche [ANR-11-13504-024-CRESUSOL-01]; French INSU/CNRS Program "Physique et Chimie du Milieu Interstellaire" (PCMI); Institut National de Physique (INP CNRS); Region Bretagne; Universite de Rennes 1; Institut Universitaire de France; American Chemical Society Petroleum Research Fund [53105-DN16]; Division of Chemical Sciences, Geosciences, and Biosciences; Office of Basic Energy Sciences; U.S. Department of Energy; National Nuclear Security Administration [DE-AC04-94-AL8S000]; Direct, Office of Science, Office of Basic Energy Sciences, the U.S. Depaitment of Energy at Lawrence Berkeley National Laboratory [DE-ACO2-0SCH11231] FX The Rennes team acknowledges support from the Agence Nationale de la Recherche, contract ANR-11-13504-024-CRESUSOL-01, the French INSU/CNRS Program "Physique et Chimie du Milieu Interstellaire" (PCMI), the Institut National de Physique (INP CNRS), the Region Bretagne and the Universite de Rennes 1. S.D.L.P. acknowledges financial support from the Institut Universitaire de France. Acknowledgement is made to the Donors of the American Chemical Society Petroleum Research Fund (PRF#53105-DN16) for partial support of this research (F.G. and M.S.). We thank Mr Howard Johnsen for technical support of this experiment. D.L.O. and the instrumentation for this work are supported by the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under contract DE-AC04-94-AL8S000. This research used resources of the Advanced Light Source, a DOE Office of Science User Facility, which is supported by the Direct, Office of Science, Office of Basic Energy Sciences, the U.S. Depaitment of Energy under contract DE-ACO2-0SCH11231 at Lawrence Berkeley National Laboratory. NR 91 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 24 PY 2016 VL 120 IS 46 BP 9138 EP 9150 DI 10.1021/acs.jpca.6b09785 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA ED5TC UT WOS:000388914200002 PM 27798961 ER PT J AU Sekine, Y Endo, H Iwase, H Takeda, S Mukai, S Fukazawa, H Littrell, KC Sasaki, Y Akiyoshi, K AF Sekine, Yurina Endo, Hitoshi Iwase, Hiroki Takeda, Shigeo Mukai, Sada-atsu Fukazawa, Hiroshi Littrell, Kenneth C. Sasaki, Yoshihiro Akiyoshi, Kazunari TI Nanoscopic Structural Investigation of Physically Cross-Linked Nanogels Formed from Self-Associating Polymers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID ANGLE NEUTRON-SCATTERING; BIOMEDICAL APPLICATIONS; HYDROPHOBIZED POLYSACCHARIDES; HYDROGEL NANOPARTICLE; DIBLOCK COPOLYMERS; HARD-SPHERES; DELIVERY; SYSTEMS; HYDRATION; DYNAMICS AB The detailed structure of a nanogel formed by self-association of cholesterol-bearing pullulans (CHPs) was determined by contrast variation small-angle neutron scattering. The decomposition of scattering intensities into partial scattering functions of each CHP nanogel component, i.e., pullulan, cholesterol, and the cross-term between the pullulan and the cholesterol, allows us to investigate the internal structure of the nanogel. The effective spherical radius of the skeleton formed by pullulan chains was found to be 8.1 +/- 0.3 nm. In the CHP nanogel, there are about 19 cross-linking points where a cross-linking point is formed by aggregation of trimer cholesterol molecules, and the spatially inhomogeneous distribution of the cross-linking points in the nanogel can be represented by the mass fractal dimension of 2.6. The average radius of gyration of the partial chains can also be determined to be 1.7 +/- 0.1 nm by analyzing the extracted cross-correlation between the cross-linker and the tethered polymer chain quantitatively, and the size agrees with the value assuming random distribution of the cross-linkers on the chains. As the result, the complex structure of the nanogels is coherently revealed at the nanoscopic level. C1 [Sekine, Yurina; Fukazawa, Hiroshi] Japan Atom Energy Agcy, Math Sci Res Ctr, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. [Endo, Hitoshi] High Energy Accelerator Res Org, Neutron Sci Lab, 203-1 Shirakata, Tokai, Ibaraki 3191106, Japan. [Endo, Hitoshi] Grad Univ Adv Studies SOKENDAI, Dept Mat Struct Sci, 203-1 Shirakata, Tokai, Ibaraki 3191106, Japan. [Iwase, Hiroki] Comprehens Res Org Sci & Soc, 162-1 Shirakata, Tokai, Ibaraki 3191106, Japan. [Takeda, Shigeo; Mukai, Sada-atsu; Sasaki, Yoshihiro; Akiyoshi, Kazunari] Kyoto Univ, Grad Sch Engn, Dept Polymer Chem, Nishikyo Ku, Kyoto 6158510, Japan. [Mukai, Sada-atsu; Sasaki, Yoshihiro; Akiyoshi, Kazunari] Kyoto Univ, Japan Sci & Technol Agcy JST, ERATO Bionanotransporter Project, Nishikyo Ku, Kyoto 6158510, Japan. [Littrell, Kenneth C.] Oak Ridge Natl Lab, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Sekine, Y (reprint author), Japan Atom Energy Agcy, Math Sci Res Ctr, 2-4 Shirakata Shirane, Tokai, Ibaraki 3191195, Japan. EM sekine.yurina@jaea.go.jp RI Littrell, Kenneth/D-2106-2013 OI Littrell, Kenneth/0000-0003-2308-8618 FU JSPS KAKENHI Grant [JP25790087] FX This work (author Y.S.) was supported partially by JSPS KAKENHI Grant JP25790087. The neutron scattering experiment at J-PARC was approved by the Neutron Science Proposal Review Committee of J-PARC/MLF (Proposal 2013A0098). NR 50 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 24 PY 2016 VL 120 IS 46 BP 11996 EP 12002 DI 10.1021/acs.jpcb.6b06795 PG 7 WC Chemistry, Physical SC Chemistry GA ED5TA UT WOS:000388914000018 PM 27934399 ER PT J AU Fergusson, GA Vorotnikov, V Wunder, N Clark, J Gruchalla, K Bartholomew, T Robichaud, DJ Beckham, GT AF Fergusson, Glen Allen Vorotnikov, Vassili Wunder, Nicholas Clark, Jared Gruchalla, Kenny Bartholomew, Timothy Robichaud, David J. Beckham, Gregg T. TI Ab Initio Surface Phase Diagrams for Coadsorption of Aromatics and Hydrogen on the Pt(111) Surface SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; M-CRESOL; CATALYTIC HYDRODEOXYGENATION; PYROLYSIS OIL; BIO-OIL; GUAIACOL HYDRODEOXYGENATION; BENZENE HYDROGENATION; MOLECULAR-DYNAMICS AB Supported metal catalysts are commonly used for the hydrogenation and deoxygenation of biomass-derived aromatic compounds in catalytic fast pyrolysis. To date, the substrate adsorbate interactions. under reaction conditions crucial to these processes remain poorly understood, yet understanding this is critical to constructing detailed mechanistic models of the reactions important to catalytic fast pyrolysis. Density functional theory (DFT) has been used in identifying mechanistic details, but many of these works assume surface models that are not representative of realistic conditions, for example, under which the surface is covered with some concentration of hydrogen and aromatic compounds. In this study, we investigate hydrogen-guaiacol coadsorption on Pt(111) using van der Waals-corrected DFT and ab initio thermodynamics over a range of temperatures and pressures relevant to bio-oil upgrading. We find that relative coverage of hydrogen and guaiacol is strongly dependent on the temperature and pressure of the system:Under conditions relevant to ex situ catalytic fast pyrolysis (CFP; 620-730 K, 1-10 bar), guaiacol and hydrogen chemisorb to the surface with a submonolayer hydrogen (similar to 0.44 ML H), while under conditions relevant to hydrotreating (470-580 K, 10-200 bar), the surface exhibits a full-monolayer hydrogen coverage with guaiacol physisorbed to the surface. These results correlate with experimentally observed selectivities, which show ring saturation to methoxycyclohexanol at hydrotreating conditions and deoxygenation to phenol at CFP-relevant conditions. Additionally, the vibrational energy of the adsorbates on the surface significantly contributes to surface energy at higher coverage. Ignoring this contribution results in not only quantitatively, but also qualitatively incorrect interpretation of coadsorption, shifting the phase boundaries by more than 200 K and similar to 10-20 bar and predicting no guaiacol adsorption under CFP and hydrotreating conditions. The implications of this work are discussed in the context of modeling hydrogenation and deoxygenation reactions on Pt(111), and we find that only the models representative of equilibrium surface coverage can capture the hydrogenation kinetics correctly. Last, as a major outcome of this work, we introduce a freely available web-based tool, dubbed the Surface Phase Explorer (SPE), which allows researchers to conveniently determine surface composition for any one- or two-component system at thermodynamic equilibrium over a wide range of temperatures and pressures on any crystalline surface using standard DFT output. C1 [Fergusson, Glen Allen; Vorotnikov, Vassili; Clark, Jared; Bartholomew, Timothy; Robichaud, David J.; Beckham, Gregg T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Wunder, Nicholas; Gruchalla, Kenny] Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Beckham, GT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov FU U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; DOE Office of EERE [DE-AC36-08GO28308] FX This work was conducted as part of the Computational Pyrolysis Consortium supported by the U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Computer time was provided by Extreme Science and Engineering Discovery Environment (XSEDE) allocation MCB-090159 at the Texas Advanced Computing Center and by the National Renewable Energy Laboratory Computational Sciences Center supported by the DOE Office of EERE under contract number DE-AC36-08GO28308. NR 77 TC 0 Z9 0 U1 18 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 24 PY 2016 VL 120 IS 46 BP 26249 EP 26258 DI 10.1021/acs.jpcc.6b07057 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SY UT WOS:000388913800009 ER PT J AU Ugeda, MM Bradley, AJ Rodrigo, L Yu, M Liu, WJ Doak, P Riss, A Neaton, JB Tilley, TD Perez, R Crommie, MF AF Ugeda, Miguel M. Bradley, Aaron J. Rodrigo, Lucia Yu, Min Liu, Wenjun Doak, Peter Riss, Alexander Neaton, Jeffrey B. Tilley, T. Don Perez, Ruben Crommie, Michael F. TI Covalent Functionalization of GaP(110) Surfaces via a Staudinger-Type Reaction with Perfluorophenyl Azide SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID III-V SEMICONDUCTORS; CHEMISTRY; ADSORPTION; GAAS(110); ETHYLENE; GROWTH AB Despite the markedly low chemical reactivity of the nonpolar (110) surfaces of III-V semiconductors, the covalent functionalization of GaP(110) surfaces with perfluorophenyl azide (PFPA) molecules by a Staudinger-type reaction occurs only slightly above room temperature (325 K). Scanning tunneling microscopy observations, combined with density functional theory calculations, support the formation of stable, covalent perfluorophenyl nitride (PFPN) molecule surface bonds, which can be described as Lewis acidic Ga-stabilized phosphine imides. pi-pi stacking between aromatic, electron-deficient PFPN units results in compact, commensurate 2D molecular assembly at the surface. PFPA deposition on GaP(110) at room temperature with no additional annealing leads to an intermediate phase consistent with an alternating 1D array of physisorbed and chemisorbed molecular units. This work provides a new route for covalently bonding molecular linkages to the (110) surfaces of III-V semiconductors. C1 [Ugeda, Miguel M.; Bradley, Aaron J.; Riss, Alexander; Neaton, Jeffrey B.; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Liu, Wenjun; Doak, Peter; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ugeda, Miguel M.; Yu, Min; Liu, Wenjun] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Yu, Min; Doak, Peter; Neaton, Jeffrey B.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Neaton, Jeffrey B.; Crommie, Michael F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ugeda, Miguel M.] CIC NanoGUNE, San Sebastian 20018, Spain. [Ugeda, Miguel M.] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain. [Rodrigo, Lucia] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, E-28049 Madrid, Spain. [Perez, Ruben] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, E-28049 Madrid, Spain. [Neaton, Jeffrey B.; Crommie, Michael F.] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. RP Ugeda, MM; Crommie, MF (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Ugeda, MM (reprint author), Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA.; Crommie, MF (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Ugeda, MM (reprint author), CIC NanoGUNE, San Sebastian 20018, Spain.; Ugeda, MM (reprint author), Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain.; Crommie, MF (reprint author), Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA. EM mmugeda@nanogune.eu; crommie@berkeley.edu RI nanoGUNE, CIC/A-2623-2015; Moreno Ugeda, Miguel/N-3006-2016 FU Joint Center for Artificial Photosynthesis; DOE Energy Innovation Hub through the Office of Science of the U.S. Department of Energy [DE-SC0004993]; DOE Nanomachine program Award [DE-ACO2-05CH11231]; MINECO [CSD2010-00024, MAT2011-23627, MAT2014-54484-P] FX This research was supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993 (PFPA chemical synthesis and theory) and by the DOE Nanomachine program Award no. DE-ACO2-05CH11231 (PFPA/GaP surface functionalization and STM imaging). L.R. and RP. acknowledge the financial support of MINECO (projects CSD2010-00024, MAT2011-23627 and MAT2014-54484-P). Computer time was provided by the Lawrence Berkeley National Laboratory facilities and the Spanish Supercomputing Network (RES). Experimental and simulated STM images were rendered using WSxM software.23 NR 23 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 24 PY 2016 VL 120 IS 46 BP 26448 EP 26452 DI 10.1021/acs.jpcc.6b10691 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SY UT WOS:000388913800031 ER PT J AU Kalinin, SV Borisevich, A Jesse, S AF Kalinin, Sergei V. Borisevich, Albina Jesse, Stephen TI Fire up the atom forge SO NATURE LA English DT Editorial Material C1 [Kalinin, Sergei V.; Borisevich, Albina; Jesse, Stephen] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.; Borisevich, Albina; Jesse, Stephen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Kalinin, SV (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov NR 9 TC 0 Z9 0 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 24 PY 2016 VL 539 IS 7630 BP 485 EP 487 PG 3 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED0GI UT WOS:000388520600016 PM 27882987 ER PT J AU Aad, G Abbott, B Abdallah, J Khalek, SA Abdinov, O Aben, R Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Agatonovic-Jovin, T Aguilar-Saavedra, JA Agustoni, M Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Allbrooke, BMM Allison, LJ Allport, PP Almond, J Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Anduaga, XS Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Araque, JP Arce, ATH Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Azuelos, G Azuma, Y Baak, MA Baas, A Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balli, F Banas, E Banerjee, S Bannoura, AAE Bansal, V Bansil, HS Barak, L Baranov, SP Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Bartsch, V Bassalat, A Basye, A Bates, RL Batley, JR Battaglia, M Battistin, M Bauer, F Bawa, HS Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, K Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernat, P Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bessidskaia, O Bessner, MF Besson, N Betancourt, C Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boddy, CR Boehler, M Boek, TT Bogaerts, JA Bogdanchikov, AG Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutouil, S Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Brendlinger, K Brennan, AJ Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bundock, AC Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Buszello, CP Butler, B Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Calkins, R Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, B Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charfeddine, D Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Chen, Y Cheng, HC Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiefari, G Childers, JT Chilingarov, A Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Chouridou, S Chow, BKB Chromek-Burckhart, D Chu, ML Chudoba, J Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Cole, B Cole, S Colijn, AP Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cuciuc, CM Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P Czyczula, Z D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Daniells, AC Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, JA Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davignon, O Davison, AR Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaouid, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Dias, FA Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Dimitrievska, A Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobavab, T do Vale, MAB Wemans, AD Doan, TKO Dobos, D Doglioni, C Doherty, T Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudziak, F Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Dwuznik, M Dyndal, M Ebke, J Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Engelmann, R Erdmann, J Ereditato, A Eriksson, D Ernis, G Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Perez, SF Ferrag, S Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Formica, A Forti, A Fortin, D Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Franchino, S Francis, D Franconi, L Franklin, M Franz, S Fraternali, M French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gianotti, F Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giorgi, FM Giraud, PF Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Glonti, GL Goblirsch-Kolb, M Goddard, JR Godfrey, J Godlewski, J Goeringer, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Grebenyuk, OG Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Groth-Jensen, J Grout, ZJ Guan, L Guescini, F Guest, D Gueta, O Guicheney, C Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Gunther, J Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guttman, N Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Heller, C Heller, M Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hoffman, J Hoffmann, D Hofmann, JI Hohlfeld, M Holmes, TR Hong, TM van Huysduynen, LH Horii, Y Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Belenguer, MJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, KE Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jungst, RM Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karastathis, N Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keil, M Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Kessoku, K Keung, J Khalil-Zada, F Khandanyan, H Khanov, A Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Klok, PF Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koevesarki, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J La Rosa, A La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laier, H Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, CA Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Lehmacher, M Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzen, G Lenzi, B Leone, R Leonea, S Leonhardt, K Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Lester, CM Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, BA Long, JD Long, RE Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lou, X Lounis, A Love, J Love, PA Lowe, AJ Lu, F Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lungwitz, M Lynn, D Lysak, R Lytken, E Ma, H Mad, LL Maccarrone, G Macchiolo, A Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeno, M Maeno, T Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Maiani, C Maidantchik, C Maier, AA Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mapelli, L March, L Marchand, JF Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marques, CN Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, H Martinez, M Martin-Haugh, S Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Meade, A Mechnich, J Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melachrinos, C Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Meric, N Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitani, T Mitrevski, J Mitsou, VA Mitsui, S Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moraes, A Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Moritz, S Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, T Mueller, T Muenstermann, D Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Nanava, G Narayanb, R Nattermann, T Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, MI Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Patricelli, S Pauly, T Pearce, J Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Poddar, S Podlyski, F Poettgen, R Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Price, D Price, J Price, LE Prieur, D Primavera, M Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Przysiezniak, H Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Qureshi, A Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Randle-Conde, AS Rangel-Smith, C Rao, K Rauscher, F Rave, TC Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Ren, ZL Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Ridel, M Rieck, P Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Rodaa, C Rodrigues, L Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sacerdoti, S Saddique, A Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sartisohn, G Sasaki, O Sasaki, Y Sauvage, G Sauvan, E Savard, P Savu, DO Sawyer, C Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, C Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellers, G Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skottowe, HP Skovpen, KY Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, KM Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosebee, M Soualah, R Soueid, P Soukharev, AM South, D Spagnolo, S Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spousta, M Spreitzer, T Spurlock, B Denis, RDS Staerz, S Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomlinson, L Tomoto, M Tompkins, L Toms, K Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Tran, HL Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Trzebinski, M Trischuk, W Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Urbaniec, D Urquijo, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloso, F Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickeyc, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Virzi, J Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vogel, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weigell, P Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K White, A White, MJ White, R White, S Whiteson, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilkens, HG Will, JZ Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittig, T Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wright, M Wu, M Wu, SL Wu, X Wu, Y Wulf, E Wyatt, TR Wynne, BM Xella, S Xiao, M Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, H Yamaguchi, Y Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yanush, S Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yen, AL Yildirim, E Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D della Porta, GZ Zhang, D Zhang, F Zhang, H Zhang, J Zhang, L Zhang, X Zhang, Z Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, R Zimmermann, S Zimmermann, S Zinonos, Z Ziolkowski, M Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Khalek, S. Abdel Abdinov, O. Aben, R. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Agustoni, M. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Almond, J. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Anduaga, X. S. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Araque, J. P. Arce, A. T. H. Arguin, J. -F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Azuelos, G. Azuma, Y. Baak, M. A. Baas, A. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Bartsch, V. Bassalat, A. Basye, A. Bates, R. L. Batley, J. R. Battaglia, M. Battistin, M. Bauer, F. Bawa, H. S. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, K. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernat, P. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bessidskaia, O. Bessner, M. F. Besson, N. Betancourt, C. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boddy, C. R. Boehler, M. Boek, T. T. Bogaerts, J. A. Bogdanchikov, A. G. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutouil, S. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Brendlinger, K. Brennan, A. J. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bundock, A. C. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charfeddine, D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiefari, G. Childers, J. T. Chilingarov, A. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Chouridou, S. Chow, B. K. B. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cuciuc, C. -M. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. Czyczula, Z. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Daniells, A. C. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. A. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaouid, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Dimitrievska, A. Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobavab, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobos, D. Doglioni, C. Doherty, T. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudziak, F. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Dwuznik, M. Dyndal, M. Ebke, J. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Engelmann, R. Erdmann, J. Ereditato, A. Eriksson, D. Ernis, G. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Perez, S. Fernandez Ferrag, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Formica, A. Forti, A. Fortin, D. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Franconi, L. Franklin, M. Franz, S. Fraternali, M. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gianotti, F. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Glonti, G. L. Goblirsch-Kolb, M. Goddard, J. R. Godfrey, J. Godlewski, J. Goeringer, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Grebenyuk, O. G. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Groth-Jensen, J. Grout, Z. J. Guan, L. Guescini, F. Guest, D. Gueta, O. Guicheney, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Gunther, J. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guttman, N. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Heller, C. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hoffman, J. Hoffmann, D. Hofmann, J. I. Hohlfeld, M. Holmes, T. R. Hong, T. M. van Huysduynen, L. Hooft Horii, Y. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, K. E. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jungst, R. M. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karastathis, N. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keil, M. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Klok, P. F. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koevesarki, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. La Rosa, A. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laier, H. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leone, R. Leonea, S. Leonhardt, K. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Lester, C. M. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, B. A. Long, J. D. Long, R. E. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lou, X. Lounis, A. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lungwitz, M. Lynn, D. Lysak, R. Lytken, E. Ma, H. Mad, L. L. Maccarrone, G. Macchiolo, A. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeno, M. Maeno, T. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Maiani, C. Maidantchik, C. Maier, A. A. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mapelli, L. March, L. Marchand, J. F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marques, C. N. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, H. Martinez, M. Martin-Haugh, S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Meric, N. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitani, T. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Moraes, A. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, T. Mueller, T. Muenstermann, D. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Nanava, G. Narayanb, R. Nattermann, T. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, M. I. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Patricelli, S. Pauly, T. Pearce, J. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Poddar, S. Podlyski, F. Poettgen, R. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Portell Bueso, X. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Przysiezniak, H. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Qureshi, A. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Randle-Conde, A. S. Rangel-Smith, C. Rao, K. Rauscher, F. Rave, T. C. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Ridel, M. Rieck, P. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Rodaa, C. Rodrigues, L. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sacerdoti, S. Saddique, A. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sartisohn, G. Sasaki, O. Sasaki, Y. Sauvage, G. Sauvan, E. Savard, P. Savu, D. O. Sawyer, C. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, C. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwegler, Ph. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellers, G. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skottowe, H. P. Skovpen, K. Yu. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Spagnolo, S. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Staerz, S. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Topilin, N. D. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Tran, H. L. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloso, F. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickeyc, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Virzi, J. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vogel, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vu Anh, T. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weigell, P. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. White, A. White, M. J. White, R. White, S. Whiteson, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilkens, H. G. Will, J. Z. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittig, T. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wright, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wyatt, T. R. Wynne, B. M. Xella, S. Xiao, M. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, H. Yamaguchi, Y. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yanush, S. Yao, L. Yao, W. -M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yen, A. L. Yildirim, E. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, F. Zhang, H. Zhang, J. Zhang, L. Zhang, X. Zhang, Z. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, R. Zimmermann, S. Zimmermann, S. Zinonos, Z. Ziolkowski, M. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the t (t)over-bar production cross-section using e mu events with b-tagged jets in pp collisions at root s = 7 and 8 TeV with the ATLAS detector (vol 76, pg 642, 2014) SO EUROPEAN PHYSICAL JOURNAL C LA English DT Correction C1 [Jackson, P.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Sbrizzi, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Yildiz, H. Duran; Kuday, S.] Ankara Univ, Dept Phys, Ankara, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, A.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, A.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Keoshkerian, H.; Koletsou, I.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Przysiezniak, H.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Toggerson, B.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Maeno, M.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, K.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Byszewski, M.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Inst Fis Altes Energies, Barcelona, Spain. [Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Conidi, M. C.; Cortes-Gonzalez, A.; Farooque, T.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Portell Bueso, X.; Riu, I.; Rubbo, F.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Agatonovic-Jovin, T.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Cirkovic, P.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Latour, B. Martin Dit; Rosendahl, P. L.; Sandaker, H.; Smestad, L.; Stugu, B.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Barnett, R. M.; Beringer, J.; Biesiada, J.; Brandt, G.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Holmes, T. R.; Hurwitz, M.; Jeanty, L.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Virzi, J.; Wang, H.; Yao, W. -M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kuutmann, E. Bergeaas; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Wendland, D.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Beck, H. P.; Cervelli, A.; Ereditato, A.; Gallo, V.; Haug, S.; Kruker, T.; Marti, L. F.; Meloni, F.; Schneider, B.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bella, L. Aperio; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Semprini-Cesari, N.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Caforio, D.; De Castro, S.; Di Sipio, R.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Piccinini, M.; Romano, M.; Semprini-Cesari, N.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Loddenkoetter, T.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Nanava, G.; Nattermann, T.; Obermann, T.; Pohl, D.; Sarrazin, B.; Schaepe, S.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Fitzgerald, E. A.; Gozpinar, S.; Sciolla, G.; Venturini, A.; Zambito, S.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz De Fora, Brazil. [do Vale, M. A. B.] Univ Fed Sao Joao del Rei, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Hu, X.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Schovancova, J.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Ducu, O. A.; Jinaru, A.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Frost, J. A.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Marchand, J. F.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Abreu, R.; Aleksa, M.; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Battistin, M.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Franchino, S.; Francis, D.; Froidevaux, D.; Garonne, V.; Gianotti, F.; Gillberg, D.; Glatzer, J.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jakobsen, S.; Jansen, H.; Jenni, P.; Jungst, R. M.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Martin, B.; Marzin, A.; Meyer, J.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Rodrigues, L.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Savu, D. O.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Boveia, A.; Cheng, Y.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Mad, L. L.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand 2, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gilles, G.; Gris, Ph.; Guicheney, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Theveneaux-Pelzer, T.; Valery, L.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Cole, B.; Guo, J.; Hu, D.; Hughes, E. W.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Wulf, E.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY 10533 USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Petersen, T. C.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dwuznik, M.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hoffman, J.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Lou, X.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M. F.; Bloch, I.; Borroni, S.; Camarda, S.; Dassoulas, J. A.; Deterre, C.; Dietrich, J.; Filipuzzi, M.; Friedrich, C.; Glazov, A.; Fajardo, L. S. Gomez; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Belenguer, M. Jimenez; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lisovyi, M.; Lobodzinska, E.; Lohwasser, K.; Medinnis, M.; Moenig, K.; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Wang, J.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Esch, H.; Goessling, C.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Wittig, T.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Pollard, C. S.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Prokofiev, K.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dao, V.; Di Simone, A.; Fehling-Kaschek, M.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Madar, R.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Rave, T. C.; Ronzani, M.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Vu Anh, T.; Warsinsky, M.; Weiser, C.; Werner, M.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Alexander, G.; Ancu, L. S.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Bucci, F.; Toro, R. Camacho; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Picazio, A.; Pohl, M.; Rosbach, K.; Tykhonov, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobavab, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Saxon, D. H.; Smith, K. M.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Bindi, M.; Blumenschein, U.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Hensel, C.; Kawamura, G.; Keil, M.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Bellerive, A.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Butler, B.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A.; Brandt, O.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Hanke, P.; Hofmann, J. I.; Jongmanns, J.; Khomich, A.; Kluge, E. -E.; Laier, H.; Lang, V. S.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kasieczka, G.; Narayanb, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Franz, S.; Jussel, P.; Kneringer, E.; Lukas, W.; Nagai, K.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Morange, N.; Zaidan, R.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Dudziak, F.; Krumnack, N.; Prell, S.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Allison, L. J.; Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Orlando, N.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Gorini, E.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Readioff, N. P.; Schnellbach, Y. J.; Sellers, G.; Vossebeld, J. H.; Waller, P.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cooper-Smith, N. J.; Cowan, G.; Duguid, L.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Rose, M.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Cooper, B. D.; Davison, A. R.; Falla, R. J.; Gregersen, K.; Gutschow, C.; Hesketh, G. G.; Jansen, E.; Konstantinidis, N.; Korn, A.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Ochoa, M. I.; Pilkington, A. D.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Bernius, C.; Greenwood, Z. D.; Jana, D. K.; Sawyer, C.; Sawyer, L.; Sircar, A.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Liu, K.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; Davignon, O.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Meirose, B.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Blum, W.; Buescher, V.; Caputo, R.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Goeringer, C.; Heck, T.; Hohlfeld, M.; Hsu, P. J.; Karnevskiy, M.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lin, T. H.; Lungwitz, M.; Masetti, L.; Mattmann, J.; Meyer, C.; Moreno, D.; Moritz, S.; Mueller, T.; Poettgen, R.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.; Zimmermann, C.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Cox, B. E.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Peters, R. F. Y.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Bertella, C.; Chen, L.; Clemens, J. C.; Coadou, Y.; Diglio, S.; Djama, F.; Feligioni, L.; Gao, J.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Ughetto, M.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Brau, B.; Colon, G.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Mantifel, R.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Jennens, D.; Kubota, T.; Limosani, A.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Urquijo, P.; Volpi, M.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Dubbert, J.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Harper, D.; Levin, D.; Liu, L.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Panikashvili, N.; Qian, J.; Searcy, J.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Simoniello, R.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J. -F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Komar, A. A.; Leroy, C.; Rezvani, R.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Khodinov, A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Aloisio, A.; Becker, S.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Heller, C.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Schieck, J.; Schmitt, C.; Vladoiu, D.; Walker, R.; Will, J. Z.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Moser, H. G.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Terzo, S.; von der Schmitt, H.; Weigell, P.; Wildauer, A.; Zanzi, D.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Sanchez, J.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, G.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Klok, P. F.; Koenig, S.; Salvucci, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, Nijmegen, Netherlands. [Aben, R.; Alonso, A.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Deviveiros, P. O.; Dhaliwal, S.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Kluit, P.; Koffeman, E.; Lee, H.; Linde, F.; Mahlstedt, J.; Mechnich, J.; Oussoren, K. P.; Pani, P.; Salek, D.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.; Weits, H.] Univ Amsterdam, Amsterdam, Netherlands. [Burghgrave, B.; Calkins, R.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.; Zutshi, V.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Skovpen, K. Yu.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Budker Inst Nucl Phys, SB RAS, Novosibirsk, Russia. [Aloisio, A.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Tannenwald, B. B.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Bertsche, C.; Bertsche, D.; Gutierrez, P.; Hasib, A.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Bousson, N.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Khalek, S. Abdel; Aloisio, A.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Khalek, S. Abdel; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; Charfeddine, D.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Tran, H. L.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, Orsay, France. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Endo, M.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Hanagaki, K.; Lee, J. S. H.; Nomachi, M.; Okamura, W.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Barr, A. J.; Behr, K.; Boddy, C. R.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Livermore, S. S. A.; Nickerson, R. B.; Pachal, K.; Pinder, A.; Ryder, N. C.; Sawyer, C.; Short, D.; Tseng, J. C. -L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oslo, Dept Phys, Oslo, Norway. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Gjelsten, B. K.; Gramstad, E.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Read, A. L.; Rohne, O.; Stapnes, S.; Strandlie, A.; Vickeyc, T.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Altheimer, A.; Brendlinger, K.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Meyer, C.; Ospanov, R.; Saxon, J.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, R.; Rodaa, C.; Scuri, F.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Leone, R.; Rodaa, C.; Scuri, F.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Aloisio, A.; Bianchi, R. M.; Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Sapp, K.; Su, J.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Marques, C. N.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.] LIP, Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Do Valle Wemans, A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Bohm, J.; Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Gunther, J.; Jakubek, J.; Kohout, Z.; Kral, V.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Borisov, A.; Cerny, K.; Chalupkova, I.; Davidek, T.; Denisov, S. P.; Dolejsi, J.; Dolezal, Z.; Fakhrutdinov, R. M.; Faltova, J.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kodys, P.; Korotkov, V. A.; Kozhin, A. S.; Leitner, R.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Pleskot, V.; Reznicek, P.; Rybar, M.; Scheirich, D.; Solodkov, A. A.; Solovyanov, O. V.; Spousta, M.; Starchenko, E. A.; Tas, P.; Todorova-Nova, S.; Vorobel, V.; Zaitsev, A. M.; Zenin, O.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Davies, M.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Dionisi, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Dionisi, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Aielli, G.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Grossi, G. C.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Paolozzi, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Cattani, G.; Ceradini, F.; Di Ciaccio, A.; Di Micco, B.; Farilla, A.; Graziani, E.; Grossi, G. C.; Iodice, M.; Iuppa, R.; Mazzaferro, L.; Orestano, D.; Paolozzi, L.; Passeri, A.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Santonico, R.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Taccini, C.; Trovatelli, M.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Boutouil, S.; Derkaouid, J. E.; El Kacimi, M.; Goujdami, D.; Ouchrif, M.; Tayalati, Y.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Boutouil, S.; Derkaouid, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Calandri, A.; Chevalier, L.; Deliot, F.; Etienvre, A. I.; Formica, A.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Leontsinis, S.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Ruiz-Martinez, A.; Schwindling, J.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seidel, S. C.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Aloisio, A.; Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Paredes, B. Lopez; Miyagawa, P. S.; Paganis, E.; Suruliz, K.; Tovey, D. R.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Sipica, V.; Walkowiak, W.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Dawe, E.; Godfrey, J.; O'Neil, D. C.; Stelzer, B.; Tanasijczuk, A. J.; Torres, H.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Kagan, M.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nef, P. D.; Nelson, T. K.; Piacquadio, G.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Swiatlowski, M.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Hamilton, A.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Carrillo-Montoya, G. D.; Chen, X.; Hamity, G. N.; Hsu, C.; Kravchenko, A.; Garcia, B. R. Mellado; Ruan, X.; Vickeyc, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia, O.; Clement, C.; Cribbs, W. A.; Gellerstedt, K.; Hellman, S.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Petridis, A.; Plucinski, P.; Rossetti, V.; Sjolin, J.; Strandberg, S.; Tylmad, M.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, J.; Kuwertz, E. S.; Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Bee, C. P.; Campoverde, A.; Chen, C.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bee, C. P.; Campoverde, A.; Chen, C.; Engelmann, R.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; Cerri, A.; Barajas, C. A. Chavez; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, C. A.; Li, B.; Lin, S. C.; Liu, B.; Lo Sterzo, F.; Mazini, R.; Ren, Z. L.; Shi, L.; Soh, D. A.; Teng, P. K.; Weng, Z.; Zhang, L.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Guttman, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.; Sidiropoulou, O.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yoshihara, K.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [AbouZeid, O. S.; Brelier, B.; Chau, C. C.; Ilic, N.; Keung, J.; Krieger, P.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Ramos, J. A. Manjarres; Palacino, G.; Qureshi, A.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA USA. [Losada, M.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Rao, K.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, U.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; De Sanctis, U.; Goshaw, A. T.; Quayle, W. B.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Errede, D.; Errede, S.; Lie, K.; Liss, T. M.; Neubauer, M. S.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Aloisio, A.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Costanzo, D.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Garcia-Estan, M. T. Perez; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Aloisio, A.; Bansal, V.; Berghaus, F.; Bernlochner, F. U.; David, C.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kimura, N.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Aloisio, A.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Castillo, L. R. Flores; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Redelbach, A.; Schreyer, M.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Barisonzi, M.; Becker, K.; Beermann, T. A.; Boek, T. T.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Wagner, W.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Bedikian, S.; Cummings, J.; Czyczula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Tipton, P.; Wall, R.; Walsh, B.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Castillo, L. R. Flores] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Gkialas, I.; Papageorgiou, K.] Univ Aegean, Dept Financial & Management Engn, Chios, Greece. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] Inst Catalana Rec & Estud Avancats, ICREA, Barcelona, Spain. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY 10471 USA. [Korol, A. A.; Maximov, D. A.; Rezanova, O. L.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mal, P.] Natl Inst Sci Educ & Res, Sch Phys Sci, Bhubaneswar, Orissa, India. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] Scuola Int Super Studi Avanzati, SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Wildt, M. A.] Univ Hamburg, Inst Phys Expt, Hamburg, Germany. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.; Aad, G (reprint author), CNRS, IN2P3, Marseille, France. RI Soldatov, Evgeny/E-3990-2017; Prokoshin, Fedor/E-2795-2012; Warburton, Andreas/N-8028-2013; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Doyle, Anthony/C-5889-2009; Vanyashin, Aleksandr/H-7796-2013; Mitsou, Vasiliki/D-1967-2009; Solodkov, Alexander/B-8623-2017; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015 OI Soldatov, Evgeny/0000-0003-0694-3272; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Doyle, Anthony/0000-0001-6322-6195; Vanyashin, Aleksandr/0000-0002-0367-5666; Mitsou, Vasiliki/0000-0002-1533-8886; Solodkov, Alexander/0000-0002-2737-8674; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581 NR 1 TC 0 Z9 0 U1 12 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV 23 PY 2016 VL 76 IS 11 AR 642 DI 10.1140/epjc/s10052-016-4501-2 PG 14 WC Physics, Particles & Fields SC Physics GA EL1LV UT WOS:000394382800002 ER PT J AU Gao, J Kim, YD Liang, LB Idrobo, JC Chow, P Tan, JW Li, BC Li, L Sumpter, BG Lu, TM Meunier, V Hone, J Koratkar, N AF Gao, Jian Kim, Young Duck Liang, Liangbo Idrobo, Juan Carlos Chow, Phil Tan, Jiawei Li, Baichang Li, Lu Sumpter, Bobby G. Lu, Toh-Ming Meunier, Vincent Hone, James Koratkar, Nikhil TI Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors SO ADVANCED MATERIALS LA English DT Article ID P-N-JUNCTIONS; MONOLAYER MOS2; MOLYBDENUM-DISULFIDE; TRANSPORT-PROPERTIES; RES2 NANOSHEETS; BILAYER MOS2; WS2; PHOTOLUMINESCENCE; HETEROSTRUCTURES; DICHALCOGENIDES AB Large-area "in situ" transition-metal substitution doping for chemical-vapor-deposited semiconducting transition-metal-dichalcogenide monolayers deposited on dielectric substrates is demonstrated. In this approach, the transition-metal substitution is stable and preserves the monolayer's semiconducting nature, along with other attractive characteristics, including direct-bandgap photoluminescence. C1 [Gao, Jian; Chow, Phil; Tan, Jiawei; Li, Baichang; Koratkar, Nikhil] Rensselaer Polytech Inst, Dept Mat Sci & Engn, 110 8th St, Troy, NY 12180 USA. [Kim, Young Duck; Hone, James] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA. [Liang, Liangbo; Lu, Toh-Ming; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. [Liang, Liangbo; Idrobo, Juan Carlos; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Lu; Koratkar, Nikhil] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 8th St, Troy, NY 12180 USA. RP Koratkar, N (reprint author), Rensselaer Polytech Inst, Dept Mat Sci & Engn, 110 8th St, Troy, NY 12180 USA.; Koratkar, N (reprint author), Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 8th St, Troy, NY 12180 USA. EM koratn@rpi.edu RI Sumpter, Bobby/C-9459-2013 OI Sumpter, Bobby/0000-0001-6341-0355 FU USA National Science Foundation [1435783, 1510828, 1608171]; New York State under NYSTAR program [C080117]; John A. Clark and Edward T. Crossan Endowed Chair Professorship at the Rensselaer Polytechnic Institute (RPI); Office of Naval Research; Eugene P. Wigner Fellow at Oak Ridge National Laboratory; NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids [DMR-1420634] FX N. K. acknowledges funding support from the USA National Science Foundation (Award Numbers: 1435783, 1510828 and 1608171), New York State under NYSTAR program C080117, and from the John A. Clark and Edward T. Crossan Endowed Chair Professorship at the Rensselaer Polytechnic Institute (RPI). The theoretical work was also supported in part by the Office of Naval Research. The computations were performed using the resources of the Center for Computational Innovation at RPI. L. L. was supported as a Eugene P. Wigner Fellow at Oak Ridge National Laboratory. J. H. and Y. D. K. acknowledge support from the NSF MRSEC program through Columbia in the Center for Precision Assembly of Superstratic and Superatomic Solids (DMR-1420634). Microscopy research was conducted as part of a user proposal through ORNL's Center for Nanophase Materials Sciences, which is a U.S. Department of Energy, Office of Science User Facility (J. C. I.). NR 50 TC 1 Z9 1 U1 18 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 23 PY 2016 VL 28 IS 44 BP 9735 EP + DI 10.1002/adma.201601104 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI7YS UT WOS:000392721400007 PM 27646967 ER PT J AU Perez-del-Rey, D Forgacs, D Hutter, EM Savenije, TJ Nordlund, D Schulz, P Berry, JJ Sessolo, M Bolink, HJ AF Perez-del-Rey, Daniel Forgacs, David Hutter, Eline M. Savenije, Tom J. Nordlund, Dennis Schulz, Philip Berry, Joseph J. Sessolo, Michele Bolink, Henk J. TI Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill-Factor Solar Cells SO ADVANCED MATERIALS LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; PHOTOVOLTAIC CELLS; CARBON NANOTUBES; PERFORMANCE; RECOMBINATION; SEMICONDUCTORS; MOBILITIES; CRYSTALS; DYNAMICS; STATES AB The addition of Sr2+ in CH3NH3PbI3 perovskite films enhances the charge carrier collection efficiency of solar cells leading to very high fill factors, up to 85%. The charge carrier lifetime of Sr2+-containing perovskites is in excess of 40 mu s, longer than those reported for perovskite single crystals. C1 [Perez-del-Rey, Daniel; Forgacs, David; Sessolo, Michele; Bolink, Henk J.] Univ Valencia, Inst Ciencia Mol, C-J Beltran 2, Paterna 46980, Spain. [Hutter, Eline M.; Savenije, Tom J.] Delft Univ Technol, Dept Chem Engn, Van der Maasweg 9, NL-2629 HZ Delft, Netherlands. [Nordlund, Dennis] Stanford Synchrotron Lab, Stanford Linear Accelerator Campus, Menlo Pk, CA 94025 USA. [Schulz, Philip; Berry, Joseph J.] Natl Renewable Energy Lab, Natl Ctr Photovolta, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Sessolo, M (reprint author), Univ Valencia, Inst Ciencia Mol, C-J Beltran 2, Paterna 46980, Spain.; Schulz, P (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM philip.schulz@nrel.gov; michele.sessolo@uv.es OI Bolink, Henk/0000-0001-9784-6253; Perez-del-Rey, Daniel/0000-0003-0692-1305; Hutter, Eline/0000-0002-5537-6545 FU European Union H2020 project INFORM [675867]; Spanish Ministry of Economy and Competitiveness (MINECO) via the Unidad de Excelencia Maria de Maeztu [MDM-2015-0538, MAT2014-55200-R, PCIN-2015-255]; Generalitat Valenciana [Prometeo/2012/053]; hybrid perovskite solar cell program of the National Center for Photovoltaics - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Solar Energy Technology [DE-AC36-08GO28308DOE]; National Renewable Energy Laboratory (NREL); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX The authors acknowledge financial support from the European Union H2020 project INFORM (Grant No. 675867), the Spanish Ministry of Economy and Competitiveness (MINECO) via the Unidad de Excelencia Maria de MaeztuMDM-2015-0538, MAT2014-55200-R, and PCIN-2015-255 and the Generalitat Valenciana (Prometeo/2012/053). M.S. thanks the MINECO for a post-doctoral (JdC) contract. P.S. and J.J.B. were supported by the hybrid perovskite solar cell program of the National Center for Photovoltaics funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Solar Energy Technology under Award No. DE-AC36-08GO28308DOE with the National Renewable Energy Laboratory (NREL). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. NR 36 TC 2 Z9 2 U1 17 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 23 PY 2016 VL 28 IS 44 BP 9839 EP + DI 10.1002/adma.201603016 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EI7YS UT WOS:000392721400022 PM 27717027 ER PT J AU Wood, KN Kazyak, E Chadwick, AF Chen, KH Zhang, JG Thornton, K Dasgupta, NP AF Wood, Kevin N. Kazyak, Eric Chadwick, Alexander F. Chen, Kuan-Hung Zhang, Ji-Guang Thornton, Katsuyo Dasgupta, Neil P. TI Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy SO ACS CENTRAL SCIENCE LA English DT Article ID ATOMIC LAYER DEPOSITION; SUPPORTING ELECTROLYTE; CYCLIC VOLTAMMETRY; NUMERICAL-SOLUTION; NERNST-PLANCK; BATTERIES; GROWTH; CELLS; SIMULATION; MORPHOLOGY AB Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. However the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. A mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. This work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. The results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis. C1 [Wood, Kevin N.; Kazyak, Eric; Chen, Kuan-Hung; Dasgupta, Neil P.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Wood, Kevin N.; Chadwick, Alexander F.; Zhang, Ji-Guang; Thornton, Katsuyo; Dasgupta, Neil P.] Univ Michigan, Joint Ctr Energy Storage Res, Ann Arbor, MI 48109 USA. [Chadwick, Alexander F.; Thornton, Katsuyo] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Zhang, Ji-Guang] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Dasgupta, NP (reprint author), Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA.; Dasgupta, NP (reprint author), Univ Michigan, Joint Ctr Energy Storage Res, Ann Arbor, MI 48109 USA. EM ndasgupt@umich.edu RI Chadwick, Alexander/M-1873-2013 OI Chadwick, Alexander/0000-0001-9328-8231 FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation [DGE 1256260] FX This work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Grant No. DE-AC02-06CH11357. E.K. acknowledges that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE 1256260). NR 38 TC 3 Z9 3 U1 28 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD NOV 23 PY 2016 VL 2 IS 11 BP 790 EP 801 DI 10.1021/acscentsci.6b00260 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA EG2HP UT WOS:000390864600007 PM 27924307 ER PT J AU Park, DS Joseph, KE Koehle, M Krumm, C Ren, LM Damen, JN Shete, MH Lee, HS Zuo, XB Lee, B Fan, W Vlachos, DG Lobo, RF Tsapatsis, M Dauenhauer, PJ AF Park, Dae Sung Joseph, Kristeen E. Koehle, Maura Krumm, Christoph Ren, Limin Damen, Jonathan N. Shete, Meera H. Lee, Han Seung Zuo, Xiaobing Lee, Byeongdu Fan, Wei Vlachos, Dionisios G. Lobo, Raul F. Tsapatsis, Michael Dauenhauer, Paul J. TI Tunable Oleo-Furan Surfactants by Acylation of Renewable Furans SO ACS CENTRAL SCIENCE LA English DT Article ID BENZENE; BIODEGRADATION; SYSTEMS; EDTA AB An important advance in fluid surface control was the amphiphilic surfactant composed of coupled molecular structures (i.e., hydrophilic and hydrophobic) to reduce surface tension between two distinct fluid phases. However, implementation of simple surfactants has been hindered by the broad range of applications in water containing alkaline earth metals (i.e., hard water), which disrupt surfactant function and require extensive use of undesirable and expensive chelating additives. Here we show that sugar-derived furans can be linked with triglyceride-derived fatty acid chains via Friedel-Crafts acylation within single layer (SPP) zeolite catalysts. These alkylfuran surfactants independently suppress the effects of hard water while simultaneously permitting broad tunability of size, structure, and function, which can be optimized for superior capability for forming micelles and solubilizing in water. C1 [Park, Dae Sung; Joseph, Kristeen E.; Krumm, Christoph; Ren, Limin; Damen, Jonathan N.; Shete, Meera H.; Lee, Han Seung; Tsapatsis, Michael; Dauenhauer, Paul J.] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. [Koehle, Maura; Vlachos, Dionisios G.; Lobo, Raul F.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Fan, Wei] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. [Krumm, Christoph] Sironix Renewables, Minneapolis, MN 55455 USA. [Park, Dae Sung; Joseph, Kristeen E.; Koehle, Maura; Ren, Limin; Fan, Wei; Vlachos, Dionisios G.; Lobo, Raul F.; Tsapatsis, Michael; Dauenhauer, Paul J.] US DOE, Energy Frontier Res Ctr, Catalysis Ctr Energy Innovat, Newark, DE 19716 USA. [Zuo, Xiaobing; Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Dauenhauer, PJ (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA.; Dauenhauer, PJ (reprint author), US DOE, Energy Frontier Res Ctr, Catalysis Ctr Energy Innovat, Newark, DE 19716 USA. EM hauer@umn.edu FU Catalysis Center for Energy Innovation, a U.S. Department of Energy-Energy Frontier Research Center [DE-SC0001004]; DOE Office of Science [DE-AC02-06CH11357] FX We acknowledge financial support of the Catalysis Center for Energy Innovation, a U.S. Department of Energy-Energy Frontier Research Center under Grant No. DE-SC0001004. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 28 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD NOV 23 PY 2016 VL 2 IS 11 BP 820 EP 824 DI 10.1021/acscentsci.6b00208 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EG2HP UT WOS:000390864600010 PM 27924310 ER PT J AU Pegis, ML McKeown, BA Kumar, N Lang, K Wasylenko, DJ Zhang, XP Raugei, S Mayer, JM AF Pegis, Michael L. McKeown, Bradley A. Kumar, Neeraj Lang, Kai Wasylenko, Derek J. Zhang, X. Peter Raugei, Simone Mayer, James M. TI Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions SO ACS CENTRAL SCIENCE LA English DT Article ID CYTOCHROME-C-OXIDASE; FUEL-CELLS; CATALYSTS; PORPHYRINS AB Improved electrocatalysts for the oxygen reduction reaction (ORR) are critical for the advancement of fuel cell technologies. Herein, we report a series of 11 soluble iron porphyrin ORR electrocatalysts that possess turnover frequencies (TOFs) from 3 s(-1) to an unprecedented value of 2.2 x 10(6) s(-1). These TOFs correlate with the ORR overpotential, which can be modulated by changing the E-1/2 of the catalyst using different ancillary ligands, by changing the solvent and solution acidity, and by changing the catalyst's protonation state. The overpotential is well-defined for these homogeneous electrocatalysts by the E-1/2 of the catalyst and the proton activity of the solution. This is the first such correlation for homogeneous ORR electrocatalysis, and it demonstrates that the remarkably fast TOFs are a consequence of high overpotential. The correlation with overpotential is surprising since the turnover limiting steps involve oxygen binding and protonation, as opposed to turnover limiting electron transfer commonly found in Tafel analysis of heterogeneous ORR materials. Computational studies show that the free energies for oxygen binding to the catalyst and for protonation of the superoxide complex are in general linearly related to the catalyst E-1/2, and that this is the origin of the overpotential correlations. This analysis thus provides detailed understanding of the ORR barriers. The best catalysts involve partial decoupling of the influence of the second coordination sphere from the properties of the metal center, which is suggested as new molecular design strategy to avoid the limitations of the traditional scaling relationships for these catalysts. C1 [Pegis, Michael L.; McKeown, Bradley A.; Mayer, James M.] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. [Kumar, Neeraj; Raugei, Simone] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Wasylenko, Derek J.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Lang, Kai] Univ S Florida, Dept Chem, Tampa, FL 33620 USA. [Lang, Kai; Zhang, X. Peter] Boston Coll, Merkert Chem Ctr, Dept Chem, Chestnut Hill, MA 02467 USA. [Wasylenko, Derek J.] NOVA Chem Corp, Calgary, AB T1Y 6G7, Canada. RP Mayer, JM (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. EM james.mayer@yale.edu RI Zhang, Peter/B-7976-2011 OI Zhang, Peter/0000-0001-7574-8409 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences; National Science Foundation [CHE-1624216]; Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory FX This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. The National Science Foundation (CHE-1624216) funded synthesis of porphyrin ligands for 9-11. Computational resources were provided by the National Energy Research Computing Center (NERSC) at the Lawrence Berkeley National Laboratory and W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 26 TC 1 Z9 1 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2374-7943 EI 2374-7951 J9 ACS CENTRAL SCI JI ACS Central Sci. PD NOV 23 PY 2016 VL 2 IS 11 BP 850 EP 856 DI 10.1021/acscentsci.6b00261 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA EG2HP UT WOS:000390864600014 PM 27924314 ER PT J AU Schulz, P Tiepelt, JO Christians, JA Levine, I Edri, E Sanehira, EM Hodes, G Cahen, D Kahn, A AF Schulz, Philip Tiepelt, Jan O. Christians, Jeffrey A. Levine, Igal Edri, Eran Sanehira, Erin M. Hodes, Gary Cahen, David Kahn, Antoine TI High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic-Inorganic Perovskite Solar Cells SO ACS Applied Materials & Interfaces LA English DT Article DE electronic structures/processes/mechanisms; photoemission spectroscopy; hybrid materials; photovoltaic devices; band offsets; charge carrier transport ID LEAD BROMIDE PEROVSKITE; CARBON NANOTUBES; EFFICIENCY; PERFORMANCE; FILMS; INTERFACES; LAYERS; MOO3 AB We investigate the effect of high work function contacts in halide perovskite absorber-based photovoltaic devices. Photoemission spectroscopy measurements reveal that band bending is induced in the absorber by the deposition of the high work function molybdenum trioxide (MoO3). We find that direct contact between MoO3 and the perovskite leads to a chemical reaction, which diminishes device functionality. Introducing an ultrathin spiro-MeOTAD buffer layer prevents the reaction, yet the altered evolution of the energy levels in the methylammonium lead iodide (MAPbI(3)) layer at the interface still negatively impacts device performance. C1 [Schulz, Philip; Tiepelt, Jan O.; Kahn, Antoine] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Schulz, Philip; Christians, Jeffrey A.; Sanehira, Erin M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Levine, Igal; Edri, Eran; Hodes, Gary; Cahen, David] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Sanehira, Erin M.] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Edri, Eran] Lawrence Berkeley Natl Lab, Phys Biosci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Schulz, P; Kahn, A (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA.; Schulz, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM aphschulz@gmail.com; kahn@princeton.edu FU US-Israel Binational Science Foundation (Jerusalem); National Science Foundation [DMR-1005892]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Solar Energy Technology [DE-AC36-08GO28308DOE]; National Renewable Energy Laboratory (NREL); Leona M. & Harry B. Helmsley Charitable Trust; Israel National Nano-Initiative; Israel Ministry of Science; Nancy & Stephen Grand Center for Sensors Security; NASA Space Technology Research Fellowship FX A.K. and D.C. thank the US-Israel Binational Science Foundation (Jerusalem) for partial support. Work at Princeton University was further supported by a grant of the National Science Foundation (DMR-1005892). P.S. and J.A.C. were supported by the hybrid perovskite solar cell program of the National Center for Photovoltaics funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of Solar Energy Technology under Award DE-AC36-08GO28308DOE with the National Renewable Energy Laboratory (NREL). The Weizmann Institute authors also thank the Leona M. & Harry B. Helmsley Charitable Trust, the Israel National Nano-Initiative, the Israel Ministry of Science, and the Nancy & Stephen Grand Center for Sensors & Security for support. E.M.S. was supported by a NASA Space Technology Research Fellowship. NR 35 TC 1 Z9 1 U1 30 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 23 PY 2016 VL 8 IS 46 BP 31491 EP 31499 DI 10.1021/acsami.6b10898 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA ED5SZ UT WOS:000388913900002 PM 27933974 ER PT J AU Xu, J Hu, EY Nordlund, D Mehta, A Ehrlich, SN Yang, XQ Tong, W AF Xu, Jing Hu, Enyuan Nordlund, Dennis Mehta, Apurva Ehrlich, Steven N. Yang, Xiao-Qing Tong, Wei TI Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries SO ACS Applied Materials & Interfaces LA English DT Article DE Ni-rich layered oxide cathode; capacity fade; phase evolution; redox reaction; surface characteristics; Li-ion batteries ID X-RAY-ABSORPTION; CAPACITY-FADING MECHANISMS; ENERGY-LOSS SPECTROSCOPY; THERMAL-STABILITY; ELECTROCHEMICAL PROPERTIES; ELECTRON-MICROSCOPY; STRUCTURAL-CHANGES; STORAGE CHARACTERISTICS; ACTIVE MATERIAL; FINE-STRUCTURE AB The phase transition, charge compensation, and local chemical environment of Ni in LiNiO2 were investigated to understand the degradation mechanism. The electrode was subjected to a variety of bulk and surface-sensitive characterization techniques under different charge-discharge cycling conditions. We observed the phase transition from the original hexagonal HI phase to another two hexagonal phases (H2 and H3) upon Li deintercalation. Moreover, the gradual loss of H3-phase features was revealed during the repeated charges. The reduction in Ni redox activity occurred at both the charge and the discharge states, and it appeared both in the bulk and at the surface over the extended cycles. The degradation of crystal structure significantly contributes to the reduction of Ni redox activity, which in turn causes the cycling performance decay of LiNiO2. C1 [Xu, Jing; Tong, Wei] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Hu, Enyuan; Yang, Xiao-Qing] Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA. [Ehrlich, Steven N.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Nordlund, Dennis; Mehta, Apurva] Stanford Synchrotron Radiat Lightsource, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Tong, W (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. EM weitong@lbl.gov FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. Department of Energy, Office of Vehicle Technologies [DE-SC0012704] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Synchrotron XRD and soft XAS work was carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAG National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under contract no. DE-SC0012704. W.T. greatly appreciates the fruitful discussion with Marca Doeff at Lawrence Berkeley National Laboratory. NR 48 TC 0 Z9 0 U1 46 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 23 PY 2016 VL 8 IS 46 BP 31677 EP 31683 DI 10.1021/acsami.6b11111 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA ED5SZ UT WOS:000388913900023 PM 27802012 ER PT J AU Gu, XD Yan, HP Kurosawa, T Schroeder, BC Gu, KL Zhou, Y To, JWF Oosterhout, SD Savikhin, V Molina-Lopez, F Tassone, CJ Mannsfeld, SCB Wang, C Toney, MF Bao, ZA AF Gu, Xiaodan Yan, Hongping Kurosawa, Tadanori Schroeder, Bob C. Gu, Kevin L. Zhou, Yan To, John W. F. Oosterhout, Stefan D. Savikhin, Victoria Molina-Lopez, Francisco Tassone, Christopher J. Mannsfeld, Stefan C. B. Wang, Cheng Toney, Michael F. Bao, Zhenan TI Comparison of the Morphology Development of Polymer-Fullerene and Polymer-Polymer Solar Cells during Solution-Shearing Blade Coating SO Advanced Energy Materials LA English DT Article DE P3HT; PCBM; PNDIT; real time X-ray scattering; solution processing ID X-RAY-SCATTERING; POWER CONVERSION EFFICIENCY; BULK-HETEROJUNCTION POLYMER; HIGH-PERFORMANCE; GLASS-TRANSITION; STRUCTURAL EVOLUTION; CONJUGATED POLYMERS; CHARGE-TRANSPORT; MOLECULAR-WEIGHT; ADDITIVE-FREE AB In this work, the detailed morphology studies of polymer poly(3-hexylthiophene-2,5-diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all-polymer solar cells. The in situ X-ray scattering and optical interferometry and ex situ hard and soft X-ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X-ray diffraction and soft X-ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer. C1 [Gu, Xiaodan; Kurosawa, Tadanori; Schroeder, Bob C.; Gu, Kevin L.; Zhou, Yan; To, John W. F.; Molina-Lopez, Francisco; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Gu, Xiaodan; Yan, Hongping; Oosterhout, Stefan D.; Savikhin, Victoria; Tassone, Christopher J.; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA. [Schroeder, Bob C.] Queen Mary Univ London, Sch Biol & Chem Sci, Mile End Rd, London E1 4NS, England. [Schroeder, Bob C.] Queen Mary Univ London, Mat Res Inst, Mile End Rd, London E1 4NS, England. [Mannsfeld, Stefan C. B.] Tech Univ Dresden, Ctr Adv Elect Dresden, D-01062 Dresden, Germany. [Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Bao, ZA (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA.; Toney, MF (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Light Source, Menlo Pk, CA 94025 USA. EM mftoney@slac.stanford.edu; zbao@stanford.edu RI Wang, Cheng/A-9815-2014; OI Yan, Hongping/0000-0001-6235-4523 FU Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program under the SunShot initiative of the Department of Energy program [DE-FOA-0000654-1588]; Office of Naval Research [N00014-14-1-0142]; Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program; National Science Foundation Materials Genome Program [1434799]; National Research Fund of Luxembourg [6932623]; Swiss National Science Foundation [P2ELP2_155355]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX X.G., Y.Z., M.F.T., and Z.B. acknowledge support from the Bridging Research Interactions through collaborative Development Grants in Energy (BRIDGE) program under the SunShot initiative of the Department of Energy program under contract DE-FOA-0000654-1588. T.K. and Z.B. acknowledge support from the Office of Naval Research (N00014-14-1-0142). K.L.G. was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. H.Y. acknowledges support from the National Science Foundation Materials Genome Program (Award No. 1434799). B.C.S. acknowledges the National Research Fund of Luxembourg for financial support (Project 6932623). F.M.-L. acknowledges the Swiss National Science Foundation (Award No. P2ELP2_155355). In situ measurements were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. RSoXS experiments were performed at Advanced Light Source, which was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Bart Johnson for assistance during the in situ experiment at SSRL Beamline 7-2 and Nathan Ging-Ji Wang for performing the high-temperature SEC experiments. NR 80 TC 0 Z9 0 U1 25 U2 25 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD NOV 23 PY 2016 VL 6 IS 22 AR 1601225 DI 10.1002/aenm.201601225 PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA ED6UV UT WOS:000388993100014 ER PT J AU Moffet, RC O'Brien, RE Alpert, PA Kelly, ST Pham, DQ Gilles, MK Knopf, DA Laskin, A AF Moffet, Ryan C. O'Brien, Rachel E. Alpert, Peter A. Kelly, Stephen T. Pham, Don Q. Gilles, Mary K. Knopf, Daniel A. Laskin, Alexander TI Morphology and mixing of black carbon particles collected in central California during the CARES field study SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID INTERNALLY-MIXED SOOT; AEROSOL-PARTICLES; ATMOSPHERIC AEROSOLS; ELECTRON-MICROSCOPY; OPTICAL-PROPERTIES; STATE; ABSORPTION; CLIMATE; CONDENSATION; CONSTRAINTS AB Aerosol absorption is strongly dependent on the internal heterogeneity (mixing state) and morphology of individual particles containing black carbon (BC) and other non-absorbing species. Here, we examine an extensive microscopic data set collected in the California Central Valley during the CARES 2010 field campaign. During a period of high photochemical activity and pollution buildup, the particle mixing state and morphology were characterized using scanning transmission X-ray microscopy (STXM) at the carbon K-edge. Observations of compacted BC core morphologies and thick organic coatings at both urban and rural sites provide evidence of the aged nature of particles, highlighting the importance of highly aged particles at urban sites during periods of high photochemical activity. Based on the observation of thick coatings and more convex BC inclusion morphology, either the aging was rapid or the contribution of fresh BC emissions at the urban site was relatively small compared to background concentrations. Most particles were observed to have the BC inclusion close to the center of the host. However, host particles containing inorganic rich inclusions had the BC inclusion closer to the edge of the particle. These measurements of BC morphology and mixing state provide important constraints for the morphological effects on BC optical properties expected in aged urban plumes. C1 [Moffet, Ryan C.; O'Brien, Rachel E.; Pham, Don Q.] Univ Pacific, Dept Chem, Stockton, CA 95211 USA. [O'Brien, Rachel E.; Kelly, Stephen T.; Gilles, Mary K.] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. [Alpert, Peter A.; Knopf, Daniel A.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Laskin, Alexander] WR Wiley Environm Mol Sci Lab, Pacific Northwest Natl Lab, Richland, WA 99354 USA. [O'Brien, Rachel E.] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Alpert, Peter A.] CNRS, UMR5256, IRCELYON, Inst Rech Catalyse & Envirom Lyon, F-69626 Villeurbanne, France. [Kelly, Stephen T.] Carl Zeiss Xray Microscopy Inc, Pleasanton, CA 94588 USA. RP Moffet, RC (reprint author), Univ Pacific, Dept Chem, Stockton, CA 95211 USA. EM rmoffet@pacific.edu RI Laskin, Alexander/I-2574-2012 OI Laskin, Alexander/0000-0002-7836-8417 FU Atmospheric Radiation Measurement Program - US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (OBER), Climate and Environmental Sciences Division (CESD); US DOE's Atmospheric System Research Program, BER [DE-SC0008643, DE-SC0008613]; Office of Science, Office of Basic Energy Sciences, of the US DOE [DE-AC02-05CH11231] FX Funding for sample collection during the CARES study was provided by the Atmospheric Radiation Measurement Program sponsored by the US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (OBER), Climate and Environmental Sciences Division (CESD). Funding for the data analysis was provided by the US DOE's Atmospheric System Research Program, BER under grants DE-SC0008643 and DE-SC0008613. The STXM/NEXAFS particle analysis was performed at beamlines 11.0.2 and 5.3.2 at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The work at the ALS was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US DOE under contract DE-AC02-05CH11231. We thank A. L. D. Kilcoyne and T. Tyliszczak for their assistance with STXM experiments. NR 45 TC 0 Z9 0 U1 16 U2 16 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 23 PY 2016 VL 16 IS 22 BP 14515 EP 14525 DI 10.5194/acp-16-14515-2016 PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2SQ UT WOS:000388699500002 ER PT J AU Feng, Q Dizayee, W Li, XL Score, DS Neal, JR Behan, AJ Mokhtari, A Alshammari, MS Al-Qahtani, MS Blythe, HJ Chantrell, RW Heald, SM Xu, XH Fox, AM Gehring, GA AF Feng, Qi Dizayee, Wala Li, Xiaoli Score, David S. Neal, James R. Behan, Anthony J. Mokhtari, Abbas Alshammari, Marzook S. Al-Qahtani, Mohammed S. Blythe, Harry J. Chantrell, Roy W. Heald, Steve M. Xu, Xiao-Hong Fox, A. Mark Gehring, Gillian A. TI Enhanced magnetic properties in ZnCoAlO caused by exchang-ecoupling to Co nanoparticles SO NEW JOURNAL OF PHYSICS LA English DT Article ID OPTICAL-PROPERTIES; ROOM-TEMPERATURE; DOPED ZNO; SEMICONDUCTORS; COBALT; FILMS; NANOCRYSTALS; SPINTRONICS; OXIDES; FE AB We report the results of a sequence of magnetisation and magneto-optical studies on laser ablated thin films of ZnCoAlO and ZnCoO that contain a small amount of metallic cobalt. The results are compared to those expected when all the magnetization is due to isolated metallic clusters of cobalt and with an oxide sample that is almost free from metallic inclusions. Using a variety of direct magnetic measurements and also magnetic circular dichroism we find that there is ferromagnetism within both the oxide and the metallic inclusions, and furthermore that these magnetic components are exchange-coupled when aluminium is included. This enhances both the coercive field and the remanence. Hence the presence of a controlled quantity of metallic nanoparticles in ZnAlO can improve the magnetic response of the oxide, thus giving great advantages for applications in spintronics. C1 [Feng, Qi; Dizayee, Wala; Li, Xiaoli; Score, David S.; Neal, James R.; Behan, Anthony J.; Mokhtari, Abbas; Alshammari, Marzook S.; Al-Qahtani, Mohammed S.; Blythe, Harry J.; Fox, A. Mark; Gehring, Gillian A.] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. [Feng, Qi] Chinese Acad Sci, Inst Semicond, SKLSM, Beijing 100083, Peoples R China. [Feng, Qi] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Li, Xiaoli; Xu, Xiao-Hong] Shanxi Normal Univ, Minist Educ, Key Lab Magnet Mol & Magnet Informat Mat, Linfen 041004, Peoples R China. [Li, Xiaoli; Xu, Xiao-Hong] Shanxi Normal Univ, Sch Chem & Mat Sci, Linfen 041004, Peoples R China. [Mokhtari, Abbas] Islamic Azad Univ, Dept Phys, Arak Branch, Arak, Iran. [Alshammari, Marzook S.] King Abdulaziz City Sci & Technol, Natl Ctr Nanotechnol, Inst Mat Sci, POB 6086, Riyadh 11442, Saudi Arabia. [Al-Qahtani, Mohammed S.] King Saud Univ, Dept Phys & Astron, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia. [Chantrell, Roy W.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Heald, Steve M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60429 USA. RP Gehring, GA (reprint author), Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England. EM g.gehring@sheffield.ac.uk RI Chantrell, Roy/J-9898-2015; Fox, Mark/F-1096-2010 OI Chantrell, Roy/0000-0001-5410-5615; Fox, Mark/0000-0002-9025-2441 FU EPSRC; Leverhulme Trust; US DOE [DE-AC02-06CH11357] FX We should like to thank T Tietze of the MPI Stuttgart, Germany for several confirmatory SQUID measurements, C Clavero and D Gamelin for helpful correspondence, and the EPSRC and the Leverhulme Trust for financial support. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 52 TC 0 Z9 0 U1 11 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD NOV 23 PY 2016 VL 18 AR 113040 DI 10.1088/1367-2630/18/11/113040 PG 12 WC Physics, Multidisciplinary SC Physics GA ED7OL UT WOS:000389056000002 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahmad, S Ahn, SU Aiola, S Akindinov, A Alam, SN Albuquerque, DSD Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Arnaldi, R Arnold, OW Arsene, IC Arslandok, M Audurier, B Augustinus, A Averbeck, R Azmi, MD Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Balasubramanian, S Baldisseri, A Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Beltran, LGE Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biro, G Biswas, R Biswas, S Bjelogrlic, S Blair, JT Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Bonora, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botta, E Bourjau, C Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Butt, JB Buxton, JT Cabala, J Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Carnesecchi, F Castellanos, JC Castro, AJ Casula, EAR Sanchez, CC Cepila, J Cerello, P Cerkala, J Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chauvin, A Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Cho, S Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crkovska, J Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danisch, MC Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A de Cataldo, G de Conti, C de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S De Souza, RD Deisting, A Deloff, A Denes, E Deplano, C Dhankher, P Di Bari, D Di Mauro, A Di Nezza, P Di Ruzza, B Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Gimenez, DD Donigus, B Dordic, O Drozhzhova, T Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Endress, E Engel, H Epple, E Erazmus, B Erdemir, I Erhardt, F Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Feuillard, VJG Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Francisco, A Frankenfeld, U Fronze, GG Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gajdosova, K Gallio, M Galvan, CD Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Gauger, EF Germain, M Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Coral, DMG Ramirez, AG Gonzalez, AS Gonzalez, V Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Grachov, OA Graczykowski, LK Graham, KL Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gronefeld, JM Grosa, F Grosse-Oetringhaus, JF Grosso, R Gruber, L Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gunji, T Gupta, A Gupta, R Haake, R Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hamon, JC Harris, JW Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Hellbar, E Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hillemanns, H Hippolyte, B Horak, D Hosokawa, R Hristov, P Hughes, C Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Inaba, M Incani, E Ippolitov, M Irfan, M Isakov, V Ivanov, M Ivanov, V Izucheev, V Jacak, B Jacazio, N Jacobs, PM Jadhav, MB Jadlovska, S Jadlovsky, J Jahnke, C Jakubowska, MJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jusko, A Kalinak, P Kalweit, A Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karayan, L Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Khatun, A Kileng, B Kim, DW Kim, DJ Kim, D Kim, H Kim, JS Kim, J Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Klewin, S Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kopcik, M Kour, M Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Meethaleveedu, GK Kralik, I Kravcakova, A Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kuhn, C Kuijer, PG Kumar, A Kumar, J Kumar, L Kumar, S Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lapidus, K Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, S Lehas, F Lehner, S Lemmon, RC Lenti, V Leogrande, E Monzon, IL Vargas, HL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, G Lupi, M Lutz, TH Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Mas, A Masciocchi, S Masera, M Masoni, A Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Melikyan, Y Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Mhlanga, S Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Mohler, C Molnar, L Zetina, LM Montes, E De Godoy, DAM Moreno, LAP Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Mulligan, JD Munhoz, MG Munning, K Munzer, RH Murakami, H Murray, S Musa, L Musinsky, J Naik, B Nair, R Nandi, BK Nania, R Nappi, E Naru, MU da Luz, HN Nattrass, C Navarro, SR Nayak, K Nayak, R Nayak, TK Nazarenko, S Nedosekin, A De Oliveira, RAN Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Noris, JCC Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Orava, R Oravec, M Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, D Pagano, P Paic, G Pal, SK Palni, P Pan, J Pandey, AK Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Pei, H Peitzmann, T Peng, X Da Costa, HP Peresunko, D Lezama, EP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pimentel, LODL Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Poppenborg, H Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Rami, F Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Ravasenga, I Read, KF Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Cahuantzi, MR Manso, AR Roed, K Rohr, D Rohrich, D Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Saarinen, S Sadhu, S Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salzwedel, J Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sarkar, D Sarkar, N Sarma, P Scapparone, E Scarlassara, F Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schmidt, M Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Sefcik, M Seger, JE Sekiguchi, Y Sekihata, D Selyuzhenkov, I Senosi, K Senyukov, S Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shangaraev, A Sharma, A Sharma, M Sharma, M Sharma, N Sheikh, AI Shigaki, K Shou, Q Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singhal, V Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Song, J Song, M Song, Z Soramel, F Sorensen, S Sozzi, F Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Stachel, J Stan, I Stankus, P Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Suljic, M Sultanov, R Sumbera, M Sumowidagdo, S Szabo, A Szarka, I Szczepankiewicz, A Szymanski, M Tabassam, U Takahashi, J Tambave, GJ Tanaka, N Tarhini, M Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thakur, D Thomas, D Tieulent, R Tikhonov, A Timmins, AR Toia, A Trogolo, S Trombetta, G Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vala, M Palomo, LV Van der Maarel, J Van Hoorne, JW van Leeuwen, M Vanat, T Vyvre, PV Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Doce, OV Vechernin, V Veen, AM Velure, A Vercellin, E Limon, SV Vernet, R Vickovic, L Viinikainen, J Vilakazi, Z Baillie, OV Tello, AV Vinogradov, A Vinogradov, L Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, J Wang, H Wang, M Watanabe, D Watanabe, Y Weber, M Weber, SG Weiser, DF Wessels, JP Westerhoff, U Whitehead, AM Wiechula, J Wikne, J Wilk, G Wilkinson, J Willems, GA Williams, MCS Windelband, B Winn, M Yalcin, S Yang, P Yano, S Yin, Z Yokoyama, H Yoo, IK Yoon, JH Yurchenko, V Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zardoshti, N Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhang, C Zhang, Z Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahmad, S. Ahn, S. U. Aiola, S. Akindinov, A. Alam, S. N. Albuquerque, D. S. D. Aleksandrov, D. Alessandro, B. Alexandre, D. Molina, R. Alfaro Alici, A. Alkin, A. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Prado, C. Alves Garcia Andrei, C. Andronic, A. Anguelov, V. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Arnaldi, R. Arnold, O. W. Arsene, I. C. Arslandok, M. Audurier, B. Augustinus, A. Averbeck, R. Azmi, M. D. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Balasubramanian, S. Baldisseri, A. Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bello Martinez, H. Bellwied, R. Belmont, R. Belmont-Moreno, E. Beltran, L. G. E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biro, G. Biswas, R. Biswas, S. Bjelogrlic, S. Blair, J. T. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Bonora, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botta, E. Bourjau, C. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Butt, J. B. Buxton, J. T. Cabala, J. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Carnesecchi, F. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Ceballos Sanchez, C. Cepila, J. Cerello, P. Cerkala, J. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chauvin, A. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Cho, S. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Crkovska, J. Crochet, P. Albino, R. Cruz Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danisch, M. C. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Conti, C. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. De Souza, R. D. Deisting, A. Deloff, A. Denes, E. Deplano, C. Dhankher, P. Di Bari, D. Di Mauro, A. Di Nezza, P. Di Ruzza, B. Corchero, M. A. Diaz Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Gimenez, D. Domenicis Doenigus, B. Dordic, O. Drozhzhova, T. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Endress, E. Engel, H. Epple, E. Erazmus, B. Erdemir, I. Erhardt, F. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Feuillard, V. J. G. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Francisco, A. Frankenfeld, U. Fronze, G. G. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gajdosova, K. Gallio, M. Galvan, C. D. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Gauger, E. F. Germain, M. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Coral, D. M. Gomez Ramirez, A. Gomez Gonzalez, A. S. Gonzalez, V. Gonzalez-Zamora, P. Gorbunov, S. Gorlich, L. Gotovac, S. Grabski, V. Grachov, O. A. Graczykowski, L. K. Graham, K. L. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gronefeld, J. M. Grosa, F. Grosse-Oetringhaus, J. F. Grosso, R. Gruber, L. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Haake, R. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hamon, J. C. Harris, J. W. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Hellbaer, E. Helstrup, H. Herghelegiu, A. Corral, G. Herrera Hess, B. A. Hetland, K. F. Hillemanns, H. Hippolyte, B. Horak, D. Hosokawa, R. Hristov, P. Hughes, C. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Inaba, M. Incani, E. Ippolitov, M. Irfan, M. Isakov, V. Ivanov, M. Ivanov, V. Izucheev, V. Jacak, B. Jacazio, N. Jacobs, P. M. Jadhav, M. B. Jadlovska, S. Jadlovsky, J. Jahnke, C. Jakubowska, M. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jusko, A. Kalinak, P. Kalweit, A. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karayan, L. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, M. Mohisin Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Khatun, A. Kileng, B. Kim, D. W. Kim, D. J. Kim, D. Kim, H. Kim, J. S. Kim, J. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Klewin, S. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kopcik, M. Kour, M. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Meethaleveedu, G. Koyithatta Kralik, I. Kravcakova, A. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kuhn, C. Kuijer, P. G. Kumar, A. Kumar, J. Kumar, L. Kumar, S. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Ladron de Guevara, P. Fernandes, C. Lagana Lakomov, I. Langoy, R. Lapidus, K. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, S. Lehas, F. Lehner, S. Lemmon, R. C. Lenti, V. Leogrande, E. Leon Monzon, I. Leon Vargas, H. Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loginov, V. Loizides, C. Lopez, X. Lopez Torres, E. Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Lupi, M. Lutz, T. H. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Mas, A. Masciocchi, S. Masera, M. Masoni, A. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Melikyan, Y. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Mhlanga, S. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Mohler, C. Molnar, L. Montano Zetina, L. Montes, E. De Godoy, D. A. Moreira Moreno, L. A. P. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mulligan, J. D. Munhoz, M. G. Muenning, K. Munzer, R. H. Murakami, H. Murray, S. Musa, L. Musinsky, J. Naik, B. Nair, R. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. da Luz, H. Natal Nattrass, C. Navarro, S. R. Nayak, K. Nayak, R. Nayak, T. K. Nazarenko, S. Nedosekin, A. De Oliveira, R. A. Negrao Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Noris, J. C. C. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Oleniacz, J. Da Silva, A. C. Oliveira Oliver, M. H. Onderwaater, J. Oppedisano, C. Orava, R. Oravec, M. Ortiz Velasquez, A. Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, D. Pagano, P. Paic, G. Pal, S. K. Palni, P. Pan, J. Pandey, A. K. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Pei, H. Peitzmann, T. Peng, X. Da Costa, H. Pereira Peresunko, D. Lezama, E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pimentel, L. O. D. L. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Poppenborg, H. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Rami, F. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Ravasenga, I. Read, K. F. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rohr, D. Rohrich, D. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Saarinen, S. Sadhu, S. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salzwedel, J. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sarkar, D. Sarkar, N. Sarma, P. Scapparone, E. Scarlassara, F. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schmidt, M. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Sefcik, M. Seger, J. E. Sekiguchi, Y. Sekihata, D. Selyuzhenkov, I. Senosi, K. Senyukov, S. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, M. Sharma, M. Sharma, N. Sheikh, A. I. Shigaki, K. Shou, Q. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singhal, V. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Sozzi, F. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Stachel, J. Stan, I. Stankus, P. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Suljic, M. Sultanov, R. Sumbera, M. Sumowidagdo, S. Szabo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Tabassam, U. Takahashi, J. Tambave, G. J. Tanaka, N. Tarhini, M. Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thader, J. Thakur, D. Thomas, D. Tieulent, R. Tikhonov, A. Timmins, A. R. Toia, A. Trogolo, S. Trombetta, G. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vala, M. Palomo, L. Valencia Van der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vyvre, P. Vande Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Doce, O. Vazquez Vechernin, V. Veen, A. M. Velure, A. Vercellin, E. Vergara Limon, S. Vernet, R. Vickovic, L. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Villatoro Tello, A. Vinogradov, A. Vinogradov, L. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, J. Wang, H. Wang, M. Watanabe, D. Watanabe, Y. Weber, M. Weber, S. G. Weiser, D. F. Wessels, J. P. Westerhoff, U. Whitehead, A. M. Wiechula, J. Wikne, J. Wilk, G. Wilkinson, J. Willems, G. A. Williams, M. C. S. Windelband, B. Winn, M. Yalcin, S. Yang, P. Yano, S. Yin, Z. Yokoyama, H. Yoo, I. -K. Yoon, J. H. Yurchenko, V. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zardoshti, N. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhang, C. Zhang, Z. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI D-meson production in p-Pb collisions at root S-NN=5.02 TeV and in pp collisions at root S=7 TeV SO PHYSICAL REVIEW C LA English DT Article ID RANGE ANGULAR-CORRELATIONS; PROTON-PROTON COLLISIONS; HEAVY-FLAVOR; ROOT-S(NN)=5.02 TEV; LONG-RANGE; TRANSVERSE-MOMENTUM; CGC PREDICTIONS; CROSS-SECTIONS; LHC; ALICE AB Background: In the context of the investigation of the quark gluon plasma produced in heavy-ion collisions, hadrons containing heavy (charm or beauty) quarks play a special role for the characterization of the hot and dense medium created in the interaction. The measurement of the production of charm and beauty hadrons in proton-proton collisions, besides providing the necessary reference for the studies in heavy-ion reactions, constitutes an important test of perturbative quantum chromodynamics (pQCD) calculations. Heavy-flavor production in proton-nucleus collisions is sensitive to the various effects related to the presence of nuclei in the colliding system, commonly denoted cold-nuclear-matter effects. Most of these effects are expected to modify open-charm production at low transverse momenta (p(T)) and, so far, no measurement of D-meson production down to zero transverse momentum was available at mid-rapidity at the energies attained at the CERN Large Hadron Collider (LHC). Purpose: The measurements of the production cross sections of promptly produced charmed mesons in p-Pb collisions at the LHC down to p(T) = 0 and the comparison to the results from pp interactions are aimed at the assessment of cold-nuclear-matter effects on open-charm production, which is crucial for the interpretation of the results from Pb-Pb collisions. The prompt charmed mesons D-0, D+, D*+, and D-s(+) were measured at mid-rapidity in p-Pb collisions at a center-of-mass energy per nucleon pair root S-NN = 5.02 TeV with the ALICE detector at the LHC. D mesons were reconstructed from their decays D-0 -> K- pi(+), D+ -> K- pi(+) pi(+), D*+ -> D-0 pi(+), D-S(+) -> phi pi(+) -> K- K+ pi(+), and their charge conjugates, using an analysis method based on the selection of decay topologies displaced from the interaction vertex. In addition, the prompt D 0 production cross section was measured in pp collisions at root S = 7 TeV and p-Pb collisions at root S-NN = 5.02 TeV down to p(T) = 0 using an analysis technique that is based on the estimation and subtraction of the combinatorial background, without reconstruction of the D-0 decay vertex. Results: The production cross section in pp collisions is described within uncertainties by different implementations of pQCD calculations down to p(T) = 0. This allowed also a determination of the total c (c) over bar production cross section in pp collisions, which is more precise than previous ALICE measurements because it is not affected by uncertainties owing to the extrapolation to pT = 0. The nuclear modification factor R-pPb( p(T)), defined as the ratio of the p(T)-differential D meson cross section in p-Pb collisions and that in pp collisions scaled by the mass number of the Pb nucleus, was calculated for the four D-meson species and found to be compatible with unity within uncertainties. The results are compared to theoretical calculations that include cold-nuclear-matter effects and to transport model calculations incorporating the interactions of charm quarks with an expanding deconfined medium. Conclusions: These measurements add experimental evidence that the modification of the D-meson transverse momentum distributions observed in Pb-Pb collisions with respect to pp interactions is due to strong final-state effects induced by the interactions of the charm quarks with the hot and dense partonic medium created in ultrarelativistic heavy-ion collisions. The current precision of the measurement does not allow us to draw conclusions on the role of the different cold-nuclear-matter effects and on the possible presence of additional hot-medium effects in p-Pb collisions. However, the analysis technique without decay-vertex reconstruction, applied on future larger data samples, should provide access to the physics-rich range down to p(T) = 0. C1 [Grigoryan, A.; Papikyan, V.] Yerevan Phys Inst, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Bello Martinez, H.; Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Moreno, L. A. P.; Navarro, S. R.; Noris, J. C. C.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.; Villatoro Tello, A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Senyukov, S.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Biswas, S.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Biswas, R.; Biswas, S.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Mao, Y.; Palni, P.; Pei, H.; Peng, X.; Ren, X.; Shou, Q.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhou, D.; Zhu, H.; Zhu, J.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] Ctr Calcul IN2P3, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Corchero, M. A. Diaz; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambienales & Tecnol CIEMA, Madrid, Spain. [Albino, R. Cruz; Corral, G. Herrera; Ladron de Guevara, P.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Albino, R. Cruz; Corral, G. Herrera; Ladron de Guevara, P.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, DF, Mexico. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Zichichi, A.] Ctr Fermi Museo Storico Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL 60628 USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Feuillard, V. J. G.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] CEA, IRFU, Saclay, France. [Butt, J. B.; Naru, M. U.; Suleymanov, M.; Tabassam, U.; Zaman, A.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Ferreiro, E. G.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Ferreiro, E. G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Alme, J.; Altinpinar, S.; Djuvsland, O.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rohrich, D.; Tambave, G. J.; Ullaland, K.; Velure, A.; Wagner, B.; Zhang, H.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Ahmad, S.; Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. Mohisin; Khatun, A.; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; De Falco, A.; Fionda, F. M.; Incani, E.; Puddu, G.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; De Falco, A.; Fionda, F. M.; Incani, E.; Puddu, G.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Suljic, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Suljic, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Barbano, A. M.; Beole, S.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Fronze, G. G.; Gagliardi, M.; Gallio, M.; Grosa, F.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Puccio, M.; Ravasenga, I.; Russo, R.; Shtejer, K.; Trogolo, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Barbano, A. M.; Beole, S.; Botta, E.; Morales, Y. Corrales; Ferretti, A.; Fronze, G. G.; Gagliardi, M.; Gallio, M.; Grosa, F.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Puccio, M.; Ravasenga, I.; Russo, R.; Shtejer, K.; Trogolo, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Jacazio, N.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Jacazio, N.; Scioli, G.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Festanti, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Festanti, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Grp Collegato INFN, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Trombetta, G.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Trombetta, G.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Schmidt, M.; Wiechula, J.] Eberhard Karls Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Barnby, L. S.; Barth, K.; Berzano, D.; Betev, L.; Bonora, M.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Colella, D.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, M.; Giubellino, P.; Gonzalez, A. S.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Haake, R.; Hillemanns, H.; Hristov, P.; Ivanov, M.; Kalweit, A.; Keil, M.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Lakomov, I.; Laudi, E.; Lupi, M.; Mager, M.; Manzari, V.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Musa, L.; De Oliveira, R. A. Negrao; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Ronchetti, F.; Safarik, K.; Schukraft, J.; Schutz, Y.; Senyukov, S.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vyvre, P. Vande; von Haller, B.; Vranic, D.; Weber, M.; Zampolli, C.; Zimmermann, M. B.] European Org Nucl Res, CERN, Geneva, Switzerland. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Lapidus, K.; Munzer, R. H.; Doce, O. Vazquez; Vorobyev, I.] Tech Univ Munich, Excellence Cluster Universe, Munich, Germany. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Horak, D.; Petracek, V.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Sefcik, M.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; de Cuveland, J.; Gorbunov, S.; Hutter, D.; Kirsch, S.; Kisel, I.; Krzewicki, M.; La Pointe, S. L.; Lindenstruth, V.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Kim, D. W.; Kim, J. S.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.; Sarma, P.] Gauhati Univ, Dept Phys, Gauhati, India. [Muenning, K.] Rhein Friedrich Wilhelms Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany. [Brucken, E. J.; Mieskolainen, M. M.; Orava, R.; Rasanen, S. S.; Saarinen, S.] Helsinki Inst Phys, Helsinki, Finland. [Okubo, T.; Sekihata, D.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Dash, S.; Dhankher, P.; Jadhav, M. B.; Meethaleveedu, G. Koyithatta; Kumar, J.; Kumar, S.; Naik, B.; Nandi, B. K.; Nayak, R.; Pandey, A. K.; Varma, R.] Indian Inst Technol Bombay IIT, Bombay, Maharashtra, India. [Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.; Thakur, D.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India. [Sumowidagdo, S.] Indonesian Inst Sci, Jakarta, Indonesia. [Behera, N. K.; Cho, S.; Kweon, M. J.; Yoon, J. H.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Crkovska, J.; Espagnon, B.; Hadjidakis, C.; Suire, C.; Tarhini, M.] Univ Paris 11, IPNO, CNRS, IN2P3, Orsay, France. [Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Drozhzhova, T.; Erdemir, I.; Heckel, S. T.; Hellbaer, E.; Klein, C.; Luettig, P.; Marquard, M.; Munzer, R. H.; Ozdemir, M.; Lezama, E. Perez; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Bathen, B.; Cunqueiro, L.; Feldkamp, L.; Haake, R.; Klein-Boesing, C.; De Godoy, D. A. Moreira; Muehlheim, D.; Passfeld, A.; Poppenborg, H.; Wessels, J. P.; Westerhoff, U.; Willems, G. A.; Zimmermann, M. B.] Westfal Wilhelms Univ Munster, Inst Kernphys, Munster, Germany. [Belikov, I.; Hamon, J. C.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Rami, F.; Roy, C.] Univ Strasbourg, IPHC, CNRS, IN2P3, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Isakov, V.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.; Tikhonov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bjelogrlic, S.; Caliva, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Snellings, R. J. M.; Van der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Wang, H.; Zhang, C.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow, Russia. [Colella, D.; Jadlovsky, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.] Inst Phys, Bhubaneswar, Orissa, India. [Danu, A.; Dobrin, A.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Maldonado Cervantes, I.; Nellen, L.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Marchisone, M.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Vodopyanov, A.; Zaporozhets, S.] JINR, Dubna, Russia. [Baek, Y. W.; Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.] Korea Inst Sci & Technol Informat, Daejeon, South Korea. [Uysal, A. Karasu; Okatan, A.; Yalcin, S.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Feuillard, V. J. G.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Blaise Pascal, Clermont Univ, LPC, CNRS IN2P3, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Ricci, R. A.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Bock, F.; Collu, A.; Fasel, M.; Gangadharan, D. R.; Jacak, B.; Jacobs, P. M.; Loizides, C.; Milano, L.; Ploskon, M.; Porter, J.; Thader, J.; Zhang, X.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Melikyan, Y.; Peresunko, D.; Samsonov, V.] Moscow Engn Phys Inst, Moscow, Russia. [Oyama, K.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Deloff, A.; Kovalenko, O.; Kurashvili, P.; Nair, R.; Redlich, K.; Siemiarczuk, T.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Dash, A.; Mohanty, B.; Nayak, K.; Singh, R.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.] Natl Res Ctr Kurchatov Inst, Moscow, Russia. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Bourjau, C.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gajdosova, K.; Gulbrandsen, K.; Nielsen, B. S.; Pimentel, L. O. D. L.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Christakoglou, P.; Deplano, C.; Dobrin, A.; Kuijer, P. G.; Lehas, F.; Manso, A. Rodriguez] Natl Inst Subatomaire Fys, Nikhef, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Pospisil, J.; Sumbera, M.; Vanat, T.] Acad Sci Czech Republic, Nucl Phys Inst, Rez, Czech Republic. [Cormier, T. M.; Poghosyan, M. G.; Read, K. F.; Stankus, P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68102 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.; Mhlanga, S.; Whitehead, A. M.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Kour, M.; Kumar, A.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.; Sharma, M.] Univ Jammu, Dept Phys, Jammu, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur, Rajasthan, India. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Doce, O. Vazquez; Vorobyev, I.] Tech Univ Munich, Dept Phys, Munich, Germany. [Anguelov, V.; Beck, H.; Bock, F.; Danisch, M. C.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Karayan, L.; Kim, J.; Klewin, S.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Mohler, C.; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Schuchmann, S.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Weiser, D. F.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Agnello, M.; Bufalino, S.] Politecn Torino, Turin, Italy. [Agnello, M.; Bufalino, S.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Browning, T. A.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Song, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Graham, K. L.; Jones, P. G.; Jusko, A.; Krivda, M.; Lietava, R.; Baillie, O. Villalobos; Zardoshti, N.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Endress, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] SSC IHEP NRC Kurchatov Inst, Protvino, Russia. [Gruber, L.; Lehner, S.; Van Hoorne, J. W.; Weber, M.] Stefan Meyer Inst Subatomare Phys SMI, Vienna, Austria. [Aphecetche, L.; Audurier, B.; Batigne, G.; Erazmus, B.; Estienne, M.; Francisco, A.; Germain, M.; Garcia, G. Martinez; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Zhu, J.] Univ Nantes, Ecole Mines Nantes, CNRS IN2P3, SUBATECH, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Cabala, J.; Cerkala, J.; Jadlovska, S.; Jadlovsky, J.; Kopcik, M.; Oravec, M.] Tech Univ Kosice, Kosice, Slovakia. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Bhom, J.; Figiel, J.; Gladysz-Dziadus, E.; Gorlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Blair, J. T.; Gauger, E. F.; Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Beltran, L. G. E.; Galvan, C. D.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Prado, C. Alves Garcia; Bregant, M.; Cosentino, M. R.; De, S.; de Conti, C.; Gimenez, D. Domenicis; Figueredo, M. A. S.; Jahnke, C.; Fernandes, C. Lagana; Mas, A.; Munhoz, M. G.; da Luz, H. Natal; Da Silva, A. C. Oliveira; Suaide, A. A. P.; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Albuquerque, D. S. D.; Chinellato, D. D.; De Souza, R. D.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Knospe, A. G.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX 77004 USA. [Chang, B.; Kim, D. J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Borri, M.; Chartier, M.; Figueredo, M. A. S.; Norman, J.] Univ Liverpool, Liverpool, Merseyside, England. [Castro, A. J.; Hughes, C.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN 37996 USA. [Marchisone, M.; Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Murakami, H.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Watanabe, Y.] Univ Tokyo, Tokyo, Japan. [Busch, O.; Chujo, T.; Esumi, S.; Hosokawa, R.; Inaba, M.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 10000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, Univ Lyon, CNRS IN2P3, IPN Lyon, Villeurbanne, France. [Pagano, D.] Univ Brescia, I-25121 Brescia, Italy. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Patra, R. N.; Sadhu, S.; Saini, J.; Sarkar, D.; Sarkar, N.; Sheikh, A. I.; Singaraju, R.; Singhal, V.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Graczykowski, L. K.; Jakubowska, M. J.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szczepankiewicz, A.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48202 USA. [Barnafoldi, G. G.; Bencedi, G.; Berenyi, D.; Biro, G.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Balasubramanian, S.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Epple, E.; Grachov, O. A.; Harris, J. W.; Lapidus, K.; Lutz, T. H.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Smirnov, N.] Yale Univ, New Haven, CT 06520 USA. [Kang, J. H.; Kim, D.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul, South Korea. [Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Connors, M. E.] Georgia State Univ, Atlanta, GA 30302 USA. [Khan, M. Mohisin] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl, Moscow, Russia. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. RI Martinez Hernandez, Mario Ivan/F-4083-2010; Pshenichnov, Igor/A-4063-2008; Takahashi, Jun/B-2946-2012; Peitzmann, Thomas/K-2206-2012; Bregant, Marco/I-7663-2012; Castillo Castellanos, Javier/G-8915-2013; Nattrass, Christine/J-6752-2016; Ferreiro, Elena/C-3797-2017; Natal da Luz, Hugo/F-6460-2013; Vechernin, Vladimir/J-5832-2013; Ferretti, Alessandro/F-4856-2013; Derradi de Souza, Rafael/M-4791-2013; Fernandez Tellez, Arturo/E-9700-2017; Kovalenko, Vladimir/C-5709-2013; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; OI Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Pshenichnov, Igor/0000-0003-1752-4524; Takahashi, Jun/0000-0002-4091-1779; Peitzmann, Thomas/0000-0002-7116-899X; Castillo Castellanos, Javier/0000-0002-5187-2779; Nattrass, Christine/0000-0002-8768-6468; Ferreiro, Elena/0000-0002-4449-2356; Natal da Luz, Hugo/0000-0003-1177-870X; Vechernin, Vladimir/0000-0003-1458-8055; Ferretti, Alessandro/0000-0001-9084-5784; Derradi de Souza, Rafael/0000-0002-2084-7001; Fernandez Tellez, Arturo/0000-0003-0152-4220; Kovalenko, Vladimir/0000-0001-6012-6615; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Giubilato, Piero/0000-0003-4358-5355; Mohler, Christian/0000-0001-8053-4843; Fernandez Tellez, Arturo/0000-0001-5092-9748 FU Grid centres; Worldwide LHC Computing Grid (WLCG) Collaboration; State Committee of Science, Armenia; World Federation of Scientists (WFS), Armenia; Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science AMP; Technology of China (MSTC); National Natural Science Foundation of China (NSFC); Ministry of Education of China (MOEC); Ministry of Science, Education and Sports of Croatia, Croatia; Unity through Knowledge Fund, Croatia; Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3, France; Region Pays de Loire, France; Region Alsace, France; Region Auvergne, France; CEA, France; German Bundesministerium fur Bildung; Wissenschaft; Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; MEXT, Japan; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Mexico; Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Amerique Latine Formation academique-European Commission (ALFA-EC), Netherlands; EPLANET Program (European Particle Physics Latin American Network), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Pontificia Universidad Catolica del Peru; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Joint Institute for Nuclear Research, Dubna, Russia; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut AMP; Alice Wallenberg Foundation (KAW); National Science and Technology Development Agency (NSDTA); Suranaree University of Technology (SUT); Office of the Higher Education Commission under NRU project of Thailand; Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) Collaboration.; r The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS), and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of China (MOEC); Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the "Region Pays de Loire," "Region Alsace," "Region Auvergne," and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Amerique Latine Formation academique-European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Pontificia Universidad Catolica del Peru; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Joint Institute for Nuclear Research, Dubna, Russia, Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT), and Office of the Higher Education Commission under NRU project of Thailand; Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States; Nar tional Science Foundation, the State of Texas, and the State of Ohio. NR 87 TC 0 Z9 0 U1 41 U2 41 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 23 PY 2016 VL 94 IS 5 AR 054908 DI 10.1103/PhysRevC.94.054908 PG 31 WC Physics, Nuclear SC Physics GA EC9MG UT WOS:000388468100002 ER PT J AU Abazov, VM Abbott, B Acharya, BS Adams, M Adams, T Agnew, JP Alexeev, GD Alkhazov, G Alton, A Askew, A Atkins, S Augsten, K Aushev, Y Avila, C Badaud, F Bagby, L Baldin, B Bandurin, DV Banerjee, S Barberis, E Baringer, P Bartlett, JF Bassler, U Bazterra, V Bean, A Begalli, M Bellantoni, L Beri, SB Bernardi, G Bernhard, R Bertram, I Besanon, M Beuselinck, R Bhat, PC Bhatia, S Bhatnagar, V Blazey, G Blessing, S Bloom, K Boehnlein, A Boline, D Boos, EE Borissov, G Borysova, M Brandt, A Brandt, O Brock, R Bross, A Brown, D Bu, XB Buehler, M Buescher, V Bunichev, V Burdin, S Buszello, CP Camacho-Perez, E Casey, BCK Castilla-Valdez, H Caughron, S Chakrabarti, S Chan, KM Chandra, A Chapon, E Chen, G Cho, SW Choi, S Choudhary, B Cihangir, S Claes, D Clutter, J Cooke, M Cooper, WE Corcoran, M Couderc, F Cousinou, MC Cuth, J Cutts, D Das, A Davies, G de Jong, SJ De La Cruz-Burelo, E Deliot, F Demina, R Denisov, D Denisov, SP Desai, S Deterre, C DeVaughan, K Diehl, HT Diesburg, M Ding, PF Dominguez, A Dubey, A Dudko, LV Duperrin, A Dutt, S Eads, M Edmunds, D Ellison, J Elvira, VD Enari, Y Evans, H Evdokimov, A Evdokimov, VN Faure, A Feng, L Ferbel, T Fiedler, F Filthaut, F Fisher, W Fisk, HE Fortner, M Fox, H Franc, J Fuess, S Garbincius, PH Garcia-Bellido, A Garcia-Gonzalez, JA Gavrilov, V Geng, W Gerber, CE Gershtein, Y Ginther, G Gogota, O Golovanov, G Grannis, PD Greder, S Greenlee, H Grenier, G Gris, P Grivaz, JF Grohsjean, A Grunendahl, S Grunewald, MW Guillemin, T Gutierrez, G Gutierrez, P Haley, J Han, L Harder, K Harel, A Hauptman, JM Hays, J Head, T Hebbeker, T Hedin, D Hegab, H Heinson, AP Heintz, U Hensel, C Heredia-De La Cruz, I Herner, K Hesketh, G Hildreth, MD Hirosky, R Hoang, T Hobbs, JD Hoeneisen, B Hogan, J Hohlfeld, M Holzbauer, JL Howley, I Hubacek, Z Hynek, V Iashvili, I Ilchenko, Y Illingworth, R Ito, AS Jabeen, S Jaffre, M Jayasinghe, A Jeong, MS Jesik, R Jiang, P Johns, K Johnson, E Johnson, M Jonckheere, A Jonsson, P Joshi, J Jung, AW Juste, A Kajfasz, E Karmanov, D Katsanos, I Kaur, M Kehoe, R Kermiche, S Khalatyan, N Khanov, A Kharchilava, A Kharzheev, YN Kiselevich, I Kohli, JM Kozelov, AV Kraus, J Kumar, A Kupco, A Kurca, T Kuzmin, VA Lammers, S Lebrun, P Lee, HS Lee, SW Lee, WM Lei, X Lellouch, J Li, D Li, H Li, L Li, QZ Lim, JK Lincoln, D Linnemann, J Lipaev, VV Lipton, R Liu, H Liu, Y Lobodenko, A Lokajicek, M de Sa, RL Luna-Garcia, R Lyon, AL Maciel, AKA Madar, R Magana-Villalba, R Malik, S Malyshev, VL Mansour, J Martinez-Ortega, J McCarthy, R McGivern, CL Meijer, MM Melnitchouk, A Menezes, D Mercadante, PG Merkin, M Meyer, A Meyer, J Miconi, F Mondal, NK Mulhearn, M Nagy, E Narain, M Nayyar, R Neal, HA Negret, JP Neustroev, P Nguyen, HT Nunnemann, T Orduna, J Osman, N Osta, J Pal, A Parashar, N Parihar, V Park, SK Partridge, R Parua, N Patwa, A Penning, B Perfilov, M Peters, Y Petridis, K Petrillo, G Petroff, P Pleier, MA Podstavkov, VM Popov, AV Prewitt, M Price, D Prokopenko, N Qian, J Quadt, A Quinn, B Ratoff, PN Razumov, I Ripp-Baudot, I Rizatdinova, F Rominsky, M Ross, A Royon, C Rubinov, P Ruchti, R Sajot, G Sanchez-Hernandez, A Sanders, MP Santos, AS Savage, G Savitskyi, M Sawyer, L Scanlon, T Schamberger, RD Scheglov, Y Schellman, H Schott, M Schwanenberger, C Schwienhorst, R Sekaric, J Severini, H Shabalina, E Shary, V Shaw, S Shchukin, AA Simak, V Skubic, P Slattery, P Smirnov, D Snow, GR Snow, J Snyder, S Soldner-Rembold, S Sonnenschein, L Soustruznik, K Stark, J Stoyanova, DA Strauss, M Suter, L Svoisky, P Titov, M Tokmenin, VV Tsai, YT Tsybychev, D Tuchming, B Tully, C Uvarov, L Uvarov, S Uzunyan, S Van Kooten, R van Leeuwen, WM Varelas, N Varnes, EW Vasilyev, IA Verkheev, AY Vertogradov, LS Verzocchi, M Vesterinen, M Vilanova, D Vokac, P Wahl, HD Wang, MHLS Warchol, J Watts, G Wayne, M Weichert, J Welty-Rieger, L Williams, MRJ Wilson, GW Wobisch, M Wood, DR Wyatt, TR Xie, Y Yamada, R Yang, S Yasuda, T Yatsunenko, YA Ye, W Ye, Z Yin, H Yip, K Youn, SW Yu, JM Zennamo, J Zhao, TG Zhou, B Zhu, J Zielinski, M Zieminska, D Zivkovic, L AF Abazov, V. M. Abbott, B. Acharya, B. S. Adams, M. Adams, T. Agnew, J. P. Alexeev, G. D. Alkhazov, G. Alton, A. Askew, A. Atkins, S. Augsten, K. Aushev, Y. Avila, C. Badaud, F. Bagby, L. Baldin, B. Bandurin, D. V. Banerjee, S. Barberis, E. Baringer, P. Bartlett, J. F. Bassler, U. Bazterra, V. Bean, A. Begalli, M. Bellantoni, L. Beri, S. B. Bernardi, G. Bernhard, R. Bertram, I. Besanon, M. Beuselinck, R. Bhat, P. C. Bhatia, S. Bhatnagar, V. Blazey, G. Blessing, S. Bloom, K. Boehnlein, A. Boline, D. Boos, E. E. Borissov, G. Borysova, M. Brandt, A. Brandt, O. Brock, R. Bross, A. Brown, D. Bu, X. B. Buehler, M. Buescher, V. Bunichev, V. Burdin, S. Buszello, C. P. Camacho-Perez, E. Casey, B. C. K. Castilla-Valdez, H. Caughron, S. Chakrabarti, S. Chan, K. M. Chandra, A. Chapon, E. Chen, G. Cho, S. W. Choi, S. Choudhary, B. Cihangir, S. Claes, D. Clutter, J. Cooke, M. Cooper, W. E. Corcoran, M. Couderc, F. Cousinou, M. -C. Cuth, J. Cutts, D. Das, A. Davies, G. de Jong, S. J. De La Cruz-Burelo, E. Deliot, F. Demina, R. Denisov, D. Denisov, S. P. Desai, S. Deterre, C. DeVaughan, K. Diehl, H. T. Diesburg, M. Ding, P. F. Dominguez, A. Dubey, A. Dudko, L. V. Duperrin, A. Dutt, S. Eads, M. Edmunds, D. Ellison, J. Elvira, V. D. Enari, Y. Evans, H. Evdokimov, A. Evdokimov, V. N. Faure, A. Feng, L. Ferbel, T. Fiedler, F. Filthaut, F. Fisher, W. Fisk, H. E. Fortner, M. Fox, H. Franc, J. Fuess, S. Garbincius, P. H. Garcia-Bellido, A. Garcia-Gonzalez, J. A. Gavrilov, V. Geng, W. Gerber, C. E. Gershtein, Y. Ginther, G. Gogota, O. Golovanov, G. Grannis, P. D. Greder, S. Greenlee, H. Grenier, G. Gris, Ph. Grivaz, J. -F. Grohsjean, A. Gruenendahl, S. Grunewald, M. W. Guillemin, T. Gutierrez, G. Gutierrez, P. Haley, J. Han, L. Harder, K. Harel, A. Hauptman, J. M. Hays, J. Head, T. Hebbeker, T. Hedin, D. Hegab, H. Heinson, A. P. Heintz, U. Hensel, C. Heredia-De La Cruz, I. Herner, K. Hesketh, G. Hildreth, M. D. Hirosky, R. Hoang, T. Hobbs, J. D. Hoeneisen, B. Hogan, J. Hohlfeld, M. Holzbauer, J. L. Howley, I. Hubacek, Z. Hynek, V. Iashvili, I. Ilchenko, Y. Illingworth, R. Ito, A. S. Jabeen, S. Jaffre, M. Jayasinghe, A. Jeong, M. S. Jesik, R. Jiang, P. Johns, K. Johnson, E. Johnson, M. Jonckheere, A. Jonsson, P. Joshi, J. Jung, A. W. Juste, A. Kajfasz, E. Karmanov, D. Katsanos, I. Kaur, M. Kehoe, R. Kermiche, S. Khalatyan, N. Khanov, A. Kharchilava, A. Kharzheev, Y. N. Kiselevich, I. Kohli, J. M. Kozelov, A. V. Kraus, J. Kumar, A. Kupco, A. Kurca, T. Kuzmin, V. A. Lammers, S. Lebrun, P. Lee, H. S. Lee, S. W. Lee, W. M. Lei, X. Lellouch, J. Li, D. Li, H. Li, L. Li, Q. Z. Lim, J. K. Lincoln, D. Linnemann, J. Lipaev, V. V. Lipton, R. Liu, H. Liu, Y. Lobodenko, A. Lokajicek, M. de Sa, R. Lopes Luna-Garcia, R. Lyon, A. L. Maciel, A. K. A. Madar, R. Magana-Villalba, R. Malik, S. Malyshev, V. L. Mansour, J. Martinez-Ortega, J. McCarthy, R. McGivern, C. L. Meijer, M. M. Melnitchouk, A. Menezes, D. Mercadante, P. G. Merkin, M. Meyer, A. Meyer, J. Miconi, F. Mondal, N. K. Mulhearn, M. Nagy, E. Narain, M. Nayyar, R. Neal, H. A. Negret, J. P. Neustroev, P. Nguyen, H. T. Nunnemann, T. Orduna, J. Osman, N. Osta, J. Pal, A. Parashar, N. Parihar, V. Park, S. K. Partridge, R. Parua, N. Patwa, A. Penning, B. Perfilov, M. Peters, Y. Petridis, K. Petrillo, G. Petroff, P. Pleier, M. -A. Podstavkov, V. M. Popov, A. V. Prewitt, M. Price, D. Prokopenko, N. Qian, J. Quadt, A. Quinn, B. Ratoff, P. N. Razumov, I. Ripp-Baudot, I. Rizatdinova, F. Rominsky, M. Ross, A. Royon, C. Rubinov, P. Ruchti, R. Sajot, G. Sanchez-Hernandez, A. Sanders, M. P. Santos, A. S. Savage, G. Savitskyi, M. Sawyer, L. Scanlon, T. Schamberger, R. D. Scheglov, Y. Schellman, H. Schott, M. Schwanenberger, C. Schwienhorst, R. Sekaric, J. Severini, H. Shabalina, E. Shary, V. Shaw, S. Shchukin, A. A. Simak, V. Skubic, P. Slattery, P. Smirnov, D. Snow, G. R. Snow, J. Snyder, S. Soldner-Rembold, S. Sonnenschein, L. Soustruznik, K. Stark, J. Stoyanova, D. A. Strauss, M. Suter, L. Svoisky, P. Titov, M. Tokmenin, V. V. Tsai, Y. -T. Tsybychev, D. Tuchming, B. Tully, C. Uvarov, L. Uvarov, S. Uzunyan, S. Van Kooten, R. van Leeuwen, W. M. Varelas, N. Varnes, E. W. Vasilyev, I. A. Verkheev, A. Y. Vertogradov, L. S. Verzocchi, M. Vesterinen, M. Vilanova, D. Vokac, P. Wahl, H. D. Wang, M. H. L. S. Warchol, J. Watts, G. Wayne, M. Weichert, J. Welty-Rieger, L. Williams, M. R. J. Wilson, G. W. Wobisch, M. Wood, D. R. Wyatt, T. R. Xie, Y. Yamada, R. Yang, S. Yasuda, T. Yatsunenko, Y. A. Ye, W. Ye, Z. Yin, H. Yip, K. Youn, S. W. Yu, J. M. Zennamo, J. Zhao, T. G. Zhou, B. Zhu, J. Zielinski, M. Zieminska, D. Zivkovic, L. CA D0 Collaboration TI Measurement of the inclusive t(t)over-bar production cross section in p(p)over-bar collisions at root s=1.96 TeV and determination of the top quark pole mass SO PHYSICAL REVIEW D LA English DT Article ID HADRON COLLIDERS; RUN-II; DETECTOR; IDENTIFICATION; RECONSTRUCTION; EVENTS AB The inclusive cross section of top quark-antiquark pairs produced in p (p) over bar collisions at root s = 1.96 TeV is measured in the lepton + jets and dilepton decay channels. The data sample corresponds to 9.7 fb(-1) of integrated luminosity recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. Employing multivariate analysis techniques we measure the cross section in the two decay channels and we perform a combined cross section measurement. For a top quark mass of 172.5 GeV, we measure a combined inclusive top quark-antiquark pair production cross section of sigma(t<(t)over bar) = 7.26 +/- 0.13(stat)(-0.50)(+0.57) (syst) pb which is consistent with standard model predictions. We also perform a likelihood fit to the measured and predicted top quark mass dependence of the inclusive cross section, which yields a measurement of the pole mass of the top quark. The extracted value is m(t) = 172.8 +/- 1.1(theo)(-3.1)(+3.3) (exp) GeV. C1 [Hensel, C.; Maciel, A. K. A.; Santos, A. S.] Ctr Brasileiro Pesquisas Fis, LAFEX, Rio De Janeiro, Brazil. [Begalli, M.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Han, L.; Jiang, P.; Liu, Y.; Yang, S.] Univ Sci & Technol China, Hefei, Peoples R China. [Avila, C.; Negret, J. P.] Univ Los Andes, Bogota, Colombia. [Soustruznik, K.] Charles Univ Prague, Ctr Particle Phys, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Hubacek, Z.; Hynek, V.; Simak, V.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Kupco, A.; Lokajicek, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Hoeneisen, B.] Univ San Francisco Quito, Quito, Ecuador. [Badaud, F.; Gris, Ph.] Univ Clermont Ferrand, CNRS, IN2P3, LPC, Clermont, France. [Sajot, G.; Stark, J.] Univ Joseph Fourier Grenoble 1, LPSC, Inst Natl Polytech Grenoble, CNRS IN2P3, Grenoble, France. [Cousinou, M. -C.; Duperrin, A.; Geng, W.; Kajfasz, E.; Kermiche, S.; Nagy, E.; Osman, N.] Aix Marseille Univ, CNRS, IN2P3, CPPM, Marseille, France. [Grivaz, J. -F.; Guillemin, T.; Jaffre, M.; Petroff, P.] Univ Paris 11, CNRS, IN2P3, LAL, Orsay, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris VI, LPNHE, Paris, France. [Bernardi, G.; Brown, D.; Enari, Y.; Lellouch, J.; Li, D.; Zivkovic, L.] Univ Paris VII, CNRS, IN2P3, Paris, France. [Bassler, U.; Besanon, M.; Chapon, E.; Couderc, F.; Deliot, F.; Grohsjean, A.; Hubacek, Z.; Royon, C.; Shary, V.; Titov, M.; Tuchming, B.; Vilanova, D.] CEA, Irfu, SPP, Saclay, France. [Greder, S.; Miconi, F.; Ripp-Baudot, I.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon 1, CNRS, IN2P3, IPNL, Villeurbanne, France. [Grenier, G.; Kurca, T.; Lebrun, P.] Univ Lyon, Lyon, France. [Hebbeker, T.; Meyer, A.; Sonnenschein, L.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bernhard, R.; Madar, R.] Univ Freiburg, Inst Phys, Freiburg, Germany. [Brandt, O.; Deterre, C.; Mansour, J.; Meyer, J.; Quadt, A.; Shabalina, E.] Georg August Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Buescher, V.; Fiedler, F.; Hohlfeld, M.; Weichert, J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Nunnemann, T.; Sanders, M. P.] Ludwig Maximilians Univ Munchen, Munich, Germany. [Beri, S. B.; Bhatnagar, V.; Dutt, S.; Kohli, J. M.] Panjab Univ, Chandigarh, India. [Choudhary, B.; Dubey, A.] Univ Delhi, Delhi, India. [Acharya, B. S.; Banerjee, S.; Mondal, N. K.] Tata Inst Fundamental Res, Bombay, Maharashtra, India. [Grunewald, M. W.] Univ Coll Dublin, Dublin, Ireland. [Cho, S. W.; Choi, S.; Jeong, M. S.; Lee, H. S.; Lim, J. K.; Park, S. K.] Korea Univ, Korea Detector Lab, Seoul, South Korea. [Camacho-Perez, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Garcia-Gonzalez, J. A.; Heredia-De La Cruz, I.; Luna-Garcia, R.; Magana-Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] CINVESTAV, Mexico City, DF, Mexico. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.; van Leeuwen, W. M.] Nikhef, Sci Pk, Amsterdam, Netherlands. [de Jong, S. J.; Filthaut, F.; Meijer, M. M.] Radboud Univ Nijmegen, Nijmegen, Netherlands. [Abazov, V. M.; Alexeev, G. D.; Golovanov, G.; Kharzheev, Y. N.; Malyshev, V. L.; Tokmenin, V. V.; Verkheev, A. Y.; Vertogradov, L. S.; Yatsunenko, Y. A.] Joint Nucl Res Inst, Dubna, Russia. [Gavrilov, V.; Kiselevich, I.] Inst Theoret & Expt Phys, Moscow, Russia. [Boos, E. E.; Bunichev, V.; Dudko, L. V.; Karmanov, D.; Kuzmin, V. A.; Merkin, M.; Perfilov, M.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Denisov, S. P.; Evdokimov, V. N.; Kozelov, A. V.; Lipaev, V. V.; Popov, A. V.; Prokopenko, N.; Razumov, I.; Shchukin, A. A.; Stoyanova, D. A.; Vasilyev, I. A.] Inst High Energy Phys, Protvino, Russia. [Alkhazov, G.; Lobodenko, A.; Neustroev, P.; Scheglov, Y.; Uvarov, L.; Uvarov, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Juste, A.] ICREA, Barcelona, Spain. [Juste, A.] IFAE, Barcelona, Spain. [Buszello, C. P.] Uppsala Univ, Uppsala, Sweden. [Borysova, M.] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine. [Bertram, I.; Borissov, G.; Burdin, S.; Fox, H.; Ratoff, P. N.; Ross, A.] Univ Lancaster, Lancaster LA1 4YB, England. [Beuselinck, R.; Davies, G.; Hays, J.; Jesik, R.; Jonsson, P.; Scanlon, T.] Imperial Coll London, London SW7 2AZ, England. [Agnew, J. P.; Ding, P. F.; Harder, K.; Head, T.; Hesketh, G.; McGivern, C. L.; Peters, Y.; Petridis, K.; Price, D.; Schwanenberger, C.; Soldner-Rembold, S.; Suter, L.; Vesterinen, M.; Wyatt, T. R.; Zhao, T. G.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Das, A.; Johns, K.; Lei, X.; Nayyar, R.; Varnes, E. W.] Univ Arizona, Tucson, AZ 85721 USA. [Ellison, J.; Heinson, A. P.; Joshi, J.; Li, L.] Univ Calif Riverside, Riverside, CA 92521 USA. [Adams, T.; Askew, A.; Blessing, S.; Hoang, T.; Wahl, H. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Bagby, L.; Baldin, B.; Bartlett, J. F.; Bellantoni, L.; Bhat, P. C.; Boehnlein, A.; Bross, A.; Bu, X. B.; Buehler, M.; Casey, B. C. K.; Cihangir, S.; Cooke, M.; Cooper, W. E.; Denisov, D.; Desai, S.; Diehl, H. T.; Diesburg, M.; Elvira, V. D.; Fisk, H. E.; Fuess, S.; Garbincius, P. H.; Ginther, G.; Greenlee, H.; Grunewald, M. W.; Gutierrez, G.; Herner, K.; Illingworth, R.; Ito, A. S.; Johnson, M.; Jonckheere, A.; Jung, A. W.; Khalatyan, N.; Lee, W. M.; Li, Q. Z.; Lincoln, D.; Lipton, R.; Lyon, A. L.; Melnitchouk, A.; Penning, B.; Podstavkov, V. M.; Rominsky, M.; Rubinov, P.; Savage, G.; Verzocchi, M.; Wang, M. H. L. S.; Xie, Y.; Yamada, R.; Yasuda, T.; Ye, Z.; Yin, H.; Youn, S. W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Adams, M.; Bazterra, V.; Gerber, C. E.; Meijer, M. M.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Blazey, G.; Eads, M.; Feng, L.; Fortner, M.; Hedin, D.; Menezes, D.; Uzunyan, S.] Northern Illinois Univ, De Kalb, IL 60115 USA. [Schellman, H.; Welty-Rieger, L.] Northwestern Univ, Evanston, IL 60208 USA. [Evans, H.; Lammers, S.; Parua, N.; Van Kooten, R.; Williams, M. R. J.; Zieminska, D.] Indiana Univ, Bloomington, IN 47405 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Chan, K. M.; Hildreth, M. D.; Osta, J.; Ruchti, R.; Smirnov, D.; Warchol, J.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Hauptman, J. M.; Lee, S. W.] Iowa State Univ, Ames, IA 50011 USA. [Baringer, P.; Bean, A.; Chen, G.; Clutter, J.; Sekaric, J.; Wilson, G. W.] Univ Kansas, Lawrence, KS 66045 USA. [Atkins, S.; Sawyer, L.; Wobisch, M.] Louisiana Tech Univ, Ruston, LA 71272 USA. [Barberis, E.; Wood, D. R.] Northeastern Univ, Boston, MA 02115 USA. [Alton, A.; Neal, H. A.; Qian, J.; Yu, J. M.; Zhou, B.; Zhu, J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Brock, R.; Caughron, S.; Edmunds, D.; Fisher, W.; Geng, W.; Johnson, E.; Linnemann, J.; Schwienhorst, R.; Shaw, S.] Michigan State Univ, E Lansing, MI 48824 USA. [Bhatia, S.; Holzbauer, J. L.; Kraus, J.; Quinn, B.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Claes, D.; DeVaughan, K.; Dominguez, A.; Katsanos, I.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68588 USA. [Gershtein, Y.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Tully, C.] Princeton Univ, Princeton, NJ 08544 USA. [Iashvili, I.; Kharchilava, A.; Kumar, A.; Zennamo, J.] SUNY Buffalo, Buffalo, NY 14260 USA. [Demina, R.; Ferbel, T.; Garcia-Bellido, A.; Ginther, G.; Harel, A.; Petrillo, G.; Slattery, P.; Tsai, Y. -T.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Boline, D.; Chakrabarti, S.; Grannis, P. D.; Hobbs, J. D.; de Sa, R. Lopes; McCarthy, R.; Schamberger, R. D.; Tsybychev, D.; Ye, W.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Patwa, A.; Pleier, M. -A.; Snyder, S.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Snow, J.] Langston Univ, Langston, OK 73050 USA. [Abbott, B.; Gutierrez, P.; Jayasinghe, A.; Severini, H.; Skubic, P.; Strauss, M.; Svoisky, P.] Univ Oklahoma, Norman, OK 73019 USA. [Haley, J.; Hegab, H.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Stillwater, OK 74078 USA. [Cutts, D.; Heintz, U.; Jabeen, S.; Narain, M.; Parihar, V.; Partridge, R.] Brown Univ, Providence, RI 02912 USA. [Brandt, A.; Howley, I.; Pal, A.] Univ Texas Arlington, Arlington, TX 76019 USA. [Ilchenko, Y.; Kehoe, R.; Liu, H.] Southern Methodist Univ, Dallas, TX 75275 USA. [Chandra, A.; Corcoran, M.; Hogan, J.; Orduna, J.; Prewitt, M.] Rice Univ, Houston, TX 77005 USA. [Bandurin, D. V.; Hirosky, R.; Li, H.; Mulhearn, M.; Nguyen, H. T.] Univ Virginia, Charlottesville, VA 22904 USA. [Watts, G.] Univ Washington, Seattle, WA 98195 USA. RP Abazov, VM (reprint author), Joint Nucl Res Inst, Dubna, Russia. RI Gutierrez, Phillip/C-1161-2011; Li, Liang/O-1107-2015 OI Li, Liang/0000-0001-6411-6107 FU Department of Energy (United States of America); Alternative Energies and Atomic Energy Commission (France); National Science Foundation (United States of America); National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); National Council for the Development of Science and Technology (Brazil); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) (Germany); Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences (China); Ministry of Education and Science of Ukraine (Ukraine); Russian Foundation for Basic Research (Russia); Department of Science and Technology (India); Science and Technology Facilities Council (United Kingdom); Royal Society (United Kingdom); National Natural Science Foundation of China (China) FX We thank Vladimir Shiltsev for enlightening discussions. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center "Kurchatov Institute" of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium fur Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). NR 55 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 23 PY 2016 VL 94 IS 9 AR 092004 DI 10.1103/PhysRevD.94.092004 PG 21 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA ED0IN UT WOS:000388526300002 ER PT J AU Cha, W Ulvestad, A Allain, M Chamard, V Harder, R Leake, SJ Maser, J Fuoss, PH Hruszkewycz, SO AF Cha, W. Ulvestad, A. Allain, M. Chamard, V. Harder, R. Leake, S. J. Maser, J. Fuoss, P. H. Hruszkewycz, S. O. TI Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging SO PHYSICAL REVIEW LETTERS LA English DT Article ID NANOCRYSTALS; DEFORMATION; STRAIN AB We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult. C1 [Cha, W.; Ulvestad, A.; Fuoss, P. H.; Hruszkewycz, S. O.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Allain, M.; Chamard, V.] Aix Marseille Univ, CNRS, Cent Marseille, Inst Fresnel, F-13013 Marseille, France. [Harder, R.; Maser, J.] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Leake, S. J.] ESRF, CS 40220, F-38043 Grenoble 9, France. RP Hruszkewycz, SO (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM shrus@anl.gov RI Chamard, Virginie/B-3704-2016 OI Chamard, Virginie/0000-0002-6894-4169 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; French Agence Nationale de la Recherche [ANR-11-BS10-0005]; Engineering and Physical Sciences Research Council [EP/D052939/1]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Development of variable x-ray wavelength transforms was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Creation of backprojection operators for Bragg diffraction was partially funded by the French Agence Nationale de la Recherche under Project No. ANR-11-BS10-0005. Sample preparation was supported by Engineering and Physical Sciences Research Council Grant No. EP/D052939/1. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors gratefully acknowledge the Advanced Photon Source X-ray Science Division Optics Group for help with sample preparation. NR 25 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2016 VL 117 IS 22 AR 225501 DI 10.1103/PhysRevLett.117.225501 PG 5 WC Physics, Multidisciplinary SC Physics GA ED1UI UT WOS:000388630000021 PM 27925753 ER PT J AU Chung, M Qin, H Davidson, RC Groening, L Xiao, C AF Chung, Moses Qin, Hong Davidson, Ronald C. Groening, Lars Xiao, Chen TI Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHARGE AB In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. In this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. The new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. The corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable. C1 [Chung, Moses] Ulsan Natl Inst Sci & Technol, Dept Phys, Ulsan 44919, South Korea. [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Xiao, Chen] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany. RP Chung, M (reprint author), Ulsan Natl Inst Sci & Technol, Dept Phys, Ulsan 44919, South Korea. EM mchung@unist.ac.kr FU National Research Foundation of Korea [NRF-2015R1D1A1A01061074, NRF-2016R1A5A1013277]; U.S. Department of Energy [DE-AC02-09CH11466] FX This research was supported by the National Research Foundation of Korea (Grants No. NRF-2015R1D1A1A01061074 and No. NRF-2016R1A5A1013277). This work was also supported by the U.S. Department of Energy Grant No. DE-AC02-09CH11466. NR 39 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2016 VL 117 IS 22 AR 224801 DI 10.1103/PhysRevLett.117.224801 PG 5 WC Physics, Multidisciplinary SC Physics GA ED1UI UT WOS:000388630000016 PM 27925737 ER PT J AU Flippo, KA Doss, FW Kline, JL Merritt, EC Capelli, D Cardenas, T DeVolder, B Fierro, F Huntington, CM Kot, L Loomis, EN MacLaren, SA Murphy, TJ Nagel, SR Perry, TS Randolph, RB Rivera, G Schmidt, DW AF Flippo, K. A. Doss, F. W. Kline, J. L. Merritt, E. C. Capelli, D. Cardenas, T. DeVolder, B. Fierro, F. Huntington, C. M. Kot, L. Loomis, E. N. MacLaren, S. A. Murphy, T. J. Nagel, S. R. Perry, T. S. Randolph, R. B. Rivera, G. Schmidt, D. W. TI Late-Time Mixing Sensitivity to Initial Broadband Surface Roughness in High-Energy-Density Shear Layers SO PHYSICAL REVIEW LETTERS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; TURBULENT; TRANSITION AB Using a large volume high-energy-density fluid shear experiment (8.5 cm(3)) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix. C1 [Flippo, K. A.; Kline, J. L.; Merritt, E. C.; Kot, L.; Loomis, E. N.; Murphy, T. J.; Perry, T. S.] Los Alamos Natl Lab, Div Phys, Plasma Phys, Los Alamos, NM 87545 USA. [Doss, F. W.] Los Alamos Natl Lab, Theoret Design Div, Los Alamos, NM 87545 USA. [Capelli, D.; Cardenas, T.; Fierro, F.; Randolph, R. B.; Rivera, G.; Schmidt, D. W.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [DeVolder, B.] Los Alamos Natl Lab, Computat Phys Div, Los Alamos, NM 87545 USA. [Huntington, C. M.; MacLaren, S. A.; Nagel, S. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Flippo, KA (reprint author), Los Alamos Natl Lab, Div Phys, Plasma Phys, Los Alamos, NM 87545 USA. EM kflippo@lanl.gov; fdoss@lanl.gov RI Murphy, Thomas/F-3101-2014 OI Murphy, Thomas/0000-0002-6137-9873 FU U.S. Department of Energy by the Los Alamos National Laboratory [DE-AC52-06NA25396]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors would like to thank the crew and support staff of the National Ignition Facility for operational and technical support. K. A. F. would like to thank Sandrine A. Gaillard for useful discussions and editing of the MS. This work was funded and carried out under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, and by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 46 TC 0 Z9 0 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2016 VL 117 IS 22 AR 225001 DI 10.1103/PhysRevLett.117.225001 PG 6 WC Physics, Multidisciplinary SC Physics GA ED1UI UT WOS:000388630000017 PM 27925731 ER PT J AU Hinkel, DE Hopkins, LFB Ma, T Ralph, JE Albert, F Benedetti, LR Celliers, PM Doppner, T Goyon, CS Izumi, N Jarrott, LC Khan, SF Kline, JL Kritcher, AL Kyrala, GA Nagel, SR Pak, AE Patel, P Rosen, MD Rygg, JR Schneider, MB Turnbull, DP Yeamans, CB Callahan, DA Hurricane, OA AF Hinkel, D. E. Hopkins, L. F. Berzak Ma, T. Ralph, J. E. Albert, F. Benedetti, L. R. Celliers, P. M. Doppner, T. Goyon, C. S. Izumi, N. Jarrott, L. C. Khan, S. F. Kline, J. L. Kritcher, A. L. Kyrala, G. A. Nagel, S. R. Pak, A. E. Patel, P. Rosen, M. D. Rygg, J. R. Schneider, M. B. Turnbull, D. P. Yeamans, C. B. Callahan, D. A. Hurricane, O. A. TI Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility SO PHYSICAL REVIEW LETTERS LA English DT Article AB Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 x increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy. C1 [Hinkel, D. E.; Hopkins, L. F. Berzak; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Doppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kline, J. L.; Kyrala, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Turnbull, D. P.] Univ Rochester, Laser Energet Lab, Rochester, NY 14625 USA. RP Hinkel, DE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI Albert, Felicie/G-2645-2013 FU U.S. Department of Energy [DE-AC52-07NA27344] FX The authors would like to thank the ICF Program Summer Study for the initial recommendation of fielding high foot implosions in improved hohlraums [20]. We also acknowledge the careful manuscript reading by O. L. Landen, whose suggestions improved this Letter. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. NR 25 TC 1 Z9 1 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2016 VL 117 IS 22 AR 225002 DI 10.1103/PhysRevLett.117.225002 PG 5 WC Physics, Multidisciplinary SC Physics GA ED1UI UT WOS:000388630000018 PM 27925754 ER PT J AU Mukherjee, S Venugopalan, R Yin, Y AF Mukherjee, Swagato Venugopalan, Raju Yin, Yi TI Universal Off-Equilibrium Scaling of Critical Cumulants in the QCD Phase Diagram SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMIC CRITICAL PHENOMENA; COSMOLOGICAL EXPERIMENTS; CRITICAL EXPONENTS; DEFECT FORMATION; TRANSITION; LATTICE AB Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. We demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point. C1 [Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Venugopalan, Raju] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. RP Mukherjee, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0012704]; Excellence Initiative of Heidelberg University FX The authors thank J. Berges, P. Braun-Munzinger, U. Heinz, M. Hindmarsh, B.-L. Hu, A. Kovner, J. Pawlowski, and K. Rajagopal for useful discussions. R. V. thanks the Institut fur Theoretische Physik, Heidelberg for their kind hospitality and the Excellence Initiative of Heidelberg University for support. This material is partially based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-SC0012704, and within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. NR 40 TC 4 Z9 4 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2016 VL 117 IS 22 AR 222301 DI 10.1103/PhysRevLett.117.222301 PG 5 WC Physics, Multidisciplinary SC Physics GA ED1UI UT WOS:000388630000008 PM 27925720 ER PT J AU Romero-Redondo, C Quaglioni, S Navratil, P Hupin, G AF Romero-Redondo, Carolina Quaglioni, Sofia Navratil, Petr Hupin, Guillaume TI How Many-Body Correlations and alpha Clustering Shape He-6 SO PHYSICAL REVIEW LETTERS LA English DT Article ID LAGRANGE MESH; LIGHT-NUCLEI; STATES; SCATTERING; MODEL AB The Borromean He-6 nucleus is an exotic system characterized by two halo neutrons orbiting around a compact He-4 (or alpha) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with He-4 + n + n cluster degrees of freedom largely solves this issue. We analyze the role played by alpha clustering and many-body correlations, and study the dependence of the energy spectrum on the resolution scale of the interaction. C1 [Romero-Redondo, Carolina; Quaglioni, Sofia] Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. [Navratil, Petr] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Hupin, Guillaume] CEA, DAM, DIF, F-91297 Arpajon, France. RP Romero-Redondo, C (reprint author), Lawrence Livermore Natl Lab, POB 808,L-414, Livermore, CA 94551 USA. EM romeroredond1@llnl.gov; quaglioni1@llnl.gov; navratil@triumf.ca; guillaume.hupin@cea.fr FU LLNL [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [SCW1158]; Natural Sciences and Engineering Research Council of Canada (NSERC) [401945-2011, SAPIN-2016-00033]; National Research Council of Canada FX We thank J. Dohet-Eraly and A. Calci for multiple useful discussions and critical reading of the manuscript. Computing support for this work came from the Lawrence Livermore National Laboratory (LLNL) institutional Computing Grand Challenge program, and from an INCITE Award on the Titan supercomputer of the Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory (ORNL). This Letter was prepared in part by LLNL under Contract No. DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW1158, and by the Natural Sciences and Engineering Research Council of Canada (NSERC) Grants No. 401945-2011 and No. SAPIN-2016-00033. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. NR 49 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2016 VL 117 IS 22 AR 222501 DI 10.1103/PhysRevLett.117.222501 PG 5 WC Physics, Multidisciplinary SC Physics GA ED1UI UT WOS:000388630000010 PM 27925714 ER PT J AU Whitelam, S AF Whitelam, Stephen TI Minimal Positive Design for Self-Assembly of the Archimedean Tilings SO PHYSICAL REVIEW LETTERS LA English DT Article ID DYNAMIC PATHWAYS; CRYSTALLIZATION; NANOPARTICLES; PARTICLES; SURFACES; LATTICE AB A challenge of molecular self-assembly is to understand how to design particles that self-assemble into a desired structure and not any of a potentially large number of undesired structures. Here we use simulation to show that a strategy of minimal positive design allows the self-assembly of networks equivalent to the 8 semiregular Archimedean tilings of the plane, structures not previously realized in simulation. This strategy consists of identifying the fewest distinct types of interparticle interaction that appear in the desired structure, and does not require enumeration of the many possible undesired structures. The resulting particles, which self-assemble into the desired networks, possess DNA-like selectivity of their interactions. Assembly of certain molecular networks may therefore require such selectivity. C1 [Whitelam, Stephen] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Whitelam, S (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX I thank Barbara Sacca for valuable discussions. This work was done at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 NR 44 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 23 PY 2016 VL 117 IS 22 AR 228003 DI 10.1103/PhysRevLett.117.228003 PG 5 WC Physics, Multidisciplinary SC Physics GA ED1UI UT WOS:000388630000031 PM 27925733 ER PT J AU Cao, W Warrick, ER Fidler, A Neumark, DM Leone, SR AF Cao, Wei Warrick, Erika R. Fidler, Ashley Neumark, Daniel M. Leone, Stephen R. TI Noncollinear wave mixing of attosecond XUV and few-cycle optical laser pulses in gas-phase atoms: Toward multidimensional spectroscopy involving XUV excitations SO PHYSICAL REVIEW A LA English DT Article ID RESOLVED 4-WAVE-MIXING SPECTROSCOPY; HIGH HARMONIC-GENERATION; RAMAN-SCATTERING; IODINE VAPOR; FEMTOSECOND; DYNAMICS; STATES; MOLECULES AB Ultrafast nonlinear spectroscopy, which records transient wave-mixing signals in a medium, is a powerful tool to access microscopic information using light sources in the radio-frequency and optical regimes. The extension of this technique towards the extreme ultraviolet (XUV) or even x-ray regimes holds the promise to uncover rich structural or dynamical information with even higher spatial or temporal resolution. Here, we demonstrate noncollinear wave mixing between weak XUV attosecond pulses and a strong near-infrared (NIR) few-cycle laser pulse in gas phase atoms (one photon of XUV and two photons of NIR). In the noncollinear geometry the attosecond and either one or two NIR pulses interact with argon atoms. Nonlinear XUV signals are generated in a spatially resolved fashion as required by phase matching. Different transition pathways can be identified from these background-free nonlinear signals according to the specific phase-matching conditions. Time-resolved measurements of the spatially gated XUV signals reveal electronic coherences of Rydberg wave packets prepared by a single XUV photon or XUV-NIR two-photon excitation, depending on the applied pulse sequences. These measurements open possible applications of tabletop multidimensional spectroscopy to the study of dynamics associated with valence or core excitation with XUV photons. C1 [Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Cao, Wei; Warrick, Erika R.; Fidler, Ashley; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cao, Wei; Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Cao, W (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Cao, W (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Cao, W (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Office of Science, Office of Basic Energy Sciences; Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences and by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. NR 35 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV 23 PY 2016 VL 94 IS 5 AR 053846 DI 10.1103/PhysRevA.94.053846 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EC9KQ UT WOS:000388463900009 ER PT J AU Dai, YM Akrap, A Bud'ko, SL Canfield, PC Homes, CC AF Dai, Y. M. Akrap, Ana Bud'ko, S. L. Canfield, P. C. Homes, C. C. TI Optical properties of AFe(2)As(2) (A=Ca, Sr, and Ba) single crystals SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; CHARGE DYNAMICS; IRON PNICTIDES; BAFE2AS2; CHALCOGENIDES; STATE AB The detailed optical properties have been determined for the iron-based materials AFe(2)As(2), where A = Ca, Sr, and Ba, for light polarized in the iron-arsenic (a-b) planes over a wide frequency range, above and below the magnetic and structural transitions at T-N = 138, 195, and 172 K, respectively. The real and imaginary parts of the complex conductivity are fit simultaneously using two Drude terms in combination with a series of oscillators. Above TN, the free-carrier response consists of a weak, narrow Drude term, and a strong, broad Drude term, both of which show only a weak temperature dependence. Below T-N there is a slight decrease of the plasma frequency but a dramatic drop in the scattering rate for the narrow Drude term, and for the broad Drude term there is a significant decrease in the plasma frequency, while the decrease in the scattering rate, albeit significant, is not as severe. The small values observed for the scattering rates for the narrow Drude term for T << TN may be related to the Dirac conelike dispersion of the electronic bands. Below T-N new features emerge in the optical conductivity that are associated with the reconstruction Fermi surface and the gapping of bands at Delta(1) similar or equal to 45-80 meV, and Delta(2) similar or equal to 110-210 meV. The reduction in the spectral weight associated with the free carriers is captured by the gap structure; specifically, the spectral weight from the narrow Drude term appears to be transferred into the low-energy gap feature, while the missing weight from the broad term shifts to the high-energy gap. C1 [Dai, Y. M.; Homes, C. C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA. [Akrap, Ana] Univ Geneva, DQMP, CH-1211 Geneva 4, Switzerland. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Dai, YM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA. EM ymdai@lanl.gov; homes@bnl.gov RI Dai, Yaomin/E-4259-2016 OI Dai, Yaomin/0000-0002-2464-3161 FU Ambizione grant of the Swiss National Science Foundation; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-07CH11358]; Office of Science, U.S. Department of Energy [DE-SC0012704] FX We would like to acknowledge useful discussions with E. Bascones and Y. Gallais. A.A. acknowledges funding from the Ambizione grant of the Swiss National Science Foundation. Work at the Ames Laboratory (S.L.B. and P.C.C.) was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. We would like to thank Alex Thaler and Sheng Ran for help in samples' synthesis. Work at Brookhaven National Laboratory was supported by the Office of Science, U.S. Department of Energy under Contract No. DE-SC0012704. NR 71 TC 0 Z9 0 U1 14 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 23 PY 2016 VL 94 IS 19 AR 195142 DI 10.1103/PhysRevB.94.195142 PG 11 WC Physics, Condensed Matter SC Physics GA EC9LL UT WOS:000388466000002 ER PT J AU Smylie, MP Claus, H Welp, U Kwok, WK Qiu, Y Hor, YS Snezhko, A AF Smylie, M. P. Claus, H. Welp, U. Kwok, W. -K. Qiu, Y. Hor, Y. S. Snezhko, A. TI Evidence of nodes in the order parameter of the superconducting doped topological insulator NbxBi2Se3 via penetration depth measurements SO PHYSICAL REVIEW B LA English DT Article ID UNCONVENTIONAL SUPERCONDUCTORS; SYMMETRY-BREAKING; GAP STRUCTURE; PHASE; UBE13 AB The low-temperature variation of the London penetration depth lambda(T) in the candidate topological superconductor NbxBi2Se3 (x = 0.25) is reported for several crystals. The measurements were carried out by means of a tunnel-diode oscillator technique in both field orientations (H-rf || c and H-rf || ab planes). All samples exhibited power-law behavior at low temperatures (Delta lambda similar to T-2) clearly indicating the presence of point nodes in the superconducting order parameter. The results presented here are consistent with a nematic odd-parity spin-triplet E-u pairing state in NbxBi2Se3. C1 [Smylie, M. P.; Claus, H.; Welp, U.; Kwok, W. -K.; Snezhko, A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Smylie, M. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Qiu, Y.; Hor, Y. S.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. RP Smylie, MP (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Smylie, MP (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-06CH11357]; ND Energy; National Science Foundation Grant [DMR-1255607] FX The authors thank Ivar Martin for helpful discussions. Tunnel diode oscillator and magnetization measurements were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, Contract No. DE-AC02-06CH11357. M.P.S. thanks ND Energy for supporting his research and professional development through the ND Energy Postdoctoral Fellowship Program. Y.S.H. acknowledges support from the National Science Foundation Grant No. DMR-1255607. NR 59 TC 1 Z9 1 U1 19 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 23 PY 2016 VL 94 IS 18 AR 180510 DI 10.1103/PhysRevB.94.180510 PG 5 WC Physics, Condensed Matter SC Physics GA EC9LE UT WOS:000388465300003 ER PT J AU Bechinger, C Di Leonardo, R Lowen, H Reichhardt, C Volpe, G Volpe, G AF Bechinger, Clemens Di Leonardo, Roberto Loewen, Hartmut Reichhardt, Charles Volpe, Giorgio Volpe, Giovanni TI Active Particles in Complex and Crowded Environments SO REVIEWS OF MODERN PHYSICS LA English DT Article ID SELF-PROPELLED PARTICLES; LOW-REYNOLDS-NUMBER; MULTIPARTICLE COLLISION DYNAMICS; MESOPOROUS JANUS NANOMOTORS; CRITICAL CASIMIR FORCES; ESCHERICHIA-COLI; BROWNIAN-MOTION; SWIMMING BACTERIA; PHASE-SEPARATION; AUTONOMOUS MOVEMENT AB Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing. C1 [Bechinger, Clemens] Univ Stuttgart, Phys Inst, Pfaffenwaldring 57, D-70569 Stuttgart, Germany. [Bechinger, Clemens] Max Planck Inst Intelligente Syst, Heisenbergstr 3, D-70569 Stuttgart, Germany. [Di Leonardo, Roberto] Univ Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Di Leonardo, Roberto] CNR, NANOTEC, Inst Nanotechnol, Soft & Living Matter Lab, I-00185 Rome, Italy. [Loewen, Hartmut] Heinrich Heine Univ Dusseldorf, Inst Theoret Phys Weiche Materie 2, D-40225 Dusseldorf, Germany. [Reichhardt, Charles] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Volpe, Giorgio] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England. [Volpe, Giovanni] Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden. [Volpe, Giovanni] Bilkent Univ, Soft Matter Lab, Dept Phys, TR-06800 Ankara, Turkey. [Volpe, Giovanni] Bilkent Univ, Natl Nanotechnol Res Ctr, UNAM, TR-06800 Ankara, Turkey. RP Volpe, G (reprint author), Univ Gothenburg, Dept Phys, SE-41296 Gothenburg, Sweden.; Volpe, G (reprint author), Bilkent Univ, Soft Matter Lab, Dept Phys, TR-06800 Ankara, Turkey.; Volpe, G (reprint author), Bilkent Univ, Natl Nanotechnol Res Ctr, UNAM, TR-06800 Ankara, Turkey. EM giovanni.volpe@physics.gu.se RI Volpe, Giorgio/E-9162-2010; Lowen, Hartmut/K-9999-2016; Volpe, Giovanni/B-1862-2008; Di Leonardo, Roberto/B-5831-2012 OI Volpe, Giorgio/0000-0001-9993-5348; Lowen, Hartmut/0000-0001-5376-8062; Volpe, Giovanni/0000-0001-5057-1846; Di Leonardo, Roberto/0000-0002-5020-0663 FU DFG [SPP 1726]; European Research Council [307940]; Marie Curie Career Integration Grant (MC-CIG) [PCIG11GA-2012-321726]; Distinguished Young Scientist award of the Turkish Academy of Sciences (TUBA); COST Actions [MP1205, IC1208, MP1305] FX We have greatly benefited from discussions with many colleagues and friends in the last few years. We especially thank Aykut Argun, Ivo Buttinoni, Agnese Callegari, Frank Cichos, Peer Fisher, Gerhard Gompper, Andreas Kaiser, Felix Kummel, Mite Mijalkov, Roland Netz, Cynthia J. Olson-Reichhardt, Fernando Peruani, Roberto Piazza, Maurizio Righini, Holger Stark, Borge ten Hagen, Sabareeh K. P. Velu, Jan Wehr, Roland Winkler, and Raphael Wittkowski. C. B. and H. L. acknowledge funding from the SPP 1726 of the DFG. R. D. L. acknowledges funding from the European Research Council Grant Agreement No. 307940. G. V. acknowledges support from the Marie Curie Career Integration Grant (MC-CIG) No. PCIG11GA-2012-321726, a Distinguished Young Scientist award of the Turkish Academy of Sciences (TUBA), and COST Actions No. MP1205, No. IC1208, and No. MP1305. NR 454 TC 12 Z9 12 U1 45 U2 45 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD NOV 23 PY 2016 VL 88 IS 4 AR 045006 DI 10.1103/RevModPhys.88.045006 PG 50 WC Physics, Multidisciplinary SC Physics GA ED1VB UT WOS:000388631900001 ER PT J AU Devaraj, A Vijayakumar, M Bao, J Guo, MF Derewinski, MA Xu, ZJ Gray, MJ Prodinger, S Ramasamy, KK AF Devaraj, Arun Vijayakumar, Murugesan Bao, Jie Guo, Mond F. Derewinski, Miroslaw A. Xu, Zhijie Gray, Michel J. Prodinger, Sebastian Ramasamy, Karthikeyan K. TI Discerning the Location and Nature of Coke Deposition from Surface to Bulk of Spent Zeolite Catalysts SO SCIENTIFIC REPORTS LA English DT Article ID ATOM-PROBE TOMOGRAPHY; NANOSTRUCTURED FERRITIC ALLOY; HYDROCARBONS; CONVERSION; HZSM-5; NANOPARTICLES; DEACTIVATION; METHANOL; H-ZSM-5; ETHANOL AB The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), C-13 Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. Al-27 NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set-based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution. C1 [Devaraj, Arun; Derewinski, Miroslaw A.; Xu, Zhijie; Prodinger, Sebastian] Pacific Northwest Natl Lab Richland, Phys & Computat Sci Directorate, Richland, WA 99354 USA. [Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Gray, Michel J.; Ramasamy, Karthikeyan K.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. RP Devaraj, A (reprint author), Pacific Northwest Natl Lab Richland, Phys & Computat Sci Directorate, Richland, WA 99354 USA.; Ramasamy, KK (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM arun.devaraj@pnnl.gov; karthi@pnnl.gov RI Xu, Zhijie/A-1627-2009; OI Xu, Zhijie/0000-0003-0459-4531; Murugesan, Vijayakumar/0000-0001-6149-1702 FU U.S. Department of Energy (DOE) [DE-AC05-76RL01830]; DOE's Bioenergy Technology Office; Materials Synthesis and Simulation Across Scales (MS3 Initiative) under the Laboratory Directed Research & Development (LDRD) Program at PNNL; DOE's Office of Biological and Environmental Research; DOE's Office of Science and Office of Basic Energy Sciences [DE-AC02-05CH11231] FX The Pacific Northwest National Laboratory (PNNL) is operated by Battelle Memorial Institute for the U.S. Department of Energy (DOE) under Contract No. DE-AC05-76RL01830. This work was supported by the DOE's Bioenergy Technology Office. M. A. D. and S. P. acknowledges support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under the Laboratory Directed Research & Development (LDRD) Program at PNNL. The XAS, NMR, and APT portion of this work was done as part of a chemical imaging initiative, an LDRD program at PNNL. The APT was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. The XAS experiments were conducted at beamline 6.3.2 in the Advanced Light Source (ALS) facility at Lawrence Berkeley National Laboratory. AD and VJ acknowledge Dr. Yi-Sheng Liu for his assistance with the XAS experiments. The ALS is supported by the DOE's Office of Science and Office of Basic Energy Sciences under Contract No. DE-AC02-05CH11231. NR 49 TC 0 Z9 0 U1 25 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 23 PY 2016 VL 6 AR 37586 DI 10.1038/srep37586 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC7VZ UT WOS:000388350000001 PM 27876869 ER PT J AU Qin, J de Pablo, JJ AF Qin, Jian de Pablo, Juan J. TI Criticality and Connectivity in Macromolecular Charge Complexation SO MACROMOLECULES LA English DT Article ID FIELD-THEORETIC SIMULATIONS; POLYELECTROLYTE COMPLEXES; STATISTICAL-THEORY; PHASE-BEHAVIOR; FLUCTUATIONS; SEPARATION; CHIRALITY; SYSTEMS AB We examine the role of molecular connectivity and architecture on the complexation of ionic macromolecules (polyelectrolytes) of finite size. A unified framework is developed and applied to evaluate the electrostatic correlation free energy for point-like, rod-like, and coil-like molecules. That framework is generalized to molecules of variable fractal dimensions, including dendrimers. Analytical expressions for the free energy, correlation length, and osmotic pressure are derived, thereby enabling consideration of the effects of charge connectivity, fractal dimension, and backbone stiffness on the complexation behavior of a wide range of polyelectrolytes. Results are presented for regions in the immediate vicinity of the critical region and far from it. A transparent and explicit expression for the coexistence curve is derived in order to facilitate analysis of experimentally observed phase diagrams. C1 [Qin, Jian] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [de Pablo, Juan J.] Argonne Natl Lab, Argonne, IL USA. RP Qin, J (reprint author), Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. EM jianq@stanford.edu FU Department of Energy, Basic Energy Sciences, Division of Materials Research and Engineering FX This work is supported by the Department of Energy, Basic Energy Sciences, Division of Materials Research and Engineering. NR 43 TC 3 Z9 3 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 22 PY 2016 VL 49 IS 22 BP 8789 EP 8800 DI 10.1021/acs.macromol.6b02113 PG 12 WC Polymer Science SC Polymer Science GA ED5SV UT WOS:000388913500040 ER PT J AU Grahn, T Pakarinen, J Jokiniemi, L Albers, M Auranen, K Bauer, C Bernards, C Blazhev, A Butler, PA Bonig, S Damyanova, A De Coster, T De Witte, H Elseviers, J Gaffney, LP Huyse, M Herzan, A Jakobsson, U Julin, R Kesteloot, N Konki, J Kroll, T Lewandowski, L Moschner, K Peura, P Pfeiffer, M Radeck, D Rahkila, P Rapisarda, E Reiter, P Reynders, K Rudiger, M Salsac, MD Sambi, S Scheck, M Seidlitz, M Siebeck, B Steinbach, T Stolze, S Suhonen, J Thoele, P Thurauf, M Warr, N Van Duppen, P Venhart, M Vermeulen, MJ Werner, V Veselsky, M Vogt, A Wrzosek-Lipska, K Zielinska, M AF Grahn, T. Pakarinen, J. Jokiniemi, L. Albers, M. Auranen, K. Bauer, C. Bernards, C. Blazhev, A. Butler, P. A. Boenig, S. Damyanova, A. De Coster, T. De Witte, H. Elseviers, J. Gaffney, L. P. Huyse, M. Herzan, A. Jakobsson, U. Julin, R. Kesteloot, N. Konki, J. Kroell, Th. Lewandowski, L. Moschner, K. Peura, P. Pfeiffer, M. Radeck, D. Rahkila, P. Rapisarda, E. Reiter, P. Reynders, K. Rudiger, M. Salsac, M. -D. Sambi, S. Scheck, M. Seidlitz, M. Siebeck, B. Steinbach, T. Stolze, S. Suhonen, J. Thoele, P. Thuerauf, M. Warr, N. Van Duppen, P. Venhart, M. Vermeulen, M. J. Werner, V. Veselsky, M. Vogt, A. Wrzosek-Lipska, K. Zielinska, M. TI Collective 2(1)(+) excitations in Po-206 and Rn-208,Rn-210 SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID EVEN-EVEN NUCLIDES; TRANSITION-PROBABILITY; INTRUDER STATES; SHELL-MODEL; NUCLEI; FACILITY AB In the present study, B(E2; 2(1)(+) -> 0(1)(+)) values have been measured in the Rn-208,Rn-210 and Po-206 nuclei through Coulomb excitation of re-accelerated radioactive beams in inverse kinematics at CERNISOLDE. These nuclei have been proposed to lie in, or at the boundary of the region where the seniority scheme should persist. However, contributions from collective excitations are likely to be present when moving away from the N = 126 closed shell. Such an effect is confirmed by the observed increased collectivity of the 2(1)(+) -> 0(1)(+) transitions. Experimental results have been interpreted with the aid of theoretical studies carried out within the BCS-based QRPA framework. C1 [Grahn, T.; Pakarinen, J.; Jokiniemi, L.; Auranen, K.; Herzan, A.; Jakobsson, U.; Julin, R.; Konki, J.; Rahkila, P.; Suhonen, J.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Grahn, T.; Pakarinen, J.; Auranen, K.; Herzan, A.; Jakobsson, U.; Julin, R.; Konki, J.; Peura, P.; Rahkila, P.; Stolze, S.] Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland. [Albers, M.; Blazhev, A.; Lewandowski, L.; Moschner, K.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Rudiger, M.; Seidlitz, M.; Siebeck, B.; Steinbach, T.; Thoele, P.; Warr, N.; Vogt, A.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Bauer, C.; Boenig, S.; Kroell, Th.; Scheck, M.; Thuerauf, M.; Werner, V.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Bernards, C.; Werner, V.] Yale Univ, Wright Nucl Struct Lab, POB 208120, New Haven, CT 06520 USA. [Butler, P. A.; Gaffney, L. P.] Univ Liverpool, Oliver Lodge Lab, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Damyanova, A.] Univ Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland. [De Coster, T.; De Witte, H.; Elseviers, J.; Gaffney, L. P.; Huyse, M.; Kesteloot, N.; Rapisarda, E.; Reynders, K.; Sambi, S.; Van Duppen, P.; Wrzosek-Lipska, K.] Katholieke Univ Leuven, Inst Kern Stralingsfys, Dept Phys, B-3001 Leuven, Belgium. [Gaffney, L. P.; Scheck, M.] Univ West Scotland, Sch Engn, Paisley PA1 2BE, Renfrew, Scotland. [Pakarinen, J.; Rapisarda, E.; Van Duppen, P.] CERN, PH Dept, CERN ISOLDE, CH-1211 Geneva 23, Switzerland. [Salsac, M. -D.; Zielinska, M.] CEA Saclay, F-91191 Gif Sur Yvette, France. [Veselsky, M.] Slovak Acad Sci, Inst Phys, Dubravska Cesta 9, Bratislava 84511 45, Slovakia. [Vermeulen, M. J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Auranen, K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Grahn, T (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland.; Grahn, T (reprint author), Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland. EM tuomas.grahn@jyu.fi RI Werner, Volker/C-1181-2017; OI Werner, Volker/0000-0003-4001-0150; Gaffney, Liam Paul/0000-0002-2938-3696 FU ISOLDE collaboration and technical teams; Academy of Finland [131665, 257562]; Bonn-Cologne Graduate School of Physics and Astronomy (BCGS); IA-ENSAR (EU FP7 contract) [262010]; Marie Curie Career Integration Grant [304033]; U.S. DOE [DE-FG02-91ER-40609]; UK Science & Technology Facilities Council; BMBF [05P15RDCIA]; FWO-Vlaanderen (Belgium); BOF KU Leuven [GOA/2010/010]; Interuniversity Attraction Poles Programme; Belgian Science Policy Office (BriX network) [P7/12] FX The authors acknowledge the support of the ISOLDE collaboration and technical teams and wish to acknowledge CSC - IT Center for Science, Finland, for computational resources. TG acknowledges the support of the Academy of Finland, contract 131665. AV acknowledges the support by the Bonn-Cologne Graduate School of Physics and Astronomy (BCGS). The present study was supported by IA-ENSAR (EU FP7 contract 262010), the Marie Curie Career Integration Grant (Grant No. 304033), the Academy of Finland (Grant No. 257562), U.S. DOE grant no. DE-FG02-91ER-40609, UK Science & Technology Facilities Council, BMBF grant no. 05P15RDCIA, FWO-Vlaanderen (Belgium), GOA/2010/010 (BOF KU Leuven), and the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12). NR 28 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 EI 1434-601X J9 EUR PHYS J A JI Eur. Phys. J. A PD NOV 22 PY 2016 VL 52 IS 11 AR 340 DI 10.1140/epja/i2016-16340-6 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EH5JW UT WOS:000391810200001 ER PT J AU He, LL Hu, B Henn, DM Zhao, B AF He, Lilin Hu, Bin Henn, Daniel M. Zhao, Bin TI Influence of cleavage of photosensitive group on thermally induced micellization and gelation of a doubly responsive diblock copolymer in aqueous solutions: A SANS study SO POLYMER LA English DT Article DE Small-angle neutron scattering; Stimuli-responsive polymer; Micellization and gelation ID ANGLE NEUTRON-SCATTERING; PARTICLE-SIZE DISTRIBUTION; OXIDE) BLOCK-COPOLYMERS; CARBOXYLIC-ACIDS; FORM-FACTORS; MICELLES; RHEOLOGY; WATER; SUSPENSIONS; TRANSITION AB In the present study, small-angle neutron scattering (SANS) was used to investigate the temperature and concentration dependence of micelle formation and growth of a thermo-and light-responsive hydrophilic block copolymer and the influence of removing photosensitive group. The water-soluble polymer poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) (PEO-bP( TEGEA-co-NBA) underwent sol-gel/gel-sol transitions in response to temperature changes in the range of 15-55 degrees C in a 25 wt% aqueous solution. The SANS data showed that individual chains existed at low temperatures and dilute solutions. Spherical micelles formed and packed into an ordered structure at elevated temperatures and high concentrations. Data fitting revealed that the micelle growth followed both micelle fusion and unimer insertion mechanisms after the critical micelle temperature was reached in moderately concentrated solutions whereas the fusion mechanism was dominant at higher temperatures. The UV exposure led to a 22% expansion in chain dimension at the unimer stage due to repulsive interactions between the ionized segments after the removal of the light sensitive group. The higher onset temperature of sol-gel transition after irradiation was mainly ascribed to the higher lower critical solution temperature (LCST). On the other hand, the lower gel-sol transition temperature upon UV exposure was due to the reduction in micelle volume fraction after the cleavage of o-nitrobenzyl group. These results correlated well with the dynamic rheological data. Published by Elsevier Ltd. C1 [He, Lilin] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Hu, Bin; Henn, Daniel M.; Zhao, Bin] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP He, LL (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. EM hel3@ornl.gov OI He, Lilin/0000-0002-9560-8101 FU NSF [DMR-1206385, DMR-1607076] FX This research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. B.Z. thanks NSF for the support (DMR-1206385 and -1607076). NR 47 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD NOV 22 PY 2016 VL 105 SI SI BP 25 EP 34 DI 10.1016/j.polymer.2016.10.019 PG 10 WC Polymer Science SC Polymer Science GA EC8PT UT WOS:000388405300004 ER PT J AU McCoy, JD Ancipink, WB Clarkson, CM Kropka, JM Celina, MC Giron, NH Hailesilassie, L Fredj, N AF McCoy, John D. Ancipink, Windy B. Clarkson, Caitlyn M. Kropka, Jamie M. Celina, Mathias C. Giron, Nicholas H. Hailesilassie, Lebelo Fredj, Narjes TI Cure mechanisms of diglycidyl ether of bisphenol A (DGEBA) epoxy with diethanolamine SO POLYMER LA English DT Article DE Epoxy cure; Tertiary amine - epoxide - hydroxyl reaction; Glass transition ID DIFFERENTIAL SCANNING CALORIMETRY; CROSS-LINKING; IR SPECTROSCOPY; COHESIVE FAILURE; GLASSY-POLYMERS; THERMOSET CURE; KINETICS; AMINES; RESINS; DEGRADATION AB When diethanolamine (DEA) is used as a curative for a DGEBA epoxy, a rapid "adduct-forming" reaction of epoxide with the secondary amine of DEA is followed by a slow "gelation" reaction of epoxide with hydroxyl and with other epoxide. Through an extensive review of previous investigations of simpler, but chemically similar, reactions, it is deduced that at low temperature the DGEBA/DEA gelation reaction is "activated" (shows a pronounced induction time, similar to autocatalytic behavior) by the tertiary amine in the adduct. At high temperature, the activated nature of the reaction disappears. The impact of this mechanism change on the kinetics of the gelation reaction, as resolved with differential scanning calorimetry, infrared spectroscopy, and isothermal microcalorimetry, is presented. It is shown that the kinetic characteristics of the gelation-reaction of the DGEBA/DEA system are similar to other tertiaryamine activated epoxy reactions and consistent with the anionic polymerization model previously proposed for this class of materials. Principle results are the time-temperature-transformation diagram, the effective activation energy, and the upper stability temperature of the zwitterion initiator of the activated gelation reaction. It is established that the rate of epoxide consumption cannot be generically represented as a function only of temperature and degree of epoxy conversion. The complex chemistry active in the material requires specific consideration of the dilute intermediates in the reaction sequence in order to define a model of the reaction kinetics applicable to all time-temperature cure histories. (C) 2016 Elsevier Ltd. All rights reserved. C1 [McCoy, John D.; Ancipink, Windy B.; Clarkson, Caitlyn M.; Hailesilassie, Lebelo; Fredj, Narjes] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Kropka, Jamie M.; Celina, Mathias C.; Giron, Nicholas H.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP McCoy, JD (reprint author), New Mexico Inst Min & Technol, Socorro, NM 87801 USA. EM john.mccoy@nmt.edu RI McCoy, John/B-3846-2010 OI McCoy, John/0000-0001-5404-1404 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 65 TC 0 Z9 0 U1 10 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD NOV 22 PY 2016 VL 105 SI SI BP 243 EP 254 DI 10.1016/j.polymer.2016.10.028 PG 12 WC Polymer Science SC Polymer Science GA EC8PT UT WOS:000388405300029 ER PT J AU Schaffer, CJ Wang, C Hexemer, A Muller-Buschbaum, P AF Schaffer, Christoph J. Wang, Cheng Hexemer, Alexander Mueller-Buschbaum, Peter TI Grazing incidence resonant soft X-ray scattering for analysis of multi-component polymer-fullerene blend thin films SO POLYMER LA English DT Article DE GI-RSoXS; GISAXS; Polymer blend; Conducting polymer; Organic photovoltaics ID HETEROJUNCTION SOLAR-CELLS; ANGLE NEUTRON-SCATTERING; POWER CONVERSION EFFICIENCY; ORGANIC PHOTOVOLTAICS; OPTICAL-PROPERTIES; ALKANE DITHIOLS; MORPHOLOGY; PERFORMANCE; REAL; ENHANCEMENT AB Grazing incidence small angle X-ray scattering (GISAXS) methods are frequently very successfully utilized for morphological investigations of thin polymer blend films used in organic photovoltaics. However, conventional GISAXS does no longer provide material sensitivity when the blend consists of more than two components due to the contrast conditions. In case of multi-component blends the use of grazing incidence resonant soft X-ray scattering (GI-RSoXS) can overcome such problems. In this work we exemplarily apply GI-RSoXS to investigate simultaneously the vertical and lateral morphology of polymer-fullerene bulk heterojunction layers made from poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]] (PCPDTBT) and [6,6]-penyl-C 61 butyric acid methyl ester (PCBM) with added photosensitizer perylene diimide (PDI) with and without use of the solvent additive 1,8-octanedithiol (ODT). The investigation reveals that films without solvent additive ODT tend to show only vertical phase separation while films prepared with solvent additive also phase separate laterally. PDI seems to assist lateral phase separation between PCPDTBT and PCBM by expelling PCBM from the amorphous polymer matrix. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Schaffer, Christoph J.; Mueller-Buschbaum, Peter] Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, James Franck Str 1, D-85748 Garching, Germany. [Wang, Cheng; Hexemer, Alexander] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Muller-Buschbaum, P (reprint author), Tech Univ Munich, Phys Dept, Lehrstuhl Funkt Mat, James Franck Str 1, D-85748 Garching, Germany. EM muellerb@ph.tum.de RI Muller-Buschbaum, Peter/C-3397-2017; Wang, Cheng/A-9815-2014 OI Muller-Buschbaum, Peter/0000-0002-9566-6088; FU TUM.solar in the frame of the Bavarian Collaborative Research Project "Solar technologies go Hybrid" (SolTec); GreenTech Initiative (Interface Science for Photovoltaics - ISPV) of the EuroTech Universities; Nanosystems Initiative Munich (NIM); Early Career DOE program; Bavarian State Ministry of Education, Science and the Arts via the International Graduate School "Materials Science of Complex Interfaces" (CompInt); Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Financial support is acknowledged by TUM.solar in the frame of the Bavarian Collaborative Research Project "Solar technologies go Hybrid" (SolTec), by the GreenTech Initiative (Interface Science for Photovoltaics - ISPV) of the EuroTech Universities and by the Nanosystems Initiative Munich (NIM). A.H. acknowledges funding from the Early Career DOE program and C.J.S. from the Bavarian State Ministry of Education, Science and the Arts via the International Graduate School "Materials Science of Complex Interfaces" (CompInt). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 3 Z9 3 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD NOV 22 PY 2016 VL 105 SI SI BP 357 EP 367 DI 10.1016/j.polymer.2016.05.056 PG 11 WC Polymer Science SC Polymer Science GA EC8PT UT WOS:000388405300040 ER PT J AU Lee, HS Lee, JS Jung, AR Cha, W Kim, H Son, HJ Cho, JH Kim, B AF Lee, Hyo-Sang Lee, Joong Suk Jung, A-Ra Cha, Wonsuk Kim, Hyunjung Son, Hae Jung Cho, Jeong Ho Kim, BongSoo TI Processing temperature control of a diketopyrrolopyrrole-alt-thieno [2,3-b]thiophene polymer for high-mobility thin-film transistors and polymer solar cells with high open-circuit voltages SO POLYMER LA English DT Article DE Processing temperature; Carrier mobility; Photovoltaic performance ID POWER CONVERSION EFFICIENCY; LOW-BANDGAP POLYMER; HIGH-PERFORMANCE; PHOTOVOLTAIC MATERIALS; CONJUGATED POLYMER; TANDEM POLYMER; JUNCTION; 11-PERCENT; MORPHOLOGY; DESIGN AB We synthesized a planar pDPPTTi-OD polymer based on diketopyrrolopyrrole (DPP) and thieno [2,3-b] thiophene (TTi) and investigated the electrical properties of the pDPPTTi-OD polymer. pDPPTTi-OD films displayed a low optical bandgap of 1.57 eV, and HOMO and LUMO levels of -5.40 and -3.74 eV, respectively. The 150 degrees C-annealed pDPPTTi-OD films showed a high hole mobility of 0.16 cm(2)V(-1) s(-1) in organic thin-film transistor (OTFT) devices. The photovoltaic properties of polymer solar cells (PSCs) incorporating the pDPPTTi-OD were also measured. A pDPPTTi-OD: PC71BM blend film was spin-coated at 25, 70 and 90 degrees C. High-temperature processing significantly improved the power conversion efficiency of PSCs by effectively reducing the PC71BM domain sizes, which improved the miscibility between pDPPTTi-OD and PC71BM. This work demonstrated that the TTi moiety is a useful donor building block for high-performance D-A type polymers in OTFTs and PSCs, and that processing temperatures should be controlled to fully realize the materials' beneficial intrinsic properties. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lee, Hyo-Sang; Son, Hae Jung] Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 02792, South Korea. [Lee, Hyo-Sang; Son, Hae Jung] Korea Univ, Green Sch, Sch Energy & Environm, Seoul 02841, South Korea. [Lee, Joong Suk; Cho, Jeong Ho] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea. [Lee, Joong Suk; Cho, Jeong Ho] Sungkyunkwan Univ, Ctr Human Interface Nano Technol HINT, Dept Chem Engn, Suwon 440746, South Korea. [Jung, A-Ra; Kim, BongSoo] Ewha Womans Univ, Dept Sci Educ, Seoul 03760, South Korea. [Cha, Wonsuk; Kim, Hyunjung] Sogang Univ, Dept Phys, Seoul 04107, South Korea. [Cha, Wonsuk] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kim, B (reprint author), Ewha Womans Univ, Dept Sci Educ, Seoul 03760, South Korea. EM bongsoo@ewha.ac.kr FU National Research Foundation (NRF) - Ministry of Science, ICT & Future Planning [NRF-2015M1A2A2056218]; Basic Science Research Program through the NRF - Ministry of Education [NRF-2015R1D1A1A01058493]; R&D Convergence Program of NST (National Research Council of Science & Technology) of Republic of Korea [CAP-15-04-KITECH] FX This work was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015M1A2A2056218), by Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2015R1D1A1A01058493), and by the financial support from the R&D Convergence Program of NST (National Research Council of Science & Technology) of Republic of Korea (CAP-15-04-KITECH). NR 33 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD NOV 22 PY 2016 VL 105 SI SI BP 79 EP 87 DI 10.1016/j.polymer.2016.10.024 PG 9 WC Polymer Science SC Polymer Science GA EC8PT UT WOS:000388405300010 ER PT J AU Huang, K Fu, JS AF Huang, Kan Fu, Joshua S. TI A global gas flaring black carbon emission rate dataset from 1994 to 2012 SO SCIENTIFIC DATA LA English DT Article; Data Paper ID NATURAL GASES; MIDDLE-EAST; OIL-SPILL; SKY-LOSA; COMPONENTS; BASIN; FIELD; SUMMER; ORIGIN; FLARES AB Global flaring of associated petroleum gas is a potential emission source of particulate matters (PM) and could be notable in some specific regions that are in urgent need of mitigation. PM emitted from gas flaring is mainly in the form of black carbon (BC), which is a strong short-lived climate forcer. However, BC from gas flaring has been neglected in most global/regional emission inventories and is rarely considered in climate modeling. Here we present a global gas flaring BC emission rate dataset for the period 1994-2012 in a machine-readable format. We develop a region-dependent gas flaring BC emission factor database based on the chemical compositions of associated petroleum gas at various oil fields. Gas flaring BC emission rates are estimated using this emission factor database and flaring volumes retrieved from satellite imagery. Evaluation using a chemical transport model suggests that consideration of gas flaring emissions can improve model performance. This dataset will benefit and inform a broad range of research topics, e.g., carbon budget, air quality/climate modeling, and environmental/human exposure. C1 [Huang, Kan] Fudan Univ, Dept Environm Sci & Engn, Shanghai Key Lab Atmospher Particle Pollut & Prev, Ctr Atmospher Chem Study, Shanghai 200433, Peoples R China. [Huang, Kan; Fu, Joshua S.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Fu, Joshua S.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Fu, Joshua S.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Fu, JS (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA.; Fu, JS (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.; Fu, JS (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM jsfu@utk.edu NR 73 TC 1 Z9 1 U1 11 U2 11 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2052-4463 J9 SCI DATA JI Sci. Data PD NOV 22 PY 2016 VL 3 AR UNSP 160104 DI 10.1038/sdata.2016.104 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EF3PZ UT WOS:000390238000002 PM 27874852 ER PT J AU Xue, DZ Balachandran, PV Yuan, RH Hu, T Qian, X Dougherty, ER Lookman, T AF Xue, Dezhen Balachandran, Prasanna V. Yuan, Ruihao Hu, Tao Qian, Xiaoning Dougherty, Edward R. Lookman, Turab TI Accelerated search for BaTiO3-based piezoelectrics with vertical morphotropic phase boundary using Bayesian learning SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE piezoelectric materials; materials informatics; Bayesian learning; morphotropic phase boundary; Pb-free materials ID SPONTANEOUS POLARIZATION; MATERIALS DESIGN; FERROELECTRICS; TEMPERATURE; CLASSIFICATION; APPROXIMATION; PIEZOCERAMICS; PEROVSKITES; BONDS; GENE AB An outstanding challenge in the nascent field of materials informatics is to incorporate materials knowledge in a robust Bayesian approach to guide the discovery of new materials. Utilizing inputs from known phase diagrams, features or material descriptors that are known to affect the ferroelectric response, and Landau-Devonshire theory, we demonstrate our approach for BaTiO3-based piezoelectrics with the desired target of a vertical morphotropic phase boundary. We predict, synthesize, and characterize a solid solution, (Ba0.5Ca0.5)TiO3-Ba(Ti0.7Zr0.3)O-3, with piezoelectric properties that show better temperature reliability than other BaTiO3-based piezoelectrics in our initial training data. C1 [Xue, Dezhen; Balachandran, Prasanna V.; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Xue, Dezhen; Yuan, Ruihao] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Hu, Tao; Qian, Xiaoning; Dougherty, Edward R.] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM txl@lanl.gov RI XUE, Dezhen/A-6062-2010 OI XUE, Dezhen/0000-0001-6132-1236 FU Los Alamos National Laboratory; Laboratory Directed Research and Development program [20140013DR]; Center for Nonlinear Studies; 973 Program [2012CB619401]; National Natural Science Foundation [51302209, 51431007, 51320105014, 51321003]; National Science Foundation [1553281] FX We are grateful to John Hogden, James Theiler, and Eli Ben-Naim for discussions. This work was supported by Los Alamos National Laboratory, Laboratory Directed Research and Development program Grant 20140013DR, and Center for Nonlinear Studies (to P.V.B. and T.L.); 973 Program Grant 2012CB619401; National Natural Science Foundation Grants 51302209, 51431007, 51320105014, and 51321003 (to D.X. and R.Y.); and National Science Foundation Grant 1553281 (to T.H., X.Q., and E.R.D.). NR 45 TC 1 Z9 1 U1 16 U2 16 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 22 PY 2016 VL 113 IS 47 BP 13301 EP 13306 DI 10.1073/pnas.1607412113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4OY UT WOS:000388830700049 PM 27821777 ER PT J AU Li, YT Zhou, WD Chen, X Lu, XJ Cui, ZM Xin, S Xue, LG Jia, QX Goodenough, JB AF Li, Yutao Zhou, Weidong Chen, Xi Lu, Xujie Cui, Zhiming Xin, Sen Xue, Leigang Jia, Quanxi Goodenough, John B. TI Mastering the interface for advanced all-solid-state lithium rechargeable batteries SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE solid electrolyte; lithium anode; polymer catholyte; interfaces; NASICON ID LI-ION; NEUTRON-DIFFRACTION; ROOM-TEMPERATURE; ELECTROLYTE; CONDUCTIVITY; CHALLENGES; CONDUCTORS; MOBILITY; NASICON AB A solid electrolyte with a high Li-ion conductivity and a small interfacial resistance against a Li metal anode is a key component in all-solid-state Li metal batteries, but there is no ceramic oxide electrolyte available for this application except the thin-film Li-P oxynitride electrolyte; ceramic electrolytes are either easily reduced by Li metal or penetrated by Li dendrites in a short time. Here, we introduce a solid electrolyte LiZr2(PO4)(3) with rhombohedral structure at room temperature that has a bulk Li-ion conductivity sigma(Li) = 2 x 10(-4) S.cm(-1) at 25 degrees C, a high electrochemical stability up to 5.5 V versus Li+/Li, and a small interfacial resistance for Li+ transfer. It reacts with a metallic lithium anode to form a Li+-conducting passivation layer (solid-electrolyte interphase) containing Li3P and Li8ZrO6 that is wet by the lithium anode and also wets the LiZr2(PO4)(3) electrolyte. An all-solid-state Li/LiFePO4 cell with a polymer catholyte shows good cyclability and a long cycle life. C1 [Li, Yutao; Zhou, Weidong; Chen, Xi; Cui, Zhiming; Xin, Sen; Xue, Leigang; Goodenough, John B.] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Li, Yutao; Zhou, Weidong; Chen, Xi; Cui, Zhiming; Xin, Sen; Xue, Leigang; Goodenough, John B.] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. [Lu, Xujie; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Goodenough, JB (reprint author), Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA.; Goodenough, JB (reprint author), Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA. EM jgoodenough@mail.utexas.edu RI Lu, Xujie/L-9672-2014; Cui, Zhiming/C-2988-2011 OI Lu, Xujie/0000-0001-8402-7160; Cui, Zhiming/0000-0002-0305-4181 FU National Science Foundation (NSF) Grant [CBET-1438007]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DESC0005397]; NSF Award [DMR-1229131] FX This work was supported by National Science Foundation (NSF) Grant CBET-1438007 and the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award DESC0005397. The SPS processing at The University of Texas at Austin was conducted with an instrument acquired with the support of NSF Award DMR-1229131. The work at Los Alamos National Laboratory was performed, in part, at the Center for Integrated Technologies, an Office of Science User Facility operated for the US Department of Energy Office of Science. NR 20 TC 4 Z9 4 U1 96 U2 96 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 22 PY 2016 VL 113 IS 47 BP 13313 EP 13317 DI 10.1073/pnas.1615912113 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4OY UT WOS:000388830700051 PM 27821751 ER PT J AU Prabhakaran, V Johnson, GE Wang, BB Laskin, J AF Prabhakaran, Venkateshkumar Johnson, Grant E. Wang, Bingbing Laskin, Julia TI In situ solid-state electrochemistry of mass-selected ions at well-defined electrode-electrolyte interfaces SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE in situ electrochemistry; electrode-electrolyte interface; ion soft-landing; ionic liquid membrane; clusters ID OXYGEN REDUCTION REACTION; ENERGY-STORAGE; CLUSTER-SIZE; SOFT; SURFACES; LIQUIDS; NANOPARTICLES; COLLISIONS; BATTERIES; HYDROGEN AB Molecular-level understanding of electrochemical processes occurring at electrode-electrolyte interfaces (EEIs) is key to the rational development of high-performance and sustainable electrochemical technologies. This article reports the development and application of solid-state in situ thin-film electrochemical cells to explore redox and catalytic processes occurring at well-defined EEIs generated using soft-landing (SL) of mass-and charge-selected cluster ions. In situ cells with excellent mass-transfer properties are fabricated using carefully designed nanoporous ionic liquid membranes. SL enables deposition of pure active species that are not obtainable with other techniques onto electrode surfaces with precise control over charge state, composition, and kinetic energy. SL is, therefore, demonstrated to be a unique tool for studying fundamental processes occurring at EEIs. Using an aprotic cell, the effect of charge state (PMo12O403-/2-) and the contribution of building blocks of Keggin polyoxometalate (POM) clusters to redox processes are characterized by populating EEIs with POM anions generated by electrospray ionization and gasphase dissociation. Additionally, a proton-conducting cell has been developed to characterize the oxygen reduction activity of bare Pt clusters (Pt-30 similar to 1 nm diameter), thus demonstrating the capability of the cell for probing catalytic reactions in controlled gaseous environments. By combining the developed in situ electrochemical cell with ion SL we established a versatile method to characterize the EEI in solid-state redox systems and reactive electrochemistry at precisely defined conditions. This capability will advance the molecular-level understanding of processes occurring at EEIs that are critical to many energy-related technologies. C1 [Prabhakaran, Venkateshkumar; Johnson, Grant E.; Laskin, Julia] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Wang, Bingbing] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Bingbing] Xiamen Univ, State Key Lab Marine & Environm Sci, Xiamen 361102, Peoples R China. [Wang, Bingbing] Xiamen Univ, Coll Ocean & Earth Sci, Xiamen 361102, Peoples R China. RP Laskin, J (reprint author), Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Prabhakaran, Venkateshkumar/0000-0001-6692-6488 FU US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division; DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830] FX This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division. The research was performed using Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830. NR 41 TC 0 Z9 0 U1 12 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 22 PY 2016 VL 113 IS 47 BP 13324 EP 13329 DI 10.1073/pnas.1608730113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED4OY UT WOS:000388830700053 PM 27821731 ER PT J AU Zeng, YN Yarbrough, JM Mittal, A Tucker, MP Vinzant, TB Decker, SR Himmel, ME AF Zeng, Yining Yarbrough, John M. Mittal, Ashutosh Tucker, Melvin P. Vinzant, Todd B. Decker, Stephen R. Himmel, Michael E. TI In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy SO Biotechnology for Biofuels LA English DT Article DE Hemicellulose; Xylan; Xylanase; Label-free imaging; Raman Spectroscopy; Stimulated Raman Scattering (SRS); Microscopy ID INTESTINAL BACTERIA; PICEA-MARIANA; SPECTROSCOPY; WOOD; LIGNIN; XYLAN; POLYSACCHARIDES; SPRUCE; CELLULOSE; BIOMASS AB Background: Plant hemicellulose (largely xylan) is an excellent feedstock for renewable energy production and second only to cellulose in abundance. Beyond a source of fermentable sugars, xylan constitutes a critical polymer in the plant cell wall, where its precise role in wall assembly, maturation, and deconstruction remains primarily hypothetical. Effective detection of xylan, particularly by in situ imaging of xylan in the presence of other biopolymers, would provide critical information for tackling the challenges of understanding the assembly and enhancing the liberation of xylan from plant materials. Results: Raman-based imaging techniques, especially the highly sensitive stimulated Raman scattering (SRS) microscopy, have proven to be valuable tools for label-free imaging. However, due to the complex nature of plant materials, especially those same chemical groups shared between xylan and cellulose, the utility of specific Raman vibrational modes that are unique to xylan have been debated. Here, we report a novel approach based on combining spectroscopic analysis and chemical/enzymatic xylan removal from corn stover cell walls, to make progress in meeting this analytical challenge. We have identified several Raman peaks associated with xylan content in cell walls for label-free in situ imaging xylan in plant cell wall. Conclusion: We demonstrated that xylan can be resolved from cellulose and lignin in situ using enzymatic digestion and label-free SRS microscopy in both 2D and 3D. We believe that this novel approach can be used to map xylan in plant cell walls and that this ability will enhance our understanding of the role played by xylan in cell wall biosynthesis and deconstruction. C1 [Zeng, Yining; Yarbrough, John M.; Mittal, Ashutosh; Vinzant, Todd B.; Decker, Stephen R.; Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Tucker, Melvin P.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Zeng, Yining; Yarbrough, John M.; Tucker, Melvin P.; Decker, Stephen R.; Himmel, Michael E.] Oak Ridge Natl Lab, BESC, POB 2008 MS6341, Oak Ridge, TN 37831 USA. RP Zeng, YN; Himmel, ME (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.; Zeng, YN; Himmel, ME (reprint author), Oak Ridge Natl Lab, BESC, POB 2008 MS6341, Oak Ridge, TN 37831 USA. EM Yining.Zeng@nrel.gov; Mike.Himmel@nrel.gov FU BioEnergy Science Center (BESC), a DOE Bioenergy Research Center - Office of Biological and Environmental Research (BER) in the DOE Office of Science FX The authors also acknowledge support from the BioEnergy Science Center (BESC), a DOE Bioenergy Research Center funded by the Office of Biological and Environmental Research (BER) in the DOE Office of Science. NR 65 TC 0 Z9 0 U1 29 U2 29 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD NOV 22 PY 2016 VL 9 AR 256 DI 10.1186/s13068-016-0669-9 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EE1YJ UT WOS:000389379800002 PM 27895710 ER PT J AU Trease, NM Seymour, ID Radin, MD Liu, H Liu, H Hy, S Chernova, N Parikh, P Devaraj, A Wiaderek, KM Chupas, PJ Chapman, KW Whittingham, MS Meng, YS Van der Van, A Grey, CP AF Trease, Nicole M. Seymour, Ieuan D. Radin, Maxwell D. Liu, Haodong Liu, Hao Hy, Sunny Chernova, Natalya Parikh, Pritesh Devaraj, Arun Wiaderek, Kamila M. Chupas, Peter J. Chapman, Karena W. Whittingham, M. Stanley Meng, Ying Shirley Van der Van, Anton Grey, Clare P. TI Identifying the Distribution of Al3+ in LiNi0.8Co0.15Al0.05O2 SO CHEMISTRY OF MATERIALS LA English DT Article ID SOLID-STATE NMR; POSITIVE ELECTRODE MATERIALS; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; NICKEL-OXIDE DERIVATIVES; AUGMENTED-WAVE METHOD; MAS NMR; THERMAL-STABILITY; LAYERED OXIDE; COBALT SUBSTITUTION AB The doping of Al into layered Li transition metal (TM) oxide cathode materials, LiTMO2, is known to improve the structural and thermal stability, although the origin of the enhanced properties is not well understood. The effect of aluminum doping on layer stabilization has been investigated using a combination of techniques to measure the aluminum distribution in layered LiNi0.8Co0.15Al0.05O2 (NCA) over multiple length scales with Al-27 and Li-7 MAS NMR, local electrode atom probe (APT) tomography, X-ray and neutron diffraction, DFT, and SQUID magnetic susceptibility measurements. APT ion maps show a homogeneous distribution of Ni, Co, Al, and O-2 throughout the structure at the single particle level in agreement with the high-temperature phase diagram. Li-7 and Al-27 NMR indicates that the Ni3+ ions undergo a dynamic Jahn-Teller (JT) distortion. Al-27 NMR spectra indicate that the Al reduces the strain associated with the JT distortion, by preferential electronic ordering of the JT lengthened bonds directed toward the Al3+ ion. The ability to understand the complex atomic and orbital ordering around Al3+ demonstrated in the current method will be useful for studying the local environment of Al3+ in a range of transition metal oxide battery materials. C1 [Trease, Nicole M.; Seymour, Ieuan D.; Grey, Clare P.] Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England. [Radin, Maxwell D.; Van der Van, Anton] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Liu, Haodong; Hy, Sunny; Parikh, Pritesh; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Liu, Hao; Wiaderek, Kamila M.; Chupas, Peter J.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Div, Argonne, IL 60439 USA. [Chernova, Natalya; Whittingham, M. Stanley] SUNY Binghamton, Inst Mat Res, Binghamton, NY 13902 USA. [Devaraj, Arun] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. RP Grey, CP (reprint author), Univ Cambridge, Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England.; Meng, YS (reprint author), Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. EM shmeng@ucsd.edu; cpg27@caniac.uk OI Liu, Hao/0000-0003-0345-6647 FU NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-SC0012583]; DOE's Office of Biological and Environmental Research [DE-AC05-76RLO1830] FX This work was supported as part of the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, under Award # DE-SC0012583. The neutron diffraction was conducted at Oak Ridge National Laboratory on POWGEN beamline by mail-in program. Sample preparation and analysis for APT were performed at William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) under Science theme proposal #49095. EMSL is a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research (Contract No. DE-AC05-76RLO1830) and located at Pacific Northwest National Laboratory (PNNL). NR 68 TC 1 Z9 1 U1 40 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 22 PY 2016 VL 28 IS 22 BP 8170 EP 8180 DI 10.1021/acs.chemmater.6b02797 PG 11 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TF UT WOS:000388914500010 ER PT J AU Connell, JG Genorio, B Lopes, PP Strmcnik, D Stamenkovic, VR Markovic, NM AF Connell, Justin G. Genorio, Bostjan Lopes, Pietro Papa Strmcnik, Dusan Stamenkovic, Vojislav R. Markovic, Nenad M. TI Tuning the Reversibility of Mg Anodes via Controlled Surface Passivation by H2O/Cl- in Organic Electrolytes SO CHEMISTRY OF MATERIALS LA English DT Article ID RECHARGEABLE MAGNESIUM BATTERIES; ION BATTERIES; ELECTROCHEMICAL INSERTION; STRUCTURAL-ANALYSIS; ENERGY-STORAGE; CHLORIDE; OXIDE; XPS; STABILITY; COMPLEX AB Developing a new generation of battery chemistries is a critical challenge to moving beyond current Li-ion technologies. In this work, we introduce a surface science-based approach for understanding the complex phenomena controlling the reversibility of Mg anodes for Mg-ion batteries. We identify the profound impact of trace levels of H2O (<= 3 ppm) on the kinetics of Mg deposition and determine that passive films of MgO and Mg(OH)(2) are formed only after Mg deposition ceases, rather than continuously during Mg reduction. We also find that Cl- inhibits passivation through the formation of adsorbed Cl- (Mg-Cl(ad)) and/or MgCl2 on the surface, as well as through a dynamic competition with H2O in the double layer. This surface-science-based approach goes well beyond Mg anodes, highlighting the need for more in-depth understanding of electrolyte chemistries before a new generation of efficient and reversible battery technologies can be realized. C1 [Connell, Justin G.; Genorio, Bostjan; Lopes, Pietro Papa; Strmcnik, Dusan; Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Joint Ctr Energy Storage Res, 9700 S Cass Ave, Argonne, IL 60439 USA. [Connell, Justin G.; Genorio, Bostjan; Lopes, Pietro Papa; Strmcnik, Dusan; Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Genorio, Bostjan] Univ Ljubljana, Dept Chem Engn & Tech Safety, SI-1000 Ljubljana, Slovenia. RP Markovic, NM (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, 9700 S Cass Ave, Argonne, IL 60439 USA.; Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nmmarkovic@anl.gov RI Lopes, Pietro/E-2724-2013 OI Lopes, Pietro/0000-0003-3211-470X FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; [DE-AC02-06CH11357] FX This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 60 TC 2 Z9 2 U1 20 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 22 PY 2016 VL 28 IS 22 BP 8268 EP 8277 DI 10.1021/acs.chemmater.6b03227 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TF UT WOS:000388914500020 ER PT J AU Huang, Y Qiao, J He, K Bliznakov, S Sutter, E Chen, X Luo, D Meng, F Su, D Decker, J Ji, W Ruoff, RS Sutter, P AF Huang, Yuan Qiao, Jingsi He, Kai Bliznakov, Stoyan Sutter, Eli Chen, Xianjue Luo, Da Meng, Fanke Su, Dong Decker, Jeremy Ji, Wei Ruoff, Rodney S. Sutter, Peter TI Interaction of Black Phosphorus with Oxygen and Water SO CHEMISTRY OF MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; AUGMENTED-WAVE METHOD; DISSOCIATIVE ATTACHMENT; LIQUID EXFOLIATION; MOBILITY; SURFACE; SEMICONDUCTOR; PASSIVATION; ELECTRONICS; GRAPHENE AB Black phosphorus (BP) has attracted significant interest as a monolayer or few-layer material with extraordinary electrical and optoelectronic properties. Chemical reactions with different ambient species, notably oxygen and water, are important as they govern key properties such as stability in air, electronic structure and charge transport, wetting by aqueous solutions, and so on. Here, we report experiments combined with ab initio calculations that address the effects of oxygen and water in contact with BP. Our results show that the reaction with oxygen is primarily responsible for changing properties of BP. Oxidation involving the dissociative chemisorption of O-2 causes the decomposition of BP and continuously lowers the conductance of BP field-effect transistors (FETs). In contrast, BP is stable in contact with deaerated (i.e., O-2 depleted) water and the carrier mobility in BP FETs gated by H2O increases significantly due to efficient dielectric screening of scattering centers by the high-k dielectric. Isotope labeling experiments, contact angle measurements, and calculations show that the pristine BP surface is hydrophobic but is turned progressively hydrophilic by oxidation. Our results open new avenues for exploring applications that require contact of BP with aqueous solutions including solution gating, electrochemistry, and solution-phase approaches for exfoliation, dispersion, and delivery of BP. C1 [Huang, Yuan; Chen, Xianjue; Luo, Da; Decker, Jeremy; Ruoff, Rodney S.] IBS, CMCM, Ulsan 689798, South Korea. [Huang, Yuan; He, Kai; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Qiao, Jingsi; Ji, Wei] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Qiao, Jingsi; Ji, Wei] Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano D, Beijing 100872, Peoples R China. [Bliznakov, Stoyan; Meng, Fanke] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Sutter, Eli] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Ruoff, Rodney S.] Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 689798, South Korea. [Ruoff, Rodney S.] Ulsan Natl Inst Sci & Technol, Sch Mat Sci & Engn, Ulsan 689798, South Korea. [Sutter, Peter] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. RP Ruoff, RS (reprint author), IBS, CMCM, Ulsan 689798, South Korea.; Ji, W (reprint author), Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China.; Ji, W (reprint author), Renmin Univ China, Beijing Key Lab Optoelect Funct Mat & Micronano D, Beijing 100872, Peoples R China.; Ruoff, RS (reprint author), Ulsan Natl Inst Sci & Technol, Dept Chem, Ulsan 689798, South Korea.; Ruoff, RS (reprint author), Ulsan Natl Inst Sci & Technol, Sch Mat Sci & Engn, Ulsan 689798, South Korea.; Sutter, P (reprint author), Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. EM wji@ruc.edu.cn; ruoillab@gmail.com; psutter@unl.edu RI Ji, Wei/G-6097-2010; Su, Dong/A-8233-2013; Meng, Fanke/D-7395-2017; OI Ji, Wei/0000-0001-5249-6624; Su, Dong/0000-0002-1921-6683; Meng, Fanke/0000-0001-7961-4248; Chen, Xianjue/0000-0002-4757-7152 FU Ministry of Science and Technology (MOST) of China [2012CB932704]; National Natural Science Foundation of China (NSFC) [11274380, 91433103, 11622437, 61674171]; Fundamental Research Funds for the Central Universities; Renmin University of China [16XNH062]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0016343]; UNL; [DE-SC0012704]; [IBS-R019-D1] FX This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Work done at the Center for Multidimensional Carbon Materials was supported by IBS-R019-D1. Work done in Beijing was financially supported by the Ministry of Science and Technology (MOST) of China under Grant No. 2012CB932704, the National Natural Science Foundation of China (NSFC) under Grant Nos. 11274380, 91433103, 11622437, 61674171, and the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China under Grant No. 16XNH062. The authors would like to thank Dr. Mingzhao Liu for use of his electrochemical characterization facility, and Dr. Bin Wang for technical assistance with the contact angle measurements. Work at the University of Nebraska-Lincoln was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0016343, and by UNL program development funds. Calculations were performed at the Physics Laboratory for High-Performance Computing of Renmin University of China and at the Shanghai Supercomputer Center. NR 50 TC 2 Z9 2 U1 59 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 22 PY 2016 VL 28 IS 22 BP 8330 EP 8339 DI 10.1021/acs.chemmater.6b03592 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TF UT WOS:000388914500027 ER PT J AU Doan-Nguyen, VVT Subrahmanyam, KS Butala, MM Gerbec, JA Islam, SM Kanipe, KN Wilson, CE Balasubramanian, M Wiaderek, KM Borkiewicz, OJ Chapman, KW Chupas, PJ Moskovits, M Dunn, BS Kanatzidis, MG Seshadri, R AF Doan-Nguyen, Vicky V. T. Subrahmanyam, Kota S. Butala, Megan M. Gerbec, Jeffrey A. Islam, Saiful M. Kanipe, Katherine N. Wilson, Catrina E. Balasubramanian, Mahalingam Wiaderek, Kamila M. Borkiewicz, Olaf J. Chapman, Karena W. Chupas, Peter J. Moskovits, Martin Dunn, Bruce S. Kanatzidis, Mercouri G. Seshadri, Ram TI Molybdenum Polysulfide Chalcogels as High-Capacity, Anion-Redox-Driven Electrode Materials for Li-Ion Batteries SO CHEMISTRY OF MATERIALS LA English DT Article ID LITHIUM-SULFUR BATTERIES; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; RAY-ABSORPTION SPECTROSCOPY; IN-SITU; HYDROGEN EVOLUTION; CATHODE MATERIALS; RAMAN-SCATTERING; S BATTERIES; SULFIDE; MOS2 AB Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g(-1) (close to 1000 mAh g(-1) on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a "glue" in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. We find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven. C1 [Doan-Nguyen, Vicky V. T.] Univ Calif Santa Barbara, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA. [Doan-Nguyen, Vicky V. T.; Seshadri, Ram] Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. [Subrahmanyam, Kota S.; Islam, Saiful M.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Butala, Megan M.; Seshadri, Ram] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Gerbec, Jeffrey A.] Mitsubishi Chem Ctr Adv Mat, Santa Barbara, CA 93106 USA. [Kanipe, Katherine N.; Wilson, Catrina E.; Moskovits, Martin; Seshadri, Ram] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Balasubramanian, Mahalingam; Wiaderek, Kamila M.; Borkiewicz, Olaf J.; Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Dunn, Bruce S.] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. RP Doan-Nguyen, VVT (reprint author), Univ Calif Santa Barbara, Calif NanoSyst Inst, Santa Barbara, CA 93106 USA.; Doan-Nguyen, VVT (reprint author), Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA. EM vdn@mrl.ucsb.edu FU California NanoSystems Institute (CNSI); National Science Foundation (NSF) [DMR-1410169]; NSF [DMR 1121053]; DOE Office of Science [DE-AC02-06CH11357]; University of California; University of California, Santa Barbara CNSI Elings Prize Fellowship FX We gratefully acknowledge the Southern California Electrochemical Energy Storage Alliance (SCEESA), supported by the California NanoSystems Institute (CNSI). Work at Northwestern University was supported by National Science Foundation (NSF) Grant DMR-1410169. The use of shared experimental facilities of the Materials Research Laboratory, a National Science Foundation MRSEC supported by NSF Grant DMR 1121053, is gratefully acknowledged. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. X-ray absorption experiments were performed at the APS 20-BM-B beamline under GUP-41555. X-ray scattering experiments were performed at the APS 11-ID-B beamline under GUP-46245. We thank AkzoNobel for providing a free sample of Ketjen Black EC-600JD, Mitsubishi Chemical for providing Sol-Rite, and Coveris for providing carbon-coated Al foil. V.V.T.D.-N. is supported by the University of California President's Postdoctoral Fellowship and the University of California, Santa Barbara CNSI Elings Prize Fellowship. V.V.T.D.-N. thanks Professor Galen D. Stucky, Professor Anton Van der Ven, Dr. Thomas E. Mates, Paige Roberts, Jesse S. Ko, Jonathan S. J. Lau, and Ryan H. DeBlock for helpful discussions. NR 83 TC 1 Z9 1 U1 42 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 22 PY 2016 VL 28 IS 22 BP 8357 EP 8365 DI 10.1021/acs.chemmater.6b03656 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TF UT WOS:000388914500030 ER PT J AU Fallon, KJ Wijeyasinghe, N Manley, EF Dimitrov, SD Yousaf, SA Ashraf, RS Duffy, W Guilbert, AAY Freeman, DME Al-Hashimi, M Nelson, J Durrant, JR Chen, LX McCulloch, I Marks, TJ Clarke, TM Anthopoulos, TD Bronstein, H AF Fallon, Kealan J. Wijeyasinghe, Nilushi Manley, Eric F. Dimitrov, Stoichko D. Yousaf, Syeda A. Ashraf, Raja S. Duffy, Warren Guilbert, Anne A. Y. Freeman, David M. E. Al-Hashimi, Mohammed Nelson, Jenny Durrant, James R. Chen, Lin X. McCulloch, Iain Marks, Tobin J. Clarke, Tracey M. Anthopoulos, Thomas D. Bronstein, Hugo TI Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility SO CHEMISTRY OF MATERIALS LA English DT Article ID FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; AMBIPOLAR CHARGE-TRANSPORT; ANNULATED INDIGO BAI; ORGANIC SOLAR-CELLS; HIGH-PERFORMANCE; SEMICONDUCTING POLYMERS; CARRIER MOBILITY; NAPHTHALENE DIIMIDE; PRINTED TRANSISTORS AB Herein, we present the synthesis and characterization of four conjugated polymers containing a novel chromophore for organic electronics based on an indigoid structure. These polymers exhibit extremely small band gaps of similar to 1.2 eV, impressive crystallinity, and extremely high n-type mobility exceeding 3 cm(2) V s(-1). The n-type charge carrier mobility can be correlated with the remarkably high crystallinity along the polymer backbone having a correlation length in excess of 20 nm. Theoretical analysis reveals that the novel polymers have highly rigid nonplanar geometries demonstrating that backbone planarity is not a prerequisite for either narrow band gap materials or ultrahigh mobilities. Furthermore, the variation in backbone crystallinity is dependent on the choice of comonomer. OPV device efficiencies up to 4.1% and charge photogeneration up to 1000 nm are demonstrated, highlighting the potential of this novel chromophore class in high-performance organic electronics. C1 [Fallon, Kealan J.; Freeman, David M. E.; Clarke, Tracey M.; Bronstein, Hugo] UCL, Dept Chem, Christopher Ingold Bldg, London WC1H 0AJ, England. [Dimitrov, Stoichko D.; Ashraf, Raja S.; Durrant, James R.] Imperial Coll London, Dept Chem, London SW7 2AZ, England. [Wijeyasinghe, Nilushi; Dimitrov, Stoichko D.; Ashraf, Raja S.; Guilbert, Anne A. Y.; Nelson, Jenny; Durrant, James R.; Anthopoulos, Thomas D.] Imperial Coll London, Ctr Plast Elect, London SW7 2AZ, England. [Wijeyasinghe, Nilushi; Guilbert, Anne A. Y.; Nelson, Jenny; Anthopoulos, Thomas D.] Imperial Coll London, Dept Phys, London SW7 2AZ, England. [Manley, Eric F.; Chen, Lin X.; Marks, Tobin J.] Northwestern Univ, Dept Chem, Mat Res Ctr, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Manley, Eric F.; Chen, Lin X.; Marks, Tobin J.] Northwestern Univ, Argonne Northwestern Solar Energy Res Ctr, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Manley, Eric F.; Chen, Lin X.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Lemont, IL 60439 USA. [Al-Hashimi, Mohammed] Texas A&M Univ Qatar, Dept Chem, POB 23874, Doha, Qatar. [Yousaf, Syeda A.] Govt Coll Univ, Dept Phys, Lahore 54000, Punjab, Pakistan. [Duffy, Warren; McCulloch, Iain] King Abdullah Univ Sci & Technol, SPERC, Mecca 239556900, Saudi Arabia. RP Bronstein, H (reprint author), UCL, Dept Chem, Christopher Ingold Bldg, London WC1H 0AJ, England. EM h.bronstein@ucl.ac.uk RI Dimitrov, Stoichko/C-2589-2013; ASHRAF, RAJA SHAHID/A-3640-2008 OI Dimitrov, Stoichko/0000-0002-1564-7080; ASHRAF, RAJA SHAHID/0000-0003-1885-2271 FU Qatar NPRP [7-286-1-046]; UCL; EU; U.S. DOE [DE-AC02-06CH11357, DE-SC0001059]; U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-FG02-08ER46536] FX This material is based upon work supported as part of the Qatar NPRP 7-286-1-046 research grant, UCL Grand Challenge of Sustainable Cities Small Grants and EU Starting Grant "CONTREX". Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357 and Award Number DE-SC0001059; by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-FG02-08ER46536. NR 66 TC 1 Z9 1 U1 23 U2 23 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 22 PY 2016 VL 28 IS 22 BP 8366 EP 8378 DI 10.1021/acs.chemmater.6b03671 PG 13 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TF UT WOS:000388914500031 ER PT J AU Huber, SP Gullikson, E Frye, CD Edgar, JH de Kruijs, RWEV Bijkerk, F Prendergast, D AF Huber, S. P. Gullikson, E. Frye, C. D. Edgar, J. H. de Kruijs, R. W. E. van Bijkerk, F. Prendergast, D. TI Self-healing in B12P2 through Mediated Defect Recombination SO CHEMISTRY OF MATERIALS LA English DT Article ID AUGMENTED-WAVE METHOD; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; BORON-RICH SOLIDS; SADDLE-POINTS; GROUND-STATE; SUBOXIDE; B6O AB The icosahedral boride B12P2 has been reported to exhibit "self-healing" properties, after transmission electron microscopy recordings of sample surfaces, which were exposed to highly energetic particle beams, revealed little to no damage. In this work, employing calculations from first-principles within the density functional theory (DFT) framework, the structural characteristics of boron interstitial and vacancy defects in B12P2 are investigated. Using nudged elastic band simulations, the diffusion properties of interstitial and vacancy defects and their combination, in the form of Frenkel defect pairs, are studied. We find that boron icosahedra maintain their structural integrity even when in a degraded state in the presence of a vacancy or interstitial defect and that the diffusion activation energy for the recombination of an interstitial vacany pair can be as low as 3 meV, in line with the previously reported observation of "self-healing". C1 [Huber, S. P.; Prendergast, D.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Gullikson, E.] Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Frye, C. D.; Edgar, J. H.] Kansas State Univ, Dept Chem Engn, Durland Hall, Manhattan, KS 66506 USA. [Huber, S. P.; de Kruijs, R. W. E. van; Bijkerk, F.] Univ Twente, MESA Inst Nanotechnol, Ind Focus Grp XUV Opt, POB 217, NL-7500 AE Enschede, Netherlands. RP Huber, SP (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA.; Huber, SP (reprint author), Univ Twente, MESA Inst Nanotechnol, Ind Focus Grp XUV Opt, POB 217, NL-7500 AE Enschede, Netherlands. EM mail@sphuber.net FU NanoNextNL, a micro and nanotechnology programme of the Dutch Government; Center for X-ray Optics of Lawrence Berkeley Laboratory; Industrial Focus Group XUV Optics at the MESA+ Institute for Nanotechnology at the University of Twente; ASML; Carl Zeiss SMT GmbH; Foundation FOM; Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy [DE-AC02-05CH11231] FX This work is supported by NanoNextNL, a micro and nanotechnology programme of the Dutch Government and 130 partners. We acknowledge the support of the Center for X-ray Optics of Lawrence Berkeley Laboratory and the Industrial Focus Group XUV Optics at the MESA+ Institute for Nanotechnology at the University of Twente, notably the partners ASML, Carl Zeiss SMT GmbH, and the Foundation FOM. All of the computational work was performed at the Molecular Foundry which is supported by the Office of Science, Office of Basic Energy Sciences, of the United States Department of Energy under Contract No. DE-AC02-05CH11231. NR 25 TC 1 Z9 1 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 22 PY 2016 VL 28 IS 22 BP 8415 EP 8428 DI 10.1021/acs.chemmater.6b04075 PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TF UT WOS:000388914500037 ER PT J AU Tester, CC Aloni, S Gilbert, B Banfield, JF AF Tester, Chantel C. Aloni, Shaul Gilbert, Benjamin Banfield, Jillian F. TI Short- and Long-Range Attractive Forces That Influence the Structure of Montmorillonite Osmotic Hydrates SO LANGMUIR LA English DT Article ID DOUBLE-LAYER MODELS; X-RAY-DIFFRACTION; NA-MONTMORILLONITE; AQUEOUS SUSPENSIONS; LI-MONTMORILLONITE; TACTOID FORMATION; CLAY COLLOIDS; CHARGE; WATER; SPECTROSCOPY AB Clay swelling is a colloidal phenomenon that has a large influence on flow and solute migration in soils and sediments. While models for clay swelling have been proposed over many years, debate remains as to the interaction forces that combine to produce the observed swelling behavior. Using cryogenic transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering, we study the influence of salinity, in combination with layer charge, interlayer cation, and particle size, on montmorillonite swelling. We observe a decrease in swelling with increased layer charge, increased cation charge, and decreased cation hydration, each indicative of the critical influence of Coulombic attraction between the negatively charged layers and interlayer cations. Cryo-TEM images of individual montmorillonite particles also reveal that swelling is dependent upon the number of layers in a particle. Calculations of the van der Waals (vdW) interaction based on new measurements of Hamaker coefficients confirm that long-range vdW interactions extend beyond near-neighbor layer interactions and result in a decrease in layer spacing with a larger number of layers. This work clarifies the short- and long-range attractive interactions that govern clay structure and ultimately the stability and permeability of hydrated clays in the environment. C1 [Tester, Chantel C.; Gilbert, Benjamin; Banfield, Jillian F.] Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA. [Aloni, Shaul] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Banfield, Jillian F.] Univ Calif Berkeley, Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Tester, CC; Banfield, JF (reprint author), Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA. EM tester@u.northwestern.edu; jbanfield@berkeley.edu FU Office of Science, Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; BES, DOE [DE-AC02-05CH11231] FX The authors thank Roseann Csencsits and Zoltan Metlagel for their help with cryo-TEM. This work was supported by the Office of Science, Office of Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division of the U.S. Department of Energy (DOE), under Contract DE-AC02-05CH11231. Research at the Molecular Foundry was supported by BES, DOE, under Contract DE-AC02-05CH11231. NR 51 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 22 PY 2016 VL 32 IS 46 BP 12039 EP 12046 DI 10.1021/acs.langmuir.6b03265 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TE UT WOS:000388914400006 PM 27933879 ER PT J AU Robertson, EJ Nehls, EM Zuckermann, RN AF Robertson, Ellen J. Nehls, Eric Michael Zuckermann, Ronald N. TI Structure-Rheology Relationship in Nanosheet-Forming Peptoid Monolayers SO LANGMUIR LA English DT Article ID DILATIONAL VISCOELASTICITY; SURFACTANT MONOLAYERS; HEXADECANE/WATER INTERFACE; ADSORPTION LAYERS; FLEXIBLE PROTEINS; RELAXATION; POLYMERS; FOLDAMERS; SHEAR AB Peptoid nanosheets are novel protein-mimetic materials that form from the supramolecular assembly of sequence-defined peptoid polymers. The component polymer chains organize themselves via a unique mechanism at the air-water interface, in which the collapse of a compressed peptoid monolayer results in free-floating, bilayer nanosheets. To impart functionality into these bilayer materials, structural engineering of the nanosheet-forming peptoid strand is necessary. We previously synthesized a series of peptoid analogues with modifications to the hydrophobic core in order to probe the nanosheet tolerance to different packing interactions. Although many substitutions were well-tolerated, routine surface pressure measurements and monolayer collapse isotherms were insufficient to explain which molecular processes contributed to the ability or inability of these peptoid analogues to form nanosheets. Here, we show that surface dilational rheology measurements of assembled peptoid monolayers at the air-water interface provide great insight into their nanosheet-forming ability. We find that a key property required for nanosheet formation is the ability to assemble into a solidlike monolayer in which the residence time of the peptoid within the monolayer is very long and does not exchange rapidly with the subphase. These collapse-competent monolayers typically have a characteristic time of diffusion-exchange values, tau(D), of >5000 s. Thus, rheological measurements provide an efficient method for assessing the nanosheet-forming ability of peptoid analogues. Results from these studies can be used to guide the rational design of peptoids for assembly into functional nanosheets. C1 [Robertson, Ellen J.; Nehls, Eric Michael; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov FU Defense Threat Reduction Agency [DTRA10027-15875]; DARPA Fold F(x) program; Advanced Light Source at Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DEAC02-05CH11231] FX This project was funded by the Defense Threat Reduction Agency under contract no. DTRA10027-15875 and the DARPA Fold F(x) program. The work was conducted at the Molecular Foundry with support from the Advanced Light Source at Lawrence Berkeley National Laboratory, both of which are supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under contract no. DEAC02-05CH11231. The authors thank Rita Garcia for valuable assistance. NR 37 TC 1 Z9 1 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 22 PY 2016 VL 32 IS 46 BP 12146 EP 12158 DI 10.1021/acs.langmuir.6b02736 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA ED5TE UT WOS:000388914400018 PM 27794613 ER PT J AU Samant, S Strzalka, J Yager, KG Kisslinger, K Grolman, D Basutkar, M Salunke, N Singh, G Berry, B Karim, A AF Samant, Saumil Strzalka, Joseph Yager, Kevin G. Kisslinger, Kim Grolman, Danielle Basutkar, Monali Salunke, Namrata Singh, Gurpreet Berry, Brian Karim, Alamgir TI Ordering Pathway of Block Copolymers under Dynamic Thermal Gradients Studied by in Situ GISAXS SO MACROMOLECULES LA English DT Article ID X-RAY-SCATTERING; THIN-FILMS; DIBLOCK COPOLYMER; ORIENTATION; TEMPERATURE; ALIGNMENT; DOMAINS; FIELDS; RANGE; METHACRYLATE) AB Dynamic thermal gradient-based processes for directed self-assembly of block copolymer (BCP) thin films such as cold zone annealing (CZA) have demonstrated much potential for rapidly fabricating highly ordered patterns of BCP domains with facile orientation control. As a demonstration, hexagonally packed predominantly vertical cylindrical morphology, technologically relevant for applications such as membranes and lithography, was achieved in 1 pm thick cylinder-forming PS-b-PMMA (cBCP) films by applying sharp thermal gradients (CZA-Sharp) at optimum sample sweep rates. A thorough understanding of the molecular level mechanisms and pathways of the BCP ordering that occur during this CZA-S process is presented, useful to fully exploit the potential of CZA-S for large-scale BCP-based device fabrication. To that end, we developed a customized CZA-S assembly to probe the dynamic structure evolution and ordering of the PS-b-PMMA cBCP film in situ as it undergoes the CZA-S process using the grazing incidence small-angle X-ray scattering (GISAXS) technique. Four distinct regimes of BCP ordering were observed within the gradient that include microphase separation from an "as cast" unordered state (Regime I), evolution of vertical cylinders under a thermally imposed strain gradient (Regime II), reorientation of a fraction of cylinders due to preferential substrate interactions (Regime III), and finally grain-coarsening on the cooling edge (Regime IV). The ordering, pathway in the different regimes is further described within the framework of an energy landscape. A novel aspect of this study is the identification of a grain-coarsening regime on the cooling edge of the gradient, previously obscure in zone annealing studies of BCPs. Such insights into the development of highly ordered BCP nanostructures under template-free thermal gradient fields can potentially have important ramifications in the field of BCP-directed self-assembly and self-assembling polymer systems more broadly. C1 [Samant, Saumil; Grolman, Danielle; Basutkar, Monali; Salunke, Namrata; Singh, Gurpreet; Karim, Alamgir] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. [Strzalka, Joseph] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Yager, Kevin G.; Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Berry, Brian] Univ Arkansas, Dept Chem, Fayetteville, AR 72701 USA. [Samant, Saumil; Singh, Gurpreet] Intel Corp, 2501 NW 229th Ave, Hillsboro, OR 97124 USA. RP Karim, A (reprint author), Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA. EM alamgir@uakron.edu FU National Science Foundation (NSF) [DMR- 1411046]; U.S. Department of Energy (DOE) Office of Science User [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This work was supported by the National Science Foundation (NSF) via Grant DMR- 1411046. Research carried out at the Advanced Photon Source was supported by the U.S. Department of Energy (DOE) Office of Science User under Contract DE-AC02-06CH11357. Research carried out at the Center for Functional Nanomaterials was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-SC0012704. The authors are grateful to Ed Laughlin for help with fabricating the customized CZA-S assembly. S.P.S. also acknowledges Xiao Zhang and Arvind Modi for their contributions. NR 52 TC 1 Z9 1 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 22 PY 2016 VL 49 IS 22 BP 8633 EP 8642 DI 10.1021/acs.macromol.6b01555 PG 10 WC Polymer Science SC Polymer Science GA ED5SV UT WOS:000388913500026 ER PT J AU Xiao, ZS Riccardi, D Velazquez, HA Chin, AL Yates, CR Carrick, JD Smith, JC Baudry, J Quarles, LD AF Xiao, Zhousheng Riccardi, Demian Velazquez, Hector A. Chin, Ai L. Yates, Charles R. Carrick, Jesse D. Smith, Jeremy C. Baudry, Jerome Quarles, L. Darryl TI A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia SO Science Signaling LA English DT Article ID FIBROBLAST-GROWTH-FACTOR; FAMILIAL TUMORAL CALCINOSIS; CHRONIC KIDNEY-DISEASE; VITAMIN-D METABOLISM; X-LINKED HYPOPHOSPHATEMIA; PHOSPHATE HOMEOSTASIS; PARATHYROID-HORMONE; DRUG DISCOVERY; MOLECULAR RECOGNITION; REGULATING PHOSPHATE AB Fibroblast growth factor-23 (FGF-23) interacts with a binary receptor complex composed of alpha-Klotho (alpha-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. Using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23-induced activation of the FGFR/alpha-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/alpha-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited alpha-KL-dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. These chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23. C1 [Xiao, Zhousheng; Quarles, L. Darryl] Univ Tennessee, Dept Med, Coll Med, Hlth Sci Ctr, Memphis, TN 38165 USA. [Riccardi, Demian] Earlham Coll, Dept Chem, 801 Natl Rd West, Richmond, IN 47374 USA. [Riccardi, Demian; Velazquez, Hector A.; Smith, Jeremy C.; Baudry, Jerome] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Velazquez, Hector A.; Smith, Jeremy C.; Baudry, Jerome] Univ Tennessee, Ctr Biophys Mol, Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. [Chin, Ai L.; Carrick, Jesse D.] Tennessee Technol Univ, Dept Chem, 55 Univ Dr, Cookeville, TN 38501 USA. [Yates, Charles R.] Univ Tennessee, Dept Pharmaceut Sci, Coll Pharm, Hlth Sci Ctr, Memphis, TN 38163 USA. [Riccardi, Demian] NIST, Appl Chem & Mat Div, Mat Measurement Lab, Thermodynam Res Ctr, 325 Broadway,MS 647-01, Boulder, CO 80305 USA. RP Quarles, LD (reprint author), Univ Tennessee, Dept Med, Coll Med, Hlth Sci Ctr, Memphis, TN 38165 USA. EM dquarles@uthsc.edu FU National Institute of Arthritis and Musculoskeletal and Skin Diseases Building Interdisciplinary Research Team Revision Award [R01-AR045955-15, R01-AR045955-15S1] FX This work was supported by grant R01-AR045955-15 and a supplement, R01-AR045955-15S1, to L.D.Q. from National Institute of Arthritis and Musculoskeletal and Skin Diseases Building Interdisciplinary Research Team Revision Award. NR 112 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1945-0877 EI 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD NOV 22 PY 2016 VL 9 IS 455 AR ra113 DI 10.1126/scisignal.aaf5034 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA ED9NP UT WOS:000389198700002 PM 27879395 ER PT J AU Huang, R Mitchell, C Papadopoulos, C Qian, H Venturini, M Qiang, J Filippetto, D Staples, J Jia, Q Sannibale, F AF Huang, R. Mitchell, C. Papadopoulos, C. Qian, H. Venturini, M. Qiang, J. Filippetto, D. Staples, J. Jia, Q. Sannibale, F. TI Off-axis beam dynamics in rf-gun-based electron photoinjectors SO PHYSICAL REVIEW ACCELERATORS AND BEAMS LA English DT Article AB The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this mode may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only. C1 [Huang, R.; Mitchell, C.; Papadopoulos, C.; Qian, H.; Venturini, M.; Qiang, J.; Filippetto, D.; Staples, J.; Sannibale, F.] Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Huang, R.; Jia, Q.] Univ Sci & Technol China, NSRL, Hefei 230029, Anhui, Peoples R China. RP Mitchell, C (reprint author), Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. EM chadmitchell@lbl.gov FU Office of Science of the US Department of Energy [DEAC02-05CH11231] FX This work was supported by the Director of the Office of Science of the US Department of Energy under Contract No. DEAC02-05CH11231. NR 27 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9888 J9 PHYS REV ACCEL BEAMS JI Phys. Rev. Accel. Beams PD NOV 22 PY 2016 VL 19 IS 11 AR 113401 DI 10.1103/PhysRevAccelBeams.19.113401 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA ED1UT UT WOS:000388631100002 ER PT J AU Comes, R Chambers, S AF Comes, Ryan Chambers, Scott TI Interface Structure, Band Alignment, and Built-In Potentials at LaFeO3/n-SrTiO3 Heterojunctions SO PHYSICAL REVIEW LETTERS LA English DT Article ID OXIDATION; SRTIO3 AB Interface structure at polar-nonpolar interfaces has been shown to be a key factor in controlling emergent behavior in oxide heterostructures, including the LaFeO3/n-SrTiO3 system. We demonstrate via high-energy-resolution x-ray photoemission that epitaxial LaFeO3/n-SrTiO3 (001) heterojunctions engineered to have opposite interface polarities exhibit very similar band offsets and potential gradients within the LaFeO3 films. However, differences in the potential gradient within the SrTiO3 layer depending on polarity may promote hole diffusion into LaFeO3 for applications in photocatalysis. C1 [Comes, Ryan; Chambers, Scott] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Comes, Ryan] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RP Comes, R (reprint author), Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA.; Comes, R (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. FU Linus Pauling Distinguished Post-doctoral Fellowship at Pacific Northwest National Laboratory [PNNL LDRD PN13100/2581]; U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Division of Materials Sciences and Engineering [10122]; Department of Energy's Office of Biological and Environmental Research FX R. C. was supported by the Linus Pauling Distinguished Post-doctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD PN13100/2581). S. C. was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Division of Materials Sciences and Engineering under Award No. 10122. A portion of this research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 23 TC 2 Z9 2 U1 20 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 22 PY 2016 VL 117 IS 22 AR 226802 DI 10.1103/PhysRevLett.117.226802 PG 5 WC Physics, Multidisciplinary SC Physics GA ED1TT UT WOS:000388628500005 PM 27925724 ER PT J AU Hoffman, JD Kirby, BJ Kwon, J Fabbris, G Meyers, D Freeland, JW Martin, I Heinonen, OG Steadman, P Zhou, H Schleputz, CM Dean, MPM te Velthuis, SGE Zuo, JM Bhattacharya, A AF Hoffman, Jason D. Kirby, Brian J. Kwon, Jihwan Fabbris, Gilberto Meyers, D. Freeland, John W. Martin, Ivar Heinonen, Olle G. Steadman, Paul Zhou, Hua Schleputz, Christian M. Dean, Mark P. M. te Velthuis, Suzanne G. E. Zuo, Jian-Min Bhattacharya, Anand TI Oscillatory Noncollinear Magnetism Induced by Interfacial Charge Transfer in Superlattices Composed of Metallic Oxides SO PHYSICAL REVIEW X LA English DT Article ID INTERLAYER EXCHANGE; MAGNETORESISTANCE; FERROELECTRICITY; HETEROSTRUCTURES; MULTIFERROICS; PEROVSKITES; MULTILAYERS; TRANSITIONS; BIAS AB Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La-2/3 Sr-1/3 MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2+ states. Our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures. C1 [Hoffman, Jason D.; Martin, Ivar; Heinonen, Olle G.; te Velthuis, Suzanne G. E.; Bhattacharya, Anand] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kirby, Brian J.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Kwon, Jihwan; Zuo, Jian-Min] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Fabbris, Gilberto; Meyers, D.; Dean, Mark P. M.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Freeland, John W.; Zhou, Hua; Schleputz, Christian M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Steadman, Paul] Diamond Light Source, Diamond House,Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. [Bhattacharya, Anand] Argonne Natl Lab, Nanosci & Technol Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Hoffman, JD (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM anand@anl.gov RI Bhattacharya, Anand/G-1645-2011; Dean, Mark/B-4541-2011; te Velthuis, Suzanne/I-6735-2013; Fabbris, Gilberto/F-3244-2011; Schleputz, Christian/C-4696-2008 OI Bhattacharya, Anand/0000-0002-6839-6860; Dean, Mark/0000-0001-5139-3543; te Velthuis, Suzanne/0000-0002-1023-8384; Fabbris, Gilberto/0000-0001-8278-4985; Schleputz, Christian/0000-0002-0485-2708 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Science, Materials Science and Engineering Division; National Institute of Standards and Technology, U.S. Department of Commerce; Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program [1047478]; Canada Foundation for Innovation; Natural Sciences and Engineering Research Council of Canada; National Research Council Canada; Canadian Institute of Health Research; Government of Saskatchewan, WD Canada; University of Saskatchewan FX We are grateful to Y. H. Liu, M. D. Stiles, J. A. Borchers, and B. B. Maranville for valuable discussions. Work at Argonne National Laboratory, including the use of the Center for Nanoscale Materials and Advanced Photon Source, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. J. D. H, O. G. H., I. M., S. G. E.t.V, and A. B. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Science, Materials Science and Engineering Division. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. J. K. and J. M. Z. are supported as part of the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Grant No. DE-AC02-98CH10886. Work by G. F., D. M., and M. P. M. D. is supported by U.S. Department of Energy, Office of Basic Energy Sciences, Early Career Award Program under Grant No. 1047478. Experiments were in part performed at the REIXS beamline of the Canadian Light Source, which is funded by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, National Research Council Canada, and the Canadian Institute of Health Research, the Government of Saskatchewan, WD Canada, and the University of Saskatchewan. The Diamond Light Source is acknowledged for beam time allocated on I10 under Proposal Reference No. SI-9626. NR 58 TC 0 Z9 0 U1 32 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD NOV 22 PY 2016 VL 6 IS 4 AR 041038 DI 10.1103/PhysRevX.6.041038 PG 9 WC Physics, Multidisciplinary SC Physics GA ED1TD UT WOS:000388626900001 ER PT J AU Yin, JC Fei, CH Lo, YC Hsiao, YY Chang, JC Nix, JC Chang, YY Yang, LW Huang, IH Wang, SY AF Yin, Jui-Chieh Fei, Chun-Hsien Lo, Yen-Chen Hsiao, Yu-Yuan Chang, Jyun-Cyuan Nix, Jay C. Chang, Yuan-Yu Yang, Lee-Wei Huang, I-Hsiu Wang, Shuying TI Structural Insights into Substrate Recognition by Clostridium difficile Sortase SO FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY LA English DT Article DE Clostridium difficile; sortase; substrate specificity; crystal structure; fluorescence resonance energy transfer ID STAPHYLOCOCCUS-AUREUS SORTASE; GRAM-POSITIVE BACTERIA; FECAL MICROBIOTA TRANSPLANTATION; SURFACE-PROTEINS; CELL-WALL; MOLECULAR-DYNAMICS; ACTIVE-SITE; CORYNEBACTERIUM-DIPHTHERIAE; STREPTOCOCCUS-PNEUMONIAE; PSEUDOMEMBRANOUS COLITIS AB Sortases function as cysteine transpeptidases that catalyze the covalent attachment of virulence-associated surface proteins into the cell wall peptidoglycan in Gram-positive bacteria. The substrate proteins targeted by sortase enzymes have a cell wall sorting signal (CWSS) located at the C-terminus. Up to date, it is still not well understood how sortases with structural resemblance among different classes and diverse species of bacteria achieve substrate specificity. In this study, we focus on elucidating the molecular basis for specific recognition of peptide substrate PPKTG by Clostridium difficile sortase B (Cd-SrtB). Combining structural studies, biochemical assays and molecular dynamics simulations, we have constructed a computational model of Cd-SrtB(Delta N26)PPKTG complex and have validated the model by site-directed mutagensis studies and fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we have revealed that the fourth amino acid in the N-terminal direction from cleavage site of PPKTG forms specific interaction with Cd-SrtB and plays an essential role in configuring the peptide to allow more efficient substrate-specific cleavage by Cd-SrtB. C1 [Yin, Jui-Chieh; Fei, Chun-Hsien; Chang, Jyun-Cyuan; Huang, I-Hsiu; Wang, Shuying] Natl Cheng Kung Univ, Coll Med, Dept Microbiol & Immunol, Tainan, Taiwan. [Lo, Yen-Chen; Chang, Yuan-Yu; Yang, Lee-Wei] Natl Tsing Hua Univ, Inst Bioinformat & Struct Biol, Hsinchu, Taiwan. [Lo, Yen-Chen] Acad Sinica, Taiwan Int Grad Program, Bioinformat Program, Taipei, Taiwan. [Hsiao, Yu-Yuan] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu, Taiwan. [Nix, Jay C.] Lawrence Berkeley Natl Lab, Adv Light Source, Mol Biol Consortium, Berkeley, CA USA. [Yang, Lee-Wei] Natl Ctr Theoret Sci, Div Phys, Hsinchu, Taiwan. [Huang, I-Hsiu; Wang, Shuying] Natl Cheng Kung Univ, Ctr Infect Dis & Signaling Res, Tainan, Taiwan. RP Huang, IH; Wang, SY (reprint author), Natl Cheng Kung Univ, Coll Med, Dept Microbiol & Immunol, Tainan, Taiwan.; Yang, LW (reprint author), Natl Tsing Hua Univ, Inst Bioinformat & Struct Biol, Hsinchu, Taiwan.; Yang, LW (reprint author), Natl Ctr Theoret Sci, Div Phys, Hsinchu, Taiwan.; Huang, IH; Wang, SY (reprint author), Natl Cheng Kung Univ, Ctr Infect Dis & Signaling Res, Tainan, Taiwan. EM lwyang@life.nthu.edu.tw; ihsiuhuang@mail.ncku.edu.tw; sswang23@mail.ncku.edu.tw FU Ministry of Scienceand Technology, Taiwan (R.O.C.); Ministry of Science and Technology, Taiwan [MOST 104-2113-M-007-019, MOST 102-2320-B-006-023-MY3, MOST 1032311-B-006-006] FX We thank the technical services provided by the Synchrotron Radiation Protein Crystallography Facility of the National Core Facility Program for Biotechnology, Ministry of Sciwence and Technology, and the National Synchrotron Radiation Research Center, a national user facility supported by the Ministry of ScienceandTechnology, Taiwan (R.O.C.). We are grateful to the National Center for High-Performance Computing at Hsinchu, Taiwan, for computer time and the use of their facilities. This work was supported by grants MOST 104-2113-M-007-019 to LY, MOST 102-2320-B-006-023-MY3 to IH, and MOST 1032311-B-006-006 to SW from Ministry of Science and Technology, Taiwan. NR 70 TC 0 Z9 0 U1 3 U2 3 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2235-2988 J9 FRONT CELL INFECT MI JI Front. Cell. Infect. Microbiol. PD NOV 22 PY 2016 VL 6 AR 160 DI 10.3389/fcimb.2016.00160 PG 12 WC Immunology; Microbiology SC Immunology; Microbiology GA EC6DH UT WOS:000388226100002 PM 27921010 ER PT J AU Haarsma, RJ Roberts, MJ Vidale, PL Senior, CA Bellucci, A Bao, Q Chang, P Corti, S Fuckar, NS Guemas, V von Hardenberg, J Hazeleger, W Kodama, C Koenigk, T Leung, LR Lu, J Luo, JJ Mao, JF Mizielinski, MS Mizuta, R Nobre, P Satoh, M Scoccimarro, E Semmler, T Small, J von Storch, JS AF Haarsma, Reindert J. Roberts, Malcolm J. Vidale, Pier Luigi Senior, Catherine A. Bellucci, Alessio Bao, Qing Chang, Ping Corti, Susanna Fuckar, Neven S. Guemas, Virginie von Hardenberg, Jost Hazeleger, Wilco Kodama, Chihiro Koenigk, Torben Leung, L. Ruby Lu, Jian Luo, Jing-Jia Mao, Jiafu Mizielinski, Matthew S. Mizuta, Ryo Nobre, Paulo Satoh, Masaki Scoccimarro, Enrico Semmler, Tido Small, Justin von Storch, Jin-Song TI High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6 SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID COUPLED CLIMATE MODEL; LEAF-AREA INDEX; MADDEN-JULIAN OSCILLATION; GENERAL-CIRCULATION MODEL; AIR-SEA INTERACTION; HORIZONTAL RESOLUTION; TROPICAL CYCLONES; ATMOSPHERIC RIVERS; EXTREME PRECIPITATION; SUMMER MONSOON AB Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25 degrees in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges. C1 [Haarsma, Reindert J.; Hazeleger, Wilco] Royal Netherlands Meteorol Inst, Weather & Climate Modeling, De Bilt, Netherlands. [Roberts, Malcolm J.; Senior, Catherine A.; Mizielinski, Matthew S.] Met Off Hadley Ctr, Exeter, Devon, England. [Vidale, Pier Luigi] Univ Reading, NCAS Climate, Reading, Berks, England. [Bellucci, Alessio; Scoccimarro, Enrico] Ctr Euromediterraneo & Cambiamenti Climat, Climate Simulat & Predict Div, Bologna, Italy. [Bao, Qing] Chinese Acad Sci, Lab Numer Modeling Atmospher Sci & Geophys Fluid, Inst Atmospher Phys, Beijing, Peoples R China. [Chang, Ping] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA. [Corti, Susanna; von Hardenberg, Jost] CNR, Inst Atmospher Sci & Climate, Bologna, Italy. [Fuckar, Neven S.; Guemas, Virginie] Barcelona Supercomp Ctr, Earth Sci, Barcelona, Spain. [Hazeleger, Wilco] Netherlands ESci Ctr, Amsterdam, Netherlands. [Hazeleger, Wilco] Wageningen Univ, Meteorol & Air Qual, Wageningen, Netherlands. [Kodama, Chihiro] Japan Agcy Marine Earth Sci & Technol, Atmospher Sci, Tokyo, Japan. [Koenigk, Torben] Swedish Meteorol & Hydrol Inst, Climate Res, Norrkoping, Sweden. [Leung, L. Ruby; Lu, Jian] Pacific Northwest Natl Lab, Earth Syst Anal & Modeling, Richland, WA USA. [Luo, Jing-Jia] Bur Meteorol, Climate Dynam, Melbourne, Vic, Australia. [Mao, Jiafu] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Mao, Jiafu] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Mizuta, Ryo] Meteorol Res Inst, Climate Res Dept, Tsukuba, Ibaraki, Japan. [Nobre, Paulo] Inst Nacl Pesquisas Espaciais, Climate Modeling, Sao Jose Dos Campos, Brazil. [Satoh, Masaki] Univ Tokyo, Atmosphere & Ocean Res Inst, Tokyo, Japan. [Semmler, Tido] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany. [Small, Justin] Natl Ctr Atmospher Res, Climate & Global Dynam Div, POB 3000, Boulder, CO 80307 USA. [von Storch, Jin-Song] Max Planck Inst Meteorol, Ocean Earth Syst, Hamburg, Germany. [Scoccimarro, Enrico] Ist Nazl Geofis & Vulcanol, Sez Bologna, Rome, Italy. [Guemas, Virginie] Meteo France, Ctr Natl Rech Meteorol, Toulouse, France. RP Haarsma, RJ (reprint author), Royal Netherlands Meteorol Inst, Weather & Climate Modeling, De Bilt, Netherlands. EM haarsma@knmi.nl RI Bao, Qing/A-7765-2012; Semmler, Tido/B-7666-2017; Mao, Jiafu/B-9689-2012; Corti, Susanna/B-8224-2015; Satoh, Masaki/G-3325-2015; OI Semmler, Tido/0000-0002-2254-4901; Mao, Jiafu/0000-0002-2050-7373; Corti, Susanna/0000-0003-4456-6682; Satoh, Masaki/0000-0003-3580-8897; Vidale, Pier Luigi/0000-0002-1800-8460 FU European Commission [641727]; Juan de la Ciervaincorporacion postdoctoral fellowship from the Ministry of Economy and Competitiveness of Spain; U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Regional and Global Climate Modeling Program; DOE [DE-AC05-76RLO1830, DE-AC05-00OR22725]; Biogeochemistry-Climate Feedbacks Scientific Focus Area project; CNPq [573797/2008-0, 490237/2011-8]; FAPESP [2008/57719-9]; Program for Risk Information on Climate Change (SOSEI); FLAGSHIP2020 within the priority study4 (Advancement of meteorological and global environmental predictions utilizing observational "Big Data"); US National Science Foundation [AGS-1462127, AGS-1067937]; National Oceanic and Atmospheric Administration grant [NA11OAR4310154]; China's National Basic Research Priorities Programme [2013CB956204, 2014CB745000] FX PRIMAVERA project members (Malcolm J. Roberts, Reindert J. Haarsma, Pier Luigi Vidale, Torben Koenigk, Virginie Guemas, Susanna Corti, Jost von Hardenberg, Jin-Song von Storch, Wilco Hazeleger, Catherine A. Senior, Matthew S. Mizielinsky, Tido Semmler, Alessio Bellucci, Enrico Scoccimarro, Neven S. Fuckar) acknowledge funding received from the European Commission under grant agreement 641727 of the Horizon 2020 research programme.Neven S. Fuckar acknowledges support of the Juan de la Ciervaincorporacion postdoctoral fellowship from the Ministry of Economy and Competitiveness of Spain.L. Ruby Leung and Jian Lu acknowledge support from the U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Regional and Global Climate Modeling Program. The Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RLO1830. Jiafu Mao is supported by the Biogeochemistry-Climate Feedbacks Scientific Focus Area project funded through the Regional and Global Climate Modeling Program in Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the U.S. Department of Energy Office of Science. Oak Ridge National Laboratory is managed by UT-BATTELLE for the DOE under contract DE-AC05-00OR22725.Paulo Nobre acknowledges support from CNPq grant nos. 573797/2008-0 and 490237/2011-8, and FAPESP grant no. 2008/57719-9. Chihiro Kodama and Masaki Satoh are supported by the Program for Risk Information on Climate Change (SOSEI) and the FLAGSHIP2020 within the priority study4 (Advancement of meteorological and global environmental predictions utilizing observational "Big Data"), which are promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Ping Chang is supported by US National Science Foundation grants AGS-1462127 and AGS-1067937, and National Oceanic and Atmospheric Administration grant NA11OAR4310154, as well as by China's National Basic Research Priorities Programme (2013CB956204 and 2014CB745000). NR 138 TC 6 Z9 6 U1 17 U2 17 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD NOV 22 PY 2016 VL 9 IS 11 BP 4185 EP 4208 DI 10.5194/gmd-9-4185-2016 PG 24 WC Geosciences, Multidisciplinary SC Geology GA EC5QM UT WOS:000388191000002 ER PT J AU Banerjee, P Qian, YZ Heger, A Haxton, WC AF Banerjee, Projjwal Qian, Yong-Zhong Heger, Alexander Haxton, W. C. TI Evidence from stable isotopes and Be-10 for solar system formation triggered by a low-mass supernova SO NATURE COMMUNICATIONS LA English DT Article ID SHORT-LIVED RADIOISOTOPES; ALUMINUM-RICH INCLUSIONS; GIANT MOLECULAR CLOUDS; M-CIRCLE-DOT; STARS; CORE; ORIGIN; AL-26; NUCLEOSYNTHESIS; CHONDRITES AB About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived Be-10 can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed. C1 [Banerjee, Projjwal; Qian, Yong-Zhong] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Monash Univ, Sch Phys & Astron, Monash Ctr Astrophys, Melbourne, Vic 3800, Australia. [Heger, Alexander] Shanghai Jiao Tong Univ, Dept Phys & Astron, Ctr Nucl Astrophys, Shanghai 200240, Peoples R China. [Haxton, W. C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Haxton, W. C.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Qian, YZ (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. EM qian@physics.umn.edu FU US DOE [DE-FG02-87ER40328, DE-SC00046548, DE-AC02-98CH10886]; US NSF [PHY-1430152]; ARC Future Fellowship [FT120100363] FX We acknowledge helpful discussions with Bernhard Muller and the late Jerry Wasserburg. We thank Takashi Yoshida for communications regarding ref. 12. This work was supported in part by the US DOE [DE-FG02-87ER40328 (UM), DE-SC00046548 (Berkeley), and DE-AC02-98CH10886 (LBL)], the US NSF [PHY-1430152 (JINA-CEE)], and ARC Future Fellowship FT120100363 (AH). NR 61 TC 0 Z9 0 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 22 PY 2016 VL 7 AR 13639 DI 10.1038/ncomms13639 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC5IR UT WOS:000388168600001 PM 27873999 ER PT J AU Guzman-Lastra, F Kaiser, A Lowen, H AF Guzman-Lastra, Francisca Kaiser, Andreas Loewen, Hartmut TI Fission and fusion scenarios for magnetic microswimmer clusters SO NATURE COMMUNICATIONS LA English DT Article ID ACTIVE ROTORS; SUSPENSIONS; DYNAMICS; HYDRODYNAMICS; COLLOIDS; SPHERES; CELLS AB Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria. C1 [Guzman-Lastra, Francisca; Loewen, Hartmut] Heinrich Heine Univ, Inst Theoret Phys Weiche Mat 2, D-40225 Dusseldorf, Germany. [Kaiser, Andreas] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Lowen, H (reprint author), Heinrich Heine Univ, Inst Theoret Phys Weiche Mat 2, D-40225 Dusseldorf, Germany.; Kaiser, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akaiser@anl.gov; hlowen@thphy.uni-duesseldorf.de RI Lowen, Hartmut/K-9999-2016 OI Lowen, Hartmut/0000-0001-5376-8062 FU Deutsche Forschungsgemeinschaft (DFG) [SPP 1726, KA 4255/1-1]; Conicyt [74150045] FX This work was supported by the science priority program SPP 1726 of the Deutsche Forschungsgemeinschaft (DFG). A.K. gratefully acknowledges financial support through a Postdoctoral Research Fellowship (KA 4255/1-1) from the DFG. F.G.-L. acknowledges the financial support of Conicyt Postdoctorado-2015 74150045 and helpful discussions with Rodrigo Soto, Adam Wysocki, Arnold Mathijssen and Marco Leoni. NR 63 TC 1 Z9 1 U1 24 U2 24 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 22 PY 2016 VL 7 AR 13519 DI 10.1038/ncomms13519 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC6YI UT WOS:000388282200001 PM 27874006 ER PT J AU Bowlan, P Trugman, SA Wang, X Dai, YM Cheong, SW Bauer, ED Taylor, AJ Yarotski, DA Prasankumar, RP AF Bowlan, P. Trugman, S. A. Wang, X. Dai, Y. M. Cheong, S. -W. Bauer, E. D. Taylor, A. J. Yarotski, D. A. Prasankumar, R. P. TI Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses SO PHYSICAL REVIEW B LA English DT Article ID MANGANITES; ELECTRON; ELECTROMAGNONS; SPECTROSCOPY; RELAXATION AB We investigate spin dynamics in antiferromagnetic multiferroic TbMnO3 using optical-pump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 10 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. Furthermore, the presence of a pump-probe signal above the magnetic ordering temperatures suggests that, unlike resonant x-ray probing, THz transmission is sensitive to the dynamics of short-range spin order, which is known to be of importance in spin-spiral multiferroics like TbMnO3. C1 [Bowlan, P.; Trugman, S. A.; Dai, Y. M.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. [Wang, X.; Cheong, S. -W.] Rutgers State Univ, Rutgers Ctr Emergent Mat, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Wang, X.; Cheong, S. -W.] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Bauer, E. D.] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, MS K764, Los Alamos, NM 87545 USA. RP Bowlan, P (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, MS K771, Los Alamos, NM 87545 USA. EM pambowlan@lanl.gov; rpprasan@lanl.gov RI Dai, Yaomin/E-4259-2016; OI Dai, Yaomin/0000-0002-2464-3161; Bowlan, Pamela/0000-0002-5325-6451 FU NNSA's Laboratory Directed Research and Development Program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; DOE [DOE: DE-FG02-07ER46382] FX The ultrafast measurements were performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility, and they were also partially supported by the NNSA's Laboratory Directed Research and Development Program. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. The work performed at Rutgers University was supported by the DOE under Grant No. DOE: DE-FG02-07ER46382. We thank Rolando Valdes Aguilar for helpful discussions. NR 43 TC 0 Z9 0 U1 17 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 22 PY 2016 VL 94 IS 18 AR 184429 DI 10.1103/PhysRevB.94.184429 PG 6 WC Physics, Condensed Matter SC Physics GA EC9LD UT WOS:000388465200008 ER PT J AU Chen, F Zhu, Y Liu, S Qi, Y Hwang, HY Brandt, NC Lu, J Quirin, F Enquist, H Zalden, P Hu, T Goodfellow, J Sher, MJ Hoffmann, MC Zhu, D Lemke, H Glownia, J Chollet, M Damodaran, AR Park, J Cai, Z Jung, IW Highland, MJ Walko, DA Freeland, JW Evans, PG Vailionis, A Larsson, J Nelson, KA Rappe, AM Sokolowski-Tinten, K Martin, LW Wen, H Lindenberg, AM AF Chen, F. Zhu, Y. Liu, S. Qi, Y. Hwang, H. Y. Brandt, N. C. Lu, J. Quirin, F. Enquist, H. Zalden, P. Hu, T. Goodfellow, J. Sher, M. -J. Hoffmann, M. C. Zhu, D. Lemke, H. Glownia, J. Chollet, M. Damodaran, A. R. Park, J. Cai, Z. Jung, I. W. Highland, M. J. Walko, D. A. Freeland, J. W. Evans, P. G. Vailionis, A. Larsson, J. Nelson, K. A. Rappe, A. M. Sokolowski-Tinten, K. Martin, L. W. Wen, H. Lindenberg, A. M. TI Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3 SO PHYSICAL REVIEW B LA English DT Article ID X-RAY-DIFFRACTION; THIN-FILMS; POLARIZATION; AMPLITUDE; BIFEO3; LIGHT; PULSE; CRYSTALS; DYNAMICS AB The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO3 ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained. C1 [Chen, F.] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Chen, F.; Zalden, P.; Sher, M. -J.; Lindenberg, A. M.] SLAC Natl Accelerator Lab, SIMES Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Zhu, Y.; Cai, Z.; Walko, D. A.; Freeland, J. W.; Wen, H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Liu, S.; Qi, Y.; Rappe, A. M.] Univ Penn, Dept Chem, Makineni Theoret Labs, Philadelphia, PA 19104 USA. [Liu, S.] Carnegie Inst Sci, Geophys Lab, 5251 Broad Branch Rd NW, Washington, DC 20015 USA. [Hwang, H. Y.; Brandt, N. C.; Lu, J.; Nelson, K. A.] MIT, Dept Chem, Cambridge, MA 02139 USA. [Quirin, F.; Sokolowski-Tinten, K.] Univ Duisburg Essen, Fac Phys, Lotharstr 1, D-47048 Duisburg, Germany. [Quirin, F.; Sokolowski-Tinten, K.] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Lotharstr 1, D-47048 Duisburg, Germany. [Enquist, H.] Lund Univ, Max Lab 4, S-22100 Lund, Sweden. [Hu, T.; Goodfellow, J.; Sher, M. -J.; Lindenberg, A. M.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Hoffmann, M. C.; Zhu, D.; Lemke, H.; Glownia, J.; Chollet, M.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Damodaran, A. R.; Martin, L. W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Park, J.; Evans, P. G.] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. [Jung, I. W.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Highland, M. J.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Vailionis, A.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Larsson, J.] Lund Univ, Dept Phys, S-22100 Lund, Sweden. [Martin, L. W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lindenberg, A. M.] SLAC Natl Accelerator Lab, PULSE Inst, Menlo Pk, CA 94025 USA. RP Wen, H (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM wen@aps.anl.gov; aaronl@stanford.edu RI Evans, Paul/A-9260-2009; Hoffmann, Matthias/B-3893-2009; Lemke, Henrik Till/N-7419-2016; OI Evans, Paul/0000-0003-0421-6792; Hoffmann, Matthias/0000-0002-3596-9853; Lemke, Henrik Till/0000-0003-1577-8643; Lu, Jian/0000-0002-7706-8121 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Army Research Office [W911NF-14-1-0104]; Department of Energy [DE-SC0012375]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-07ER15920, DE-AC02-76SF00515]; Carnegie Institution for Science; National Science Foundation [CMMI-1334241, CHE-1111557]; Office of Naval Research [N00014-12-1-1033, N00014-13-1-0509] FX This work was supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. A.R.D. acknowledges support from the Army Research Office under Grant No. W911NF-14-1-0104. H.W. and L.W.M. acknowledge support from the Department of Energy under Grant No. DE-SC0012375. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. S.L. acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Grant No. DE-FG02-07ER15920, as well as the Carnegie Institution for Science. Y.Q. acknowledges support from the National Science Foundation under Grant No. CMMI-1334241. A.M.R. acknowledges support from the Office of Naval Research under Grant No. N00014-12-1-1033. Research by the MIT group was supported in part by Office of Naval Research Grant No. N00014-13-1-0509 and National Science Foundation Grant No. CHE-1111557. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. NR 41 TC 2 Z9 2 U1 32 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 22 PY 2016 VL 94 IS 18 AR 180104 DI 10.1103/PhysRevB.94.180104 PG 6 WC Physics, Condensed Matter SC Physics GA EC9LD UT WOS:000388465200001 ER PT J AU Cui, J Wiecki, P Ran, S Bud'ko, SL Canfield, PC Furukawa, Y AF Cui, J. Wiecki, P. Ran, S. Bud'ko, S. L. Canfield, P. C. Furukawa, Y. TI Coexistence of antiferromagnetic and ferromagnetic spin correlations in Ca(Fe1-xCox)(2)As-2 revealed by As-75 nuclear magnetic resonance SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; RELAXATION; METALS AB Recent nuclear magnetic resonance (NMR) measurements revealed the coexistence of stripe-type antiferromagnetic (AFM) and ferromagnetic (FM) spin correlations in both the hole- and electron-doped BaFe2As2 families of iron-pnictide superconductors by a Korringa ratio analysis. Motivated by the NMR work, we investigate the possible existence of FM fluctuations in another iron-pnictide superconducting family, Ca(Fe1-xCox)(2)As-2. We reanalyzed our previously reported data in terms of the Korringa ratio and found clear evidence for the coexistence of stripe-type AFM and FM spin correlations in the electron-doped CaFe2As2 system. These NMR data indicate that FM fluctuations exist in general in iron-pnictide superconducting families and thus must be included to capture the phenomenology of the iron pnictides. C1 [Cui, J.; Wiecki, P.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Cui, J.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Wiecki, P.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Ran, S.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. RP Cui, J (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA.; Cui, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX We thank David C. Johnston for helpful discussions. The research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 34 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 22 PY 2016 VL 94 IS 17 AR 174512 DI 10.1103/PhysRevB.94.174512 PG 8 WC Physics, Condensed Matter SC Physics GA EC9KT UT WOS:000388464200004 ER PT J AU Shen, JX Schleife, A Janotti, A Van de Walle, CG AF Shen, Jimmy-Xuan Schleife, Andre Janotti, Anderson Van de Walle, Chris G. TI Effects of La 5d and 4 f states on the electronic and optical properties of LaAlO3 SO PHYSICAL REVIEW B LA English DT Article ID AUGMENTED-WAVE METHOD; HIGH-K DIELECTRICS; FILMS; GAS; LANTHANUM AB Using first-principles calculations based on density functional theory (DFT) we compare the generalized gradient approximation (GGA-PBE) with a screened hybrid functional by studying the electronic and optical properties of bulk LaAlO3 in the cubic and rhombohedral phases. We find that both atomic and electronic structures are accurately described by the hybrid functional. The hybrid functional not only corrects the band gap, when compared to GGA-PBE, it also shifts the unoccupied La 4f bands to higher energies with respect to the hybridized conduction-band minimum, composed of 83% La 4d, 5% La 4f, 6% O 2s, and 6% O 2p states. We show that this shift is essential to accurately describe the complex dielectric function, in good agreement with experimental results. We conclude that the screened hybrid functional offers a reliable description of the position of empty f bands with respect to the valence- and conduction-band edges in LaAlO3. C1 [Shen, Jimmy-Xuan] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Schleife, Andre] Lawrence Livermore Natl Lab, Condensed Matter & Mat Div, Livermore, CA 94550 USA. [Schleife, Andre] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Janotti, Anderson; Van de Walle, Chris G.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Janotti, Anderson] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Shen, JX (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM jshen@physics.ucsb.edu FU Center for Low Energy Systems Technology (LEAST), one of six SRC STARnet Centers - MARCO; Center for Low Energy Systems Technology (LEAST), one of six SRC STARnet Centers - DARPA; NSF MRSEC program [DMR-1121053]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07A27344]; NSF [ACI-1053575] FX This work was supported by the Center for Low Energy Systems Technology (LEAST), one of six SRC STARnet Centers sponsored by MARCO and DARPA, and by the NSF MRSEC program (DMR-1121053). Part of this work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07A27344. Computational resources were provided by the Center for Scientific Computing at the CNSI and MRL (an NSF MRSEC, DMR-1121053) (NSF CNS-0960316), and by the Extreme Science and Engineering Discovery Environment (XSEDE), supported by NSF (ACI-1053575). NR 40 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 22 PY 2016 VL 94 IS 20 AR 205203 DI 10.1103/PhysRevB.94.205203 PG 7 WC Physics, Condensed Matter SC Physics GA EC9LP UT WOS:000388466400005 ER PT J AU Wolloch, M Gruner, ME Keune, W Mohn, P Redinger, J Hofer, F Suess, D Podloucky, R Landers, J Salamon, S Scheibel, F Spoddig, D Witte, R Cuenya, BR Gutfleisch, O Hu, MY Zhao, J Toellner, T Alp, EE Siewert, M Entel, P Pentcheva, R Wende, H AF Wolloch, M. Gruner, M. E. Keune, W. Mohn, P. Redinger, J. Hofer, F. Suess, D. Podloucky, R. Landers, J. Salamon, S. Scheibel, F. Spoddig, D. Witte, R. Cuenya, B. Roldan Gutfleisch, O. Hu, M. Y. Zhao, J. Toellner, T. Alp, E. E. Siewert, M. Entel, P. Pentcheva, R. Wende, H. TI Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films SO PHYSICAL REVIEW B LA English DT Article ID NUCLEAR RESONANT SCATTERING; GENERALIZED GRADIENT APPROXIMATION; IRON-RHODIUM ALLOY; ANTIFERROMAGNETIC-FERROMAGNETIC TRANSITION; 1ST-ORDER MAGNETIC TRANSITION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SHAPE-MEMORY ALLOYS; SYNCHROTRON-RADIATION AB We present phonon dispersions, element-resolved vibrational density of states (VDOS) and corresponding thermodynamic properties obtained by a combination of density functional theory (DFT) and nuclear resonant inelastic x-ray scattering (NRIXS) across the metamagnetic transition of B2 FeRh in the bulk material and thin epitaxial films. We see distinct differences in the VDOS of the antiferromagnetic (AF) and ferromagnetic (FM) phases, which provide a microscopic proof of strong spin-phonon coupling in FeRh. The FM VDOS exhibits a particular sensitivity to the slight tetragonal distortions present in epitaxial films, which is not encountered in the AF phase. This results in a notable change in lattice entropy, which is important for the comparison between thin film and bulk results. Our calculations confirm the recently reported lattice instability in the AF phase. The imaginary frequencies at the X point depend critically on the Fe magnetic moment and atomic volume. Analyzing these nonvibrational modes leads to the discovery of a stable monoclinic ground-state structure, which is robustly predicted from DFT but not verified in our thin film experiments. Specific heat, entropy, and free energy calculated within the quasiharmonic approximation suggest that the new phase is possibly suppressed because of its relatively smaller lattice entropy. In the bulk phase, lattice vibrations contribute with the same sign and in similar magnitude to the isostructural AF-FM phase transition as excitations of the electronic and magnetic subsystems demonstrating that lattice degrees of freedom need to be included in thermodynamic modeling. C1 [Wolloch, M.; Mohn, P.; Redinger, J.] Vienna Univ Technol, Inst Appl Phys, Wiedner Hauptstr 8-10-134, A-1040 Vienna, Austria. [Gruner, M. E.; Keune, W.; Landers, J.; Salamon, S.; Scheibel, F.; Spoddig, D.; Siewert, M.; Entel, P.; Pentcheva, R.; Wende, H.] Univ Duisburg Essen, Fac Phys, D-47048 Duisburg, Germany. [Gruner, M. E.; Keune, W.; Landers, J.; Salamon, S.; Scheibel, F.; Spoddig, D.; Siewert, M.; Entel, P.; Pentcheva, R.; Wende, H.] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47048 Duisburg, Germany. [Hofer, F.; Suess, D.] Vienna Univ Technol, Inst Solid State Phys, Wiedner Hauptstr 8-10-134, A-1040 Vienna, Austria. [Podloucky, R.] Univ Vienna, Inst Phys Chem, Sensengasse 8-7, A-1090 Vienna, Austria. [Witte, R.] Karlsruhe Inst Technol, Inst Nanotechnol, D-76344 Eggenstein Leopoldshafen, Germany. [Cuenya, B. Roldan] Ruhr Univ Bochum, Dept Phys, D-44780 Bochum, Germany. [Gutfleisch, O.] Tech Univ Darmstadt, Mat Sci, D-64287 Darmstadt, Germany. [Hu, M. Y.; Zhao, J.; Toellner, T.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wolloch, M (reprint author), Vienna Univ Technol, Inst Appl Phys, Wiedner Hauptstr 8-10-134, A-1040 Vienna, Austria. EM mwo@cms.tuwien.ac.at RI Pentcheva, Rossitza/F-8293-2014; Wende, Heiko/J-8505-2012; Gutfleisch, Oliver/C-7241-2011; Gruner, Markus/D-9726-2011 OI Gutfleisch, Oliver/0000-0001-8021-3839; Gruner, Markus/0000-0002-2306-1258 FU Austrian Science Fund (FWF) [SFB ViCoM F4109-N28, F4112-N28]; Deutsche Forschungsgemeinschaft (DFG) [GR3498/3-2, GU514/6-2, WE2623/12-2, AC63/4-2, WE2623/7-1, WE2623/13-2, INST 20876/209-1]; US National Science Foundation [NSF-DMR 1207065]; Stiftung Mercator (MERCUR); U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The authors would like to thank Sergii Khmelevskyi, Martijn Marsman, and Sebastian Fahler for fruitful discussions. We would also like to thank Ulrich von Horsten (Duisburg-Essen) for his outstanding technical assistance. W. Keune is grateful to S. D. Bader (Argonne) and J. Kirschner (MPI Halle, Germany) for enlightening discussions. F. Scheibel and D. Spoddig are thankful to the AG Farle for the supply of devices. M. Wolloch, P. Mohn, J. Redinger, and D. Suess acknowledge the support by the Austrian Science Fund (FWF) [SFB ViCoM F4109-N28 and F4112-N28]. P. Entel M. E. Gruner, O. Gutfleisch, F. Scheibel, D. Spoddig, and H. Wende acknowledge the support by the Deutsche Forschungsgemeinschaft (DFG) within the priority program SPP 1599 (GR3498/3-2, GU514/6-2, WE2623/12-2, AC63/4-2). Beatriz Roldan acknowledges the support of the US National Science Foundation (NSF-DMR 1207065). This work was supported by the DFG SPP 1681 (WE2623/7-1), FOR 1509 (WE2623/13-2), and by Stiftung Mercator (MERCUR). The authors also appreciate the ample support of computer resources by the Vienna Scientific Cluster (VSC) and the use of the Cray XT6/m and MagnitUDE (DFG grant INST 20876/209-1 FUGG) supercomputers of the Center for Computational Sciences and Simulation (CCSS) at University of Duisburg-Essen. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Figures 1, 4, and 5 in this paper were created with help of the VESTA code [126]. The FINDSYM utility of the ISOTROPY software suite [127] was used for structure identification. NR 126 TC 2 Z9 2 U1 23 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 22 PY 2016 VL 94 IS 17 AR 174435 DI 10.1103/PhysRevB.94.174435 PG 17 WC Physics, Condensed Matter SC Physics GA EC9KT UT WOS:000388464200002 ER PT J AU Stoupin, S Zhernenkov, M Shi, B AF Stoupin, Stanislav Zhernenkov, Mikhail Shi, Bing TI Surface studies of solids using integral X-ray-induced photoemission yield SO SCIENTIFIC REPORTS LA English DT Article ID ABSORPTION FINE-STRUCTURE; TOTAL-ELECTRON-YIELD; PHOTOELECTRON-SPECTROSCOPY; TOTAL-REFLECTION; SPECTRA; MULTILAYER; BULK; DIFFRACTION; SYSTEMS; EXAFS AB X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. C1 [Stoupin, Stanislav; Shi, Bing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Zhernenkov, Mikhail] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Stoupin, Stanislav] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. RP Stoupin, S (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA.; Stoupin, S (reprint author), Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14853 USA. EM sstoupin@cornell.edu OI Zhernenkov, Mikhail/0000-0003-3604-0672 FU US. Department of Energy, Office of Science [DE-AC02-06CH11357]; US. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704] FX K. Lang is acknowledged for technical support. Use of the Advanced Photon Source was supported by the US. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The work at the National Synchrotron Light Source-II, Brookhaven National Laboratory, was supported by the US. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 35 TC 1 Z9 1 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 22 PY 2016 VL 6 AR 37440 DI 10.1038/srep37440 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC6NN UT WOS:000388253300001 ER PT J AU Tao, J Sun, K Yin, WG Wu, L Xin, H Wen, JG Luo, W Pennycook, SJ Tranquada, JM Zhu, Y AF Tao, J. Sun, K. Yin, W. -G. Wu, L. Xin, H. Wen, J. G. Luo, W. Pennycook, S. J. Tranquada, J. M. Zhu, Y. TI Direct observation of electronic-liquid-crystal phase transitions and their microscopic origin in La1/3Ca2/3MnO3 SO SCIENTIFIC REPORTS LA English DT Article ID WIGNER-CRYSTAL; BI-STRIPE; MANGANITES; STATE; SUPERCONDUCTOR; LA1-XCAXMNO3; NEMATICITY; PHYSICS AB The ground-state electronic order in doped manganites is frequently associated with a lattice modulation, contributing to their many interesting properties. However, measuring the thermal evolution of the lattice superstructure with reciprocal-space probes alone can lead to ambiguous results with competing interpretations. Here we provide direct observations of the evolution of the superstructure in La1/3Ca2/3MnO3 in real space, as well as reciprocal space, using transmission electron microscopic (TEM) techniques. We show that the transitions are the consequence of a proliferation of dislocations plus electronic phase separation. The resulting states are well described by the symmetries associated with electronic-liquid-crystal (ELC) phases. Moreover, our results resolve the long-standing controversy over the origin of the incommensurate superstructure and suggest a new structural model that is consistent with recent theoretical calculations. C1 [Tao, J.; Yin, W. -G.; Wu, L.; Tranquada, J. M.; Zhu, Y.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Sun, K.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Xin, H.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wen, J. G.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Luo, W.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai, Peoples R China. [Pennycook, S. J.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 119077, Singapore. RP Tao, J (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM jtao@bnl.gov RI Luo, Weidong/A-8418-2009; Tranquada, John/A-9832-2009; OI Luo, Weidong/0000-0003-3829-1547; Tranquada, John/0000-0003-4984-8857; Yin, Weiguo/0000-0002-4965-5329 FU US Department of Energy (DOE)/Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0012704]; NSF [ECCS-1307744]; MCubed program at University of Michigan; Center for Functional Nanomaterials, U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; Center for Nanoscale Materials at Argonne National Laboratory, a DOE-BES Facility by UChicago Argonne, LLC [DEAC02-06CH11357] FX We thank Prof. J. M. Zuo, Prof. S-W. Cheong, Prof. Valery Kiryukhin, Dr. Q. Meng and Dr. Maria Teresa Fernandez-Diaz for discussion. This research is sponsored by the US Department of Energy (DOE)/Basic Energy Sciences, Materials Sciences and Engineering Division under Contract DE-SC0012704. KS is supported in part by NSF under Grant No. ECCS-1307744 and the MCubed program at University of Michigan. HLX is supported by the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. JGW is supported by Center for Nanoscale Materials at Argonne National Laboratory, a DOE-BES Facility, supported under Contract No. DEAC02-06CH11357 by UChicago Argonne, LLC. NR 44 TC 0 Z9 0 U1 7 U2 7 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 22 PY 2016 VL 6 AR 37624 DI 10.1038/srep37624 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC6RR UT WOS:000388264700001 PM 27874069 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Amor Dos Santos, S Amorim, A Amoroso, S Amundsen, G Anastopoulos, CS Ancu, L Andari, N Andeen, T Anders, C Anders, GF Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Anulli, F Aoki, M Aperio Bella, L Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, N Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barranco Navarro, L Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Bergeaas Kuutmann, E Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bessidskaia Bylund, O Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, J-B Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JD Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Colijn, A Collot, J Colombo, T Compostella, G Muno, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, S Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De La Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duffield, EM Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, K Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Goriek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, J Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenz, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezeque, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Koler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kerevan, BP Kersten, S Keyes, RA Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, A Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, D Marroquim, F Marsden, S Marshall, Z Marti-Garcia, S Martin, B Martin, T Martin, V Latour, BMD Martinez, M Martin-Haugh, S Martoiu, V Martyniuk, A Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, A Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, S Maximov, D Mazini, R Mazza, S Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, M Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Mukinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nguyen Manh, T Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, S Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Oleiro Seabra, LF Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, D Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ueno, R Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van Den Wollenberg, W Van Der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varni, C Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenia, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Aperio Bella, L. Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costa, J. Barreiro Guimares Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Bergeaas Kuutmann, E. Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bessidskaia Bylund, O. Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Bossio Sola, J. D. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muno, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duffield, E. M. Duflot, L. Duguid, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Goriek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezeque, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kerevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Machado Miguens, J. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, M. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Mukinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nguyen Manh, T. Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Oleiro Seabra, L. F. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tapia Araya, S. Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torr Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ueno, R. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van Den Wollenberg, W. Van Der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varni, C. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenia, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for the Standard Model Higgs boson produced by vector-boson fusion and decaying to bottom quarks in root s=8TeV pp collisions with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron scattering (experiments); Higgs physics; proton-proton scattering ID PARTON DISTRIBUTIONS; LHC AB A search with the ATLAS detector is presented for the Standard Model Higgs boson produced by vector-boson fusion and decaying to a pair of bottom quarks, using 20.2 fb(-1) of LHC proton-proton collision data at root s - 8 TeV. The signal is searched for as a resonance in the invariant mass distribution of a pair of jets containing b-hadrons in vector-boson-fusion candidate events. The yield is measured to be -0.8 +/- 2.3 times the Standard Model cross-section for a Higgs boson mass of 125 GeV. The upper limit on the cross-section times the branching ratio is found to be 4.4 times the Standard Model cross-section at the 95% confidence level, consistent with the expected limit value of 5.4 (5.7) in the background-only (Standard Model production) hypothesis. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezeque, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezeque, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Liebig, W.; Maltezos, S.; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Harkusha, S.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Debenedetti, C.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Gonzalez Parra, G.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Sjursen, T. B.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Fournier, D.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Fournier, D.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Aperio Bella, L.; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, P. H.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Phys Inst, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Peralva, B. S.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rai, Brazil. [Cetin, S. A.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, S.; Dobre, M.; Ducu, O. A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Bossio Sola, J. D.; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimares; Cheng, H. J.; Fang, Y.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Liu, B.; Ma, L. L.; Ma, Y.; Wang, C.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] PKU CHEP, Beijing, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Dedovich, D. V.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hara, K.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Lari, T.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tartarelli, G. F.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Lari, T.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tartarelli, G. F.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Huang, Y.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Katzy, J.; Keller, J. S.; Kobel, M.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrison, P. F.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Nessi, M.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.; Varni, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.; Varni, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Heinz, C.; Hostachy, J-Y.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Phys Inst 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Phys Inst 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Jorge, P. M.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Radescu, V.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Jansky, R.; Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Kneringer, E.; Lukas, W.; Milic, M.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Metcalfe, J.; Pluth, D.; Prell, S.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, Y.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Jones, S.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; Jongmanns, J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Goriek, A.; Kanjir, L.; Kerevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Mukinja, M.; Sfiligoj, T.; Shupe, M. A.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Goriek, A.; Kanjir, L.; Kerevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Mukinja, M.; Sfiligoj, T.; Shupe, M. A.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Calvet, T. P.; De la Torre, H.; Del Peso, J.; Diglio, S.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Huelsing, T. A.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Wollstadt, S. J.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Coadou, Y.; Diaconu, C.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Le, B.; McDonald, E. F.; Zanzi, D.] Univ Melbourne, Sch Phys, Victoria, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Geng, C.; Goldfarb, S.; Guan, L.; Guo, Y.; Levin, D.; Li, B.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Univ Milan, INFN Sez Milano, Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harrington, R. D.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Nguyen Manh, T.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belanger-Champagne, C.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hasegawa, M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; Menke, S.; Mueller, F.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Igonkina, O.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartmann, N. M.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartmann, N. M.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Harkusha, S.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, CNRS IN2P3, Univ Paris Sud, LAL, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Mistry, K. P.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Del Prete, T.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muno, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Jovicevic, J.; Lopes, L.; Maio, A.; Maneira, J.; Oleiro Seabra, L. F.; Onofre, A.; Palma, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentaceio & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muno, P.; Da Cunha Sargedas De Sousa, M. J.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Jovicevic, J.; Machado Miguens, J.; Maio, A.; Palma, A.; Pedro, R.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Maneira, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dep Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Iodice, M.; Jin, S.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda;, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torr; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Bokan, P.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenia, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bertoli, G.; Bessidskaia Bylund, O.; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bessidskaia Bylund, O.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Jones, G.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Astron & Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Ashkenazi, A.; De Mendizabal, J. Bilbao; Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Lin, S. C.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gkaitatzis, S.; Gkialas, I.; Graziani, E.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Ju, X.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hard, A. S.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hard, A. S.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] INFN Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Giordani, M. P.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Acharya, B. S.; Boldyrev, A. S.; Giordani, M. P.; Quayle, W. B.; Serkin, L.; Shaw, K.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Bergeaas Kuutmann, E.; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Hartjes, F.; Jeske, C.; Jones, G.; Jones, R. W. L.; Martin, T. A.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Murray, W. J.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Harenberg, T.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Hariri, F.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Nat Wissensch, Wuppertal, Germany. [Hakobyan, H.; Vardanyan, G.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 823, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Inst Catalano Recerca & Estudis Avancats, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu, Taiwan. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Kugel, A.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Trefzger, T.; Weber, S. W.; Zinser, M.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco. RI Zhukov, Konstantin/M-6027-2015; Snesarev, Andrey/H-5090-2013; Solodkov, Alexander/B-8623-2017; Doyle, Anthony/C-5889-2009; Zaitsev, Alexandre/B-8989-2017; Leitner, Rupert/C-2004-2017; Carli, Ina/C-2189-2017; messina, andrea/C-2753-2013; Guo, Jun/O-5202-2015; Villa, Mauro/C-9883-2009; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Kantserov, Vadim/M-9761-2015; Prokoshin, Fedor/E-2795-2012; Chekulaev, Sergey/O-1145-2015; Warburton, Andreas/N-8028-2013; Owen, Mark/Q-8268-2016; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Ventura, Andrea/A-9544-2015; Mashinistov, Ruslan/M-8356-2015; Gutierrez, Phillip/C-1161-2011; Tikhomirov, Vladimir/M-6194-2015; White, Ryan/E-2979-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Soldatov, Evgeny/E-3990-2017; Mitsou, Vasiliki/D-1967-2009; Garcia, Jose /H-6339-2015; Vanyashin, Aleksandr/H-7796-2013; Camarri, Paolo/M-7979-2015; Carvalho, Joao/M-4060-2013 OI Solodkov, Alexander/0000-0002-2737-8674; Doyle, Anthony/0000-0001-6322-6195; Zaitsev, Alexandre/0000-0002-4961-8368; Leitner, Rupert/0000-0002-2994-2187; Carli, Ina/0000-0002-0411-1141; Guo, Jun/0000-0001-8125-9433; Villa, Mauro/0000-0002-9181-8048; Peleganchuk, Sergey/0000-0003-0907-7592; Kantserov, Vadim/0000-0001-8255-416X; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Owen, Mark/0000-0001-6820-0488; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Ventura, Andrea/0000-0002-3368-3413; Mashinistov, Ruslan/0000-0001-7925-4676; Tikhomirov, Vladimir/0000-0002-9634-0581; White, Ryan/0000-0003-3589-5900; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Soldatov, Evgeny/0000-0003-0694-3272; Mitsou, Vasiliki/0000-0002-1533-8886; Vanyashin, Aleksandr/0000-0002-0367-5666; Camarri, Paolo/0000-0002-5732-5645; Carvalho, Joao/0000-0002-3015-7821 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern , Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos, Thales; Aristeia programmes; EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 67 TC 0 Z9 0 U1 38 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 21 PY 2016 IS 11 AR 112 DI 10.1007/JHEP11(2016)112 PG 37 WC Physics, Particles & Fields SC Physics GA ED9QC UT WOS:000389206600001 ER PT J AU Markosyan, AH Kushner, MJ AF Markosyan, Aram H. Kushner, Mark J. TI Plasma formation in diode pumped alkali lasers sustained in Cs SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RUBIDIUM VAPOR LASER; CESIUM VAPOR; POWER; IONIZATION; EXCITATION; MODEL AB In diode pumped alkali lasers (DPALs), lasing action occurs on the resonant lines of alkali atoms following pumping by broadband semiconductor lasers. The goal is to convert the efficient but usually poor optical quality of inexpensive diode lasers into the high optical quality of atomic vapor lasers. Resonant excitation of alkali vapor leads to plasma formation through the excitation transfer from the P-2 states to upper lying states, which then are photoionized by the pump and intracavity radiation. A first principles global model was developed to investigate the operation of the He/Cs DPAL system and the consequences of plasma formation on the efficiency of the laser. Over a range of pump powers, cell temperatures, excitation frequency, and mole fraction of the collision mixing agent (N-2 or C2H6), we found that sufficient plasma formation can occur that the Cs vapor is depleted. Although N-2 is not a favored collisional mixing agent due to large rates of quenching of the P-2 states, we found a range of pump parameters where laser oscillation may occur. The poor performance of N-2 buffered systems may be explained in part by plasma formation. We found that during the operation of the DPAL system with N-2 as the collisional mixing agent, plasma formation is in excess of 10(14)-10(15) cm(-3), which can degrade laser output intensity by both depletion of the neutral vapor and electron collisional mixing of the laser levels. Published by AIP Publishing. C1 [Markosyan, Aram H.; Kushner, Mark J.] Univ Michigan, Elect Engn & Comp Sci Dept, 1301 Beal Ave, Ann Arbor, MI 48109 USA. [Markosyan, Aram H.] Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. RP Markosyan, AH (reprint author), Univ Michigan, Elect Engn & Comp Sci Dept, 1301 Beal Ave, Ann Arbor, MI 48109 USA.; Markosyan, AH (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. EM armarkos@umich.edu; mjkush@umich.edu OI Markosyan, Aram/0000-0002-3213-8333 FU Department of Defense High Energy Laser Multidisciplinary Research Initiative FX This work was supported by the Department of Defense High Energy Laser Multidisciplinary Research Initiative. NR 31 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 21 PY 2016 VL 120 IS 19 AR 193105 DI 10.1063/1.4967749 PG 9 WC Physics, Applied SC Physics GA ED6IB UT WOS:000388958200005 ER PT J AU Chan, HS Konijnenberg, MW Daniels, T Nysus, M Makvandi, M de Blois, E Breeman, WA Atcher, RW de Jong, M Norenberg, JP AF Chan, Ho Sze Konijnenberg, Mark W. Daniels, Tamara Nysus, Monique Makvandi, Mehran de Blois, Erik Breeman, Wouter A. Atcher, Robert W. de Jong, Marion Norenberg, Jeffrey P. TI Improved safety and efficacy of Bi-213-DOTATATE-targeted alpha therapy of somatostatin receptor-expressing neuroendocrine tumors in mice pre-treated with L-lysine SO EJNMMI RESEARCH LA English DT Article DE Targeted alpha therapy; Bi-213-DOTATATE; Nephrotoxicity; Maximum tolerated dose; L-lysine ID RADIONUCLIDE THERAPY; TISSUE DISTRIBUTION; RENAL UPTAKE; MODEL; TOXICITY; CANCER; KIDNEY; RAT; DOSIMETRY; RADIATION AB Background: Targeted alpha therapy (TAT) offers advantages over current beta-emitting conjugates for peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors. PRRT with Lu-177-DOTATATE or Y-90-DOTATOC has shown dose-limiting nephrotoxicity due to radiopeptide retention in the proximal tubules. Pharmacological protection can reduce renal uptake of radiopeptides, e.g., positively charged amino acids, to saturate in the proximal tubules, thereby enabling higher radioactivity to be safely administered. The aim of this preclinical study was to evaluate the therapeutic effect of Bi-213-DOTATATE with and without renal protection using L-lysine in mice. Tumor uptake and kinetics as a function of injected mass of peptide (range 0.03-3 nmol) were investigated using In-111-DOTATATE. These results allowed estimation of the mean radiation absorbed tumor dose for Bi-213-DOTATATE. Pharmacokinetics and dosimetry of Bi-213-DOTATATE was determined in mice, in combination with renal protection. A dose escalation study with Bi-213-DOTATATE was performed to determine the maximum tolerated dose (MTD) with and without pre-administration of L-lysine as for renal protection. Neutrophil gelatinase-associated lipocalin (NGAL) served as renal biomarker to determine kidney injury. Results: The maximum mean radiation absorbed tumor dose occurred at 0.03 nmol and the minimum at 3 nmol. Similar mean radiation absorbed tumor doses were determined for 0.1 and 0.3 nmol with a mean radiation absorbed dose of approximately 0.5 Gy/MBq Bi-213-DOTATATE. The optimal mass of injected peptide was found to be 0.3 nmol. Tumor uptake was similar for In-111-DOTATATE and Bi-213-DOTATATE at 0.3 nmol peptide. Lysine reduced the renal uptake of Bi-213-DOTATATE by 50% with no effect on the tumor uptake. The MTD was < 13.0 +/- 1.6 MBq in absence of L-lysine and 21.7 +/- 1.9 MBq with L-lysine renal protection, both imparting an LD50 mean renal radiation absorbed dose of 20 Gy. A correlation was found between the amount of injected radioactivity and NGAL levels. Conclusions: The therapeutic potential of Bi-213-DOTATATE was illustrated by significantly decreased tumor burden and improved overall survival. Renal protection with L-lysine immediately prior to TAT with Bi-213-DOTATATE prolonged survival providing substantial evidence for pharmacological nephron blockade to mitigate nephrotoxicity. C1 [Chan, Ho Sze; Konijnenberg, Mark W.; de Blois, Erik; Breeman, Wouter A.; de Jong, Marion] Erasmus MC, Dept Radiol & Nucl Med, S Gravendijkwal 230, NL-3015 CE Rotterdam, Netherlands. [Daniels, Tamara; Nysus, Monique; Makvandi, Mehran; Atcher, Robert W.; Norenberg, Jeffrey P.] Univ New Mexico, Coll Pharm, Hlth Sci Ctr, Radiopharmaceut Sci Program, Albuquerque, NM 87131 USA. [Atcher, Robert W.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Chan, HS (reprint author), Erasmus MC, Dept Radiol & Nucl Med, S Gravendijkwal 230, NL-3015 CE Rotterdam, Netherlands. EM h.s.chan1982@gmail.com FU US Department of Energy, Office of Science, Office of Biological and Environmental Research; IDB Holland; Dinse Stiftung FX This research was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research; IDB Holland; and the Dinse Stiftung. NR 35 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2191-219X J9 EJNMMI RES JI EJNMMI Res. PD NOV 21 PY 2016 VL 6 AR 83 DI 10.1186/s13550-016-0240-5 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA ED2BC UT WOS:000388647600002 PM 27873240 ER PT J AU Kerisit, S Bylaska, EJ Massey, MS McBriarty, ME Ilton, ES AF Kerisit, Sebastien Bylaska, Eric J. Massey, Michael S. McBriarty, Martin E. Ilton, Eugene S. TI Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (alpha-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals SO INORGANIC CHEMISTRY LA English DT Article ID BIOGENIC URANINITE; HYDRATION STRUCTURE; LOCAL-STRUCTURE; 1ST PRINCIPLES; PSEUDOPOTENTIALS; 1ST-PRINCIPLES; MODEL; COORDINATION; FERRIHYDRITE; PARAMETERS AB Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (alpha-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U LIII-edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO2), and constrained the S-0(2) parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H+, +1 e ). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with applications over a broad swath of chemistry and materials science. C1 [Kerisit, Sebastien; McBriarty, Martin E.; Ilton, Eugene S.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Div Phys Sci, Richland, WA 99352 USA. [Bylaska, Eric J.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Massey, Michael S.] Calif State Univ East Bay, Dept Earth & Environm Sci, Hayward, CA 94542 USA. RP Kerisit, S; Ilton, ES (reprint author), Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Div Phys Sci, Richland, WA 99352 USA. EM sebastien.kerisit@pnnl.gov; eugene.ilton@pnnl.gov FU Geosciences Research Program of the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; U.S. DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL); DOE by Battelle Memorial Institute [DE-AC06-76RLO-1830.]; U.S. DOE's Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX The authors acknowledge Drs. Raymond Atta-Fynn, John Fulton, and Micah Prange for useful discussions. We thank Juan Lezama-Pacheco for access to several of the experimental EXAFS spectra used for comparison, namely, nanouraninite, uranyl adsorbed on ferrihydrite, and uranium incorporated in goethite. This work was supported by the Geosciences Research Program of the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research was performed in part using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute under Contract no. DE-AC06-76RLO-1830. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. DOE's Office of Science, Office of Basic Energy Sciences under Contract no. DE-AC02-76SF00515. NR 51 TC 1 Z9 1 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 21 PY 2016 VL 55 IS 22 BP 11736 EP 11746 DI 10.1021/acs.inorgchem.6b01773 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA ED0QZ UT WOS:000388548300017 PM 27809496 ER PT J AU Captain, I Deblonde, GJP Rupert, PB An, DD Illy, MC Rostan, E Ralston, CY Strong, RK Abergel, RJ AF Captain, Ilya Deblonde, Gauthier J. -P. Rupert, Peter B. An, Dahlia D. Illy, Marie-Claire Rostan, Emeline Ralston, Corie Y. Strong, Roland K. Abergel, Rebecca J. TI Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms SO INORGANIC CHEMISTRY LA English DT Article ID IMMUNE-SYSTEM; COMPLEX STABILITY; AGENTS; 3,4,3-LI(1,2-HOPO); DECORPORATION; RADIOPHARMACEUTICALS; ENTEROBACTIN; ACTINIDES; EFFICACY; THERAPY AB Targeted a therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic alpha-generating radioisotopes Ac-225 and Th-227 are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log beta(110) = 29.65 +/- 0.65, 57.26 +/- 0.20, and 47.71 +/- 0.08, determined for the Eu-III (a lanthanide surrogate for Ac-III), Zr-IV, and Th-IV complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with Zr-IV and Th-IV. Finally, differences in biodistribution profiles between free and siderocalin-bound Pu-238(IV)-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic Ac-225 and Th-227 isotopes or to the positron emission tomography emitter (89) Zr, Zr, independent of metal valence state. C1 [Captain, Ilya; Deblonde, Gauthier J. -P.; An, Dahlia D.; Illy, Marie-Claire; Rostan, Emeline; Abergel, Rebecca J.] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. [Rupert, Peter B.; Strong, Roland K.] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA. [Ralston, Corie Y.] Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Abergel, RJ (reprint author), Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA.; Strong, RK (reprint author), Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA. EM rstrong@fhcrc.org; rjabergel@lbl.gov OI deblonde, gauthier/0000-0002-0825-8714 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; National Institutes of Health [R01DK073462]; U.S. Department of Energy, Office of Science Early Career Award; ParisTech chair of nuclear engineering by Areva; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 (R.J.A.), and by the National Institutes of Health under award number R01DK073462 (subcontract to R.K.S.). R.J.A. is the recipient of a U.S. Department of Energy, Office of Science Early Career Award. M.-C.I. is the recipient of a mobility grant from the ParisTech chair of nuclear engineering supported by Areva. The Advanced Light Source (ALS) is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. We thank M. Allaire, S. Morton, J. Bramble, K. Engle, I. Tadesse, and M. Dupray for their assistance in planning and implementing diffraction data collection on radioactive crystals at the ALS 5.0.2 beamline. We also thank K. Raymond for providing us with purified Ent. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. NR 33 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 21 PY 2016 VL 55 IS 22 BP 11930 EP 11936 DI 10.1021/acs.inorgchem.6b02041 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA ED0QZ UT WOS:000388548300035 PM 27802058 ER PT J AU Ahn, S Thornburg, NE Li, ZY Wang, TC Gallington, LC Chapman, KW Notestein, JM Hupp, JT Farha, OK AF Ahn, Sol Thornburg, Nicholas E. Li, Zhanyong Wang, Timothy C. Gallington, Leighanne C. Chapman, Karena W. Notestein, Justin M. Hupp, Joseph T. Farha, Omar K. TI Stable Metal-Organic Framework-Supported Niobium Catalysts SO INORGANIC CHEMISTRY LA English DT Article ID ATOMIC LAYER DEPOSITION; HYDROGEN-PEROXIDE; CYCLOOCTENE EPOXIDATION; SELECTIVE EPOXIDATION; TITANIUM CATALYSTS; ALKENE EPOXIDATION; SILICA CATALYSTS; OXIDE CATALYSTS; SURFACE-AREA; SITE AB Developing structurally well-defined, supported oxide catalysts remains a significant challenge. Here, we report the grafting of Nb(V) oxide sites onto the nodes of the Zr-based metal organic framework (MOP) NU-1000 as a stable, well-defined catalyst support. Nb(V) oxide was deposited with loadings up to 1.6 mmol/g via two postsynthetic methods: atomic layer deposition in a MOF, and solution-phase grafting in a MOF. Difference envelope density measurements indicated that the two synthetic methods resulted in different local structures of the Nb(V) ions within NU-1000. Despite their high Nb(V) loadings, which were equivalent to >60% surface coverage, nearly all Nb(V) sites of the MOF-supported catalysts were active sites for alkene epoxidation, as confirmed by phenylphosphonic acid titration. The MOF-supported catalysts were more selective than the control Nb-ZrO2 catalyst for cydohexene epoxidation with aqueous H2O2 and were far more active on a gravimetric basis. C1 [Ahn, Sol; Thornburg, Nicholas E.; Notestein, Justin M.] Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Gallington, Leighanne C.; Chapman, Karena W.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Farha, Omar K.] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia. RP Notestein, JM (reprint author), Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Hupp, JT; Farha, OK (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Farha, OK (reprint author), King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia. EM j-notestein@northwestern.edu; j-hupp@northwestern.edu; o-farha@northwestern.edu RI Gallington, Leighanne/G-9341-2011; OI Gallington, Leighanne/0000-0002-0383-7522; Notestein, Justin/0000-0003-1780-7356 FU Inorganometallic Catalyst Design Center, an EFRC - U.S. Department of Energy (DOE), Office of Basic Energy Sciences [DE-SC0012702]; Dow Chemical Company; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern Univ. [DMR-1121262]; MRSEC program (NSF) at the Materials Research Center [DMR-1121262]; International Institute for Nanotechnology (IIN); State of Illinois through the IIN; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX O.K.F., K.W.C., and J.T.H. gratefully acknowledge the financial support from the Inorganometallic Catalyst Design Center, an EFRC funded by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (DE-SC0012702). J.M.N. and N.E.T. acknowledge funding from the Dow Chemical Company. This work made use of the J. B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern Univ. This work also made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. This research used resources of the Advanced Photon Source, a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 69 TC 0 Z9 0 U1 33 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 21 PY 2016 VL 55 IS 22 BP 11954 EP 11961 DI 10.1021/acs.morgchem.6b02103 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA ED0QZ UT WOS:000388548300038 PM 27797182 ER PT J AU McCann, K Brigham, DM Morrison, S Braley, JC AF McCann, Kevin Brigham, Derek M. Morrison, Samuel Braley, Jenifer C. TI Hexavalent Americium Recovery Using Copper(III) Periodate SO INORGANIC CHEMISTRY LA English DT Article ID NITRIC-ACID SOLUTION; EXTRACTION; SEPARATION; OXIDATION; COMPLEXATION; ACTINIDE; POTASSIUM; ELECTRODE; KINETICS; FLUORIDE AB Separation of americium from the lanthanides is considered one of the most difficult separation steps in closing the nuclear fuel cycle. One approach to this separation could involve oxidizing americium to the hexavalent state to form a linear dioxo cation while the lanthanides remain as trivalent ions. This work considers aqueous soluble Cu3+ periodate as an oxidant under molar nitric acid conditions to separate hexavalent Am with diamyl amylphosphonate (DAAP) in n-dodecane. Initial studies assessed the kinetics of Cu3+ periodate autoreduction in acidic media to aid in development of the solvent extraction system. Following characterization of the Cu3+ periodate oxidant, solvent extraction studies optimized the recovery of Am from varied nitric acid media and in the presence of other fission, product, or fission product surrogate, species. Short aqueous/organic contact times encouraged successful recovery of Am (distribution values as high as 2) from nitric acid media in the absence of redox active fission products. In the presence of a post-plutonium uranium redox extraction (post-PUREX) simulant aqueous feed, precipitation of tetravalent species (Ce, Ru, Zr) occurred and the distribution values of Am-241 were suppressed, suggesting some oxidizing capacity of the Cu3+ periodate is significantly consumed by other redox active metals in the simulant. The manuscript demonstrates Cu3+ periodate as a potentially viable oxidant for Am oxidation and recovery and notes the consumption of oxidizing capacity observed in the presence of the post-PUREX simulant feed will need to be addressed for any approach seeking to oxidize Am for separations relevant to the nuclear fuel cycle. C1 [McCann, Kevin; Braley, Jenifer C.] Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA. [Brigham, Derek M.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. [Morrison, Samuel] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Braley, JC (reprint author), Colorado Sch Mines, 1500 Illinois St, Golden, CO 80401 USA. EM jbraley@mines.edu FU US Department of Energy, Office of Nuclear Energy [DE-NE0008289]; Fuel Cycle Research and Development program, Office of Nuclear Energy, U.S. Department of Energy FX The work at Colorado School of Mines was funded by the US Department of Energy, Office of Nuclear Energy, through the Nuclear Energy University Program under contract DE-NE0008289. Work at Pacific Northwest National Laboratory and Oak Ridge National Laboratory was sponsored by Fuel Cycle Research and Development program, Office of Nuclear Energy, U.S. Department of Energy. NR 42 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 21 PY 2016 VL 55 IS 22 BP 11971 EP 11978 DI 10.1021/acs.inorgchem.6b02120 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA ED0QZ UT WOS:000388548300040 PM 27797493 ER PT J AU Shaffer, DW Xie, Y Szalda, DJ Concepcion, JJ AF Shaffer, David W. Xie, Yan Szalda, David J. Concepcion, Javier J. TI Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine-Dicarboxylate Complexes SO INORGANIC CHEMISTRY LA English DT Article ID BLUE DIMER; ELECTRON-TRANSFER; PHOTOSYSTEM-II; BOND FORMATION; RU CATALYSTS; LIGANDS; SITE; INTERMEDIATE; PERFORMANCE; MECHANISM AB In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L)(2)] catalysts (bdaH(2) = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda(2) ligand was synthesized and studied using stopped-flow kinetics. The additional -CF3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. >= 10(4) M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. <= 10(6) M), the RDS was a bimolecular step with k(H)/k(D) approximate to 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of -CF3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant. C1 [Shaffer, David W.; Xie, Yan; Concepcion, Javier J.] Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA. [Szalda, David J.] CUNY, Dept Nat Sci, Baruch Coll, New York, NY 10010 USA. RP Concepcion, JJ (reprint author), Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA. EM jconcepc@bnl.gov OI Shaffer, David/0000-0002-8807-1617 FU U.S. Department of Energy, Office of Science, Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences [DE-SC00112704] FX This work was carried out at Brookhaven National Laboratory, and it was supported by the U.S. Department of Energy, Office of Science, Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences under contract DE-SC00112704. NR 70 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 21 PY 2016 VL 55 IS 22 BP 12024 EP 12035 DI 10.1021/acs.inorgchem.6b02193 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA ED0QZ UT WOS:000388548300046 PM 27802025 ER PT J AU Kim, J Cox, RM Armentrout, PB AF Kim, JungSoo Cox, Richard M. Armentrout, P. B. TI Guided ion beam and theoretical studies of the reactions of Re+, Os+, and Ir+ with CO SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID COLLISION-INDUCED DISSOCIATION; 1ST IONIZATION-POTENTIALS; STATE-SELECTED REACTIONS; BASIS-SET CONVERGENCE; X=0-3 BOND-ENERGIES; MOLECULE REACTIONS; GAS-PHASE; EV CM; THERMOCHEMISTRY; METHANE AB The kinetic-energy dependences of the reactions M+ + CO where M+ = Re+, Os+, and Ir+ are studied using guided ion-beam tandem mass spectrometry. Formation of both MO+ and MC+ was observed in endothermic processes for all three metals. Modeling of the data provides thresholds that yield 0K bond dissociation energies (BDEs, in eV) of 4.67 +/- 0.09 (Re+-O), 4.82 +/- 0.14 (Os+-O), 4.25 +/- 0.11 (Ir+-O), 5.13 +/- 0.12 (Re+-C), 6.14 +/- 0.14 (Os+-C), and 6.58 +/- 0.12 (Ir+-C). These BDEs agree well with literature values within experimental uncertainties demonstrating that ground state products are formed for all cases even though some of the reactions are formally spin forbidden. Quantum mechanical calculations at several levels of theory and using several basis sets were performed for MC+ and MO+ (with comparable results taken from the literature in some cases). B3LYP and CCSD(T) calculated ground state BDEs agree reasonably well with experimental values. The ground states in B3LYP and CCSD(T)/CBS calculations are (3)Sigma(-) (ReC+), (2)Delta(OsC+), and (1)Sigma(+) or (3)Delta (IrC+) after including spin-orbit considerations. Relaxed potential energy surfaces (PESs) for the M+ + CO reactions show crossings between surfaces of different spin states such that products can be formed with no barriers in excess of the substantial endothermicities. Unlike results for these metal cations reacting with O-2, the kinetic energy dependent cross sections for the formation of MO+ in the M+ + CO reactions exhibit only one feature. Reasons for this differential behavior are discussed in detail. Published by AIP Publishing. C1 [Kim, JungSoo; Cox, Richard M.; Armentrout, P. B.] Univ Utah, Dept Chem, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112 USA. [Cox, Richard M.] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Armentrout, PB (reprint author), Univ Utah, Dept Chem, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112 USA. EM armentrout@chem.utah.edu RI Cox, Richard /C-5001-2017 OI Cox, Richard /0000-0003-1812-3431 FU National Science Foundation [CHE-1359769] FX This research is funded by the National Science Foundation under Grant No. CHE-1359769. Professor Michael D. Morse is thanked for many helpful discussions concerning spin-orbit coupling. NR 60 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2016 VL 145 IS 19 AR 194305 DI 10.1063/1.4967820 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA ED6HO UT WOS:000388956900020 PM 27875879 ER PT J AU Reddy, SK Straight, SC Bajaj, P Pham, CH Riera, M Moberg, DR Morales, MA Knight, C Gotz, AW Paesani, F AF Reddy, Sandeep K. Straight, Shelby C. Bajaj, Pushp Pham, C. Huy Riera, Marc Moberg, Daniel R. Morales, Miguel A. Knight, Chris Gotz, Andreas W. Paesani, Francesco TI On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID BASIS-SET CONVERGENCE; LENNARD-JONES SYSTEM; MOLECULAR-DYNAMICS; 1ST PRINCIPLES; DIFFUSION-COEFFICIENTS; COEXISTENCE PROPERTIES; POLARIZABLE MODEL; SURFACE-TENSION; SELF-DIFFUSION; BENCHMARK STRUCTURES AB The MB-pol many-body potential has recently emerged as an accurate molecular model for water simulations from the gas to the condensed phase. In this study, the accuracy of MB-pol is systematically assessed across the three phases of water through extensive comparisons with experimental data and high-level ab initio calculations. Individual many-body contributions to the interaction energies as well as vibrational spectra of water clusters calculated with MB-pol are in excellent agreement with reference data obtained at the coupled cluster level. Several structural, thermodynamic, and dynamical properties of the liquid phase at atmospheric pressure are investigated through classical molecular dynamics simulations as a function of temperature. The structural properties of the liquid phase are in nearly quantitative agreement with X-ray diffraction data available over the temperature range from 268 to 368 K. The analysis of other thermodynamic and dynamical quantities emphasizes the importance of explicitly including nuclear quantum effects in the simulations, especially at low temperature, for a physically correct description of the properties of liquid water. Furthermore, both densities and lattice energies of several ice phases are also correctly reproduced by MB-pol. Following a recent study of DFT models for water, a score is assigned to each computed property, which demonstrates the high and, in many respects, unprecedented accuracy of MB-pol in representing all three phases of water. Published by AIP Publishing. C1 [Reddy, Sandeep K.; Straight, Shelby C.; Bajaj, Pushp; Pham, C. Huy; Riera, Marc; Moberg, Daniel R.; Paesani, Francesco] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Morales, Miguel A.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Knight, Chris] Argonne Natl Lab, Leadership Comp Facil, 9700 South Cass Ave, Argonne, IL 60439 USA. [Gotz, Andreas W.] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA. RP Reddy, SK (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. RI Pham, Huy/E-3631-2017; OI Pham, Huy/0000-0002-9465-9361; Bajaj, Pushp/0000-0003-1671-2857; Reddy, Sandeep Kumar/0000-0002-1458-6853; Goetz, Andreas/0000-0002-8048-6906; Moberg, Daniel/0000-0002-4240-6098 FU National Science Foundation [CHE-1453204, ACI-1053575]; US DOE [DE-AC52-07NA27344]; DOE Office of Science User Facility [DE-AC02-06CH11357]; University of California, San Diego; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This research was supported by the National Science Foundation through Grant No. CHE-1453204. This work was performed in part under the auspices of the US DOE by LLNL under Contract No. DE-AC52-07NA27344. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract No. DE-AC02-06CH11357, as well as the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation (Grant No. ACI-1053575). S.S. acknowledges the University of California, San Diego for the financial support through the Frontiers of Innovation Scholars Program (FISP).; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 142 TC 0 Z9 0 U1 15 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 21 PY 2016 VL 145 IS 19 AR 194504 DI 10.1063/1.4967719 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA ED6HO UT WOS:000388956900027 PM 27875875 ER PT J AU Yang, T Troy, TP Xu, B Kostko, O Ahmed, M Mebel, AM Kaiser, RI AF Yang, Tao Troy, Tyler P. Xu, Bo Kostko, Oleg Ahmed, Musahid Mebel, Alexander M. Kaiser, Ralf I. TI Hydrogen-Abstraction/Acetylene-Addition Exposed SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE combustion; gas-phase chemistry; hydrogen-abstraction/acetylene-addition (HACA); mass spectrometry; polycyclic aromatic hydrocarbons ID POLYCYCLIC AROMATIC-HYDROCARBONS; MOLECULES; NAPHTHALENE; ENVELOPES; ACETYLENE; BANDS; SOOT AB Polycyclic aromatic hydrocarbons (PAHs) are omnipresent in the interstellar medium (ISM) and also in carbonaceous meteorites (CM) such as Murchison. However, the basic reaction routes leading to the formation of even the simplest PAH-naphthalene (C10H8)-via the hydrogen-abstraction/acetylene-addition (HACA) mechanism still remain ambiguous. Here, by revealing the uncharted fundamental chemistry of the styrenyl (C8H7) and the ortho-vinylphenyl radicals (C8H7)-key transient species of the HACA mechanism-with acetylene (C2H2), we provide the first solid experimental evidence on the facile formation of naphthalene in a simulated combustion environment validating the previously postulated HACA mechanism for these two radicals. This study highlights, at the molecular level spanning combustion and astrochemistry, the importance of the HACA mechanism to the formation of the prototype PAH naphthalene. C1 [Yang, Tao; Kaiser, Ralf I.] Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA. [Troy, Tyler P.; Xu, Bo; Kostko, Oleg; Ahmed, Musahid] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Mebel, Alexander M.] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. RP Kaiser, RI (reprint author), Univ Hawaii Manoa, Dept Chem, Honolulu, HI 96822 USA.; Ahmed, M (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Mebel, AM (reprint author), Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. EM mahmed@lbl.gov; mebela@fiu.edu; ralfk@hawaii.edu OI Kostko, Oleg/0000-0003-2068-4991 FU US Department of Energy, Basic Energy Sciences [DE-FG02-03ER15411, DE-FG02-04ER15570]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Chemical Sciences Division [DE-AC02-05CH11231] FX This work was supported by the US Department of Energy, Basic Energy Sciences DE-FG02-03ER15411 and DE-FG02-04ER15570 to the University of Hawaii and to Florida International University, respectively. T.P.T., B.X., O.K. and M.A. along with the Advanced Light Source are supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the Chemical Sciences Division. NR 34 TC 2 Z9 2 U1 11 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 21 PY 2016 VL 55 IS 48 BP 14983 EP 14987 DI 10.1002/anie.201607509 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EC6PI UT WOS:000388258000013 PM 27781351 ER PT J AU Godin, B Nagle, N Sattler, S Agneessens, R Delcarte, J Wolfrum, E AF Godin, Bruno Nagle, Nick Sattler, Scott Agneessens, Richard Delcarte, Jerome Wolfrum, Edward TI Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Sorghum bicolor; Brown midrib; Pretreatment; Total sugar yield; Biofuels ID DILUTE-ACID PRETREATMENT; DETERGENT FIBER; PLANT BIOMASSES; FORAGE SORGHUM; CHEMICAL-COMPOSITION; GENETIC STOCKS; BMR-12 GENES; CORN STOVER; LIGNOCELLULOSE; DIGESTIBILITY AB Background: For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In this work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib (bmr) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system. Results: After pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger. Conclusions: Sorghum bmr mutants, which have a reduced lignin content showed higher total sugar yields than the WT cultivar after dilute acid pretreatment and enzymatic hydrolysis. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples. However, since deacetylation also solubilizes a large fraction of the non-structural carbohydrates, the ability to derive value from these solubilized sugars will depend greatly on the proposed conversion process. C1 [Godin, Bruno; Nagle, Nick; Wolfrum, Edward] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Godin, Bruno; Agneessens, Richard; Delcarte, Jerome] Walloon Agr Res Ctr CRA W, Bioprod & Energy Unit, Valorizat Agr Prod Dept Biomass, Chaussee Namur 146, B-5030 Gembloux, Belgium. [Sattler, Scott] Univ Nebraska, ARS, USDA, Grain Forage & Bioenergy Res Unit, 251 Filley Hall Food Ind Complex,East Campus, Lincoln, NE 68583 USA. RP Godin, B (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.; Godin, B (reprint author), Walloon Agr Res Ctr CRA W, Bioprod & Energy Unit, Valorizat Agr Prod Dept Biomass, Chaussee Namur 146, B-5030 Gembloux, Belgium. EM b.godin@cra.wallonie.be OI Wolfrum, Edward/0000-0002-7361-8931 FU US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Walloon Agricultural Research Center (CRAW); Belgian Science Policy FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. This research was also funded by the Walloon Agricultural Research Center (CRAW) with the support of the Belgian Science Policy. NR 36 TC 0 Z9 0 U1 15 U2 15 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD NOV 21 PY 2016 VL 9 AR 251 DI 10.1186/s13068-016-0667-y PG 11 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EC4QZ UT WOS:000388119800001 PM 27895705 ER PT J AU Wang, BB Knopf, DA China, S Arey, BW Harder, TH Gilles, MK Laskin, A AF Wang, Bingbing Knopf, Daniel A. China, Swarup Arey, Bruce W. Harder, Tristan H. Gilles, Mary K. Laskin, Alexander TI Direct observation of ice nucleation events on individual atmospheric particles SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID SCANNING-ELECTRON-MICROSCOPY; CIRRUS CLOUD FORMATION; ALUMINOSILICATE CLAY-MINERALS; X-RAY SPECTROMICROSCOPY; AEROSOL-PARTICLES; HYGROSCOPIC BEHAVIOR; KAOLINITE SURFACES; RELATIVE-HUMIDITY; PHASE-TRANSITIONS; DIFFUSION CHAMBER AB Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood, partially due to the lack of experimental methods capable of obtaining in situ microscopic details of ice formation over nucleating substrates or particles. We present microscopic observations of ice nucleation events on kaolinite particles at the nanoscale and demonstrate the capability of direct tracking and micro-spectroscopic characterization of individual ice nucleating particles (INPs) in an authentic atmospheric sample. This approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM platform) operated at temperatures and relative humidities relevant for heterogeneous ice nucleation. The IN-ESEM platform allows dynamic observations of individual ice formation events over particles in isobaric and isothermal experiments. Isothermal experiments on individual kaolinite particles demonstrate that ice crystals preferably nucleate at the edges of the stacked kaolinite platelets, rather than on their basal planes. These experimental observations of the location of ice nucleation provide direct information for further theoretical chemistry predictions of ice formation on kaolinite. C1 [Wang, Bingbing; China, Swarup; Arey, Bruce W.; Laskin, Alexander] Pacific Northwest Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Knopf, Daniel A.] SUNY Stony Brook, Inst Terr & Planetary Atmospheres, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Harder, Tristan H.; Gilles, Mary K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Harder, Tristan H.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wang, Bingbing] Xiamen Univ, Coll Ocean & Earth Sci, State Key Lab Marine Environm Sci, Xiamen 361102, Peoples R China. RP Wang, BB (reprint author), Pacific Northwest Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA.; Wang, BB (reprint author), Xiamen Univ, Coll Ocean & Earth Sci, State Key Lab Marine Environm Sci, Xiamen 361102, Peoples R China. EM Bingbing.Wang@xmu.edu.cn RI Laskin, Alexander/I-2574-2012 OI Laskin, Alexander/0000-0002-7836-8417 FU Laboratory Directed Research and Development funds of Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy, Office of Science (OBER) [DE-SC0016370]; Condensed Phase Interfacial Molecular Science Program of the Department of Energy Basic Energy Sciences; U.S. DOE [DE-AC06-76RL0]; OBER at PNNL; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231] FX PNNL group acknowledges support by Laboratory Directed Research and Development funds of Pacific Northwest National Laboratory (PNNL). D. A. K. acknowledges support by the U.S. Department of Energy, Office of Science (OBER), under Award Number DE-SC0016370. M. K. G. acknowledges support from the Condensed Phase Interfacial Molecular Science Program of the Department of Energy Basic Energy Sciences. PNNL is operated by the U.S. DOE by Battelle Memorial Institute under contract DE-AC06-76RL0. The ESEM imaging and SEM/EDX particle analysis were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by OBER at PNNL. The STXM/NEXAFS particle analysis was performed at beamlines 11.0.2 and 5.3.2 at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The work at the ALS was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 84 TC 1 Z9 1 U1 28 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD NOV 21 PY 2016 VL 18 IS 43 BP 29721 EP 29731 DI 10.1039/c6cp05253c PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EC0FF UT WOS:000387773100007 PM 27722496 ER PT J AU Oide, K Aiba, M Aumon, S Benedikt, M Blondel, A Bogomyagkov, A Boscolo, M Burkhardt, H Cai, Y Doblhammer, A Haerer, B Holzer, B Jowett, JM Koop, I Koratzinos, M Levichev, E Medina, L Ohmi, K Papaphilippou, Y Piminov, P Shatilov, D Sinyatkin, S Sullivan, M Wenninger, J Wienands, U Zhou, D Zimmermann, F AF Oide, K. Aiba, M. Aumon, S. Benedikt, M. Blondel, A. Bogomyagkov, A. Boscolo, M. Burkhardt, H. Cai, Y. Doblhammer, A. Haerer, B. Holzer, B. Jowett, J. M. Koop, I. Koratzinos, M. Levichev, E. Medina, L. Ohmi, K. Papaphilippou, Y. Piminov, P. Shatilov, D. Sinyatkin, S. Sullivan, M. Wenninger, J. Wienands, U. Zhou, D. Zimmermann, F. TI Design of beam optics for the future circular collider e(+)e(-) collider rings SO PHYSICAL REVIEW ACCELERATORS AND BEAMS LA English DT Article AB A beam optics scheme has been designed for the future circular collider-e(+) e(-) (FCC-ee). The main characteristics of the design are: beam energy 45 to 175 GeV, 100 km circumference with two interaction points (IPs) per ring, horizontal crossing angle of 30 mrad at the IP and the crab-waist scheme [P. Raimondi, D. Shatilov, and M. Zobov, arXiv: physics/0702033; P. Raimondi, M. Zobov, and D. Shatilov, in Proceedings of the 22nd Particle Accelerator Conference, PAC-2007, Albuquerque, NM (IEEE, New York, 2007), p. TUPAN037.] with local chromaticity correction. The crab-waist scheme is implemented within the local chromaticity correction system without additional sextupoles, by reducing the strength of one of the two sextupoles for vertical chromatic correction at each side of the IP. So-called "tapering" of the magnets is applied, which scales all fields of the magnets according to the local beam energy to compensate for the effect of synchrotron radiation (SR) loss along the ring. An asymmetric layout near the interaction region reduces the critical energy of SR photons on the incoming side of the IP to values below 100 keV, while matching the geometry to the beam line of the FCC proton collider (FCC-hh) [A. Chance et al., Proceedings of IPAC'16, 9-13 May 2016, Busan, Korea, TUPMW020 (2016).] as closely as possible. Sufficient transverse/longitudinal dynamic aperture (DA) has been obtained, including major dynamical effects, to assure an adequate beam lifetime in the presence of beamstrahlung and top-up injection. In particular, a momentum acceptance larger than +/- 2% has been obtained, which is better than the momentum acceptance of typical collider rings by about a factor of 2. The effects of the detector solenoids including their compensation elements are taken into account as well as synchrotron radiation in all magnets. The optics presented in this paper is a step toward a full conceptual design for the collider. A number of issues have been identified for further study. C1 [Oide, K.; Ohmi, K.; Zhou, D.] KEK, Tsukuba, Ibaraki 3050801, Japan. [Aiba, M.; Aumon, S.; Benedikt, M.; Burkhardt, H.; Doblhammer, A.; Haerer, B.; Holzer, B.; Jowett, J. M.; Medina, L.; Papaphilippou, Y.; Wenninger, J.; Zimmermann, F.] PSI, CH-5232 Villigen, Switzerland. [Blondel, A.; Koratzinos, M.] Univ Geneva, DPNC, CH-1211 Geneva 4, Switzerland. [Bogomyagkov, A.; Koop, I.; Levichev, E.; Piminov, P.; Shatilov, D.] BINP SB RAS, Novosibirsk 630090, Russia. [Boscolo, M.] Ist Nazl Fis Nucl, LNF, I-00044 Rome, Italy. [Cai, Y.; Sinyatkin, S.; Sullivan, M.] SLAC, Menlo Pk, CA 94025 USA. [Wienands, U.] ANL, Argonne, IL 60439 USA. RP Oide, K (reprint author), KEK, Tsukuba, Ibaraki 3050801, Japan. EM Katsunobu.Oide@kek.jp OI Boscolo, Manuela/0000-0002-1997-6041 FU European Commission under the FP7 Capacities project EuCARD-2 [312453]; CONACyT, Mexico FX The authors thank D. Schulte for providing information on FCC-hh. We also thank R. Calaga, C. Cook, S. Fartoukh, P. Janot, E. Jensen, R. Kersevan, H. Koiso, A. Milanese, P. Raimondi, J. Seeman, D. Shwartz, G. Stupakov, R. Tomas for useful discussions and suggestions. This work was supported in part by the European Commission under the FP7 Capacities project EuCARD-2, grant agreement No. 312453, and by CONACyT, Mexico. NR 20 TC 0 Z9 0 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9888 J9 PHYS REV ACCEL BEAMS JI Phys. Rev. Accel. Beams PD NOV 21 PY 2016 VL 19 IS 11 AR 111005 DI 10.1103/PhysRevAccelBeams.19.111005 PG 11 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA ED1UO UT WOS:000388630600002 ER PT J AU Hallsteinsen, I Moreau, M Grutter, A Nord, M Vullum, PE Gilbert, DA Bolstad, T Grepstad, JK Holmestad, R Selbach, SM N'Diaye, AT Kirby, BJ Arenholz, E Tybell, T AF Hallsteinsen, I. Moreau, M. Grutter, A. Nord, M. Vullum, P. -E. Gilbert, D. A. Bolstad, T. Grepstad, J. K. Holmestad, R. Selbach, S. M. N'Diaye, A. T. Kirby, B. J. Arenholz, E. Tybell, T. TI Concurrent magnetic and structural reconstructions at the interface of (111)-oriented La0.7Sr0.3MnO3/LaFeO3 SO PHYSICAL REVIEW B LA English DT Article ID OXIDE SUPERLATTICES; ENERGY; HETEROSTRUCTURES; FERROMAGNETISM AB We observe an induced switchable magnetic moment of 1.6 +/- 0.40 mu(B)/Fe for the nominally antiferromagnetic LaFeO3 extending two to four interface layers into the non-charge transfer system La0.7Sr0.3MnO3/LaFeO3/SrTiO3(111). Simultaneously a mismatch of oxygen octahedra rotations at the interface implies an atomic reconstruction of reduced symmetry at the interface, reaching two to five layers into LaFeO3. Density functional theory of a structure with atomic reconstruction and different correlation strength shows a ferrimagnetic state with a net Fe moment at the interface. Together these results suggest that engineered oxygen octahedra rotations, affecting the local symmetry, affect electron correlations and can be used to promote magnetic properties. C1 [Hallsteinsen, I.; Moreau, M.; Bolstad, T.; Grepstad, J. K.; Tybell, T.] NTNU Norwegian Univ Sci & Technol, Dept Elect & Telecommun, N-7491 Trondheim, Norway. [Hallsteinsen, I.; N'Diaye, A. T.; Arenholz, E.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Grutter, A.; Gilbert, D. A.; Kirby, B. J.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Nord, M.; Vullum, P. -E.; Holmestad, R.] NTNU Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway. [Vullum, P. -E.] SINTEF Mat & Chem, N-7491 Trondheim, Norway. [Selbach, S. M.] NTNU Norwegian Univ Sci & Technol, Dept Mat Sci & Engn, N-7491 Trondheim, Norway. RP Tybell, T (reprint author), NTNU Norwegian Univ Sci & Technol, Dept Elect & Telecommun, N-7491 Trondheim, Norway. EM thomas.tybell@ntnu.no RI Tybell, Thomas/B-8297-2013 OI Tybell, Thomas/0000-0003-0787-8476 FU Research Council of Norway [231290]; project NORTEM within the Programme INFRA-STRUCTURE of the Research Council of Norway [197405]; Norwegian Metacenter for Computational Science (UNINETT Sigma2) [NN9301K]; U.S. Department of Energy [DE-AC02-05CH11231] FX T.T. and T.B. acknowledge Research Council of Norway Grant No. 231290. M.N. is supported by the Project NORTEM (Grant No. 197405) within the Programme INFRA-STRUCTURE of the Research Council of Norway. The Norwegian Metacenter for Computational Science (UNINETT Sigma2) was acknowledged for providing computational resources for DFT calculations through Project No. NN9301K. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of this work was performed at the I1011 beamline at MAX II, Sweden, and we thank Gunnar Ohrwall for his assistance at the beamline. NR 31 TC 1 Z9 1 U1 15 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 21 PY 2016 VL 94 IS 20 AR 201115 DI 10.1103/PhysRevB.94.201115 PG 6 WC Physics, Condensed Matter SC Physics GA EC9LN UT WOS:000388466200001 ER PT J AU Meyer, TL Herklotz, A Lauter, V Freeland, JW Nichols, J Guo, EJ Lee, S Ward, TZ Balke, N Kalinin, SV Fitzsimmons, MR Lee, HN AF Meyer, Tricia L. Herklotz, Andreas Lauter, Valeria Freeland, John W. Nichols, John Guo, Er-Jia Lee, Shinbuhm Ward, T. Zac Balke, Nina Kalinin, Sergei V. Fitzsimmons, Michael R. Lee, Ho Nyung TI Enhancing interfacial magnetization with a ferroelectric SO PHYSICAL REVIEW B LA English DT Article ID OXIDE HETEROSTRUCTURES; ELECTRORESISTANCE; FILMS; MAGNETORESISTANCE; LA0.7SR0.3MNO3; MODULATION; TRANSITION; SURFACE; DEVICES AB Ferroelectric control of interfacial magnetism has attracted much attention. However, the coupling of these two functionalities has not been understood well at the atomic scale. The lack of scientific progress is mainly due to the limited characterization methods by which the interface's magnetic properties can be probed at an atomic level. Here, we use polarized neutron reflectometry to probe the evolution of the magnetic moment at interfaces in ferroelectric/strongly correlated oxide [PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3(PZT/LSMO)] heterostructures. We find that the magnetization at the surfaces and interfaces of our LSMO films without PZT are always deteriorated and such magnetic deterioration can be greatly improved by interfacing with a strongly polar PZT film. Magnetoelectric coupling of magnetism and ferroelectric polarization was observed within a couple of nanometers of the interface via an increase in the LSMO surface magnetization to 4.0 mu B/f.u., a value nearly 70% higher than the surface magnetization of our LSMO film without interfacing with a ferroelectric layer. We attribute this behavior to hole depletion driven by the ferroelectric polarization. These compelling results not only probe the presence of nanoscale magnetic suppression and its control by ferroelectrics, but also emphasize the importance of utilizing probing techniques that can distinguish between bulk and interfacial phenomena. C1 [Meyer, Tricia L.; Herklotz, Andreas; Lauter, Valeria; Nichols, John; Guo, Er-Jia; Lee, Shinbuhm; Ward, T. Zac; Balke, Nina; Kalinin, Sergei V.; Fitzsimmons, Michael R.; Lee, Ho Nyung] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Freeland, John W.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Lee, HN (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov RI Balke, Nina/Q-2505-2015; OI Balke, Nina/0000-0001-5865-5892; Guo, Erjia/0000-0001-5702-225X FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); Scientific User Facilities Division, BES, U.S. DOE FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division [synthesis, magnetic characterization, and polarized neutron reflectometry (PNR) data analysis], and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U.S. DOE (PNR data fitting). Use of PNR and piezoresponse force microscopy were performed as user projects at the Spallation Neutron Source and the Center for Nanophase Materials Sciences, respectively, which are sponsored at ORNL by the Scientific User Facilities Division, BES, U.S. DOE. NR 47 TC 1 Z9 1 U1 23 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 21 PY 2016 VL 94 IS 17 AR 174432 DI 10.1103/PhysRevB.94.174432 PG 6 WC Physics, Condensed Matter SC Physics GA EC9KS UT WOS:000388464100005 ER PT J AU Nocera, A Alvarez, G AF Nocera, A. Alvarez, G. TI Spectral functions with the density matrix renormalization group: Krylov-space approach for correction vectors SO PHYSICAL REVIEW E LA English DT Article ID T-J LADDERS; HUBBARD-MODEL; SPIN; SUPERCONDUCTIVITY; SYSTEMS AB Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. This paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper then studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases studied indicate that the Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG. C1 [Nocera, A.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Nocera, A (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. FU Scientific User Facilities Division, Basic Energy Sciences, U.S. Department of Energy (DOE); DOE early career research program; UT-Battelle FX We would like to thank E. Jeckelmann, S. R. Manmana, I. P. McCulloch, and F. A. Wolf for their feedback and suggestions. This work was conducted at the Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Basic Energy Sciences, U.S. Department of Energy (DOE), under contract with UT-Battelle. We acknowledge support by the DOE early career research program. NR 47 TC 2 Z9 2 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 21 PY 2016 VL 94 IS 5 AR 053308 DI 10.1103/PhysRevE.94.053308 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA ED0JW UT WOS:000388529800005 PM 27967202 ER PT J AU Wippler, J Kleiner, M Lott, C Gruhl, A Abraham, PE Giannone, RJ Young, JC Hettich, RL Dubilier, N AF Wippler, Juliane Kleiner, Manuel Lott, Christian Gruhl, Alexander Abraham, Paul E. Giannone, Richard J. Young, Jacque C. Hettich, Robert L. Dubilier, Nicole TI Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olavius algarvensis SO BMC GENOMICS LA English DT Article DE RNA-Seq; Annelida; Oligochaeta; Phallodrilinae; PGRP; FREP; SRCR; Respiratory pigment; Carbon monoxide; Immunology; Chemosynthetic symbiosis ID PEPTIDOGLYCAN RECOGNITION PROTEIN; C-TYPE LECTIN; HYDROTHERMAL VENT TUBEWORM; PREDICTING SUBCELLULAR-LOCALIZATION; MANNOSE-BINDING LECTIN; SULFIDE-BINDING; RIFTIA-PACHYPTILA; GENE-EXPRESSION; SEA-URCHIN; MOLECULAR CHARACTERIZATION AB Background: The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. Results: Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. Conclusions: We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations. C1 [Wippler, Juliane; Kleiner, Manuel; Lott, Christian; Gruhl, Alexander; Dubilier, Nicole] Max Planck Inst Marine Microbiol, Symbiosis Dept, Celsiusstr 1, D-28359 Bremen, Germany. [Kleiner, Manuel] Univ Calgary, Energy Bioengn & Geomicrobiol Res Grp, Calgary, AB T2N 1N4, Canada. [Lott, Christian] HYDRA Inst Marine Sci, Elba Field Stn, Via Forno 80, I-57034 Campo Nellelba, LI, Italy. [Abraham, Paul E.; Giannone, Richard J.; Young, Jacque C.; Hettich, Robert L.] Oak Ridge Natl Lab, Div Chem Sci, Tennessee,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Young, Jacque C.] Saul Ewing LLP, 1500 Market St,37th Floor, Philadelphia, PA 19102 USA. RP Wippler, J; Kleiner, M (reprint author), Max Planck Inst Marine Microbiol, Symbiosis Dept, Celsiusstr 1, D-28359 Bremen, Germany.; Kleiner, M (reprint author), Univ Calgary, Energy Bioengn & Geomicrobiol Res Grp, Calgary, AB T2N 1N4, Canada. EM jwippler@mpi-bremen.de; manuel.kleiner@ucalgary.ca OI Kleiner, Manuel/0000-0001-6904-0287 FU Max Planck Society; Gordon and Betty Moore Foundation [GBMF3811]; Studienstiftung des Deutschen Volkes; NSERC Banting Postdoctoral Fellowship FX The study was funded by the Max Planck Society and by the Gordon and Betty Moore Foundation through Grant GBMF3811 to ND. MK was supported by a PhD scholarship of the Studienstiftung des Deutschen Volkes and a NSERC Banting Postdoctoral Fellowship. NR 141 TC 0 Z9 0 U1 8 U2 8 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 21 PY 2016 VL 17 AR 942 DI 10.1186/s12864-016-3293-y PG 19 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA EC4XB UT WOS:000388136600001 PM 27871231 ER PT J AU Black, HT Yee, N Zems, Y Perepichka, DF AF Black, H. T. Yee, N. Zems, Y. Perepichka, D. F. TI Complementary Hydrogen Bonding Modulates Electronic Properties and Controls Self-Assembly of Donor/Acceptor Semiconductors SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE donor-acceptor systems; hydrogen bonding; polymers; semiconductors; supramolecular chemistry ID FIELD-EFFECT TRANSISTORS; HIGH-PERFORMANCE AMBIPOLAR; CHARGE-TRANSFER COMPLEXES; ORGANIC SEMICONDUCTORS; SOLAR-CELLS; THIN-FILMS; BASE-PAIRS; CRYSTAL; ACCEPTOR; BISIMIDE AB A comprehensive investigation of the complementary H-bonding-mediated self-assembly between dipyrrolo[2,3-b:3,2-e]pyridine (P2P) electron donors and naphthalenediimide/perylenediimide (NDI/PDI) acceptors is reported. The synthesis of parent P2P and several aryl-substituted derivatives is described, along with their optical, redox, and single-crystal packing characteristics. The dual functionality of heteroatoms in the P2P/NDI(PDI) assembly, which act as proton donors/acceptors and also contribute to -conjugation, leads to H-bonding-induced perturbation of electronic levels. Concentration-dependent NMR and UV/Vis spectroscopic studies revealed a cooperative effect of H-bonding and - stacking interactions. This H-bonding-mediated co-assembly of donor (D) and acceptor (A) components leads to a new charge-transfer (CT) absorption that can be controlled throughout the visible range. The electronic interactions between D and A were further investigated by time-dependent DFT, which provided insights into the nature of the CT transition. Electropolymerization of difuryl-P2P afforded the first conjugated polymer incorporating H-bonding recognition units in its main chain. C1 [Black, H. T.; Yee, N.; Zems, Y.; Perepichka, D. F.] McGill Univ, Dept Chem, Montreal, PQ H3A 0B8, Canada. [Black, H. T.; Yee, N.; Zems, Y.; Perepichka, D. F.] McGill Univ, Ctr Self Assembled Chem Struct, Montreal, PQ H3A 0B8, Canada. [Black, H. T.] Sandia Natl Labs, Organ Mat Dept, POB 5800, Albuquerque, NM 87185 USA. RP Perepichka, DF (reprint author), McGill Univ, Dept Chem, Montreal, PQ H3A 0B8, Canada.; Perepichka, DF (reprint author), McGill Univ, Ctr Self Assembled Chem Struct, Montreal, PQ H3A 0B8, Canada. EM dmitrii.perepichka@mcgill.ca FU NSERC Discovery; FQRNT Team FX This work was supported by NSERC Discovery and FQRNT Team grants. NR 79 TC 0 Z9 0 U1 34 U2 34 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD NOV 21 PY 2016 VL 22 IS 48 BP 17251 EP 17261 DI 10.1002/chem.201602543 PG 11 WC Chemistry, Multidisciplinary SC Chemistry GA EC1HF UT WOS:000387854800021 PM 27739184 ER PT J AU Yen, HJ Lin, JH Su, YO Liou, GS AF Yen, Hung-Ju Lin, Jhe-Huang Su, Yuhlong Oliver Liou, Guey-Sheng TI Novel triarylamine-based aromatic polyamides bearing secondary amines: synthesis and redox potential inversion characteristics induced by pyridines SO JOURNAL OF MATERIALS CHEMISTRY C LA English DT Article ID DEPENDENT RECEPTORS; HYDROGEN; ELECTROCHEMISTRY; REDUCTION; ARYLUREAS; QUINONES AB Novel triarylamine-based aramids with secondary amine moieties are prepared and utilized as electrochemical detectors for pyridines. Their electrochemical behavior with different pyridines was investigated in order to demonstrate the ionic hydrogen bonding interaction of the secondary amine with the pyridines, resulting in obvious potential inversion which is also supported by in situ absorption measurements. C1 [Yen, Hung-Ju; Lin, Jhe-Huang; Liou, Guey-Sheng] Natl Taiwan Univ, Inst Polymer Sci & Engn, 1 Roosevelt Rd,4th Sec, Taipei 10617, Taiwan. [Su, Yuhlong Oliver] Natl Chi Nan Univ, Dept Appl Chem, Nantou 54561, Taiwan. [Yen, Hung-Ju] Los Alamos Natl Lab, Div Chem, Phys Chem & Appl Spect, Los Alamos, NM 87545 USA. RP Liou, GS (reprint author), Natl Taiwan Univ, Inst Polymer Sci & Engn, 1 Roosevelt Rd,4th Sec, Taipei 10617, Taiwan.; Su, YO (reprint author), Natl Chi Nan Univ, Dept Appl Chem, Nantou 54561, Taiwan. EM yosu@ncnu.edu.tw; gsliou@ntu.edu.tw FU Ministry of Science and Technology of Taiwan FX The authors are grateful acknowledge to the Ministry of Science and Technology of Taiwan for the financial support. NR 14 TC 0 Z9 0 U1 10 U2 10 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2050-7526 EI 2050-7534 J9 J MATER CHEM C JI J. Mater. Chem. C PD NOV 21 PY 2016 VL 4 IS 43 BP 10381 EP 10385 DI 10.1039/c6tc03409h PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA EC1YW UT WOS:000387906600024 ER PT J AU Eudes, A Mouille, M Robinson, DS Benites, VT Wang, G Roux, L Tsai, YL Baidoo, EEK Chiu, TY Heazlewood, JL Scheller, HV Mukhopadhyay, A Keasling, JD Deutsch, S Loque, D AF Eudes, Aymerick Mouille, Maxence Robinson, David S. Benites, Veronica T. Wang, George Roux, Lucien Tsai, Yi-Lin Baidoo, Edward E. K. Chiu, Tsan-Yu Heazlewood, Joshua L. Scheller, Henrik V. Mukhopadhyay, Aindrila Keasling, Jay D. Deutsch, Samuel Loque, Dominique TI Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast SO MICROBIAL CELL FACTORIES LA English DT Article DE Yeast; BAHD; Antioxidant; Therapeutics; Flavors and fragrances; CAPE ID TRI-P-COUMAROYLSPERMIDINE; FERULIC ACID-DERIVATIVES; ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; CHLOROGENIC ACID; ROSMARINIC ACID; SYNTHETIC DERIVATIVES; BIOLOGICAL-ACTIVITIES; TROPANE ALKALOIDS; PHENETHYL ESTER AB Background: BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty chemicals such as flavors and fragrances. The production of pharmaceutical, nutraceutical and commodity chemicals using engineered microbes is an alternative, green route to energy-intensive chemical syntheses that consume petroleum-based precursors. However, identification of appropriate enzymes and validation of their functional expression in heterologous hosts is a prerequisite for the design and implementation of metabolic pathways in microbes for the synthesis of such target chemicals. Results: For the synthesis of valuable metabolites in the yeast Saccharomyces cerevisiae, we selected BAHD acyltransferases based on their preferred donor and acceptor substrates. In particular, BAHDs that use hydroxycinnamoyl-CoAs and/or benzoyl-CoA as donors were targeted because a large number of molecules beneficial to humans belong to this family of hydroxycinnamate and benzoate conjugates. The selected BAHD coding sequences were synthesized and cloned individually on a vector containing the Arabidopsis gene At4CL5, which encodes a promiscuous 4-coumarate:CoA ligase active on hydroxycinnamates and benzoates. The various S. cerevisiae strains obtained for co-expression of At4CL5 with the different BAHDs effectively produced a wide array of valuable hydroxycinnamate and benzoate conjugates upon addition of adequate combinations of donors and acceptor molecules. In particular, we report here for the first time the production in yeast of rosmarinic acid and its derivatives, quinate hydroxycinnamate esters such as chlorogenic acid, and glycerol hydroxycinnamate esters. Similarly, we achieved for the first time the microbial production of polyamine hydroxycinnamate amides; monolignol, malate and fatty alcohol hydroxycinnamate esters; tropane alkaloids; and benzoate/caffeate alcohol esters. In some instances, the additional expression of Flavobacterium johnsoniae tyrosine ammonia-lyase (FjTAL) allowed the synthesis of p-coumarate conjugates and eliminated the need to supplement the culture media with 4-hydroxycinnamate. Conclusion: We demonstrate in this study the effectiveness of expressing members of the plant BAHD acyltransferase family in yeast for the synthesis of numerous valuable hydroxycinnamate and benzoate conjugates. C1 [Eudes, Aymerick; Mouille, Maxence; Benites, Veronica T.; Wang, George; Roux, Lucien; Tsai, Yi-Lin; Baidoo, Edward E. K.; Chiu, Tsan-Yu; Heazlewood, Joshua L.; Scheller, Henrik V.; Mukhopadhyay, Aindrila; Keasling, Jay D.; Loque, Dominique] Joint BioEnergy Inst, EmeryStn East, 5885 Hollis St,4th Floor, Emeryville, CA 94608 USA. [Eudes, Aymerick; Mouille, Maxence; Benites, Veronica T.; Wang, George; Roux, Lucien; Tsai, Yi-Lin; Baidoo, Edward E. K.; Chiu, Tsan-Yu; Heazlewood, Joshua L.; Scheller, Henrik V.; Mukhopadhyay, Aindrila; Keasling, Jay D.; Loque, Dominique] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Robinson, David S.; Deutsch, Samuel] Joint Genome Inst, Walnut Creek, CA 94598 USA. [Benites, Veronica T.] San Francisco State Univ, Grad Program, San Francisco, CA 94132 USA. [Roux, Lucien] Ecole Polytech Fed Lausanne, Master Program, CH-1015 Lausanne, Switzerland. [Heazlewood, Joshua L.] Univ Melbourne, Sch Biosci, Melbourne, Vic 3010, Australia. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Keasling, Jay D.] Tech Univ Denmark, Novo Nordisk Fdn Ctr Biosustainabil, Kogle Alle, DK-2970 Horsholm, Denmark. [Loque, Dominique] Univ Claude Bernard Lyon 1, CNRS, UMR5240, INSA Lyon,Microbiol Adaptat & Pathogenie, 10 Rue Raphael Dubois, F-69622 Villeurbanne, France. RP Loque, D (reprint author), Joint BioEnergy Inst, EmeryStn East, 5885 Hollis St,4th Floor, Emeryville, CA 94608 USA.; Loque, D (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Loque, D (reprint author), Univ Claude Bernard Lyon 1, CNRS, UMR5240, INSA Lyon,Microbiol Adaptat & Pathogenie, 10 Rue Raphael Dubois, F-69622 Villeurbanne, France. EM dloque@lbl.gov RI Scheller, Henrik/A-8106-2008; Heazlewood, Joshua/A-2554-2008 OI Scheller, Henrik/0000-0002-6702-3560; Heazlewood, Joshua/0000-0002-2080-3826 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research; US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute ( http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research and the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 74 TC 0 Z9 0 U1 14 U2 14 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1475-2859 J9 MICROB CELL FACT JI Microb. Cell. Fact. PD NOV 21 PY 2016 VL 15 AR 198 DI 10.1186/s12934-016-059-5 PG 16 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EC4ZS UT WOS:000388143500001 PM 27871334 ER PT J AU Yuan, YF Zhan, C He, K Chen, HR Yao, WT Sharifi-Asl, S Song, B Yang, ZZ Nie, AM Luo, XY Wang, H Wood, SM Amine, K Islam, MS Lu, J Shahbazian-Yassar, R AF Yuan, Yifei Zhan, Chun He, Kun Chen, Hungru Yao, Wentao Sharifi-Asl, Soroosh Song, Boao Yang, Zhenzhen Nie, Anmin Luo, Xiangyi Wang, Hao Wood, Stephen M. Amine, Khalil Islam, M. Saiful Lu, Jun Shahbazian-Yassar, Reza TI The influence of large cations on the electrochemical properties of tunnel-structured metal oxides SO NATURE COMMUNICATIONS LA English DT Article ID CHARGE STORAGE MECHANISM; LITHIUM-ION BATTERIES; LI-ION; MAGNETIC-PROPERTIES; CATHODE MATERIALS; CRYSTAL-STRUCTURE; MANGANESE OXIDES; ALPHA-MNO2; MNO2; BEHAVIOR AB Metal oxides with a tunnelled structure are attractive as charge storage materials for rechargeable batteries and supercapacitors, since the tunnels enable fast reversible insertion/extraction of charge carriers (for example, lithium ions). Common synthesis methods can introduce large cations such as potassium, barium and ammonium ions into the tunnels, but how these cations affect charge storage performance is not fully understood. Here, we report the role of tunnel cations in governing the electrochemical properties of electrode materials by focusing on potassium ions in alpha-MnO2. We show that the presence of cations inside 2 x 2 tunnels of manganese dioxide increases the electronic conductivity, and improves lithium ion diffusivity. In addition, transmission electron microscopy analysis indicates that the tunnels remain intact whether cations are present in the tunnels or not. Our systematic study shows that cation addition to alpha-MnO2 has a strong beneficial effect on the electrochemical performance of this material. C1 [Yuan, Yifei] Michigan Technol Univ, Dept Mat Sci & Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. [Yuan, Yifei; Zhan, Chun; Yang, Zhenzhen; Luo, Xiangyi; Wang, Hao; Amine, Khalil; Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [He, Kun; Sharifi-Asl, Soroosh; Song, Boao; Nie, Anmin; Shahbazian-Yassar, Reza] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Chen, Hungru; Wood, Stephen M.; Islam, M. Saiful] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. [Yao, Wentao; Shahbazian-Yassar, Reza] Michigan Technol Univ, Dept Mech Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. [Nie, Anmin] Shanghai Univ, Mat Genome Inst, 99 Shangda Rd, Shanghai 200444, Peoples R China. [Nie, Anmin] Shanghai Univ, Shanghai Mat Genome Inst, 99 Shangda Rd, Shanghai 200444, Peoples R China. RP Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA.; Shahbazian-Yassar, R (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA.; Islam, MS (reprint author), Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England.; Shahbazian-Yassar, R (reprint author), Michigan Technol Univ, Dept Mech Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. EM m.s.islam@bath.ac.uk; junlu@anl.gov; rsyassar@uic.edu RI Nie, Anmin/N-7859-2014 OI Nie, Anmin/0000-0002-0180-1366 FU National Science Foundation [DMR-1620901, DMR-0959470]; Argonne National Laboratory [4J-30361]; Center for Electrical Energy Storage, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; EPSRC Supergen Energy Storage Hub [EP/L019469/1]; CDT in Sustainable Chemical Technologies [EP/L016354/1]; MCC/Archer consortium [EP/L000202/1]; Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning FX R. Shahbazian-Yassar acknowledges financial support from the National Science Foundation (Award No. DMR-1620901). Partial funding for Y. Yuan from Argonne National Laboratory under subcontract No. 4J-30361 is acknowledged. The electrochemical test and analysis were performed by C. Zhan, K. Amine, and J. Lu, who were supported by the Center for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. M.S. Islam acknowledges financial and computing support from the EPSRC Supergen Energy Storage Hub (EP/L019469/1), the CDT in Sustainable Chemical Technologies (EP/L016354/1) and the MCC/Archer consortium (EP/L000202/1). A. Nie acknowledges the support by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. This work made use of the JEOL JEM-ARM200CF in the Electron Microscopy Service (Research Resources Center, UIC). The acquisition of the UIC JEOL JEM-ARM200CF was supported by a MRI-R2 grant from the National Science Foundation (DMR-0959470). We thank Dr Alan Nicholls, Dr Robert Klie and Hasti Asayesh-Ardakani from UIC for the comments and assistance on our EELS and STEM results. We also thank Dr Guoqiang Tan, Dr Guiliang Xu at Argonne National Laboratory and Dr Keith MacRenaris from Northwestern University for experimental assistance. Finally, we thank Dr Daniel Bailey, UIC College of Engineering, and Dr Craig Fisher (JFCC, Japan) who contributed to the editing of the manuscript. NR 48 TC 1 Z9 1 U1 75 U2 75 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 21 PY 2016 VL 7 AR 13374 DI 10.1038/ncomms13374 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC4EB UT WOS:000388077900001 PM 27869120 ER PT J AU Frew, PM Chung, YM Fisher, AK Schamel, J Basket, MM AF Frew, Paula M. Chung, Yunmi Fisher, Allison Kennedy Schamel, Jay Basket, Michelle M. TI Parental experiences with vaccine information statements: Implications for timing, delivery, and parent-provider immunization communication SO VACCINE LA English DT Article DE Vaccine confidence; Vaccine acceptability; Vaccine delay; Vaccine hesitancy; Vaccine refusal; Vaccine information statement; Children; Pediatric populations; Parents ID INJURY COMPENSATION PROGRAM; PERSUASION; IMPACT AB Objective: We examined Vaccine Information Statements (VIS) dissemination practices and parental use and perceptions. Methods: We conducted a national online panel survey of 2603 US parents of children aged <7. Primary outcomes included reported VIS receipt, delivery timing, reading experiences, and perceived utility. Results: Most parents received a VIS (77.2%; [95% CI: 74.5-79.7%]), 59.7% [56.6-62.7%] before vaccination but 14.5% [12.5-16.8%] reported receiving it after their child's immunization; 15.1% [13.0-17.6%] were unsure of receipt status or timing; another 10.7% [9.0-12.6%] reported non-receipt of a VIS. Less than half who received a VIS before vaccination completed it before vaccination (46.2% [42.4, 50.0%]), but most who read at least some found the information useful (95.7% [93.8-97.0%]). Parents who delayed or refused at least one recommended non-influenza vaccine reported fewer opportunities to ask providers VIS questions. Conclusions: Most parents report receiving VIS before vaccination as per federal guidelines. Continued effort is needed to enhance VIS distribution practice and parent-provider VIS content communication. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Frew, Paula M.] Emory Univ, Sch Med, Dept Med, Div Infect Dis, 1760 Haygood Dr,Suite W327, Atlanta, GA 30322 USA. [Frew, Paula M.] Emory Univ, Rollins Sch Publ Hlth, Dept Behav Sci & Hlth Educ, Atlanta, GA 30322 USA. [Frew, Paula M.] Emory Univ, Rollins Sch Publ Hlth, Hubert Dept Global Hlth, Atlanta, GA 30322 USA. [Frew, Paula M.; Fisher, Allison Kennedy; Basket, Michelle M.] US Ctr Dis Control & Prevent, Natl Ctr Immunizat & Resp Dis, Atlanta, GA USA. [Chung, Yunmi; Schamel, Jay] ORISE, Oak Ridge, TN USA. RP Frew, PM (reprint author), Emory Univ, Sch Med, Dept Med, Div Infect Dis, 1760 Haygood Dr,Suite W327, Atlanta, GA 30322 USA. EM pfrew@emory.edu FU U.S. Department of Energy; CDC FX We would like to acknowledge the study review by the Westat, FHI360, and Emory University IRBs and the poll participants for their involvement in the study. We would also like to thank our editor and anonymous reviewers for insightful comments during the review process. This research was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC (Chung and Schamel). NR 22 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-410X EI 1873-2518 J9 VACCINE JI Vaccine PD NOV 21 PY 2016 VL 34 IS 48 BP 5840 EP 5844 DI 10.1016/j.vaccine.2016.10.026 PG 5 WC Immunology; Medicine, Research & Experimental SC Immunology; Research & Experimental Medicine GA EC3XG UT WOS:000388059800005 PM 27789148 ER PT J AU Schmittfull, M White, M AF Schmittfull, Marcel White, Martin TI Improving photometric redshifts with Ly alpha tomography SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; large-scale structure of Universe ID LARGE-SCALE STRUCTURE; DARK-MATTER HALOES; INTERGALACTIC MEDIUM; FOREST TOMOGRAPHY; GALAXIES; EVOLUTION; CATALOG; COSMOS AB Forming a 3D view of the Universe is a long-standing goal of astronomical observations, and one that becomes increasingly difficult at high redshift. In this paper, we discuss how tomography of the intergalactic medium (IGM) at z similar or equal to 2.5 can be used to estimate the redshifts of massive galaxies in a large volume of the Universe based on spectra of galaxies in their background. Our method is based on the fact that hierarchical structure formation leads to a strong dependence of the halo density on large-scale environment. A map of the latter can thus be used to refine our knowledge of the redshifts of haloes and the galaxies and active galactic nuclei which they host. We show that tomographic maps of the IGM at a resolution of 2.5 h(-1) Mpc can determine the redshifts of more than 90 per cent of massive galaxies with redshift uncertainty Delta z/(1 + z) = 0.01. Higher resolution maps allow such redshift estimation for lower mass galaxies and haloes. C1 [Schmittfull, Marcel; White, Martin] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 93720 USA. RP Schmittfull, M; White, M (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA.; White, M (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA.; White, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; White, M (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 93720 USA. EM mschmittfull@gmail.com; mwhite@berkeley.edu RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We thank Brice Menard and KG Lee for useful discussions. The simulation, mock surveys, and reconstructions discussed in this work were performed at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. This research has made use of NASA's Astrophysics Data System and of the astro-ph preprint archive at arXiv.org. NR 31 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV 21 PY 2016 VL 463 IS 1 BP 332 EP 337 DI 10.1093/mnras/stw1988 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA2YZ UT WOS:000386464900024 ER PT J AU Pitonyak, D AF Pitonyak, Daniel TI Transverse spin observables in hard-scattering hadronic processes within collinear factorization SO INTERNATIONAL JOURNAL OF MODERN PHYSICS A LA English DT Review DE Transverse spin; perturbative QCD; collinear factorization ID DEEP-INELASTIC SCATTERING; ODD PARTON DISTRIBUTIONS; PROTON-PROTON COLLISIONS; DIRECT PHOTON PRODUCTION; DRELL-YAN PROCESS; SINGLE-SPIN; PION-PRODUCTION; POLARIZED PROTON; QUANTUM CHROMODYNAMICS; ANALYZING POWER AB We review what is currently known about the transverse spin structure of hadrons, in particular from observables that can be analyzed within a collinear framework. These effects have been around for 40 years and represent a critical test of perturbative QCD. We look at both proton proton and lepton nucleon collisions for various final states. While the main focus is on transverse single-spin asymmetries, we also discuss how longitudinal-transverse double-spin asymmetries offer a complimentary, yet equally important, source of information on the quark-gluon content of hadrons. We also summarize some recent progress in solidifying the theoretical formalism behind these observables and give an outlook on future directions of research. C1 [Pitonyak, Daniel] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Pitonyak, D (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM dpitonyak@quark.phy.bnl.gov FU RIKEN BNL Research Center FX This work has been supported by the RIKEN BNL Research Center. I would like to thank Penn State University-Berks for their hospitality during the completion of this paper. NR 140 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0217-751X EI 1793-656X J9 INT J MOD PHYS A JI Int. J. Mod. Phys. A PD NOV 20 PY 2016 VL 31 IS 32 AR 1630049 DI 10.1142/S0217751X16300490 PG 32 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EE5NG UT WOS:000389654300001 ER PT J AU Benmore, CJ Mou, Q Benmore, KJ Robinson, DS Neuefeind, J Ilavsky, J Byrn, SR Yarger, JL AF Benmore, C. J. Mou, Q. Benmore, K. J. Robinson, D. S. Neuefeind, J. Ilavsky, J. Byrn, S. R. Yarger, J. L. TI A SAXS-WAXS study of the endothermic transitions in amorphous or supercooled liquid itraconazole SO THERMOCHIMICA ACTA LA English DT Article AB Small and wide angle high energy x-ray scattering experiments were performed upon cooling itraconazole from the melt to investigate the structural origin of the two transitions at similar to 74 degrees C and similar to 90 degrees C observed in DSC measurements. Slight changes to the main WAXS peak at Q=1.33 +/- 0.01 angstrom(-1) were observed at 90 degrees C and are found to be inter-molecular in nature, suggesting a liquid to isotropic transition. This finding was supported by complementary wide angle neutron scattering measurements. For temperatures at and below similar to 74 degrees C two strong rings appear in the 2D-SAXS pattern at Q= 0.24 +/- 0.01 angstrom(-1) and 0,43 +/- 0.01 angstrom(-1). The SAXS spectra were further deconvoluted into sharp and broad components. A narrowing of the broad component is associated with only minor changes in the packing arrangements of the itraconazole molecules below 90 degrees C, while the appearance of the sharp component below similar to 74 degrees C is attributed to the formation of a polydomain lamellar phase. (C) 2016 Elsevier B.V. All rights reserved. C1 [Benmore, C. J.; Robinson, D. S.; Ilavsky, J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Benmore, C. J.; Mou, Q.; Yarger, J. L.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Benmore, K. J.] Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. [Byrn, S. R.] Purdue Univ, Dept Ind & Phys Pharm, W Lafayette, IN 47907 USA. [Mou, Q.; Yarger, J. L.] Arizona State Univ, Magnet Resonance Res Ctr, Tempe, AZ 85287 USA. [Neuefeind, J.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. RP Benmore, CJ (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM benmore@anl.gov FU Office of Basic Energy Sciences, U.S. Department of Energy, at the Advanced Photon Source, Argonne National Laboratory [DE-AC02-06CH1135]; Office of Basic Energy Sciences, U.S. Department of Energy at the Spallation neutron Source, Oak Ridge National Laboratory [DE-AC05-000R22725]; UT Battelle FX This work was supported by the Office of Basic Energy Sciences, U.S. Department of Energy, at the Advanced Photon Source, Argonne National Laboratory under contract number DE-AC02-06CH1135 and at the Spallation neutron Source, Oak Ridge National Laboratory under contract DE-AC05-000R22725 with UT Battelle. NR 10 TC 1 Z9 1 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0040-6031 EI 1872-762X J9 THERMOCHIM ACTA JI Thermochim. Acta PD NOV 20 PY 2016 VL 644 BP 1 EP 5 DI 10.1016/j.tca.2016.10.004 PG 5 WC Thermodynamics; Chemistry, Analytical; Chemistry, Physical SC Thermodynamics; Chemistry GA ED8IV UT WOS:000389116100001 ER PT J AU Cao, Y Kulkarni, SR Gal-Yam, A Papadogiannakis, S Nugent, PE Masci, FJ Bue, BD AF Cao, Yi Kulkarni, S. R. Gal-Yam, Avishay Papadogiannakis, S. Nugent, P. E. Masci, Frank J. Bue, Brian D. TI SN2002es-LIKE SUPERNOVAE FROM DIFFERENT VIEWING ANGLES SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general; supernovae: individual (SN2002es, iPTF14atg, iPTF14dpk) ID IA SUPERNOVAE; LOW-RESOLUTION; LIGHT CURVES; EXTINCTION; SPECTRA AB In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2-0.3 mag day(-1), before it reached the R-band peak (- 18.05 mag). On the other hand, iPTF14dpk rose rapidly to - 17 mag within a day of discovery with a rise rate > 1.8 mag day(-1), and then rose slowly to its peak (- 18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before - 17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova-companion interaction. C1 [Cao, Yi; Kulkarni, S. R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Papadogiannakis, S.] Stockholm Univ, Oskar Klein Ctr, Dept Phys, SE-10691 Stockholm, Sweden. [Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Nugent, P. E.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50B-4206, Berkeley, CA 94720 USA. [Masci, Frank J.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Bue, Brian D.] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA. RP Cao, Y (reprint author), CALTECH, Dept Astron, Pasadena, CA 91125 USA. OI Gal-Yam, Avishay/0000-0002-3653-5598 FU DOE [DE-AC02-05CH11231]; GROWTH project - National Science Foundation [1545949]; EU/FP7 via ERC [307260]; Quantum Universe I-Core programme by the Israeli Committee for Planning and Budgeting; ISF; Minerva grant; Kimmel award; ARCHES award; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Weizmann-UK "making connections" programme; ISF grant FX Y.C. and P.E.N. acknowledge support from the DOE under grant DE-AC02-05CH11231, Analytical Modeling for Extreme-Scale Computing Environments. Y.C. also acknowledges support by the GROWTH project funded by the National Science Foundation under Grant No 1545949. A.G.-Y. is supported by the EU/FP7 via ERC grant no. 307260, the Quantum Universe I-Core programme by the Israeli Committee for Planning and Budgeting and the ISF; by Minerva and ISF grants; by the Weizmann-UK "making connections" programme; and by Kimmel and ARCHES awards.; This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 33 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 86 DI 10.3847/0004-637X/832/1/86 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800016 ER PT J AU de Haan, T Benson, BA Bleem, LE Allen, SW Applegate, DE Ashby, MLN Bautz, M Bayliss, M Bocquet, S Brodwin, M Carlstrom, JE Chang, CL Chiu, I Cho, HM Clocchiatti, A Crawford, TM Crites, AT Desai, S Dietrich, JP Dobbs, MA Doucouliagos, AN Foley, RJ Forman, WR Garmire, GP George, EM Gladders, MD Gonzalez, AH Gupta, N Halverson, NW Hlavacek-Larrondo, J Hoekstra, H Holder, GP Holzapfel, WL Hou, Z Hrubes, JD Huang, N Jones, C Keisler, R Knox, L Lee, AT Leitch, EM von der Linden, A Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Meyer, SS Mocanu, LM Mohr, JJ Murray, SS Padin, S Pryke, C Rapetti, D Reichardt, CL Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Schrabback, T Shirokoff, E Song, J Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Story, KT Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zenteno, A AF de Haan, T. Benson, B. A. Bleem, L. E. Allen, S. W. Applegate, D. E. Ashby, M. L. N. Bautz, M. Bayliss, M. Bocquet, S. Brodwin, M. Carlstrom, J. E. Chang, C. L. Chiu, I. Cho, H-M. Clocchiatti, A. Crawford, T. M. Crites, A. T. Desai, S. Dietrich, J. P. Dobbs, M. A. Doucouliagos, A. N. Foley, R. J. Forman, W. R. Garmire, G. P. George, E. M. Gladders, M. D. Gonzalez, A. H. Gupta, N. Halverson, N. W. Hlavacek-Larrondo, J. Hoekstra, H. Holder, G. P. Holzapfel, W. L. Hou, Z. Hrubes, J. D. Huang, N. Jones, C. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. von der Linden, A. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Meyer, S. S. Mocanu, L. M. Mohr, J. J. Murray, S. S. Padin, S. Pryke, C. Rapetti, D. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Schrabback, T. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. T. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zenteno, A. TI COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; galaxies: clusters: general ID SOUTH-POLE TELESCOPE; WEAK-LENSING MASSES; BACKGROUND POWER SPECTRUM; X-RAY-PROPERTIES; SUNYAEV-ZELDOVICH; SCALING RELATIONS; OBSERVED GROWTH; DARK ENERGY; VELOCITY DISPERSIONS; SPACE-TELESCOPE AB We present cosmological parameter constraints obtained from galaxy clusters identified by their SunyaevZel'dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel'dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z > 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat Lambda CDM cosmology, we combine the cluster data with a prior on H-0 and find sigma(8)= 0.784. +/- 0.039 and Omega(m) = 0.289. +/- 0.042, with the parameter combination sigma(8) (Omega(m)/0.27)(0.3) = 0.797 +/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to Lambda CDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (N-eff) are free parameters. When combined with constraints from the Planck CMB, H-0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w = -1.023 +/- 0.042. C1 [de Haan, T.; George, E. M.; Holzapfel, W. L.; Huang, N.; Lee, A. T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Shirokoff, E.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Mantz, A.; Mocanu, L. M.; Schaffer, K. K.; Shirokoff, E.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bleem, L. E.; Carlstrom, J. E.; Hou, Z.; Keisler, R.; Meyer, S. S.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Allen, S. W.; Keisler, R.; von der Linden, A.; Mantz, A.; Story, K. T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Allen, S. W.; Hlavacek-Larrondo, J.; Keisler, R.; von der Linden, A.; Mantz, A.; Story, K. T.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Allen, S. W.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Applegate, D. E.; Schrabback, T.] Argelander Inst Astron, Auf Hugel 71, D-53121 Bonn, Germany. [Ashby, M. L. N.; Bayliss, M.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. [Bocquet, S.; Chiu, I.; Desai, S.; Dietrich, J. P.; Gupta, N.; Mohr, J. J.; Rapetti, D.; Saro, A.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Bocquet, S.; Chiu, I.; Desai, S.; Dietrich, J. P.; Gupta, N.; Mohr, J. J.; Rapetti, D.; Saro, A.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cho, H-M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica, Dept Astron & Astrofis, Santiago, Region Metropol, Chile. [Crites, A. T.; Padin, S.; Williamson, R.] CALTECH, Pasadena, CA 91125 USA. [Doucouliagos, A. N.; Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, R. J.; Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Garmire, G. P.] Huntingdon Inst X Ray Astron LLC, Huntingdon, PA 16652 USA. [George, E. M.; Mohr, J. J.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hlavacek-Larrondo, J.] Univ Montreal, Dept Phys, Montreal, PQ H3T 1J4, Canada. [Hlavacek-Larrondo, J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Hoekstra, H.] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [von der Linden, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [von der Linden, A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Marrone, D. P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Ruhl, J. E.; Saliwanchik, B. R.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Inst Chicago, Sch Art, Liberal Arts Dept, Chicago, IL 60603 USA. [Song, J.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Zenteno, A.] Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. RP de Haan, T (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. OI Bocquet, Sebastian/0000-0002-4900-805X; Hoekstra, Henk/0000-0002-0641-3231; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [PLR-1248097]; NSF Physics Frontier Center [PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF [PHY-1125897]; US Department of Energy [DE-AC02-76SF00515, DE-AC02-06CH11357]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; Miller Research Fellowship; Natural Science and Engineering Research Council of Canada Postgraduate Scholarship-Doctoral award; Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy; German Federal Ministry of Economics and Technology (BMWi) [50 OR 1210, 50 OR 1407]; Alfred P. Sloan Foundation; University of Melbourne; Australian Research Council [DP150103208]; NSERC; FRQNT; DFG Cluster of Excellence "Origin and Structure of the universe"; Transregio program TR33 "The Dark universe"; Danish National Research Foundation; NSF [ANT-1009649] FX The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation grant GBMF 947. This work used resources of McGill University's High Performance Computing centre, a part of Compute Canada. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. This work was supported in part by the US Department of Energy under contract number DE-AC02-76SF00515. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. TdH is supported by a Miller Research Fellowship, as well as receiving support from a Natural Science and Engineering Research Council of Canada Postgraduate Scholarship-Doctoral award. BB is supported by the Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. Argonne National Laboratorys work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. DA and TS acknowledge support from the German Federal Ministry of Economics and Technology (BMWi) provided through DLR under projects 50 OR 1210 and 50 OR 1407. RJF gratefully acknowledges support from the Alfred P. Sloan Foundation. CR acknowledges support from the University of Melbourne and from the Australian Research Council's Discovery Projects scheme (DP150103208). JHL is supported by NSERC through the discovery grant and Canada Research Chair programs, as well as FRQNT. The Munich group acknowledges the support of the DFG Cluster of Excellence "Origin and Structure of the universe" and the Transregio program TR33 "The Dark universe." The Dark Cosmology Centre is funded by the Danish National Research Foundation. Optical and infrared followup of SPT Clusters at the Harvard-Smithsonian Center for Astrophysics was supported by NSF grant ANT-1009649. NR 102 TC 3 Z9 3 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 95 DI 10.3847/0004-637X/832/1/95 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800025 ER PT J AU Kim, TK Pogorelov, NV Zank, GP Elliott, HA McComas, DJ AF Kim, T. K. Pogorelov, N. V. Zank, G. P. Elliott, H. A. McComas, D. J. TI MODELING THE SOLAR WIND AT THE ULYSSES, VOYAGER, AND NEW HORIZONS SPACECRAFT SO ASTROPHYSICAL JOURNAL LA English DT Article DE magnetohydrodynamics (MHD); methods: numerical; solar wind; Sun: heliosphere ID HELIOSPHERIC MAGNETIC-FIELD; INTERSTELLAR PICKUP PROTONS; KINETIC SIMULATION SUITE; POLAR CORONAL HOLES; OUTER HELIOSPHERE; BOUNDARY-CONDITIONS; TURBULENCE; CYCLE; AU; REGIONS AB The outer heliosphere is a dynamic region shaped largely by the interaction between the solar wind and the interstellar medium. While interplanetary magnetic field and plasma observations by the Voyager spacecraft have significantly improved our understanding of this vast region, modeling the outer heliosphere still remains a challenge. We simulate the three-dimensional, time-dependent solar wind flow from 1 to 80 astronomical units (au), where the solar wind is assumed to be supersonic, using a two-fluid model in which protons and interstellar neutral hydrogen atoms are treated as separate fluids. We use 1 day averages of the solar wind parameters from the OMNI data set as inner boundary conditions to reproduce time-dependent effects in a simplified manner which involves interpolation in both space and time. Our model generally agrees with Ulysses data in the inner heliosphere and Voyager data in the outer heliosphere. Ultimately, we present the model solar wind parameters extracted along the trajectory of the New Horizons spacecraft. We compare our results with in situ plasma data taken between 11 and 33 au and at the closest approach to Pluto on 2015 July 14. C1 [Kim, T. K.; Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. [Pogorelov, N. V.; Zank, G. P.] Univ Alabama, Dept Space Sci, Huntsville, AL 35805 USA. [Elliott, H. A.; McComas, D. J.] Southwest Res Inst, San Antonio, TX 78238 USA. [McComas, D. J.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Kim, TK (reprint author), Univ Alabama, Ctr Space Plasma & Aeron Res, Huntsville, AL 35805 USA. OI Kim, Tae/0000-0003-0764-9569; Zank, Gary P/0000-0002-4642-6192 FU NSF PRAC award [OCI-1144120]; NSF SHINE project [AGS-1358386]; NASA projects [NNX12AB30G, NNX14AF41G]; NASA High-End Computing Program [SMD-15-5860]; NSF XSEDE project [MCA07S033] FX This research was inspired by the New Horizons Flyby Modeling Challenge facilitated by Peter MacNeice at CCMC/NASA. The authors acknowledge use of the SPDF COHOWeb database and WSO data (wso.stanford.edu). This work is supported by the NSF PRAC award OCI-1144120 and related computer resources from the Blue Waters sustained-petascale computing project. Supercomputer time allocations were also provided on SGI Pleiades by NASA High-End Computing Program award SMD-15-5860 and on Stampede by NSF XSEDE project MCA07S033. TKK and NVP acknowledge support from the NSF SHINE project AGS-1358386, and NASA projects NNX12AB30G and NNX14AF41G. NR 49 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 72 DI 10.3847/0004-637X/832/1/72 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3IW UT WOS:000388743800002 ER PT J AU Li, J Torres, DF Rea, N Wilhelmi, ED Papitto, A Hou, X Mauche, CW AF Li, Jian Torres, Diego F. Rea, Nanda Wilhelmi, Emma De Ona Papitto, Alessandro Hou, Xian Mauche, Christopher W. TI SEARCH FOR GAMMA-RAY EMISSION FROM AE AQUARII WITH SEVEN YEARS OF FERMI LAT OBSERVATIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma. rays: stars; novae, cataclysmic variables; X-rays: individual (AE Aquarii) ID MAGNETIZED WHITE-DWARF; CATACLYSMIC VARIABLES; CIRCULAR-POLARIZATION; MILLISECOND PULSAR; XSS J12270-4859; PSR J1023+0038; BINARY; PROPELLER; AQR; PULSATIONS AB AE Aquarii (AE Aqr) is a cataclysmic binary hosting one of the fastest rotating (P-spin = 33.08 s) white dwarfs (WDs) known. Based on seven years of Fermi Large Area Telescope (LAT) Pass 8 data, we report on a deep search for gamma-ray emission from AE Aqr. Using X-ray observations from ASCA, XMM-Newton, Chandra, Swift, Suzaku, and NuSTAR, spanning 20 years, we substantially extend and improve the spin ephemeris of AE Aqr. Using this ephemeris, we searched for gamma-ray pulsations at the spin period of the WD. No gamma-ray pulsations were detected above 3 sigma significance. Neither phase-averaged gamma-ray emission nor gamma-ray variability of AE Aqr is detected by Fermi LAT. We impose the most restrictive upper limit to the gamma-ray flux from AE Aqr to date: 1.3 x 10(-12) erg cm(-2) s(-1) in the 100 MeV-300 GeV energy range, providing constraints on models. C1 [Li, Jian; Torres, Diego F.; Rea, Nanda; Wilhelmi, Emma De Ona] Inst Space Sci IEEC CSIC, Campus UAB,Carrer Magrans S-N, E-08193 Barcelona, Spain. [Torres, Diego F.] ICREA, E-08010 Barcelona, Spain. [Rea, Nanda] Univ Amsterdam, Anton Pannekoek Inst, Postbus 94249, NL-1090 GE Amsterdam, Netherlands. [Papitto, Alessandro] INAF Osservatorio Astron Roma, Via Frascati 33, I-00040 Rome, Italy. [Hou, Xian] Chinese Acad Sci, Yunnan Observ, Key Lab Struct & Evolut Celestial Objects, Kunming 650216, Peoples R China. [Mauche, Christopher W.] Lawrence Livermore Natl Lab, L-473,7000 East Ave, Livermore, CA 94550 USA. RP Li, J (reprint author), Inst Space Sci IEEC CSIC, Campus UAB,Carrer Magrans S-N, E-08193 Barcelona, Spain. OI Torres, Diego F./0000-0002-1522-9065; Rea, Nanda/0000-0003-2177-6388 FU NASA; DOE in the United States; CEA/Irfu; IN2P3/CNRS in France; ASI; INFN in Italy; MEXT; KEK; JAXA in Japan; K. A. Wallenberg Foundation; Swedish Research Council; National Space Board in Sweden; INAF in Italy; CNES in France; National Natural Science Foundation of China [NSFC-11473027, NSFC-11503078, NSFC-11133002, NSFC-11103020]; XTP project [XDA 04060604]; Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences [XDB09000000]; NWO Vidi Award; EU Marie Sklodowska-Curie Individual Fellowship [660657-TMSP-H2020-MSCA-IF-2014]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; [AYA2015-71042-P]; [SGR 2014-1073] FX The Fermi-LAT Collaboration acknowledges support from a number of agencies and institutes for both the. development and operation of the LAT as well as scientific data analysis. These include NASA and DOE in the United States; CEA/Irfu and IN2P3/CNRS in France; ASI and INFN in Italy; MEXT, KEK, and JAXA in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council and the National Space Board in Sweden. Additional support from INAF in Italy and CNES in France for science analysis during the operations phase is also gratefully acknowledged.; We acknowledge the support from the grants AYA2015-71042-P and SGR 2014-1073; and the National Natural Science Foundation of China via NSFC-11473027, NSFC-11503078, NSFC-11133002, and NSFC-11103020; and XTP project XDA 04060604; and the Strategic Priority Research Program "The Emergence of Cosmological Structures" of the Chinese Academy of Sciences, Grant No. XDB09000000. N.R. is further supported by an NWO Vidi Award. A.P. acknowledges support via an EU Marie Sklodowska-Curie Individual Fellowship under contract No. 660657-TMSP-H2020-MSCA-IF-2014, as well as fruitful discussion with the international team on "The disk-magnetosphere interaction around transitional millisecond pulsars" at ISSI (International Space Science Institute), Bern. C.W.M.'s contribution to this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge the assistance from Dr. Zhongli Zhang with the Suzaku data analysis. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. NR 54 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 20 PY 2016 VL 832 IS 1 AR 35 DI 10.3847/0004-637X/832/1/35 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED1KF UT WOS:000388603600017 ER PT J AU Gasparovic, B Penezic, A Lampitt, RS Sudasinghe, N Schaub, T AF Gasparovic, Blazenka Penezic, Abra Lampitt, Richard S. Sudasinghe, Nilusha Schaub, Tanner TI Free fatty acids, tri-, di- and monoacylglycerol production and depth-related cycling in the Northeast Atlantic SO MARINE CHEMISTRY LA English DT Article DE Lipid production; Lipid cycling; Northeast Atlantic; FT-ICR MS ID PARTICULATE ORGANIC-MATTER; FLAME IONIZATION DETECTION; THIN-LAYER-CHROMATOGRAPHY; EQUATORIAL PACIFIC-OCEAN; MARINE LIPID CLASSES; MASS-SPECTROMETRY; TWILIGHT ZONE; TEMPERATE SEA; CARBON FLUX; PHYTOPLANKTON AB We present the characterization and vertical distribution of suspended particulate lipids containing C, H and O which have the potential to sequester carbon from the upper ocean when associated with sinking particles. Lipids have been shown to be valuable in a host of environments to provide insights into the sources and processing of organic materials in the oceans. Here we present, direct-infusion, high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with bulk lipid measures for marine lipid characterization. We present the water column distribution of free fatty acids, tri-, di- and monoacylglycerols from the surface layer to abyssopelagic depths (4800 m) for samples collected in the Northeast Atlantic at the Porcupine Abyssal Plain sustained observatory (PAP-SO) (49.0 degrees N, 16.5 degrees W). Triacylglycerols (TG) with even carbon number (TG) and odd carbon number (oddTG, reflecting bacterial origin), were analyzed, while free fatty acids were analyzed as unsaturated (UFA), branched (BrFA) and saturated (SAFA) fatty acids. The surface productive layer (euphotic zone) was characterized with the highest incidence of lipids that are not reported in the Nature Lipidomics Gateway database, especially lipids that are highly unsaturated (acyl chain unsaturation was on average 3.8 for TG, oddTG, UFA and diacylglycerols (DG)). Additionally, we observed high lipid degradation at epipelagic depths. Fatty acid markers indicate that diatoms and dinoflagellates were important contributors to the lipid pool. Depth-resolved lipid change includes decreased lipid abundance and molecular diversity together with substantial loss of unsaturation with increasing depth. The major lipid change occurs at upper mesopelagic depths. Unlike other observed lipids, the abundance of SAFA remained essentially constant down the water column whereas the number of SAFAs and their contribution to total lipids increased with depth. Thus, we demonstrate that lipid saturation affects the export of carbon from the atmosphere to the deep ocean. (C) 2016 Elsevier B.V. All rights reserved. C1 [Gasparovic, Blazenka; Penezic, Abra] Rudjer Boskovic Inst, Div Marine & Environm Res, POB 180, HR-10002 Zagreb, Croatia. [Lampitt, Richard S.] Natl Oceanog Ctr, Southampton, Hants, England. [Sudasinghe, Nilusha; Schaub, Tanner] New Mexico State Univ, Coll Agr Consumer & Environm Sci, Chem Anal & Instrumentat Lab, Las Cruces, NM 88003 USA. [Sudasinghe, Nilusha] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Gasparovic, B (reprint author), Rudjer Boskovic Inst, Div Marine & Environm Res, POB 180, HR-10002 Zagreb, Croatia. EM gaspar@irb.hr FU Croatian Science Foundation [IP-11-2013-8607]; National Science Foundation [IIA-1301346]; Center for Animal Health and Food Safety at New Mexico State University FX We thank crew of the RRS James Cook. This work was funded by the grant from the Croatian Science Foundation under the project IP-11-2013-8607, by the National Science Foundation (IIA-1301346) and the Center for Animal Health and Food Safety at New Mexico State University. This work is a contribution to the European FP7 projects EUROBASIN and to the Natural Environment Research Council, UK, core programme. NR 52 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-4203 EI 1872-7581 J9 MAR CHEM JI Mar. Chem. PD NOV 20 PY 2016 VL 186 BP 101 EP 109 DI 10.1016/j.marchem.2016.09.002 PG 9 WC Chemistry, Multidisciplinary; Oceanography SC Chemistry; Oceanography GA ED8DC UT WOS:000389101200010 ER PT J AU Huie, MM Cama, CA Smith, PF Yin, JF Marschilok, AC Takeuchi, KJ Takeuchi, ES AF Huie, Matthew M. Cama, Christina A. Smith, Paul F. Yin, Jiefu Marschilok, Amy C. Takeuchi, Kenneth J. Takeuchi, Esther S. TI Ionic liquid hybrids: Progress toward non-corrosive electrolytes with high-voltage oxidation stability for magnesium-ion based batteries SO ELECTROCHIMICA ACTA LA English DT Article DE magnesium-ion battery; ionic liquid electrolyte; electrolyte oxidation; electrolyte conductivity; high-voltage Mg-ion cathode ID CATHODE MATERIALS; ELECTROCHEMICAL PROPERTIES; LITHIUM; INSERTION; DEPOSITION; ELECTRODEPOSITION; COORDINATION; PERFORMANCE; DISSOLUTION; MECHANISMS AB Magnesium - ion batteries have the potential for high energy density but require new types of electrolytes for practical application. Ionic liquid (IL) electrolytes offer the opportunity for increased safety and broader voltage windows relative to traditional electrolytes. We present here a systematic study of both the conductivity and oxidative stability of hybrid electrolytes consisting of eleven ILs mixed with dipropylene glycol dimethylether (DPGDME) or acetonitrile (ACN) cosolvents and magnesium bis (trifluoromethylsulfonyl) imide (Mg(TFSI)(2)). Our study finds a correlation of higher conductivity of ILs with unsaturated rings and short carbon chain lengths, but by contrast, these ILs also exhibited lower oxidation voltage limits. For the cosolvent additive, although glymes have a demonstrated capability of coordination with Mg2+ ions, a decrease in conductivity compared to acetonitrile hybrid electrolyteswas observed. When cycled within the appropriate voltage range, the IL-hybrid electrolytes that show the highest conductivity provide the best cathode magnesiation current densities and lowest polarization as demonstrated with a Mg0.15MnO2 and Mg0.07V2O5 cathodes. (C) 2016 Published by Elsevier Ltd. C1 [Huie, Matthew M.; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Cama, Christina A.; Smith, Paul F.; Yin, Jiefu; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. RP Marschilok, AC; Takeuchi, KJ; Takeuchi, ES (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.; Marschilok, AC; Takeuchi, KJ; Takeuchi, ES (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. EM amy.marschilok@stonybrook.edu; kenneth.takeuchi.1@stonybrook.edu; esther.takeuchi@stonybrook.edu RI Yin, Jiefu/A-9654-2017 OI Yin, Jiefu/0000-0003-4363-900X FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Department of Energy, Office of Electricity [1275961]; National Science Foundation Graduate Research Fellowship Program [1109408] FX Materials synthesis and characterization was supported as part of the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. Electrochemical evaluation in magnesium electrolyte was supported by the Department of Energy, Office of Electricity, administered through Sandia National Laboratories, Purchase Order #1275961. MMH acknowledges that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1109408. NR 60 TC 0 Z9 0 U1 62 U2 62 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 20 PY 2016 VL 219 BP 267 EP 276 DI 10.1016/j.electacta.2016.09.107 PG 10 WC Electrochemistry SC Electrochemistry GA EA5JR UT WOS:000386656700029 ER PT J AU Rappleye, D Teaford, K Simpson, MF AF Rappleye, Devin Teaford, Kevin Simpson, Michael F. TI Investigation of the effects of uranium(III)-chloride concentration on voltammetry in molten LiCl-KCl eutectic with a glass sealed tungsten electrode SO ELECTROCHIMICA ACTA LA English DT Article DE Electrodeposition; Uranium; Molten salt; Cyclic voltammetry; Normal pulse voltammetry ID THERMODYNAMIC PROPERTIES; ELECTROCHEMICAL-BEHAVIOR; ELECTRICAL-RESISTIVITY; DIFFUSION-COEFFICIENTS; QUANTITATIVE-ANALYSIS; FUSED CHLORIDES; URANIUM IONS; METAL; SALTS; UCL3 AB One of the major sources of error for electroanalytical measurements in high-temperature molten salts is from the measurement of the working electrode (WE) area. A glass sealed working electrode (GSWE) was developed in order to set the exposed area of tungsten and reduce the error associated with WE area. The insulating property of the glass while in contact with molten salt was verified by observing the independence of electrochemical signals with adjustments in the WE position. The integrity of the glass coating was also confirmed by observing the stability of electrochemical signals (+/- 1.9%) over several hours. Cyclic voltammetry (CV) and normal pulse voltammetry (NPV) were applied at 10 different concentrations of UCl3. Above 0.17 mol dm(-3) UCl3, the electrochemical signals from CV and NPV deviate significantly from linearity with concentration, but in opposite directions. A shift from reversible to quasi-reversible behavior and migration are theorized to cause the non-linearity for CV and NPV, respectively. A model is proposed to account for migration in NPV resulting in a significant error reduction in the electrochemical concentration measurement. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Rappleye, Devin; Simpson, Michael F.] Univ Utah, Dept Met Engn, 135 S 1460 E Rm 412, Salt Lake City, UT 84112 USA. [Teaford, Kevin] Univ Utah, Dept Chem, 315 S 1400 E Rm 2020, Salt Lake City, UT 84112 USA. [Rappleye, Devin] Lawrence Livermore Natl Lab, POB 808 L-350, Livermore, CA 94551 USA. RP Rappleye, D (reprint author), Lawrence Livermore Natl Lab, POB 808 L-350, Livermore, CA 94551 USA. EM rappleye1@llnl.gov; kteaford@chem.utah.edu; michael.simpson@utah.edu FU U.S. Department of Energy FX This material is based upon work supported by the U.S. Department of Energy. Special thanks to Chao Zhang for sharing the results of his work on the optimization of normal pulse voltammetry waveform. A detailed description of his results is anticipated to be submitted soon for publication. NR 59 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 20 PY 2016 VL 219 BP 721 EP 733 DI 10.1016/j.electacta.2016.10.075 PG 13 WC Electrochemistry SC Electrochemistry GA EA5JR UT WOS:000386656700081 ER PT J AU Peraud, JP Nonaka, A Chaudhri, A Bell, JB Donev, A Garcia, AL AF Peraud, Jean-Philippe Nonaka, Andy Chaudhri, Anuj Bell, John B. Donev, Aleksandar Garcia, Alejandro L. TI Low Mach number fluctuating hydrodynamics for electrolytes SO PHYSICAL REVIEW FLUIDS LA English DT Article ID STEFAN DIFFUSION-COEFFICIENTS; FLUIDS; DIFFUSIVITIES; SIMULATION; MIXTURES; SCHEMES; FLOWS AB We formulate and study computationally the low Mach number fluctuating hydrodynamic equations for electrolyte solutions. We are interested in studying transport in mixtures of charged species at the mesoscale, down to scales below the Debye length, where thermal fluctuations have a significant impact on the dynamics. Continuing our previous work on fluctuating hydrodynamics of multicomponent mixtures of incompressible isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015)], we now include the effect of charged species using a quasielectrostatic approximation. Localized charges create an electric field, which in turn provides additional forcing in the mass and momentum equations. Our low Mach number formulation eliminates sound waves from the fully compressible formulation and leads to a more computationally efficient quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl) solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is second order in the deterministic setting and for length scales much greater than the Debye length gives results consistent with an electroneutral approximation. In the stochastic setting, our model captures the predicted dynamics of equilibrium and nonequilibrium fluctuations. We also identify and model an instability that appears when diffusive mixing occurs in the presence of an applied electric field. C1 [Peraud, Jean-Philippe; Nonaka, Andy; Bell, John B.] Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Chaudhri, Anuj] Jawaharlal Nehru Ctr Adv Sci Res Bangalore, Engn Mech Unit, Bengaluru 560064, Karnataka, India. [Donev, Aleksandar] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA. [Garcia, Alejandro L.] San Jose State Univ, Dept Phys & Astron, 1 Washington Sq, San Jose, CA 95192 USA. RP Peraud, JP (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jperaud@lbl.gov FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics Program [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics Program under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 3 Z9 3 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-990X J9 PHYS REV FLUIDS JI Phys. Rev. Fluids PD NOV 18 PY 2016 VL 1 IS 7 AR 074103 DI 10.1103/PhysRevFluids.1.074103 PG 27 WC Physics, Fluids & Plasmas SC Physics GA EF4XQ UT WOS:000390335700001 ER PT J AU Klos, P Lynn, JE Tews, I Gandolfi, S Gezerlis, A Hammer, HW Hoferichter, M Schwenk, A AF Klos, P. Lynn, J. E. Tews, I. Gandolfi, S. Gezerlis, A. Hammer, H. -W. Hoferichter, M. Schwenk, A. TI Quantum Monte Carlo calculations of two neutrons in finite volume SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-FIELD THEORY; NUCLEAR-FORCES; CHIRAL LAGRANGIANS; PARTICLES; SYSTEMS; STATES; MATTER AB Ab initio calculations provide direct access to the properties of pure neutron systems that are challenging to study experimentally. In addition to their importance for fundamental physics, their properties are required as input for effective field theories of the strong interaction. In this work, we perform auxiliary-field diffusion Monte Carlo calculations of the ground state and first excited state of two neutrons in a finite box, considering a simple contact potential as well as chiral effective field theory interactions. We compare the results against exact diagonalizations and present a detailed analysis of the finite-volume effects, whose understanding is crucial for determining observables from the calculated energies. Using the Luscher formula, we extract the low-energy S-wave scattering parameters from ground-and excited-state energies for different box sizes. C1 [Klos, P.; Lynn, J. E.; Hammer, H. -W.; Schwenk, A.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Klos, P.; Lynn, J. E.; Hammer, H. -W.; Schwenk, A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Tews, I.; Hoferichter, M.] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Gandolfi, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gezerlis, A.] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada. RP Klos, P (reprint author), Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.; Klos, P (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. EM pklos@theorie.ikp.physik.tu-darmstadt.de FU ERC [307986 STRONGINT]; Deutsche Forschungsgemeinschaft [SFB 1245]; US Department of Energy [DE-AC52-06NA25396, DE-FG02-00ER41132, DE-AC02-05CH11231]; National Science Foundation [PHY-1430152]; NUCLEI SciDAC program; LANL LDRD program; Natural Sciences and Engineering Research Council of Canada FX We thank J. A. Carlson, Z. Davoudi, A. Rusetsky, M. J. Savage, K. E. Schmidt, S. R. Sharpe, and K. A. Wendt for helpful discussions. This work was supported in part by the ERC Grant No. 307986 STRONGINT, the Deutsche Forschungsgemeinschaft through Grant SFB 1245, the US Department of Energy Grants No. DE-AC52-06NA25396 and No. DE-FG02-00ER41132, the National Science Foundation Grant No. PHY-1430152 (JINA-CEE), the NUCLEI SciDAC program, the LANL LDRD program, and the Natural Sciences and Engineering Research Council of Canada. The computations were performed at the Julich Supercomputing Center as well as at NERSC, which is supported by the US Department of Energy Contract No. DE-AC02-05CH11231. We thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the US Department of Energy for partial support during the completion of this work. NR 38 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 18 PY 2016 VL 94 IS 5 AR 054005 DI 10.1103/PhysRevC.94.054005 PG 11 WC Physics, Nuclear SC Physics GA EC6VJ UT WOS:000388274500002 ER PT J AU Macchiavelli, AO Crawford, HL Campbell, CM Clark, RM Cromaz, M Fallon, P Jones, MD Lee, IY Salathe, M Brown, BA Poves, A AF Macchiavelli, A. O. Crawford, H. L. Campbell, C. M. Clark, R. M. Cromaz, M. Fallon, P. Jones, M. D. Lee, I. Y. Salathe, M. Brown, B. A. Poves, A. TI The Mg-30(t, p)Mg-32 "puzzle" reexamined SO PHYSICAL REVIEW C LA English DT Article ID STABILITY AB Background: Competing interpretations of the results of a Mg-30(t, p)Mg-32 measurement populating the ground state and 0(2)(+) state in Mg-32, both limited to a two-state mixing description, have left an open question regarding the nature of the Mg-32 ground state. Purpose: Inspired by recent shell-model calculations, we explore the possibility of a consistent interpretation of the available data for the low-lying 0(+) states in Mg-32 by expanding the description from two-level to three-level mixing. Methods: A phenomenological three-level mixing model of unperturbed 0p0h, 2p2h, and 4p4h states is applied to describe both the excitation energies in Mg-32 and the transfer reaction cross sections. Results: Within this approach, self-consistent solutions exist that provide good agreement with the available experimental information obtained from the Mg-30(t, p)Mg-32 reaction. Conclusion: The inclusion of the third state, namely the 4p4h configuration, resolves the "puzzle" that results from a two-levelmodel interpretation of the same data. In our analysis, the Mg-32 ground state emerges naturally as dominated by intruder (2p2h and 4p4h) configurations, at the 95% level. C1 [Macchiavelli, A. O.; Crawford, H. L.; Campbell, C. M.; Clark, R. M.; Cromaz, M.; Fallon, P.; Jones, M. D.; Lee, I. Y.; Salathe, M.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Brown, B. A.] Michigan State Univ, Dept Phys, E Lansing, MI 48824 USA. [Brown, B. A.] Michigan State Univ, Astron & Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Poves, A.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Poves, A.] Univ Autonoma Madrid, IFT UAM CSIC, E-28049 Madrid, Spain. RP Macchiavelli, AO (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; U.S. NSF [PHY-1404442]; Spanish Ministry of Ciencia e Innovacion [FPA2014-57196]; Programme "Centros de Excelencia Severo Ochoa" [SEV-2012-0249] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL), by the U.S. NSF Grant No. PHY-1404442, and by the Spanish Ministry of Ciencia e Innovacion under Grant No. FPA2014-57196 and Programme "Centros de Excelencia Severo Ochoa" SEV-2012-0249. NR 12 TC 2 Z9 2 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 18 PY 2016 VL 94 IS 5 AR 051303 DI 10.1103/PhysRevC.94.051303 PG 5 WC Physics, Nuclear SC Physics GA EC6VJ UT WOS:000388274500001 ER PT J AU Sipahigil, A Evans, RE Sukachev, DD Burek, MJ Borregaard, J Bhaskar, MK Nguyen, CT Pacheco, JL Atikian, HA Meuwly, C Camacho, RM Jelezko, F Bielejec, E Park, H Loncar, M Lukin, MD AF Sipahigil, A. Evans, R. E. Sukachev, D. D. Burek, M. J. Borregaard, J. Bhaskar, M. K. Nguyen, C. T. Pacheco, J. L. Atikian, H. A. Meuwly, C. Camacho, R. M. Jelezko, F. Bielejec, E. Park, H. Loncar, M. Lukin, M. D. TI An integrated diamond nanophotonics platform for quantum-optical networks SO SCIENCE LA English DT Article ID NONLINEAR OPTICS; SINGLE-ATOM; PHOTON; CAVITY; DOT; SPINS AB Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable optical nonlinearities at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to diamond nanodevices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable states and observe optical switching at the singlephoton level. Raman transitions are used to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. By measuring intensity correlations of indistinguishable Raman photons emitted into a single waveguide, we observe a quantum interference effect resulting from the superradiant emission of two entangled SiV centers. C1 [Sipahigil, A.; Evans, R. E.; Sukachev, D. D.; Borregaard, J.; Bhaskar, M. K.; Nguyen, C. T.; Park, H.; Lukin, M. D.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Sukachev, D. D.] Russian Quantum Ctr, Moscow 143025, Russia. [Sukachev, D. D.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow 119991, Russia. [Burek, M. J.; Atikian, H. A.; Meuwly, C.; Loncar, M.] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Pacheco, J. L.; Camacho, R. M.; Bielejec, E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jelezko, F.] Univ Ulm, Inst Quantum Opt, D-89081 Ulm, Germany. [Park, H.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. RP Lukin, MD (reprint author), Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. EM lukin@physics.harvard.edu RI Sukachev, Denis/C-1202-2016 OI Sukachev, Denis/0000-0002-4273-2184 FU NSF; Center for Ultracold Atoms; Air Force Office of Scientific Research Multidisciplinary University Research Initiative (MURI); Office of Naval Research MURI; Defense Advanced Research Projects Agency; Army Research Laboratory; Vannevar Bush Faculty Fellowship program; Carlsberg Foundation; Harvard Quantum Optics Center; NSF [ECS-0335765]; DOE [DE-AC04-94AL85000] FX We thank D. Twitchen and M. Markham from Element Six Inc. for substrates and K. De Greve and M. Goldman for experimental help. Financial support was provided by the NSF, the Center for Ultracold Atoms, the Air Force Office of Scientific Research Multidisciplinary University Research Initiative (MURI), the Office of Naval Research MURI, the Defense Advanced Research Projects Agency QuINESS program, the Army Research Laboratory, the Vannevar Bush Faculty Fellowship program, the Carlsberg Foundation (J.B.), and the Harvard Quantum Optics Center (M.J.B. and H.A.A.). F.J. is affiliated with the Center for Integrated Quantum Science and Technology (IQst) in Baden-Wurttemberg, Germany. Devices were fabricated at the Harvard Center for Nanoscale Systems supported under NSF award ECS-0335765. Ion implantation was performed with support from the Laboratory Directed Research and Development Program and the Center for Integrated Nanotechnologies at Sandia National Laboratories, an Office of Science facility operated for the DOE (contract DE-AC04-94AL85000) by Sandia Corporation, a Lockheed Martin subsidiary. NR 31 TC 5 Z9 5 U1 52 U2 52 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 18 PY 2016 VL 354 IS 6314 BP 847 EP 850 DI 10.1126/science.aah6875 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED0KR UT WOS:000388531900031 PM 27738014 ER PT J AU Kromdijk, J Glowacka, K Leonelli, L Gabilly, ST Iwai, M Niyogi, KK Long, SP AF Kromdijk, Johannes Glowacka, Katarzyna Leonelli, Lauriebeth Gabilly, Stephane T. Iwai, Masakazu Niyogi, Krishna K. Long, Stephen P. TI Improving photosynthesis and crop productivity by accelerating recovery from photoprotection SO SCIENCE LA English DT Article ID PHOTOSYSTEM-II; XANTHOPHYLL CYCLE; ARABIDOPSIS-THALIANA; EXCESS LIGHT; CARBON GAIN; ZEAXANTHIN; PHOTOINHIBITION; ENERGY; PLANTS; FLUORESCENCE AB Crop leaves in full sunlight dissipate damaging excess absorbed light energy as heat. When sunlit leaves are shaded by clouds or other leaves, this protective dissipation continues for many minutes and reduces photosynthesis. Calculations have shown that this could cost field crops up to 20% of their potential yield. Here, we describe the bioengineering of an accelerated response to natural shading events in Nicotiana (tobacco), resulting in increased leaf carbon dioxide uptake and plant dry matter productivity by about 15% in fluctuating light. Because the photoprotective mechanism that has been altered is common to all flowering plants and crops, the findings provide proof of concept for a route to obtaining a sustainable increase in productivity for food crops and a much-needed yield jump. C1 [Kromdijk, Johannes; Glowacka, Katarzyna; Long, Stephen P.] Univ Illinois, Carl R Woese Inst Genom Biol, 1206 West Gregory Dr, Urbana, IL 61801 USA. [Glowacka, Katarzyna] Polish Acad Sci, Inst Plant Genet, Ulica Strzeszynska 34, PL-60479 Poznan, Poland. [Leonelli, Lauriebeth; Gabilly, Stephane T.; Iwai, Masakazu; Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA. [Iwai, Masakazu; Niyogi, Krishna K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Long, Stephen P.] Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 1YX, England. RP Long, SP (reprint author), Univ Illinois, Carl R Woese Inst Genom Biol, 1206 West Gregory Dr, Urbana, IL 61801 USA.; Niyogi, KK (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA.; Niyogi, KK (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA.; Long, SP (reprint author), Univ Lancaster, Lancaster Environm Ctr, Lancaster LA1 1YX, England. EM niyogi@berkeley.edu; slong@illinois.edu OI Long, Stephen/0000-0002-8501-7164 FU Bill and Melinda Gates Foundation [OPP1060461]; Gordon and Betty Moore Foundation [GBMF3070] FX We thank D. Drag and B. Harbaugh for plant management in greenhouse and field studies; M. Kobayashi for performing the high-performance liquid chromatography analysis of pigments from the field-grown plants; and K. Kucera, M. Steiner, and S. Gillespie for general assistance during laboratory- and fieldwork. We also thank T. Clemente for initial help with tobacco transformation. This research was supported by Bill and Melinda Gates Foundation grant OPP1060461, titled "RIPE-Realizing increased photosynthetic efficiency for sustainable increases in crop yield." K.K.N. is an investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through grant GBMF3070). The data reported in this paper have been tabulated in the supplementary materials. Plants and constructs reported are available from the University of Illinois and University of California, Berkeley, for research purposes, subject to the conditions of the Uniform Biological Material Transfer Agreement. The University of Illinois has submitted a provisional patent on behalf of J.K., K.G., L.L., K.K.N., and S.P.L on aspects of the findings. NR 32 TC 7 Z9 8 U1 72 U2 72 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 18 PY 2016 VL 354 IS 6314 BP 857 EP 861 DI 10.1126/science.aai8878 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED0KR UT WOS:000388531900033 PM 27856901 ER PT J AU Ye, XC Jones, MR Frechette, LB Chen, Q Powers, AS Ercius, P Dunn, G Rotskoff, GM Nguyen, SC Adiga, VP Zettl, A Rabani, E Geissler, PL Alivisatos, AP AF Ye, Xingchen Jones, Matthew R. Frechette, Layne B. Chen, Qian Powers, Alexander S. Ercius, Peter Dunn, Gabriel Rotskoff, Grant M. Nguyen, Son C. Adiga, Vivekananda P. Zettl, Alex Rabani, Eran Geissler, Phillip L. Alivisatos, A. Paul TI Single-particle mapping of nonequilibrium nanocrystal transformations SO SCIENCE LA English DT Article ID SHAPE-CONTROLLED SYNTHESIS; CELL ELECTRON-MICROSCOPY; SILVER NANOPARTICLES; GOLD NANORODS; GROWTH; LIQUID; SURFACES AB Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. We monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates the importance of developing tools capable of probing short-lived nanoscale species at the single-particle level. C1 [Ye, Xingchen; Jones, Matthew R.; Frechette, Layne B.; Chen, Qian; Powers, Alexander S.; Nguyen, Son C.; Rabani, Eran; Geissler, Phillip L.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chen, Qian] Univ Calif Berkeley, Miller Inst Basic Res Sci, Berkeley, CA 94720 USA. [Dunn, Gabriel; Adiga, Vivekananda P.; Zettl, Alex] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Alivisatos, A. Paul] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Rotskoff, Grant M.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Zettl, Alex; Rabani, Eran; Alivisatos, A. Paul] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ercius, Peter] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Zettl, Alex; Alivisatos, A. Paul] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Zettl, Alex; Alivisatos, A. Paul] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rabani, Eran] Tel Aviv Univ, Raymond & Beverly Sackler Ctr Computat Mol & Mat, IL-69978 Tel Aviv, Israel. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Alivisatos, AP (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Ye, Xingchen/D-3202-2017; Alivisatos , Paul /N-8863-2015; OI Ye, Xingchen/0000-0001-6851-2721; Alivisatos , Paul /0000-0001-6895-9048; Jones, Matthew/0000-0002-9289-291X FU King Abdulaziz City for Science and Technology (KACST), Kingdom of Saudi Arabia; Defense Threat Reduction Agency (DTRA) [HDTRA1-13-1-0035]; NSF-BSF International Collaboration in Chemistry program, NSF [CHE-1416161]; NSF-BSF International Collaboration in Chemistry program, BSF [2013/604]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231, KC2207]; U.S. Department of Energy [DE-AC02-05CH11231]; Miller Institute for Basic Research in Science at UC Berkeley; NSF; Arnold and Mabel Beckman Foundation FX This work was supported in part by the King Abdulaziz City for Science and Technology (KACST), Kingdom of Saudi Arabia, which provided for nanocrystal synthesis; the Defense Threat Reduction Agency (DTRA) under award HDTRA1-13-1-0035, which provided for nanocrystal etching, postdoctoral support, and TEM instrumentation; the NSF-BSF International Collaboration in Chemistry program, NSF grant CHE-1416161 and BSF grant 2013/604, which provided for computational resources; and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under contract DE-AC02-05CH11231 within the sp2-bonded Materials Program (KC2207), which provided for graphene growth, cell fabrication, and student support. This work made use of the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under contract DE-AC02-05CH11231. Q.C. was supported by a Miller fellowship from Miller Institute for Basic Research in Science at UC Berkeley. G.M.R. acknowledges the NSF for a Graduate Research Fellowship. M.R.J. acknowledges the Arnold and Mabel Beckman Foundation for a postdoctoral fellowship. NR 32 TC 3 Z9 3 U1 54 U2 54 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 18 PY 2016 VL 354 IS 6314 BP 874 EP 877 DI 10.1126/science.aah4434 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED0KR UT WOS:000388531900037 PM 27856905 ER PT J AU Laursen, T Borch, J Knudsen, C Bavishi, K Torta, F Martens, HJ Silvestro, D Hatzakis, NS Wenk, MR Dafforn, TR Olsen, CE Motawia, MS Hamberger, B Moller, BL Bassard, JE AF Laursen, Tomas Borch, Jonas Knudsen, Camilla Bavishi, Krutika Torta, Federico Martens, Helle Juel Silvestro, Daniele Hatzakis, Nikos S. Wenk, Markus R. Dafforn, Timothy R. Olsen, Carl Erik Motawia, Mohammed Saddik Hamberger, Bjorn Moller, Birger Lindberg Bassard, Jean-Etienne TI Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum SO SCIENCE LA English DT Article ID CYANOGENIC GLUCOSIDE DHURRIN; BICOLOR L MOENCH; BIOSYNTHESIS; PLASTICITY; PATHWAYS; PROTEIN AB Metabolic highways may be orchestrated by the assembly of sequential enzymes into protein complexes, or metabolons, to facilitate efficient channeling of intermediates and to prevent undesired metabolic cross-talk while maintaining metabolic flexibility. Here we report the isolation of the dynamic metabolon that catalyzes the formation of the cyanogenic glucoside dhurrin, a defense compound produced in sorghum plants. The metabolon was reconstituted in liposomes, which demonstrated the importance of membrane surface charge and the presence of the glucosyltransferase for metabolic channeling. We used in planta fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy to study functional and structural characteristics of the metabolon. Understanding the regulation of biosynthetic metabolons offers opportunities to optimize synthetic biology approaches for efficient production of high-value products in heterologous hosts. C1 [Laursen, Tomas; Knudsen, Camilla; Bavishi, Krutika; Olsen, Carl Erik; Motawia, Mohammed Saddik; Hamberger, Bjorn; Moller, Birger Lindberg; Bassard, Jean-Etienne] Univ Copenhagen, Dept Plant & Environm Sci, Plant Biochem Lab, DK-1871 Frederiksberg C, Denmark. [Laursen, Tomas; Borch, Jonas; Knudsen, Camilla; Bavishi, Krutika; Hatzakis, Nikos S.; Olsen, Carl Erik; Motawia, Mohammed Saddik; Hamberger, Bjorn; Moller, Birger Lindberg; Bassard, Jean-Etienne] BioSYNergy, Ctr Synthet Biol, DK-1871 Frederiksberg C, Denmark. [Laursen, Tomas; Knudsen, Camilla; Bavishi, Krutika; Motawia, Mohammed Saddik; Moller, Birger Lindberg; Bassard, Jean-Etienne] VILLUM Res Ctr Plant Plast, DK-1871 Frederiksberg C, Denmark. [Laursen, Tomas; Knudsen, Camilla; Bavishi, Krutika; Martens, Helle Juel; Silvestro, Daniele; Motawia, Mohammed Saddik; Moller, Birger Lindberg; Bassard, Jean-Etienne] Univ Copenhagen, Copenhagen Plant Sci Ctr, DK-1871 Frederiksberg C, Denmark. [Laursen, Tomas] Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA. [Borch, Jonas] Univ Southern Denmark, Dept Biochem & Mol Biol, VILLUM Ctr Bioanalyt Sci, DK-5230 Odense M, Denmark. [Torta, Federico] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Singapore 117597, Singapore. [Hatzakis, Nikos S.] Univ Copenhagen, Nanosci Ctr, Dept Chem, DK-2100 Copenhagen, Denmark. [Wenk, Markus R.] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biol Sci, Singapore 117597, Singapore. [Dafforn, Timothy R.] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England. [Dafforn, Timothy R.] Her Majestys Govt, Dept Business Energy & Ind Strategy, London, England. [Moller, Birger Lindberg] Carlsberg Res Lab, DK-1799 Copenhagen V, Denmark. RP Moller, BL; Bassard, JE (reprint author), Univ Copenhagen, Dept Plant & Environm Sci, Plant Biochem Lab, DK-1871 Frederiksberg C, Denmark.; Moller, BL; Bassard, JE (reprint author), BioSYNergy, Ctr Synthet Biol, DK-1871 Frederiksberg C, Denmark.; Moller, BL; Bassard, JE (reprint author), VILLUM Res Ctr Plant Plast, DK-1871 Frederiksberg C, Denmark.; Moller, BL; Bassard, JE (reprint author), Univ Copenhagen, Copenhagen Plant Sci Ctr, DK-1871 Frederiksberg C, Denmark.; Moller, BL (reprint author), Carlsberg Res Lab, DK-1799 Copenhagen V, Denmark. EM blm@plen.ku.dk; jbassard@outlook.com RI Hatzakis, Nikos/C-2715-2015; Moller, Birger Lindberg/H-2657-2014; OI Hatzakis, Nikos/0000-0003-4202-0328; Moller, Birger Lindberg/0000-0002-3252-3119; Bavishi, Krutika/0000-0002-8638-3887; Baden, Camilla Knudsen/0000-0001-9573-5699 FU VILLUM Research Center for Plant Plasticity; bioSYNergy program of Center for Synthetic Biology (University of Copenhagen Excellence Program for Interdisciplinary Research); European Research Council [ERC-2012-ADG_20120314]; VILLUM Foundation; VILLUM Foundation [95-300-73023]; P4FIFTY Marie Curie Initial Training Network (European Union); Innovation Fund Denmark [001-2011-4]; National Research Foundation of Singapore [NRFI2015-05]; Biomedical Research Council-Science and Engineering Research Council from the Singapore Agency for Science, Technology and Research [112 148 0006]; Biological and Biotechnology Science Research Council [BB/J017310/1, BB/K004441/1] FX This research was supported by the VILLUM Research Center for Plant Plasticity; by the bioSYNergy program of Center for Synthetic Biology (University of Copenhagen Excellence Program for Interdisciplinary Research); by a European Research Council Advanced Grant to B.L.M. (ERC-2012-ADG_20120314); and by funding from the VILLUM Foundation Young Investigator Programme to N.S.H. T.L. is recipient of a fellowship awarded by the VILLUM Foundation (project no. 95-300-73023). K.B. was supported by the P4FIFTY Marie Curie Initial Training Network (European Union's 7th Framework Programme). D.S. acknowledges funding from Innovation Fund Denmark (project no. 001-2011-4). F.T. and M.R.W. were supported by grants from the National Research Foundation of Singapore (NRFI2015-05) and a Biomedical Research Council-Science and Engineering Research Council joint grant (112 148 0006) from the Singapore Agency for Science, Technology and Research. T.R.D. acknowledges Biological and Biotechnology Science Research Council grants (BB/J017310/1 and BB/K004441/1). Imaging data were collected at the Center for Advanced Bioimaging, University of Copenhagen. We thank B. A. Halkier, C. Martin, A. Schulz, D. Werck-Reichhart, and anonymous reviewers for critical review of this manuscript. The supplementary materials contain additional data. NR 16 TC 5 Z9 5 U1 27 U2 27 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 18 PY 2016 VL 354 IS 6314 BP 890 EP 893 DI 10.1126/science.aag2347 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED0KR UT WOS:000388531900041 PM 27856908 ER PT J AU Wang, SZ Cheng, G Joshua, C He, ZJ Sun, XX Li, RM Liu, LX Yuan, QP AF Wang, Shizeng Cheng, Gang Joshua, Chijioke He, Zijun Sun, Xinxiao Li, Ruimin Liu, Lexuan Yuan, Qipeng TI Furfural tolerance and detoxification mechanism in Candida tropicalis SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Candida tropicalis; Furfural tolerance; Furfural detoxification; Alcohol dehydrogenase 1 ID ETHANOLOGENIC ESCHERICHIA-COLI; SACCHAROMYCES-CEREVISIAE; LIGNOCELLULOSIC BIOMASS; PICHIA-STIPITIS; HEMICELLULOSE HYDROLYSATE; XYLITOL-DEHYDROGENASE; XYLOSE REDUCTASE; FERMENTATION; CORNCOB; GROWTH AB Background: Current biomass pretreatment by hydrothermal treatment (including acid hydrolysis, steam explosion, and high-temperature steaming) and ionic liquids generally generate inhibitors to the following fermentation process. Furfural is one of the typical inhibitors generated in hydrothermal treatment of biomass. Furfural could inhibit cell growth rate and decrease biofuel productivity of microbes. Candida tropicalis is a promising microbe for the production of biofuels and value-added chemicals using hemicellulose hydrolysate as carbon source. In this study, C. tropicalis showed a comparable ability of furfural tolerance during fermentation. We investigated the mechanism of C. tropicalis's robust tolerance to furfural and relevant metabolic responses to obtain more information for metabolic engineering of microbes for efficient lignocellulose fermentation. Results: Candida tropicalis showed comparable intrinsic tolerance to furfural and a fast rate of furfural detoxification. C. tropicalis's half maximal inhibitory concentration for furfural with xylose as the sole carbon source was 3.69 g/L, which was higher than that of most wild-type microbes reported in the literature to our knowledge. Even though furfural prolonged the lag phase of C. tropicalis, the final biomass in the groups treated with 1 g/L furfural was slightly greater than that in the control groups. By real-time PCR analysis, we found that the expression of ADH1 in C. tropicalis (ctADH1) was induced by furfural and repressed by ethanol after furfural depletion. The expression of ctADH1 could be regulated by both furfural and ethanol. After the disruption of gene ctADH1, we found that C. tropicalis's furfural tolerance was weakened. To further confirm the function of ctADH1 and enhance Escherichia coli's furfural tolerance, ctADH1 was overexpressed in E. coli BL21 (DE3). The rate of furfural degradation in E. coli BL21 (DE3) with pET-ADH1 (high-copy plasmid) and pCS-ADH1 (medium-copy plasmid) was increased by 1.59-fold and 1.28-fold, respectively. Conclusions: Candida tropicalis was a robust strain with intrinsic tolerance to inhibitor furfural. The mechanism of furfural detoxification and metabolic responses were identified by multiple analyses. Alcohol dehydrogenase 1 was confirmed to be responsible for furfural detoxification. C. tropicalis showed a complex regulation system during furfural detoxification to minimize adverse effects caused by furfural. Furthermore, the mechanism we uncovered in this work was successfully applied to enhance E. coli's furfural tolerance by heterologous expression of ctADH1. The study provides deeper insights into strain modification for biofuel production by efficient lignocellulose fermentation. C1 [Wang, Shizeng; Cheng, Gang; He, Zijun; Sun, Xinxiao; Li, Ruimin; Liu, Lexuan; Yuan, Qipeng] Beijing Univ Chem Technol, Coll Life Sci & Technol, State Key Lab Chem Resource Engn, West Room 314,Sci & Technol Bldg, Beijing 100029, Peoples R China. [Joshua, Chijioke] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. RP Yuan, QP (reprint author), Beijing Univ Chem Technol, Coll Life Sci & Technol, State Key Lab Chem Resource Engn, West Room 314,Sci & Technol Bldg, Beijing 100029, Peoples R China. EM yuanqp@mail.buct.edu.cn FU National High-Tech Research and Development Program of China [2011AA02A207, 2014AA021906, 2014AA021903]; National Natural Science Foundation of China [21376017, 21176018, 21636001, 21406010] FX This study was supported by the National High-Tech Research and Development Program of China (2011AA02A207, 2014AA021906, and 2014AA021903) and National Natural Science Foundation of China (21376017, 21176018, 21636001, 21376017, and 21406010). NR 47 TC 0 Z9 0 U1 12 U2 12 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD NOV 18 PY 2016 VL 9 AR 250 DI 10.1186/s13068-016-0668-x PG 11 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EC3NN UT WOS:000388033000001 PM 27891177 ER PT J AU Li, M Pu, YQ Ragauskas, AJ AF Li, Mi Pu, Yunqiao Ragauskas, Arthur J. TI Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance SO FRONTIERS IN CHEMISTRY LA English DT Review DE biomass recalcitrance; lignin structure; cell wall; pretreatment; enzymatic hydrolysis ID LIQUID PRETREATMENT EFFICIENCY; ENZYMATIC-HYDROLYSIS; LIGNOCELLULOSIC BIOMASS; BIOFUEL PRODUCTION; CELL-WALL; THERMOCHEMICAL PRETREATMENT; ETHANOL-PRODUCTION; MOLECULAR-WEIGHT; DILUTE-ACID; CELLULOSE AB Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalcitrance with improved cell wall digestibility. While high lignin content is usually a barrier to a cost-efficient application of bioresources to biofuels, the direct correlation of lignin structure and its concomitant properties with biomass remains unclear due to the complexity of cell wall and lignin structure. Advancement in application of biorefinery to production of biofuels, chemicals, and bio-derived materials necessitates a fundamental understanding of the relationship of lignin structure and biomass recalcitrance. In this mini-review, we focus on recent investigations on the influence of lignin chemical properties on bioprocessability-pretreatment and enzymatic hydrolysis of biomass. Specifically, lignin-enzyme interactions and the effects of lignin compositional units, hydroxycinnamates, and lignin functional groups on biomass recalcitrance have been highlighted, which will be useful not only in addressing biomass recalcitrance but also in deploying renewable lignocelluloses efficiently. C1 [Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Joint Inst Biol Sci, BioEnergy Sci Ctr, Biosci Div, Oak Ridge, TN 37831 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Biomol & Chem Engn, Knoxville, TN 37996 USA. [Ragauskas, Arthur J.] Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37901 USA. RP Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Joint Inst Biol Sci, BioEnergy Sci Ctr, Biosci Div, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Dept Biomol & Chem Engn, Knoxville, TN 37996 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37901 USA. EM aragausk@utk.edu FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Dr. Xianzhi Meug and Dr. Chang Geun Yoo for assistance on chemical structures drawing. This study was supported and performed as part of the BioEnergy Science Center (BESC). The BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LIE under contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. NR 90 TC 0 Z9 0 U1 33 U2 33 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND EI 2296-2646 J9 FRONT CHEM JI Front. Chem. PD NOV 18 PY 2016 VL 4 AR 45 DI 10.3389/fchem.2016.00045 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EC3II UT WOS:000388019300001 PM 27917379 ER PT J AU Healey, AL Lee, DJ Lupoi, JS Papa, G Guenther, JM Corno, L Adani, F Singh, S Simmons, BA Henry, RJ AF Healey, Adam L. Lee, David J. Lupoi, Jason S. Papa, Gabriella Guenther, Joel M. Corno, Luca Adani, Fabrizio Singh, Seema Simmons, Blake A. Henry, Robert J. TI Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa SO FRONTIERS IN PLANT SCIENCE LA English DT Article DE Corymbia; biofuels; eucalypt; saccharification; growth rate; lignin; glucan; xylan ID IONIC LIQUID PRETREATMENT; EUCALYPTUS-GLOBULUS; ETHANOL-PRODUCTION; LIGNIN CONTENT; BIOFUEL PRODUCTION; TRANSGENIC TREES; DILUTE-ACID; CELL WALLS; CELLULOSE; BIOMASS AB In order for a lignocellulosic bioenergy feedstock to be considered sustainable, it must possess a high rate of growth to supply biomass for conversion. Despite the desirability of a fast growth rate for industrial application, it is unclear what effect growth rate has on biomass composition or saccharification. We characterized Klason lignin, glucan, and xylan content with response to growth in Corymbia interspecific Fl hybrid families (HF) and parental species Corymbia torelliana and C. citriodora subspecies variegate and measured the effects on enzymatic hydrolysis from hydrothermally pretreated biomass. Analysis of biomass composition within Corymbia populations found similar amounts of Klason lignin content (19.7-21.3%) among parental and hybrid populations, whereas glucan content was clearly distinguished within C. citriodora subspecies variegate (52%) and HF148 (60%) as compared to other populations (28-38%). Multiple linear regression indicates that biomass composition is significantly impacted by tree size measured at the same age, with Klason lignin content increasing with diameter breast height (DBH) (+0.12% per cm DBH increase), and glucan and xylan typically decreasing per DBH cm increase (-0.7 and 0.3%, respectively). Polysaccharide content within citriodora subspecies variegate and HF-148 were not significantly affected by tree size. High throughput enzymatic saccharification of hydrothermally pretreated biomass found significant differences among Corymbia populations for total glucose production from biomass, with parental Corymbia torelliana and hybrids HF-148 and HF-51 generating the highest amounts of glucose (similar to 180 mg/g biomass, respectively), with HF-51 undergoing the most efficient glucan-to-glucose conversion (74%). Based on growth rate, biomass composition, and further optimization of enzymatic saccharification yield, high production Corymbia hybrid trees are potentially suitable for fast-rotation bioenergy or biomaterial production. C1 [Healey, Adam L.; Henry, Robert J.] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld, Australia. [Lee, David J.] Univ Sunshine Coast, Forest Ind Res Ctr, Maroochydore, Qld, Australia. [Lee, David J.] Forestry & Biosci Agrisci Queensland, Dept Agr & Fisheries, Gympie, Qld, Australia. [Lupoi, Jason S.] Prozess Technol, St Louis, MO USA. [Papa, Gabriella; Guenther, Joel M.; Singh, Seema; Simmons, Blake A.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Emeryville, CA USA. [Guenther, Joel M.; Singh, Seema; Simmons, Blake A.] Sandia Natl Labs, Biol & Engn Sci Ctr, Livermore, CA USA. [Corno, Luca; Adani, Fabrizio] Univ Milan, DiSAA, Grpp Ricicia, Biomass & Bioenergy Lab, Milan, Italy. RP Healey, AL (reprint author), Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld, Australia. EM a.heaiey1@uq.edu.au FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. NR 62 TC 0 Z9 0 U1 7 U2 7 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-462X J9 FRONT PLANT SCI JI Front. Plant Sci. PD NOV 18 PY 2016 VL 7 AR 1705 DI 10.3389/fpls.2016.01705 PG 14 WC Plant Sciences SC Plant Sciences GA EC3OC UT WOS:000388034500001 PM 27917179 ER PT J AU Zhang, FC Chen, B Morrison, GR Vila-Comamala, J Guizar-Sicairos, M Robinson, IK AF Zhang, Fucai Chen, Bo Morrison, Graeme R. Vila-Comamala, Joan Guizar-Sicairos, Manuel Robinson, Ian K. TI Phase retrieval by coherent modulation imaging SO NATURE COMMUNICATIONS LA English DT Article ID FREE-ELECTRON LASER; RAY-DIFFRACTION MICROSCOPY; RESOLUTION; TOMOGRAPHY; ALGORITHMS; OPTICS; PULSES AB Phase retrieval is a long-standing problem in imaging when only the intensity of the wavefield can be recorded. Coherent diffraction imaging is a lensless technique that uses iterative algorithms to recover amplitude and phase contrast images from diffraction intensity data. For general samples, phase retrieval from a single-diffraction pattern has been an algorithmic and experimental challenge. Here we report a method of phase retrieval that uses a known modulation of the sample exit wave. This coherent modulation imaging method removes inherent ambiguities of coherent diffraction imaging and uses a reliable, rapidly converging iterative algorithm involving three planes. It works for extended samples, does not require tight support for convergence and relaxes dynamic range requirements on the detector. Coherent modulation imaging provides a robust method for imaging in materials and biological science, while its single-shot capability will benefit the investigation of dynamical processes with pulsed sources, such as X-ray free-electron lasers. C1 [Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Zhang, Fucai; Chen, Bo; Morrison, Graeme R.; Robinson, Ian K.] Res Complex Harwell, Harwell Campus, Didcot OX11 0FA, Oxon, England. [Zhang, Fucai] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China. [Chen, Bo] Tongji Univ, Sch Mat Sci & Engn, Shanghai 201804, Peoples R China. [Vila-Comamala, Joan; Guizar-Sicairos, Manuel] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Robinson, Ian K.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Dept, Upton, NY 11973 USA. RP Zhang, FC (reprint author), UCL, London Ctr Nanotechnol, London WC1E 6BT, England.; Zhang, FC (reprint author), Res Complex Harwell, Harwell Campus, Didcot OX11 0FA, Oxon, England.; Zhang, FC (reprint author), Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China. EM fucai.zhang@ucl.ac.uk RI Guizar-Sicairos, Manuel/I-4899-2013; Vila-Comamala, Joan/E-2106-2017 FU Engineering and Physical Sciences Research Council (EPSRC) of United Kingdom [EP/I022562/1]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC00112704]; Shenzhen Innovation Project [JCYJ20160301113356947] FX This paper is based on work supported by the grant 'Phase Modulation Technology for X-ray Imaging' (No. EP/I022562/1) by the Engineering and Physical Sciences Research Council (EPSRC) of United Kingdom. The experiments were conducted at the cSAXS beamline, Swiss Light Source, Paul Scherrer Institut, Switzerland. We are grateful for travel support by the EU access program CALIPSO. The modulator and test object were fabricated to our design by Pambos Charalambous at zoneplates.com. Supports from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (under Contract DE-SC00112704) and Shenzhen Innovation Project (Grant No. JCYJ20160301113356947) are acknowledged. We thank John M. Rodenburg for useful discussions and Leonid Yaroslavsky for critical reading of the manuscript. NR 51 TC 1 Z9 1 U1 21 U2 21 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 18 PY 2016 VL 7 AR 13367 DI 10.1038/ncomms13367 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC2YL UT WOS:000387990400001 PM 27857061 ER PT J AU Chakoumakos, BC Pracheil, BM Koenigs, RP Bruch, RM Feygenson, M AF Chakoumakos, Bryan C. Pracheil, Brenda M. Koenigs, Ryan P. Bruch, Ronald M. Feygenson, Mikhail TI Empirically testing vaterite structural models using neutron diffraction and thermal analysis SO SCIENTIFIC REPORTS LA English DT Article ID CALCIUM-CARBONATE; OTOLITHS; CACO3; TRANSFORMATION; CRYSTALS; HATCHERY AB Otoliths, calcium carbonate (CaCO3) ear bones, are among the most commonly used age and growth structures of fishes. Most fish otoliths are comprised of the most dense CaCO3 polymorph, aragonite. Sturgeon otoliths, in contrast, have been characterized as the rare and structurally enigmatic polymorph, vaterite-a metastable polymorph of CaCO3. Vaterite is an important material ranging from biomedical to personal care applications although its crystal structure is highly debated. We characterized the structure of Lake Sturgeon otoliths using thermal analysis and neutron powder diffraction, which is used non-destructively. We confirmed that while Lake Sturgeon otoliths are primarily composed of vaterite, they also contain the denser CaCO3 polymorph, calcite. For the vaterite fraction, neutron diffraction data provide enhanced discrimination of the carbonate group compared to x-ray diffraction data, owing to the different relative neutron scattering lengths, and thus offer the opportunity to uniquely test the more than one dozen crystal structural models that have been proposed for vaterite. Of those, space group P6(5)22 model, a = 7.1443(4)angstrom, c = 25.350(4)angstrom, V = 1121.5(2)angstrom(3) provides the best fit to the neutron powder diffraction data, and allows for a structure refinement using rigid carbonate groups. C1 [Chakoumakos, Bryan C.; Feygenson, Mikhail] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Pracheil, Brenda M.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Koenigs, Ryan P.; Bruch, Ronald M.] Wisconsin Dept Nat Resources, Oshkosh, WI 54901 USA. [Feygenson, Mikhail] Forschungszentrum Julich, Julich Ctr Neutron Sci, D-52425 Julich, North Rhine Wes, Germany. RP Chakoumakos, BC (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM chakoumakobc@ornl.gov FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX We thank Michael Susner for assistance with the thermal analysis measurements, and Alexandra Navrotsky and Katherine Page for commenting on an earlier version of the manuscript. Research conducted at ORNL's Spallation Neutron Source and High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 27 TC 0 Z9 0 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 18 PY 2016 VL 6 AR 36799 DI 10.1038/srep36799 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC4BC UT WOS:000388069800002 PM 27857219 ER PT J AU Spurrell, CH Dickel, DE Visel, A AF Spurrell, Cailyn H. Dickel, Diane E. Visel, Axel TI The Ties That Bind: Mapping the Dynamic Enhancer-Promoter Interactome SO CELL LA English DT Review ID LONG-RANGE INTERACTIONS; HUMAN GENOME; REVEALS; ASSOCIATION; PRINCIPLES; GENES; RISK; DNA AB Coupling chromosome conformation capture to molecular enrichment for promoter-containing DNA fragments enables the systematic mapping of interactions between individual distal regulatory sequences and their target genes. In this Minireview, we describe recent progress in the application of this technique and related complementary approaches to gain insight into the lineage-and celltype-specific dynamics of interactions between regulators and gene promoters. C1 [Spurrell, Cailyn H.; Dickel, Diane E.; Visel, Axel] Lawrence Berkeley Natl Lab, MS 84-171, Berkeley, CA 94720 USA. [Visel, Axel] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Visel, Axel] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. RP Visel, A (reprint author), Lawrence Berkeley Natl Lab, MS 84-171, Berkeley, CA 94720 USA.; Visel, A (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA.; Visel, A (reprint author), Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. EM avisel@lbl.gov OI Dickel, Diane/0000-0001-5497-6824 FU National Institutes of Health [R01HG003988, U54HG006997, U01DE024427, R24HL123879, UM1HL098166]; Department of Energy, University of California [DE-AC02-05CH11231] FX This work was supported by National Institutes of Health grants R01HG003988, U54HG006997, U01DE024427, R24HL123879, and UM1HL098166. Research conducted at the E.O. Lawrence Berkeley National Laboratory was performed under Department of Energy Contract DE-AC02-05CH11231, University of California. NR 24 TC 0 Z9 0 U1 11 U2 11 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD NOV 17 PY 2016 VL 167 IS 5 BP 1163 EP 1166 DI 10.1016/j.cell.2016.10.054 PG 4 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EE3EK UT WOS:000389470100009 PM 27863237 ER PT J AU Stingele, J Bellelli, R Alte, F Hewitt, G Sarek, G Maslen, SL Tsutakawa, SE Borg, A Kjaer, S Tainer, JA Skehel, JM Groll, M Boulton, SJ AF Stingele, Julian Bellelli, Roberto Alte, Ferdinand Hewitt, Graeme Sarek, Grzegorz Maslen, Sarah L. Tsutakawa, Susan E. Borg, Annabel Kjaer, Svend Tainer, John A. Skehel, J. Mark Groll, Michael Boulton, Simon J. TI Mechanism and Regulation of DNA-Protein Crosslink Repair by the DNA-Dependent Metalloprotease SPRTN SO MOLECULAR CELL LA English DT Article ID NUCLEOTIDE EXCISION-REPAIR; GENOMIC INSTABILITY; DAMAGE RESPONSE; FANCONI-ANEMIA; DVC1 C1ORF124; SPARTAN/C1ORF124; CELLS; HELICASE AB Covalent DNA-protein crosslinks (DPCs) are toxic DNA lesions that interfere with essential chromatin transactions, such as replication and transcription. Little was known about DPC-specific repair mechanisms until the recent identification of a DPC-processing protease in yeast. The existence of a DPC protease in higher eukaryotes is inferred from data in Xenopus laevis egg extracts, but its identity remains elusive. Here we identify the metalloprotease SPRTN as the DPC protease acting in metazoans. Loss of SPRTN results in failure to repair DPCs and hypersensitivity to DPC-inducing agents. SPRTN accomplishes DPC processing through a unique DNA-induced protease activity, which is controlled by several sophisticated regulatory mechanisms. Cellular, biochemical, and structural studies define a DNA switch triggering its protease activity, a ubiquitin switch controlling SPRTN chromatin accessibility, and regulatory autocatalytic cleavage. Our data also provide a molecular explanation on how SPRTN deficiency causes the premature aging and cancer predisposition disorder Ruijs-Aalfs syndrome. C1 [Stingele, Julian; Bellelli, Roberto; Hewitt, Graeme; Sarek, Grzegorz; Borg, Annabel; Kjaer, Svend; Boulton, Simon J.] Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England. [Alte, Ferdinand; Groll, Michael] Tech Univ Munich, Lehrstuhl Biochem, Dept Chem, Ctr Integrated Prot Sci, Lichtenbergstr 4, D-85747 Garching, Germany. [Maslen, Sarah L.; Skehel, J. Mark] MRC, Mol Biol Lab, Francis Crick Ave, Cambridge CB2 0QH, England. [Tsutakawa, Susan E.; Tainer, John A.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Tainer, John A.] Univ Texas MD Anderson Canc Ctr, Dept Mol & Cellular Oncol, Houston, TX 77030 USA. RP Boulton, SJ (reprint author), Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England. EM simon.boulton@crick.ac.uk RI Groll, Michael/F-5572-2015 FU Cancer Prevention and Research Institute of Texas; Robert A. Welch Chemistry Chair; European Molecular Biology Organization (EMBO) [ALTF 470-2015]; EMBO [ALTF 1656-2014]; Francis Crick Institute - Cancer Research UK [FC0010048]; UK Medical Research Council [FC0010048]; Wellcome Trust [FC0010048]; European Research Council (ERC); Wellcome Trust FX We thank Yuichi Machida for providing Sprtn- MEFs; John Rouse for anti-SPRTN polyclonal antibody; Bjoern Schumacher, Anton Gartner, and the Caenorhabditis Genetics Center for C. elegans strains; Vesela Encheva and Bram Snijders for mass spectrometry analysis; the staff of the macromolecular crystallography beamline X06SA (PXI) of the Paul Scherrer Institute, Swiss Light Source, for help with data collection; Stefan Jentsch for discussions and support; and members of the S.J.B. laboratory for comments and discussion throughout the project. SAXS data were collected at the SIBYLS beamline 12.3.1 at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory, supported by the Department of Energy (DOE, IDAT program) and the National Cancer Institute (NCI, PO1CA92584). J.A.T. is supported by the Cancer Prevention and Research Institute of Texas and a Robert A. Welch Chemistry Chair. J.S. is supported by a European Molecular Biology Organization (EMBO) long-term fellowship (ALTF 470-2015), and G.S. is supported by an EMBO advanced fellowship (ALTF 1656-2014). This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC0010048), the UK Medical Research Council (FC0010048), and the Wellcome Trust (FC0010048); a European Research Council (ERC) Advanced Investigator Grant (RecMitMei); and a Wellcome Trust Senior Investigator Grant. NR 38 TC 1 Z9 1 U1 5 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD NOV 17 PY 2016 VL 64 IS 4 BP 688 EP 703 DI 10.1016/j.molcel.2016.09.031 PG 16 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EE3RR UT WOS:000389515400008 PM 27871365 ER PT J AU Van Oss, SB Shirra, MK Bataille, AR Wier, AD Yen, KY Vinayachandran, V Byeon, IJL Cucinotta, CE Heroux, A Jeon, J Kim, J VanDemark, AP Pugh, BF Arndt, KM AF Van Oss, S. Branden Shirra, Margaret K. Bataille, Alain R. Wier, Adam D. Yen, Kuangyu Vinayachandran, Vinesh Byeon, In-Ja L. Cucinotta, Christine E. Heroux, Annie Jeon, Jongcheol Kim, Jaehoon VanDemark, Andrew P. Pugh, B. Franklin Arndt, Karen M. TI The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6 SO MOLECULAR CELL LA English DT Article ID RNA-POLYMERASE-II; TRANSCRIPTIONAL ELONGATION; SACCHAROMYCES-CEREVISIAE; GENE-EXPRESSION; CRYPTIC TRANSCRIPTION; TUMOR-SUPPRESSOR; H3K4 METHYLATION; STRUCTURAL BASIS; HUMAN-CELLS; RECRUITMENT AB The five-subunit yeast Paf1 complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here, we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1C in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo. C1 [Van Oss, S. Branden; Shirra, Margaret K.; Wier, Adam D.; Cucinotta, Christine E.; VanDemark, Andrew P.; Arndt, Karen M.] Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA. [Bataille, Alain R.; Yen, Kuangyu; Vinayachandran, Vinesh; Pugh, B. Franklin] Penn State Univ, Ctr Eukaryot Gene Regulat, University Pk, PA 16802 USA. [Yen, Kuangyu] Southern Med Univ, Dept Dev Biol, Guangzhou 510515, Guangdong, Peoples R China. [Byeon, In-Ja L.] Univ Pittsburgh, Sch Med, Dept Biol Struct, Pittsburgh, PA 15260 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Jeon, Jongcheol; Kim, Jaehoon] Korea Adv Inst Sci & Technol, Dept Biol Sci, Daejeon 34141, South Korea. RP Arndt, KM (reprint author), Univ Pittsburgh, Dept Biol Sci, Pittsburgh, PA 15260 USA. EM arndt@pitt.edu FU NSF [DGE-1247842]; Andrew Mellon Predoctoral Fellowships; University of Pittsburgh CRDF; NRF [2012M3A9B4027956, 2012M3A9C6049937]; NIH [GM052593, HG004160, P50GM082251] FX We thank Song Tan for recombinant nucleosomes, Steve Hahn and Linda Warfield for assistance with the BPA experiments, Stefan Brooks and Aubrey Lowen for technical assistance, and Nathan Clark for helpful discussions. We thank Mike McAlear and members of our laboratories for feedback on the manuscript. This work was supported by an NSF Graduate Research Fellowship to S.B.V.O. (DGE-1247842), Andrew Mellon Predoctoral Fellowships to C.E.C. and A.D.W., a University of Pittsburgh CRDF grant to A.P.V., NRF grants to J.K. (2012M3A9B4027956 and 2012M3A9C6049937), and NIH grants (GM052593 to K.M.A.; HG004160 to B.F.P.; and P50GM082251 for funding to I.-J.L.B.). B.F.P. has a financial interest in Peconic, LLC, which utilizes the ChIP-exo technology implemented in this study and could potentially benefit from the outcomes of this research. NR 53 TC 0 Z9 0 U1 5 U2 5 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1097-2765 EI 1097-4164 J9 MOL CELL JI Mol. Cell PD NOV 17 PY 2016 VL 64 IS 4 BP 815 EP 825 DI 10.1016/j.molcel.2016.10.008 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EE3RR UT WOS:000389515400017 PM 27840029 ER PT J AU Kemper, TW Gennett, T Larsen, RE AF Kemper, Travis W. Gennett, Thomas Larsen, Ross E. TI Molecular Dynamics Simulation Study of Solvent and State of Charge Effects on Solid-Phase Structure and Counterion Binding in a Nitroxide Radical Containing Polymer Energy Storage Material SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID RECHARGEABLE BATTERIES; LIQUID ACETONITRILE; FORCE-FIELD; MACROMOLECULES; TRANSPORT; MIXTURES; CATHODES; MODEL AB We performed molecular dynamics simulations to understand the effects of solvent swelling and state of charge (SOC) on the redox active, organic radical cathode material poly(2,2,6,6-tetramethylpi-peridinyloxy methacrylate) (PTMA). We show that the polar solvent acetonitrile primarily solvates the nitroxide radical without disrupting the packing of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) pendant groups of PTMA. We also simulated bulk PTMA in different SOC, 25%, 50%, 75%, and 100%, by converting the appropriate number of TEMPO groups to the cation charge state and adding BF4- counterions to the simulation. At each SOC the packing of PTMA, the solvent, and the counterions were examined. The binding of the anion to the nitroxide cation site was examined using the potential of mean force and found to be on the order of tens of meV, with a binding energy that decreased with increasing SOC. In addition, we found that the cation state is stabilized by the presence of a nearby anion by more than 1 eV, and the implications of this stabilization on charge transport are discussed. Finally, we describe the implications of our results for how the SOC of an organic electrode affects electron and anion charge transport during the charging and discharging processes. C1 [Kemper, Travis W.; Larsen, Ross E.] Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Gennett, Thomas] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Larsen, RE (reprint author), Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM ross.larsen@nrel.gov FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC36-08GO28308]; Department of Energy's Office of Energy Efficiency and Renewable Energy, located at National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC36-08GO28308. The research was performed using resources sponsored by the Department of Energy's Office of Energy Efficiency and Renewable Energy, located at the National Renewable Energy Laboratory. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 27 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 17 PY 2016 VL 120 IS 45 BP 25639 EP 25646 DI 10.1021/acs.jpcc.6b07118 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EC8YN UT WOS:000388429100001 ER PT J AU White, JL Newhouse, RJ Zhang, JZ Udovic, TJ Stavila, V AF White, James L. Newhouse, Rebecca J. Zhang, Jin Z. Udovic, Terrence J. Stavila, Vitalie TI Understanding and Mitigating the Effects of Stable Dodecahydro-closo-dodecaborate Intermediates on Hydrogen-Storage Reactions SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DEHYDROGENATION REACTION PATHWAY; INELASTIC NEUTRON-SCATTERING; METAL BOROHYDRIDES; DECOMPOSITION; LIBH4; BEHAVIOR; SYSTEM; MG; MG(BH4)(2); LI2B12H12 AB Alkali metal borohydrides can reversibly store hydrogen; however, the materials display poor cyclability, oftentimes linked to the occurrence of stable closo-polyborate intermediate species. In an effort to understand the role of such intermediates on the hydrogen storage properties of metal borohydrides, several alkali metal dodecahydro-closo-dodecaborate salts were isolated in anhydrous form and characterized by diffraction and spectroscopic techniques. Mixtures of Li2B12H12, Na2B12H12, and K2B12H12 with the corresponding alkali metal hydrides were subjected to hydrogenation conditions known to favor partial or full reversibility in metal borohydrides. The stoichiometric mixtures of MH and M2B12H12 salts form the corresponding metal borohydrides MBH4 (M = Li, Na, K) in almost quantitative yield at 100 MPa H-2 and 500 degrees C. In addition, stoichiometric mixtures of Li2B12H12 and MgH2 were found to form MgB2 at 500 degrees C and above upon desorption in vacuum. The two destabilization strategies outlined above suggest that metal polyhydro-closo-polyborate species can be converted into the corresponding metal borohydrides or borides, albeit under rather harsh conditions of hydrogen pressure and temperature. C1 [White, James L.; Newhouse, Rebecca J.; Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. [Newhouse, Rebecca J.; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Udovic, Terrence J.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Stavila, V (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM vnstavi@sandia.gov OI White, James/0000-0002-8216-7212 FU BES Division of the U.S. DOE; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Ken Stewart and Jeff Campbell for their skillful technical assistance. J.Z.Z. is grateful to the BES Division of the U.S. DOE for financial support. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000). NR 49 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 17 PY 2016 VL 120 IS 45 BP 25725 EP 25731 DI 10.1021/acs.jpcc.6b09789 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EC8YN UT WOS:000388429100010 ER PT J AU Reiter, GF Deb, A Sakurai, Y Itou, M Kolesnikov, AI AF Reiter, George F. Deb, Aniruddha Sakurai, Y. Itou, M. Kolesnikov, A. I. TI Quantum Coherence and Temperature Dependence of the Anomalous State of Nanoconfined Water in Carbon Nanotubes SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID TRANSPORT AB X-ray Compton scattering measurements of the electron momentum distribution in water confined in both single-walled and double-walled carbon nanotubes (SWNT and DWNT), as a function of temperature and confinement size are presented here together with earlier measurements of the proton momentum distribution in the same systems using neutron Compton scattering. These studies provide a coherent picture of an anomalous state of water that exists because of nanoconfinement. This state cannot be described by the weakly interacting molecule picture. It has unique transport properties for both protons and water molecules. We suggest that knowledge of the excitation spectrum of this state is needed to understand the enhanced flow of water in cylinders with diameters on the order of 20 angstrom. C1 [Reiter, George F.] Univ Houston, Phys Dept, Houston, TX 77204 USA. [Deb, Aniruddha] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. [Sakurai, Y.; Itou, M.] Japan Synchrotron Radiat Res Inst JASRI, SPring 8, Sayo, Hyogo 6795198, Japan. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Deb, A (reprint author), Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA. EM debani@umich.edu FU DOE, Office of Basic Energy Sciences [DE-FG02-08ER46486]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX G.R's work was supported by the DOE, Office of Basic Energy Sciences under Contract No. DE-FG02-08ER46486. He thanks Dirar Homouz and Jamal Hassan of Khalifa University for useful conversations and sharing their work prior to publication. We would also like to thank Christian J. Burnham for providing us with the SWNT simulation, shown as a part of the abstract graphic. These experiments were performed with approval of the Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Proposal Nos. 2011A1074 and 2015B1098. Work at ORNL was supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. We thank Alexander P. Moraysky of MER Corporation for supplying the high-purity carbon nanotube samples. NR 18 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 17 PY 2016 VL 7 IS 22 BP 4433 EP 4437 DI 10.1021/acs.jpclett.6b02057 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EC9AC UT WOS:000388433200001 PM 27749075 ER PT J AU Chung, HT Martinez, U Matanovic, I Kim, YS AF Chung, Hoon Taek Martinez, Ulises Matanovic, Ivana Kim, Yu Seung TI Cation-Hydroxide-Water Coadsorption Inhibits the Alkaline Hydrogen Oxidation Reaction SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MEMBRANE FUEL-CELLS; ADSORPTION; PLATINUM; INTERFACE; SURFACES; ACID; PH AB Rotating disk electrode voltammograms and infrared reflection absorption spectra indicate that the hydrogen oxidation reaction of platinum in 0.1 M tetramethylammonium hydroxide solution is adversely impacted by time-dependent and potential-driven cation-hydroxide-water coadsorption. Impedance analysis suggests that the hydrogen oxidation reaction inhibition is mainly caused by the hydrogen diffusion barrier of the coadsorbed trilayer rather than intuitive catalyst site blocking by the adsorbed cation species. These results give useful insights on how to design ionomeric binders for advanced alkaline membrane fuel cells. C1 [Chung, Hoon Taek; Martinez, Ulises; Kim, Yu Seung] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. [Matanovic, Ivana] Univ New Mexico, CMEM, Dept Chem & Biol Engn, Albuquerque, NM 87231 USA. [Matanovic, Ivana] Los Alamos Natl Lab, Phys & Chem Mat T1, Los Alamos, NM 87545 USA. RP Kim, YS (reprint author), Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. EM yskim@lanl.gov RI Chung, Hoon/A-7916-2012 OI Chung, Hoon/0000-0002-5367-9294 FU U.S. Department of Energy, Energy Efficiency and Renewable Energy, Fuel Cell Technology Office Incubator Program [DE-EE0006962]; Los Alamos National Security LLC [DE-AC52-06NA25396] FX We thank Mr. Joseph Dumont at Los Alamos National Laboratory for performing FTIR analysis. We also thank Dr. Chulsung Bae and Dr. Angela Mohanty for 1H NMR chracterizations. This work was supported by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Fuel Cell Technology Office Incubator Program (DE-EE0006962). Los Alamos National Laboratory is operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396. NR 21 TC 1 Z9 1 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 17 PY 2016 VL 7 IS 22 BP 4464 EP 4469 DI 10.1021/acs.jpclett.6b02025 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EC9AC UT WOS:000388433200006 PM 27771955 ER PT J AU Zheng, KB Abdellah, M Zhu, QS Kong, QY Jennings, G Kurtz, CA Messing, ME Niu, YR Gosztola, DJ Al-Marri, MJ Zhang, XY Pullerits, T Canton, SE AF Zheng, Kaibo Abdellah, Mohamed Zhu, Qiushi Kong, Qingyu Jennings, Guy Kurtz, Charles A. Messing, Maria E. Niu, Yuran Gosztola, David J. Al-Marri, Mohammed J. Zhang, Xiaoyi Pullerits, Tonu Canton, Sophie E. TI Direct Experimental Evidence for Photoinduced Strong-Coupling Polarons in Organolead Halide Perovskite Nanoparticles SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID LEAD-IODIDE PEROVSKITES; EXCITON BINDING-ENERGY; SOLAR-CELLS; CHARGE-CARRIERS; TRAP STATES; CH3NH3PBI3; MOLECULES AB Echoing the roaring success of their bulk counterparts, nano-objects built from organolead halide perovskites (OLHP) present bright prospects for surpassing the performances of their conventional organic and inorganic analogues in photodriven technologies. Unraveling the photoinduced charge dynamics is essential for optimizing the optoelectronic functionalities. However, mapping the carrier-lattice interactions remains challenging, owing to their manifestations on multiple length scales and time scales. By correlating ultrafast time-resolved optical and X-ray absorption measurements, this work reveals the photoinduced formation of strong-coupling polarons in CH3NH3PbBr3 nanoparticles. Such polarons originate from the self-trapping of electrons in the Coulombic field caused by the displaced inorganic nuclei and the oriented organic cations. The transient structural change detected at the Pb L-3 X-ray absorption edge is well-captured by a distortion with average bond elongation in the [PbBr6](2-) motif. General implications for designing novel OLHP nanomaterials targeting the active utilization of these quasi-particles are outlined. C1 [Zheng, Kaibo; Abdellah, Mohamed; Zhu, Qiushi; Pullerits, Tonu] Lund Univ, Dept Chem Phys & Nanolund, Box 124, S-22100 Lund, Sweden. [Zheng, Kaibo; Zhu, Qiushi; Al-Marri, Mohammed J.] Qatar Univ, Coll Engn, Gas Proc Ctr, POB 2713, Doha, Qatar. [Abdellah, Mohamed] South Valley Univ, Qena Fac Sci, Dept Chem, Qena 83523, Egypt. [Kong, Qingyu; Jennings, Guy; Kurtz, Charles A.; Gosztola, David J.; Zhang, Xiaoyi] Argonne Natl Lab, X Ray Sci Div, Adv Photon Source & Mat Sci Div, Argonne, IL 60439 USA. [Messing, Maria E.] Lund Univ, Dept Solid State Phys & Nanolund, Box 118, S-22100 Lund, Sweden. [Niu, Yuran] Lund Univ, MAX Lab 4, Box 118, S-22100 Lund, Sweden. [Canton, Sophie E.] Univ Hamburg, Ctr Ultrafast Imaging, D-22761 Hamburg, Germany. RP Pullerits, T (reprint author), Lund Univ, Dept Chem Phys & Nanolund, Box 124, S-22100 Lund, Sweden.; Canton, SE (reprint author), Univ Hamburg, Ctr Ultrafast Imaging, D-22761 Hamburg, Germany. EM tonu.pullerits@chemphys.lu.se; sophie.canton@desy.de RI Messing, Maria/D-5546-2009; OI Messing, Maria/0000-0003-1834-236X; Al-Marri, Mohammed J./0000-0002-9223-487X FU Knut and Alice Wallenberg Foundation; Swedish Research Council; NPRP from the Qatar National Research Fund [NPRP7-227-1-034]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The study was financially supported by the Knut and Alice Wallenberg Foundation, the Swedish Research Council, and by NPRP Grant NPRP7-227-1-034 from the Qatar National Research Fund (a member of Qatar Foundation). Collaboration within NanoLund is acknowledged. The use of the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. NR 33 TC 1 Z9 1 U1 18 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 17 PY 2016 VL 7 IS 22 BP 4535 EP 4539 DI 10.1021/acs.jpclett.6b02046 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EC9AC UT WOS:000388433200018 PM 27790918 ER PT J AU Yang, F Lin, Y Baldini, M Dahl, JEP Carlson, RMK Mao, WL AF Yang, Fan Lin, Yu Baldini, Maria Dahl, Jeremy E. P. Carlson, Robert M. K. Mao, Wendy L. TI Effects of Molecular Geometry on the Properties of Compressed Diamondoid Crystals SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID HIGH-PRESSURE RAMAN; COORDINATION NETWORKS; OIL CRACKING; CARBON; PHASE; HYDROCARBONS; ADAMANTANE; METHANE; PHOTOEMISSION; MONOLAYERS AB Diamondoids are an intriguing group of carbon based nanomaterials, which combine desired properties of inorganic nanomaterials and small hydrocarbon molecules with atomic-level uniformity. In this Letter, we report the first comparative study on the effect of pressure on a series of diamondoid crystals with systematically varying molecular geometries and shapes, including zero-dimensional (OD) adamantane; one-dimensional (1D) diamantane, [121]-tetramantane, [123]tetramantane, and [1212]pentamantane; two-dimensional (2D) [12312]hexamantane; and three-dimensional (3D) triamantane and [1(2,3)4]pentamantane. We find the bulk moduli of these diamondoid crystals are strongly dependent on the diamondoids' molecular geometry with 3D [1(2,3)4]pentamantane being the least compressible and OD adamantane being the most compressible. These diamondoid crystals possess excellent structural rigidity and are able to sustain large volume deformation without structural failure even after repetitive pressure loading cycles. These properties are desirable for constructing cushioning devices. We also demonstrate that lower diamondoids outperform the conventional cushioning materials in both the working pressure range and energy absorption density. C1 [Yang, Fan; Mao, Wendy L.] Stanford Univ, Dept Geol Sci, Stanford, CA 94305 USA. [Lin, Yu; Dahl, Jeremy E. P.; Carlson, Robert M. K.; Mao, Wendy L.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Lin, Yu] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Baldini, Maria] Argonne Natl Lab, Carnegie Inst Washington Adv Photon Source, Geophys Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Lin, Y (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.; Lin, Y (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM lyforest@stanford.edu FU Department of Energy (DOE) [DE-AC02-76SF00515]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF [MRI-1126249]; Energy Frontier Research in Extreme Environments Center (EFree), an Energy Frontier Research Center - DOE Office of Science [DE-SC0001057] FX This work was supported by the Department of Energy (DOE) under Contract DE-AC02-76SF00515. HPCAT are supported by DOE-NNSA under Award Number DE-NA0001974 and DOE-BES under Award Number DE-FG02-99ER45775, with partial instrumentation funding by NSF MRI-1126249. APS is supported by DOE-BES, under Contract Number DE-AC02-06CH11357. M.B. is supported by Energy Frontier Research in Extreme Environments Center (EFree), an Energy Frontier Research Center funded by the DOE Office of Science under Award No. DE-SC0001057. NR 50 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 17 PY 2016 VL 7 IS 22 BP 4641 EP 4647 DI 10.1021/acs.jpclett.6b02161 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EC9AC UT WOS:000388433200035 PM 27801594 ER PT J AU Wang, J Krejci, R Giangrandel, S Kuang, C Barbosa, HMJ Brito, J Carbone, S Chi, XG Comstock, J Ditas, F Lavric, J Manninen, HE Mei, F Moran-Zuloaga, D Pohlker, C Pohlker, ML Saturno, J Schmid, B Souza, RAF Springston, SR Tomlinson, JM Toto, T Walter, D Wimmer, D Smith, JN Kulmala, M Machado, LAT Artaxo, P Andreae, MO Petaja, T Martin, ST AF Wang, Jian Krejci, Radovan Giangrandel, Scott Kuang, Chongai Barbosa, Henrique M. J. Brito, Joel Carbone, Samara Chi, Xuguang Comstock, Jennifer Ditas, Florian Lavric, Jost Manninen, Hanna E. Mei, Fan Moran-Zuloaga, Daniel Poehlker, Christopher Poehlker, Mira L. Saturno, Jorge Schmid, Beat Souza, Rodrigo A. F. Springston, Stephen R. Tomlinson, Jason M. Toto, Tami Walter, David Wimmer, Daniela Smith, James N. Kulmala, Markku Machado, Luiz A. T. Artaxo, Paulo Andreae, Meinrat O. Petaja, Tuukka Martin, Scot T. TI Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall SO NATURE LA English DT Article ID ATMOSPHERIC AEROSOLS; FREE TROPOSPHERE; WET SEASON; TALL TOWER; NUCLEATION; FOREST; NUCLEI; CCN AB The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere(1). Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions(3-5), but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear(6-8). Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions. C1 [Wang, Jian; Giangrandel, Scott; Kuang, Chongai; Springston, Stephen R.; Toto, Tami] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. [Krejci, Radovan] Stockholm Univ, Dept Appl Environm Sci & Analyt Chem, S-10691 Stockholm, Sweden. [Barbosa, Henrique M. J.; Brito, Joel; Carbone, Samara; Artaxo, Paulo] Univ Sao Paulo, BR-05508900 Sao Paulo, Brazil. [Chi, Xuguang; Ditas, Florian; Moran-Zuloaga, Daniel; Poehlker, Christopher; Poehlker, Mira L.; Saturno, Jorge; Walter, David; Andreae, Meinrat O.] Max Planck Inst Chem, Biogeochem & Multiphase Chem Dept, D-55128 Mainz, Germany. [Chi, Xuguang] Nanjing Univ, Sch Atmospher Sci, Nanjing 210023, Jiangsu, Peoples R China. [Chi, Xuguang] Collaborat Innovat Ctr Climate Change, Nanjing 210023, Jiangsu, Peoples R China. [Comstock, Jennifer; Mei, Fan; Schmid, Beat; Tomlinson, Jason M.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Lavric, Jost] Max Planck Inst Biogeochem, Dept Biogeochem Syst, D-07745 Jena, Germany. [Manninen, Hanna E.; Wimmer, Daniela; Kulmala, Markku; Petaja, Tuukka] Univ Helsinki, Dept Phys, POB 64, FI-00014 Helsinki, Finland. [Souza, Rodrigo A. F.] Amazonas State Univ, BR-69050020 Manaus, Amazonas, Brazil. [Smith, James N.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Machado, Luiz A. T.] Natl Inst Space Res, BR-12227010 Sao Jose Dos Campos, SP, Brazil. [Andreae, Meinrat O.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Martin, Scot T.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Martin, Scot T.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Wang, J (reprint author), Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. EM jian@bnl.gov RI Brito, Joel/B-6181-2013; Pohlker, Christopher/S-5207-2016; Wang, Jian/G-9344-2011; Petaja, Tuukka/A-8009-2008; Andreae, Meinrat/B-1068-2008; Martin, Scot/G-1094-2015; Lavric, Jost/H-4487-2011; Kulmala, Markku/I-7671-2016; Smith, James/C-5614-2008; Krejci, Radovan/L-3257-2013; OI Brito, Joel/0000-0002-4420-9442; Barbosa, Henrique de Melo Jorge/0000-0002-4027-1855; Petaja, Tuukka/0000-0002-1881-9044; Andreae, Meinrat/0000-0003-1968-7925; Martin, Scot/0000-0002-8996-7554; Lavric, Jost/0000-0003-3610-9078; Kulmala, Markku/0000-0003-3464-7825; Smith, James/0000-0003-4677-8224; Krejci, Radovan/0000-0002-9384-9702; Saturno, Jorge/0000-0002-3761-3957 FU Office of Biological and Environmental Research; Atmospheric System Research (ASR) programme (Office of Biological and Environmental Research of US DOE) [DE-AC02-98CH10886]; Amazonas State Research Foundation (FAPEAM-GoAmazon); Sao Paulo Research Foundation (FAPESP) [2013/50510-5, 2013/05014-0, CHUVA 2009/15235-8]; Brazil Scientific Mobility Program (CsF/CAPES-CNPq); Brazilian Ministry of Science, Technology, and Innovation (MCTI/FINEP) [01.11.01248.00]; German Max Planck Society (MPG); German Federal Ministry of Education and Research (BMBF) [01LB1001A] FX Institutional support was provided by the Central Office of the Brazilian Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA), the Brazilian National Institute of Amazonian Research (INPA), the Brazilian National Institute for Space Research (INPE), Amazonas State University (UEA) and Amazonas State (SDS/CEUC/RDS-Uatuma). We acknowledge the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a user facility of the United States Department of Energy (US DOE), Office of Science, sponsored by the Office of Biological and Environmental Research. Funding was obtained from the Atmospheric System Research (ASR) programme (Office of Biological and Environmental Research of US DOE, under contract DE-AC02-98CH10886), the Amazonas State Research Foundation (FAPEAM-GoAmazon), the Sao Paulo Research Foundation (FAPESP, project numbers 2013/50510-5, 2013/05014-0 and CHUVA 2009/15235-8), the Brazil Scientific Mobility Program (CsF/CAPES-CNPq), the Brazilian Ministry of Science, Technology, and Innovation (MCTI/FINEP contract 01.11.01248.00), the German Max Planck Society (MPG) and the German Federal Ministry of Education and Research (BMBF contract 01LB1001A). This work contains results of research conducted under the Technical/Scientific Cooperation Agreement between the National Institute for Amazonian Research, Amazonas State University, and the Max Planck Society. The work was conducted under scientific licenses 001030/2012-4, 001262/2012-2 and 00254/2013-9 of the Brazilian National Council for Scientific and Technological Development (CNPq). The opinions expressed herein are the entire responsibility of the authors and not of the participating institutions. NR 30 TC 2 Z9 2 U1 35 U2 35 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 17 PY 2016 VL 539 IS 7629 BP 416 EP 419 DI 10.1038/nature19819 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC5GP UT WOS:000388161700051 PM 27776357 ER PT J AU Perez, EAC Papenbrock, T AF Perez, E. A. Coello Papenbrock, T. TI Effective field theory for vibrations in odd-mass nuclei SO PHYSICAL REVIEW C LA English DT Article ID BOSON-FERMION MODEL; DATA SHEETS; RH ISOTOPES; STATES; SUPERSYMMETRY; FORCES; RH-103; RU; EXCITATION; SYMMETRY AB Heavy even-even nuclei exhibit low-energy collective excitations that are separated in scale from the microscopic (fermion) degrees of freedom. This separation of scale allows us to approach nuclear vibrations within an effective field theory (EFT). In odd-mass nuclei collective and single-particle properties compete at low energies, and this makes their description more challenging. In this article we describe spherical odd-mass nuclei with ground-state spin I = 1/2 by means of an EFT that couples a fermion to the collective degrees of freedom of an even-even core. The EFT relates observables such as energy levels, electric quadrupole transition strengths, and magnetic dipole moments of the odd-mass nucleus to those of its even-even neighbor and allows us to quantify theoretical uncertainties. For isotopes of rhodium and silver the theoretical description is consistent with data within experimental and theoretical uncertainties. Several testable predictions are made. C1 [Perez, E. A. Coello] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Perez, E. A. Coello] Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Perez, E. A. Coello; Papenbrock, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Papenbrock, T.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Perez, EAC (reprint author), Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany.; Perez, EAC (reprint author), Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany.; Perez, EAC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. FU Deutsche Forschungsgesellschaft [SFB 124]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DEFG02-96ER40963, DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725]; Department of Energy FX We thank N. J. Stone and L. Platter for useful discussions. This material is based on work supported by the Deutsche Forschungsgesellschaft under Grant SFB 124, and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DEFG02-96ER40963 (University of Tennessee) and under Contract No. DE-AC05-00OR22725 (Oak Ridge National Laboratory). This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. NR 75 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 17 PY 2016 VL 94 IS 5 AR 054316 DI 10.1103/PhysRevC.94.054316 PG 17 WC Physics, Nuclear SC Physics GA EC6VF UT WOS:000388274100002 ER PT J AU Berlin, A Hooper, D Krnjaic, G AF Berlin, Asher Hooper, Dan Krnjaic, Gordan TI Thermal dark matter from a highly decoupled sector SO PHYSICAL REVIEW D LA English DT Article ID STANDARD MODEL; HIGGS-BOSON; 8 TEV; MASS AB It has recently been shown that if the dark matter is in thermal equilibrium with a sector that is highly decoupled from the Standard Model, it can freeze out with an acceptable relic abundance, even if the dark matter is as heavy as similar to 1-100 PeV. In such scenarios, both the dark and visible sectors are populated after inflation, but with independent temperatures. The lightest particle in the dark sector will be generically long-lived and can come to dominate the energy density of the Universe. Upon decaying, these particles can significantly reheat the visible sector, diluting the abundance of dark matter and thus allowing for dark matter particles that are much heavier than conventional WIMPs. In this paper, we present a systematic and pedagogical treatment of the cosmological history in this class of models, emphasizing the simplest scenarios in which a dark matter candidate annihilates into hidden sector particles which then decay into visible matter through the vector, Higgs, or lepton portals. In each case, we find ample parameter space in which very heavy dark matter particles can provide an acceptable thermal relic abundance. We also discuss possible extensions of models featuring these dynamics. C1 [Berlin, Asher] Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. [Hooper, Dan; Krnjaic, Gordan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Berlin, A (reprint author), Univ Chicago, Enrico Fermi Inst, Dept Phys, Chicago, IL 60637 USA. FU Kavli Institute for cosmological physics at the University of Chicago [NSF PHY-1125897]; U.S. Department of Energy [DE-AC02-07CH11359] FX A. B. is supported by the Kavli Institute for cosmological physics at the University of Chicago through Grant No. NSF PHY-1125897. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 70 TC 4 Z9 4 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 17 PY 2016 VL 94 IS 9 AR 095019 DI 10.1103/PhysRevD.94.095019 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC6VS UT WOS:000388275400005 ER PT J AU MacDougall, GJ Aczel, AA Su, YX Schweika, W Faulhaber, E Schneidewind, A Christianson, AD Zarestky, JL Zhou, HD Mandrus, D Nagler, SE AF MacDougall, G. J. Aczel, A. A. Su, Yixi Schweika, W. Faulhaber, E. Schneidewind, A. Christianson, A. D. Zarestky, J. L. Zhou, H. D. Mandrus, D. Nagler, S. E. TI Revisiting the ground state of CoAl2O4: Comparison to the conventional antiferromagnet MnAl2O4 SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; SPIN-LIQUID; LATTICE; ORDER; SCATTERING; DISORDER; IONS AB The A-site spinel material CoAl2O4 is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which unique incommensurate or "spin-spiral-liquid" ground states are predicted. Our previous single-crystal neutron scattering study instead classified it as a "kinetically inhibited" antiferromagnet, where the long-ranged correlations of a collinear Neel ground state are blocked by the freezing of domain-wall motion below a first-order phase transition at T* = 6.5 K. This paper provides new data sets from a number of experiments, which support and expand this work in several important ways. We show that the phenomenology leading to the kinetically inhibited order is unaffected by sample measured and instrument resolution, while new low-temperature measurements reveal spin correlations are unchanging between T = 2 K and 250 mK, consistent with a frozen state. Polarized diffuse neutron measurements show several interesting magnetic features, which can be entirely explained by the existence of short-ranged Neel order. Finally, and crucially, this paper presents some neutron scattering studies of single crystalline MnAl2O4, which acts as an unfrustrated analog to CoAl2O4 and shows all the hallmarks of a classical antiferromagnet with a continuous phase transition to Neel order at T-N = 39 K. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. The higher level of cation inversion in the MnAl2O4 sample indicates that this behavior is primarily an effect of greater next-nearest-neighbor exchange. C1 [MacDougall, G. J.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [MacDougall, G. J.] Univ Illinois, Seitz Mat Res Lab, Urbana, IL 61801 USA. [MacDougall, G. J.; Aczel, A. A.; Christianson, A. D.; Nagler, S. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Su, Yixi; Faulhaber, E.] Forschungszentrum Julich, Heinz Maier Leibnitz Zentrum MLZ, Julich Ctr Neutron Sci JCNS, Lichtenbergstr 1, D-85747 Garching, Germany. [Schweika, W.] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany. [Faulhaber, E.; Schneidewind, A.] Helmholtz Zentrum Berlin Mat & Energie, Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Schneidewind, A.] Forsch Neutronenquell Heinz Meier Leibnitz FRM II, D-85747 Garching, Germany. [Zarestky, J. L.] Iowa State Univ, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Zhou, H. D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Zhou, H. D.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Nagler, S. E.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. RP MacDougall, GJ (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA.; MacDougall, GJ (reprint author), Univ Illinois, Seitz Mat Res Lab, Urbana, IL 61801 USA.; MacDougall, GJ (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. EM gmacdoug@illinois.edu RI Su, Yixi/K-9119-2013; Zhou, Haidong/O-4373-2016; OI Su, Yixi/0000-0001-8434-1758; MacDougall, Gregory/0000-0002-7490-9650 FU U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division; National Science Foundation [DMR-1455264-CAR]; State of Florida; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; [NSF-DMR-1157490] FX Research at the High Flux Isotope Reactor was sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Scientific User Facilities Division. G.J.M is further supported by the National Science Foundation, under Grant No. DMR-1455264-CAR. The work in NHMFL (HDZ) was supported by Grant No. NSF-DMR-1157490 and the State of Florida. D.M. acknowledges support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 34 TC 1 Z9 1 U1 18 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 17 PY 2016 VL 94 IS 18 AR 184422 DI 10.1103/PhysRevB.94.184422 PG 9 WC Physics, Condensed Matter SC Physics GA EC1SD UT WOS:000387887100005 ER PT J AU Howe, A Yang, F Williams, RJ Meyer, F Hofmockel, KS AF Howe, Adina Yang, Fan Williams, Ryan J. Meyer, Folker Hofmockel, Kirsten S. TI Identification of the Core Set of Carbon-Associated Genes in a Bioenergy Grassland Soil SO PLOS ONE LA English DT Article ID RIBOSOMAL-RNA ANALYSIS; DE-BRUIJN GRAPHS; MICROBIAL COMMUNITIES; ORGANIC-MATTER; DECOMPOSITION; DIVERSITY; RESPONSES; PHOSPHORUS; SEQUENCES; SEDIMENTS AB Despite the central role of soil microbial communities in global carbon (C) cycling, little is known about soil microbial community structure and even less about their metabolic pathways. Efforts to characterize soil communities often focus on identifying differences in gene content across environmental gradients, but an alternative question is what genes are similar in soils. These genes may indicate critical species or potential functions that are required in all soils. Here we identified the "core" set of C cycling sequences widely present in multiple soil metagenomes from a fertilized prairie (FP). Of 226,887 sequences associated with known enzymes involved in the synthesis, metabolism, and transport of carbohydrates, 843 were identified to be consistently prevalent across four replicate soil metagenomes. This core metagenome was functionally and taxonomically diverse, representing five enzyme classes and 99 enzyme families within the CAZy database. Though it only comprised 0.4% of all CAZy-associated genes identified in FP metagenomes, the core was found to be comprised of functions similar to those within cumulative soils. The FP CAZy-associated core sequences were present in multiple publicly available soil metagenomes and most similar to soils sharing geographic proximity. In soil ecosystems, where high diversity remains a key challenge for metagenomic investigations, these core genes represent a subset of critical functions necessary for carbohydrate metabolism, which can be targeted to evaluate important C fluxes in these and other similar soils. C1 [Howe, Adina; Yang, Fan; Williams, Ryan J.] Iowa State Univ, Dept Agr & Biosyst Engn, Ames, IA 50011 USA. [Meyer, Folker] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Hofmockel, Kirsten S.] Iowa State Univ, Dept Ecol & Evolutionary Biol, Ames, IA 50011 USA. [Hofmockel, Kirsten S.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Hofmockel, KS (reprint author), Iowa State Univ, Dept Ecol & Evolutionary Biol, Ames, IA 50011 USA.; Hofmockel, KS (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM khof@iastate.edu FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [SC0010775]; USDA National Institute of Food and Agriculture Carbon Cycle Science Program [2011-01033] FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under Award Number SC0010775. Fieldwork was supported by the USDA National Institute of Food and Agriculture Carbon Cycle Science Program grant number 2011-01033. We thank Elizabeth Bach for sample collection, Sarah Hargreaves for DNA extraction, and Stephanie Moorman and Sarah Owens for preparing sequencing libraries. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under Award Number SC0010775. Fieldwork was supported by the USDA National Institute of Food and Agriculture Carbon Cycle Science Program grant number 2011-01033. We acknowledge the support and infrastructure of Magellan, the Argonne Cloud Computing Platform, and their team, especially Ryan Aydelott and Scott Devoid. We are also grateful to the late Dave Sundberg, whose attentive site management made this research possible. NR 52 TC 0 Z9 0 U1 9 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 17 PY 2016 VL 11 IS 11 AR e0166578 DI 10.1371/journal.pone.0166578 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC2AC UT WOS:000387910200036 PM 27855202 ER PT J AU Tacik, N Foucart, F Pfeiffer, HP Muhlberger, C Kidder, LE Scheel, MA Szilagyi, B AF Tacik, Nick Foucart, Francois Pfeiffer, Harald P. Muhlberger, Curran Kidder, Lawrence E. Scheel, Mark A. Szilagyi, Bela TI Initial data for black hole-neutron star binaries, with rotating stars SO CLASSICAL AND QUANTUM GRAVITY LA English DT Article DE black holes; neutron stars; numerical relativity; initial data ID INSPIRALLING COMPACT BINARIES; POST-NEWTONIAN SOURCES; GENERAL-RELATIVITY; GRAVITATIONAL-RADIATION; MERGERS AB The coalescence of a neutron star with a black hole is a primary science target of ground-based gravitational wave detectors. Constraining or measuring the neutron star spin directly from gravitational wave observations requires knowledge of the dependence of the emission properties of these systems on the neutron star spin. This paper lays foundations for this task, by developing a numerical method to construct initial data for black hole-neutron star binaries with arbitrary spin on the neutron star. We demonstrate the robustness of the code by constructing initial-data sets in large regions of the parameter space. In addition to varying the neutron star spin-magnitude and spin-direction, we also explore neutron star compactness, mass-ratio, black hole spin, and black hole spin-direction. Specifically, we are able to construct initial data sets with neutron stars spinning near centrifugal break-up, and with black hole spins as large as SBH/MBH2 = 0.99 C1 [Tacik, Nick; Pfeiffer, Harald P.] Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada. [Tacik, Nick] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Foucart, Francois] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Pfeiffer, Harald P.] Canadian Inst Adv Res, 180 Dundas St West, Toronto, ON M5G 1Z8, Canada. [Muhlberger, Curran; Kidder, Lawrence E.] Cornell Univ, Cornell Ctr Astrophys & Planetary Sci, Ithaca, NY 14853 USA. [Scheel, Mark A.; Szilagyi, Bela] CALTECH, TAPIR, Walter Burke Inst Theoret Phys 350 17, Pasadena, CA 91125 USA. RP Tacik, N (reprint author), Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada.; Tacik, N (reprint author), Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. EM tacik@astro.utoronto.ca; francois.foucart@gmail.com; pfeiffer@cita.utoronto.ca; cdm89@cornell.edu; kidder@astro.cornell.edu; scheel@tapir.caltech.edu; bszilagyi69@gmail.com FU Sherman Fairchild Foundation; NSF [PHY-1306125, PHY-1404569, AST-1333520, AST-1333129]; NSERC of Canada; Canada Research Chairs Program; Canadian Institute for Advanced Research; Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; University of Toronto FX We gratefully acknowledge support for this research at Cornell and Caltech from the Sherman Fairchild Foundation and NSF grants PHY-1306125, PHY-1404569, AST-1333520, and AST-1333129, and at CITA from NSERC of Canada, the Canada Research Chairs Program, and the Canadian Institute for Advanced Research. Calculations were performed at the GPC supercomputer at the SciNet HPC Consortium [73]; SciNet is funded by: the Canada Foundation for Innovation (CFI) under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund (ORF)-Research Excellence; and the University of Toronto. NR 71 TC 0 Z9 0 U1 7 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0264-9381 EI 1361-6382 J9 CLASSICAL QUANT GRAV JI Class. Quantum Gravity PD NOV 17 PY 2016 VL 33 IS 22 AR 225012 DI 10.1088/0264-9381/33/22/225012 PG 22 WC Astronomy & Astrophysics; Physics, Multidisciplinary; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EB1VV UT WOS:000387145200003 ER PT J AU Song, Y Peng, R Hensley, DK Bonnesen, PV Liang, LB Wu, ZL Meyer, HM Chi, MF Ma, C Sumpter, BG Rondinone, AJ AF Song, Yang Peng, Rui Hensley, Dale K. Bonnesen, Peter V. Liang, Liangbo Wu, Zili Meyer, Harry M., III Chi, Miaofang Ma, Cheng Sumpter, Bobby G. Rondinone, Adam J. TI High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode SO CHEMISTRYSELECT LA English DT Article DE catalyst; carbon dioxide; CO2; ethanol; reduction ID CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; OXIDATIVE DEHYDROGENATION; AQUEOUS-SOLUTIONS; OXYGEN REDUCTION; SINGLE-CRYSTAL; ELECTROREDUCTION; CATALYSTS; INSIGHTS; HYDROCARBONS AB Though carbon dioxide is a waste product of combustion, it can also be a potential feedstock for the production of fine and commodity organic chemicals provided that an efficient means to convert it to useful organic synthons can be developed. Herein we report a common element, nanostructured catalyst for the direct electrochemical conversion of CO2 to ethanol with high Faradaic efficiency (63% at 1.2 V vs RHE) and high selectivity (84%) that operates in water and at ambient temperature and pressure. Lacking noble metals or other rare or expensive materials, the catalyst is comprised of Cu nanoparticles on a highly textured, N-doped carbon nanospike film. Electro-chemical analysis and density functional theory (DFT) calculations suggest a preliminary mechanism in which active sites on the Cu nanoparticles and the carbon nanospikes work in tandem to control the electrochemical reduction of carbon monoxide dimer to alcohol. C1 [Song, Yang; Peng, Rui; Hensley, Dale K.; Bonnesen, Peter V.; Liang, Liangbo; Wu, Zili; Chi, Miaofang; Ma, Cheng; Sumpter, Bobby G.; Rondinone, Adam J.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. [Wu, Zili] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Meyer, Harry M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN USA. RP Rondinone, AJ (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. EM rondinoneaj@ornl.gov NR 45 TC 1 Z9 1 U1 0 U2 0 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2365-6549 J9 CHEMISTRYSELECT JI ChemistrySelect PD NOV 16 PY 2016 VL 1 IS 19 BP 6055 EP 6061 DI 10.1002/slct.201601169 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA EM6ON UT WOS:000395432100001 ER PT J AU Karlsson, NB Eisen, O Dahl-Jensen, D Freitag, J Kipfstuhl, S Lewis, C Nielsen, LT Paden, JD Winter, A Wilhelms, F AF Karlsson, Nanna B. Eisen, Olaf Dahl-Jensen, Dorthe Freitag, Johannes Kipfstuhl, Sepp Lewis, Cameron Nielsen, Lisbeth T. Paden, John D. Winter, Anna Wilhelms, Frank TI Accumulation Rates during 1311-2011 CE in North-Central Greenland Derived from Air-Borne Radar Data SO FRONTIERS IN EARTH SCIENCE LA English DT Article DE surface mass balance; Greenland Ice Sheet; ice-penetrating radar; internal glacier stratigraphy; inverse methods ID DRONNING MAUD LAND; ICE-SHEET; SNOW ACCUMULATION; TEMPORAL VARIABILITY; FIRN-COMPACTION; INTERNAL LAYERS; EAST ANTARCTICA; CORE; MODEL; CLIMATE AB Radar-detected internal layering contains information on past accumulation rates and patterns. In this study, we assume that the radar layers are isochrones, and use the layer stratigraphy in combination with ice-core measurements and numerical methods to retrieve accumulation information for the northern part of central Greenland. Measurements of the dielectric properties of an ice core from the NEEM (North Greenland Eemian Ice Drilling) site, allow for correlation of the radar layers with volcanic horizons to obtain an accurate age of the layers. We obtain accumulation patterns averaged over 100 a for the period 1311-2011. Our results show a clear trend of high accumulation rates west of the ice divide and low accumulation rates east of the ice divide. At the NEEM site the accumulation pattern is persistent during our study period and only small temporal variations occur in the accumulation rate. However, from approximately 200 km south of the NEEM drill site, the accumulation rate shows temporal variations based on our centennial averages. We attribute this variation to shifts in the location of the high-low accumulation boundary that usually is aligned with the ice divide, but appears to have moved across the divide in the past. C1 [Karlsson, Nanna B.; Dahl-Jensen, Dorthe; Nielsen, Lisbeth T.] Univ Copenhagen, Ctr Ice & Climate, Niels Bohr Inst, Copenhagen, Denmark. [Karlsson, Nanna B.; Eisen, Olaf; Freitag, Johannes; Kipfstuhl, Sepp; Winter, Anna; Wilhelms, Frank] Alfred Wegener Inst, Helmholtz Zentrum Polar & Meeresforsch, Bremerhaven, Germany. [Eisen, Olaf] Univ Bremen, Dept Geosci, Bremen, Germany. [Lewis, Cameron; Paden, John D.] Univ Kansas, Ctr Remote Sensing Ice Sheets, Lawrence, KS 66045 USA. [Lewis, Cameron] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Wilhelms, Frank] Univ Gottingen, Geosci Ctr, Dept Crystallog, Gottingen, Germany. RP Karlsson, NB (reprint author), Univ Copenhagen, Ctr Ice & Climate, Niels Bohr Inst, Copenhagen, Denmark.; Karlsson, NB; Eisen, O (reprint author), Alfred Wegener Inst, Helmholtz Zentrum Polar & Meeresforsch, Bremerhaven, Germany.; Eisen, O (reprint author), Univ Bremen, Dept Geosci, Bremen, Germany. EM nbkarlsson@nbi.ku.dk; olaf.eisen@awi.de FU European Research Council Advanced [246815]; Danish National Research Foundation; NSF [ANT-0424589]; NASA [NNX10AT68G, NNX10AT68] FX Funding for NK was provided by the European Research Council Advanced Grant no. 246815 WATERundertheICE. The Center for Iceand Climate is funded by the Danish National Research Foundation. Data and data products from CReSIS were generated with support from NSF grant ANT-0424589 and NASA grant NNX10AT68G, and NASA grant NNX10AT68 Gasapart of NASA Operation Ice Bridge. NR 55 TC 1 Z9 1 U1 2 U2 2 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2296-6463 J9 FRONT EARTH SCI JI Front. Earth Sci. PD NOV 16 PY 2016 VL 4 AR UNSP 97 DI 10.3389/feart.2016.00097 PG 18 WC Geosciences, Multidisciplinary SC Geology GA EK0HK UT WOS:000393607200001 ER PT J AU Giangrande, SE Toto, T Jensen, MP Bartholomew, MJ Feng, Z Protat, A Williams, CR Schumacher, C Machado, L AF Giangrande, Scott E. Toto, Tami Jensen, Michael P. Bartholomew, Mary Jane Feng, Zhe Protat, Alain Williams, Christopher R. Schumacher, Courtney Machado, Luiz TI Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5 SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CLIMATE RESEARCH FACILITY; DOPPLER RADAR; LAND-SURFACE; WET SEASON; DIFFERENTIAL REFLECTIVITY; ATMOSPHERIC RADIATION; PRECIPITATION; PARAMETERIZATION; CUMULONIMBUS; AUSTRALIA AB A radar wind profiler data set collected during the 2 year Department of Energy Atmospheric Radiation Measurement Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) campaign is used to estimate convective cloud vertical velocity, area fraction, and mass flux profiles. Vertical velocity observations are presented using cumulative frequency histograms and weighted mean profiles to provide insights in a manner suitable for global climate model scale comparisons (spatial domains from 20 km to 60 km). Convective profile sensitivity to changes in environmental conditions and seasonal regime controls is also considered. Aggregate and ensemble average vertical velocity, convective area fraction, and mass flux profiles, as well as magnitudes and relative profile behaviors, are found consistent with previous studies. Updrafts and downdrafts increase in magnitude with height to midlevels (6 to 10 km), with updraft area also increasing with height. Updraft mass flux profiles similarly increase with height, showing a peak in magnitude near 8 km. Downdrafts are observed to be most frequent below the freezing level, with downdraft area monotonically decreasing with height. Updraft and downdraft profile behaviors are further stratified according to environmental controls. These results indicate stronger vertical velocity profile behaviors under higher convective available potential energy and lower low-level moisture conditions. Sharp contrasts in convective area fraction and mass flux profiles are most pronounced when retrievals are segregated according to Amazonian wet and dry season conditions. During this deployment, wet season regimes favored higher domain mass flux profiles, attributed to more frequent convection that offsets weaker average convective cell vertical velocities. C1 [Giangrande, Scott E.; Toto, Tami; Jensen, Michael P.; Bartholomew, Mary Jane] Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. [Feng, Zhe] Pacific Northwest Natl Lab, Richland, WA USA. [Protat, Alain] Ctr Australian Weather & Climate Res, Melbourne, Vic, Australia. [Williams, Christopher R.] Univ Colorado, Boulder, CO 80309 USA. [Williams, Christopher R.] NOAA, Earth Syst Res Lab, Div Phys Sci, Boulder, CO USA. [Schumacher, Courtney] Texas A&M Univ, College Stn, TX USA. [Machado, Luiz] Natl Inst Space Res, Sao Jose Dos Campos, Brazil. RP Giangrande, SE (reprint author), Brookhaven Natl Lab, Environm & Climate Sci Dept, Upton, NY 11973 USA. EM sgrande@bnl.gov RI Schumacher, Courtney/B-8968-2011 OI Schumacher, Courtney/0000-0003-3612-485X FU U.S. Department of Energy (DOE) [DE-AC02-98CH10886]; U.S. DOE, as part of the Atmospheric System Research (ASR) Program; DOE [DE-AC05-76RL01830]; U.S. DOE; Sao Paulo Research Foundation [FAPESP-2009/15235-8]; Office of Biological and Environmental Research; ASR program of Office of Biological and Environmental Research FX This manuscript has been authored by employees of Brookhaven Science Associates, LLC, under contract DE-AC02-98CH10886 with the U.S. Department of Energy (DOE). The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. Zhe Feng at the Pacific Northwest National Laboratory (PNNL) and A. Protat at the Australian Bureau of Meteorology are supported by the U.S. DOE, as part of the Atmospheric System Research (ASR) Program. The PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. Funding was also obtained from the U.S. DOE, the Sao Paulo Research Foundation (FAPESP-2009/15235-8). The work was conducted under scientific licenses 001030/2012-4, 001262/2012-2, and 00254/2013-9 of the Brazilian National Council for Scientific and Technological Development (CNPq). Institutional support was provided by the Central Office of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), the National Institute of Amazonian Research (INPA), the National Institute for Space Research (INPE), Amazonas State University (UEA), and the Brazil Space Agency (AEB). We also acknowledge the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a user facility of the U.S. DOE, Office of Science, sponsored by the Office of Biological and Environmental Research, and support from the ASR program of that office. All GoAmazon2014/5 data sets used in this study can be obtained from the ARM at http://www.arm.gov. The authors wish to thank GoAmazon2014/5 PI Scot Martin and the entire GoAmazon2014/5 ARM/AMF team (AMF Site Scientist, Mark Miller). Additional thanks to ARM mentor Richard Coulter for RWP data collection and maintenance and Vickal Kumar for helpful discussions on the Darwin data set. The authors also thank Aaron Funk (TAMU) for SIPAM remote data acquisition and radar-gridding preprocessing. NR 67 TC 1 Z9 1 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2016 VL 121 IS 21 BP 12891 EP 12913 DI 10.1002/2016JD025303 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED6IZ UT WOS:000388960600019 ER PT J AU Ovchinnikov, M Lim, KSS Larson, VE Wong, M Thayer-Calder, K Ghan, SJ AF Ovchinnikov, Mikhail Lim, Kyo-Sun Sunny Larson, Vincent E. Wong, May Thayer-Calder, Katherine Ghan, Steven J. TI Vertical overlap of probability density functions of cloud and precipitation hydrometeors SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID COMMUNITY ATMOSPHERE MODEL; SIMULATED SQUALL LINE; CLIMATE MODELS; SINGLE-COLUMN; PART II; MICROPHYSICS; PARAMETERIZATION; RADAR; WATER; INHOMOGENEITY AB Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When subcolumns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified by Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continental and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3-D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species-a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the subcolumn generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale. C1 [Ovchinnikov, Mikhail; Lim, Kyo-Sun Sunny; Wong, May; Ghan, Steven J.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Lim, Kyo-Sun Sunny] Korea Atom Energy Res Inst, Daejeon, South Korea. [Larson, Vincent E.] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA. [Wong, May; Thayer-Calder, Katherine] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. RP Ovchinnikov, M (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA. EM mikhail@pnnl.gov RI Ghan, Steven/H-4301-2011 OI Ghan, Steven/0000-0001-8355-8699 FU DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System; DOE Office of Science through Atmospheric System Research (ASR) Program; DOE Office of Science; DOE [DE-AC05-76RLO1830]; [DE-SC0008323] FX This research was supported by the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System and through the Atmospheric System Research (ASR) Program. V. Larson's contribution to this research was supported through grant DE-SC0008323. Computing resources for the simulations were provided by the National Energy Research Scientific Computing Center (NERSC). Forcing data were obtained from the ARM program archive, sponsored by the DOE Office of Science. The Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RLO1830. The authors are grateful to four anonymous reviewers whose thoughtful comments helped to improve the paper. The CLUBB-SILHS code is freely available for noncommercial use at http://clubb.larson-group.com. Details on the check out procedure are provided in Storer et al. [2015]. The SAM model is available from Marat Khairoutdinov at Stony Brook University at http://rossby.msrc.sunysb.edu/similar to marat/SAM.html. NR 45 TC 0 Z9 0 U1 4 U2 4 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2016 VL 121 IS 21 BP 12966 EP 12984 DI 10.1002/2016JD025158 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED6IZ UT WOS:000388960600023 ER PT J AU Jeong, SG Newman, S Zhang, JS Andrews, AE Bianco, L Bagley, J Cui, XG Graven, H Kim, J Salameh, P LaFranchi, BW Priest, C Campos-Pineda, M Novakovskaia, E Sloop, CD Michelsen, HA Bambha, RP Weiss, RF Keeling, R Fischer, ML AF Jeong, Seongeun Newman, Sally Zhang, Jingsong Andrews, Arlyn E. Bianco, Laura Bagley, Justin Cui, Xinguang Graven, Heather Kim, Jooil Salameh, Peter LaFranchi, Brian W. Priest, Chad Campos-Pineda, Mixtli Novakovskaia, Elena Sloop, Christopher D. Michelsen, Hope A. Bambha, Ray P. Weiss, Ray F. Keeling, Ralph Fischer, Marc L. TI Estimating methane emissions in California's urban and rural regions using multitower observations SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID CONVECTIVE BOUNDARY-LAYER; LOS-ANGELES; ATMOSPHERIC OBSERVATIONS; BAYESIAN METHODS; SATELLITE DATA; GAS EMISSIONS; STILT MODEL; CO2; SYSTEM; WIND AB We present an analysis of methane (CH4) emissions using atmospheric observations from 13 sites in California during June 2013 to May 2014. A hierarchical Bayesian inversion method is used to estimate CH4 emissions for spatial regions (0.3 degrees pixels for major regions) by comparing measured CH4 mixing ratios with transport model (Weather Research and Forecasting and Stochastic Time-Inverted Lagrangian Transport) predictions based on seasonally varying California-specific CH4 prior emission models. The transport model is assessed using a combination of meteorological and carbon monoxide (CO) measurements coupled with the gridded California Air Resources Board (CARB) CO emission inventory. The hierarchical Bayesian inversion suggests that state annual anthropogenic CH4 emissions are 2.42 +/- 0.49 Tg CH4/yr (at 95% confidence), higher (1.2-1.8 times) than the current CARB inventory (1.64 Tg CH4/yr in 2013). It should be noted that undiagnosed sources of errors or uncaptured errors in the model-measurement mismatch covariance may increase these uncertainty bounds beyond that indicated here. The CH4 emissions from the Central Valley and urban regions (San Francisco Bay and South Coast Air Basins) account for similar to 58% and 26% of the total posterior emissions, respectively. This study suggests that the livestock sector is likely the major contributor to the state total CH4 emissions, in agreement with CARB's inventory. Attribution to source sectors for subregions of California using additional trace gas species would further improve the quantification of California's CH4 emissions and mitigation efforts toward the California Global Warming Solutions Act of 2006 (Assembly Bill 32). C1 [Jeong, Seongeun; Bagley, Justin; Cui, Xinguang; Fischer, Marc L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Newman, Sally] CALTECH, Pasadena, CA 91125 USA. [Zhang, Jingsong; Priest, Chad; Campos-Pineda, Mixtli] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA. [Zhang, Jingsong; Priest, Chad; Campos-Pineda, Mixtli] Univ Calif Riverside, Air Pollut Res Ctr, Riverside, CA 92521 USA. [Andrews, Arlyn E.; Bianco, Laura] NOAA, ESRL, Boulder, CO USA. [Bianco, Laura] Univ Colorado, CIRES, Boulder, CO 80309 USA. [Graven, Heather] Imperial Coll London, Dept Phys, London, England. [Graven, Heather] Imperial Coll London, Grantham Inst, London, England. [Kim, Jooil; Salameh, Peter; Weiss, Ray F.; Keeling, Ralph] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [LaFranchi, Brian W.; Michelsen, Hope A.; Bambha, Ray P.] Sandia Natl Labs, Livermore, CA USA. [Novakovskaia, Elena; Sloop, Christopher D.] Earth Networks, Germantown, MD USA. RP Jeong, SG (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM sjeong@lbl.gov FU University of California's Discovery Grant Program; California Air Resources Board Research Division under U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dave Field, Dave Bush, Edward Wahl, Ken Reichl, Toby Walpert, and particularly Jon Kofler for the assistance with measurements at WGC and analysis of data from radar wind profiler sites; Christina Harth for the assistance with measurements at THD; John Lin, Christoph Gerbig, Steve Wofsy, Janusz Eluszkiewicz, and Thomas Nehrkorn for sharing the STILT code and advice; Anita Ganesan for the motivation of the HBI approach; Chris Potter and William Salas for sharing the modeled CH4 emission for use as a priori estimates; Ed Dlugokencky and Colm Sweeney for sharing the data for CH4 background estimates; Ying-Kuang Hsu, Bart Croes, Jorn Herner, Abhilash Vijayan, Matthias Falk, Richard Bode, Anny Huang, Jessica Charrier, Kevin Eslinger, Larry Hunstaker, Ken Stroud, Mac McDougall, Jim Nyarady, and others for sharing the CARB emissions information and providing valuable review comments; and Krishna Muriki for the assistance running the WRF-STILT models on the LBNL-Lawrencium cluster. The data used in the inversion are in Figures S15 and S16, and the CALGEM prior emission distribution is available at http://calgem.lbl.gov/. This study was supported by the University of California's Discovery Grant Program and the California Air Resources Board Research Division under U.S. Department of Energy contract DE-AC02-05CH11231. NR 69 TC 4 Z9 4 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2016 VL 121 IS 21 BP 13031 EP 13049 DI 10.1002/2016JD025404 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED6IZ UT WOS:000388960600026 ER PT J AU Yang, Y Liao, H Lou, S AF Yang, Yang Liao, Hong Lou, Sijia TI Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID LAYER OZONE CONCENTRATIONS; BIOMASS BURNING EMISSIONS; PARTICULATE MATTER; UNITED-STATES; HETEROGENEOUS REACTIONS; ATMOSPHERIC VISIBILITY; AEROSOL EMISSIONS; SULFUR-DIOXIDE; REGIONAL HAZE; JANUARY 2013 AB The increase in winter haze over eastern China in recent decades due to variations in meteorological parameters and anthropogenic emissions was quantified using observed atmospheric visibility from the National Climatic Data Center Global Summary of Day database for 1980-2014 and simulated PM2.5 concentrations for 1985-2005 from the Goddard Earth-Observing System (GEOS) chemical transport model (GEOS-Chem). Observed winter haze days averaged over eastern China (105-122.5 degrees E, 20-45 degrees N) increased from 21 days in 1980 to 42 days in 2014 and from 22 to 30 days between 1985 and 2005. The GEOS-Chem model captured the increasing trend of winter PM2.5 concentrations for 1985-2005, with concentrations averaged over eastern China increasing from 16.1 mu g m(-3) in 1985 to 38.4 mu g m(-3) in 2005. Considering variations in both anthropogenic emissions and meteorological parameters, the model simulated an increase in winter surface-layer PM2.5 concentrations of 10.5 (+/- 6.2) mu g m(-3) decade(-1) over eastern China. The increasing trend was only 1.8 (+/- 1.5) mu g m(-3) decade(-1) when variations in meteorological parameters alone were considered. Among the meteorological parameters, the weakening of winds by -0.09 m s(-1) decade(-1) over 1985-2005 was found to be the dominant factor leading to the decadal increase in winter aerosol concentrations and haze days over eastern China during recent decades. C1 [Yang, Yang; Lou, Sijia] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. [Liao, Hong] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing, Jiangsu, Peoples R China. [Liao, Hong] Nanjing Univ Informat Sci & Technol, Joint Int Res Lab Climate & Environm Change, Nanjing, Jiangsu, Peoples R China. RP Liao, H (reprint author), Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing, Jiangsu, Peoples R China.; Liao, H (reprint author), Nanjing Univ Informat Sci & Technol, Joint Int Res Lab Climate & Environm Change, Nanjing, Jiangsu, Peoples R China. EM hongliao@nuist.edu.cn RI Chem, GEOS/C-5595-2014 FU National Basic Research Program of China (973 program) [2014CB441202]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA05100503]; National Natural Science Foundation of China [91544219, 41475137]; U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX This work was supported by the National Basic Research Program of China (973 program, grant 2014CB441202), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA05100503), and the National Natural Science Foundation of China under grants 91544219 and 41475137. We acknowledge support from the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RLO1830. The data for these results are posted at China">http://portal.nersc.gov/project/m1374/Haze_China. NR 73 TC 4 Z9 4 U1 29 U2 29 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD NOV 16 PY 2016 VL 121 IS 21 BP 13050 EP 13065 DI 10.1002/2016JD025136 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED6IZ UT WOS:000388960600027 ER PT J AU Liu, WY Lin, QL Li, HB Wu, KF Robel, I Pietryga, JM Klimov, VI AF Liu, Wenyong Lin, Qianglu Li, Hongbo Wu, Kaifeng Robel, Istvan Pietryga, Jeffrey M. Klimov, Victor I. TI Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CDSE QUANTUM DOTS; DOPED SEMICONDUCTOR NANOCRYSTALS; OPTICAL-PROPERTIES; SOLAR-CELLS; COLLOIDAL NANOCRYSTALS; EXCHANGE INTERACTIONS; ZNSE NANOCRYSTALS; ANION-EXCHANGE; MN; PHOTOLUMINESCENCE AB Impurity doping has been widely used to endow semiconductor nanocrystals with novel optical, electronic, and magnetic functionalities. Here, we introduce a new family of doped NCs offering unique insights into the chemical mechanism of doping, as well as into the fundamental interactions between the dopant and the semiconductor host. Specifically, by elucidating the role of relative bond strengths within the precursor and the host lattice, we develop an effective approach for incorporating manganese (Mn) ions into nanocrystals of lead-halide perovskites (CsPbX3, where X = Cl, Br, or I). In a key enabling step not possible in, for example, II-VI nanocrystals, we use gentle chemical means to finely and reversibly tune the nanocrystal band gap over a wide range of energies (1.8-3.1 eV) via postsynthetic anion exchange. We observe a dramatic effect of halide identity on relative intensities of intrinsic band-edge and Mn emission bands, which we ascribe to the influence of the energy difference between the corresponding transitions on the characteristics of energy transfer between the Mn ion and the semiconductor host. C1 [Liu, Wenyong; Lin, Qianglu; Li, Hongbo; Wu, Kaifeng; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov FU Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; Los Alamos National Laboratory Director's Fellowship FX This work was supported by the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. K.W. was supported by a Los Alamos National Laboratory Director's Fellowship. NR 66 TC 4 Z9 4 U1 83 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 16 PY 2016 VL 138 IS 45 BP 14954 EP 14961 DI 10.1021/jacs.6b08085 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EC8YE UT WOS:000388428200025 PM 27756131 ER PT J AU Taylor, MK Runcevski, T Oktawiec, J Gonzalez, MI Siegelman, RL Mason, JA Ye, JX Brown, CM Long, JR AF Taylor, Mercedes K. Runcevski, Tomce Oktawiec, Julia Gonzalez, Miguel I. Siegelman, Rebecca L. Mason, Jarad A. Ye, Jinxing Brown, Craig M. Long, Jeffrey R. TI Tuning the Adsorption-Induced Phase Change in the Flexible Metal Organic Framework Co(bdp) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID HIGH METHANE STORAGE; EDGE-TO-FACE; CAMBRIDGE STRUCTURAL DATABASE; POTENTIAL-ENERGY SURFACE; ARYL-ARYL INTERACTIONS; PI-PI INTERACTIONS; F-C INTERACTIONS; CARBON-DIOXIDE; COORDINATION-POLYMER; CRYSTAL-STRUCTURES AB Metal-organic frameworks that flex to undergo structural phase changes upon gas adsorption are promising materials for gas storage and separations, and achieving synthetic control over the pressure at which these changes occur is crucial to the design of such materials for specific applications. To this end, a new family of materials based on the flexible metal organic framework Co(bdp) (bdp(2-) = 1,4-benzenedipyrazolate) has been prepared via the introduction of fluorine, deuterium, and methyl functional groups on the bdp(2-) ligand, namely, Co(F-bdp), Co(p-F-2-bdp), Co(o-F-2-bdp), Co(D-4-bdp), and Co(p-Me-2-bdp). These frameworks are isoreticular to the parent framework and exhibit similar structural flexibility, transitioning from a low-porosity, collapsed phase to high-porosity, expanded phases with increasing gas pressure. Powder X-ray diffraction studies reveal that fluorination of the aryl ring disrupts edge-to-face pi-pi interactions, which work to stabilize the collapsed phase at low gas pressures, while deuteration preserves these interactions and methylation strengthens them. In agreement with these observations, high-pressure CH4 adsorption isotherms show that the pressure of the CH4-induced framework expansion can be systematically controlled by ligand functionalization, as materials without edge-to-face interactions in the collapsed phase expand at lower CH4 pressures, while frameworks with strengthened edge-to-face interactions expand at higher pressures. Importantly, this work puts forth a general design strategy relevant to many other families of flexible metal-organic frameworks, which will be a powerful tool in optimizing these phase-change materials for industrial applications. C1 [Taylor, Mercedes K.; Runcevski, Tomce; Oktawiec, Julia; Gonzalez, Miguel I.; Siegelman, Rebecca L.; Mason, Jarad A.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Taylor, Mercedes K.; Runcevski, Tomce; Mason, Jarad A.; Long, Jeffrey R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ye, Jinxing] East China Univ Sci & Technol, Sch Pharm, Minist Educ, Engn Res Ctr Pharmaceut Proc Chem, 130 Meilong Rd, Shanghai 200237, Peoples R China. [Brown, Craig M.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Brown, Craig M.] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Long, JR (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Long, JR (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu RI Brown, Craig/B-5430-2009; OI Brown, Craig/0000-0002-9637-9355; Gonzalez, Miguel/0000-0003-4250-9035 FU U.S. Department of Energy, Advanced Research Projects Agency-Energy (ARPA-e); Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office [DE-AC02-05CH11231]; Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; National Science Foundation FX Early stages of the synthetic chemistry, including the synthesis of H2(F-bdp) and Co(F-bdp), were supported by the U.S. Department of Energy, Advanced Research Projects Agency-Energy (ARPA-e). The remainder of the synthetic chemistry was funded by the Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office under Grant DE-AC02-05CH11231. Methane adsorption measurements and structural studies were supported by the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001015. Single-crystal diffraction data were collected on the 11.3.1 Beamline at the Advanced Light Source User Facility at Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy. Powder X-ray diffraction data were collected on the 17-BM Beamline at the Advanced Photon Source, a U.S. Department of Energy Office of Science User Facility operated by Argonne National Laboratory. We thank Douglas Reed, Matthew Kapelewski, Dr. Brian Wiers, and Prof. Jiwoong Lee for helpful discussions and for experimental assistance, and Dr. Katie R Meihaus for editorial assistance. We also thank the National Science Foundation for providing graduate fellowship support for M.K.T., J.O., and J.A.M. NR 121 TC 0 Z9 0 U1 30 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 16 PY 2016 VL 138 IS 45 BP 15019 EP 15026 DI 10.1021/jacs.6b09155 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EC8YE UT WOS:000388428200033 PM 27804295 ER PT J AU Yoo, HD Han, SD Bayliss, RD Gewirth, AA Genorio, B Rajput, NN Persson, KA Burrell, AK Cabana, J AF Yoo, Hyun Deog Han, Sang-Don Bayliss, Ran D. Gewirth, Andrew A. Genorio, Bostjan Rajput, Nay Nidhi Persson, Kristin A. Burrell, Anthony K. Cabana, Jordi TI "Rocking-Chair"-Type Metal Hybrid Supercapacitors SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE supercapacitors; energy density; "rocking chair"-type mechanism; metal anodes; volume of electrolyte; self-discharge ID RECHARGEABLE MAGNESIUM BATTERIES; DOUBLE-LAYER CAPACITOR; POROUS CARBON ELECTRODES; ELECTROCHEMICAL CAPACITORS; ACTIVATED CARBON; ENERGY-STORAGE; SELF-DISCHARGE; TRANSPORT-PROPERTIES; RATE CAPABILITY; MG BATTERIES AB Hybrid supercapacitors that follow a "rocking-chair"-type mechanism were developed by coupling divalent metal and activated carbon electrodes in nonaqueous electrolytes. Conventional supercapacitors require a large amount of electrolyte to provide a sufficient quantity of ions to the electrodes, due to their Daniell-type mechanism that depletes the ions from the electrolyte while charging. The alternative "rocking-chair"-type mechanism effectively enhances the energy density of supercapacitors by minimizing the necessary amount of electrolyte, because the ion is replenished from the metal anode while it is adsorbed to the cathode. Newly developed nonaqueous electrolytes for Mg and Zn electrochemistry, based on bis(trifluoromethylsulfonyl)imide (TFSI) salts, made the metal hybrid supercapacitors possible by enabling reversible deposition on the metal anodes and reversible adsorption on an activated carbon cathode. Factoring in gains through the cell design, the energy density of the metal hybrid supercapacitors is projected to be a factor of 7 higher than conventional devices thanks to both the "rocking-chair"-type mechanism that minimizes total electrolyte volume and the use of metal anodes, which have substantial merits in capacity and voltage. Self-discharge was also substantially alleviated compared to conventional supercapacitors. This concept offers a route to build supercapacitors that meet dual criteria of power and energy densities with a simple cell design. C1 [Yoo, Hyun Deog; Bayliss, Ran D.; Cabana, Jordi] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Yoo, Hyun Deog; Han, Sang-Don; Bayliss, Ran D.; Gewirth, Andrew A.; Genorio, Bostjan; Rajput, Nay Nidhi; Persson, Kristin A.; Burrell, Anthony K.; Cabana, Jordi] Argonne Natl Lab, Joint Ctr Energy Storage Res, 9700 S Cass Ave, Argonne, IL 60439 USA. [Han, Sang-Don; Burrell, Anthony K.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gewirth, Andrew A.] Univ Illinois, Dept Chem, 600 S Mathews Ave, Urbana, IL 61801 USA. [Genorio, Bostjan] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Genorio, Bostjan] Univ Ljubljana, Fac Chem & Chem Technol, Vecna Pot 113, Ljubljana 1000, Slovenia. [Rajput, Nay Nidhi; Persson, Kristin A.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Persson, Kristin A.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Yoo, HD; Cabana, J (reprint author), Univ Illinois, Dept Chem, Chicago, IL 60607 USA.; Yoo, HD; Cabana, J (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, 9700 S Cass Ave, Argonne, IL 60439 USA. EM knecht9@uic.edu; jcabana@uic.edu RI Cabana, Jordi/G-6548-2012 OI Cabana, Jordi/0000-0002-2353-5986 FU Joint Center for Energy Storage Research (JCESR); Energy Innovation Hub - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES). Computational resources for this research were provided by the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 0 Z9 0 U1 19 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 16 PY 2016 VL 8 IS 45 BP 30853 EP 30862 DI 10.1021/acsami.6b08367 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EC8YS UT WOS:000388429600022 PM 27775318 ER PT J AU Goswami, S Ma, L Martinson, ABF Wasielewski, MR Farha, OK Hupp, JT AF Goswami, Subhadip Ma, Lin Martinson, Alex B. F. Wasielewski, Michael R. Farha, Omar K. Hupp, Joseph T. TI Toward Metal Organic Framework-Based Solar Cells: Enhancing Directional Exciton Transport by Collapsing Three-Dimensional Film Structures SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE metal-organic framework; postsynthetic modification; fluorescence quencher; energy transfer; layer-by-layer ID BY-LAYER GROWTH; MOF THIN-FILMS; ENERGY-TRANSFER; EFFICIENCY; MIGRATION; SURFACES; NANOFILM; LINKERS; SHEETS AB Owing to their ability to act as light-harvesting scaffolds, porphyrin-containing metal-organic frameworks (MOFs) are in the forefront of research on the application of highly ordered molecular materials to problems in solar-energy conversion. In this work, solvent-assisted linker exchange (SALE) is performed on a pillared paddlewheel porphyrin containing MOF thin film to collapse a 3D framework to a 2D framework. The change in dimensionality of the framework is confirmed by a decrease in the film thickness, the magnitude of which is in agreement with crystallographic parameters for related bulk materials. Furthermore, NMR spectroscopy performed on the digested sample suggests a similar change in geometry is achieved in bulk MOF samples. The decreased distance between the porphyrin chromophores in the 2D MOF film compared to the 3D film results in enhanced energy transfer through the film. The extent of energy transport was probed by assembling MOF thin film where the outermost layers are palladium porphyrin (P2) units, which act as energy traps and fluorescence quenchers. Steady-state emission spectroscopy together with time-resolved emission spectroscopy indicates that excitons can travel through about 9-11 layers (porphyrin layers) in 2D films, whereas in 3D films energy transfer occurs through no more than about 6-8 layers. The results are difficult to understand if only changes in MOF interlayer spacing are considered but become much more understandable if dipole-dipole coupling distances are considered. C1 [Goswami, Subhadip; Ma, Lin; Wasielewski, Michael R.; Farha, Omar K.; Hupp, Joseph T.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Martinson, Alex B. F.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Farha, Omar K.] King Abdulaziz Univ, Dept Chem, Jeddah 21589, Saudi Arabia. RP Farha, OK; Hupp, JT (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Farha, OK (reprint author), King Abdulaziz Univ, Dept Chem, Jeddah 21589, Saudi Arabia. EM o-farha@northwestern.edu; j-hupp@northwestern.edu OI Martinson, Alex/0000-0003-3916-1672 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-FG02-87ER13808, DE-FG02-99ER14999]; Northwestern University; MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IIN); State of Illinois, through the IIN FX We gratefully acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (grant nos. DE-FG02-87ER13808 (J.T.H.) and DE-FG02-99ER14999 (M.R.W.)) and Northwestern University. SEM images were obtained by using the EPIC facility (NUANCE Center, Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center, the International Institute for Nanotechnology (IIN), and the State of Illinois, through the IIN. S.G. thanks Rebecca Hansen for obtaining SEM images, Duyen Cao for help with diffuse reflectance measurements, and Dr. Diego Gomez-Gualdron for assistance with layer modeling. NR 53 TC 1 Z9 1 U1 40 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 16 PY 2016 VL 8 IS 45 BP 30863 EP 30870 DI 10.1021/acsami.6b08552 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EC8YS UT WOS:000388429600023 PM 27768288 ER PT J AU Dong, BX Amonoo, JA Purdum, GE Loo, YL Green, PF AF Dong, Ban Xuan Amonoo, Jojo A. Purdum, Geoffrey E. Loo, Yueh-Lin Green, Peter F. TI Enhancing Carrier Mobilities in Organic Thin-Film Transistors Through Morphological Changes at the Semiconductor/Dielectric Interface Using Supercritical Carbon Dioxide Processing SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE conjugated polymer; scCO(2) processing; ellipsometry; backbone orientation; self-assembled monolayers; organic thin film transistor; structure-transport relationship ID FIELD-EFFECT TRANSISTORS; CHARGE-TRANSPORT; SOLAR-CELLS; SEMICONDUCTING POLYMERS; CONJUGATED POLYMERS; LIQUID-CRYSTALLINE; SIDE-CHAINS; PERFORMANCE; ORIENTATION; MONOLAYERS AB Charge-carrier mobilities in poly(3-hexylthiophene) (P3HT) organic thin-film transistors (OTFTs) increase 5-fold when OTFTs composed of P3HT films on trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane (FTS) monolayers supported on SiO2 dielectric substrates (P3HT/FTS/SiO2/Si) are subjected to supercritical carbon dioxide (scCO(2)) processing. In contrast, carrier mobilities in P3HT/octadecyltrichlorosilane (OTS)/SiO2 OTFTs processed using scCO(2) are comparable to mobilities measured in as-cast P3HT/OTS/SiO2/Si devices. Topographical images of the free and buried interfaces of P3HT films reveal that scCO(2) selectively alters the P3HT morphology near the buried P3HT/FTS-SiO2 interface; identical processing has negligible effects at the P3HT/OTS-SiO2 interface. A combination of spectroscopic ellipsometry and grazing-incidence Xray diffraction experiments indicate insignificant change in the orientation distribution of the intermolecular pi-pi stacking direction of P3HT/FTS with scCO(2) processing. The improved mobilities are instead correlated with enhanced in-plane orientation of the conjugated chain backbone of P3HT after scCO(2) annealing. These findings suggest a strong dependence of polymer processing on the nature of polymer/substrate interface and the important role of backbone orientation toward dictating charge transport of OTFTs. C1 [Dong, Ban Xuan; Green, Peter F.] Univ Michigan, Biointerfaces Inst, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Amonoo, Jojo A.; Green, Peter F.] Univ Michigan, Biointerfaces Inst, Dept Appl Phys, Ann Arbor, MI 48109 USA. [Purdum, Geoffrey E.; Loo, Yueh-Lin] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Green, Peter F.] Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA. RP Green, PF (reprint author), Univ Michigan, Biointerfaces Inst, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA.; Green, PF (reprint author), Univ Michigan, Biointerfaces Inst, Dept Appl Phys, Ann Arbor, MI 48109 USA. EM pfgreen@umich.edu FU University of Michigan; Vietnam Education Foundation (VEF); National Science Foundation (NSF), Division of Materials Research [DMR-1305749]; National Science Foundation (NSF) Materials Research Science and Engineering Center program through the Princeton Center for Complex Materials [DMR-0819860, DMR-1420541]; National Science Foundation; National Institutes of Health/National Institute of General Medical Sciences [DMR-1332208]; National Defense Science and Engineering Graduate (NDSEG) Fellowship Program [32 CFR 168a] FX B.X.D acknowledges financial support from the University of Michigan and from the Vietnam Education Foundation (VEF). B.X.D thanks Duc T. Duong from Salleo Group, Stanford University for suggestions in fabricating OTFTs. B.X.D also thanks Dr. Spano from Temple University for helpful discussions of optical characterization of P3HT films. We acknowledge partial support from the National Science Foundation (NSF), Division of Materials Research (DMR-1305749). Y.-L.L. acknowledges support of the National Science Foundation (NSF) Materials Research Science and Engineering Center program through the Princeton Center for Complex Materials (DMR-0819860; DMR-1420541). Portions of this work are based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-1332208. G.E.P. acknowledges support from the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program, 32 CFR 168a. NR 64 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 16 PY 2016 VL 8 IS 45 BP 31144 EP 31153 DI 10.1021/acsami.6b08248 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EC8YS UT WOS:000388429600056 PM 27748580 ER PT J AU Gregory, AC Solonenko, SA Ignacio-Espinoza, JC LaButti, K Copeland, A Sudek, S Maitland, A Chittick, L dos Santos, F Weitz, JS Worden, AZ Woyke, T Sullivan, MB AF Gregory, Ann C. Solonenko, Sergei A. Ignacio-Espinoza, J. Cesar LaButti, Kurt Copeland, Alex Sudek, Sebastian Maitland, Ashley Chittick, Lauren dos Santos, Filipa Weitz, Joshua S. Worden, Alexandra Z. Woyke, Tanja Sullivan, Matthew B. TI Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer SO BMC GENOMICS LA English DT Article DE Bacteriophage; Phage; Cyanophage; Virus; Evolution; Species; Double stranded DNA ID MYCOBACTERIOPHAGE GENOMES; MARINE SYNECHOCOCCUS; SEQUENCE DATA; RECOMBINATION; SELECTION; VIRUSES; DNA; BACTERIAL; POPULATIONS; DIVERSITY AB Background: Genetic recombination is a driving force in genome evolution. Among viruses it has a dual role. For genomes with higher fitness, it maintains genome integrity in the face of high mutation rates. Conversely, for genomes with lower fitness, it provides immediate access to sequence space that cannot be reached by mutation alone. Understanding how recombination impacts the cohesion and dissolution of individual whole genomes within viral sequence space is poorly understood across double-stranded DNA bacteriophages (a.k.a phages) due to the challenges of obtaining appropriately scaled genomic datasets. Results: Here we explore the role of recombination in both maintaining and differentiating whole genomes of 142 wild double-stranded DNA marine cyanophages. Phylogenomic analysis across the 51 core genes revealed ten lineages, six of which were well represented. These phylogenomic lineages represent discrete genotypic populations based on comparisons of intra-and inter-lineage shared gene content, genome-wide average nucleotide identity, as well as detected gaps in the distribution of pairwise differences between genomes. McDonald-Kreitman selection tests identified putative niche-differentiating genes under positive selection that differed across the six well-represented genotypic populations and that may have driven initial divergence. Concurrent with patterns of recombination of discrete populations, recombination analyses of both genic and intergenic regions largely revealed decreased genetic exchange across individual genomes between relative to within populations. Conclusions: These findings suggest that discrete double-stranded DNA marine cyanophage populations occur in nature and are maintained by patterns of recombination akin to those observed in bacteria, archaea and in sexual eukaryotes. C1 [Gregory, Ann C.; Sullivan, Matthew B.] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [Solonenko, Sergei A.; Maitland, Ashley; Chittick, Lauren; dos Santos, Filipa; Sullivan, Matthew B.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Ignacio-Espinoza, J. Cesar; Sullivan, Matthew B.] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. [LaButti, Kurt; Copeland, Alex; Woyke, Tanja] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Sudek, Sebastian; Worden, Alexandra Z.] Monterey Bay Aquarium Res Inst, Moss Landing, CA 95039 USA. [Weitz, Joshua S.] Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA. [Weitz, Joshua S.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Worden, Alexandra Z.] Canadian Inst Adv Res, Integrated Microbial Biodivers Program, Toronto, ON M5G 1Z8, Canada. [Gregory, Ann C.; Sullivan, Matthew B.] Ohio State Univ, Dept Microbiol, 484 W 12th Aver, Columbus, OH 43210 USA. [Solonenko, Sergei A.; Sullivan, Matthew B.] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA. [Ignacio-Espinoza, J. Cesar] Univ Southern Calif, Dept Biol Sci, Los Angeles, CA 90089 USA. [Sullivan, Matthew B.] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. RP Sullivan, MB (reprint author), Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA.; Sullivan, MB (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA.; Sullivan, MB (reprint author), Ohio State Univ, Dept Microbiol, 484 W 12th Aver, Columbus, OH 43210 USA.; Sullivan, MB (reprint author), Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA.; Sullivan, MB (reprint author), Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. EM mbsulli@gmail.com OI Ignacio Espinoza, J. Cesar/0000-0001-9303-7504 FU Office of Science of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Gordon and Betty Moore Foundation (GBMF) grants; Lucille and David Packard Foundation/MBARI [DOE DE-SC0004765, GBMF3788]; BIO5 [NSF OCE0940390] FX Viral isolate genome sequencing and assembly was conducted by the U.S. Department of Energy Joint Genome Institute, supported by the Office of Science of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, with operational support from BIO5, NSF OCE0940390, and Gordon and Betty Moore Foundation (GBMF) grants to M.B.S. Funding for the cruise, rRNA gene sequencing and analysis was provided by grants from the Lucille and David Packard Foundation/MBARI, DOE DE-SC0004765 and GBMF3788 to AZW. NR 69 TC 1 Z9 1 U1 4 U2 4 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 16 PY 2016 VL 17 AR 930 DI 10.1186/s12864-016-3286-x PG 13 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA EC4WA UT WOS:000388133900008 PM 27852226 ER PT J AU Wang, Z Ramsey, BJ Wang, DL Wong, K Li, HS Wang, E Bao, ZR AF Wang, Zi Ramsey, Benjamin J. Wang, Dali Wong, Kwai Li, Husheng Wang, Eric Bao, Zhirong TI An Observation-Driven Agent-Based Modeling and Analysis Framework for C-elegans Embryogenesis SO PLOS ONE LA English DT Article ID SINGLE-CELL RESOLUTION; CAENORHABDITIS-ELEGANS; MORPHOGENESIS; SIMULATION; EMBRYO AB With cutting-edge live microscopy and image analysis, biologists can now systematically track individual cells in complex tissues and quantify cellular behavior over extended time windows. Computational approaches that utilize the systematic and quantitative data are needed to understand how cells interact in vivo to give rise to the different cell types and 3D morphology of tissues. An agent-based, minimum descriptive modeling and analysis framework is presented in this paper to study C. elegans embryogenesis. The framework is designed to incorporate the large amounts of experimental observations on cellular behavior and reserve data structures/interfaces that allow regulatory mechanisms to be added as more insights are gained. Observed cellular behaviors are organized into lineage identity, timing and direction of cell division, and path of cell movement. The framework also includes global parameters such as the eggshell and a clock. Division and movement behaviors are driven by statistical models of the observations. Data structures/interfaces are reserved for gene list, cell-cell interaction, cell fate and landscape, and other global parameters until the descriptive model is replaced by a regulatory mechanism. This approach provides a framework to handle the ongoing experiments of single-cell analysis of complex tissues where mechanistic insights lag data collection and need to be validated on complex observations. C1 [Wang, Zi; Li, Husheng] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN USA. [Ramsey, Benjamin J.; Wong, Kwai] Univ Tennessee, Joint Inst Computat Sci, Knoxville, TN USA. [Wang, Dali] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37830 USA. [Wang, Eric] Farragut High Sch, Knoxville, TN USA. [Bao, Zhirong] Sloan Kettering Inst, Dev Biol Program, New York, NY USA. RP Wang, DL (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37830 USA. EM wangd@ornl.gov FU NIH [R01GM097576, P30CA008748] FX This study is supported by an NIH research project grant to Z. Bao at MSKCC (R01GM097576, with a subcontract to D. Wang at UTK). Research in the Bao lab is also supported by an NIH center grant to MSKCC (P30CA008748).; This study is supported by an NIH research project grant to Z. Bao at MSKCC (R01GM097576, with a subcontract to D. Wang at UTK). Research in the Bao lab is also supported by an NIH center grant to MSKCC (P30CA008748). NR 25 TC 0 Z9 0 U1 2 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 16 PY 2016 VL 11 IS 11 AR e0166551 DI 10.1371/journal.pone.0166551 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC1ZU UT WOS:000387909300065 PM 27851808 ER PT J AU Mukhopadhyay, S Lindsay, L Singh, DJ AF Mukhopadhyay, Saikat Lindsay, Lucas Singh, David J. TI Optic phonons and anisotropic thermal conductivity in hexagonal Ge2Sb2Te5 SO SCIENTIFIC REPORTS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; BASIS-SET; CRYSTALS; MEMORY; FILMS AB The lattice thermal conductivity (kappa) of hexagonal Ge2Sb2Te5 (h-GST) is studied via direct first-principles calculations. We find significant intrinsic anisotropy (kappa(a)/kappa(c)similar to 2) of. in bulk h-GST, with the dominant contribution to. from optic phonons, similar to 75%. This is extremely unusual as the acoustic phonon modes are the majority heat carriers in typical semiconductors and insulators. The anisotropy derives from varying bonding along different crystal directions, specifically from weak interlayer bonding along the c-axis, which gives anisotropic phonon dispersions. The phonon spectrum of h-GST has very dispersive optic branches with higher group velocities along the a-axis as compared to flat optic bands along the c-axis. The large optic mode contributions to the thermal conductivity in low-kappa. h-GST is unusual, and development of fundamental physical understanding of these contributions may be critical to better understanding of thermal conduction in other complex layered materials. C1 [Mukhopadhyay, Saikat; Lindsay, Lucas] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Singh, David J.] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA. RP Mukhopadhyay, S (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM mukhopadhyas@ornl.gov RI Lindsay, Lucas/C-9221-2012 OI Lindsay, Lucas/0000-0001-9645-7993 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; National Energy Research Scientific Computing Center (NERSC); DOE Office of Science User Facility - Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy through the S3TEC energy frontier research center FX S.M. and L.L. acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. DJS acknowledges support from the Department of Energy through the S3TEC energy frontier research center. S.M. gratefully acknowledges helpful discussions with Prof. Atsushi Togo related to the Phono3Py code. NR 42 TC 1 Z9 1 U1 6 U2 6 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 16 PY 2016 VL 6 AR 37076 DI 10.1038/srep37076 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC5MZ UT WOS:000388181000001 PM 27848985 ER PT J AU Tang, SQ Xie, SC Zhang, YY Zhang, MH Schumacher, C Upton, H Jensen, MP Johnson, KL Wang, M Ahlgrimm, M Feng, Z Minnis, P Thieman, M AF Tang, Shuaiqi Xie, Shaocheng Zhang, Yunyan Zhang, Minghua Schumacher, Courtney Upton, Hannah Jensen, Michael P. Johnson, Karen L. Wang, Meng Ahlgrimm, Maike Feng, Zhe Minnis, Patrick Thieman, Mandana TI Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID BOUNDARY-LAYER EXPERIMENT; TROPICAL CLOUD CLUSTERS; PACIFIC WARM POOL; PRECIPITATION RADAR; MOISTURE BUDGETS; AMAZON; RAINFALL; CIRCULATIONS; VARIABILITY; ATMOSPHERE AB This study describes the characteristics of large-scale vertical velocity, apparent heating source (Q1) and apparent moisture sink (Q2) profiles associated with seasonal and diurnal variations of convective systems observed during the two intensive operational periods (IOPs) that were conducted from 15 February to 26 March 2014 (wet season) and from 1 September to 10 October 2014 (dry season) near Manaus, Brazil, during the Green Ocean Amazon (GoAmazon2014/5) experiment. The derived large-scale fields have large diurnal variations according to convective activity in the GoAmazon region and the morning profiles show distinct differences between the dry and wet seasons. In the wet season, propagating convective systems originating far from the GoAmazon region are often seen in the early morning, while in the dry season they are rarely observed. Afternoon convective systems due to solar heating are frequently seen in both seasons. Accordingly, in the morning, there is strong upward motion and associated heating and drying throughout the entire troposphere in the wet season, which is limited to lower levels in the dry season. In the afternoon, both seasons exhibit weak heating and strong moistening in the boundary layer related to the vertical convergence of eddy fluxes. A set of case studies of three typical types of convective systems occurring in Amazonia - i.e., locally occurring systems, coastal-occurring systems and basin-occurring systems - is also conducted to investigate the variability of the large-scale environment with different types of convective systems. C1 [Tang, Shuaiqi; Xie, Shaocheng; Zhang, Yunyan] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhang, Minghua] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Schumacher, Courtney; Upton, Hannah] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Jensen, Michael P.; Johnson, Karen L.; Wang, Meng] Brookhaven Natl Lab, Upton, NY 11973 USA. [Ahlgrimm, Maike] European Ctr Medium Range Weather Forecasts, Shinfield Pk, Reading RG2 9AX, Berks, England. [Feng, Zhe] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Minnis, Patrick] NASA, Langley Res Ctr, Hampton, VA 23681 USA. [Thieman, Mandana] Sci Syst & Applicat Inc, Hampton, VA 23666 USA. RP Tang, SQ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM tang32@llnl.gov RI Xie, Shaocheng/D-2207-2013; Schumacher, Courtney/B-8968-2011 OI Xie, Shaocheng/0000-0001-8931-5145; Schumacher, Courtney/0000-0003-3612-485X FU Biological and Environmental Research Division in the Office of Sciences of the US Department of Energy (DOE); DOE; US Department of Energy [DE-AC52-07NA27344, DE-SC0005259]; Office of Science of the US Department of Energy; National Science Foundation; ARM program; Atmospheric Systems Research Program [DE-AC02-98CH10886]; US Department of Energy; US DOE; DOE [DE-AC05-76RL01830, DE-SC0013896] FX The authors gratefully thank Luiz Machado, Jiwen Fan and many others in the GoAmazon group for valuable discussions about the synoptic and climate features in Amazonia region. This research is supported by the Biological and Environmental Research Division in the Office of Sciences of the US Department of Energy (DOE). Work at LLNL was supported by the DOE Atmospheric Radiation Measurement (ARM) program and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract no. DE-AC52-07NA27344. Work at Stony Brook was supported by the Office of Science of the US Department of Energy and by the National Science Foundation. This paper has been authored by employees of Brookhaven Science Associates, LLC, with support from the ARM program and Atmospheric Systems Research Program under contract no. DE-AC02-98CH10886 with the US Department of Energy. Zhe Feng at the Pacific Northwest National Laboratory (PNNL) is supported by the US DOE, as part of the Atmospheric System Research (ASR) Program. PNNL is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. Work at ECMWF was supported by the US Department of Energy via the Atmospheric Systems Research Program under contract no. DE-SC0005259. The satellite analyses are supported by the DOE ARM and ASR program under contract, DE-SC0013896. We thank The Brazilian National Institute of Amazonian Research (INPA), the Amazonas State University (UEA) and Antonio Manzi for providing surface flux data. NR 55 TC 0 Z9 0 U1 5 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 16 PY 2016 VL 16 IS 22 BP 14249 EP 14264 DI 10.5194/acp-16-14249-2016 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC1JP UT WOS:000387861000005 ER PT J AU Fatale, S Moser, S Miyawaki, J Harada, Y Grioni, M AF Fatale, S. Moser, S. Miyawaki, J. Harada, Y. Grioni, M. TI Hybridization and electron-phonon coupling in ferroelectric BaTiO3 probed by resonant inelastic x-ray scattering SO PHYSICAL REVIEW B LA English DT Article ID ABSORPTION EDGES; SPECTROSCOPY; EXCITATIONS; EMISSION; BA-L-3 AB We investigated the ferroelectric perovskite material BaTiO3 by resonant inelastic x-ray scattering (RIXS) at the Ti L-3 edge. We observe with decreasing temperature a transfer of spectral weight from the elastic to the charge-transfer spectral features, indicative of increasing Ti 3d-O 2p hybridization. When the incident photon energy selects transitions to the Ti 3d e(g) manifold, the quasielastic RIXS response exhibits a tail indicative of phonon excitations. A fit of the spectral line shape by a theoretical model allows us to estimate the electron-phonon coupling strength M similar to 0.25 eV, which places BaTiO3 in the intermediate coupling regime. C1 [Fatale, S.; Grioni, M.] Ecole Polytech Fed Lausanne, Inst Phys IPHYS, CH-1015 Lausanne, Switzerland. [Moser, S.] Adv Light Source, Berkeley, CA 94720 USA. [Miyawaki, J.; Harada, Y.] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778526, Japan. [Miyawaki, J.; Harada, Y.] Univ Tokyo, Synchrotron Radiat Res Org, Sayo Cho, Sayo, Hyogo 6795198, Japan. RP Fatale, S (reprint author), Ecole Polytech Fed Lausanne, Inst Phys IPHYS, CH-1015 Lausanne, Switzerland. FU Swiss NSF; Synchrotron Radiation Research Organization; University of Tokyo [2015B7499]; Swiss NSF [P2ELP2-155357]; Institute for Solid State Physics FX This work has been supported by the Swiss NSF. Work at SPring-8 is jointly supported by the Synchrotron Radiation Research Organization and the Institute for Solid State Physics, the University of Tokyo (Proposal No. 2015B7499). S.M. acknowledges support of the Swiss NSF under Grant No. P2ELP2-155357. NR 30 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2016 VL 94 IS 19 AR 195131 DI 10.1103/PhysRevB.94.195131 PG 6 WC Physics, Condensed Matter SC Physics GA EC1TL UT WOS:000387890700002 ER PT J AU Fratanduono, DE Celliers, PM Braun, DG Sterne, PA Hamel, S Shamp, A Zurek, E Wu, KJ Lazicki, AE Millot, M Collins, GW AF Fratanduono, D. E. Celliers, P. M. Braun, D. G. Sterne, P. A. Hamel, S. Shamp, A. Zurek, E. Wu, K. J. Lazicki, A. E. Millot, M. Collins, G. W. TI Equation of state, adiabatic sound speed, and Gruneisen coefficient of boron carbide along the principal Hugoniot to 700 GPa SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; ATOMIC-STRUCTURE; DENSE MATTER; BEHAVIOR; DAMAGE; BANDS; B4C; HOT AB A equation of state (EOS) experimental technique that enables the study of thermodynamic derivatives into the TPa regime is described and applied to boron carbide (B4C). Data presented here are principal Hugoniot sound speed measurements reported using a laser-driven shock platform, providing a means to explore the high-pressure off-Hugoniot response of opaque materials. The extended B4C Hugoniot suggests the presence of a high-pressure phase, as recently predicted by molecular dynamics simulations, adding to the complexity of the existing phase diagram. C1 [Fratanduono, D. E.; Celliers, P. M.; Braun, D. G.; Sterne, P. A.; Hamel, S.; Wu, K. J.; Lazicki, A. E.; Millot, M.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shamp, A.; Zurek, E.] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA. RP Fratanduono, DE (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM Fratanduono1@llnl.gov RI Zurek, Eva/J-4387-2012 OI Zurek, Eva/0000-0003-0738-867X FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Department of Energy National Nuclear Security Administration [DE-NA0002006]; Alfred P. Sloan Foundation FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. A.S. acknowledges financial support from the Department of Energy National Nuclear Security Administration under Award No. DE-NA0002006, and E.V. thanks the Alfred P. Sloan Foundation for a research fellowship (2013-2015). NR 54 TC 0 Z9 0 U1 17 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2016 VL 94 IS 18 AR 184107 DI 10.1103/PhysRevB.94.184107 PG 7 WC Physics, Condensed Matter SC Physics GA EC1SC UT WOS:000387886900002 ER PT J AU Guo, CY Jiang, WB Smidman, M Han, F Malliakas, CD Shen, B Wang, YF Chen, Y Lu, X Kanatzidis, MG Yuan, HQ AF Guo, C. Y. Jiang, W. B. Smidman, M. Han, F. Malliakas, C. D. Shen, B. Wang, Y. F. Chen, Y. Lu, X. Kanatzidis, M. G. Yuan, H. Q. TI Superconductivity and multiple pressure-induced phases in BaPt2As2 SO PHYSICAL REVIEW B LA English DT Article ID CECU2SI2; ORDER; TRANSITION; SYMMETRY; DENSITY AB The recently discovered BaPt2As2 shows a structural distortion at around 275 K, followed by the emergence of superconductivity at lower temperatures. Here we identify the presence of charge-density-wave order at room temperature and ambient pressure using single-crystal x-ray diffraction, with both a superlattice and an incommensurate modulation, where there is a change of the superlattice structure below similar or equal to 275 K. Upon applying pressure, BaPt2As2 shows a rich temperature-pressure phase diagram with multiple pressure-induced transitions at high temperatures, the emergence or disappearance of which are correlated with sudden changes in the superconducting transition temperature T-c. These findings demonstrate that BaPt2As2 is a promising system for studying competing interactions and the relationship between high-temperature electronic instabilities and superconductivity. C1 [Guo, C. Y.; Jiang, W. B.; Smidman, M.; Shen, B.; Wang, Y. F.; Chen, Y.; Lu, X.; Yuan, H. Q.] Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Zhejiang, Peoples R China. [Han, F.; Malliakas, C. D.; Kanatzidis, M. G.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Han, F.] Carnegie Inst Sci, HPSynC, Geophys Lab, Argonne, IL 60439 USA. [Han, F.] Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China. [Malliakas, C. D.; Kanatzidis, M. G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Lu, X.; Yuan, H. Q.] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. RP Yuan, HQ (reprint author), Zhejiang Univ, Ctr Correlated Matter, Hangzhou 310058, Zhejiang, Peoples R China.; Yuan, HQ (reprint author), Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. EM hqyuan@zju.edu.cn RI Han, Fei/N-2021-2013; Lu, Xin/B-7358-2012 OI Han, Fei/0000-0001-7782-2713; FU National Natural Science Foundation of China [11474251, 11374257]; National Key R&D Program of China [2016YFA0300202]; Science Challenge Program of China; Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy [DE-AC02-06CH11357] FX We thank C. Cao for interesting discussions. The work at Zhejiang University was supported by the National Natural Science Foundation of China (Grants No. 11474251 and No. 11374257), the National Key R&D Program of China (Grant No. 2016YFA0300202) and the Science Challenge Program of China. The work at Argonne was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, US Department of Energy, under Contract No. DE-AC02-06CH11357 (BES-DMSE). NR 31 TC 0 Z9 0 U1 18 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2016 VL 94 IS 18 AR 184506 DI 10.1103/PhysRevB.94.184506 PG 6 WC Physics, Condensed Matter SC Physics GA EC1SC UT WOS:000387886900004 ER PT J AU Singer, A Patel, SKK Uhlir, V Kukreja, R Ulvestad, A Dufresne, EM Sandy, AR Fullerton, EE Shpyrko, OG AF Singer, A. Patel, S. K. K. Uhlir, V. Kukreja, R. Ulvestad, A. Dufresne, E. M. Sandy, A. R. Fullerton, E. E. Shpyrko, O. G. TI Phase coexistence and pinning of charge density waves by interfaces in chromium SO PHYSICAL REVIEW B LA English DT Article ID X-RAY; SPIN; SPINTRONICS; FILMS; ANTIFERROMAGNETISM; SUPERLATTICES; MAGNETISM; SURFACES; CR AB We study the temperature dependence of the charge density wave (CDW) in a chromium thin film using x-ray diffraction. We exploit the interference between the CDW satellite peaks and Laue oscillations to determine the amplitude, the phase, and the period of the CDW. We find discrete half-integer periods of CDW in the film and switching of the number of periods by one upon cooling/heating with a thermal hysteresis of 20 K. The transition between different CDWperiods occurs over a temperature range of 30 K, slightly larger than the width of the thermal hysteresis. A comparison with simulations shows that the phase transition occurs as a variation of the volume fraction of two distinct phases with well-defined periodicities. The phase of the CDW is constant for all temperatures, and we attribute it to strong pinning of the CDW by the mismatch-induced strain at the film-substrate interface. C1 [Singer, A.; Patel, S. K. K.; Kukreja, R.; Ulvestad, A.; Shpyrko, O. G.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Patel, S. K. K.; Uhlir, V.; Kukreja, R.; Fullerton, E. E.] Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA. [Dufresne, E. M.; Sandy, A. R.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ulvestad, A.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP Singer, A (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM ansinger@ucsd.edu RI Fullerton, Eric/H-8445-2013 OI Fullerton, Eric/0000-0002-4725-9509 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001805, DE-SC0003678]; UC-MRPI [MR-15-328528]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The work at the University of California San Diego was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contracts No. DE-SC0001805 (x-ray scattering, A.S., R.K., A.U., and O.G.S.) and No. DE-SC0003678 (thin films synthesis and characterization, S.K.K.P., R.K., V.U., and E.E.F.). R.K. acknowledges support by UC-MRPI Grant No. MR-15-328528. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 26 TC 0 Z9 0 U1 9 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 16 PY 2016 VL 94 IS 17 AR 174110 DI 10.1103/PhysRevB.94.174110 PG 5 WC Physics, Condensed Matter SC Physics GA EC1RP UT WOS:000387885400003 ER PT J AU Mo, SK Hwang, C Zhang, Y Fanciulli, M Muff, S Dil, JH Shen, ZX Hussain, Z AF Mo, Sung-Kwan Hwang, Choongyu Zhang, Yi Fanciulli, Mauro Muff, Stefan Dil, J. Hugo Shen, Zhi-Xun Hussain, Zahid TI Spin-resolved photoemission study of epitaxially grown MoSe2 and WSe2 thin films SO JOURNAL OF PHYSICS-CONDENSED MATTER LA English DT Article DE transition metal dichalcogenides; MoSe2; WSe2; spin-resolved photoemission; ARPES; photoemission ID ELECTRONIC-STRUCTURE; MONOLAYER MOS2; TOPOLOGICAL INSULATORS; VALLEY POLARIZATION; SURFACE-STATES; GRAPHENE; HETEROSTRUCTURES; RENORMALIZATION; SEMICONDUCTOR; TRANSISTORS AB Few-layer thick MoSe2 and WSe2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin-orbit coupling. We report a spin-resolved photoemission study of MoSe2 and WSe2 thin film samples epitaxially grown on a bilayer graphene substrate. We only found spin polarization in the single-and trilayer samples-not in the bilayer sample-mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricate coupling between the spin and orbital degrees of freedom in this class of material. C1 [Mo, Sung-Kwan; Zhang, Yi; Hussain, Zahid] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Hwang, Choongyu] Pusan Natl Univ, Dept Phys, Busan 609735, South Korea. [Zhang, Yi] Nanjing Univ, Natl Lab Solid State Microstruct, Sch Phys, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, Yi; Shen, Zhi-Xun] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Fanciulli, Mauro; Muff, Stefan; Dil, J. Hugo] Ecole Polytech Fed Lausanne, Inst Phys, CH-1015 Lausanne, Switzerland. [Fanciulli, Mauro; Muff, Stefan; Dil, J. Hugo] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Shen, Zhi-Xun] Stanford Univ, Geballe Lab Adv Mat, Dept Phys, Stanford, CA 94305 USA. [Shen, Zhi-Xun] Stanford Univ, Geballe Lab Adv Mat, Dept Appl Phys, Stanford, CA 94305 USA. RP Mo, SK (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM SKMo@lbl.gov RI Dil, Hugo/F-6995-2012; Zhang, Yi/J-9025-2013; Mo, Sung-Kwan/F-3489-2013 OI Dil, Hugo/0000-0002-6016-6120; Zhang, Yi/0000-0003-1204-8717; Mo, Sung-Kwan/0000-0003-0711-8514 FU US DOE, Office of Basic Energy Science [DE-AC02-05CH11231, DE-AC02-76SF00515]; National Research Foundation of Korea (NRF) - Ministry of Science, ICT, and Future Planning [2015R1C1A1A01053065]; Swiss National Science Foundation [PP00P2_144742/1] FX The work at ALS is supported by the US DOE, Office of Basic Energy Science, under contract no. DE-AC02-05CH11231. The work at the Stanford Institute for Materials and Energy Sciences and Stanford University is supported by the US DOE, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515. The work at Pusan National University is supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (no. 2015R1C1A1A01053065). The work at the EPFL is supported by the Swiss National Science Foundation (PP00P2_144742/1). NR 52 TC 1 Z9 1 U1 63 U2 63 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8984 EI 1361-648X J9 J PHYS-CONDENS MAT JI J. Phys.-Condes. Matter PD NOV 16 PY 2016 VL 28 IS 45 AR 454001 DI 10.1088/0953-8984/28/45/454001 PG 7 WC Physics, Condensed Matter SC Physics GA DY9FM UT WOS:000385439100001 ER PT J AU Cheng, R Okamoto, S Xiao, D AF Cheng, Ran Okamoto, Satoshi Xiao, Di TI Spin Nernst Effect of Magnons in Collinear Antiferromagnets SO PHYSICAL REVIEW LETTERS LA English DT Article ID WEAK FERROMAGNETISM; MAGNETIZATION; TRANSISTOR AB In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction, we show that a longitudinal temperature gradient can drive the two modes to opposite transverse directions, realizing a spin Nernst effect of magnons with vanishing thermal Hall current. We find that magnons around the Gamma point and the K point contribute oppositely to the transverse spin transport, and their competition leads to a sign change of the spin Nernst coefficient at finite temperature. Possible material candidates are discussed. C1 [Cheng, Ran; Xiao, Di] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Okamoto, Satoshi] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Cheng, R (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. OI Okamoto, Satoshi/0000-0002-0493-7568 FU Department of Energy, Basic Energy Sciences [DE-SC0012509]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX We are grateful to Ying Ran for insightful discussions. We would also like to thank Igor Barsukov, Matthew W. Daniels, Nikhil Sivadas, and Jimmy Zhu for useful comments. R. C. and D. X. were supported by the Department of Energy, Basic Energy Sciences, Grant No. DE-SC0012509. S. O. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 38 TC 4 Z9 4 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 15 PY 2016 VL 117 IS 21 AR 217202 DI 10.1103/PhysRevLett.117.217202 PG 5 WC Physics, Multidisciplinary SC Physics GA EC6YL UT WOS:000388282500006 ER PT J AU Yachdav, G Wilzbach, S Rauscher, B Sheridan, R Sillitoe, I Procter, J Lewis, SE Rost, B Goldberg, T AF Yachdav, Guy Wilzbach, Sebastian Rauscher, Benedikt Sheridan, Robert Sillitoe, Ian Procter, James Lewis, Suzanna E. Rost, Burkhard Goldberg, Tatyana TI MSAViewer: interactive JavaScript visualization of multiple sequence alignments SO BIOINFORMATICS LA English DT Article ID PREDICTION AB The MSAViewer is a quick and easy visualization and analysis JavaScript component for Multiple Sequence Alignment data of any size. Core features include interactive navigation through the alignment, application of popular color schemes, sorting, selecting and filtering. The MSAViewer is 'web ready': written entirely in JavaScript, compatible with modern web browsers and does not require any specialized software. The MSAViewer is part of the BioJS collection of components. C1 [Yachdav, Guy; Wilzbach, Sebastian; Rauscher, Benedikt; Rost, Burkhard; Goldberg, Tatyana] TUM, Bioinformat I12, D-85748 Garching, Germany. [Yachdav, Guy; Rost, Burkhard] Biosof LLC, New York, NY 10001 USA. [Sheridan, Robert] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA. [Sillitoe, Ian] UCL, Inst Struct & Mol Biol, London, England. [Procter, James] Univ Dundee, Biol Chem & Drug Discovery, Dundee, Scotland. [Lewis, Suzanna E.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Goldberg, T (reprint author), TUM, Bioinformat I12, D-85748 Garching, Germany. EM msa@bio.sh FU German Federal Ministry for Education and Research (BMBF); Google Summer of Code program - Google Inc. FX This work was supported by a grant from the German Federal Ministry for Education and Research (BMBF), Ernst Ludwig Ehrlich Studienwerk and the Google Summer of Code program sponsored by Google Inc. NR 18 TC 1 Z9 1 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD NOV 15 PY 2016 VL 32 IS 22 BP 3501 EP 3503 DI 10.1093/bioinformatics/btw474 PG 3 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA EI8IE UT WOS:000392748700020 PM 27412096 ER PT J AU Le Gros, MA Clowney, EJ Magklara, A Yen, A Markenscoff-Papadimitriou, E Colquitt, B Myllys, M Kellis, M Lomvardas, S Larabell, CA AF Le Gros, Mark A. Clowney, E. Josephine Magklara, Angeliki Yen, Angela Markenscoff-Papadimitriou, Eirene Colquitt, Bradley Myllys, Markko Kellis, Manolis Lomvardas, Stavros Larabell, Carolyn A. TI Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo SO CELL REPORTS LA English DT Article ID OLFACTORY RECEPTOR EXPRESSION; NUCLEAR LAMINA INTERACTIONS; GENOME-WIDE; HUMAN-CELLS; CHROMODOMAIN PROTEINS; STEM-CELLS; C. ELEGANS; 3D GENOME; HETEROCHROMATIN; DROSOPHILA AB The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiation proceeds with concomitant increase in chromatin compaction and re-distribution of condensed chromatin toward the nuclear core. HP1 beta, but not nucleosome spacing or phasing, regulates chromatin rearrangements because it governs both the compaction of chromatin and its interactions with the nuclear envelope. Our experiments introduce SXT as a powerful imaging technology for nuclear architecture. C1 [Le Gros, Mark A.; Lomvardas, Stavros; Larabell, Carolyn A.] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94158 USA. [Le Gros, Mark A.; Larabell, Carolyn A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Le Gros, Mark A.; Larabell, Carolyn A.] Univ Calif San Francisco, Natl Ctr Xray Tomog, San Francisco, CA 94158 USA. [Le Gros, Mark A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Clowney, E. Josephine; Lomvardas, Stavros] Univ Calif San Francisco, Program Biomed Sci, San Francisco, CA 94158 USA. [Magklara, Angeliki] Fdn Res & Technol Hellas, Inst Mol Biol & Biotechnol, Div Biomed Res, Ioannina, Greece. [Yen, Angela; Kellis, Manolis] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA. [Yen, Angela; Kellis, Manolis] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Markenscoff-Papadimitriou, Eirene; Colquitt, Bradley; Lomvardas, Stavros] Univ Calif San Francisco, Program Neurosci, San Francisco, CA 94158 USA. [Myllys, Markko] Univ Jyvaskyla, Dept Phys, Jyvaskyla 40014, Finland. [Lomvardas, Stavros] Columbia Univ, Dept Biochem & Mol Biophys, Zuckerman Mind Brain & Behav Inst, New York, NY 10027 USA. RP Larabell, CA (reprint author), Univ Calif San Francisco, Dept Anat, San Francisco, CA 94158 USA.; Larabell, CA (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.; Larabell, CA (reprint author), Univ Calif San Francisco, Natl Ctr Xray Tomog, San Francisco, CA 94158 USA. EM carolyn.larabell@ucsf.edu OI Clowney, Eleanor/0000-0002-9150-9464 FU NIH [R01DA030320, U01DA040582, P41GM103445]; DOE's Office of Biological and Environmental Research [DE-AC02-5CH11231] FX Research reported in this publication was supported by grants from NIH (R01DA030320 and U01DA040582 to S.L. and C.A.L.). The National Center for X-ray Tomography is supported by NIH (P41GM103445) and DOE's Office of Biological and Environmental Research (DE-AC02-5CH11231). NR 67 TC 0 Z9 0 U1 3 U2 3 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 2211-1247 J9 CELL REP JI Cell Reports PD NOV 15 PY 2016 VL 17 IS 8 BP 2125 EP 2136 DI 10.1016/j.celrep.2016.10.060 PG 12 WC Cell Biology SC Cell Biology GA EG2RZ UT WOS:000390893000018 PM 27851973 ER PT J AU Jacobs, EP WoldeGabriel, G Kelley, SA Broxton, D Ridley, J AF Jacobs, Elaine P. WoldeGabriel, Giday Kelley, Shari A. Broxton, David Ridley, John TI Volcanism and sedimentation along the western margin of the Rio Grande rift between caldera-forming eruptions of the Jemez Mountains volcanic field, north-central New Mexico, USA SO JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH LA English DT Article DE Cerro Toledo; Valles caldera, block-and-ash flow; Pyroclastic fall; Geochronology; Bandelier Tuff ID CERRO TOLEDO RHYOLITE; SILICIC MAGMA CHAMBER; BANDELIER-TUFF; VALLES CALDERA; ESPANOLA BASIN; GEOCHEMISTRY; ORIGIN; MEMBER AB The Cerro Toledo Formation (CTF), a series of intracaldera rhyolitic dome complexes and their associated extracaldera tephras and epiclastic sedimentary deposits, records the dynamic interplay between volcanic, tectonic, and geomorphic processes that were occurring along the western margin of the Rio Grande rift between major caldera-forming eruptions of the Bandelier Tuff 1.65-1.26 Ma. The Alamo Canyon and Pueblo Canyon Members differ significantly despite deposition within a few kilometers of each other on the Pajarito Plateau. These differences highlight spatial distinctions in vent sources, eruptive styles, and depositional environments along the eastern side of the jemez Mountains volcanic field during this ca. 400,000 year interval. Intercalated pyroclastic fall deposits and sandstones of the Pueblo Canyon Member reflect deposition with a basin. Thick Alamo Canyon Member deposits of block-and-ash-flow tuff and pyroclastic fall deposits fill a paleovalley carved into coarse grained sedimentary units reflecting deposition along the mountain front. Chemistry and ages of glass from fall deposits together with clast lithologies of sedimentary units, allow correlation of outcrops, subsurface units, and sources. Dates on pyroclastic fall deposits from Alamo Canyon record deep incision into the underlying Otowi Member in the southern part of the Pajarito Plateau within 100 k.y. of the Toledo caldera-forming eruption. Reconstruction of the CTF surface shows that this period of rapid incision was followed by aggradation where sediments largely filled pre-existing paleocanyons. Complex sequences within the upper portion of the Otowi Member in outcrop and in the subsurface record changes in the style of eruptive activity during the waning stages of the Toledo caldera-forming eruption. Published by Elsevier B.V. C1 [Jacobs, Elaine P.; WoldeGabriel, Giday] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Kelley, Shari A.] New Mexico Inst Min & Technol, New Mexico Bur Geol & Mineral Resources, 801 Leroy Pl, Socorro, NM 87801 USA. [Broxton, David] 1237 45th St, Los Alamos, NM 87544 USA. [Ridley, John] Colorado State Univ, Warner Coll Nat Resources, Dept Geosci, Ft Collins, CO 80523 USA. RP Jacobs, EP (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. EM ejacobs@lanl.gov; wgiday@lanl.gov; sakelley@nmbg.nmt.edu; broxton@lanl.gov; jridley@colostate.edu FU National Park Service; Rocky Mountain Association of Geologists; Geological Society of America; Department of Geosciences at Colorado State University; United States Department of Energy Environmental Management Programs Directorate at Los Alamos National Laboratory FX The first author is indebted to her husband, Brian Jacobs, who has tirelessly provided field assistance and support. The first author would like to thank Steve Reneau (Los Alamos National Laboratory, retired) for his introduction to the Cerro Toledo Formation and for suggesting Alamo Canyon as a worthy of a closer look. Greg Cole (Los Alamos National Laboratory, retired) provided access to LANL data and assistance with ArcGIS. We thank Lisa Peters for analysis of samples at the NM Geochronology Lab, John Wolff for XRF analysis at the GeoAnalytical Lab, Washington State University, and Jim Budahn, USGS, for INAA analyses. Nelia Dunbar (New Mexico Bureau of Geology and Mineral Resources) shared her expertise on tephra correlation and Lynn Heizler (New Mexico Bureau of Geology and Mineral Resources) provided expert assistance with use of the electron microprobe. Sabina Johns provided field assistance over two summers. Rick Kelley provided ArcGIS expertise for creation of the map figures. Funding was provided by the National Park Service, the Rocky Mountain Association of Geologists, the Geological Society of America, the Department of Geosciences at Colorado State University, and the United States Department of Energy Environmental Management Programs Directorate at Los Alamos National Laboratory. Finally, we would like to thank Fraser Goff and John Wolff for their thoughtful comments and suggestions. NR 51 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0273 EI 1872-6097 J9 J VOLCANOL GEOTH RES JI J. Volcanol. Geotherm. Res. PD NOV 15 PY 2016 VL 327 BP 416 EP 435 DI 10.1016/j.jvolgeores.2016.09.012 PG 20 WC Geosciences, Multidisciplinary SC Geology GA EG5IU UT WOS:000391078300030 ER PT J AU Voisin, N Kintner-Meyer, M Skaggs, R Nguyen, T Wu, D Dirks, J Xie, Y Hejazi, M AF Voisin, N. Kintner-Meyer, M. Skaggs, R. Nguyen, T. Wu, D. Dirks, J. Xie, Y. Hejazi, M. TI Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get? SO ENERGY LA English DT Article DE Electric grid; Reliability; Water-energy nexus; Inter-annual variability; Production cost model; Hydro-climatology ID EARTH SYSTEM MODELS; WATER-ENERGY NEXUS; UNITED-STATES; CLIMATE-CHANGE; GENERATION; IMPACTS; 21ST-CENTURY; VARIABILITY; RESOURCES; SNOWPACK AB Large-scale assessments of the vulnerability of electric infrastructure are usually performed for a baseline water year or a specific period of drought. This approach does not provide insights into the full distribution of stress on the grid across the diversity of historic climate events. In this paper we estimate the Western US grid stress distribution as a function of inter-annual variability in regional water availability. We softly couple an integrated water model (climate, hydrology, routing, water resources management, and socioeconomic water demand models) into an electricity production cost model and simulate electricity generation and delivery of power for combinations of 30 years of historical water availability data. Results indicate a clear correlation between grid vulnerability (unmet electricity services) for the month of August, and annual water availability. There is a 21% chance of insufficient generation (system threshold) and a 3% chance that at least 6% of the electricity demand cannot be met in August. Better knowledge of the probability distribution of the risk exposure of the electricity system due to water constraints could improve power system planning. Deeper understanding of the impacts of regional variability in water availability on the reliability of the grid could help develop tradeoff strategies. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Voisin, N.; Kintner-Meyer, M.; Skaggs, R.; Nguyen, T.; Wu, D.; Dirks, J.; Xie, Y.] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. [Hejazi, M.] Pacific Northwest Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. RP Voisin, N (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM Nathalie.voisin@pnnl.gov OI Voisin, Nathalie/0000-0002-6848-449X; Wu, Di/0000-0001-6955-4333 FU Office of Science of the U.S. Department of Energy, Office of Biological and Environmental Research, Integrated Assessment Research Program; US Department of Energy [DE-AC05-76RL01830] FX This work was supported by the Office of Science of the U.S. Department of Energy, Office of Biological and Environmental Research as part of the Integrated Assessment Research Program. Initial model development and data analyses were supported by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830. Authors wish to thank anonymous reviewers who helped improve the manuscript, as well as Landis Kannberg and Nader Samaan (PNNL) for constructive feedbacks on an earlier version of this manuscript. NR 38 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD NOV 15 PY 2016 VL 115 BP 1 EP 12 DI 10.1016/j.energy.2016.08.059 PN 1 PG 12 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA ED0OR UT WOS:000388542300001 ER PT J AU Kozarac, D Taritas, I Vuilleumier, D Saxena, S Dibble, RW AF Kozarac, Darko Taritas, Ivan Vuilleumier, David Saxena, Samveg Dibble, Robert W. TI Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine SO ENERGY LA English DT Article DE Biogas; n-Heptane; HCCI; Combustion; Emissions ID COMPRESSION-IGNITION; POWER-GENERATION; DIESEL-ENGINE; COMBUSTION; STRATEGIES; OPERATION; EFFICIENCY; MODES; LOAD AB The use of highly reactive fuel as an ignition promoter enables operation of biogas fueled homogeneous charge compression ignition (HCCI) engine at low intake temperatures with practical control of combustion phasing. In order to gain some insight into this operation mode the influence of addition of n-heptane on combustion, performance, emissions and control of combustion phasing of a biogas fueled HCCI engine is experimentally researched and presented in this paper. Additionally, the performance analysis of the practical engine solution for such operation is estimated by using the numerical simulation of entire engine. The results showed that the introduction of highly reactive fuel results with a significant change in operating conditions and with a change in optimum combustion phasing. The addition of n-heptane resulted in lower nitrogen oxides and increased carbon monoxide emissions, while the unburned hydrocarbons emissions were strongly influenced by combustion phasing and at optimal conditions are lowered compared to pure biogas operation. The results also showed a practical operation range for strategies that use equivalence ratio as a control of load. Simulation results showed that the difference in performance between pure biogas and n-heptane/biogas operation is even greater when the practical engine solution is taken into account. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kozarac, Darko; Vuilleumier, David; Dibble, Robert W.] Univ Calif Berkeley, Dept Mech Engn, 6141 Etcheverry Hall, Berkeley, CA 94720 USA. [Taritas, Ivan] Univ Zagreb, Fac Mech Engn & Naval Architecture, Ivana Lucica 5, Zagreb 10000, Croatia. [Saxena, Samveg] Lawrence Berkeley Natl Lab, Energy Technol Area, 1 Cyclotron Rd,MS 90R1121, Berkeley, CA 94720 USA. [Kozarac, Darko; Vuilleumier, David] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Kozarac, Darko] Univ Zagreb, Fac Mech Engn & Naval Architecture, Ivana Lucica 5, Zagreb 10000, Croatia. [Dibble, Robert W.] Univ Calif Berkeley, Combust Anal Lab, Berkeley, CA 94720 USA. [Dibble, Robert W.] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia. [Vuilleumier, David] Sandia Natl Labs Combust Res Facil, Livermore, CA USA. RP Kozarac, D (reprint author), Univ Calif Berkeley, Dept Mech Engn, 6141 Etcheverry Hall, Berkeley, CA 94720 USA.; Kozarac, D (reprint author), Univ Zagreb, Fac Mech Engn & Naval Architecture, Ivana Lucica 5, Zagreb 10000, Croatia. EM darko.kozarac@fsb.hr OI Kozarac, Darko/0000-0003-4453-4031 FU Fulbright scholarship; Combustion analysis Laboratory of University of California Berkeley FX The research was enabled by the Fulbright scholarship that supported the visit of the principal investigator to the University of California Berkeley. The funding for the research was provided from the research grants of the Combustion analysis Laboratory of University of California Berkeley. NR 34 TC 0 Z9 0 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD NOV 15 PY 2016 VL 115 BP 180 EP 193 DI 10.1016/j.energy.2016.08.055 PN 1 PG 14 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA ED0OR UT WOS:000388542300017 ER PT J AU Osorio, JD Hovsapian, R Ordonez, JC AF Osorio, Julian D. Hovsapian, Rob Ordonez, Juan C. TI Effect of multi-tank thermal energy storage, recuperator effectiveness, and solar receiver conductance on the performance of a concentrated solar supercritical CO2-based power plant operating under different seasonal conditions SO ENERGY LA English DT Article DE Concentrated solar power (CSP); Supercritical CO2; Energy and exergy analyses; Seasonal conditions ID HEAT-TRANSFER; HIGH-TEMPERATURE; CARBON-DIOXIDE; MOLTEN-SALT; PRESSURE-DROP; CYCLE; GENERATION; DESIGN; STRATIFICATION; SYSTEMS AB Renewable energy technologies based on solar energy concentration are important alternatives to supply the rising energy demand in the world and to mitigate the negative environmental impact caused by the extensive use of fossil-fuels. In this work, a thermodynamic model based on energy and exergy analyses is developed to study the transient behavior of a Concentrated Solar Power (CSP) supercritical CO2 plant operating under different seasonal conditions. The system analyzed is composed of a central receiver, hot and cold thermal energy storage units, heat exchangers, a recuperator, and three-stage compression and expansion subsystems with intercoolers between compressors and reheaters between turbines, respectively. From the exergy analysis, the recuperator, the hot thermal energy storage, and the solar receiver were identified as the main sources for exergy destruction with more than 70.0% of the total lost work in the plant. These components offer an important potential to improve the system performance via design optimization. With reference parameters, the system reaches efficiencies of about 18.3%. These efficiencies are increased with a combination of improved design parameters, reaching values of between 26.0% and 29.4%, depending on the season, which are relatively good for CSP plants. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Osorio, Julian D.; Ordonez, Juan C.] Florida State Univ, Dept Mech Engn, Ctr Adv Power Syst, Energy & Sustainabil Ctr, Tallahassee, FL 32310 USA. [Osorio, Julian D.; Hovsapian, Rob] Idaho Natl Lab, Idaho Falls, ID 83403 USA. RP Osorio, JD (reprint author), Florida State Univ, Dept Mech Engn, Ctr Adv Power Syst, Energy & Sustainabil Ctr, Tallahassee, FL 32310 USA. EM jdosorio@unal.edu.co; rob.hovsapian@inl.gov; ordonez@caps.fsu.edu OI Osorio, Julian/0000-0002-0761-9899 FU Idaho National Laboratory (INL) - Energy and Environment Science and Technology (EE ST) Directorate; Colciencias; Fulbright Colombia; LASPAU FX This work has been partially supported by the Idaho National Laboratory (INL) - Energy and Environment Science and Technology (EE S&T) Directorate, Colciencias, Fulbright Colombia and LASPAU. The authors acknowledge Mr. Tyler Pilet's comments on the original manuscript. NR 63 TC 1 Z9 1 U1 5 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-5442 EI 1873-6785 J9 ENERGY JI Energy PD NOV 15 PY 2016 VL 115 BP 353 EP 368 DI 10.1016/j.energy.2016.08.0740 PN 1 PG 16 WC Thermodynamics; Energy & Fuels SC Thermodynamics; Energy & Fuels GA ED0OR UT WOS:000388542300030 ER PT J AU Branson, O Bonnin, EA Perea, DE Spero, HJ Zhu, ZH Winters, M Honisch, B Russell, AD Fehrenbacher, JS Gagnon, AC AF Branson, Oscar Bonnin, Elisa A. Perea, Daniel E. Spero, Howard J. Zhu, Zihua Winters, Maria Honisch, Barbel Russell, Ann D. Fehrenbacher, Jennifer S. Gagnon, Alexander C. TI Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE biomineralization; templating; foraminifera; geochemistry; paleoceanography ID ATOM-PROBE TOMOGRAPHY; PLANKTONIC-FORAMINIFERA; ORBULINA-UNIVERSA; ELECTRON-MICROSCOPY; ORGANIC INTERFACES; ACIDIC PROTEINS; CRYSTALLIZATION; BINDING; SURFACE; MATRIX AB Plankton, corals, and other organisms produce calcium carbonate skeletons that are integral to their survival, form a key component of the global carbon cycle, and record an archive of past oceanographic conditions in their geochemistry. A key aspect of the formation of these biominerals is the interaction between organic templating structures and mineral precipitation processes. Laboratory- based studies have shown that these atomic-scale processes can profoundly influence the architecture and composition of minerals, but their importance in calcifying organisms is poorly understood because it is difficult to measure the chemistry of in vivo biomineral interfaces at spatially relevant scales. Understanding the role of templates in biomineral nucleation, and their importance in skeletal geochemistry requires an integrated, multiscale approach, which can place atom-scale observations of organic-mineral interfaces within a broader structural and geochemical context. Here we map the chemistry of an embedded organic template structure within a carbonate skeleton of the foraminifera Orbulina universa using both atom probe tomography (APT), a 3D chemical imaging technique with ngs angstrom ngstrom-level spatial resolution, and time-of-flight secondary ionization mass spectrometry (ToF-SIMS), a 2D chemical imaging technique with submicron resolution. We quantitatively link these observations, revealing that the organic template in O. universa is uniquely enriched in both Na and Mg, and contributes to intraskeletal chemical heterogeneity. Our APT analyses reveal the cation composition of the organic surface, offering evidence to suggest that cations other than Ca2+, previously considered passive spectator ions in biomineral templating, may be important in defining the energetics of carbonate nucleation on organic templates. C1 [Branson, Oscar; Spero, Howard J.; Russell, Ann D.; Fehrenbacher, Jennifer S.] Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Bonnin, Elisa A.; Gagnon, Alexander C.] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. [Perea, Daniel E.; Zhu, Zihua; Winters, Maria] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Honisch, Barbel] Columbia Univ, Lamont Doherty Earth Observ, Dept Earth & Environm Sci, Palisades, NY 10964 USA. [Fehrenbacher, Jennifer S.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Branson, Oscar] Australian Natl Univ, Res Sch Earth Sci, Acton, ACT 2601, Australia. RP Branson, O; Spero, HJ (reprint author), Univ Calif Davis, Dept Earth & Planetary Sci, Davis, CA 95616 USA.; Gagnon, AC (reprint author), Univ Washington, Sch Oceanog, Seattle, WA 98195 USA. EM oscarbranson@gmail.com; hjspero@ucdavis.edu; gagnon@uw.edu RI Zhu, Zihua/K-7652-2012; OI Branson, Oscar/0000-0002-1851-497X FU US National Science Foundation [1420689, 1061676, 1261519, 1232987]; Office of Biological and Environmental Research at Pacific Northwest National Laboratory [48564] FX We thank Adam Wallace for insightful discussions. This research was supported in part by US National Science Foundation Awards 1420689 (to A.C.G.), 1061676 (to H.J.S.), 1261519 (to A.D.R. and J.S.F.), and 1232987 (to B.H.). APT and ToF-SIMS analysis was supported through User Proposal 48564 to A.C.G., part of a Special Science Call at the Environmental Molecular Sciences Laboratory, a Department of Energy Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 49 TC 0 Z9 0 U1 13 U2 13 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 15 PY 2016 VL 113 IS 46 BP 12934 EP 12939 DI 10.1073/pnas.1522864113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED6MQ UT WOS:000388970100038 PM 27794119 ER PT J AU Zhao, K Lv, B Deng, LZ Huyan, SY Xue, YY Chu, CW AF Zhao, Kui Lv, Bing Deng, Liangzi Huyan, Shu-Yuan Xue, Yu-Yi Chu, Ching-Wu TI Interface-induced superconductivity at similar to 25 K at ambient pressure in undoped CaFe2As2 single crystals SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE CaFe2As2; annealing; mixed phase; interface; high-Tc superconductivity ID SYSTEM; FILMS AB Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with T-c at similar to 25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 degrees C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 degrees C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T-cT transition, which is sensitive to lattice strain, and the T-O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction. C1 [Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu] Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA. [Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Lv, Bing] Univ Texas Dallas, Dept Phys, Dallas, TX 75080 USA. [Chu, Ching-Wu] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhao, K; Chu, CW (reprint author), Univ Houston, Texas Ctr Superconduct, Houston, TX 77204 USA.; Zhao, K; Chu, CW (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA.; Chu, CW (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM zhaokxy@mail.ustc.edu.cn; cwchu@uh.edu FU US Air Force Office of Scientific Research Grant [FA9550-15-1-0236]; T.L.L. Temple Foundation; John J. and Rebecca Moores Endowment; State of Texas through the Texas Center for Superconductivity at the University of Houston FX The work in Houston, Texas, is supported, in part, by US Air Force Office of Scientific Research Grant FA9550-15-1-0236, the T.L.L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through the Texas Center for Superconductivity at the University of Houston. NR 34 TC 0 Z9 0 U1 9 U2 9 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 15 PY 2016 VL 113 IS 46 BP 12968 EP 12973 DI 10.1073/pnas.1616264113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED6MQ UT WOS:000388970100044 PM 27799564 ER PT J AU Li, J Rodriguez, JP Niu, FF Pu, MC Wang, JN Hung, LW Shao, Q Zhu, YP Ding, W Liu, YQ Da, YR Yao, Z Yang, J Zhao, YF Wei, GH Cheng, GH Liu, ZJ Ouyang, SY AF Li, Jing Rodriguez, Jose Pindado Niu, Fengfeng Pu, Mengchen Wang, Jinan Hung, Li-Wei Shao, Qiang Zhu, Yanping Ding, Wei Liu, Yanqing Da, Yurong Yao, Zhi Yang, Jie Zhao, Yongfang Wei, Gong-Hong Cheng, Genhong Liu, Zhi-Jie Ouyang, Songying TI Structural basis for DNA recognition by STAT6 SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE STAT6; N4 site DNA recognition; JAK-STAT pathway; antiviral; innate immunity; crystal structure ID TRANSCRIPTIONAL ACTIVITY; UNPHOSPHORYLATED STAT1; CRYSTAL-STRUCTURE; SH2 DOMAIN; BINDING; DIMER; REVEALS; COMPLEX; PROTEIN; SITES AB STAT6 participates in classical IL-4/IL-13 signaling and stimulator of interferon genes-mediated antiviral innate immune responses. Aberrations in STAT6-mediated signaling are linked to development of asthma and diseases of the immune system. In addition, STAT6 remains constitutively active in multiple types of cancer. Therefore, targeting STAT6 is an attractive proposition for treating related diseases. Although a lot is known about the role of STAT6 in transcriptional regulation, molecular details on how STAT6 recognizes and binds specific segments of DNA to exert its function are not clearly understood. Here, we report the crystal structures of a homodimer of phosphorylated STAT6 core fragment (STAT6(CF)) alone and bound with the N3 and N4 DNA binding site. Analysis of the structures reveals that STAT6 undergoes a dramatic conformational change on DNA binding, which was further validated by performing molecular dynamics simulation studies and small angle X-ray scattering analysis. Our data show that a larger angle at the intersection where the two protomers of STAT meet and the presence of a unique residue, H415, in the DNA-binding domain play important roles in discrimination of the N4 site DNA from the N3 site by STAT6. H415N mutation of STAT6CF decreased affinity of the protein for the N4 site DNA, but increased its affinity for N3 site DNA, both in vitro and in vivo. Results of our structure-function studies on STAT6 shed light on mechanism of DNA recognition by STATs in general and explain the reasons underlying STAT6's preference for N4 site DNA over N3. C1 [Li, Jing; Niu, Fengfeng; Pu, Mengchen; Zhu, Yanping; Ding, Wei; Liu, Yanqing; Zhao, Yongfang; Liu, Zhi-Jie; Ouyang, Songying] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China. [Li, Jing] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Rodriguez, Jose Pindado; Cheng, Genhong; Ouyang, Songying] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Wang, Jinan; Shao, Qiang] Chinese Acad Sci, Shanghai Inst Mat Med, Drug Discovery & Design Ctr, Key Lab Receptor Res, Shanghai 201203, Peoples R China. [Hung, Li-Wei] Los Alamos Natl Lab, Phys Div, Los Alamos, NM 87545 USA. [Da, Yurong; Yao, Zhi; Yang, Jie; Liu, Zhi-Jie] Tianjin Med Univ, Dept Immunol, Tianjin 300070, Peoples R China. [Wei, Gong-Hong] Univ Oulu, Bioctr Oulu, SF-90220 Oulu, Finland. [Wei, Gong-Hong] Univ Oulu, Fac Biochem & Mol Med, SF-90220 Oulu, Finland. [Liu, Zhi-Jie] Shanghai Tech Univ, iHuman Inst, Shanghai 201210, Peoples R China. [Liu, Zhi-Jie] Kunming Med Univ, Inst Mol & Clin Med, Kunming 650500, Peoples R China. RP Ouyang, SY (reprint author), Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China.; Ouyang, SY (reprint author), Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. EM ouyangsy@ibp.ac.cn FU National Natural Science Foundation of China [31570875, 31330019, 81590761]; Ministry of Science and Technology of China [2014CB910400, 2013CB911103]; Beijing Nova Program [Z141102001814020]; Youth Innovation Promotion Association Chinese Academy of Sciences [2013065] FX We thank the staff at Synchrotron Beamlines (17U1 and 19U of SSRF, 5.0.1 and 12.3.1 of Advanced Light Source, and 23ID-C of the General Medical Sciences and Cancer Institutes Structural Biology Facility-Collaborative Access Team) for technical support and Y. Han, Y. Wang, P. Xue, and Y. Y. Chen (Protein Science Core Facility of Institute of Biophysics) for technical help with initial X-ray diffraction studies, automated protein crystallization, MS, and surface plasmon resonance assay experiments, respectively. This work was supported by National Natural Science Foundation of China Grants 31570875, 31330019, and 81590761; Ministry of Science and Technology of China Grants 2014CB910400 and 2013CB911103); Beijing Nova Program Grant Z141102001814020, and Youth Innovation Promotion Association Chinese Academy of Sciences Grant 2013065 (to S.O.). NR 38 TC 1 Z9 1 U1 4 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 15 PY 2016 VL 113 IS 46 BP 13015 EP 13020 DI 10.1073/pnas.1611228113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED6MQ UT WOS:000388970100052 PM 27803324 ER PT J AU Xiong, W Lin, PP Magnusson, L Warner, L Liao, JC Maness, PC Chou, KJ AF Xiong, Wei Lin, Paul P. Magnusson, Lauren Warner, Lisa Liao, James C. Maness, Pin-Ching Chou, Katherine J. TI CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE Clostridium thermocellum; pyruvate: ferredoxin oxidoreducase; formate; C-13-isotopic tracing; one-carbon metabolism ID PYRUVATE-FERREDOXIN OXIDOREDUCTASE; ATCC 27405; PROTEOMIC ANALYSIS; FLUX; ETHANOL; ENZYME; PATHWAY; DEHYDROGENASE; FERMENTATION; CONSERVATION AB Clostridium thermocellum can ferment cellulosic biomass to formate and other end products, including CO2. This organism lacks formate dehydrogenase (Fdh), which catalyzes the reduction of CO2 to formate. However, feeding the bacterium C-13-bicarbonate and cellobiose followed by NMR analysis showed the production of C-13-formate in C. thermocellum culture, indicating the presence of an uncharacterized pathway capable of converting CO2 to formate. Combining genomic and experimental data, we demonstrated that the conversion of CO2 to formate serves as a CO2 entry point into the reductive one-carbon (C1) metabolism, and internalizes CO2 via two biochemical reactions: the reversed pyruvate: ferredoxin oxidoreductase (rPFOR), which incorporates CO2 using acetyl-CoA as a substrate and generates pyruvate, and pyruvate- formate lyase (PFL) converting pyruvate to formate and acetyl-CoA. We analyzed the labeling patterns of proteinogenic amino acids in individual deletions of all five putative PFOR mutants and in a PFL deletion mutant. We identified two enzymes acting as rPFOR, confirmed the dual activities of rPFOR and PFL crucial for CO2 uptake, and provided physical evidence of a distinct in vivo "rPFOR-PFL shunt" to reduce CO2 to formate while circumventing the lack of Fdh. Such a pathway precedes CO2 fixation via the reductive C1 metabolic pathway in C. thermocellum. These findings demonstrated the metabolic versatility of C. thermocellum, which is thought of as primarily a cellulosic heterotroph but is shown here to be endowed with the ability to fix CO2 as well. C1 [Xiong, Wei; Magnusson, Lauren; Maness, Pin-Ching; Chou, Katherine J.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Lin, Paul P.; Liao, James C.] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. [Warner, Lisa] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Liao, James C.] Acad Sinica, Taipei 115, Taiwan. RP Maness, PC; Chou, KJ (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM pinching.maness@nrel.gov; katherine.chou@nrel.gov FU National Renewable Energy Laboratory (NREL) (Laboratory Directed Research and Development) [06271403]; US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office [DE-AC36-08-GO28308]; BioEnergy Science Center (BESC), a US DOE Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science FX We thank Chris Urban, Maria Chun, Sawako Konishi, and Sharon C. Xu for their technical assistance. This work was supported by the National Renewable Energy Laboratory (NREL) Director's Fellowship (Laboratory Directed Research and Development Subtask 06271403) (to W.X.), and the US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies Office (K.J.C., L.M., and P.-C.M.) under Contract DE-AC36-08-GO28308. L.W. and research conducted at the University of California, Los Angeles (P.P.L. and J.C.L.) were supported by the BioEnergy Science Center (BESC), a US DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 36 TC 0 Z9 0 U1 7 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 15 PY 2016 VL 113 IS 46 BP 13180 EP 13185 DI 10.1073/pnas.1605482113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED6MQ UT WOS:000388970100080 PM 27794122 ER PT J AU von Rohr, F Winiarski, MJ Tao, J Klimczuk, T Cava, RJ AF von Rohr, Fabian Winiarski, Michal J. Tao, Jing Klimczuk, Tomasz Cava, Robert Joseph TI Effect of electron count and chemical complexity in the Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE high-entropy alloys; superconductivity; disordered metals ID STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; RESISTIVITY; INSTABILITY AB High-entropy alloys are made from random mixtures of principal elements on simple lattices, stabilized by a high mixing entropy. The recently discovered body-centered cubic (BCC) Ta-Nb-Hf-Zr-Ti high-entropy alloy superconductor appears to display properties of both simple crystalline intermetallics and amorphousmaterials; e.g., it has a well-defined superconducting transition along with an exceptional robustness against disorder. Here we show that the valence electron count dependence of the superconducting transition temperature in the high-entropy alloy falls between those of analogous simple solid solutions and amorphous materials and test the effect of alloy complexity on the superconductivity. We propose high-entropy alloys as excellent intermediate systems for studying superconductivity as it evolves between crystalline and amorphous materials. C1 [von Rohr, Fabian; Cava, Robert Joseph] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. [Winiarski, Michal J.; Klimczuk, Tomasz] Gdansk Univ Technol, Fac Appl Phys & Math, PL-80233 Gdansk, Poland. [Tao, Jing] Brookhaven Natl Lab, Condensed Matter Phys Dept, Upton, NY 11973 USA. RP von Rohr, F; Cava, RJ (reprint author), Princeton Univ, Dept Chem, Princeton, NJ 08544 USA. EM vonrohr@princeton.edu; rcava@princeton.edu FU Gordon and Betty Moore Foundation, EPiQS initiative [GBMF-4412]; National Science Centre (Poland) [DEC-2012/07/E/ST3/00584]; Department of Energy Basic Energy Sciences; Materials Sciences and Engineering Division [DE-AC02-98CH10886] FX This work was primarily supported by the Gordon and Betty Moore Foundation, EPiQS initiative, Grant GBMF-4412. The research performed at the Gdansk University of Technology was financially supported by the National Science Centre (Poland) Grant DEC-2012/07/E/ST3/00584. The electron microscope work done at Brookhaven National Laboratory was supported by the Department of Energy Basic Energy Sciences, by the Materials Sciences and Engineering Division, under Contract DE-AC02-98CH10886. NR 39 TC 0 Z9 0 U1 21 U2 21 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 15 PY 2016 VL 113 IS 46 BP E7144 EP E7150 DI 10.1073/pnas.1615926113 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA ED6MQ UT WOS:000388970100003 PM 27803330 ER PT J AU Nestola, F Cerantola, V Milani, S Anzolini, C McCammon, C Novella, D Kupenko, I Chumakov, A Ruffer, R Harris, JW AF Nestola, F. Cerantola, V. Milani, S. Anzolini, C. McCammon, C. Novella, D. Kupenko, I. Chumakov, A. Ruffer, R. Harris, J. W. TI Synchrotron Mossbauer Source technique for in situ measurement of iron-bearing inclusions in natural diamonds SO LITHOS LA English DT Article; Proceedings Paper CT 2nd International Diamond School (IDS) on Nature of Diamonds and their Use in Earth's Study CY JAN, 2015 CL Bressanone, ITALY SP Gemol Inst Amer DE Ferropericlase; Magnesiofenite; Ferric iron; Oxygen fugacity; Magnetism ID MANTLE MINERAL ASSEMBLAGES; HIGH-PRESSURE; OXIDATION-STATE; DEEP MANTLE; TRANSITION; FERROPERICLASE; TEMPERATURE; MORPHOLOGY; OLIVINE; MGFE2O4 AB We describe a new methodology to collect energy domain Mossbauer spectra of inclusions in natural diamonds using a Synchrotron Mossbauer Source (SMS). Measurements were carried out at the Nuclear Resonance beamline ID18 at the European Synchrotron Radiation Facility (Grenoble, France). We applied this non-destructive approach to collect SMS spectra of a ferropericlase inclusion still contained within its diamond host from Juina (Brazil). The high spatial resolution of the measurement (similar to 15 pm) enabled multiple regions of the 190 x 105 mu m(2) inclusion to be sampled and showed that while Fe3+/Fe-tot values in ferropericlase were below the detection limit (0.02) overall, there was a magnetic component whose abundance varied systematically across the inclusion. Hyperfine parameters of the magnetic component are consistent with magnesioferrite, and the absence of superparamagnetism allows the minimum particle size to be estimated as similar to 30 nm. Bulk Fe3+/Fe-tot values are similar to those reported for other ferropericlase inclusions from Juina, and their variation across the inclusion can provide constraints on its history. (C) 2016 Elsevier B.V. All rights reserved. C1 [Nestola, F.; Milani, S.; Anzolini, C.] Univ Padua, Dipartimento Geosci, Via G Gradenigo 6, I-35131 Padua, Italy. [Cerantola, V.; Chumakov, A.; Ruffer, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [McCammon, C.] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Novella, D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kupenko, I.] Univ Munster, Inst Mineral, Corrensstr 24, D-48149 Munster, Germany. [Harris, J. W.] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland. RP Nestola, F (reprint author), Univ Padua, Dipartimento Geosci, Via G Gradenigo 6, I-35131 Padua, Italy. EM fabrizio.nestola@unipd.it NR 35 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0024-4937 EI 1872-6143 J9 LITHOS JI Lithos PD NOV 15 PY 2016 VL 265 SI SI BP 328 EP 333 DI 10.1016/j.lithos.2016.06.016 PG 6 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA EE0QF UT WOS:000389283300029 ER PT J AU Wang, J Toloczko, MB Bailey, N Garner, FA Gigax, J Shao, L AF Wang, Jing Toloczko, Mychailo B. Bailey, Nathan Garner, Frank A. Gigax, Jonathan Shao, Lin TI Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Ion bombardment; SRIM; Void swelling; Sputtering; Injected interstitial; Dose assignment ID STAINLESS-STEEL; IRRADIATION CREEP; RADIATION-DAMAGE; BEAM SIMULATION; COPPER IONS; METALS; ENERGY; IMPLANTATION; TITANIUM; TRIDYN AB In radiation effects on materials utilizing self-ion irradiations, it is necessary to calculate the local displacement damage level and ion injection profile because of the short distance that self-ions travel in a material and because of the strong variation of displacement rate with depth in a specimen. The most frequently used tool for this is the software package called Stopping and Range of Ions in Matter (SRIM). A SRIM-calculated depth-dependent dose level is usually determined under the implicit assumption that the target does not undergo any significant changes in volume during the process, in particular SRIM ignores the effect of sputtering, injected ions, and void swelling on the redistribution of the dose and injected ion profiles. This approach become increasingly invalid as the ion fluence reaches ever higher levels, especially for low energy ion irradiations. The original surface is not maintained due to sputter induced erosion, while within the irradiated region of the specimen, injected ions are adding material, and if void swelling is occurring, it is creating empty space. An iterative mathematical treatment of SRIM outputs to produce corrected dose and injected ion profiles based on these phenomenon and without regard to diffusion is presented along with examples of differences between SRIM-calculated values and corrected values over a range of typical ion energies. The intent is to provide the reader with a convenient tool for more accurately calculating dose and injected ion profiles for heavy-ion irradiations. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wang, Jing; Toloczko, Mychailo B.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. [Bailey, Nathan] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Wang, Jing; Garner, Frank A.; Gigax, Jonathan; Shao, Lin] Texas A&M Univ, College Stn, TX 77843 USA. RP Wang, J (reprint author), MS J4-55,902 Battelle Blvd, Richland, WA 99354 USA. EM jing.wang@pnnl.gov FU Fuel Cycle R&D Program Core Materials research area - U.S. Department of Energy, Office of Nuclear Energy; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO 1830]; U.S. Department of Energy, NEUP program [DE-NE0008297] FX This research was funded by the Fuel Cycle R&D Program Core Materials research area sponsored by the U.S. Department of Energy, Office of Nuclear Energy. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. L. Shao acknowledges partial support by U.S. Department of Energy, NEUP program, through grant No. DE-NE0008297. NR 48 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV 15 PY 2016 VL 387 BP 20 EP 28 DI 10.1016/j.nimb.2016.09.015 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA EB6VJ UT WOS:000387523400003 ER PT J AU China, S Wang, BB Weis, J Rizzo, L Brito, J Cirino, GG Kovarik, L Artaxo, P Gilles, MK Laskin, A AF China, Swarup Wang, Bingbing Weis, Johannes Rizzo, Luciana Brito, Joel Cirino, Glauber G. Kovarik, Libor Artaxo, Paulo Gilles, Mary K. Laskin, Alexander TI Rupturing of Biological Spores As a Source of Secondary Particles in Amazonia SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID AEROSOL-PARTICLES; ELECTRON-MICROSCOPY; FUNGAL SPORES; RAIN-FOREST; ATMOSPHERIC AEROSOLS; ICE NUCLEATION; ORGANIC-CARBON; GRASS-POLLEN; RELEASE; BIRCH AB Airborne biological particles, such as fungal spores and pollen, are ubiquitous in the Earth's atmosphere and may influence the atmospheric environment and climate, impacting air quality, cloud formation, and the Earth's radiation budget. The atmospheric transformations of airborne biological spores at elevated relative humidity remain poorly understood and their climatic role is uncertain. Using an environmental scanning electron microscope (ESEM), we observed rupturing of Amazonian fungal spores and subsequent release of submicrometer size fragments after exposure to high humidity. We find that fungal fragments contain elements of inorganic salts (e.g., Na and Cl). They are hygroscopic in nature with a growth factor up to 2.3 at 96% relative humidity, thus they may potentially influence cloud formation. Due to their hygroscopic growth, light scattering cross sections of the fragments are enhanced by up to a factor of 10. Furthermore, rupturing of fungal spores at high humidity may explain the bursting events of new particle formation in Amazonia. C1 [China, Swarup; Wang, Bingbing; Kovarik, Libor; Laskin, Alexander] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Weis, Johannes; Gilles, Mary K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Rizzo, Luciana] Univ Fed Sao Paulo, BR-04021001 Sao Paulo, SP, Brazil. [Cirino, Glauber G.] Natl Inst Res Amazonia, BR-69067375 Manaus, Amazonas, Brazil. [Artaxo, Paulo] Univ Sao Paulo, Inst Phys, BR-05508900 Sao Paulo, SP, Brazil. [Wang, Bingbing] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen, Peoples R China. [Wang, Bingbing] Xiamen Univ, Coll Ocean & Earth Sci, Xiamen, Peoples R China. [Brito, Joel] Univ Clermont Ferrand, Lab Meteorol Phys, Clermont Ferrand, France. RP Laskin, A (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. EM alexander.laskin@pnnl.gov RI Laskin, Alexander/I-2574-2012; Brito, Joel/B-6181-2013 OI Laskin, Alexander/0000-0002-7836-8417; Brito, Joel/0000-0002-4420-9442 FU Chemical Imaging Initiative of the Laboratory Directed Research and Development program at PNNL; U.S. Department of Energy's Atmospheric System Research program, an Office of Science, Office of Biological and Environmental Research (OBER); OBER; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02- 05CH11231]; FAPESP [08/58100-2, 2013/25058-1, 2013/05014-0]; [DE-AC06-76RL0] FX The Pacific Northwest National Laboratory (PNNL) group acknowledges support from the Chemical Imaging Initiative of the Laboratory Directed Research and Development program at PNNL. The Lawrence Berkeley National Laboratory (LBNL) group acknowledges support from the U.S. Department of Energy's Atmospheric System Research program, an Office of Science, Office of Biological and Environmental Research (OBER). The CCSEM/EDX and ESEM analyses were performed at Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by OBER at PNNL. PNNL is operated by the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC06-76RL0. STXM/NEXAFS analysis at beamline 11.0.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Beamline 11.0.2 also acknowledges support from the Office of Basic Energy Sciences Division of Chemical Sciences, Geosciences, and Biosciences by the Condensed Phase and Interfacial Molecular Sciences Program of the U.S. Department of Energy. Brazilian group acknowledges support from the FAPESP projects 08/58100-2, 2013/25058-1 and 2013/05014-0. We thank Dr. Erik Swietlicki's group at Lund University for the lending the SMPS system and Simone R. da Silva for assistance with sampling. We also thank INPA (Institute Nacional de Pesquisas da Amazonia) for the logistical support. NR 62 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2016 VL 50 IS 22 BP 12179 EP 12186 DI 10.1021/acs.est.6b02896 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EC5ED UT WOS:000388155000014 PM 27749043 ER PT J AU Noerpel, MR Lee, SS Lenhart, JJ AF Noerpel, Matthew R. Lee, Sang Soo Lenhart, John J. TI X-ray Analyses of Lead Adsorption on the (001), (110), and (012) Hematite Surfaces SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID INTERFACIAL WATER-STRUCTURE; CRYSTAL FACES; ABSORPTION SPECTROSCOPY; PB(II) SORPTION; HEAVY-METALS; IRON-OXIDES; SPECIATION; REACTIVITY; COMPLEXES; GOETHITE AB Predicting the environmental fate of lead relies on a detailed understanding of its coordination to mineral surfaces, which in turn reflects the innate reactivity of the mineral surface. In this research, we investigated fundamental dependencies in lead, adsorption to hematite by coupling extended X-ray absorption fine structure (EXAFS) spectroscopy on hematite particles (10 and 50 nm) with resonant anomalous X-ray reflectivity (RAXR) to single crystals expressing the (001), (012), or (110) crystallographic face. The EXAFS showed that lead adsorbed in a bidentate inner-sphere manner in both edge and corner sharing arrangements on the FeO6 octahedra for both particle sizes. The RAXR measurements confirmed these inner-sphere adsorption modes for all three hematite surfaces and additionally revealed outer-sphere adsorption modes not seen in the EXAFS. Lead uptake was larger and pH dependence was greater for the (012) and (110) surfaces, than the (001) surface, due to their expressing singly- and triply coordinated oxygen atoms the (001) surface lacks. In coupling these two techniques we provide a more detailed and nuanced picture of the coordination of lead to hematite while also providing fundamental insight into the reactivity of hematite. C1 [Noerpel, Matthew R.; Lenhart, John J.] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [Lee, Sang Soo] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Noerpel, Matthew R.] US EPA, 5995 Ctr Hill Ave, Cincinnati, OH 45224 USA. RP Lenhart, JJ (reprint author), Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. EM lenhart.49@osu.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-06CH11357]; National Science Foundation [0954991]; DOE Office of Science [DE-AC02-06CH11357]; Canadian Light Source FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Contract DE-AC02-06CH11357 to UChicago Argonne, LLC as operator of Argonne National Laboratory (for S.S.L.) and by the National Science Foundation under Grant No. 0954991. All X-ray work was performed at the Advanced Photon Source, sectors 6, 20, and 33. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Sector 20 is also jointly supported by the Canadian Light Source. We would also like to thank the associate editor and five anonymous reviewers for their comments which greatly improved the quality of this manuscript. NR 53 TC 0 Z9 0 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2016 VL 50 IS 22 BP 12283 EP 12291 DI 10.1021/acs.est.6b03913 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EC5ED UT WOS:000388155000026 PM 27767293 ER PT J AU Hu, MY Deng, XC Thanthiriwatte, KS Jackson, VE Wan, C Qafoku, O Dixon, DA Felmy, AR Rosso, KM Hu, JZ AF Hu, Mary Y. Deng, Xuchu Thanthiriwatte, K. Sahan Jackson, Virgil E. Wan, Chuan Qafoku, Odeta Dixon, David A. Felmy, Andrew R. Rosso, Kevin M. Hu, Jian Zhi TI In Situ Natural Abundance O-17 and Mg-25 NMR Investigation of Aqueous Mg(OH)(2) Dissolution in the Presence of Supercritical CO2 SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; AMORPHOUS CALCIUM-CARBONATE; GEOLOGICAL MEDIA; CLIMATE-CHANGE; C-13 NMR; MINERAL CARBONATION; BASIS-SETS; SEQUESTRATION; STORAGE; DIOXIDE AB We report an in situ high-pressure NMR capability that permits natural abundance O-17 and Mg-25 NMR characterization of dissolved species in aqueous solution and in the presence of supercritical CO2 fluid (scCO(2)). The dissolution of Mg(OH)(2) (brucite) in a multiphase water/scCO(2) fluid at 90 atm pressure and 50 degrees C was studied in situ, with relevance to geological carbon sequestration. O-17 NMR spectra allowed identification and distinction of various fluid species including dissolved CO2 in the H2O-rich phase, scCO(2), aqueous H2O, and HCO3. The widely separated spectral peaks for various species can all be observed both dynamically and quantitatively at concentrations as low as 20 mM. Measurement of the concentrations of these individual species also allows an in situ estimate of the hydrogen ion concentration, or pCH values, of the reacting solutions. The concentration of Mg2+ can be observed by natural abundance Mg-25 NMR at a concentration as low as 10 mM. Quantum chemistry calculations of the NMR chemical shifts on cluster models aided in the interpretation of the experimental results. Evidence for the formation of polymeric Mg2+ clusters at high concentrations in the H2O-rich phase, a possible critical step needed for magnesium carbonate formation, was found. C1 [Hu, Mary Y.; Deng, Xuchu; Wan, Chuan; Qafoku, Odeta; Felmy, Andrew R.; Rosso, Kevin M.; Hu, Jian Zhi] Pacific NW Natl Lab, Richland, WA 99354 USA. [Thanthiriwatte, K. Sahan; Jackson, Virgil E.; Dixon, David A.] Univ Alabama, Dept Chem, Shelby Hall, Tuscaloosa, AL 35487 USA. RP Hu, JZ (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Jianzhi.Hu@pnnl.gov RI Wan, Chuan/I-4657-2016; Hu, Jian Zhi/F-7126-2012 OI Wan, Chuan/0000-0002-8226-7619; FU Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division, through its Geosciences program at Pacific Northwest National Laboratory (PNNL); U.S. Department of Energy's Office of Biological and Environmental Research; Robert Ramsay Chair Fund of The University of Alabama FX This material is based upon work supported by the Geosciences Research Program in the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, Geosciences & Biosciences Division, through its Geosciences program at Pacific Northwest National Laboratory (PNNL). A portion of this research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram national laboratory operated for DOE by Battelle. D.A.D. thanks the Robert Ramsay Chair Fund of The University of Alabama for support. NR 68 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2016 VL 50 IS 22 BP 12373 EP 12384 DI 10.1021/acs.est.6b03443 PG 12 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EC5ED UT WOS:000388155000036 PM 27718556 ER PT J AU Brandt, AR Heath, GA Cooley, D AF Brandt, Adam R. Heath, Garvin A. Cooley, Daniel TI Methane Leaks from Natural Gas Systems Follow Extreme Distributions SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID BARNETT SHALE REGION; PRODUCTION SITES; UNITED-STATES; PROCESS EQUIPMENT; EMISSIONS; OIL; INFRASTRUCTURE; TRANSMISSION; FAILURE; TEXAS AB Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing similar to 5 000 measurements from 18 prior studies, we show that all available natural gas leakage data sets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of the total leakage volume. While prior studies used log-normal model distributions, we show that log-normal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of data sets to increase sample size is not recommended due to apparent deviation between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies. C1 [Brandt, Adam R.] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. [Heath, Garvin A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Cooley, Daniel] Colorado State Univ, Ft Collins, CO 80523 USA. RP Brandt, AR (reprint author), Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. EM abrandt@stanford.edu FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Policy and Systems Analysis FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding was provided by the U.S. DOE Office of Energy Policy and Systems Analysis. We acknowledge Ethan Warner (NREL), David Russo (CSU) and Daniel Roda-Stuart (Stanford) for research assistance, and James Bradbury (DOE) for helpful comments and guidance. NR 49 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 15 PY 2016 VL 50 IS 22 BP 12512 EP 12520 DI 10.1021/acs.est.6b04303 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EC5ED UT WOS:000388155000051 PM 27740745 ER PT J AU Young, MJ Schnabel, HD Holder, AM George, SM Musgrave, CB AF Young, Matthias J. Schnabel, Hans-Dieter Holder, Aaron M. George, Steven M. Musgrave, Charles B. TI Band Diagram and Rate Analysis of Thin Film Spinel LiMn2O4 Formed by Electrochemical Conversion of ALD-Grown MnO SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; ATOMIC LAYER DEPOSITION; MANGANESE OXIDE; ENERGY-STORAGE; CATHODE MATERIAL; CHARGE STORAGE; RATE CAPABILITY; ELECTROLYTES; PERFORMANCE; REDUCTION AB Nanoscale spinel lithium manganese oxide is of interest as a high-rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn2O4) between 20 and 200 nm in thickness by room-temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn2O4 thin films in electrolytes containing Li+, Na+, K+, and Mg2+ are investigated. A unified electrochemical band-diagram (UEB) analysis of LiMn2O4 informed by screened hybrid density functional theory calculations is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn2O4. It is shown that the incorporation of Li+ or other cations into the host manganese dioxide spinel structure (lambda-MnO2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn2O4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn2O4 arises from bulk electronic charge-switching which does not require compensating cation mass transport. The hybrid ALD-electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materials for ion-incorporation charge storage. C1 [Young, Matthias J.; Holder, Aaron M.; Musgrave, Charles B.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Schnabel, Hans-Dieter] Westsachs Hsch, Leupold Inst Angew Nat Wissensch, D-08012 Zwickau, Germany. [Young, Matthias J.; George, Steven M.; Musgrave, Charles B.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Holder, Aaron M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [George, Steven M.] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Young, Matthias J.] NIST, Boulder, CO 80305 USA. RP Musgrave, CB (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA.; Musgrave, CB (reprint author), Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. EM charles.musgrave@colorado.edu FU National Science Foundation Graduate Research Fellowship [DGE 1144083]; NSF [CHE-1214131, CBET-1433521]; National Science Foundation [CNS-0821794]; University of Colorado Boulder; Center for Next Generation Materials by Design, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC36-08GO28308] FX This work was supported in part (M.J.Y.) by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144083. C.B.M. acknowledges support from the NSF through grants CHE-1214131 and CBET-1433521. This work utilized the Janus supercomputer, which was supported by the National Science Foundation through CNS-0821794 and the University of Colorado Boulder. A.M.H. acknowledges support from the Center for Next Generation Materials by Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC36-08GO28308. Any opinion, findings, and conclusions or recommendations expressed in this material were those of the author(s) and did not necessarily reflect the views of the NSF. NR 57 TC 0 Z9 0 U1 43 U2 43 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 15 PY 2016 VL 26 IS 43 BP 7895 EP 7907 DI 10.1002/adfm.201602773 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EC5IH UT WOS:000388167400014 ER PT J AU Zhao, YL Gaur, G Retterer, ST Laibinis, PE Weiss, SM AF Zhao, Yiliang Gaur, Girija Retterer, Scott T. Laibinis, Paul E. Weiss, Sharon M. TI Flow-Through Porous Silicon Membranes for Real-Time Label-Free Biosensing SO ANALYTICAL CHEMISTRY LA English DT Article ID ON-A-CHIP; PLASMON RESONANCE BIOSENSOR; P-TYPE SILICON; PROTEIN ADSORPTION; BINDING-KINETICS; NANOHOLE ARRAYS; FUEL-CELLS; MICROCAVITIES; SENSITIVITY; FABRICATION AB A flow-through sensing platform based on open-ended porous silicon (PSi) microcavity membranes that are compatible with integration in on chip sensor arrays is demonstrated. Because of the high aspect ratio of PSi nanopores, the performance of closed-ended PSi sensors is limited by infiltration challenges and slow sensor responses when detecting large molecules such as proteins and nucleic acids. In order to improve molecule transport efficiency and reduce sensor response time, open-ended PSi nanopore membranes were used in a flow-through sensing scheme, allowing analyte solutions to pass through the nanopores. The molecular binding kinetics in these PSi membranes were compared through experiments and simulation with those from closed-ended PSi films of comparable thickness in a conventional flow-over sensing scheme. The flow-through PSi membrane resulted in a 6-fold improvement in sensor response time when detecting a high molecular weight analyte (streptavidin) versus in the flow-over PSi approach. This work demonstrates the possibility of integrating multiple flow-through PSi sensor membranes within parallel microarrays for rapid and multiplexed label-free biosensing. C1 [Zhao, Yiliang; Laibinis, Paul E.; Weiss, Sharon M.] Vanderbilt Univ, Interdisciplinary Grad Program Mat Sci, Nashville, TN 37235 USA. [Gaur, Girija; Weiss, Sharon M.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Laibinis, Paul E.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. RP Weiss, SM (reprint author), Vanderbilt Univ, Interdisciplinary Grad Program Mat Sci, Nashville, TN 37235 USA.; Weiss, SM (reprint author), Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. EM sharon.weiss@vanderbilt.edu FU Army Research Office [W911NF-15-1-0176, W911NF-09-1-0101] FX This work was supported in part by the Army Research Office (Grants W911NF-15-1-0176 and W911NF-09-1-0101). Photolithography was conducted at the Center for Nanophase Materials Sciences (CNMS) at Oak Ridge National Laboratory, which is a DOE Office of Science User Facility. Equipment and technical support at the Vanderbilt Institute for Nanoscale Science and Engineering (VINSE) and Vanderbilt Institute for Integrative Biosystems Research and Education (VIIBRE) were also utilized for this work. The authors gratefully acknowledge D. S. Koktysh for supplying quantum dots, D. P. Briggs for assistance with sample fabrication, C. L. Pint and K. Share for facilitating wafer-scale PSi etching, and G. A. Rodriguez, K. Qin, and S. Hu for useful technical discussions. NR 60 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2016 VL 88 IS 22 BP 10940 EP 10948 DI 10.1021/acs.analchem.6b02521 PG 9 WC Chemistry, Analytical SC Chemistry GA EC5EA UT WOS:000388154700026 PM 27786437 ER PT J AU Ding, YZ Zhou, YF Yao, J Szymanski, C Fredrickson, J Shi, L Cao, B Zhu, ZH Yu, XY AF Ding, Yuanzhao Zhou, Yufan Yao, Juan Szymanski, Craig Fredrickson, James Shi, Liang Cao, Bin Zhu, Zihua Yu, Xiao-Ying TI In Situ Molecular Imaging of the Biofilm and Its Matrix SO ANALYTICAL CHEMISTRY LA English DT Article ID ION MASS-SPECTROMETRY; ELECTRODE-ELECTROLYTE INTERFACE; MICROBIAL FUEL-CELL; TOF-SIMS; PSEUDOMONAS-AERUGINOSA; SINGLE-CELL; IDENTIFICATION; REACTOR; WATER; HYDROPHOBICITY AB Molecular mapping of live biofilms at submicrometer resolution presents a grand challenge. Here, we present the first chemical mapping results of biofilm extracellular polymeric substance (EPS) in biofilms using correlative imaging between super resolution fluorescence microscopy and liquid time-of-flight secondary ion mass spectrometry (TOF-SIMS). Shewanella oneidensis is used as a model organism. Heavy metal chromate (Cr2O72-) anions consisting of chromium Cr(VI) was used as a model environmental stressor to treat the biofilms. Of particular interest, biologically relevant water clusters have been first observed in the biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be spatially imaged. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for mechanistic insight of microbial community processes and communications using in situ imaging mass spectrometry and super resolution optical microscopy. C1 [Ding, Yuanzhao; Cao, Bin] Nanyang Technol Univ, SCELSE, Singapore 637551, Singapore. [Ding, Yuanzhao] Nanyang Technol Univ, IGS, Singapore 639798, Singapore. [Ding, Yuanzhao; Yao, Juan; Fredrickson, James; Shi, Liang; Yu, Xiao-Ying] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99354 USA. [Zhou, Yufan; Szymanski, Craig; Zhu, Zihua] Pacific Northwest Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA. [Cao, Bin] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore. RP Cao, B (reprint author), Nanyang Technol Univ, SCELSE, Singapore 637551, Singapore.; Yu, XY (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99354 USA.; Zhu, ZH (reprint author), Pacific Northwest Natl Lab, Environm & Mol Sci Lab, Richland, WA 99352 USA.; Cao, B (reprint author), Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore. EM bincao@ntu.edu.sg; zihua.zhu@pnnl.gov; xiaoying.yu@pnnl.gov RI Cao, Bin/H-2639-2012; Zhu, Zihua/K-7652-2012 OI Cao, Bin/0000-0002-9462-496X; FU NTU; Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative-Laboratory Directed Research and Development (CII-LDRD); PNNL Earth and Biological Sciences Directorate (EBSD) Mission seed LDRD; Technology Council Investment (TIC) programs; OBER; DOE [DE-AC05-76RL01830] FX Y. Ding thanks NTU for the graduate student fellowship. Funding was from the Pacific Northwest National Laboratory (PNNL) Chemical Imaging Initiative-Laboratory Directed Research and Development (CII-LDRD), PNNL Earth and Biological Sciences Directorate (EBSD) Mission seed LDRD, and the Technology Council Investment (TIC) programs. The research was performed in the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by OBER and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 69 TC 0 Z9 0 U1 40 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD NOV 15 PY 2016 VL 88 IS 22 BP 11244 EP 11252 DI 10.1021/acs.analchem.6b03909 PG 9 WC Chemistry, Analytical SC Chemistry GA EC5EA UT WOS:000388154700066 PM 27709903 ER PT J AU Bhojane, PP Duff, MR Bafna, K Rimmer, GP Agarwal, PK Howell, EE AF Bhojane, Purva P. Duff, Michael R., Jr. Bafna, Khushboo Rimmer, Gabriella P. Agarwal, Pratul K. Howell, Elizabeth E. TI Aspects of Weak Interactions between Folate and Glycine Betaine SO BIOCHEMISTRY LA English DT Article ID R67 DIHYDROFOLATE-REDUCTASE; ASSISTED CAPILLARY-ELECTROPHORESIS; PROTON-MAGNETIC-RESONANCE; ESCHERICHIA-COLI; LIGAND-BINDING; FOLIC-ACID; DISSOCIATION-CONSTANTS; CONFORMATIONAL-CHANGES; PROTEIN-STRUCTURE; CRYSTAL-STRUCTURE AB Folate, or vitamin B9, is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (mu(23)/RT value). This value is concentration-dependent as folate dimerizes. The mu(23)/RT value also tracks the deprotonation of folate's N3-O4 keto enol group, yielding a pK(a) of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the mu(23)/RT values into a values for atom types was achieved. This allows prediction of mu(23)/RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess mu(23)/RT values from -0.18 to 0.09 m(-1), where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate mu(23)/RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small molecule, the preference swings toward water interaction because of its hydrogen bond donating capacities. C1 [Bhojane, Purva P.; Duff, Michael R., Jr.; Rimmer, Gabriella P.; Agarwal, Pratul K.; Howell, Elizabeth E.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Bafna, Khushboo; Agarwal, Pratul K.; Howell, Elizabeth E.] Univ Tennessee, Genome Sci & Technol Program, Knoxville, TN 37996 USA. [Agarwal, Pratul K.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Howell, EE (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. EM lzh@utk.edu FU National Institutes of Health [GM 110669, GM105978] FX This work was supported by National Institutes of Health Grants GM 110669 (to E.E.H.) and GM105978 (to P.K.A.). NR 76 TC 0 Z9 0 U1 6 U2 6 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 15 PY 2016 VL 55 IS 45 BP 6282 EP 6294 DI 10.1021/acs.biochem.6b00873 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EC5EQ UT WOS:000388156300009 PM 27768285 ER PT J AU Larkoski, AJ Moult, I Neill, D AF Larkoski, Andrew J. Moult, Ian Neill, Duff TI The analytic structure of non-global logarithms: convergence of the dressed gluon expansion SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Perturbative QCD; Resummation ID FINITE N-C; QUANTUM ELECTRODYNAMICS; JET EVOLUTION; QCD; MULTIPLICITY AB Non-global logarithms (NGLs) are the leading manifestation of correlations between distinct phase space regions in QCD and gauge theories and have proven a challenge to understand using traditional resummation techniques. Recently, the dressed gluon expansion was introduced that enables an expansion of the NGL series in terms of a "dressed gluon" building block, defined by an all-orders factorization theorem. Here, we clarify the nature of the dressed gluon expansion, and prove that it has an infinite radius of convergence as a solution to the leading logarithmic and large-Nc master equation for NGLs, the Banfi-Marchesini-Smye (BMS) equation. The dressed gluon expansion therefore provides an expansion of the NGL series that can be truncated at any order, with reliable uncertainty estimates. In contrast, manifest in the results of the fixed-order expansion of the BMS equation up to 12-loops is a breakdown of convergence at a finite value of aslog. We explain this finite radius of convergence using the dressed gluon expansion, showing how the dynamics of the buffer region, a region of phase space near the boundary of the jet that was identified in early studies of NGLs, leads to large contributions to the fixed order expansion. We also use the dressed gluon expansion to discuss the convergence of the next-to-leading NGL series, and the role of collinear logarithms that appear at this order. Finally, we show how an understanding of the analytic behavior obtained from the dressed gluon expansion allows us to improve the fixed order NGL series using conformal transformations to extend the domain of analyticity. This allows us to calculate the NGL distribution for all values of aslog from the coefficients of the fixed order expansion. C1 [Larkoski, Andrew J.] Harvard Univ, Ctr Fundamental Law Nat, Cambridge, MA 02138 USA. [Larkoski, Andrew J.] Reed Coll, Dept Phys, Portland, OR 97202 USA. [Moult, Ian] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Moult, Ian] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Moult, Ian; Neill, Duff] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Neill, Duff] Los Alamos Natl Lab, Div Theoret, MS B283, Los Alamos, NM 87545 USA. RP Larkoski, AJ (reprint author), Harvard Univ, Ctr Fundamental Law Nat, Cambridge, MA 02138 USA.; Larkoski, AJ (reprint author), Reed Coll, Dept Phys, Portland, OR 97202 USA. EM larkoski@reed.edu; ianmoult@lbl.gov; dneill@mit.edu FU U.S. Department of Energy (DOE) [DE-FG02-05ER-41360, DE-SC0011090, DE-AC52-06NA25396]; LANL/LDRD Program; U.S. National Science Foundation under the LHC Theory Initiative [PHY-1419008] FX We thank Simon Caron-Huot for interesting discussions on the convergence of the fixed order series, and graciously providing us with the leading logarithmic NGL series through 12 loops. We thank Martin Beneke for suggesting the use of conformal mappings for improving the perturbative expansion of the NGL series, and for pointing us to relevant references on the subject. We would also like to thank Thomas Becher, Mrinal Dasgupta, Chris Lee, Matt Schwartz, Ding-Yu Shao, Iain Stewart, and Hua-Xing Zhu for helpful discussions as well as Anja Weyant for discussion of Monte Carlo uncertainties. This work is supported by the U.S. Department of Energy (DOE) under cooperative research agreements DE-FG02-05ER-41360, and DE-SC0011090, and also under contract DE-AC52-06NA25396 and through the LANL/LDRD Program. A.L. is supported by the U.S. National Science Foundation, under grant PHY-1419008, the LHC Theory Initiative. We also thank the Erwin Schrodinger Institute's program "Challenges and Concepts for Field Theory and Applications in the Era of the LHC Run-2", where portions of this work were completed. NR 71 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 15 PY 2016 IS 11 AR 089 DI 10.1007/JHEP11(2016)089 PG 45 WC Physics, Particles & Fields SC Physics GA EC4LD UT WOS:000388100100002 ER PT J AU Lu, XN Neeway, JJ Ryan, JV Du, JC AF Lu, Xiaonan Neeway, James J. Ryan, Joseph V. Du, Jincheng TI Influence of low concentration V and Co oxide doping on the dissolution behaviors of simplified nuclear waste glasses SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Boroaluminosilicate glass; Nuclear waste glass; Chemical durability; Characterization; Transition metal oxide ID INTERNATIONAL SIMPLE GLASS; LIME BOROSILICATE GLASSES; CHEMICAL DURABILITY; RAMAN-SPECTROSCOPY; VAPOR HYDRATION; CORROSION; SILICATE; TEMPERATURE; VANADIUM; MECHANISMS AB Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially the dissolution behavior, of International Simple Glass (ISG), a simulant nuclear waste glass system. Static chemical durability tests were performed at 90 degrees C with a pH value of 7 and a surface-area-to-solution-volume of 200 m(-1) for 112 days on three glasses: ISG, ISG doped with 05 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. Inductively Coupled Plasma -Mass Spectrometry (ICP-MS) was used to analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (T-g) while cobalt oxide did not significantly change the T-g of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes. These results show that transition metal oxide can have a profound effect on the physical properties and dissolution behaviors of nuclear waste glasses. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lu, Xiaonan; Du, Jincheng] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Neeway, James J.; Ryan, Joseph V.] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Du, JC (reprint author), Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. EM Jincheng.du@unt.edu FU DOE Nuclear Energy University Program (NEUP) [13-5494]; U.S. DOE [DE-AC05-76RL01830] FX We gratefully acknowledge the financial support by DOE Nuclear Energy University Program (NEUP, project #13-5494). Glass melting was performed in the Glass Development Laboratory (GDL) at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. ESEM/EDS, XRD and Raman experiments were conducted at the Center for Advanced Research and Technology (CART) at the University of North Texas (UNT). We would like to acknowledge the support of Dr. Guido F. Verbeck and his group members, especially Emma Gorishek, for the assistance of ICP-MS analyses in the Laboratory of Imaging Mass Spectrometry at UNT. We would also like to acknowledge the support of the staffs of GDL of PNNL and UNT CART. Lastly, we want to thank Benjamin Parruzot (PNNL) and three anonymous reviewers for both their insightful comments and helpful suggestions. NR 59 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD NOV 15 PY 2016 VL 452 BP 161 EP 168 DI 10.1016/j.jnoncrysol.2016.08.026 PG 8 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA EC3TY UT WOS:000388050800025 ER PT J AU Helbing, C Stoessel, R Hering, DA Arras, MML Bossert, J Jandt, KD AF Helbing, Christian Stoessel, Robert Hering, Dominik A. Arras, Matthias M. L. Bossert, Joerg Jandt, Klaus D. TI pH-Dependent Ordered Fibrinogen Adsorption on Polyethylene Single Crystals SO LANGMUIR LA English DT Article ID ATOMIC-FORCE MICROSCOPY; TITANIUM-OXIDE SURFACES; PROTEIN ADSORPTION; CONFORMATIONAL-CHANGES; IONIC-STRENGTH; GROWTH; CRYSTALLIZATION; ORIENTATION; NUCLEATION; DECORATION AB Nanostructured surfaces have the potential to influence the assembly as well as the orientation of adsorbed proteins and may, thus, strongly influence the biomaterials' performance. For the class of polymeric (bio)materials a reproducible and well-characterized nanostructure is the ordered chain folded surface of a polyethylene single crystal (PE-SC). We tested the hypothesis that the trinodal-rod-shaped protein human plasma fibrinogen (HPF) adsorbs on the (001) surface of PESCs along specific crystallographic directions. The PE-SC samples were prepared by isothermal crystallization in dilute solution and characterized by atomic force microscopy (AFM) before as well as after HPF adsorption at different concentrations and pH values. At a physiological pH of 7.4, connected HPF molecules, or e.g., fibrils, fibril networks, or sponge-like structures, were observed on PE-SC surfaces that featured no preferential orientation. The observation of these nonoriented multiprotein assemblies was explained by predominant protein protein interactions and limited surface diffusion. However, at an increased pH of 9.2, single HPF molecules, e.g., spherical-shaped and trinodal-rod-shaped HPF molecules as well as agglomerates, were observed on the PE-SC surface. The presence of single HPF molecules at increased pH was explained by decreased protein-protein interactions. These single trinodal-rod-shaped HPF molecules oriented preferentially along crystallographic [100] and [010] directions on the PE-SC surface which was explained by an increased amount of intermolecular bonds along these crystallographic directions with increased surface atom density. The study established that HPF molecules can align on chemically homogeneous surface topographies one order of magnitude smaller than the dimension of the protein. This advances the understanding of how to control the assembly and orientation of proteins on nanostructured polymer surfaces. Controlled protein adsorption is a crucial key to improve the surface functionality of future implants and biosensors. C1 [Helbing, Christian; Stoessel, Robert; Hering, Dominik A.; Arras, Matthias M. L.; Bossert, Joerg; Jandt, Klaus D.] Friedrich Schiller Univ Jena, CMS, Dept Mat Sci & Technol, Otto Schott Inst Mat Res,Fac Phys & Astron, Lobdergraben 32, D-07743 Jena, Germany. [Jandt, Klaus D.] Friedrich Schiller Univ Jena, JCSM, Humboldtstr 10, D-07743 Jena, Germany. [Hering, Dominik A.] Univ Hosp Munster, Dept Clin Radiol, Albert Schweitzer Str 33, D-48149 Munster, Germany. [Arras, Matthias M. L.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Jandt, KD (reprint author), Friedrich Schiller Univ Jena, CMS, Dept Mat Sci & Technol, Otto Schott Inst Mat Res,Fac Phys & Astron, Lobdergraben 32, D-07743 Jena, Germany.; Jandt, KD (reprint author), Friedrich Schiller Univ Jena, JCSM, Humboldtstr 10, D-07743 Jena, Germany. EM k.jandt@uni-jena.de OI Arras, Matthias ML/0000-0002-4714-9086 FU Deutsche Forschungsgemeinschaft (DFG) [AOBJ: 609403] FX We gratefully acknowledge the partial financial support of the Deutsche Forschungsgemeinschaft (DFG) project: "Novel functional materials based on self-assembled protein nanofibers: creating and understanding nanofibers", AOBJ: 609403. NR 60 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 15 PY 2016 VL 32 IS 45 BP 11868 EP 11877 DI 10.1021/acs.langmuir.6b03110 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EC5EN UT WOS:000388156000018 PM 27775351 ER PT J AU Robertson, EJ Proulx, C Su, JK Garcia, RL Yoo, S Nehls, EM Connolly, MD Taravati, L Zuckermann, RN AF Robertson, Ellen J. Proulx, Caroline Su, Jessica K. Garcia, Rita L. Yoo, Stan Nehls, Eric M. Connolly, Michael D. Taravati, Laudann Zuckermann, Ronald N. TI Molecular Engineering of the Peptoid Nanosheet Hydrophobic Core SO LANGMUIR LA English DT Article ID MEDICINAL CHEMISTRY; CYCLIC PEPTOIDS; POLYMERS; FOLDAMERS AB The relationship between the structure of sequence-defined peptoid polymers and their ability to assemble into well-defined nanostructures is important to the creation of new bioinspired platforms with sophisticated functionality. Here, the hydrophobic N-(2-phenylethyl)glycine (Npe) monomers of the standard nanosheet-forming peptoid sequence were modified in an effort to (1) produce nanosheets from relatively short peptoids, (2) inhibit the aggregation of peptoids in bulk solution, (3) increase nanosheet stability by promoting packing interactions within the hydrophobic core, and (4) produce nanosheets with a nonaromatic hydrophobic core. Fluorescence and optical microscopy of individual nanosheets reveal that certain modifications to the hydrophobic core were well tolerated, whereas others resulted in instability or aggregation or prevented assembly. Importantly, we demonstrate that substitution at the meta and para positions of the Npe aromatic ring are well tolerated, enabling significant opportunities to tune the functional properties of peptoid nanosheets. We also found that N-aryl glycine monomers inhibit nanosheet formation, whereas branched aliphatic monomers have the ability to form nanosheets. An analysis of the crystal structures of several N,N'-disubstituted diketopiperazines (DKPs), a simple model system, revealed that the preferred solid-state packing arrangement of the hydrophobic groups can directly inform the assembly of stable peptoid nanosheets. C1 [Robertson, Ellen J.; Proulx, Caroline; Su, Jessica K.; Garcia, Rita L.; Yoo, Stan; Nehls, Eric M.; Connolly, Michael D.; Taravati, Laudann; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mzuckerman@lbl.gov NR 34 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 15 PY 2016 VL 32 IS 45 BP 11946 EP 11957 DI 10.1021/acs.langmuir.6b02735 PG 12 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EC5EN UT WOS:000388156000026 PM 27794618 ER PT J AU Chang, HT Zurch, M Kraus, PM Borja, LJ Neumark, DM Leone, SR AF Chang, Hung-Tzu Zuerch, Michael Kraus, Peter M. Borja, Lauren J. Neumark, Daniel M. Leone, Stephen R. TI Simultaneous generation of sub-5-femtosecond 400 nm and 800 nm pulses for attosecond extreme ultraviolet pump-probe spectroscopy SO OPTICS LETTERS LA English DT Article ID BLUE PULSES; ELECTRON DYNAMICS; HOLLOW-FIBER; FS PULSES; FEMTOSECOND; COMPRESSION; LIGHT; METROLOGY; SOLIDS; LEVEL AB Few-cycle laser pulses with wavelengths centered at 400 nm and 800 nm are simultaneously obtained through wavelength separation of ultrashort, spectrally broadened Vis-NIR laser pulses spanning 350-1100 nm wavelengths. The 400 nm and 800 nm pulses are separately compressed, yielding pulses with 4.4 fs and 3.8 fs duration, respectively. The pulse energy exceeds 5 mu J for the 400 nm pulses and 750 mu J for the 800 nm pulses. Intense 400 nm few-cycle pulses have a broad range of applications in nonlinear optical spectroscopy, which include the study of photochemical dynamics, semiconductors, and photovoltaic materials on few-femtosecond to attosecond time scales. The ultrashort 400 nm few-cycle pulses generated here not only extend the spectral range of the optical pulse for NIR-XUV attosecond pump-probe spectroscopy but also pave the way for two-color, three-pulse, multidimensional optical-XUV spectroscopy experiments. (C) 2016 Optical Society of America. C1 [Chang, Hung-Tzu; Zuerch, Michael; Kraus, Peter M.; Borja, Lauren J.; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.; Leone, Stephen R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Leone, SR (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; Leone, SR (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM htchang@berkeley.edu; mwz@berkeley.edu; dneumark@berkeley.edu; srl@berkeley.edu RI Neumark, Daniel/B-9551-2009; OI Neumark, Daniel/0000-0002-3762-9473; Chang, Hung-Tzu/0000-0001-7378-8212 FU Alexander von Humboldt-Stiftung; Army Research Office (ARO) [WN911NF-14-1-0383]; Schweizerische Nationalfonds zur Forderung der Wissenschaftlichen Forschung (SNSF) [P2EZP2_165252]; Air Force Office of Scientific Research (AFOSR) [FA9550-15-1-0037] FX Alexander von Humboldt-Stiftung; Army Research Office (ARO) (WN911NF-14-1-0383); Schweizerische Nationalfonds zur Forderung der Wissenschaftlichen Forschung (SNSF) (P2EZP2_165252); Air Force Office of Scientific Research (AFOSR) (FA9550-15-1-0037). NR 32 TC 0 Z9 0 U1 4 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD NOV 15 PY 2016 VL 41 IS 22 BP 5365 EP 5368 DI 10.1364/OL.41.005365 PG 4 WC Optics SC Optics GA EC0AV UT WOS:000387760700058 PM 27842133 ER PT J AU Szwec, SV Kay, BP Cocolios, TE Entwisle, JP Freeman, SJ Gaffney, LP Guimaraes, V Hammache, F Mckee, PP Parr, E Portail, C Schiffer, JP de Sereville, N Sharp, DK Smith, JF Stefan, I AF Szwec, S. V. Kay, B. P. Cocolios, T. E. Entwisle, J. P. Freeman, S. J. Gaffney, L. P. Guimaraes, V. Hammache, F. Mckee, P. P. Parr, E. Portail, C. Schiffer, J. P. de Sereville, N. Sharp, D. K. Smith, J. F. Stefan, I. TI Rearrangement of valence neutrons in the neutrinoless double-beta decay of Xe-136 SO PHYSICAL REVIEW C LA English DT Article ID HOLE STATES; NUCLEI; SCATTERING AB A quantitative description of the change in ground-state neutron occupancies between Xe-136 and Ba-136, the initial and final state in the neutrinoless double-beta decay of 136Xe, has been extracted from precision measurements of the cross sections of single-neutron-adding and -removing reactions. Comparisons are made to recent theoretical calculations of the same properties using various nuclear-structure models. These are the same calculations used to determine the magnitude of the nuclear matrix elements for the process, which at present disagree with each other by factors of 2 or 3. The experimental neutron occupancies show some disagreement with the theoretical calculations. C1 [Szwec, S. V.; Cocolios, T. E.; Entwisle, J. P.; Freeman, S. J.; Sharp, D. K.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Kay, B. P.; Schiffer, J. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Gaffney, L. P.; Mckee, P. P.; Parr, E.; Smith, J. F.] Univ West Scotland, Sch Engn & Comp, Paisley PA1 2BE, Renfrew, Scotland. [Guimaraes, V.] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970 Sao Paulo, SP, Brazil. [Hammache, F.; Portail, C.; de Sereville, N.; Stefan, I.] Univ Paris Saclay, Univ Paris Sud, Inst Phys Nucl Orsay, CNRS IN2P3, F-91406 Orsay, France. [Cocolios, T. E.] Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Leuven, Belgium. RP Kay, BP (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM kay@anl.gov RI Guimaraes, Valdir/B-4958-2014 OI Guimaraes, Valdir/0000-0003-3715-0726 FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; UK Science and Technology Facilities Council FX This measurement (Experiment NI-S-73) was performed at the Tandem ALTO facility at IPN Orsay. The authors thank the operating staff, and the outside participants thank the local staff and administration for their hospitality and assistance. We are indebted to John Greene for preparing targets for these experiments. This material is based upon work supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357, and by the UK Science and Technology Facilities Council. NR 50 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 15 PY 2016 VL 94 IS 5 AR 054314 DI 10.1103/PhysRevC.94.054314 PG 7 WC Physics, Nuclear SC Physics GA EC6UY UT WOS:000388273400004 ER PT J AU Chaudhary, G New, J Sanyal, J Im, P O'Neill, Z Garg, V AF Chaudhary, Gaurav New, Joshua Sanyal, Jibonananda Im, Piljae O'Neill, Zheng Garg, Vishal TI Evaluation of "Autotune" calibration against manual calibration of building energy models SO APPLIED ENERGY LA English DT Article DE Autotune; Building energy modeling; Calibration; Energy efficient buildings; Automated calibration ID HIGH-PERFORMANCE BUILDINGS; SUPPORT VECTOR MACHINES; FOURIER-SERIES MODEL; SIMULATION PROGRAMS; COMMERCIAL BUILDINGS; BAYESIAN CALIBRATION; GRAPHICAL INDEXES; COMPUTER-MODELS; CONSUMPTION; METHODOLOGY AB This paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption, zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts' manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. The paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Chaudhary, Gaurav] Indian Inst Technol Roorkee, Dept Architecture & Planning, Roorkee, Uttarakhand, India. [New, Joshua; Sanyal, Jibonananda; Im, Piljae] Oak Ridge Natl Lab, Oak Ridge, TN USA. [O'Neill, Zheng] Univ Alabama, Dept Mech Engn, Tuscaloosa, AL USA. [Garg, Vishal] Int Inst Informat Technol Hyderabad, Ctr IT Bldg Sci, Hyderabad, Telangana, India. RP New, J (reprint author), POB 2008,MS-6324, Oak Ridge, TN 37831 USA. EM gcapsuap@iitr.ac.in; newjr@ornl.gov; sanyalj@ornl.gov; imp1@ornl.gov; zoneill@eng.ua.edu; vishal@iiit.ac.in FU Department of Energy Building Technology [CEBT105, BT0201000]; DOE [DEAC05-00OR22725] FX Funding for this project was provided by field work proposal CEBT105 under Department of Energy Building Technology Activity Number BT0201000. This manuscript has been authored by UT-Battelle, LLC, under Contract Number DEAC05-00OR22725 with DOE. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 131 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD NOV 15 PY 2016 VL 182 BP 115 EP 134 DI 10.1016/j.apenergy.2016.08.073 PG 20 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EB8FJ UT WOS:000387626600012 ER PT J AU Reid, JS Lagrosas, ND Jonsson, HH Reid, EA Atwood, SA Boyd, TJ Ghate, VP Xian, P Posselt, DJ Simpas, JB Uy, SN Zaiger, K Blake, DR Bucholtz, A Campbell, JR Chew, BN Cliff, SS Holben, BN Holz, RE Hyer, EJ Kreidenweis, SM Kuciauskas, AP Lolli, S Oo, M Perry, KD Salinas, SV Sessions, WR Smirnov, A Walker, AL Wang, Q Yu, LY Zhang, JL Zhao, YJ AF Reid, Jeffrey S. Lagrosas, Nofel D. Jonsson, Haflidi H. Reid, Elizabeth A. Atwood, Samuel A. Boyd, Thomas J. Ghate, Virendra P. Xian, Peng Posselt, Derek J. Simpas, James B. Uy, Sherdon N. Zaiger, Kimo Blake, Donald R. Bucholtz, Anthony Campbell, James R. Chew, Boon Ning Cliff, Steven S. Holben, Brent N. Holz, Robert E. Hyer, Edward J. Kreidenweis, Sonia M. Kuciauskas, Arunas P. Lolli, Simone Oo, Min Perry, Kevin D. Salinas, Santo V. Sessions, Walter R. Smirnov, Alexander Walker, Annette L. Wang, Qing Yu, Liya Zhang, Jianglong Zhao, Yongjing TI Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior SO ATMOSPHERIC CHEMISTRY AND PHYSICS LA English DT Article ID MADDEN-JULIAN OSCILLATION; AIR-QUALITY; EMISSION FACTORS; SMOKE TRANSPORT; OPTICAL DEPTH; CLOUDS; PARTICLES; GROWTH; BRAZIL; SEA AB The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds. C1 [Reid, Jeffrey S.; Reid, Elizabeth A.; Xian, Peng; Bucholtz, Anthony; Campbell, James R.; Hyer, Edward J.; Kuciauskas, Arunas P.; Walker, Annette L.] Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. [Lagrosas, Nofel D.; Simpas, James B.; Uy, Sherdon N.] Manila Observ, Manila, Philippines. [Jonsson, Haflidi H.; Wang, Qing] Naval Postgrad Sch, Dept Meteorol, Monterey, CA USA. [Atwood, Samuel A.; Kreidenweis, Sonia M.] Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA. [Boyd, Thomas J.] Naval Res Lab, Marine Biogeochem Sect, Washington, DC 20375 USA. [Ghate, Virendra P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Posselt, Derek J.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Zaiger, Kimo] NAVFAC Engn & Expeditionary Warfare Ctr Port Huen, Port Hueneme, CA USA. [Blake, Donald R.] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA. [Chew, Boon Ning] Meteorol Serv, Singapore, Singapore. [Cliff, Steven S.; Zhao, Yongjing] Univ Calif Davis, Dept Appl Sci, Davis, CA USA. [Holben, Brent N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Holz, Robert E.; Oo, Min; Sessions, Walter R.] Univ Wisconsin, Space Sci Engn Ctr, Madison, WI USA. [Lolli, Simone] Univ Maryland Baltimore Cty JCET, Baltimore, MD USA. [Perry, Kevin D.] Univ Utah, Salt Lake City, UT USA. [Salinas, Santo V.] Natl Univ Singapore, Ctr Remote Imaging Sensing & Proc, Singapore, Singapore. [Smirnov, Alexander] Sci Syst & Applicat Inc, Lanham, MD USA. [Yu, Liya] Natl Univ Singapore, Dept Environm Engn, Singapore, Singapore. [Zhang, Jianglong] Univ North Dakota, Dept Atmospher Sci, Grand Forks, ND USA. RP Reid, JS (reprint author), Naval Res Lab, Marine Meteorol Div, Monterey, CA 93943 USA. EM jeffrey.reid@nrlmry.navy.mil RI Campbell, James/C-4884-2012; Kreidenweis, Sonia/E-5993-2011; Smirnov, Alexander/C-2121-2009; OI Campbell, James/0000-0003-0251-4550; Kreidenweis, Sonia/0000-0002-2561-2914; Smirnov, Alexander/0000-0002-8208-1304; LAGROSAS, NOFEL/0000-0002-8672-4717 FU ONR [NRL 6.1, 35, 32, 38]; NRL Base Program; NASA Radiation Science Program through a grant from the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) science team; NASA [NNG13HH10I] FX Organization of this research cruise and the overall 2012 IOP required the assistance of a number of organizations, including the staff of the Office of Naval Research-Global program office and reservist unit (esp. Joseph Johnson, Blake McBride, and Paul Marshall), the Manila Observatory (esp. Antonia Loyzaga and Fr. Daniel McNamara), US State Department/Embassy in Manila (esp. Maria Theresa Villa and Dovas Saulys), and the Naval Postgraduate School (esp. Richard Lind). We are most grateful to the Vasco ship management and crew, operated by Cosmix Underwater Research Ltd. (esp. Luc Heymans and Annabelle du Parc). We are also grateful to the host institutions for regional AERONET site deployment and the use of derived optical thickness data herein. Authors also benefitted from conversations with Eric Maloney (CSU) and Matthew Wheeler (CSIRO). Funding for this research cruise and analysis was provided by numerous sources. Vasco ship time procurement was provided by the NRL 6.1 Base Program via an ONR Global grant to the Manila Observatory. Funding for US scientist deployment and instrument analysis was provided by the NRL Base Program and ONR 35. Modeling analysis was provided by ONR 32. Remote sensing and model analysis was provided by the NASA Interdisciplinary Science Program. Reservist support was provided by ONR Program 38. Ground site deployments were supported by the NASA Radiation Science Program through a grant from the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS) science team. Gas chemistry was provided by the NASA Tropospheric Chemistry Program. Author James R. Campbell acknowledges the support of NASA Interagency Agreement NNG13HH10I on behalf of MPLNET and SEAC4RS science teams. NR 62 TC 1 Z9 1 U1 8 U2 8 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1680-7316 EI 1680-7324 J9 ATMOS CHEM PHYS JI Atmos. Chem. Phys. PD NOV 15 PY 2016 VL 16 IS 22 BP 14057 EP 14078 DI 10.5194/acp-16-14057-2016 PG 22 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC1JN UT WOS:000387860800002 ER PT J AU Jaworski, MA Brooks, A Kaita, R Lopes-Cardozo, N Menard, J Ono, M Rindt, P Tresemer, K AF Jaworski, M. A. Brooks, A. Kaita, R. Lopes-Cardozo, N. Menard, J. Ono, M. Rindt, P. Tresemer, K. TI Upgrades toward high-heat flux, liquid lithium plasma-facing components in the NSTX-U SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Liquid metal; Divertors; Tokamak; Liquid lithium; Porous materials ID DIVERTOR AB Liquid metal plasma-facing components (PFCs) provide numerous potential advantages over solid material components. One critique of the approach is the relatively less developed technologies associated with deploying these components in a fusion plasma-experiment. Exploration of the temperature limits of liquid lithium PFCs in a tokamak divertor and the corresponding consequences on core operation are a high priority informing the possibilities for future liquid lithium PFCs. An all-metal NSTX-U is envisioned to make direct comparison between all high-Z wall operation and liquid lithium PFCs in a single device. By executing the all-metal upgrades incrementally, scientific productivity will be maintained while enabling physics and engineering-science studies to further develop the solid- and liquid-metal components. Six major elements of a flowing liquid-metal divertor system are described and a three-step program for implementing this system is laid out. The upgrade steps involve the first high-Z divertor target upgrade in NSTX-U, pre-filled liquid metal targets and finally, an integrated, flowing liquid metal divertor target. Two example issues are described where the engineering and physics experiments are shown to be closely related in examining the prospects for future liquid metal PFCs. (C) 2016 Published by Elsevier B.V. C1 [Jaworski, M. A.; Brooks, A.; Kaita, R.; Menard, J.; Ono, M.; Tresemer, K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lopes-Cardozo, N.; Rindt, P.] TU Eindhoven, Eindhoven, Netherlands. RP Jaworski, MA (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM mjaworsk@pppl.gov FU U.S. Department of Energy [DE-AC02-09CHI1466]; PPPL Laboratory Directed Research and Development (LDRD) FX This work is supported under the U.S. Department of Energy contract #DE-AC02-09CHI1466 and PPPL Laboratory Directed Research and Development (LDRD) funding. Some of us (M.A.J.) would like to also thank R. Maingi and R. Majeski for many stimulating hours developing liquid metal strategy which informed portions of this manuscript. NR 39 TC 1 Z9 1 U1 6 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 93 EP 101 DI 10.1016/j.fusengdes.2016.07.009 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800014 ER PT J AU Rindt, P Cardozo, NJL van Dommelen, JAW Kaita, R Jaworski, MA AF Rindt, P. Cardozo, N. J. Lopes van Dommelen, J. A. W. Kaita, R. Jaworski, M. A. TI Conceptual design of a pre-loaded liquid lithium divertor target for NSTX-U SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Fusion; Divertor; Lithium; Capillary; NSTX-U ID FUSION-REACTOR DIVERTOR; CAPILLARY-PORE SYSTEM; MECHANICAL-PROPERTIES; TZM ALLOY; RECRYSTALLIZATION; TEMPERATURE; GRAPHITE; SURFACES AB In this work, a conceptual design for a pre-filled liquid lithium divertor target for the National Spherical Torus Experiment Upgrade (NSTX-U) is presented. The design is aimed at facilitating experiments with high lithium flux from the plasma facing components (PFCs) in NSTX-U and investigating the potential of capillary based liquid lithium components. In the design, lithium is supplied from a reservoir in the PFC to the plasma facing surface via capillary action in a wicking structure. This working principle is also demonstrated experimentally. Next, a titanium zirconium molybdenum (TZM) prototype design is presented, required to withstand a steady state heat flux peaking at 10 MW m(-2) for 5 s and edge localized modes depositing (130 kJ in 2 ms at 10 Hz). The main challenge is to sufficiently reduce the thermal stresses. This is achieved by dividing the surface into brushes and filling the slots in between with liquid lithium. The principle of using this liquid "interlayer" allows for thermal expansion and simultaneously heat conduction, and could be used to significantly reduce the demands to solids in future PFCs. Lithium flow to the surface is analyzed using a novel analytical model, ideally suited for design purposes. Thermal stresses in the PFC are analyzed using the finite element method. The requirements are met, and thus a prototype will be manufactured for physical testing. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. C1 [Rindt, P.; Cardozo, N. J. Lopes; van Dommelen, J. A. W.] Eindhoven Univ Technol, Sci & Technol Nucl Fus Grp, Eindhoven, Netherlands. [Kaita, R.; Jaworski, M. A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Rindt, P (reprint author), Eindhoven Univ Technol, Sci & Technol Nucl Fus Grp, Eindhoven, Netherlands. EM prindt@gmail.com NR 34 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 204 EP 212 DI 10.1016/j.fusengdes.2016.08.020 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800028 ER PT J AU Gourdin, WH Datte, P Jensen, W Khater, H Pearson, M Girard, S Paillet, P Alozy, E AF Gourdin, William H. Datte, Philip Jensen, Wayne Khater, Hesham Pearson, Mark Girard, Sylvain Paillet, Philippe Alozy, Eric TI Effect of gamma and neutron irradiation on the mechanical properties of Spectralon (TM) porous PTFE SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Gamma; Neutron; PTFE; Spectralon (TM); Load; Elongation ID AROMATIC POLYMERS; RADIATION; DEGRADATION; ELASTOMERS AB We establish a correspondence between the mechanical properties (maximum load and failure elongation) of Spectralon (TM) porous PTFE irradiated with 14 MeV neutrons and 1.17 and 1.33 MeV gammas from a cobalt-60 source. From this correspondence we infer that the effects of neutrons and gammas on this material are approximately equivalent for a given absorbed dose. (C) 2016 Elsevier B.V. All rights reserved. C1 [Gourdin, William H.; Datte, Philip; Jensen, Wayne; Khater, Hesham; Pearson, Mark] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. [Girard, Sylvain] CNRS, Lab Hubert Curien, UMR 5516, 18 Rue Pr Benoit Lauras, F-42000 St Etienne, France. [Paillet, Philippe; Alozy, Eric] CEA, DAM, DIF, F-91297 Arpajon, France. RP Gourdin, WH (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM gourdin1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to thank John Moody for his interest in the condition of the NBI scatter plate, Jack Topper (LLNL) for providing the detectors used to measure fluences and O. Duhamel and M. Raine (CEA) for performing the neutron irradiations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 19 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 343 EP 348 DI 10.1016/j.fusengdes.2016.07.005 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800050 ER PT J AU Zheng, GY Xu, XQ Ryutov, DD Xia, TY Duan, XR He, HD Pan, YD AF Zheng, G. Y. Xu, X. Q. Ryutov, D. D. Xia, T. Y. Duan, X. R. He, H. D. Pan, Y. D. TI Advanced divertor concept design and analysis for HL-2M SO FUSION ENGINEERING AND DESIGN LA English DT Article DE HL-2M; Advanced divertor; Divertor target geometry; SOLPS5.0; Heat load ID SNOWFLAKE DIVERTOR; ITER AB HL-2M is a tokamak device that is under construction and will be put into operation in the near future. Based on the magnetic coil design of HL-2M, standard divertor, snowflake divertor and tripod divertor configurations have been designed. The potential properties of snowflake divertor configurations have been analyzed, such as the low poloidal field (B-p) area around the X-point, the connection length, target plate and magnetic field shear. The linear peeling-ballooning (P-B) mode is studied by BOUT++ code for snowflake divertor configurations. According to the divertor configuration properties of HL-2M, asymmetric target plates have been concept designed to be compatible with the intended single null (SN) divertor configurations as well as double null (DN) divertor configurations. The SOLPS5.0 code is used to predict the details of the divertor plasma under the conditions of the divertor configurations noted above without impurities. This result shows that the peak heat load on an outer target plate of the advanced divertor is about 40% of that of the standard divertor. But more power will be transported to the inner target plate of advanced divertor, and this will cause a higher peak heat load on the inner target plate. The advanced divertor will also have to work under low plasma recycling conditions with high particle temperature and low density in an open divertor target geometry. When the SN configuration changes to a DN tripod divertor configuration, most of the power exhaust is handled by the outer divertor target plates and the peak heat load on these is about 4.1 MW/m(2) (with a power exhaust of 20 MW). This range of optimized divertor configurations and target geometry will enable the study of advanced divertor physics and high performance plasmas in HL-2M tokamak. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zheng, G. Y.; Duan, X. R.; He, H. D.; Pan, Y. D.] Southwestern Inst Phys, Chengdu, Peoples R China. [Xu, X. Q.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Xia, T. Y.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. RP Zheng, GY (reprint author), Southwestern Inst Phys, Chengdu, Peoples R China. EM zgy@swip.ac.cn FU Chinese ITER Plan Project Foundation [2013GB113001, 2015GB105001, 2013GB112009]; National Science Foundation of China [11575056, 11275061]; LLNL for USDOE [DE-AC52-07NA27344, LLNL-JRNL-651522] FX The authors wish to acknowledge Drs. T.N. Todd and L.J. Cai for their valuable suggestions, advice and timely help for HL-2M diver tor engineering design. Many thanks in particular to Drs. Y. Liu for his support and encouragement for HL-2M divertor design in SWIP. This work was supported by Chinese ITER Plan Project Foundation (Grant Nos. 2013GB113001, 2015GB105001 and 2013GB112009), National Science Foundation of China (grant Nos. 11575056 and 11275061), and by LLNL for USDOE under DE-AC52-07NA27344. LLNL-JRNL-651522. NR 19 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 450 EP 459 DI 10.1016/j.fusengdes.2016.06.026 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800064 ER PT J AU Lunsford, R Bortolon, A Roquemore, AL Mansfield, DK Nagy, A Maingi, R Parks, PB Jackson, G Gilson, E Chrobak, CP AF Lunsford, R. Bortolon, A. Roquemore, A. L. Mansfield, D. K. Nagy, A. Maingi, R. Parks, P. B. Jackson, G. Gilson, E. Chrobak, C. P. TI Lithium granule ablation and penetration during ELM pacing experiments at DIII-D SO FUSION ENGINEERING AND DESIGN LA English DT Article ID PELLET ABLATION AB At DIII-D, lithium granules were radially injected into the plasma at the outer midplane to trigger and pace edge localized modes (ELMs). Granules ranging in size from 300 to 1000 microns were horizontally launched into H-mode discharges with velocities near 10010, and granule to granule injection frequencies less than 500 Hz. While the smaller granules were only successful in triggering ELMs approximately 20% of the time, the larger granules regularly demonstrated ELM triggering efficiencies of greater than 80%. A fast visible camera looking along the axis of injection observed the ablation of the lithium granules. The duration of ablation was used as a benchmark for a neutral gas shielding calculation, and approximated the ablation rate and mass deposition location for the various size granules, using measured edge plasma profiles as inputs. This calculation suggests that the low triggering efficiency of the smaller granules is due to the inability of these granules to traverse the steep edge pressure gradient region and reach the top of the pedestal prior to full ablation. Published by Elsevier B.V. C1 [Lunsford, R.; Bortolon, A.; Roquemore, A. L.; Mansfield, D. K.; Nagy, A.; Maingi, R.; Gilson, E.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Parks, P. B.; Jackson, G.; Chrobak, C. P.] Gen Atom Co, San Diego, CA 92186 USA. RP Lunsford, R (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rlunsfor@pppl.gov FU U.S. Dept. of Energy [DE-AC02-09CH114661, DE-FC02-04ER546982] FX Supported in part by the U.S. Dept. of Energy under contracts DE-AC02-09CH114661 and DE-FC02-04ER546982. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 19 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 621 EP 627 DI 10.1016/j.fusengdes.2016.04.041 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800086 ER PT J AU Xiao, BJ Yuan, QP Luo, ZP Huang, Y Liu, L Guo, Y Pei, XF Chen, SL Humphreys, DA Hyatt, AW Mueller, D Calabro, G Crisanti, F Albanese, R Ambrosino, R AF Xiao, Bingjia Yuan, Qiping Luo, Zhengping Huang, Yao Liu, Lei Guo, Yong Pei, Xiaofang Chen, Shuliang Humphreys, D. A. Hyatt, A. W. Mueller, Dennis Calabro, G. Crisanti, F. Albanese, R. Ambrosino, R. TI Enhancement of EAST plasma control capabilities SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 10th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY APR 20-24, 2015 CL Inst Plasma Res, Ahmedabad, INDIA SP IAEA HO Inst Plasma Res DE EAST; PEFIT; Quasi-snowflake; Vertical control ID EQUILIBRIUM RECONSTRUCTION; TOKAMAKS AB In order to improve the plasma control performance and enhance the capability for advanced plasma control, new algorithms such as PEFIT/ISOFLUX plasma shape feedback control, quasi-snowflake plasma shape development and vertical control under new vertical control power supply, have been implemented and experimentally tested and verified in EAST 2014 campaign. P-EFIT is a rewritten version of EFIT aiming at fast real-time equilibrium reconstruction by using GPU for parallelized computation. Successful control using PEFIT/ISOFLUX was established in dedicated experiment. Snowfldivertor plasma shape has the advantage of spreading heat over the divertor target and a quasi-snowflake (QSF) configuration was achieved in discharges with I-p = 0.25 MA and B-t = 1.8T, kappa similar to 1.9, by plasma position feedback control. The shape feedback control to achieve QSF shape has been preliminary implemented by using PEFIT and the initial experimental test has been done. For more robust vertical instability control, the inner coil (IC) and its power supply have been upgraded. A new control algorithm with the combination of Bang-bang and PID controllers has been developed. It is shown that new vertical control power supply together with the new control algorithms results in higher vertical controllability. (C) 2016 Elsevier B.V. All rights reserved. C1 [Xiao, Bingjia; Yuan, Qiping; Luo, Zhengping; Huang, Yao; Liu, Lei; Guo, Yong; Pei, Xiaofang; Chen, Shuliang] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Xiao, Bingjia] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei, Peoples R China. [Humphreys, D. A.; Hyatt, A. W.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Mueller, Dennis] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Calabro, G.; Crisanti, F.] CR Frascati, ENEA UnitaTecn Fus, Via E Fermi 45, I-00044 Rome, Italy. [Albanese, R.; Ambrosino, R.] Univ Cassino, Univ Napoli Federicao II, CREATE, Via Claudio 19, I-80125 Naples, Italy. [Albanese, R.; Ambrosino, R.] Univ Napoli Parthenope, Via Claudio 19, I-80125 Naples, Italy. RP Xiao, BJ (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. EM bjxiao@ipp.ac.cn RI Xiao, Bingjia/A-1681-2017 OI Xiao, Bingjia/0000-0001-8692-2636 NR 17 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 660 EP 666 DI 10.1016/j.fusengdes.2016.06.004 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800091 ER PT J AU Hahn, SH Kim, YJ Penaflor, BG Bak, JG Han, H Hong, JS Jeon, YM Jeong, JH Joung, M Juhn, JW Kim, JS Kim, HS Lee, WR Woo, MH Eidietis, NW Ferron, JR Humphreys, DA Hyatt, A Johnson, RD Piglowski, DA Walker, ML Welander, AS Mueller, D Milne, PG AF Hahn, Sang-hee Kim, Y. J. Penaflor, B. G. Bak, J. G. Han, H. Hong, J. S. Jeon, Y. M. Jeong, J. H. Joung, M. Juhn, J. W. Kim, J. S. Kim, H. S. Lee, W. R. Woo, M. H. Eidietis, N. W. Ferron, J. R. Humphreys, D. A. Hyatt, A. Johnson, R. D. Piglowski, D. A. Walker, M. L. Welander, A. S. Mueller, D. Milne, P. G. TI Progress and plan of KSTAR plasma control system upgrade SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 10th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY APR 20-24, 2015 CL Inst Plasma Res, Ahmedabad, INDIA SP IAEA HO Inst Plasma Res DE Magnetic fusion; Tokamak; Control system; KSTAR; Plasma control; Real-time control ID TOKAMAK AB The plasma control system (PCS) has been one of essential systems in annual KSTAR plasma campaigns: starting from a single-process version in 2008, extensive upgrades are done through the previous 7 years in order to achieve major goals of KSTAR performance enhancement. Major implementations are explained in this paper. In consequences of successive upgrades, the present KSTAR PCS is able to achieve similar to 48s of 500 kA plasma pulses with full real-time shaping controls and real-time NB power controls. It has become a huge system capable of dealing with 8 separate categories of algorithms, 26 actuators directly controllable during the shot, and real-time data communication units consisting of +180 analog channels and +600 digital input/outputs through the reflective memory (RFM) network. The next upgrade of the KSTAR PCS is planned in 2015 before the campaign. An overview of the upgrade layout will be given for this paper. The real-time system box is planned to use the CERN MRG-Realtime OS, an ITER-compatible standard operating system. New hardware is developed for faster real-time streaming system for future installations of actuators/diagnostics. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hahn, Sang-hee; Kim, Y. J.; Bak, J. G.; Han, H.; Hong, J. S.; Jeon, Y. M.; Jeong, J. H.; Joung, M.; Juhn, J. W.; Kim, J. S.; Kim, H. S.; Lee, W. R.; Woo, M. H.] Natl Fus Res Inst, Daejeon, South Korea. [Penaflor, B. G.; Eidietis, N. W.; Ferron, J. R.; Humphreys, D. A.; Hyatt, A.; Johnson, R. D.; Piglowski, D. A.; Walker, M. L.; Welander, A. S.] Gen Atom, San Diego, CA USA. [Mueller, D.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Milne, P. G.] D TACQ Co Ltd, Glasgow, Lanark, Scotland. RP Hahn, SH (reprint author), Natl Fus Res Inst, Daejeon, South Korea. EM hahn76@nfri.re.kr NR 21 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 687 EP 691 DI 10.1016/j.fusengdes.2016.05.018 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800096 ER PT J AU Fredian, TW Stillerman, J Manduchi, G Rigoni, A Erickson, K AF Fredian, Thomas W. Stillerman, Joshua Manduchi, Gabriele Rigoni, Andrea Erickson, Keith TI MDSplus quality improvement project SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 10th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY APR 20-24, 2015 CL Inst Plasma Res, Ahmedabad, INDIA SP IAEA HO Inst Plasma Res DE Data acquisition systems; Data management; Data formats; MDSplus AB MDSplus is a data acquisition and analysis system used worldwide predominantly in the fusion research community. Development began 29 years ago on the OpenVMS operating system. Since that time there have been many new features added and the code has been ported to many different operating systems. There have been contributions to the MDSplus development from the fusion community in the way of feature suggestions, feature implementations, documentation and porting to different operating systems. The bulk of the development and support of MDSplus, however, has been provided by a relatively small core developer group of three or four members. Given the size of the development team and the large number of users much more effort was focused on providing new features for the community than on keeping the underlying code and documentation up to date with the evolving software development standards. To ensure that MDSplus will continue to provide the needs of the community in the future, the MDSplus development team along with other members of the MDSplus user community has commenced on a major quality improvement project. The planned improvements include changes to software build scripts to better use GNU Autoconf and Automake tools, refactoring many of the source code modules using new language features available in modern compilers, using GNU MinGW-w64 to create MS Windows distributions, migrating to a more modern source code management system, improvement of source documentation as well as improvements to the www.mdsplus.org web site documentation and layout, and the addition of more comprehensive test suites to apply to MDSplus code builds prior to releasing installation kits to the community. This work should lead to a much more robust product and establish a framework to maintain stability as more enhancements and features are added. This paper will describe these efforts that are either in progress or planned for the near future. (C) 2016 Elsevier B.V. All rights reserved. C1 [Fredian, Thomas W.; Stillerman, Joshua] MIT, 175 Albany St, Cambridge, MA 02139 USA. [Manduchi, Gabriele; Rigoni, Andrea] Consorzio RFX, Euratom ENEA Assoc, Corso Stati Uniti 4, I-35127 Padua, Italy. [Erickson, Keith] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Fredian, TW (reprint author), MIT, 175 Albany St, Cambridge, MA 02139 USA. EM twf@psfc.mit.edu OI Stillerman, Joshua/0000-0003-0901-0806 NR 1 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 906 EP 909 DI 10.1016/j.fusengdes.2016.05.034 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800136 ER PT J AU Davis, WM Tchilinguirian, GJ Carroll, T Erickson, KG Gerhardt, SP Henderson, P Kampel, SH Sichta, P Zimmer, GN AF Davis, W. M. Tchilinguirian, G. J. Carroll, T. Erickson, K. G. Gerhardt, S. P. Henderson, P. Kampel, S. H. Sichta, P. Zimmer, G. N. TI Control and data acquisition upgrades for NSTX-U SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 10th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY APR 20-24, 2015 CL Inst Plasma Res, Ahmedabad, INDIA SP IAEA HO Inst Plasma Res DE NSTX-U; MDSplus; Instrumentation and control; Data acquisition ID SPHERICAL TORUS EXPERIMENT; SYSTEM; DESIGN AB The extensive NSTX Upgrade (NSTX-U) Project includes major components which allow a doubling of the toroidal field strength to 1 T, of the Neutral Beam heating power to 12 MW, and the plasma current to 2 MA, and substantial structural enhancements to withstand the increased electromagnetic loads. The maximum pulse length will go from 1.5 to 5 s. The larger and more complex forces on the coils will be protected by a Digital Coil Protection System, which requires demanding real-time data input rates, calculations and responses. The amount of conventional digitized data for a given pulse is expected to increase from 2.5 to 5 GB per second of pulse. 2-D Fast Camera data is expectedto go from 2.5 GB/pulse to 10, and another 2 GB/pulse is expected from new IR cameras. Our network capacity will be increased by a factor of 10, with 10 Gb/s fibers used for the major trunks. 32-core Linux systems will be used for several functions, including between-shot data processing, MDSplus data serving, between-shot EFIT analysis, real-time processing, and for a new capability, between-shot TRANSP. Improvements to the MDSplus events subsystem will be made through the use of both UDP and TCP/IP based methods and the addition of a dedicated "event server". (C) 2016 Published by'Elsevier B.V. C1 [Davis, W. M.; Tchilinguirian, G. J.; Carroll, T.; Erickson, K. G.; Gerhardt, S. P.; Henderson, P.; Kampel, S. H.; Sichta, P.; Zimmer, G. N.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Davis, WM (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bdavis@pppl.gov; gtchilin@pppl.gov; tcarroll@pppl.gov; kerickson@pppl.gov; sgerhardt@pppl.gov; phenderson@pppl.gov; skampel@pppl.gov; psichta@pppl.gov; gzimmer@pppl.gov NR 16 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 932 EP 936 DI 10.1016/j.fusengdes.2016.05.005 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800142 ER PT J AU Abla, G Coviello, EN Flanagan, SM Greenwald, M Lee, X Romosan, A Schissel, DP Shoshani, A Stillerman, J Wright, J Wu, KJ AF Abla, G. Coviello, E. N. Flanagan, S. M. Greenwald, M. Lee, X. Romosan, A. Schissel, D. P. Shoshani, A. Stillerman, J. Wright, J. Wu, K. J. TI The MPO system for automatic workflow documentation SO FUSION ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 10th IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research CY APR 20-24, 2015 CL Inst Plasma Res, Ahmedabad, INDIA SP IAEA HO Inst Plasma Res DE Workflow; Provenance; Metadata; Ontology; DIII-D; EFIT ID METADATA AB Data from large-scale experiments and extreme-scale computing is expensive to produce and may be used for critical applications. However, it is not the mere existence of data that is important, but our ability to make use of it. Experience has shown that when metadata is better organized and more complete, the underlying data becomes more useful. Traditionally, capturing the steps of scientific workflows and metadata was the role of the lab notebook, but the digital era has resulted instead in the fragmentation of data, processing, and annotation. This paper presents the Metadata, Provenance, and Ontology (MPO) System, the software that can automate the documentation of scientific workflows and associated information. Based on recorded metadata, it provides explicit information about the relationships among the elements of workflows in notebook form augmented with directed acyclic graphs. A set of web-based graphical navigation tools and Application Programming Interface (API) have been created for searching and browsing, as well as programmatically accessing the workflows and data. We describe the MPO concepts and its software architecture. We also report the current status of the software as well as the initial deployment experience. (C) 2016 Elsevier B.V. All rights reserved. C1 [Abla, G.; Coviello, E. N.; Flanagan, S. M.; Lee, X.; Schissel, D. P.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Greenwald, M.; Stillerman, J.; Wright, J.] MIT, Cambridge, MA 02139 USA. [Romosan, A.; Shoshani, A.; Wu, K. J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Schissel, DP (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. EM schissel@fusion.gat.com OI Stillerman, Joshua/0000-0003-0901-0806 NR 6 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV 15 PY 2016 VL 112 BP 1007 EP 1013 DI 10.1016/j.fusengdes.2016.04.023 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA EC1AV UT WOS:000387836800158 ER PT J AU Salamonczyk, M Zhang, J Portale, G Zhu, CH Kentzinger, E Gleeson, JT Jakli, A De Michele, C Dhont, JKG Sprunt, S Stiakakis, E AF Salamonczyk, Miroslaw Zhang, Jing Portale, Giuseppe Zhu, Chenhui Kentzinger, Emmanuel Gleeson, James T. Jakli, Antal De Michele, Cristiano Dhont, Jan K. G. Sprunt, Samuel Stiakakis, Emmanuel TI Smectic phase in suspensions of gapped DNA duplexes SO NATURE COMMUNICATIONS LA English DT Article ID LIQUID-CRYSTALLINE PHASES; BANANA-SHAPED MOLECULES; ORDERED PHASES; FLEXIBILITY; PARTICLES; MODEL; ORGANIZATION; TRANSITIONS; SIMULATION; MESOPHASES AB Smectic ordering in aqueous solutions of monodisperse stiff double-stranded DNA fragments is known not to occur, despite the fact that these systems exhibit both chiral nematic and columnar mesophases. Here, we show, unambiguously, that a smectic-A type of phase is formed by increasing the DNA's flexibility through the introduction of an unpaired single-stranded DNA spacer in the middle of each duplex. This is unusual for a lyotropic system, where flexibility typically destabilizes the smectic phase. We also report on simulations suggesting that the gapped duplexes (resembling chain-sticks) attain a folded conformation in the smectic layers, and argue that this layer structure, which we designate as smectic-fA phase, is thermodynamically stabilized by both entropic and energetic contributions to the system's free energy. Our results demonstrate that DNA as a building block offers an exquisitely tunable means to engineer a potentially rich assortment of lyotropic liquid crystals. C1 [Salamonczyk, Miroslaw; Gleeson, James T.; Jakli, Antal; Sprunt, Samuel] Kent State Univ, Dept Phys, Kent, OH 44242 USA. [Salamonczyk, Miroslaw; Gleeson, James T.; Jakli, Antal; Sprunt, Samuel] Kent State Univ, Chem Phys Interdisciplinary Program, Kent, OH 44242 USA. [Zhang, Jing; Dhont, Jan K. G.; Stiakakis, Emmanuel] Forschungszentrum Julich, Inst Complex Syst ICS 3, JARA SOFT, Leo Brandt Str, D-52425 Julich, Germany. [Zhang, Jing] Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Dept Environm Nanomat, Beijing 100085, Peoples R China. [Portale, Giuseppe] Univ Groningen, Zernike Inst Adv Mat, Dept Macromol Chem & New Polymer Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. [Zhu, Chenhui] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kentzinger, Emmanuel] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany. [Kentzinger, Emmanuel] Forschungszentrum Julich, Peter Grunberg Inst PGI, JARA FIT, D-52425 Julich, Germany. [De Michele, Cristiano] Sapienza Univ Roma, Dept Phys, Piazzale A Moro 5, I-00185 Rome, Italy. [Dhont, Jan K. G.] Heinrich Heine Univ Dusseldorf, Dept Phys, Univ Str 1, D-40225 Dusseldorf, Germany. RP Stiakakis, E (reprint author), Forschungszentrum Julich, Inst Complex Syst ICS 3, JARA SOFT, Leo Brandt Str, D-52425 Julich, Germany.; De Michele, C (reprint author), Sapienza Univ Roma, Dept Phys, Piazzale A Moro 5, I-00185 Rome, Italy. EM cristiano.demichele@roma1.infn.it; e.stiakakis@fz-juelich.de RI De Michele, Cristiano/C-2345-2015; OI De Michele, Cristiano/0000-0002-8367-0610; Salamonczyk, Miroslaw/0000-0002-1085-2296 FU National Science Foundation [DMR13-07674]; Institute for Complex Adaptive Matter (ICAM) Post-doctoral Fellowship; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; PRIN-MIUR FX NWO is acknowledged for providing beamtime at the ESRF. G.P. and E.S. thank the BM26 staff, in particular Daniel Hermida-Merino, for their technical support during the beamtime. E.K. and E.S. thank Ulrich Rucker for experimental assistance with the in-house SAXS setup (GALAXI). M.S., J.T.G., A.J. and S.S. thank the National Science Foundation for supporting this research under grant no. DMR13-07674; M.S. also acknowledges support from an Institute for Complex Adaptive Matter (ICAM) Post-doctoral Fellowship. M.S., C.Z., J.T.G., A.J. and S.S. are grateful to the scientific staff at beamline 7.3.3 of the ALS. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. C.D.M. gratefully acknowledges support from PRIN-MIUR 2010-11 and thanks to Prof. Francesco Sciortino for useful discussions. NR 60 TC 0 Z9 0 U1 26 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 15 PY 2016 VL 7 AR 13358 DI 10.1038/ncomms13358 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC2RO UT WOS:000387971800001 PM 27845332 ER PT J AU Shan, XQ Charles, DS Lei, YK Qiao, RM Wang, GF Yang, WL Feygenson, M Su, D Teng, XW AF Shan, Xiaoqiang Charles, Daniel S. Lei, Yinkai Qiao, Ruimin Wang, Guofeng Yang, Wanli Feygenson, Mikhail Su, Dong Teng, Xiaowei TI Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage SO NATURE COMMUNICATIONS LA English DT Article ID ELECTROCHEMICAL ENERGY-STORAGE; HIGH-PERFORMANCE; BATTERIES; OXIDES; CARBON; WATER; ELECTROLYTE; CAPACITORS; CATHODE; METAL AB Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (similar to 1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn5O8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn5O8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn2+/Mn4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn5O8. C1 [Shan, Xiaoqiang; Charles, Daniel S.; Teng, Xiaowei] Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. [Lei, Yinkai; Wang, Guofeng] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Qiao, Ruimin; Yang, Wanli] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Feygenson, Mikhail] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Teng, XW (reprint author), Univ New Hampshire, Dept Chem Engn, Durham, NH 03824 USA. EM xw.teng@unh.edu RI Qiao, Ruimin/E-9023-2013; Yang, Wanli/D-7183-2011; Su, Dong/A-8233-2013 OI Yang, Wanli/0000-0003-0666-8063; Su, Dong/0000-0002-1921-6683 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-SC0010286]; National Science Foundation [ACI-1053575]; DOE Office of Science [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-05CH11231]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory; U.S. DOE Office of Science Facility [DE-SC0012704] FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences under Award #DE-SC0010286 (X.T., X.S. and D.S.C.). The computation were carried out at the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant number ACI-1053575 (Y.L. and G.W.). This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No DE-AC02-06CH11357. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No DE-AC02-05CH11231. The neutron scattering experiments were carried out at the Spallation Neutron Source, which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No DE-AC05-00OR22725 with Oak Ridge National Laboratory. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No DE-SC0012704. NR 32 TC 1 Z9 1 U1 96 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 15 PY 2016 VL 7 AR 13370 DI 10.1038/ncomms13370 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC2RP UT WOS:000387971900001 PM 27845345 ER PT J AU Song, J Abdelkhalik, O Robinett, R Bacelli, G Wilson, D Korde, U AF Song, Jiajun Abdelkhalik, Ossama Robinett, Rush Bacelli, Giorgio Wilson, David Korde, Umesh TI Multi-resonant feedback control of heave wave energy converters SO OCEAN ENGINEERING LA English DT Article DE Wave energy conversion; Wave energy; Feedback control of wave energy converter ID IRREGULAR WAVES; PREDICTION AB A feedback control is proposed in this paper for the control of wave energy converters. The proposed controller is a time-domain approximation for the complex conjugate control in the sense that it is an approach to an optimal solution through impedance matching. The theoretical underpinnings of complex conjugate control are fundamentally linear, and the proposed control exploits the linear control theory to provide a complex conjugate control in the time domain. The proposed control does not need wave prediction or wave measurements. The proposed control is novel in that it is a feedback strategy that has a multi-resonant generator. It targets both amplitude and phase through feedback that is constructed from individual frequency components that come from the spectral decomposition of the measurements signal. Each individual frequency uses a Proportional Derivative control to provide both optimal resistive and reactive elements. By resonating each frequency component and summing them together the controller feedback effort that maximizes the amount of absorbed power is provided. C1 [Song, Jiajun; Abdelkhalik, Ossama; Robinett, Rush] Michigan Technol Univ, Dept Engn Mech, Mech Engn, Houghton, MI 49931 USA. [Bacelli, Giorgio; Wilson, David] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Korde, Umesh] South Dakota Sch Mines & Technol, Rapid City, SD USA. RP Abdelkhalik, O (reprint author), Michigan Technol Univ, Dept Engn Mech, Mech Engn, Houghton, MI 49931 USA. EM jiajuns@mtu.edu; ooabdelk@mtu.edu; rdrobine@mtu.edu; gbacell@sandia.gov; dwilso@sandia.gov; umesh.korde@sdsmt.edu NR 38 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0029-8018 J9 OCEAN ENG JI Ocean Eng. PD NOV 15 PY 2016 VL 127 BP 269 EP 278 DI 10.1016/j.oceaneng.2016.09.046 PG 10 WC Engineering, Marine; Engineering, Civil; Engineering, Ocean; Oceanography SC Engineering; Oceanography GA EC3TV UT WOS:000388050400024 ER PT J AU Lees, JP Poireau, V Tisserand, V Grauges, E Palano, A Eigen, G Brown, DN Kolomensky, YG Koch, H Schroeder, T Hearty, C Mattison, TS McKenna, JA So, RY Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Lankford, AJ Gary, JW Long, O Eisner, AM Lockman, WS Vazquez, WP Chao, DS Cheng, CH Echenard, B Flood, KT Hitlin, DG Kim, J Miyashita, TS Ongmongkolkul, P Porter, FC Rohrken, M Huard, Z Meadows, BT Pushpawela, BG Sokoloff, MD Sun, L Smith, JG Wagner, SR Bernard, D Verderi, M Betti, F Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Santoro, V Calcaterra, A de Sangro, R Finocchiaro, G Martellotti, S Patteri, P Peruzzi, IM Piccolo, M Rotondo, M Zallo, A Passaggio, S Patrignani, C Bhuyan, B Mallik, U Chen, C Cochran, J Prell, S Ahmed, H Gritsan, AV Arnaud, N Davier, M Le Diberder, F Lutz, AM Wormser, G Lange, DJ Wright, DM Coleman, JP Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Cowan, G Banerjee, S Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Griessinger, K Hafner, A Schubert, KR Barlow, RJ Lafferty, GD Cenci, R Jawahery, A Roberts, DA Cowan, R Cheaib, R Robertson, SH Dey, B Neri, N Palombo, F Cremaldi, L Godang, R Summers, DJ Taras, P De Nardo, G Sciacca, C Raven, G Jessop, CP LoSecco, JM Honscheid, K Kass, R Gaz, A Margoni, M Posocco, M Simi, G Simonetto, F Stroili, R Akar, S Ben-Haim, E Bomben, M Bonneaud, GR Calderini, G Chauveau, J Marchiori, G Ocariz, J Biasini, M Manoni, E Rossi, A Batignani, G Bettarini, S Carpinelli, M Casarosa, G Chrzaszcz, M Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Rama, M Rizzo, G Walsh, JJ Smith, AJS Anulli, F Faccini, R Ferrarotto, F Ferroni, F Pilloni, A Piredda, G Bunger, C Dittrich, S Grunberg, O Hess, M Leddig, T Voss, C Waldi, R Adye, T Wilson, FF Emery, S Vasseur, G Aston, D Cartaro, C Convery, MR Dorfan, J Dunwoodie, W Ebert, M Field, RC Fulsom, BG Graham, MT Hast, C Innes, WR Kim, P Leith, DWGS Luitz, S Luth, V MacFarlane, DB Muller, DR Neal, H Ratcliff, BN Roodman, A Sullivan, MK Va'vra, J Wisniewski, WJ Purohit, MV Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Puccio, EMT Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Spanier, SM Ritchie, JL Schwitters, RF Izen, JM Lou, XC Bianchi, F De Mori, F Filippi, A Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Albert, J Beaulieu, A Bernlochner, FU King, GJ Kowalewski, R Lueck, T Nugent, IM Roney, JM Tasneem, N Gershon, TJ Harrison, PF Latham, TE Prepost, R Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Grauges, E. Palano, A. Eigen, G. Brown, D. N. Kolomensky, Yu. G. Koch, H. Schroeder, T. Hearty, C. Mattison, T. S. McKenna, J. A. So, R. Y. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Lankford, A. J. Gary, J. W. Long, O. Eisner, A. M. Lockman, W. S. Vazquez, W. Panduro Chao, D. S. Cheng, C. H. Echenard, B. Flood, K. T. Hitlin, D. G. Kim, J. Miyashita, T. S. Ongmongkolkul, P. Porter, F. C. Rohrken, M. Huard, Z. Meadows, B. T. Pushpawela, B. G. Sokoloff, M. D. Sun, L. Smith, J. G. Wagner, S. R. Bernard, D. Verderi, M. Betti, F. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Santoro, V. Calcaterra, A. de Sangro, R. Finocchiaro, G. Martellotti, S. Patteri, P. Peruzzi, I. M. Piccolo, M. Rotondo, M. Zallo, A. Passaggio, S. Patrignani, C. Bhuyan, B. Mallik, U. Chen, C. Cochran, J. Prell, S. Ahmed, H. Gritsan, A. V. Arnaud, N. Davier, M. Le Diberder, F. Lutz, A. M. Wormser, G. Lange, D. J. Wright, D. M. Coleman, J. P. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Cowan, G. Banerjee, Sw. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Griessinger, K. Hafner, A. Schubert, K. R. Barlow, R. J. Lafferty, G. D. Cenci, R. Jawahery, A. Roberts, D. A. Cowan, R. Cheaib, R. Robertson, S. H. Dey, B. Neri, N. Palombo, F. Cremaldi, L. Godang, R. Summers, D. J. Taras, P. De Nardo, G. Sciacca, C. Raven, G. Jessop, C. P. LoSecco, J. M. Honscheid, K. Kass, R. Gaz, A. Margoni, M. Posocco, M. Simi, G. Simonetto, F. Stroili, R. Akar, S. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Calderini, G. Chauveau, J. Marchiori, G. Ocariz, J. Biasini, M. Manoni, E. Rossi, A. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Chrzaszcz, M. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Rama, M. Rizzo, G. Walsh, J. J. Smith, A. J. S. Anulli, F. Faccini, R. Ferrarotto, F. Ferroni, F. Pilloni, A. Piredda, G. Buenger, C. Dittrich, S. Gruenberg, O. Hess, M. Leddig, T. Voss, C. Waldi, R. Adye, T. Wilson, F. F. Emery, S. Vasseur, G. Aston, D. Cartaro, C. Convery, M. R. Dorfan, J. Dunwoodie, W. Ebert, M. Field, R. C. Fulsom, B. G. Graham, M. T. Hast, C. Innes, W. R. Kim, P. Leith, D. W. G. S. Luitz, S. Luth, V. MacFarlane, D. B. Muller, D. R. Neal, H. Ratcliff, B. N. Roodman, A. Sullivan, M. K. Va'vra, J. Wisniewski, W. J. Purohit, M. V. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Puccio, E. M. T. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Spanier, S. M. Ritchie, J. L. Schwitters, R. F. Izen, J. M. Lou, X. C. Bianchi, F. De Mori, F. Filippi, A. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Albert, J. Beaulieu, A. Bernlochner, F. U. King, G. J. Kowalewski, R. Lueck, T. Nugent, I. M. Roney, J. M. Tasneem, N. Gershon, T. J. Harrison, P. F. Latham, T. E. Prepost, R. Wu, S. L. CA BABAR Collaboration TI Measurement of the B-0 -> D*(-)pi(+)pi(-)pi(+) branching fraction SO PHYSICAL REVIEW D LA English DT Article ID BABAR DETECTOR; ANNIHILATION AB Using a sample of (470.9 +/- 2.8) x 10(6) B (B) over bar pairs, we measure the decay branching fraction B(B-0 -> D*(-)pi(+)pi(-)pi(-)) = (7.26 +/- 0.11 +/- 0.31) x 10(-3), where the first uncertainty is statistical and the second is systematic. Our measurement will be helpful in studies of lepton universality by measuring B(B-0 -> D*(-)tau(+)nu(tau)) using tau(+) -> pi(+)pi(-)pi(+)(nu) over bar (tau) decays, normalized to B(B-0 -> D*(-)pi(+)pi(-)pi(-)). C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy le Vieux Phys Particules LAP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. [Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Palano, A.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Palano, A.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kolomensky, Yu. G.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brown, D. N.; Kolomensky, Yu. G.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Blinov, V. E.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Blinov, V. E.; Onuchin, A. P.] Novosibirsk State Tech Univ, Novosibirsk 630092, Russia. [Lankford, A. J.] Univ Calif Irvine, Irvine, CA 92697 USA. [Gary, J. W.; Long, O.] Univ Calif Riverside, Riverside, CA 92521 USA. [Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Kim, J.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Rohrken, M.] CALTECH, Pasadena, CA 91125 USA. [Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Betti, F.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Betti, F.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Passaggio, S.; Patrignani, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Prell, S.] Iowa State Univ, Ames, IA 50011 USA. [Ahmed, H.] Jazan Univ, Phys Dept, Jazan 22822, Saudi Arabia. [Gritsan, A. V.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.] IN2P3 CNRS, Labe Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.] Univ Paris Sud 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.] Queen Mary Univ London, London E1 4NS, England. [Cowan, G.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Banerjee, Sw.; Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Barlow, R. J.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Jawahery, A.; Roberts, D. A.] Univ Maryland, College Pk, MD 20742 USA. [Cowan, R.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Cheaib, R.; Robertson, S. H.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Dey, B.; Neri, N.; Palombo, F.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Palombo, F.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Taras, P.] Univ Montreal, Phys Particules, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Sciacca, C.] Univ Napoli Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Cremaldi, L.; Godang, R.; Summers, D. J.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; LoSecco, J. M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Margoni, M.; Simi, G.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.] Univ Denis Diderot Paris7, Univ Pierre & Marie Curie Paris6, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Biasini, M.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Smith, A. J. S.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Pilloni, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Adye, T.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; Vasseur, G.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; Luth, V.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Purohit, M. V.; Wilson, J. R.] Univ South Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] Southern Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Puccio, E. M. T.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Ritchie, J. L.; Schwitters, R. F.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; De Mori, F.; Gamba, D.] Univ Turin, Dipartimento Fis, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Albert, J.; Beaulieu, A.; Bernlochner, F. U.; King, G. J.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Tasneem, N.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Prepost, R.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Sun, L.] Wuhan Univ, Wuhan 43072, Peoples R China. [Betti, F.] Lab Accelerateur Lineaire, F-91898 Orsay, France. [Patrignani, C.] Univ Bologna, I-47921 Rimini, Italy. [Patrignani, C.] Ist Nazl Fis Nucl, Sez Bologna, I-47921 Rimini, Italy. [Barlow, R. J.] Univ Huddersfield, Huddersfield HD1 3DH, W Yorkshire, England. [Godang, R.] Univ S Alabama, Mobile, AL 36688 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, Lab Annecy le Vieux Phys Particules LAP, CNRS IN2P3, F-74941 Annecy Le Vieux, France. RI Patrignani, Claudia/C-5223-2009; Calcaterra, Alessandro/P-5260-2015 OI Patrignani, Claudia/0000-0002-5882-1747; Calcaterra, Alessandro/0000-0003-2670-4826 FU U.S. Department of Energy (Canada); National Science Foundation, the Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutsche Forschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Economia y Competitividad (Spain); Science and Technology Facilities Council (U.K.); Binational Science Foundation (U.S.-Israel); SLAC FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economia y Competitividad (Spain), the Science and Technology Facilities Council (U.K.), and the Binational Science Foundation (U.S.-Israel). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (U.S.). NR 17 TC 0 Z9 0 U1 11 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 15 PY 2016 VL 94 IS 9 AR 091101 DI 10.1103/PhysRevD.94.091101 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC1YK UT WOS:000387905300001 ER PT J AU Li, BL Chang, L Ding, M Roberts, CD Zong, HS AF Li, B. -L. Chang, L. Ding, M. Roberts, C. D. Zong, H. -S. TI Leading-twist distribution amplitudes of scalar and vector mesons SO PHYSICAL REVIEW D LA English DT Article ID QUANTUM CHROMODYNAMICS; EXCLUSIVE PROCESSES; BOUND-STATES; FORM-FACTORS; QCD; CONFINEMENT; DECAYS; FACTORIZATION; F(0)(980); EQUATIONS AB A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence constituents within a vector meson is zero, that within a scalar meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as P-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. similar or equal to 0.2 GeV at an hadronic scale. In addition, it is confirmed that the dilation characterizing ground-state PDAs is manifest in the PDAs of radial excitations too. The impact of SU(3)-flavor symmetry breaking is also considered. When compared with pseudoscalar states, it is a little stronger in scalar systems, but the size is nevertheless determined by the flavor dependence of dynamical chiral symmetry breaking and the PDAs are still skewed toward the heavier valence quark in asymmetric systems. C1 [Li, B. -L.; Zong, H. -S.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Chang, L.; Ding, M.] Nankai Univ, Sch Phys, Tianjin 300071, Peoples R China. [Roberts, C. D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Zong, H. -S.] Chinese Acad Sci, Inst Theoret Phys, State Key Lab Theoret Phys, Beijing 100190, Peoples R China. RP Li, BL (reprint author), Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. EM libolin0626@126.com; leichang@nankai.edu.cn; mhding@nankai.edu.cn; cdroberts@anl.gov; zonghs@nju.edu.cn FU National Natural Science Foundation of China [11275097, 11475085, 11535005]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; Chinese Ministry of Education, under the International Distinguished Professor program FX We are grateful for insightful comments and suggestions from F. Gao, S.-X. Qin, and C. Shi. This work was supported by National Natural Science Foundation of China (Contracts No. 11275097, No. 11475085, and No. 11535005); U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357; and Chinese Ministry of Education, under the International Distinguished Professor program. NR 72 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 15 PY 2016 VL 94 IS 9 AR 094014 DI 10.1103/PhysRevD.94.094014 PG 11 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC1YK UT WOS:000387905300002 ER PT J AU Vlasko-Vlasov, VK Colauto, F Benseman, T Rosenmann, D Kwok, WK AF Vlasko-Vlasov, V. K. Colauto, F. Benseman, T. Rosenmann, D. Kwok, W. -K. TI Triode for Magnetic Flux Quanta SO SCIENTIFIC REPORTS LA English DT Article ID VORTEX-MEMORY; SUPERCONDUCTIVITY; HYBRIDS AB In an electronic triode, the electron current emanating from the cathode is regulated by the electric potential on a grid between the cathode and the anode. Here we demonstrate a triode for single quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic vortices inside the superconductor. Scaling down our design and reducing the gap width between the magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux quantum circuitry for novel high-speed low-power superconducting electronics. C1 [Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Kwok, W. -K.] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. [Colauto, F.] Univ Fed Sao Carlos, Dept Phys, BR-13565905 Sao Carlos, SP, Brazil. [Benseman, T.] CUNY Queens Coll, 6530 Kissena Blvd, Queens, NY 11367 USA. [Rosenmann, D.] Argonne Natl Lab, Ctr Nanomat, Argonne, IL 60439 USA. RP Vlasko-Vlasov, VK (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. EM vlasko-vlasov@anl.gov FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; Sao Paulo Research Foundation FAPESP [2015/06.085-3]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. The work of F. Colauto at Argonne National Laboratory was supported by the Sao Paulo Research Foundation FAPESP (grant No. 2015/06.085-3). Use of the clean room at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 18 TC 1 Z9 1 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 15 PY 2016 VL 6 AR 36847 DI 10.1038/srep36847 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB8PY UT WOS:000387654400001 PM 27845375 ER PT J AU Conrad, PG Malespin, CA Franz, HB Pepin, RO Trainer, MG Schwenzer, SP Atreya, SK Freissinet, C Jones, JH Manning, H Owen, T Pavlov, AA Wiens, RC Wong, MH Mahaffy, PR AF Conrad, P. G. Malespin, C. A. Franz, H. B. Pepin, R. O. Trainer, M. G. Schwenzer, S. P. Atreya, S. K. Freissinet, C. Jones, J. H. Manning, H. Owen, T. Pavlov, A. A. Wiens, R. C. Wong, M. H. Mahaffy, P. R. TI In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory SO EARTH AND PLANETARY SCIENCE LETTERS LA English DT Article DE krypton; xenon; Mars atmosphere; Mars evolution; Mars Science Laboratory; Mars meteorites ID TERRESTRIAL PLANET ATMOSPHERES; NOBLE-GASES; ISOTOPIC COMPOSITION; MARTIAN METEORITES; GALE CRATER; ORIGIN; SHERGOTTITES; COMPONENTS; CHASSIGNY; NITROGEN AB Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at Kr-80 and Kr-82 in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than Xe-132 have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites. Published by Elsevier B.V. C1 [Conrad, P. G.; Malespin, C. A.; Franz, H. B.; Trainer, M. G.; Freissinet, C.; Pavlov, A. A.; Mahaffy, P. R.] NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Malespin, C. A.] Univ Space Res Assoc, Columbia, MD USA. [Franz, H. B.] NASA, CRESST, UMBC, GSFC, Greenbelt, MD 20771 USA. [Pepin, R. O.] Univ Minnesota, Minneapolis, MN 55455 USA. [Schwenzer, S. P.] Open Univ, Dept Environm Earth & Ecosyst, Walton Hall, Milton Keynes MK6 3AQ, Bucks, England. [Atreya, S. K.; Wong, M. H.] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Jones, J. H.] NASA, XI 3, ARES, JSC, Houston, TX 77058 USA. [Manning, H.] Concordia Univ, Moorhead, MN 56562 USA. [Owen, T.] Univ Hawaii, Honolulu, HI 96822 USA. [Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Conrad, PG (reprint author), NASA, Solar Syst Explorat Div, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. EM Pamela.G.Conrad@nasa.gov OI Schwenzer, Susanne Petra/0000-0002-9608-0759 FU NASA's Mars Science Laboratory mission FX Special thanks to Richard Becker for helpful discussion regarding the data analysis. We are indebted to G. Avice and two anonymous reviewers for comments that greatly improved the manuscript. This work was funded by NASA's Mars Science Laboratory mission. NR 47 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0012-821X EI 1385-013X J9 EARTH PLANET SC LETT JI Earth Planet. Sci. Lett. PD NOV 15 PY 2016 VL 454 BP 1 EP 9 DI 10.1016/j.epsl.2016.08.028 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EA5FV UT WOS:000386645700001 ER PT J AU Wu, F Xing, Y Bi, XX Yuan, YF Wang, HH Shahbazian-Yassar, R Li, L Chen, RJ Lu, J Amine, K AF Wu, Feng Xing, Yi Bi, Xuanxuan Yuan, Yifei Wang, Hsien-Hau Shahbazian-Yassar, Reza Li, Li Chen, Renjie Lu, Jun Amine, Khalil TI Systematic study on the discharge product of Pt-based lithium oxygen batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Lithium-O-2 batteries; Pt-based catalysts; Ru; Discharge products Li2O2; Atomic force microscopy ID RECHARGEABLE LI-O-2 BATTERIES; LI-AIR BATTERY; CARBON; LI2O2; CATHODES; CATALYST; DISPROPORTIONATION; NANOPARTICLE; SUPEROXIDE; REDUCTION AB Lithium oxygen batteries have attracted much attention due to the high theoretical energy density. However, they suffer a large overpotential during oxygen evolution process and thus catalysts play a vital role in the reaction. Here, we systematically explored the influence of Pt-based nanoparticle catalysts on the discharge product Li2O2. Because of the superior electrical conductivity and the strong binding with oxygen, Pt-based nanoparticles serve as active sites which are favorable for the growth of toroidal Li2O2. We also found that the content and composition of Pt-based nanoparticle catalysts exert a significant influence on the electrochemical performance of lithium oxygen batteries. The discharge products are composed of crystalline Li2O2 and oxygen-rich LiO2 characterized by high-energy X-ray diffraction and Raman. Atomic force microscopy further provides detailed information of the particle size and surface roughness. The loading of Pt catalysts determines the phase and size of Li2O2 on the discharged electrode surface. This study will be beneficial for the optimization of Pt-based catalysts used in non-aqueous lithium oxygen batteries. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wu, Feng; Xing, Yi; Li, Li; Chen, Renjie] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China. [Wu, Feng; Li, Li; Chen, Renjie] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China. [Xing, Yi; Bi, Xuanxuan; Yuan, Yifei; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Bi, Xuanxuan] Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA. [Yuan, Yifei; Shahbazian-Yassar, Reza] Michigan Technol Univ, Dept Mat Sci & Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. [Wang, Hsien-Hau] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Chen, RJ (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM chenrj@bit.edu.cn; junlu@anl.gov FU U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); U.S. Department of Energy under U.S.-China Clean Energy Research Center for Clean Vehicles (CERC-CVC); Major achievements Transformation Project for Central University in Beijing; National Natural Science Foundation of China [21373028]; National Key Program for Basic Research of China [2015CB251106]; Beijing Science and Technology Project [D151100003015001]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-1620901]; [4J-30361-0017A] FX This work was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). Financial support was also partially provided by the U.S. Department of Energy under U.S.-China Clean Energy Research Center for Clean Vehicles (CERC-CVC). This work was also supported by Major achievements Transformation Project for Central University in Beijing, the National Natural Science Foundation of China (21373028), National Key Program for Basic Research of China (2015CB251106) and Beijing Science and Technology Project (D151100003015001). The authors acknowledge the use of the Advanced Photon Source (APS) and the Center for Nanoscale Materials (CNM) that are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. R. Shahbazian-Yassar and Y. Yuan acknowledge the funding from NSF DMR-1620901 for the microscopy efforts. Y. Yuan was also partially supported via subcontract No. 4J-30361-0017A. NR 36 TC 1 Z9 1 U1 43 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2016 VL 332 BP 96 EP 102 DI 10.1016/j.jpowsour.2016.09.090 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA EA5EU UT WOS:000386643000013 ER PT J AU Tucker, MC Lambelet, D Oueslati, M Williams, B Wang, WCJ Weber, AZ AF Tucker, Michael C. Lambelet, David Oueslati, Mohamed Williams, Benjamin Wang, Wu-Chieh Jerry Weber, Adam Z. TI Improved low-cost, non-hazardous, all-iron cell for the developing world SO JOURNAL OF POWER SOURCES LA English DT Article DE Redox flow; All-iron; Developing world; Portable power ID REDOX FLOW BATTERY AB A low-cost, non-hazardous personal-power system based on an aqueous all-iron electrochemical cell is demonstrated. The system is intended to be assembled and operated by developing-world households that lack sufficient access to electricity, thereby enabling LED lighting or mobile phone charging on demand. Lab-scale hardware is used to assess the performance of individual cell components. It is found that coffee filter paper is an effective low-cost separator. Carbon felt is a low-cost electrode material, and its performance and wetting by the electrolyte solution is greatly improved by pre-treatment with sulfuric acid. The carbon felt does not degrade after a week of daily use. By using these components, performance of the system is significantly improved over the previous baseline, with power density more than doubling to 40 mW cm(-2), and iron utilization improving from 78% to 88%. The operating cost is estimated to be less than US$0.03 per mobile phone charge. Based on the lab-scale results, a stand-alone prototype consumer product is designed, fabricated, and tested. It successfully provides 2.5 h of LED illumination while consuming 200 mL of electrolyte solution via gravity feed. We anticipate these results will enable deployment of this innovative system to energy-impoverished individuals in the developing world. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tucker, Michael C.; Lambelet, David; Oueslati, Mohamed; Williams, Benjamin; Wang, Wu-Chieh Jerry; Weber, Adam Z.] Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Convers Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Tucker, MC (reprint author), LBNL, 1 Cyclotron Rd,MS 70-108B, Berkeley, CA 94720 USA. EM mctucker@lbl.gov FU U.C. Berkeley Fung Institute for Engineering Leadership; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to the U.C. Berkeley Fung Institute for Engineering Leadership and Professor Don Wroblewski for supporting the Capstone Experience student team in designing and fabricating the product prototype. This work was funded by the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 13 TC 0 Z9 0 U1 22 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2016 VL 332 BP 111 EP 117 DI 10.1016/j.jpowsour.2016.09.098 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA EA5EU UT WOS:000386643000015 ER PT J AU Wang, D Coignard, J Zeng, T Zhang, C Saxena, S AF Wang, Dai Coignard, Jonathan Zeng, Teng Zhang, Cong Saxena, Samveg TI Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services SO JOURNAL OF POWER SOURCES LA English DT Article DE Electric vehicle; Battery degradation; Vehicle-to-grid ID LITHIUM-ION BATTERIES; EMPLOYING GRAPHITE NEGATIVES; AGING MECHANISMS; LIFE; CAPACITY; SYSTEMS AB The risk of accelerated electric vehicle battery degradation is commonly cited as a concern inhibiting the implementation of vehicle-to-grid (V2G) technology. However, little quantitative evidence exists in prior literature to refute or substantiate these concerns for different grid services that vehicles may offer. In this paper, a methodology is proposed to quantify electric vehicle (EV) battery degradation from driving only vs. driving and several vehicle-grid services, based on a semi-empirical lithium-ion battery capacity fade model. A detailed EV battery pack thermal model and EV powertrain model are utilized to capture the time-varying battery temperature and working parameters including current, internal resistance and state-of-charge (SOC), while an EV is driving and offering various grid services. We use the proposed method to simulate the battery degradation impacts from multiple vehicle-grid services including peak load shaving, frequency regulation and net load shaping. The degradation impact of these grid services is compared against baseline cases for driving and uncontrolled charging only, for several different cases of vehicle itineraries, driving distances, and climate conditions. Over the lifetime of a vehicle, our results show that battery wear is indeed increased when vehicles offer V2G grid services. However, the increased wear from V2G is inconsequential compared with naturally occurring battery wear (i.e. from driving and calendar ageing) when V2G services are offered only on days of the greatest grid need (20 days/year in our study). In the case of frequency regulation and peak load shaving V2G grid services offered 2 hours each day, battery wear remains minimal even if this grid service is offered every day over the vehicle lifetime. Our results suggest that an attractive tradeoff exists where vehicles can offer grid services on the highest value days for the grid with minimal impact on vehicle battery life. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wang, Dai; Coignard, Jonathan; Zeng, Teng; Zhang, Cong; Saxena, Samveg] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS90R1121B, Berkeley, CA 94720 USA. RP Saxena, S (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS90R1121B, Berkeley, CA 94720 USA. EM samveg@berkeley.edu RI Wang, Dai/S-7041-2016 FU Department of Energy Vehicle Technologies Office, under the Grid Modernization Lab Consortium; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported with funding from the Department of Energy Vehicle Technologies Office, under the Grid Modernization Lab Consortium. Further support was provided by the Laboratory Directed Research & Development program at Lawrence Berkeley National Laboratory, by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 1 Z9 1 U1 26 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2016 VL 332 BP 193 EP 203 DI 10.1016/j.jpowsour.2016.09.116 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA EA5EU UT WOS:000386643000024 ER PT J AU Zenyuk, IV Englund, N Bender, G Weber, AZ Ulsh, M AF Zenyuk, Iryna V. Englund, Nicholas Bender, Guido Weber, Adam Z. Ulsh, Michael TI Reactive impinging-flow technique for polymer-electrolyte-fuel-cell electrode-defect detection SO JOURNAL OF POWER SOURCES LA English DT Article DE Polymer-electrolyte fuel-cells; Reactive impinging flow; Quality control; Defect detection ID INFRARED THERMOGRAPHY; LAYER-THICKNESS; RAPID DETECTION; PERFORMANCE; JET AB Reactive impinging flow (RIF) is a novel quality-control method for defect detection (i.e., reduction in Pt catalyst loading) in gas-diffusion electrodes (GDEs) on weblines. The technique uses infrared thermography to detect temperature of a nonflammable (<4% H-2) reactive mixture of H-2/O-2 in N-2 impinging and reacting on a Pt catalytic surface. In this paper, different GDE size defects (with catalyst-loading reductions of 25, 50, and 100%) are detected at various webline speeds (3.048 and 9.144 m min(-1)) and gas flowrates (32.5 or 50 standard L min(-1)). Furthermore, a model is developed and validated for the technique, and it is subsequently used to optimize operating conditions and explore the applicability of the technique to a range of defects. The model suggests that increased detection can be achieved by recting more of the impinging H-2, which can be accomplished by placing blocking substrates on the top, bottom, or both of the GDE; placing a substrate on both results in a factor of four increase in the temperature differential, which is needed for smaller defect detection. Overall, the RIF technique is shown to be a promising route for in-line, high-speed, large-area detection of GDE defects on moving weblines. (C) 2016 Elsevier B.V. All rights reserved, C1 [Zenyuk, Iryna V.; Englund, Nicholas; Weber, Adam Z.] Lawrence Berkeley Natl Lab, Energy Convers Grp, Energy Technol Area, Berkeley, CA 94720 USA. [Bender, Guido; Ulsh, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zenyuk, Iryna V.] Tufts Univ, Dept Mech Engn, Medford, MA 02155 USA. RP Ulsh, M (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM michael.ulsh@nrel.gov OI Weber, Adam/0000-0002-7749-1624; Zenyuk, Iryna/0000-0002-1612-0475 FU Fuel Cell Technologies Office, of the U. S. Department of Energy, Energy Efficiency and Renewable Energy [DE-AC36-08-G028308, DE-AC02-05CH11231] FX The authors acknowledge funding for this work provided by the Fuel Cell Technologies Office, of the U. S. Department of Energy, Energy Efficiency and Renewable Energy under contract numbers DE-AC36-08-G028308 (NREL) and DE-AC02-05CH11231 (LBNL), Program Manager Nancy Garland. NR 25 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD NOV 15 PY 2016 VL 332 BP 372 EP 382 DI 10.1016/j.jpowsour.2016.09.109 PG 11 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA EA5EU UT WOS:000386643000044 ER PT J AU Li, CY Yu, ZH Bi, WL Zhao, JY Hu, MY Zhao, JG Wu, W Luo, JL Yan, H Alp, EE Liu, HZ AF Li, Chunyu Yu, Zhenhai Bi, Wenli Zhao, Jiyong Hu, Michael Y. Zhao, Jinggeng Wu, Wei Luo, Jianlin Yan, Hao Alp, Esen E. Liu, Haozhe TI High-pressure synchrotron Mossbauer and X-ray diffraction studies: Exploring the structure-related valence fluctuation in EuNi2P2 SO PHYSICA B-CONDENSED MATTER LA English DT Article DE ThCr2Si2-type phosphides; Structural stability; Electronic phase transitions; High-pressure ID LANTHANOID-NICKEL-PHOSPHIDES; NUCLEAR RESONANT SCATTERING; THCR2SI2-TYPE STRUCTURE; PHASE-TRANSITIONS; MAGNETIC-PROPERTIES; ANOMALOUS BEHAVIOR; CRYSTAL-STRUCTURE; SUPERCONDUCTIVITY; PARAMETERS; WIDTH AB The high-pressure effect on valence fluctuation of the ThCr2Si2-type intermetallic compound EuNi2P2 has been investigated using in situ synchrotron Mossbauer spectroscopy (SMS). The isomer shift of Eu-151 in EuNi2P2 increases monotonically with increasing pressure up to 50 GPa, suggesting a valence transition of the Eu from mixed toward trivalent. The synchrotron angle-dispersive X-ray diffraction (AD-XRD) experiment shows that EuNi2P2 remains in the tetragonal structure up to 32.5 GPa at room temperature. We propose that the evolutions of bonding distance with pressure have an obvious effect on the valence fluctuation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Li, Chunyu; Yu, Zhenhai; Yan, Hao; Liu, Haozhe] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. [Li, Chunyu; Yu, Zhenhai; Zhao, Jinggeng; Liu, Haozhe] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Nat Sci Res Ctr, Harbin 150080, Peoples R China. [Bi, Wenli; Zhao, Jiyong; Hu, Michael Y.; Alp, Esen E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Bi, Wenli] Univ Illinois, Dept Geol, Urbana, IL 61801 USA. [Wu, Wei; Luo, Jianlin] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Luo, Jianlin] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China. RP Yu, ZH; Yan, H; Liu, HZ (reprint author), Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China. EM yuzh@hpstar.ac.cn; yanhao@hpstar.ac.cn; haozhe.liu@hpstar.ac.cn RI Liu, Haozhe/E-6169-2011 FU CIW; CDAC; UNLV; LLNL through DOE-NNSA [DE-NA0001974]; DOE-BES; NSF; DOE-BES [DE-AC02-06CH11357]; Consortium for Materials Properties Research in Earth Sciences (COMPRES), the National Science Foundation (NSF) [DMR-1104742]; National Natural Science Foundation of China [10904022, U1530402, 11374075]; National Basic Research Program of China [2011CB921700, 2015CB921300]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB07020000] FX We thank Stanislav V. Sinogeikin (16-ID-B, APS, ANL) for experimental help. The High-Pressure Collaborative Access Team (HPCAT) facility is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA (Grant no. DE-NA0001974), DOE-BES and NSF. APS is supported by DOE-BES, under Contract no. DE-AC02-06CH11357. Support by Consortium for Materials Properties Research in Earth Sciences (COMPRES), the National Science Foundation (NSF) through Grant no. DMR-1104742 is gratefully acknowledged. This work was partially supported by National Natural Science Foundation of China (Grant no. 10904022, U1530402 and 11374075), the National Basic Research Program of China (Grant nos. 2011CB921700, No. 2015CB921300) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB07020000). NR 54 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 EI 1873-2135 J9 PHYSICA B JI Physica B PD NOV 15 PY 2016 VL 501 BP 101 EP 105 DI 10.1016/j.physb.2016.08.024 PG 5 WC Physics, Condensed Matter SC Physics GA EA7MQ UT WOS:000386815500015 ER PT J AU Mamontov, E AF Mamontov, Eugene TI Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering SO SOLID STATE IONICS LA English DT Article DE Oxygen diffusion; Quasielastic neutron scattering ID COMPUTATIONAL SIMULATIONS; CRYSTALLOGRAPHIC ANALYSIS; STORAGE CAPACITY; DELTA-PHASE; DELTA-BI2O3; DIFFRACTION; BI2O3; CONDUCTIVITY; DYNAMICS; DISORDER AB We present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. We have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancy distance in the anion sublattice of the fluorite-related structure of bismuth oxide. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Mamontov, E (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM mamontove@ornl.gov RI Mamontov, Eugene/Q-1003-2015 OI Mamontov, Eugene/0000-0002-5684-2675 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); U.S. DOE [DE-AC05-00OR22725] FX We are grateful to Rebecca Mills for help and discussion of sample environment. We appreciate helpful and inspirational discussion of the data with Niina Jalarvo. The neutron scattering experiments at Oak Ridge National Laboratory's (ORNL) Spallation Neutron Source were supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). ORNL is managed by UTBattelle, LLC, for the U.S. DOE under Contract No. DE-AC05-00OR22725. NR 41 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD NOV 15 PY 2016 VL 296 BP 158 EP 162 DI 10.1016/j.ssi.2016.09.022 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA EA6MN UT WOS:000386743400023 ER PT J AU Peng, ZZ Yu, DT Huang, D Heiser, J Kalb, P AF Peng, Zhenzhou Yu, Dantong Huang, Dong Heiser, John Kalb, Paul TI A hybrid approach to estimate the complex motions of clouds in sky images SO SOLAR ENERGY LA English DT Article DE Sky imagery; Cloud motion tracking; Optical flow ID UC SAN-DIEGO; SOLAR IRRADIANCE; OPTICAL-FLOW; FORECAST; CLASSIFICATION; REGISTRATION; VARIABILITY; SURFACE; FIELDS; IMPACT AB Tracking the motion of clouds is essential to forecasting the weather and to predicting the short-term solar energy generation. Existing techniques mainly fall into two categories: variational optical flow, and block matching. In this paper, we summarize recent advances in estimating cloud motion using ground-based sky imagers and quantitatively evaluate state-of-the-art approaches. Then we propose a hybrid tracking framework to incorporate the strength of both block matching and optical flow models. To validate the accuracy of the proposed approach, we introduce a series of synthetic images to simulate the cloud movement and deformation, and thereafter comprehensively compare our hybrid approach with several representative tracking algorithms over both simulated and real images collected from various sites/imagers. The results show that our hybrid approach outperforms state-of-the-art models by reducing at least 30% motion estimation errors compared with the ground-truth motions in most of simulated image sequences. Moreover, our hybrid model demonstrates its superior efficiency in several real cloud image datasets by lowering at least 15% Mean Absolute Error (MAE) between predicted images and ground-truth images. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Peng, Zhenzhou] SUNY Stony Brook, Dept Elect & Comp Engn, 100 Nicolls Rd, Stony Brook, NY 11790 USA. [Peng, Zhenzhou; Heiser, John; Kalb, Paul] Brookhaven Natl Lab, 2 Ctr St, Upton, NY 11973 USA. [Huang, Dong] NASA, GSFC, Mail Code 613, Greenbelt, MD 20771 USA. [Yu, Dantong] New Jersey Inst Technol, Martin Tuchman Sch Management, Newark, NJ 07102 USA. RP Huang, D (reprint author), NASA, GSFC, Mail Code 613, Greenbelt, MD 20771 USA.; Yu, DT (reprint author), New Jersey Inst Technol, Martin Tuchman Sch Management, Newark, NJ 07102 USA. EM zhenzhou.peng@stonybrook.edu; dantong.yu@njit.edu; dong.huang@nasa.gov; heiser@bnl.gov; kalb@bnl.gov NR 67 TC 0 Z9 0 U1 9 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD NOV 15 PY 2016 VL 138 BP 10 EP 25 DI 10.1016/j.solener.2016.09.002 PG 16 WC Energy & Fuels SC Energy & Fuels GA EA2GF UT WOS:000386410100002 ER PT J AU Ribeiro, GHPM Chambers, JQ Peterson, CJ Trumbore, SE Marra, DM Wirth, C Cannon, JB Negron-Juarez, RI Lima, AJN de Paula, EVCM Santos, J Higuchi, N AF Ribeiro, G. H. P. M. Chambers, J. Q. Peterson, C. J. Trumbore, S. E. Magnabosco Marra, D. Wirth, C. Cannon, J. B. Negron-Juarez, R. I. Lima, A. J. N. de Paula, E. V. C. M. Santos, J. Higuchi, N. TI Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species SO FOREST ECOLOGY AND MANAGEMENT LA English DT Article DE Tree static winching; Critical turning moment; Tree allometry; Functional traits; Blowdown; Wind-disturbance ID WOOD DENSITY; RAIN-FOREST; NATURAL DISTURBANCES; TROPICAL FORESTS; LARGE BLOWDOWNS; NORWAY SPRUCE; WIND EXPOSURE; ROOT-GROWTH; SCOTS PINE; STABILITY AB High descending winds generated by convective storms are a frequent and a major source of tree mortality disturbance events in the Amazon, affecting forest structure and diversity across a variety of scales, and more frequently observed in western and central portions of the basin. Soil texture in the Central Amazon also varies significantly with elevation along a topographic gradient, with decreasing clay content on plateaus, slopes and valleys respectively. In this study we investigated the critical turning moments (M-crit - rotational force at the moment of tree failure, an indicator of tree stability or wind resistance) of 60 trees, ranging from 19.0 to 41.1 cm in diameter at breast height (DBH) and located in different topographic positions, and for different species, using a cable-winch load-cell system. Our approach used torque as a measure of tree failure to the point of snapping or uprooting. This approach provides a better understanding of the mechanical forces required to topple trees in tropical forests, and will inform models of wind throw disturbance. Across the topographic positions, size controlled variation in M-crit was quantified for cardeiro (Scleronema mincranthum (Ducke) Ducke), mata-mata (Eschweilera spp.), and a random selection of trees from 19 other species. Our analysis of M-crit revealed that tree resistance to failure increased with size (DBH and ABG) and differed among species. No effects of topography or failure mode were found for the species either separately or pooled. For the random species, total variance in M-crit explained by tree size metrics increased from an R-2 of 0.49 for DBH alone, to 0.68 when both DBH and stem fresh wood density (SWD) were included in a multiple regression model. This mechanistic approach allows the comparison of tree vulnerability induced by wind damage across ecosystems, and facilitates the use of forest structural information in ecosystem models that include variable resistance of trees to mortality inducing factors. Our results indicate that observed topographic differences in wind throw vulnerability are likely due to elevational differences in wind velocities, rather than by differences in soil-related factors that might effect M-crit. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ribeiro, G. H. P. M.; Chambers, J. Q.; Magnabosco Marra, D.; Lima, A. J. N.; de Paula, E. V. C. M.; Santos, J.; Higuchi, N.] Natl Inst Amazonian Res INPA, Av Andre Araujo 2-936, Manaus, Amazonas, Brazil. [Chambers, J. Q.; Magnabosco Marra, D.] Univ Calif Berkeley, Dept Geog, Berkeley, CA 94720 USA. [Peterson, C. J.] Univ Georgia, Dept Plant Biol, 2502 Miller Plant Sci, Athens, GA 30602 USA. [Trumbore, S. E.] Max Planck Inst Biogeochem, Dept Biogeochem Proc, Hans Knoll Str 10, D-07745 Jena, Germany. [Magnabosco Marra, D.; Wirth, C.] Univ Leipzig, AG Spezielle Bot & Funkt Biodiversitat, Johannisallee 21, D-04103 Leipzig, Germany. [Cannon, J. B.] Colorado State Univ, Dept Forest & Rangeland Stewardship, Ft Collins, CO 80523 USA. [Negron-Juarez, R. I.] Lawrence Berkeley Natl Lab, Earth & Environm Sci Area, 1 Cyclotron Rd,MS74R316C, Berkeley, CA 94720 USA. RP Ribeiro, GHPM (reprint author), Natl Inst Amazonian Res INPA, Av Andre Araujo 2-936, Manaus, Amazonas, Brazil. EM gabrielgiga@gmail.com OI Ribeiro, Gabriel/0000-0002-3343-3043 FU Brazilian Council for Scientific and Technological Development (CNPq) [14/2012, 473357/2012-7]; Next Generation Ecosystem Experiment (NGEE) Tropics at Lawrence Berkeley National Laboratory; Max-Planck-Institute for Biogeochemistry within the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE); Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy as part of Next-Generation Ecosystems Experiments (NGEE Tropics) Program [DE-AC02-05CH11231]; Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Regional and Global Climate Modeling (RGCM) and Program [DE-AC02-05CH11231]; INCT - Madeiras da Amazonia FX The authors gratefully thank the staff of EEST. This study was financed by the Brazilian Council for Scientific and Technological Development (CNPq) within the projects Succession After Wind throws (SAWI) (Chamada Universal MCTI/No14/2012, Proc. 473357/2012-7), INCT - Madeiras da Amazonia, and the Next Generation Ecosystem Experiment (NGEE) Tropics at Lawrence Berkeley National Laboratory, and also supported by the Max-Planck-Institute for Biogeochemistry within the Tree Assimilation and Carbon Allocation Physiology Experiment (TACAPE). Robinson Negron-juarez was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 as part of Next-Generation Ecosystems Experiments (NGEE Tropics) and the Regional and Global Climate Modeling (RGCM) and Programs. NR 80 TC 0 Z9 0 U1 17 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 EI 1872-7042 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD NOV 15 PY 2016 VL 380 BP 1 EP 10 DI 10.1016/j.foreco.2016.08.039 PG 10 WC Forestry SC Forestry GA DZ1NQ UT WOS:000385605500001 ER PT J AU Phillips, RP Ibanez, I D'Orangeville, L Hanson, PJ Ryan, MG McDowell, NG AF Phillips, Richard P. Ibanez, Ines D'Orangeville, Loic Hanson, Paul J. Ryan, Michael G. McDowell, Nathan G. TI A belowground perspective on the drought sensitivity of forests: Towards improved understanding and simulation SO FOREST ECOLOGY AND MANAGEMENT LA English DT Review DE Water stress; Ecosystem modeling; Drought resilience; Rooting strategies; Earth system models; Land surface models ID CARBON-ISOTOPE DISCRIMINATION; TERRESTRIAL BIOSPHERE MODELS; NET PRIMARY PRODUCTIVITY; PLANT WATER-USE; CLIMATE-CHANGE; SOIL-WATER; HYDRAULIC REDISTRIBUTION; TEMPERATE FOREST; STOMATAL CONDUCTANCE; GROWTH-RESPONSE AB Predicted increases in the frequency and intensity of droughts across the temperate biome have highlighted the need to examine the extent to which forests may differ in their sensitivity to water stress. At present, a rich body of literature exists on how leaf- and stem-level physiology influence tree drought responses; however, less is known regarding the dynamic interactions that occur belowground between roots and soil physical and biological factors. Hence, there is a need to better understand how and why processes occurring belowground influence forest sensitivity to drought. Here, we review what is known about tree species' belowground strategies for dealing with drought, and how physical and biological characteristics of soils interact with rooting strategies to influence forest sensitivity to drought. Then, we highlight how a belowground perspective of drought can be used in models to reduce uncertainty in predicting the ecosystem consequences of droughts in forests. Finally, we describe the challenges and opportunities associated with managing forests under conditions of increasing drought frequency and intensity, and explain how a belowground perspective on drought may facilitate improved forest management. (C) 2016 Elsevier B.V. All rights reserved. C1 [Phillips, Richard P.; D'Orangeville, Loic] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. [Ibanez, Ines] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA. [D'Orangeville, Loic] Univ Quebec Montreal, Ctr Etud Foret, Case Postale 8888,Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada. [Hanson, Paul J.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37830 USA. [Hanson, Paul J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Ryan, Michael G.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [McDowell, Nathan G.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Phillips, RP (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. EM rpp6@indiana.edu RI Hanson, Paul J./D-8069-2011; Ryan, Michael/A-9805-2008 OI Hanson, Paul J./0000-0001-7293-3561; Ryan, Michael/0000-0002-2500-6738 FU Department of Energy (DOE), Office of Biological and Environmental Research; National Science Foundation (NSF); DOE Office of Biological and Environmental Research; DOE [DE-AC05-00OR22725]; DOE, Office of Science; NSF-DEB [1252664] FX All authors would like to thank Kim Novick, Eddie Brzostek, Anthony O'Grady and two anonymous reviewers for their constructive feedback on an earlier version of the manuscript. This review is a modified version of a comprehensive synthesis developed by the authors for the USDA Forest Service Report "Effects of Drought on Forests and Rangelands in the United States: A Comprehensive Science Synthesis", a part of the National Climate Assessment. RPP acknowledges support from the Department of Energy (DOE), Office of Biological and Environmental Research (via the Ameriflux Management Project). RPP wishes to acknowledge the National Science Foundation (NSF) for its support of the Research Coordination Network "Drought-Net". PJH was supported by the DOE Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under contract DE-AC05-00OR22725. NGM was supported by the DOE, Office of Science, Survival-Mortality and Next Generation Ecosystem Experiment-Tropics projects. II was partially supported by NSF-DEB (award # 1252664). NR 134 TC 3 Z9 3 U1 42 U2 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-1127 EI 1872-7042 J9 FOREST ECOL MANAG JI For. Ecol. Manage. PD NOV 15 PY 2016 VL 380 BP 309 EP 320 DI 10.1016/j.foreco.2016.08.043 PG 12 WC Forestry SC Forestry GA DZ1NQ UT WOS:000385605500032 ER PT J AU Liu, J Pearce, CI Shi, L Wang, ZM Shi, Z Arenholz, E Rosso, KM AF Liu, Juan Pearce, Carolyn I. Shi, Liang Wang, Zheming Shi, Zhi Arenholz, Elke Rosso, Kevin M. TI Particle size effect and the mechanism of hematite reduction by the outer membrane cytochrome OmcA of Shewanella oneidensis MR-1 SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article DE Hematite; Nanoparticle; Size effect; Microbial iron reduction; Aggregation electron transfer; Cytochrome ID MAGNETIC CIRCULAR-DICHROISM; C-TYPE CYTOCHROME; DISSIMILATORY IRON REDUCTION; ELECTRON-TRANSFER; FE3-XTIXO4 NANOPARTICLES; MICROBIAL REDUCTION; AGGREGATION STATE; SURFACE-STRUCTURE; IRON(III) OXIDES; SITE OCCUPANCY AB The cycling of iron at the Earth's near surface is profoundly influenced by dissimilatory metal reducing microorganisms, and many studies have focused on unraveling electron transfer mechanisms between these bacteria and Fe(III)-(oxyhydr) oxides. However, these efforts have been complicated by the fact that these minerals often occur in the micro- to nanosize regime, and in relevant natural environments as well as in the laboratory are subject to aggregation. The nature of the physical interface between the cellular envelope, the outer-membrane cytochromes responsible for facilitating the interfacial electron transfer step, and these complex mineral particulates is thus difficult to probe. Previous studies using whole cells have reported reduction rates that do not correlate with particle size. In the present study we isolate the interaction between the decaheme outer-membrane cytochrome OmcA of Shewanella oneidensis and nanoparticulate hematite, examining the reduction rate as a function of particle size and reaction products through detailed characterization of the electron balance and the structure and valence of iron at particle surfaces. By comparison with abiotic reduction via the smaller molecule ascorbic acid, we show that the reduction rate is systematically controlled by the sterically accessible interfacial contact area between OmcA and hematite in particle aggregates; rates increase once pore throat sizes in aggregates become as large as OmcA. Simultaneous measure of OmcA oxidation against Fe(II) release shows a ratio of 1: 10, consistent with a cascade OmcA oxidation mechanism heme by heme. X-ray absorption spectroscopies reveal incipient magnetite on the reacted surfaces of the hematite nanoparticles after reaction. The collective findings establish the importance of accessibility of physical contact between the terminal reductases and iron oxide surfaces, and through apparent consistency of observations help reconcile behavior reported at the larger more complex scale of whole cell studies. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Liu, Juan] Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. [Liu, Juan; Pearce, Carolyn I.; Shi, Liang; Wang, Zheming; Shi, Zhi; Rosso, Kevin M.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Pearce, Carolyn I.] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England. [Arenholz, Elke] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Liu, J (reprint author), Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China.; Rosso, KM (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM juan.liu@pku.edu.cn; kevin.rosso@pnl.gov RI Wang, Zheming/E-8244-2010; Liu, Juan/G-6035-2016 OI Wang, Zheming/0000-0002-1986-4357; FU PNNL Science Focus Area project - U.S. Department of Energy (DOE) Office of Biological and Environmental Research (OBER), Subsurface Biogeochemical Research program; DOE Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Bio-sciences Division; National Natural Science Foundation of China [41472306]; DOE OBER located at PNNL; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX This material is primarily based upon work supported by the PNNL Science Focus Area project funded by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (OBER), Subsurface Biogeochemical Research program. Nanoparticle characterization and expertise provided by KMR was through the Geosciences program at PNNL funded by the DOE Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Bio-sciences Division. JL acknowledges support from the National Natural Science Foundation of China (No. 41472306). A portion of the experiments were performed at the Environmental Molecular Sciences Laboratory (EMSL), a national user facility supported by the DOE OBER and located at PNNL. XA and XMCD measurements were performed at BL4.0.2 at the Advanced Light Source supported by the DOE Office of Science, Office of Basic Energy Sciences under contract No. DE-AC02-05CH11231. We gratefully acknowledge helpful suggestions from Prof. Michael F. Hochella, Jr. and Dr. Harish Veeramani. NR 56 TC 2 Z9 2 U1 42 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 15 PY 2016 VL 193 BP 160 EP 175 DI 10.1016/j.gca.2016.08.022 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DZ0DP UT WOS:000385507900010 ER PT J AU Dubinsky, EA Butkus, SR Andersen, GL AF Dubinsky, Eric A. Butkus, Steven R. Andersen, Gary L. TI Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification SO WATER RESEARCH LA English DT Article DE Microbial source tracking; PhyloChip microarray; Machine learning; Fecal indicator bacteria; Pathogen TMDL; Microbial community analysis ID ESCHERICHIA-COLI; FECAL POLLUTION; FRESH-WATER; BEACH SANDS; MICROARRAY ANALYSIS; COASTAL WATERS; RANDOM FORESTS; BACTERIA; PERSISTENCE; ENVIRONMENT AB Sources of fecal indicator bacteria are difficult to identify in watersheds that are impacted by a variety of non-point sources. We developed a molecular source tracking test using the PhyloChip microarray that detects and distinguishes fecal bacteria from humans, birds, ruminants, horses, pigs and dogs with a single test. The multiplexed assay targets 9001 different 25-mer fragments of 16S rRNA genes that are common to the bacterial community of each source type. Both random forests and SourceTracker were tested as discrimination tools, with SourceTracker classification producing superior specificity and sensitivity for all source types. Validation with 12 different mammalian sources in mixtures found 100% correct identification of the dominant source and 84-100% specificity. The test was applied to identify sources of fecal indicator bacteria in the Russian River watershed in California. We found widespread contamination by human sources during the wet season proximal to settlements with antiquated septic infrastructure and during the dry season at beaches during intense recreational activity. The test was more sensitive than common fecal indicator tests that failed to identify potential risks at these sites. Conversely, upstream beaches and numerous creeks with less reliance on onsite wastewater treatment contained no fecal signal from humans or other animals; however these waters did contain high counts of fecal indicator bacteria after rain. Microbial community analysis revealed that increased E. coli and enterococci at these locations did not co-occur with common fecal bacteria, but rather co-varied with copiotrophic bacteria that are common in freshwaters with high nutrient and carbon loading, suggesting runoff likely promoted the growth of environmental strains of E. coli and enterococci. These results indicate that machine-learning classification of PhyloChip microarray data can outperform conventional single marker tests that are used to assess health risks, and is an effective tool for distinguishing numerous fecal and environmental sources of pathogen indicators. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Dubinsky, Eric A.; Andersen, Gary L.] Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA. [Butkus, Steven R.] North Coast Reg Water Qual Control Board, Santa Rosa, CA 95403 USA. RP Andersen, GL (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM glandersen@lbl.gov FU California State Water Resources Control Board [11-150-110]; U.S. Department of Energy [DE-AC02-05CH1123] FX Funding for this project has been provided in part through an agreement with the California State Water Resources Control Board, contract 11-150-110. A portion of this work was performed under the auspices of the U.S. Department of Energy under contract DE-AC02-05CH1123 to Lawrence Berkeley National Laboratory. We would like to thank the Sonoma County Public Health Laboratory for conducting FIB analyses. NR 59 TC 0 Z9 0 U1 38 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD NOV 15 PY 2016 VL 105 BP 56 EP 64 DI 10.1016/j.watres.2016.08.035 PG 9 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA DZ5KW UT WOS:000385902000006 PM 27598696 ER PT J AU Gin, S Neill, L Fournier, M Frugier, P Ducasse, T Tribet, M Abdelouas, A Parruzot, B Neeway, J Wall, N AF Gin, S. Neill, L. Fournier, M. Frugier, P. Ducasse, T. Tribet, M. Abdelouas, A. Parruzot, B. Neeway, J. Wall, N. TI The controversial role of inter-diffusion in glass alteration SO CHEMICAL GEOLOGY LA English DT Article DE Glass; Alteration; Dissolution; Kinetics; Rate; SON68; Mechanisms; Leaching; Inter-diffusion ID NUCLEAR-WASTE GLASS; INTERFACIAL DISSOLUTION-REPRECIPITATION; INTERNATIONAL SIMPLE GLASS; LONG-TERM BEHAVIOR; 50 DEGREES-C; BOROSILICATE GLASS; ALTERATION MECHANISMS; SURFACE-LAYERS; PERFORMANCE ASSESSMENT; SOLUTION CHEMISTRY AB Current kinetic models for nuclear waste glasses (e.g. GM2001, GRAAL) are based on a set of mechanisms that have been generally agreed upon within the international waste glass community. These mechanisms are: hydration and ion exchange reactions (the two processes are referred as inter-diffusion), hydrolysis of the silicate network, and condensation/precipitation of partly or completely hydrolyzed species that produces a porous and amorphous layer and crystalline phases on surface of the altered glass. Recently, a new idea with origins in the mineral dissolution community has been proposed that excludes inter-diffusion processes as a potential rate limiting mechanism. To understand how the newly,proposed interfacial dissolution/precipitation model can change the current understanding of glass corrosion, a key experiment used to account for this model was replicated to further revisit the interpretation. This experiment was performed far from saturation, at 50 degrees C, with SON68 glass, in static mode, deionized water, and a S/V ratio of 10 m(-1) for 6 months. Results were repeatable and showed that glass dissolution rate progressively dropped by similar to 1 order of magnitude compared to the forward rate, suggesting that a dense surface layer was under construction. According to previous and new solids characterizations, it is concluded that neither a simple inter-diffusion model nor the interfacial dissolution/precipitation model can account for the observed elemental profiles within the alteration layer. More generally, far-from- and close-to-saturation conditions must be distinguished, This argument is bolstered by literature where evidence shows that inter-diffusion takes place in acidic conditions and far from saturation. However, closer to saturation, when a sufficiently dense layer is formed, a new approach is proposed requiring a full description of chemical reactions taking place within the alteration layer and an accurate budget of hydrous species along the profile as it is thought that the access of a sufficient amount of water to the pristine glass is the rate-limiting process in these conditions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Gin, S.; Fournier, M.; Frugier, P.; Ducasse, T.; Tribet, M.] CEA, DEN, DTCD, SECM, F-30207 Bagnols Sur Ceze, France. [Neill, L.; Wall, N.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Abdelouas, A.] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3,UMR 6457, F-44307 Nantes 3, France. [Parruzot, B.; Neeway, J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Gin, S (reprint author), CEA, DEN, DTCD, SECM, F-30207 Bagnols Sur Ceze, France. EM stephane.gin@cea.fr OI Fournier, Maxime/0000-0001-9394-4059 FU Chateaubriand Fellowship, at CEA Marcoule; CEA; Embassy of France in the U.S.; Areva FX This work was initiated during the visit of Lindsey Neill, PhD student at Washington State University and recipient of the 2014 Chateaubriand Fellowship, at CEA Marcoule from September 2014 to June 2015. Authors are grateful to CEA, Areva, and the Embassy of France in the U.S. for the financial support. NR 92 TC 0 Z9 0 U1 25 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD NOV 15 PY 2016 VL 440 BP 115 EP 123 DI 10.1016/j.chemgeo.2016.07.014 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DW8WZ UT WOS:000383937500010 ER PT J AU Ballal, D Srivastava, R AF Ballal, Deepti Srivastava, Rakesh TI Modeling the interfacial properties of Poly(Ethylene oxide-Co-Propylene oxide) polymers at water-toluene interface SO FLUID PHASE EQUILIBRIA LA English DT Article DE Water-oil interface; Surfactant; Interfacial tension; Modified iSAFT; Molecular modeling; Polymers ID CRUDE-OIL-EMULSIONS; NONIONIC SURFACTANTS; AQUEOUS-SOLUTIONS; PHASE-EQUILIBRIA; DEMULSIFICATION; SYSTEMS; DESTABILIZATION; SIMULATIONS; PERFORMANCE; COPOLYMERS AB Understanding how the structure of demulsifiers affects its interfacial properties is essential to developing new demulsifiers with desired properties. Modeling is an important tool to methodically study the effect of polymer architecture on its microscopic structure and macroscopic properties. Here modified interfacial Statistical Associating Fluid Theory (iSAFT) was used to study the interfacial properties of additives at water-toluene interface. The density profile, surface adsorption and interfacial tension (IFT) was predicted for different architectures of poly (ethylene oxide-co-propylene oxide) (PEO-PPO) at the interface. The predicted IFT was validated against experimental data (for Pluronics, Tetronics and Poloxamer) and the theory was found to be in good agreement with experiments. The effect of molecular weight, branching, PEO:PPO ratio and ordering of the PEO and PPO blocks was studied. It was found that IFT was lowest for high molecular weight and highly branched polymers and the IFT curve went through a minima with varying PEO:PPO ratio. The hydrophilic PEO block on the outside and hydrophobic PPO block as the inside block led to more interfacial adsorption and lowering of IFT compared to the reverse polymer (PPO outside and PEO inside). (C) 2016 Elsevier B.V. All rights reserved. C1 [Ballal, Deepti; Srivastava, Rakesh] Dow Chem Co USA, Core Res & Dev, Analyt Sci, Midland, MI 48667 USA. [Ballal, Deepti] Ames Lab, Ames, IA 50011 USA. RP Ballal, D (reprint author), Dow Chem Co USA, Core Res & Dev, Analyt Sci, Midland, MI 48667 USA.; Ballal, D (reprint author), Ames Lab, Ames, IA 50011 USA. EM dballal@ameslab.gov NR 35 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3812 EI 1879-0224 J9 FLUID PHASE EQUILIBR JI Fluid Phase Equilib. PD NOV 15 PY 2016 VL 427 BP 209 EP 218 DI 10.1016/j.fluid.2016.07.013 PG 10 WC Thermodynamics; Chemistry, Physical; Engineering, Chemical SC Thermodynamics; Chemistry; Engineering GA DW8ZO UT WOS:000383944200024 ER PT J AU Mu, L Wang, JP Ye, X Zhao, S AF Mu, Lin Wang, Junping Ye, Xiu Zhao, Shan TI A new weak Galerkin finite element method for elliptic interface problems SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Finite element method; Weak Galerkin method; Elliptic interface problem; Nonsmooth interface; Low solution regularity; High order method ID BOUNDARY MIB METHOD; DISCONTINUOUS COEFFICIENTS; MATCHED INTERFACE; CONVERGENCE ANALYSIS; SINGULAR SOURCES; BLOOD-FLOW; EQUATIONS; FORMULATION; DOMAINS; REGIONS AB A new weak Galerkin (WG) finite element method is introduced and analyzed in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H-1 and L-2 norms are established for the present WG finite element solutions. Extensive numerical experiments have been conducted to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L infinity norm for both C-1 and H-2 continuous solutions. (C) 2016 Elsevier Inc. All rights reserved. C1 [Mu, Lin] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Wang, Junping] Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA. [Ye, Xiu] Univ Arkansas, Dept Math & Stat, Little Rock, AR 72204 USA. [Zhao, Shan] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA. RP Zhao, S (reprint author), Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA. EM mul1@ornl.gov; jwang@nsf.gov; xxye@ualr.edu; szhao@ua.edu FU U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program [ERKJE45]; Laboratory Directed Research and Development program at the Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation IR/D program; National Science Foundation [DMS-1115097, DMS-1318898]; University of Alabama Research Stimulation Program (RSP) award FX The first author's research is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under award number ERKJE45; and by the Laboratory Directed Research and Development program at the Oak Ridge National Laboratory, which is operated by UT-Battelle, LLC., for the U.S. Department of Energy under Contract DE-AC05-00OR22725.; The research of Wang was supported by the National Science Foundation IR/D program, while working at the Foundation. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.; This research of Ye was supported in part by National Science Foundation Grant DMS-1115097.; This research of Zhao was supported in part by National Science Foundation Grant DMS-1318898 and the University of Alabama Research Stimulation Program (RSP) award. NR 57 TC 1 Z9 1 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 15 PY 2016 VL 325 BP 157 EP 173 DI 10.1016/j.jcp.2016.08.024 PG 17 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DX0TI UT WOS:000384077600009 ER PT J AU Dhakal, TR Zhang, DZ AF Dhakal, Tilak R. Zhang, Duan Z. TI Material point methods applied to one-dimensional shock waves and dual domain material point method with sub-points SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Material point methods; Shock waves ID IN-CELL METHOD AB Using a simple one-dimensional shock problem as an example, the present paper investigates numerical properties of the original material point method (MPM), the generalized interpolation material point (GIMP) method, the convected particle domain interpolation (CPDI) method, and the dual domain material point (DDMP) method. For a weak isothermal shock of ideal gas, the MPM cannot be used with accuracy. With a small number of particles per cell, GIMP and CPDI produce reasonable results. However, as the number of particles increases the methods fail to converge and produce pressure spikes. The DDMP method behaves in an opposite way. With a small number of particles per cell, DDMP results are unsatisfactory. As the number of particles increases, the DDMP results converge to correct solutions, but the large number of particles needed for convergence makes the method very expensive to use in these types of shock wave problems in two-or three-dimensional cases. The cause for producing the unsatisfactory DDMP results is identified. A simple improvement to the method is introduced by using sub-points. With this improvement, the DDMP method produces high quality numerical solutions with a very small number of particles. Although in the present paper, the numerical examples are one-dimensional, all derivations are for multidimensional problems. With the technique of approximately tracking particle domains of CPDI, the extension of this sub-point method to multidimensional problems is straightforward. This new method preserves the conservation properties of the DDMP method, which conserves mass and momentum exactly and conserves energy to the second order in both spatial and temporal discretizations. (C) 2016 Elsevier Inc. All rights reserved. C1 [Dhakal, Tilak R.; Zhang, Duan Z.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp T 3 B216, Los Alamos, NM 87545 USA. RP Zhang, DZ (reprint author), Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp T 3 B216, Los Alamos, NM 87545 USA. EM dzhang@lanl.gov FU United States Department of Energy; Stockpile Safety and Surety Program; Joint DoD/DOE Munitions Technology Development Program; ASC Program FX The authors would like to acknowledge many useful and in-depth discussions with Dr. Rick M. Rauenzahn of Los Alamos. This work was performed under the auspices of the United States Department of Energy. The Stockpile Safety and Surety Program, the Joint DoD/DOE Munitions Technology Development Program, and the ASC Program provided the financial support for this work. NR 15 TC 1 Z9 1 U1 6 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD NOV 15 PY 2016 VL 325 BP 301 EP 313 DI 10.1016/j.jcp.2016.08.033 PG 13 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA DX0TI UT WOS:000384077600016 ER PT J AU Helbig, M Wischnewski, K Gosselin, GH Biraud, SC Bogoev, I Chan, WS Euskirchen, ES Glenn, AJ Marsh, PM Quinton, WL Sonnentag, O AF Helbig, M. Wischnewski, K. Gosselin, G. H. Biraud, S. C. Bogoev, I. Chan, W. S. Euskirchen, E. S. Glenn, A. J. Marsh, P. M. Quinton, W. L. Sonnentag, O. TI Addressing a systematic bias in carbon dioxide flux measurements with the EC150 and the IRGASON open-path gas analyzers SO AGRICULTURAL AND FOREST METEOROLOGY LA English DT Article DE Carbon dioxide fluxes; Eddy covariance; Open-path infrared gas analyzer; Systematic error; Sensible heat; Absorption ID SURFACE-ENERGY BALANCE; EDDY COVARIANCE MEASUREMENTS; WATER-VAPOR EXCHANGE; ATMOSPHERIC-TURBULENCE MEASUREMENTS; INDUCED FLOW DISTORTION; NET ECOSYSTEM EXCHANGE; LONG-TERM; CO2 FLUX; UNCERTAINTY ANALYSIS; MIXING-RATIO AB Across a global network of eddy covariance flux towers, two relatively new open-path infrared gas analyzers (IRGAs), the IRGASON and the EC150, are increasingly used to measure net carbon dioxide (CO2) fluxes (Fc-OP). Differences in net CO2 fluxes derived from open- and closed-path IRGAs in general remain poorly constrained. In particular, the performance of the IRGASON and the EC150 for measuring Fc-OP has not been characterized yet. These IRGAs measure CO2 absorption, which is scaled with air temperature and pressure before converting it to instantaneous CO2 density. This sensor-internal conversion is based on a slow-response thermistor air temperature measurement. Here, we test if the high-frequency temperature attenuation causes selectively systematic Fc-OP errors that scale with kinematic temperature fluxes. First, we examine the relationship between wintertime Fc-OP and kinematic temperature fluxes for eight northern ecosystems. Second, we investigate how residualstetween Fc-OP and CO2 fluxes from co-located closed-path IRGAs (Fc-CP) are related to kinematic temperature fluxes for three different ecosystem types (i.e., boreal forest, grassland, and irrigated cropland). We find that kinematic temperature fluxes, but not mean ambient air temperatures or CO2 flux regime, consistently determine the absolute magnitude of Fc-OP errors. This selectively systematic bias causes the most pronounced relative Fop errors to occur when "true" CO2 fluxes are low and kinematic temperature fluxes are high (e.g., northern ecosystems during the winter). The smallest relative errors occur during periods with large "true" CO2 fluxes and low kinematic temperature fluxes. To address this bias, we replace the slow-response air temperature in the absorption-to-CO2 density conversion with a fast-response air temperature derived from sonic anemometer measurements. The use of the fast-response air temperature improves the agreement between half-hourly Fc-OP and Fc-CP for all open-versus closed-path IRGA comparisons. Additionally, cumulative Fc-OP and Fc-CP sums are more comparable as differences drop from 63 %-13 % to 20 %-8 %. The improved IRGASON and EC150 performance enhances the ability and confidence to synthesize flux measurements across multiple sites including these two relatively new IRGAs. (C) 2016 Elsevier B.V. All rights reserved. C1 [Helbig, M.; Wischnewski, K.; Gosselin, G. H.; Sonnentag, O.] Univ Montreal, Dept Geog, 520 Chemin Cote St Catherine, Montreal, PQ H2V 2B8, Canada. [Biraud, S. C.; Chan, W. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Bogoev, I.] Campbell Sci, Logan, UT USA. [Euskirchen, E. S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA. [Glenn, A. J.] Agr & Agri Food Canada, Brandon Res & Dev Ctr, Brandon, MB, Canada. [Marsh, P. M.; Quinton, W. L.] Wilfrid Laurier Univ, Cold Reg ns Res Ctr, Waterloo, ON, Canada. RP Helbig, M (reprint author), Univ Montreal, Dept Geog, 520 Chemin Cote St Catherine, Montreal, PQ H2V 2B8, Canada. EM manuel.helbig@umontreal.ca RI Biraud, Sebastien/M-5267-2013 OI Biraud, Sebastien/0000-0001-7697-933X FU Canada Foundation for Innovation; Canada Research Chairs Program; Natural Science and Engineering Council of Canada; German Academic Exchange Service; Fonds de recherche du Quebec-Nature et technologies; Government of the Northwest Territories (GNWT); Office of Biological and Environmental Research of the U.S. Department of Energy, Terrestrial Ecosystem Science Program [DE-AC02-05CH11231]; U.S. Geological Survey Climate and Land Use Change Program; U.S. Geological Survey Climate Science Center; National Science Foundation; Agriculture and Agri-Food Canada Growing Forward 2 program FX Given the theoretical considerations presented in this study and the observed wintertime Fc_op patterns, the IRGA manufacturer implemented an alternative sensor-internal method, using Ta_hf in addition to Ta_sf, to derive rhoc. This beta version of the EC100 control box firmware and the MATLAB executable to convert CO2 absorption to CO2 density are available on request from Campbell Scientific, Inc. The work at Scotty Creek was funded through the Canada Foundation for Innovation, the Canada Research Chairs Program, and a Natural Science and Engineering Council of Canada Discovery Grant to O.S. M.H. was funded through graduate student scholarships provided by the German Academic Exchange Service and the Fonds de recherche du Quebec-Nature et technologies. We thank Wayne and Lynn McKay for logistical support as well as the Liidlii Kue First Nation and Dehcho First Nations, in Fort Simpson, and the Jean-Marie River First Nation. We also thank the Government of the Northwest Territories (GNWT) for their support through the Wilfrid Laurier Laurier-GNWT Partnership Agreement. The intercomparison study at Davis, CA is supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under contract No. DE-AC02-05CH11231 as part of the Terrestrial Ecosystem Science Program. Research at the Alaskan sites was funded by the U.S. Geological Survey Climate and Land Use Change Program, U.S. Geological Survey Climate Science Center, and the National Science Foundation. Research funding for the South Tobacco Creek site was provided to A.G. by the Agriculture and Agri-Food Canada Growing Forward 2 program and technical assistance by Clayton Jackson. We thank Elyn Humphreys (Carleton University), Gerardo Fratini & George G. Burba (LI-COR Biosciences), Meelis Molder (Lund University), T. Andy Black (University of British Columbia), Janina Hommeltenberg (Karlsruhe Institute of Technology), Georg Wohlfahrt (University of Innsbruck), and Matteo Detto (Smithsonian Tropical Research Institute) for valuable discussions on CO2 gas analyzer comparisons. Finally, the anonymous reviewers are thanked for their contribution to improving the manuscript. NR 79 TC 1 Z9 1 U1 18 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1923 EI 1873-2240 J9 AGR FOREST METEOROL JI Agric. For. Meteorol. PD NOV 15 PY 2016 VL 228 BP 349 EP 359 DI 10.1016/j.agrformet.2016.07.018 PG 11 WC Agronomy; Forestry; Meteorology & Atmospheric Sciences SC Agriculture; Forestry; Meteorology & Atmospheric Sciences GA DV9XJ UT WOS:000383295200029 ER PT J AU Zou, Y Li, J Wang, H An, K Zhang, ML Chen, D Zhang, ZW AF Zou, Yun Li, Jian Wang, Hong An, Ke Zhang, Milin Chen, Dan Zhang, Zhongwu TI Deformation mode transition of Mg-3Li alloy: An in situ neutron diffraction study SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Mg-Li alloy; In situ neutron diffraction; Texture; Lattice strain ID WROUGHT MAGNESIUM ALLOY; TWINNING-DETWINNING BEHAVIOR; LATTICE STRAIN EVOLUTION; SOLID-SOLUTION ALLOYS; MECHANICAL-PROPERTIES; CYCLIC DEFORMATION; STRESS-RELAXATION; TEXTURE EVOLUTION; MG SHEET; AZ31 AB Deformation mode transition of Mg-3Li alloy was investigated using in situ neutron diffraction along with texture characterization. Lattice strain and texture evolution were used as an indicator to tailor the deformation mode under uniaxial tension. It is shown that basal slip, tensile twinning and prismatic slip contribute to the plastic deformation at different stages. A clear hysteresis loop at plastic strain of about 1% is observed during loading/unloading, which is ascribed to the anelasticity resulting from {10 (1) over bar2} twins upon unloading. Load redistribution continuously occurs between soft and hard grain orientations and the prismatic slip is dominated around the yield point. (C) 2016 Published by Elsevier B.V. C1 [Zou, Yun; Zhang, Milin; Chen, Dan; Zhang, Zhongwu] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China. [Li, Jian; Wang, Hong] China Acad Engn Phys, Key Lab Neutron Phys, Mianyang 621999, Peoples R China. [Li, Jian; Wang, Hong] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621999, Peoples R China. [An, Ke] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Zhang, ZW (reprint author), Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin 150001, Peoples R China. EM zwzhang@hrbeu.edu.cn RI An, Ke/G-5226-2011; OI An, Ke/0000-0002-6093-429X; zhang, zhongwu/0000-0002-2874-2976 FU Fundamental Research Funds for the Central Universities [HEUCFZ1308, HEUCFT1306]; NSFC [51371062, U1460102]; NSFHLJ [ZD201411]; Project for Innovative Talents of Science and Technology of Harbin [2014RFXXJ006]; Scientific Research Foundation for the Returned Overseas Chinese Scholars, Heilongjiang Province FX This work was supported by the Fundamental Research Funds for the Central Universities (HEUCFZ1308, HEUCFT1306), the NSFC Funding (51371062 and U1460102), NSFHLJ (ZD201411), the Project for Innovative Talents of Science and Technology of Harbin (2014RFXXJ006), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Heilongjiang Province. The neutron diffraction work on residual stress neutron diffractometer (RSND) at China Academy of Engineering Physics (CAEP) is greatly appreciated. NR 40 TC 0 Z9 0 U1 23 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 15 PY 2016 VL 685 BP 331 EP 336 DI 10.1016/j.jallcom.2016.05.310 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DU4ZT UT WOS:000382222300048 ER PT J AU Liu, YJ Zhang, ZQ Fu, YB Wang, QL Pan, J Su, MR Battaglia, VS AF Liu, Yunjian Zhang, Zhiqiang Fu, Yanbao Wang, Qiliang Pan, Jun Su, Mingru Battaglia, Vincent S. TI Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Lithium-rich cathode material; Surface coating; Zinc aluminate; Electrochemical performance ID SOL-GEL METHOD; SURFACE MODIFICATION; HIGH-CAPACITY; ELECTRODES; LI4TI5O12; 0.4LI(2)MNO(3)CENTER-DOT-0.6LINI(1/3)CO(1/3)MN(1/3)O(2); IMPROVEMENT; LAYER AB Layered solid solution materials Li1.2Ni0.2Mn0.6O2 were synthesized with one sample heat treated and three other coated with ZnAl2O4 with varying amounts (0.5, 1 and 2.5 wt%) at high temperature. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The effect of ZnAl2O4 coatings on the electrochemical performance of the pristine material was evaluated from charge/discharge cycles, rate performance, and electrochemical impedance spectroscopy (EIS). The results from TEM and selected area electron diffraction (SAED) indicate that the ZnAl2O4 coating assumes a spinel structure on the Li1.2Ni0.2Mn0.6O2. The discharge capacities and coulombic efficiencies of the Li1.2Ni0.2Mn0.6O2 materials in the first cycle are improved with the addition of ZnAl2O4. Li1.2Ni0.2Mn0.6O2 coated with 1 wt% ZnAl2O4 shows the highest discharge capacity (254.3 mAhg(-1)), highest capacity retention (98.6% for 50 cycles), and best rate capability (84 mAhg(-1) at 10 C). EIS indicates that the resistance of Li1.2Ni0.2Mn0.6O2 electrodes decrease with the addition of ZnAl2O4 consistent with the excellent rate capability. (C) 2016 Elsevier B.V. All rights reserved. C1 [Liu, Yunjian; Zhang, Zhiqiang; Wang, Qiliang; Su, Mingru] Jiangsu Univ, Sch Mat Sci & Technol, Zhenjiang 212013, Peoples R China. [Liu, Yunjian; Pan, Jun; Su, Mingru] Cent S Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China. [Liu, Yunjian; Fu, Yanbao; Battaglia, Vincent S.] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. RP Su, MR (reprint author), Jiangsu Univ, Sch Mat Sci & Technol, Zhenjiang 212013, Peoples R China. EM lyjian122331@163.com FU State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China FX The authors gratefully acknowledge the National Natural Science Foundation of China (51304081) and Natural Science Foundation of Jiangsu Province (BK20140581) (BK20150506) (BK20140588). Project supported by State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China. NR 33 TC 2 Z9 2 U1 54 U2 56 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 15 PY 2016 VL 685 BP 523 EP 532 DI 10.1016/j.jallcom.2016.05.329 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DU4ZT UT WOS:000382222300076 ER PT J AU Liu, ZY Senanayake, SD Rodriguez, JA AF Liu, Zongyuan Senanayake, Sanjaya D. Rodriguez, Jose A. TI Elucidating the interaction between Ni and CeOx in ethanol steam reforming catalysts: A perspective of recent studies over model and powder systems SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Ceria; Nickel; Ethanol steam reforming; Hydrogen generation; Water ID TEMPERATURE-PROGRAMMED DESORPTION; TRANSFORM INFRARED-SPECTROSCOPY; COBALT-BASED CATALYSTS; MC FUEL-CELL; SITU FT-IR; HYDROGEN-PRODUCTION; BIO-ETHANOL; H-2 PRODUCTION; MIXED OXIDES; FOURIER-TRANSFORM AB Bulk metallic nickel is a poor catalyst for the reforming of oxygenates being deactivated by the deposition of coke. In contrast, Ni-ceria is an active system for the catalytic extraction of H-2 from the ethanol steam reforming reaction (ESR, C2H5OH +3H(2)O <-> 2CO(2) + 6H(2)). Numerous studies, with model (well-defined crystal surfaces) and technical (high surface area powders) catalysts, have been devoted to understand the fundamental role of each catalyst component, the performance of adjacent sites in the metal-oxide interface, and the complex mechanistic steps that convert two oxygenated reactants (ethanol and H2O) into H-2. The size and low loading of Ni on ceria facilitate metal-oxide support interactions that probably enhance the reactivity of the system.To establish the precise role of both Ni and Ce is challenging. However it is clear that both Ni and Ce are associated with the dissociation of H2O (OH+H), while ceria readily adsorbs and partially dissociates ethanol (i.e. ethoxy formation). The most difficult step of C-C bond dissociation likely occurs only on Ni or at the Ni-Ce interface. H2O and OH remain as important agents for the prevention of excess C build up during the C-H/C-C dissociation process. Often, deactivation upon C build up, is a direct result of Ni sintering and decoupling of the Ni-Ce interactions. One strategy to maintain good activity and stability is to protect the Ni-Ce interaction, and this can be achieved through the use of solid solutions (Ce1-xNixO2-y) or by employing stabilizing agents such as W (NixWyCezO2). In this article, we present and discuss the most recent work for the ESR reaction and show the important role of ceria which participates directly in the reaction and also enhances catalytic activity through metal-support interactions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Liu, Zongyuan; Senanayake, Sanjaya D.; Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Liu, Zongyuan; Rodriguez, Jose A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. RP Senanayake, SD; Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.; Rodriguez, JA (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM ssenanay@bnl.gov; rodrigez@bnl.gov RI Senanayake, Sanjaya/D-4769-2009; OI Senanayake, Sanjaya/0000-0003-3991-4232; Liu, Zongyuan/0000-0001-8526-5590 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program [DE-SC0012704] FX The research performed at Brookhaven National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program under contract No. DE-SC0012704. This work used resources of the Center for CH, Functional Nanomaterials (CFN-BNL) and the National Synchrotron Light Source (NSLS) which are DOE Office of Science User Facilities. NR 117 TC 2 Z9 2 U1 48 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD NOV 15 PY 2016 VL 197 SI SI BP 184 EP 197 DI 10.1016/j.apcatb.2016.03.013 PG 14 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA DT5QA UT WOS:000381536500019 ER PT J AU Grinter, DC Senanayake, SD Flege, JI AF Grinter, David C. Senanayake, Sanjaya D. Flege, Jan Ingo TI In situ growth, structure, and real-time chemical reactivity of well-defined CeOx-Ru(0001) model surfaces SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Ceria; Ru; Model catalyst; Reduction; Oxidation; In situ characterization ID SCANNING-TUNNELING-MICROSCOPY; WATER-GAS SHIFT; CEOX(111) THIN-FILMS; REDUCED CERIA; EPITAXIAL-FILMS; DEFECT STRUCTURE; ORDERED PHASES; ACTIVE-SITES; COPPER-CERIA; METAL-OXIDES AB Ceria is an important material for chemical conversion processes in catalysis. Its intrinsic properties as a reducible oxide can be exploited to achieve catalytic selectivity and activity. However, numerous phenomenological characteristics of ceria remain unknown and its active nature is ever slowly being unraveled. Well defined models of ceria (111) are an important way to systematically study these properties and take advantage of new in situ methods that require pristine materials that allow for the interrogation of the most fundamental traits of this material. The ceria-Ru(0001) model is now the most well studied model surface with numerous aspects of its preparation, atomic structure and reactivity studied by several groups. The preparation of CeOx structures oriented with a (111) surface termination can be achieved through molecular beam deposition, facilitating the growth of well-defined nanostructures, microparticles, and films on the Ru(0001) surface. The growth mechanism exploits the epitaxial relationship between CeOx and Ru to form a carpet mode of well oriented layers of O-Ce-O. These models can be studied to unravel the atomic structure and the oxidation state (Ce-4* and Ce3+), as prepared and under redox conditions (reduction/oxidation) or with reaction using reactants (e.g, H-2, methanol). Here, we present a discussion of these most recent observations pertaining to the growth mode, arrangement of atoms on the surface, characteristic chemical state, and redox chemistry of the CeOx-Ru surface. With insights from these studies we propose new strategies to further unravel the chemistry of ceria. (C) 2016 Elsevier B.V. All rights reserved. C1 [Grinter, David C.; Senanayake, Sanjaya D.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Flege, Jan Ingo] Univ Bremen, Inst Solid State Phys, Bremen, Germany. RP Senanayake, SD (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.; Flege, JI (reprint author), Univ Bremen, Inst Solid State Phys, Bremen, Germany. EM ssenanay@bnl.gov; flege@ifp.uni-bremen.de RI COST, CM1104/I-8057-2015; Senanayake, Sanjaya/D-4769-2009; OI Senanayake, Sanjaya/0000-0003-3991-4232; Grinter, David/0000-0001-6089-119X; Flege, Jan Ingo/0000-0002-8346-6863 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program [DE-SC0012704]; European COST Action [CM1104] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and Catalysis Science Program under contract No. DE-SC0012704. Furthermore, we wish to thank our coauthors R. D. Eithiraj, J. Falta, J. Hocker, J. Hrbek, B. Kaemena, E. E. Krasovskii, A. Locatelli, T. O. Mente, A. Meyer, J. A. Rodriguez, J. T. Sadowski, A. Sala, and Th. Schmidt for their valuable contributions to this work. Support from the European COST Action CM1104 is gratefully acknowledged. NR 72 TC 1 Z9 1 U1 21 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD NOV 15 PY 2016 VL 197 SI SI BP 286 EP 298 DI 10.1016/j.apcatb.2016.02.043 PG 13 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA DT5QA UT WOS:000381536500030 ER PT J AU Kim, WG Song, H Kim, C Moon, JS Kim, K Lee, SW Oh, JW AF Kim, Won-Geun Song, Hyerin Kim, Chuntae Moon, Jong-Sik Kim, Kyujung Lee, Seung-Wuk Oh, Jin-Woo TI Biomimetic self-templating optical structures fabricated by genetically engineered M13 bacteriophage SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Biomimicry; M13 bacteriophage; Self-assembly; Surface plasmon resonance; Sensor ID SURFACE-PLASMON RESONANCE; BUTTERFLY WING SCALES; NANOSTRUCTURES; BIOSENSORS; MIMICKING; CRYSTALS; NANOROD; CANCER AB Here, we describe a highly sensitive and selective surface plasmon resonance sensor system by utilizing self-assembly of genetically engineered M13 bacteriophage. About 2700 copies of genetically expressed peptide copies give superior selectivity and sensitivity to M13 phage-based SPR sensor. Furthermore, the sensitivity of the M13 phage-based SPR sensor was enhanced due to the aligning of receptor matrix in specific direction. Incorporation of specific binding peptide (His Pro Gln: HPQ) gives M13 bacteriophage high selectivity for the streptavidin. Our M13 phage-based SPR sensor takes advantage of simplicity of self-assembly compared with relatively complex photolithography techniques or chemical conjugations. Additionally, designed structure which is composed of functionalized M13 bacteriophage can simultaneously improve the sensitivity and selectivity of SPR sensor evidently. By taking advantages of the genetic engineering and self-assembly, we propose the simple method for fabricating novel M13 phage-based SPR sensor system which has a high sensitivity and high selectivity. (C) 2016 Elsevier B.V. All rights reserved. C1 [Kim, Won-Geun; Kim, Chuntae; Oh, Jin-Woo] Pusan Natl Univ, Dept Nano Fus Technol, Busan 609735, South Korea. [Song, Hyerin; Kim, Kyujung] Pusan Natl Univ, Dept Cognomechatron Engn, Busan 609735, South Korea. [Kim, Won-Geun; Kim, Chuntae; Moon, Jong-Sik; Oh, Jin-Woo] PNU, PLUS Nanoconvergence Technol Div BK21, Busan 46241, South Korea. [Lee, Seung-Wuk; Oh, Jin-Woo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Nanosci & Nanoengn Inst, Dept Bioengn,Biol Syst & Engn, Berkeley, CA 94720 USA. [Oh, Jin-Woo] Pusan Natl Univ, Dept Nanoenergy Engn, Busan 609735, South Korea. RP Lee, SW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Nanosci & Nanoengn Inst, Dept Bioengn,Biol Syst & Engn, Berkeley, CA 94720 USA.; Kim, K; Oh, JW (reprint author), Pusan Natl Univ, Dept Nanoenergy Engn, Busan 609735, South Korea. EM k.kim@pusan.ac.kr; leesw@berkeley.edu; ojw@pusan.ac.kr FU International Cooperative Research Program through Agency for Defense Development and Defence Acquisition Program Administration of Korea [5111F5-911148001]; Korea Ministry of Environment as "The Converging Technology Program" [ARQ201403075001] FX This research was supported by the International Cooperative Research Program (5111F5-911148001) through the Agency for Defense Development and Defence Acquisition Program Administration of Korea and by Korea Ministry of Environment as "The Converging Technology Program" (ARQ201403075001). NR 39 TC 1 Z9 1 U1 58 U2 68 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 EI 1873-4235 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD NOV 15 PY 2016 VL 85 BP 853 EP 859 DI 10.1016/j.bios.2016.05.099 PG 7 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA DU7QQ UT WOS:000382410100114 ER PT J AU Rocha, AM Yuan, Q Close, DM O'Dell, KB Fortney, JL Wu, JN Hazen, TC AF Rocha, Andrea M. Yuan, Quan Close, Dan M. O'Dell, Kaela B. Fortney, Julian L. Wu, Jayne Hazen, Terry C. TI Rapid detection of microbial cell abundance in aquatic systems SO BIOSENSORS & BIOELECTRONICS LA English DT Article DE Biosensor; Interfacial capacitance; AC electrokinetics; Microbial abundance ID ALCANIVORAX-BORKUMENSIS; INFECTIOUS-DISEASES; BACTERIAL DETECTION; GENOME SEQUENCE; BIOSENSORS; MICROELECTRODES; SERODIAGNOSIS; IMMUNOSENSOR; GROWTH; ARRAY AB The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamic systems - the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10(3)-10(6) cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. This work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Rocha, Andrea M.; Close, Dan M.; Hazen, Terry C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. [Rocha, Andrea M.; O'Dell, Kaela B.; Fortney, Julian L.; Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Yuan, Quan; Wu, Jayne] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA. RP Hazen, TC (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37830 USA. EM tchazen@utk.edu RI Hazen, Terry/C-1076-2012; Wu, Jie/A-8871-2009 OI Hazen, Terry/0000-0002-2536-9993; Wu, Jie/0000-0001-5143-9425 FU University of Tennessee Center for Wildlife Health; Oak Ridge National Laboratory by the Scientific User Facilities Division, US Department of Energy; Ecosystems and Networks Integrated with Genes and Molecular Assemblies; U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research [DE-AC02-05CH11231]; University of Tennessee [A13-0119-001]; BP [A13-0119-001] FX Microsensor work was supported by the University of Tennessee Center for Wildlife Health. Microfabrication of the sensor was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, US Department of Energy. Proof of principle groundwater samples from the Oak Ridge Field site and their analysis was supported by Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research under contract number DE-AC02-05CH11231. Proof of principle seawater samples from Australia were collected under contract A13-0119-001 Deep Sea Basin Microbiology between the University of Tennessee and BP. The authors are grateful to BP and its partners for support in the sampling effort in Australia. We thank N. Alishibi, J. Liu, and C. Chen for their help in culturing samples. We also thank B. Adams for his assistance with editing figures. NR 31 TC 2 Z9 2 U1 28 U2 35 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0956-5663 EI 1873-4235 J9 BIOSENS BIOELECTRON JI Biosens. Bioelectron. PD NOV 15 PY 2016 VL 85 BP 915 EP 923 DI 10.1016/j.bios.2016.05.098 PG 9 WC Biophysics; Biotechnology & Applied Microbiology; Chemistry, Analytical; Electrochemistry; Nanoscience & Nanotechnology SC Biophysics; Biotechnology & Applied Microbiology; Chemistry; Electrochemistry; Science & Technology - Other Topics GA DU7QQ UT WOS:000382410100123 PM 27315516 ER PT J AU Bui, NN McCutcheon, JR AF Nhu-Ngoc Bui McCutcheon, Jeffrey R. TI Nanoparticle-embedded nanofibers in highly permselective thin-film nanocomposite membranes for forward osmosis SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Mesoporous nanoparticles; Nanofibers; Thin-film nanocomposite; Pressure-retarded osmosis; Sustainable water and energy ID INTERNAL CONCENTRATION POLARIZATION; PRESSURE-RETARDED OSMOSIS; HOLLOW-FIBER MEMBRANES; DRAW SOLUTE PERMEATION; HIGH-POWER DENSITY; COMPOSITE MEMBRANES; ENGINEERED OSMOSIS; MESOPOROUS SILICA; MICROFILTRATION MEMBRANE; SUPPORT LAYER AB Here we report a scalable approach to fabricate osmotic membranes with high permselectivity based on nanocomposite of mesoporous silica nanoparticles and nanofibers by electrospinning. Transmission electron microscopy (TEM) images provide visualization of dispersed and clustered nanoparticles embedding within or at the surface of nanofibers. Energy-dispersive X-ray (EDX) point analysis confirms the chemical identity of the nanocomposite structure. Brunauer-Emmett-Teller (BET) analyses show a 75-fold increase in specific surface area when 15% of silica nanoparticles were integrated into polyacrylonitrile nanofibrous mats. Mechanical strength tests show that even at high load of silica nano particles, e.g. 15 wt%, the mechanical integrity of the membranes was maintained. Incorporating nano particles into nanofibrous mats enhanced their water uptake up to two times. In osmotic transport studies, we observed an outstanding permselectivity of our membranes compared to ones reported in literature. Our membranes show a remarkable 7-fold and 3.5-fold enhancements in osmotic water permeability and water/sodium chloride selectivity, respectively, compared to standard commercial forward osmosis membranes. These results suggest a pathway to develop scalable, high performance osmotic membranes and to further study the predominant mechanism governing transport behaviors of water and solute across nanomaterials interfaces. Published by Elsevier B.V. C1 [Nhu-Ngoc Bui; McCutcheon, Jeffrey R.] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT USA. [McCutcheon, Jeffrey R.] Univ Connecticut, Ctr Environm Sci & Engn, Storrs, CT USA. [Nhu-Ngoc Bui] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Bui, NN (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM bui7@llnl.gov FU National Science Foundation (CBET) [1067564]; U.S. Department of Energy [DE-EE00003226]; U.S. Environmental Protection Agency STAR Program [R834872]; U.S. Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX The authors acknowledge funding from the National Science Foundation (CBET # 1067564), the U.S. Department of Energy (DE-EE00003226), and the U.S. Environmental Protection Agency STAR Program (R834872). Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. We also acknowledge Dr. Roger Ristau at the University of Connecticut for assistance with TEM. We thank the Connecticut Center for Clean Energy Engineering and the Institute of Materials Science for access to their characterization facilities. We also thank Hydration Technologies Innovations for providing standard asymmetric FO cellulose acetate membrane for this study. NR 79 TC 2 Z9 2 U1 69 U2 90 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 EI 1873-3123 J9 J MEMBRANE SCI JI J. Membr. Sci. PD NOV 15 PY 2016 VL 518 BP 338 EP 346 DI 10.1016/j.rnemsci.2016.06.024 PG 9 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA DU5LZ UT WOS:000382254500034 ER PT J AU Cui, LF Liang, C Duncan, DS Bao, XL Xie, HT He, HB Wickings, K Zhang, XD Chen, FS AF Cui, Lefang Liang, Chao Duncan, David S. Bao, Xuelian Xie, Hongtu He, Hongbo Wickings, Kyle Zhang, Xudong Chen, Fusheng TI Impacts of vegetation type and climatic zone on neutral sugar distribution in natural forest soils SO GEODERMA LA English DT Article DE Soil organic carbon; Temperate and subtropical zone; Soil carbohydrates; Sugar origin and recycling ID PARTICLE-SIZE FRACTIONS; ORGANIC-MATTER; MICROBIAL-PRODUCTION; CARBON STORAGE; CARBOHYDRATE; NITROGEN; LIGNIN; MICROORGANISMS; CHROMATOGRAPHY; ECOSYSTEM AB Soil neutral sugars are a significant component of labile soil organic carbon (SOC) and are derived from both plant and microbial biomass. While plants synthesize both pentose and hexose neutral sugars, microbes almost exclusively produce hexoses. Hexose to pentose ratios in soil thus potentially indicate the extent to which microbes process labile SOC. In this study, we used the ratio of galactose + mannose (G + M) to arabinose + xylose (A + X) to estimate the contribution of sugars derived from microbes and plants to SOC in forest ecosystems. We explored how forest type and climatic zone influence soil neutral sugar profiles by studying coniferous and broadleaf forests located in temperate and subtropical regions in China. At each site, neutral sugars from organic (O) and top-layer mineral (A) soil horizons, as well as from freshly-fallen leaf litter, were measured. Total SOC and soil neutral sugar contents were lower in the subtropical region than in the temperate region, with lower levels in the A horizon than in the O horizon. In both climatic zones, litter (G + M)/(A + X) ratios were higher in coniferous forests (1.2 +/- 03) than in broadleaf forests (0.4 +/- 0.1). Differences in the (G + M)/(A + X) ratios between forest types (coniferous and broadleaf) persisted in the 0 horizon (1.4 +/- 02 > 0.9 +/- 0.0) and in the A horizon (1.8 +/- 0.1 > 1.3 +/- 0.0). Across climate zones and forest types, ratios increased from litter over the O horizon to the A horizon. Contrary to our expectations, climate zone did not affect soil (G + M)/(A + X) ratios. Our findings emphasize the important contribution of microbial biomass to labile SOC pools while revealing that soil neutral sugar profiles do not respond to climatic zone drivers as expected. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cui, Lefang; Liang, Chao; Bao, Xuelian; Xie, Hongtu; He, Hongbo; Zhang, Xudong] Chinese Acad Sci, Inst Appl Ecol, Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China. [Cui, Lefang] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Liang, Chao; Duncan, David S.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Wickings, Kyle] Cornell Univ, Dept Entomol, Geneva, NY 14456 USA. [Chen, Fusheng] Jiangxi Agr Univ, Coll Forestry, Nanchang 330045, Peoples R China. RP Liang, C (reprint author), Chinese Acad Sci, Inst Appl Ecol, Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China. EM cliang823@gmail.com FU National Science Foundation of China [41471218, 31160107]; Strategic Priority Research Program of the Chinese Academy of Science [XDB15010303]; U.S. DOE BER Office of Science [DE-FC02-07ER64494] FX This study was financially supported by the National Science Foundation of China (no. 41471218 and 31160107), Strategic Priority Research Program of the Chinese Academy of Science, grant no. XDB15010303, and U.S. DOE BER Office of Science DE-FC02-07ER64494. We also appreciate Drs. Xiangmin Fang and Zhen Bai for their great assistance of collecting Jiulian Mountain and Changbai Mountain soil and litter samples. NR 51 TC 0 Z9 0 U1 22 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 EI 1872-6259 J9 GEODERMA JI Geoderma PD NOV 15 PY 2016 VL 282 BP 139 EP 146 DI 10.1016/j.geoderma.2016.07.020 PG 8 WC Soil Science SC Agriculture GA DT9QJ UT WOS:000381837100016 ER PT J AU Le Quere, C Andrew, RM Canadell, JG Sitch, S Korsbakken, JI Peters, GP Manning, AC Boden, TA Tans, PP Houghton, RA Keeling, RF Alin, S Andrews, OD Anthoni, P Barbero, L Bopp, L Chevallier, F Chini, LP Ciais, P Currie, K Delire, C Doney, SC Friedlingstein, P Gkritzalis, T Harris, I Hauck, J Haverd, V Hoppema, M Goldewijk, KK Jain, AK Kato, E Kortzinger, A Landschutzer, P Lefevre, N Lenton, A Lienert, S Lombardozzi, D Melton, JR Metzl, N Millero, F Monteiro, PMS Munro, DR Nabel, JEMS Nakaoka, S O'Brien, K Olsen, A Omar, AM Ono, T Pierrot, D Poulter, B Rodenbeck, C Salisbury, J Schuster, U Schwinger, J Seferian, R Skjelvan, I Stocker, BD Sutton, AJ Takahashi, T Tian, HQ Tilbrook, B van der Laan-Luijkx, IT van der Werf, GR Viovy, N Walker, AP Wiltshire, AJ Zaehle, S AF Le Quere, Corinne Andrew, Robbie M. Canadell, Josep G. Sitch, Stephen Korsbakken, Jan Ivar Peters, Glen P. Manning, Andrew C. Boden, Thomas A. Tans, Pieter P. Houghton, Richard A. Keeling, Ralph F. Alin, Simone Andrews, Oliver D. Anthoni, Peter Barbero, Leticia Bopp, Laurent Chevallier, Frederic Chini, Louise P. Ciais, Philippe Currie, Kim Delire, Christine Doney, Scott C. Friedlingstein, Pierre Gkritzalis, Thanos Harris, Ian Hauck, Judith Haverd, Vanessa Hoppema, Mario Goldewijk, Kees Klein Jain, Atul K. Kato, Etsushi Koertzinger, Arne Landschuetzer, Peter Lefevre, Nathalie Lenton, Andrew Lienert, Sebastian Lombardozzi, Danica Melton, Joe R. Metzl, Nicolas Millero, Frank Monteiro, Pedro M. S. Munro, David R. Nabel, Julia E. M. S. Nakaoka, Shin-ichiro O'Brien, Kevin Olsen, Are Omar, Abdirahman M. Ono, Tsuneo Pierrot, Denis Poulter, Benjamin Roedenbeck, Christian Salisbury, Joe Schuster, Ute Schwinger, Joerg Seferian, Roland Skjelvan, Ingunn Stocker, Benjamin D. Sutton, Adrienne J. Takahashi, Taro Tian, Hanqin Tilbrook, Bronte van der Laan-Luijkx, Ingrid T. van der Werf, Guido R. Viovy, Nicolas Walker, Anthony P. Wiltshire, Andrew J. Zaehle, Soenke TI Global Carbon Budget 2016 SO EARTH SYSTEM SCIENCE DATA LA English DT Article ID LAND-USE CHANGE; ENVIRONMENT SIMULATOR JULES; FOSSIL-FUEL COMBUSTION; CO2 FLUX VARIABILITY; MIXED-LAYER SCHEME; ATMOSPHERIC CO2; DIOXIDE EMISSIONS; VEGETATION DYNAMICS; MODEL DESCRIPTION; ATLAS SOCAT AB Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (E-FF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E-LUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the annual changes in concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S-OCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1 sigma, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), E-FF was 9.3 +/- 0.5 GtC yr(-1), E-LUC 1.0 +/- 0.5 GtC yr(-1), G(ATM) 4.5 +/- 0.1 GtC yr(-1), S-OCEAN 2.6 +/- 0.5 GtC yr(-1), and S-LAND 3.1 +/- 0.9 GtC yr(-1). For year 2015 alone, the growth in E-FF was approximately zero and emissions remained at 9.9 +/- 0.5 GtC yr(-1), showing a slowdown in growth of these emissions compared to the average growth of 1.8% yr(-1) that took place during 2006-2015. Also, for 2015, E-LUC was 1.3 +/- 0.5 GtC yr(-1), G(ATM) was 6.3 +/- 0.2 GtC yr(-1), S-OCEAN was 3.0 +/- 0.5 GtC yr(-1), and S-LAND was 1.9 +/- 0.9 GtC yr(-1). G(ATM) was higher in 2015 compared to the past decade (2006-2015), reflecting a smaller S-LAND for that year. The global atmospheric CO2 concentration reached 399.4 +/- 0.1 ppm averaged over 2015. For 2016, preliminary data indicate the continuation of low growth in E-FF with +0.2% (range of -1.0 to +1.8 %) based on national emissions projections for China and USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. In spite of the low growth of E-FF in 2016, the growth rate in atmospheric CO2 concentration is expected to be relatively high because of the persistence of the smaller residual terrestrial sink (S-LAND) in response to El Nino conditions of 2015-2016. From this projection of E-FF and assumed constant E-LUC for 2016, cumulative emissions of CO2 will reach 565 +/- 55 GtC (2075 +/- 205 GtCO(2)) for 1870-2016, about 75% from E-FF and 25% from E-LUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015b, a, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi: 10.3334/CDIAC/GCP_2016). C1 [Le Quere, Corinne; Andrews, Oliver D.] Univ East Anglia, Tyndall Ctr Climate Change Res, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Andrew, Robbie M.; Korsbakken, Jan Ivar; Peters, Glen P.] Univ East Anglia, Tyndall Ctr Climate Change Res, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Canadell, Josep G.] Ctr Int Climate & Environm Res Oslo, Oslo, Norway. [Sitch, Stephen; Schuster, Ute] CSIRO Oceans & Atmosphere, Global Carbon Project, GPO Box 3023, Canberra, ACT 2601, Australia. [Manning, Andrew C.] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England. [Boden, Thomas A.] Univ East Anglia, Sch Environm Sci, Ctr Ocean & Atmospher Sci, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Tans, Pieter P.] Oak Ridge Natl Lab, Carbon Dioxide Informat Anal Ctr, Oak Ridge, TN 37830 USA. [Houghton, Richard A.] Natl Ocean & Atmospher Adm, Earth Syst Res Lab NOAA ESRL, Boulder, CO 80305 USA. [Keeling, Ralph F.] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Alin, Simone; Sutton, Adrienne J.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Anthoni, Peter] Natl Ocean & Atmospher Adm, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Barbero, Leticia; Pierrot, Denis] Inst Meteorol & Climate Res Atmospher Environm Re, Karlsruhe Inst Technol, D-82467 Garmisch Partenkirchen, Germany. [Barbero, Leticia; Pierrot, Denis] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA. [Bopp, Laurent; Chevallier, Frederic; Ciais, Philippe; Viovy, Nicolas] Natl Ocean & Atmospher Adm, Atlant Oceanog & Meteorol Lab, Miami, FL 33149 USA. [Chini, Louise P.] CEA, CNRS, UVSQ, Inst Pierre Simon Laplace,Lab Sci Climat & Enviro, F-91191 Gif Sur Yvette, France. [Currie, Kim] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Delire, Christine; Seferian, Roland] Natl Inst Water & Atmospher Res, Dunedin 9054, New Zealand. [Doney, Scott C.] CNRS, Ctr Natl Rech Meteorol, Unite Mixte Rech Meteo France 3589, 42 Ave Gaspard Coriolis, F-31100 Toulouse, France. [Friedlingstein, Pierre] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Gkritzalis, Thanos] Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England. [Harris, Ian] InnovOcean, Flanders Marine Inst, Wandelaarkaai 7, B-8400 Oostende, Belgium. [Hauck, Judith; Hoppema, Mario] Univ East Anglia, Climat Res Unit, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Haverd, Vanessa] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-120161 Postfach, Germany. [Goldewijk, Kees Klein] CSIRO Oceans & Atmosphere, GPO Box 1700, Canberra, ACT 2601, Australia. [Goldewijk, Kees Klein] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands. [Jain, Atul K.] Univ Utrecht, Utrecht, Netherlands. [Kato, Etsushi] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61821 USA. [Koertzinger, Arne] Inst Appl Energy, Minato Ku, Tokyo 1050003, Japan. [Landschuetzer, Peter; Nabel, Julia E. M. S.] GEOMAR Helmholtz Ctr Ocean Res Kiel, Dusternbrooker Weg 20, D-24105 Kiel, Germany. [Lefevre, Nathalie; Metzl, Nicolas] Max Planck Inst Meteorol, Bundesstr 53, D-20146 Hamburg, Germany. [Lenton, Andrew] Univ Paris 06, Sorbonne Univ, CNRS, IRD,MNHN,LOCEAN IPSL Lab, F-75252 Paris, France. [Lienert, Sebastian] CSIRO Oceans & Atmosphere, POB 1538, Hobart, Tas, Australia. [Lienert, Sebastian] Univ Bern, Inst Phys, Climate & Environm Phys, Bern, Switzerland. [Lombardozzi, Danica] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland. [Melton, Joe R.] Natl Ctr Atmospher Res Climate & Global Dynam, Terr Sci Sect, Boulder, CO 80305 USA. [Millero, Frank] Climate Res Div, Environm & Climate Change Canada, Victoria, BC, Canada. [Monteiro, Pedro M. S.] Univ Miami, RSMAS, MAC, Dept Ocean Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Munro, David R.] CSIR, CHPC, Ocean Syst & Climate, ZA-7700 Cape Town, South Africa. [Munro, David R.] Univ Colorado, Dept Atmospher & Ocean Sci, Campus Box 450, Boulder, CO 80309 USA. [Nakaoka, Shin-ichiro] Univ Colorado, Inst Arct & Alpine Res, Campus Box 450, Boulder, CO 80309 USA. [O'Brien, Kevin; Sutton, Adrienne J.] Natl Inst Environm Studies, Ctr Global Environm Res, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan. [Olsen, Are; Omar, Abdirahman M.] Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98195 USA. [Olsen, Are; Omar, Abdirahman M.] Univ Bergen, Inst Geophys, Allegaten 70, N-5007 Bergen, Norway. [Ono, Tsuneo] Univ Bergen, Bjerknes Ctr Climate Res, Allegaten 70, N-5007 Bergen, Norway. [Poulter, Benjamin] Japan Fisheries Res & Educ Agcy, Natl Res Inst Far Sea Fisheries, 2-12-4 Fukuura, Yokohama, Kanagawa 2368648, Japan. [Poulter, Benjamin] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA. [Roedenbeck, Christian; Zaehle, Soenke] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Salisbury, Joe] Max Planck Inst Biogeochem, POB 600164,Hans Knoll Str 10, D-07745 Jena, Germany. [Schwinger, Joerg; Skjelvan, Ingunn] Univ New Hampshire, Ocean Proc Anal Lab, 161 Morse Hall,8 Coll Rd, Durham, NH 03824 USA. [Stocker, Benjamin D.] Uni Res Climate, Bjerknes Ctr Climate Res, Nygardsgaten 112, N-5008 Bergen, Norway. [Takahashi, Taro] Univ London Imperial Coll Sci Technol & Med, Dept Life Sci, Silwood Pk, Ascot SL5 7PY, Berks, England. [Tian, Hanqin] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Tilbrook, Bronte] Auburn Univ, Sch Forestry & Wildlife Sci, 602 Ducan Dr, Auburn, AL 36849 USA. [Tilbrook, Bronte] CSIRO Oceans & Atmosphere, Hobart, Tas, Australia. [van der Laan-Luijkx, Ingrid T.] Antarct Climate & Ecosyst Cooperat Res Ctr, Hobart, Tas, Australia. [van der Werf, Guido R.] Wageningen Univ & Res, Dept Meteorol & Air Qual, POB 47, NL-6700 AA Wageningen, Netherlands. [Walker, Anthony P.] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands. [Walker, Anthony P.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Wiltshire, Andrew J.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37830 USA. Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England. EM c.lequere@uea.ac.uk RI Lenton, Andrew/D-2077-2012; Doney, Scott/F-9247-2010; OI Lenton, Andrew/0000-0001-9437-8896; Doney, Scott/0000-0002-3683-2437; Andrew, Robbie/0000-0001-8590-6431 FU International Ocean Carbon Coordination Project (IOCCP); Surface Ocean Lower Atmosphere Study (SOLAS); Integrated Marine Biogeochemistry, Ecosystem Research (IMBER) programme FX We thank all people and institutions who provided the data used in this carbon budget; C. Enright, W. Peters, and S. Shu for their involvement in the development, use, and analysis of the models and data products used here; F. Joos and S. Khatiwala for providing historical data; and P. Regnier for assistance in describing LOAC fluxes. We thank E. Dlugokencky, who provided the atmospheric CO2 measurements used here; B. Pfeil, C. Landa, and S. Jones of the Bjerknes Climate Data Centre and the ICOS Ocean Thematic Centre data management at the University of Bergen, who helped with gathering information from the SOCAT community; D. Bakker for support with the SOCAT coordination; and all those involved in collecting and providing oceanographic CO2 measurements used here, in particular for the new ocean data for years 2015: A. Andersson, N. Bates, R. Bott, A. Cattrijsse, E. De Carlo, C. Dietrich, L. Gregor, C. Hunt, T. Johannessen, W. R. Joubert, A. Kuwata, S. K. Lauvset, C. Lo Monaco, S. Maenner, D. Manzello, N. Monacci, S. Musielewicz, T. Newberger, A. Olsen, J. Osborne, C. Sabine, S. C. Sutherland, C. Sweeney, K. Tadokoro, S. van Heuven, D. Vandemark, and R. Wanninkhof. We thank the institutions and funding agencies responsible for the collection and quality control of the data included in SOCAT, and the support of the International Ocean Carbon Coordination Project (IOCCP), the Surface Ocean Lower Atmosphere Study (SOLAS), and the Integrated Marine Biogeochemistry, Ecosystem Research (IMBER) programme. We thank data providers to ObsPack GLOBALVIEWplus v1.0 and NRT v3.0 for atmospheric CO2 observations used in CTE2016-FT. This is NOAA-PMEL contribution number 4576. NR 158 TC 5 Z9 5 U1 5 U2 5 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1866-3508 EI 1866-3516 J9 EARTH SYST SCI DATA JI Earth Syst. Sci. Data PD NOV 14 PY 2016 VL 8 IS 2 BP 605 EP 649 DI 10.5194/essd-8-605-2016 PG 45 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Geology; Meteorology & Atmospheric Sciences GA EN8HS UT WOS:000396242100001 ER PT J AU Anoop, KK Harilal, SS Philip, R Bruzzese, R Amoruso, S AF Anoop, K. K. Harilal, S. S. Philip, Reji Bruzzese, R. Amoruso, S. TI Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FEMTOSECOND-LASER; ABLATION THRESHOLDS; SOLID INTERACTIONS; PULSE DURATION; NANOSECOND; METALS; GENERATION; SURFACES; VACUUM; TEMPERATURE AB The characteristic emission features of a laser-produced plasma depend strongly on the laser fluence. We investigated the spatial and temporal dynamics of neutrals and ions in a femtosecond laser (800 nm, similar to 40 fs, Ti:Sapphire) induced copper plasma in vacuum using both optical emission spectroscopy (OES) and spectrally resolved two-dimensional (2D) imaging over a wide fluence range of 0.5-77.5 J/cm(2). 2D fast gated monochromatic images showed a distinct plume splitting between the neutrals and ions, especially at moderate to higher fluence. OES studies at low to moderate laser fluence confirm intense neutral line emission over ion emission, whereas this trend changes at higher laser fluence with dominance of the latter. This evidences a clear change in the physical processes involved in the femtosecond laser-matter interaction at high input laser intensity. The obtained ion dynamics resulting from OES and spectrally resolved 2D imaging are compared with charged particle measurement employing Faraday cup and Langmuir probe; results showed good correlation. Published by AIP Publishing. C1 [Anoop, K. K.; Philip, Reji] Raman Res Inst, Ultrafast & Nonlinear Opt Lab, Light & Matter Phys Grp, Bangalore 560080, Karnataka, India. [Anoop, K. K.; Bruzzese, R.; Amoruso, S.] Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy. [Anoop, K. K.; Bruzzese, R.; Amoruso, S.] Univ Napoli Federico II, CNR SPIN, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy. [Harilal, S. S.] Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. [Harilal, S. S.] Purdue Univ, W Lafayette, IN 47907 USA. RP Anoop, KK (reprint author), Raman Res Inst, Ultrafast & Nonlinear Opt Lab, Light & Matter Phys Grp, Bangalore 560080, Karnataka, India.; Anoop, KK (reprint author), Univ Napoli Federico II, Dipartimento Fis Ettore Pancini, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy.; Anoop, KK (reprint author), Univ Napoli Federico II, CNR SPIN, Complesso Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy. EM anoop@rri.res.in RI amoruso, salvatore/E-3941-2012; Harilal, Sivanandan/B-5438-2014; OI amoruso, salvatore/0000-0002-1011-3215; Harilal, Sivanandan/0000-0003-2266-7976; Bruzzese, Riccardo/0000-0003-2195-5407 FU U.S. DOE/NNSA Office of Nonproliferation and Verification Research and Development [NA-22]; U.S. National Science Foundation; U.S. DOE [DE-AC05-76RLO1830] FX This work was supported in part by the U.S. DOE/NNSA Office of Nonproliferation and Verification Research and Development (NA-22) and U.S. National Science Foundation. The authors thank Mr. Mathew Polek for technical help. Pacific Northwest National Laboratory is operated for the U.S. DOE by the Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830. NR 55 TC 1 Z9 1 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 14 PY 2016 VL 120 IS 18 AR 185901 DI 10.1063/1.4967313 PG 9 WC Physics, Applied SC Physics GA ED3FK UT WOS:000388734700035 ER PT J AU Sklenar, J Zhang, W Jungfleisch, MB Jiang, WJ Saglam, H Pearson, JE Ketterson, JB Hoffmann, A AF Sklenar, Joseph Zhang, Wei Jungfleisch, Matthias B. Jiang, Wanjun Saglam, Hilal Pearson, John E. Ketterson, John B. Hoffmann, Axel TI Perspective: Interface generation of spin-orbit torques SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TOPOLOGICAL INSULATOR; MAGNETIZATION; FIELD AB Most of the modern spintronics developments rely on the manipulation of magnetization states via electric currents, which started with the discovery of spin transfer torque effects 20 years ago. By now, it has been realized that spin-orbit coupling provides a particularly efficient pathway for generating spin torques from charge currents. At the same time, spin-orbit effects can be enhanced at interfaces, which opens up novel device concepts. Here, we discuss two examples of such interfacial spin-orbit torques, namely, systems with inherently two-dimensional materials and metallic bilayers with strong Rashba spin-orbit coupling at their interfaces. We show how ferromagnetic resonance excited by spin-orbit torques can provide information about the underlying mechanisms. In addition, this article provides a brief overview of recent developments with respect to interfacial spin-orbit torques and an outlook of still open questions. Published by AIP Publishing. C1 [Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; Saglam, Hilal; Pearson, John E.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Sklenar, Joseph; Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Zhang, Wei] Oakland Univ, Dept Phys, Rochester, MI 48309 USA. [Jiang, Wanjun] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Jiang, Wanjun] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Jiang, Wanjun] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Saglam, Hilal] IIT, Dept Phys, Chicago, IL 60616 USA. [Sklenar, Joseph] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. RP Hoffmann, A (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM hoffmann@anl.gov RI Jungfleisch, Matthias Benjamin/G-1069-2015 OI Jungfleisch, Matthias Benjamin/0000-0001-8204-3677 FU U.S. Department of Energy, Office of Science, Materials Science and Engineering Division; DOE, Office of Science, Basic Energy Science [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. Lithography was carried out at the Center for Nanoscale Materials, which is supported by DOE, Office of Science, Basic Energy Science under Contract No. DE-AC02-06CH11357. NR 41 TC 1 Z9 1 U1 23 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 14 PY 2016 VL 120 IS 18 AR 180901 DI 10.1063/1.4967391 PG 8 WC Physics, Applied SC Physics GA ED3FK UT WOS:000388734700001 ER PT J AU Usher, TM Iamsasri, T Forrester, JS Raengthon, N Triamnak, N Cann, DP Jones, JL AF Usher, Tedi-Marie Iamsasri, Thanakorn Forrester, Jennifer S. Raengthon, Natthaphon Triamnak, Narit Cann, David P. Jones, Jacob L. TI Local and average structures of BaTiO3-Bi(Zn1/2Ti1/2)O-3 SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RELAXOR BEHAVIOR; CERAMICS; PHASE; BATIO3; PIEZOELECTRICS; TETRAGONALITY; PERMITTIVITY; POLARIZATION; PEROVSKITES; BOUNDARY AB The complex crystallographic structures of (1-x)BaTiO3-xBi(Zn1/2Ti1/2)O-3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. The results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). However, a box-car fitting analysis of the PDFs reveals variations at different length scales. For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 angstrom vs. 5 angstrom). When the longest distances are evaluated (r > 40 angstrom), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. For the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. Collectively, the results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale. Published by AIP Publishing. C1 [Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; Jones, Jacob L.] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Usher, Tedi-Marie] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Iamsasri, Thanakorn] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Ind Phys & Med Instrumentat, Bangkok 10800, Thailand. [Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.] Oregon State Univ, Sch Mech Ind & Mfg Engn, Mat Sci, Corvallis, OR 97331 USA. [Raengthon, Natthaphon] Chulalongkorn Univ, Dept Mat Sci, Fac Sci, Bangkok 10330, Thailand. [Triamnak, Narit] Silpakorn Univ, Dept Mat Sci & Engn, Fac Engn & Ind Technol, Nakhon Pathom 73000, Thailand. RP Jones, JL (reprint author), North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. EM JacobJones@ncsu.edu OI Forrester, Jennifer/0000-0002-4035-815X FU U.S. Department of Commerce [70NANB13H197]; DOE Office of Basic Energy Sciences [DE-AC52-06NA25396]; DOE Office of Science [DE-AC02-06CH11357]; Department of Energy's Office of Electricity Delivery and Energy Reliability FX T.-M.U. acknowledges support from the U.S. Department of Commerce under Award No. 70NANB13H197. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences, Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This work was partially funded by the Department of Energy's Office of Electricity Delivery and Energy Reliability. The authors wish to thank Matthew Suchomel from the Advanced Photon Source for HRXRD data collection through the mail-in system at 11-BM and the former beamline scientists Katharine Page and Joan Siewenie at NPDF for their assistance with data collection and reduction. NR 42 TC 0 Z9 0 U1 14 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 14 PY 2016 VL 120 IS 18 AR 184102 DI 10.1063/1.4967222 PG 13 WC Physics, Applied SC Physics GA ED3FK UT WOS:000388734700014 ER PT J AU Etampawala, TN Aryal, D Osti, NC He, LL Heller, WT Willis, CL Grest, GS Perahia, D AF Etampawala, Thusitha N. Aryal, Dipak Osti, Naresh C. He, Lilin Heller, William T. Willis, Carl L. Grest, Gary S. Perahia, Dvora TI Association of a multifunctional ionic block copolymer in a selective solvent SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SULFONATED PENTABLOCK COPOLYMER; ANGLE NEUTRON-SCATTERING; X-RAY-SCATTERING; DIBLOCK COPOLYMER; MICELLAR MORPHOLOGY; PHASE-BEHAVIOR; FORM-FACTORS; POLYMER; CHAIN; POLY(STYRENE-B-ISOPRENE) AB The self-assembly of multiblock copolymers in solutions is controlled by a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interaction of the individual blocks with the solvent. The current study elucidates the association of pentablock copolymers in a mixture of selective solvents which are good for the hydrophobic segments and poor for the hydrophilic blocks using small angle neutron scattering (SANS). The pentablock consists of a center block of randomly sulfonated polystyrene, designed for transport, tethered to poly-ethylene-r-propylene and end-capped by poly-t-butyl styrene, for mechanical stability. We find that the pentablock forms ellipsoidal core-shell micelles with the sulfonated polystyrene in the core and Gaussian decaying chains of swollen poly-ethylene-r-propylene and poly-t-butyl styrene tertiary in the corona. With increasing solution concentration, the size of the micelle, the thickness of the corona, and the aggregation number increase, while the solvent fraction in the core decreases. In dilute solution the micelle increases in size as the temperature is increased, however, temperature effects dissipate with increasing solution concentration. Published by AIP Publishing. C1 [Etampawala, Thusitha N.; Aryal, Dipak; Osti, Naresh C.; Perahia, Dvora] Clemson Univ, Dept Chem, Clemson, SC 29634 USA. [He, Lilin; Heller, William T.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Willis, Carl L.] Kraton Polymers US LLC, 16400 Pk Row, Houston, TX 77084 USA. [Grest, Gary S.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Perahia, D (reprint author), Clemson Univ, Dept Chem, Clemson, SC 29634 USA. EM dperahi@g.clemson.edu OI Osti, Naresh/0000-0002-0213-2299; Heller, William/0000-0001-6456-2975; He, Lilin/0000-0002-9560-8101 FU U.S. Department of Energy [DE-SC007908]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; DOE-EPSCoR [DE-FG02-08ER46528]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy under Contract No. DE-SC007908. The SANS measurements conducted using the EQ-SANS at ORNL's Spallation Neutron Source and GP-SANS at ORNL's High Flux Isotope Reactor were sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Travel to Oak Ridge National Laboratory to carry out this work was supported by a Travel Fellowship from the DOE-EPSCoR Grant to the University of Tennessee, Grant No. DE-FG02-08ER46528. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy and Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors would also like to thank Dr. Karen Winey for helpful discussions. NR 46 TC 1 Z9 1 U1 13 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2016 VL 145 IS 18 AR 184903 DI 10.1063/1.4967291 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA ED1OZ UT WOS:000388616100037 PM 27846710 ER PT J AU Mardirossian, N Head-Gordon, M AF Mardirossian, Narbe Head-Gordon, Martin TI The performance of new density functionals for a recent blind test of non-covalent interactions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Editorial Material ID HYBRID; ACCURACY C1 [Mardirossian, Narbe; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA.; Head-Gordon, M (reprint author), Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu NR 25 TC 1 Z9 1 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 14 PY 2016 VL 145 IS 18 AR 186101 DI 10.1063/1.4967424 PG 2 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA ED1OZ UT WOS:000388616100041 PM 27846681 ER PT J AU Serrano, PN Wang, HX Crack, JC Prior, C Hutchings, MI Thomson, AJ Kamali, S Yoda, Y Zhao, JY Hu, MY Alp, EE Oganesyan, VS Le Brun, NE Cramer, SP AF Serrano, Pauline N. Wang, Hongxin Crack, Jason C. Prior, Christopher Hutchings, Matthew I. Thomson, Andrew J. Kamali, Saeed Yoda, Yoshitaka Zhao, Jiyong Hu, Michael Y. Alp, Ercan E. Oganesyan, Vasily S. Le Brun, Nick E. Cramer, Stephen P. TI Nitrosylation of Nitric-Oxide-Sensing Regulatory Proteins Containing [4Fe-4S] Clusters Gives Rise to Multiple Iron-Nitrosyl Complexes SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE gene regulation; iron-sulfur clusters; nitric oxide; nuclear vibrational resonance spectroscopy; synchrotron radiation ID RESONANCE VIBRATIONAL SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY; SULFUR CLUSTERS; STREPTOMYCES-COELICOLOR; MOSSBAUER-SPECTROSCOPY; NIFE HYDROGENASE; ACTIVE-SITE; DNA-BINDING; NO; TUBERCULOSIS AB The reaction of protein-bound iron-sulfur (Fe-S) clusters with nitric oxide (NO) plays key roles in NO-mediated toxicity and signaling. Elucidation of the mechanism of the reaction of NO with DNA regulatory proteins that contain Fe-S clusters has been hampered by a lack of information about the nature of the iron-nitrosyl products formed. Herein, we report nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations that identify NO reaction products in WhiD and NsrR, regulatory proteins that use a [4Fe-4S] cluster to sense NO. This work reveals that nitrosylation yields multiple products structurally related to Roussin's Red Ester (RRE, [Fe-2(NO)(4)(Cys)(2)]) and Roussin's Black Salt (RBS, [Fe-4(NO)(7)S-3]. In the latter case, the absence of S-32/S-34 shifts in the Fe-S region of the NRVS spectra suggest that a new species, Roussin's Black Ester (RBE), may be formed, in which one or more of the sulfide ligands is replaced by Cys thiolates. C1 [Serrano, Pauline N.; Wang, Hongxin; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Wang, Hongxin; Cramer, Stephen P.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Crack, Jason C.; Prior, Christopher; Thomson, Andrew J.; Oganesyan, Vasily S.; Le Brun, Nick E.] Univ East Anglia, Ctr Mol & Struct Biochem, Sch Chem, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. [Hutchings, Matthew I.] Univ East Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England. [Kamali, Saeed] Univ Tennessee, Inst Space, Tullahome, TN 37388 USA. [Yoda, Yoshitaka] SPring 8 JASRI, Res & Utilizat Div, 1-1-1 Kouto, Sayo, Hyogo 6795198, Japan. [Zhao, Jiyong; Hu, Michael Y.; Alp, Ercan E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Cramer, SP (reprint author), Univ Calif Davis, Dept Chem, Davis, CA 95616 USA.; Cramer, SP (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.; Le Brun, NE (reprint author), Univ East Anglia, Ctr Mol & Struct Biochem, Sch Chem, Norwich Res Pk, Norwich NR4 7TJ, Norfolk, England. EM n.le-brun@uea.ac.uk; spjcramer@ucdavis.edu FU Biotechnology and Biological Sciences Research Council [BB/J003247/1, BB/L007673/1, BB/K02115X/1]; National Institutes of Health [GM65440]; UEA FX This work was supported by Biotechnology and Biological Sciences Research Council grants BB/J003247/1 (to NLB, MIH, and AJT), BB/L007673/1 (to NLB, JCC, and AJT) and BB/K02115X/1 (a US Partnering award to facilitate exchange between the NLB and SPC laboratories), and National Institutes of Health Grant GM65440 to SPC. We thank UEA for funding the purchase of the mass spectrometer instrument and for access to the High Performance Computer Cluster (Grace). NR 49 TC 0 Z9 0 U1 9 U2 9 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 14 PY 2016 VL 55 IS 47 BP 14575 EP 14579 DI 10.1002/anie.201607033 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EC6NH UT WOS:000388252700011 PM 27778474 ER PT J AU Smetana, V Mudring, AV AF Smetana, Volodymyr Mudring, Anja-Verena TI Cesium Platinide Hydride 4Cs(2)Pt center dot CsH: An Intermetallic Double Salt Featuring Metal Anions SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE cesium; electronic structure; hydrides; platinum; relativistic effects ID TOTAL-ENERGY CALCULATIONS; HIGH-PRESSURE SYNTHESIS; WAVE BASIS-SET; PLANE-WAVE; CRYSTAL-STRUCTURE; ALKALI-METALS; GOLD; CHEMISTRY; RB; CS AB With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs9Pt4H exhibits a complex crystal structure containing Cs+ cations, Pt2- and H- anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the "alloy" cesium-platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs9Pt4H equivalent to 4Cs2Pt center dot CsH. C1 [Smetana, Volodymyr; Mudring, Anja-Verena] US DOE, Ames Lab, Ames, IA 50011 USA. [Smetana, Volodymyr; Mudring, Anja-Verena] Crit Mat Inst, Ames, IA 50011 USA. [Mudring, Anja-Verena] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Mudring, AV (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA.; Mudring, AV (reprint author), Crit Mat Inst, Ames, IA 50011 USA.; Mudring, AV (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM mudring@iastate.edu RI Smetana, Volodymyr/C-1340-2015; OI Smetana, Volodymyr/0000-0003-0763-1457 FU Office of the Basic Energy Sciences, Materials Sciences Division, U.S. DOE; U.S. DOE [DE-AC02-07CH11358] FX This research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, U.S. DOE. Ames Laboratory is operated for U.S. DOE by Iowa State University under contract No. DE-AC02-07CH11358. We gratefully acknowledge Dr. I. Hlova (Ames Lab) for help with the CsH preparation. NR 51 TC 0 Z9 0 U1 2 U2 2 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 14 PY 2016 VL 55 IS 47 BP 14838 EP 14841 DI 10.1002/anie.201606682 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EC6NH UT WOS:000388252700065 PM 27775213 ER PT J AU Sun, TB Kim, JW Yuk, JM Zettl, A Wang, F Chang-Hasnain, C AF Sun, Tianbo Kim, Jonghwan Yuk, Jong Min Zettl, Alex Wang, Feng Chang-Hasnain, Connie TI Surface-normal electro-optic spatial light modulator using graphene integrated on a high-contrast grating resonator SO OPTICS EXPRESS LA English DT Article ID OPTICAL MODULATORS; ELECTRICAL CONTROL; OPTOELECTRONICS; FILMS AB We demonstrate efficient optical modulation of surface-normal reflection in a novel device structure integrating graphene on a high contrast grating (HCG) resonator. As high as 11 dB extinction ratio is achieved by varying the voltage applied to a single atomic layer of graphene on a HCG resonator. The device topology facilitates easy fabrication of large 2D arrays, and free-space operation. We also demonstrate a graphene-oxide-graphene structure which can potentially operate at MHz operation speed. The devices are fully fabricated by standard CMOS compatible processes indicating that the integrated structure of graphene-on-HCG shows great promise for display, imaging and interconnects applications with low-cost and large scalability. (C) 2016 Optical Society of America. C1 [Sun, Tianbo; Chang-Hasnain, Connie] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA. [Kim, Jonghwan; Yuk, Jong Min; Zettl, Alex; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yuk, Jong Min; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yuk, Jong Min; Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Yuk, Jong Min; Zettl, Alex] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yuk, Jong Min] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 305701, South Korea. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu; cch@berkeley.edu FU National Science Foundation [1335609]; National Natural Science Foundation of China (NSFC) [61320106001]; State Key Laboratory of Advanced Optical Communication Systems and Networks, China; Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, of the U.S. Department of Energy [DE-AC02- 05CH11231, KC2207, KCWF16] FX This material is based upon work supported by the National Science Foundation under Grant No. 1335609 and by the National Natural Science Foundation of China (NSFC) under grant 61320106001, and State Key Laboratory of Advanced Optical Communication Systems and Networks, China. Additional support was provided by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division, of the U.S. Department of Energy under contract NO. DE-AC02- 05CH11231, within the sp2-bonded Materials Program (KC2207) which provided for graphene transfer methods and structural characterization, and within the van der Walls Heterostructures Program (KCWF16) which provided for graphene synthesis. NR 26 TC 0 Z9 0 U1 16 U2 16 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 14 PY 2016 VL 24 IS 23 BP 26035 EP 26043 DI 10.1364/OE.24.026035 PG 9 WC Optics SC Optics GA EC8TC UT WOS:000388414600014 PM 27857342 ER PT J AU Montazeri, AO Fang, Y Sarrafi, P Kherani, NP AF Montazeri, A. O. Fang, Y. Sarrafi, P. Kherani, N. P. TI Rainbow-trapping by adiabatic tuning of intragroove plasmon coupling SO OPTICS EXPRESS LA English DT Article ID SLOW-LIGHT; ENHANCEMENT; GRATINGS; STORAGE AB Trapping broadband electromagnetic radiation over a subwavelength grating, provides new opportunities for hyperspectral light-matter interaction on a nanometer scale. Previous efforts have shown rainbow-trapping is possible on functionally graded structures. Here, we propose groove width as a new gradient parameter for designing rainbow-trapping gratings and define the range of its validity. We articulate the correlation between the width of narrow grooves and the overlap or the coupling of the evanescent surface plasmon fields within the grooves. In the suitable range (less than or similar to 150 nm), this width parameter becomes as important as other known parameters such as groove depth and materials composition, but tailoring groove widths is remarkably more feasible in practice. Using groove width as a design parameter, we investigate rainbow-trapping gratings and derive an analytical formula by treating each nano-groove as a plasmonic waveguide resonator. These results closely agree with numerical simulations. (C) 2016 Optical Society of America C1 [Montazeri, A. O.; Sarrafi, P.; Kherani, N. P.] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada. [Montazeri, A. O.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Fang, Y.] Univ Toronto, Dept Phys, Toronto, ON M5S 3G4, Canada. [Fang, Y.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kherani, N. P.] Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada. RP Kherani, NP (reprint author), Univ Toronto, Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada.; Kherani, NP (reprint author), Univ Toronto, Dept Mat Sci & Engn, Toronto, ON M5S 3E4, Canada. EM kherani@ecf.utoronto.ca FU Natural Sciences & Engineering Research Council (NSERC) of Canada through the Discovery and CREATE programs; Ontario Research Fund - Research Excellence program; Weston Foundation; Ontario Graduate Scholarship program; Edward S. Rogers Sr. Department of Electrical & Computer Engineering at the University of Toronto FX The authors acknowledge support of Natural Sciences & Engineering Research Council (NSERC) of Canada through the Discovery and CREATE programs, Ontario Research Fund - Research Excellence program, Weston Foundation, Ontario Graduate Scholarship program, and the Edward S. Rogers Sr. Department of Electrical & Computer Engineering at the University of Toronto. NR 24 TC 0 Z9 0 U1 13 U2 13 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD NOV 14 PY 2016 VL 24 IS 23 BP 26745 EP 26755 DI 10.1364/OE.24.026745 PG 11 WC Optics SC Optics GA EC8TC UT WOS:000388414600077 PM 27857405 ER PT J AU Debenham, DM Bentley, MA Davies, PJ Haylett, T Jenkins, DG Joshi, P Sinclair, LF Wadsworth, R Ruotsalainen, P Henderson, J Kaneko, K Auranen, K Badran, H Grahn, T Greenlees, P Herzaan, A Jakobsson, U Konki, J Julin, R Juutinen, S Leino, M Sorri, J Pakarinen, J Papadakis, P Peura, P Partanen, J Rahkila, P Sandzelius, M Saren, J Scholey, C Stolze, S Uusitalo, J David, HM de Angelis, G Korten, W Lotay, G Mallaburn, M Sahin, E AF Debenham, D. M. Bentley, M. A. Davies, P. J. Haylett, T. Jenkins, D. G. Joshi, P. Sinclair, L. F. Wadsworth, R. Ruotsalainen, P. Henderson, J. Kaneko, K. Auranen, K. Badran, H. Grahn, T. Greenlees, P. Herzaan, A. Jakobsson, U. Konki, J. Julin, R. Juutinen, S. Leino, M. Sorri, J. Pakarinen, J. Papadakis, P. Peura, P. Partanen, J. Rahkila, P. Sandzelius, M. Saren, J. Scholey, C. Stolze, S. Uusitalo, J. David, H. M. de Angelis, G. Korten, W. Lotay, G. Mallaburn, M. Sahin, E. TI Spectroscopy of Kr-70 and isospin symmetry in the T=1 f pg shell nuclei SO PHYSICAL REVIEW C LA English DT Article ID COULOMB ENERGY DIFFERENCES; TOTAL DATA READOUT; STATES; DETECTORS; GE AB The recoil-beta tagging technique has been used in conjunction with the Ca-40(S-32,2n) reaction at a beam energy of 88 MeV to identify transitions associated with the decay of the 2(+) and, tentatively, 4(+) states in the nucleus Kr-70. These data are used, along with previously published data, to examine the triplet energy differences (TED) for the mass 70 isobars. The experimental TED values are compared with shell model calculations, performed with the JUN45 interaction in the fpg model space, that include a J = 0 isospin nonconserving (INC) interaction with an isotensor strength of 100 keV. The agreement is found to be very good up to spin 4 and supports the expectation for analog states that all three nuclei have the same oblate shape at low-spin. The A = 70 results are compared with the experimental and shell model predicted TED and mirror energy differences (MED) for the mass 66 and 74 systems. The comparisons clearly demonstrate the importance of the isotensor INC interaction in replicating the TED data in this region. Issues related to the observed MED values and their interpretation within the shell model are discussed. C1 [Debenham, D. M.; Bentley, M. A.; Davies, P. J.; Haylett, T.; Jenkins, D. G.; Joshi, P.; Sinclair, L. F.; Wadsworth, R.; Henderson, J.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Ruotsalainen, P.; Auranen, K.; Badran, H.; Grahn, T.; Greenlees, P.; Herzaan, A.; Jakobsson, U.; Konki, J.; Julin, R.; Juutinen, S.; Leino, M.; Sorri, J.; Pakarinen, J.; Papadakis, P.; Peura, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Saren, J.; Scholey, C.; Stolze, S.; Uusitalo, J.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Ruotsalainen, P.; Henderson, J.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Kaneko, K.] Kyushu Sangyo Univ, Dept Phys, Fukuoka 8138503, Japan. [David, H. M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [de Angelis, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Viale Univ 2, I-35020 Legnaro, Italy. [Korten, W.] CEA Saclay, IRFU, SPHN, F-91191 Gif Sur Yvette, France. [Lotay, G.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Mallaburn, M.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Sahin, E.] Univ Oslo, Dept Phys, N-0316 Oslo, Norway. [David, H. M.] GSI Helmholtzzentrum Schwerionenforsch GmBH, D-64291 Darmstadt, Germany. RP Debenham, DM (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM dmd512@york.ac.uk RI Scholey, Catherine/G-2720-2014 OI Scholey, Catherine/0000-0002-8743-6071 FU Academy of Finland under the Finnish Center of Excellence Programme; EU 7th framework programme (ENSAR) [262010]; UK STFC [ST/J000124, ST/L005727]; Natural Sciences and Engineering Research Council of Canada FX This work has been supported by the Academy of Finland under the Finnish Center of Excellence Programme (20122017). The authors also thank the GAMMAPOOL European Spectroscopy Resource for the loan of the detectors for the JUROGAM II array. Support has also been provided by the EU 7th framework programme, Project No. 262010 (ENSAR). We wish to acknowledge support from the UK STFC under Grants No. ST/J000124 and No. ST/L005727. J.H. and P.R. acknowledge the support of the Natural Sciences and Engineering Research Council of Canada. NR 42 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 14 PY 2016 VL 94 IS 5 AR 054311 DI 10.1103/PhysRevC.94.054311 PG 7 WC Physics, Nuclear SC Physics GA EC6US UT WOS:000388272800001 ER PT J AU Davidovits, S Fisch, NJ AF Davidovits, Seth Fisch, Nathaniel J. TI Compressing turbulence and sudden viscous dissipation with compression-dependent ionization state SO PHYSICAL REVIEW E LA English DT Article ID RAPID-DISTORTION THEORY; ISOTROPIC TURBULENCE; Z-PINCH AB Turbulent plasma flow, amplified by rapid three-dimensional compression, can be suddenly dissipated under continuing compression. This effect relies on the sensitivity of the plasma viscosity to the temperature, mu similar to T-5/2. The plasma viscosity is also sensitive to the plasma ionization state. We show that the sudden dissipation phenomenon may be prevented when the plasma ionization state increases during compression, and we demonstrate the regime of net viscosity dependence on compression where sudden dissipation is guaranteed. Additionally, it is shown that, compared to cases with no ionization, ionization during compression is associated with larger increases in turbulent energy and can make the difference between growing and decreasing turbulent energy. C1 [Davidovits, Seth; Fisch, Nathaniel J.] Princeton Univ, Princeton, NJ 08544 USA. [Fisch, Nathaniel J.] Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Davidovits, S (reprint author), Princeton Univ, Princeton, NJ 08544 USA. FU DOE [DE-AC02-09CH1-1466, NNSA 67350-9960, DOE DE-NA0001836]; DTRA [HDTRA1-11-1-0037]; NSF [PHY-1506122] FX This work was supported by DOE through Contracts No. DE-AC02-09CH1-1466 and No. NNSA 67350-9960 (Prime No. DOE DE-NA0001836), by DTRA HDTRA1-11-1-0037, and by NSF Contract No. PHY-1506122. NR 26 TC 2 Z9 2 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 14 PY 2016 VL 94 IS 5 AR 053206 DI 10.1103/PhysRevE.94.053206 PG 9 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EC6WG UT WOS:000388276800011 PM 27967086 ER PT J AU Lehe, R Kirchen, M Godfrey, BB Maier, AR Vay, JL AF Lehe, Remi Kirchen, Manuel Godfrey, Brendan B. Maier, Andreas R. Vay, Jean-Luc TI Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates SO PHYSICAL REVIEW E LA English DT Article ID LASER WAKEFIELD ACCELERATORS; LORENTZ-BOOSTED FRAME; MAGNETIC-FIELD; COLLISIONLESS SHOCKS; PIC SIMULATIONS; ALGORITHM; GENERATION; STABILITY; CODES AB Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition. C1 [Lehe, Remi; Godfrey, Brendan B.; Vay, Jean-Luc] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Kirchen, Manuel; Maier, Andreas R.] Univ Hamburg, Ctr Free Electron Laser Sci, D-22761 Hamburg, Germany. [Kirchen, Manuel; Maier, Andreas R.] Univ Hamburg, Dept Phys, D-22761 Hamburg, Germany. [Godfrey, Brendan B.] Univ Maryland, College Pk, MD 20742 USA. RP Lehe, R (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rlehe@lbl.gov FU Office of Science, Office of High Energy Physics, U.S. Dept. of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development (LDRD) from Berkeley Lab; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; United States Government FX The simulation results were stored and visualized using the new open-source format openPMD [41]. The authors thank the openPMD contributors and in particular its creator, Axel Huebl (HZDR, Germany). The authors also thank Patrick Lee (U. Paris-Sud, France) for interesting discussions and for performing additional tests of the Galilean PSATD scheme (not presented here). This work was partly supported by the Director, Office of Science, Office of High Energy Physics, U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231, including from the Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab. The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; This document was prepared as an account of work sponsored in part by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, nor the authors makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 40 TC 1 Z9 1 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 14 PY 2016 VL 94 IS 5 AR 053305 DI 10.1103/PhysRevE.94.053305 PG 16 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EC6WG UT WOS:000388276800014 PM 27967063 ER PT J AU Keating, T Baldwin, CH Jau, YY Lee, J Biedermann, GW Deutsch, IH AF Keating, Tyler Baldwin, Charles H. Jau, Yuan-Yu Lee, Jongmin Biedermann, Grant W. Deutsch, Ivan H. TI Arbitrary Dicke-State Control of Symmetric Rydberg Ensembles SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRAPPED IONS; QUANTUM; FIELD; DYNAMICS; ATOMS AB We study the production of arbitrary superpositions of Dicke states via optimal control. We show that N atomic hyperfine qubits, interacting symmetrically via the Rydberg blockade, are well described by the Jaynes-Cummings Hamiltonian and fully controllable by phase-modulated microwaves driving Rydberg-dressed states. With currently feasible parameters, it is possible to generate states of similar to ten hyperfine qubits in similar to 1 mu s, assuming a fast microwave phase switching time. The same control can be achieved with a "dressed-ground control" scheme, which reduces the demands for fast phase switching at the expense of increased total control time. C1 [Keating, Tyler; Baldwin, Charles H.; Jau, Yuan-Yu; Biedermann, Grant W.; Deutsch, Ivan H.] Univ New Mexico, Ctr Quantum Informat & Control CQuIC, Albuquerque, NM 87131 USA. [Keating, Tyler; Baldwin, Charles H.; Deutsch, Ivan H.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Jau, Yuan-Yu; Lee, Jongmin; Biedermann, Grant W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Keating, T (reprint author), Univ New Mexico, Ctr Quantum Informat & Control CQuIC, Albuquerque, NM 87131 USA.; Keating, T (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. FU Laboratory Directed Research and Development program at Sandia National Laboratories; Center for Quantum Information and Control (CQuIC) under NSF [PHY-1521016]; National Science Foundation [PHY-1606989] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories and the Center for Quantum Information and Control (CQuIC) under NSF Grant No. PHY-1521016. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1606989. NR 34 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 14 PY 2016 VL 117 IS 21 DI 10.1103/PhysRevLett.117.213601 PG 5 WC Physics, Multidisciplinary SC Physics GA EC6YC UT WOS:000388281600002 PM 27911553 ER PT J AU Chan, CWI Albo, A Hu, Q Reno, JL AF Chan, Chun Wang I. Albo, Asaf Hu, Qing Reno, John L. TI Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers SO APPLIED PHYSICS LETTERS LA English DT Article AB Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. We hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challenges that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering. Published by AIP Publishing. C1 [Chan, Chun Wang I.; Albo, Asaf; Hu, Qing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Chan, Chun Wang I.; Albo, Asaf; Hu, Qing] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Reno, John L.] Sandia Natl Labs, Ctr Integrated Nanotechnol, MS 1303, Albuquerque, NM 87185 USA. RP Chan, CWI (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.; Chan, CWI (reprint author), MIT, Elect Res Lab, Cambridge, MA 02139 USA. EM icwchan@alum.mit.edu OI Albo, Asaf/0000-0002-7073-2958 FU NSF; NASA; MIT-Technion; Andrew and Erna Finci Viterbi Fellowships; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The work at MIT is supported by NSF and NASA. A. Albo would further like to acknowledge the generosity of the MIT-Technion and Andrew and Erna Finci Viterbi Fellowships and their support during this study. The work at Sandia was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 11 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 14 PY 2016 VL 109 IS 20 AR 201104 DI 10.1063/1.4967244 PG 4 WC Physics, Applied SC Physics GA EC3BR UT WOS:000388000000004 ER PT J AU Jaris, M Yahagi, Y Mahato, BK Dhuey, S Cabrini, S Nikitin, V Stout, J Hawkins, AR Schmidt, H AF Jaris, M. Yahagi, Y. Mahato, B. K. Dhuey, S. Cabrini, S. Nikitin, V. Stout, J. Hawkins, A. R. Schmidt, H. TI Intrinsic spin dynamics in optically excited nanoscale magnetic tunnel junction arrays restored by dielectric coating SO APPLIED PHYSICS LETTERS LA English DT Article AB We report the all-optical observation of intrinsic spin dynamics and extraction of magnetic material parameters from arrays of sub-100 nm spin-transfer torque magnetic random access memory (STT-MRAM) devices with a CoFeB/MgO interface. To this end, the interference of surface acoustic waves with time-resolved magneto-optic signals via magneto-elastic coupling was suppressed using a dielectric coating. The efficacy of this method is demonstrated experimentally and via modeling on a nickel nanomagnet array. The magnetization dynamics for both coated nickel and STT-MRAM arrays shows a restored field-dependent Kittel mode from which the effective damping can be extracted. We observe an increased low-field damping due to extrinsic contributions from magnetic inhomogeneities and variations in the nanomagnet shape, while the intrinsic Gilbert damping remains unaffected by patterning. The data are in excellent agreement with a local resonance model and have direct implications for the design of STT-MRAM devices as well as other nanoscale spintronic technologies. Published by AIP Publishing. C1 [Jaris, M.; Yahagi, Y.; Mahato, B. K.; Schmidt, H.] Univ Calif Santa Cruz, Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. [Dhuey, S.; Cabrini, S.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Nikitin, V.] Samsung Elect, Semicond R&D Ctr, New Memory Technol Lab, Milpitas, CA 95053 USA. [Stout, J.; Hawkins, A. R.] Brigham Young Univ, Dept Elect & Comp Engn, 459 Clyde Bldg, Provo, UT 84602 USA. RP Schmidt, H (reprint author), Univ Calif Santa Cruz, Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM hschmidt@soe.ucsc.edu FU National Science Foundation [ECCS-1509020, DMR-1506104]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Science Foundation under Grant Nos. ECCS-1509020 and DMR-1506104. Work at the Molecular Foundry, Lawrence Berkeley National Laboratory was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge T. Yuzvinsky and the W. M. Keck Center for Nanoscale Optofluidics at the University of California at Santa Cruz for SEM imaging. NR 32 TC 0 Z9 0 U1 9 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 14 PY 2016 VL 109 IS 20 AR 202403 DI 10.1063/1.4967848 PG 5 WC Physics, Applied SC Physics GA EC3BR UT WOS:000388000000029 ER PT J AU Liapis, AC Sfeir, MY Black, CT AF Liapis, Andreas C. Sfeir, Matthew Y. Black, Charles T. TI Plasmonic hole arrays for combined photon and electron management SO APPLIED PHYSICS LETTERS LA English DT Article ID EXTRAORDINARY OPTICAL-TRANSMISSION; SOLAR-CELLS; ABSORPTION ENHANCEMENT; BROAD-BAND; ORGANIC PHOTOVOLTAICS; SUBWAVELENGTH HOLES; HIGH-EFFICIENCY; METAL-FILMS; TRANSPARENT; ULTRATHIN AB Material architectures that balance optical transparency and electrical conductivity are highly sought after for thin-film device applications. However, these are competing properties, since the electronic structure that gives rise to conductivity typically also leads to optical opacity. Nanostructured metal films that exhibit extraordinary optical transmission, while at the same time being electrically continuous, offer considerable flexibility in the design of their transparency and resistivity. Here, we present design guidelines for metal films perforated with arrays of nanometer-scale holes, discussing the consequences of the choice of nanostructure dimensions, of the type of metal, and of the underlying substrate on their electrical, optical, and interfacial properties. We experimentally demonstrate that such films can be designed to have broad-band optical transparency while being an order of magnitude more conductive than indium tin oxide. Prototypical photovoltaic devices constructed with perforated metal contacts convert similar to 18% of the incident photons, compared to <1% for identical devices having contacts without the hole array. Published by AIP Publishing. C1 [Liapis, Andreas C.; Sfeir, Matthew Y.; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Liapis, AC; Black, CT (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM aliapis@bnl.gov; ctblack@bnl.gov OI Liapis, Andreas/0000-0001-6810-3354 FU Center for Functional Nanomaterials, a U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory [DE-SC0012704] FX The authors thank Matthew D. Eisaman and Ahsan Ashraf for assistance in the measurement of IPCE. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 42 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 14 PY 2016 VL 109 IS 20 AR 201101 DI 10.1063/1.4967791 PG 5 WC Physics, Applied SC Physics GA EC3BR UT WOS:000388000000001 ER PT J AU Patino, M Raitses, Y Wirz, R AF Patino, M. Raitses, Y. Wirz, R. TI Secondary electron emission from plasma-generated nanostructured tungsten fuzz SO APPLIED PHYSICS LETTERS LA English DT Article ID SURFACES; BACKSCATTERING; SHEATH; CARBON; YIELD; GOLD AB Recently, several researchers [e.g., Yang et al., Sci. Rep. 5, 10959 (2015)] have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports the direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40%-63% lower than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus, the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices. Published by AIP Publishing. C1 [Patino, M.; Raitses, Y.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Patino, M.; Wirz, R.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. RP Patino, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.; Patino, M (reprint author), Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. EM mipatino@ucla.edu FU DOE [DE-AC02-09CH11466]; AFOSR [FA9550-14-1-0053, FA9550-11-1-0282, AF9550-09-1-0695, FA9550-14-10317]; DOE Office of Science FX The authors would like to give their sincerest thanks to Professor Bruce E. Koel, Dr. Xiaofang Yang, Dr. Luxherta Buzi, Yuxin Yang, Yao-Wen Yeh, and Michelle Hofman of Princeton University and David Caron of The College of New Jersey for assisting in experiments and fruitful discussions. The authors are also grateful to Dr. Dennis Whyte and Dr. Graham Wright of the Massachusetts Institute of Technology for providing the tungsten fuzz sample. This work was supported by DOE Contract No. DE-AC02-09CH11466, AFOSR Grant Nos. FA9550-14-1-0053, FA9550-11-1-0282, AF9550-09-1-0695, and FA9550-14-10317, and the DOE Office of Science Graduate Student Research Program. NR 54 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 14 PY 2016 VL 109 IS 20 AR 201602 DI 10.1063/1.4967830 PG 5 WC Physics, Applied SC Physics GA EC3BR UT WOS:000388000000013 ER PT J AU Weiser, P Qin, Y Yin, W Stavola, M Fowler, WB Boatner, LA AF Weiser, Philip Qin, Ying Yin, Weikai Stavola, Michael Fowler, W. Beall Boatner, Lynn A. TI Symmetry and diffusivity of the interstitial hydrogen shallow-donor center in In2O3 SO APPLIED PHYSICS LETTERS LA English DT Article ID TRANSPARENT CONDUCTIVE OXIDE; DOPED IN2O3; MOBILITY AB Uniaxial-stress experiments performed for the 3306 cm(-1) vibrational line assigned to the interstitial-hydrogen, shallow-donor center in In2O3 reveal its symmetry and transition-moment direction. The defect alignment that can be produced by a [001] stress applied at 165K is due to a process that is also a hydrogen-diffusion jump, providing a microscopic determination of the diffusion constant for H in In2O3 and its mechanism. Our experimental results strongly complement the theoretical predictions for the structure and diffusion of the interstitial hydrogen donor center in In2O3. Published by AIP Publishing. C1 [Weiser, Philip; Qin, Ying; Yin, Weikai; Stavola, Michael; Fowler, W. Beall] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA. [Boatner, Lynn A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Stavola, M (reprint author), Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA. EM michael.stavola@Lehigh.edu OI Boatner, Lynn/0000-0002-0235-7594 FU NSF [DMR 1160756]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division FX The work at L.U. was supported by the NSF Grant No. DMR 1160756. M.S. is grateful for support for visits to Dresden from the Humboldt Foundation. Research at the Oak Ridge National Laboratory for one author (L.A.B.) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division. NR 26 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 14 PY 2016 VL 109 IS 20 AR 202105 DI 10.1063/1.4967943 PG 4 WC Physics, Applied SC Physics GA EC3BR UT WOS:000388000000024 ER PT J AU Yan, L Zhuo, M Wang, Z Yao, J Haberkorn, N Zhang, S Civale, L Li, J Viehland, D Jia, QX AF Yan, L. Zhuo, M. Wang, Z. Yao, J. Haberkorn, N. Zhang, S. Civale, L. Li, J. Viehland, D. Jia, Q. X. TI Magnetoelectric properties of flexible BiFeO3/Ni tapes (vol 101, 012908, 2012) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Yan, L.; Zhuo, M.; Zhang, S.; Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wang, Z.; Yao, J.; Li, J.; Viehland, D.] Virginia Tech, Dept Mat Sci & Engn, Blacksburg, VA 24061 USA. [Haberkorn, N.; Civale, L.] Los Alamos Natl Lab, Superconduct Technol Ctr, Los Alamos, NM 87545 USA. RP Yan, L; Jia, QX (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM lyan@vt.edu; qxjia@lanl.gov NR 1 TC 0 Z9 0 U1 20 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 14 PY 2016 VL 109 IS 20 AR 209901 DI 10.1063/1.4967827 PG 1 WC Physics, Applied SC Physics GA EC3BR UT WOS:000388000000069 ER PT J AU Zhang, C Si, WD Li, Q AF Zhang, Cheng Si, Weidong Li, Qiang TI Doubling the critical current density in superconducting FeSe0.5Te0.5 thin films by low temperature oxygen annealing SO APPLIED PHYSICS LETTERS LA English DT Article ID LAYERED SUPERCONDUCTOR; SINGLE-CRYSTAL; MECHANISM; STRAIN; NB3SN; FESE AB Iron chalcogenide superconducting thin films and coated conductors are attractive for potential high field applications at liquid helium temperature for their high critical current densities J(c), low anisotropies, and relatively strong grain couplings. Embedding flux pinning defects is a general approach to increase the in-field performance of superconductors. However, many effective pinning defects can adversely affect the zero field or self-field J(c), particularly in cuprate high temperature superconductors. Here, we report the doubling of the self-field J(c) in FeSe0.5Te0.5 films by low temperature oxygen annealing, reaching similar to 3 MA/cm(2). In-field performance is also dramatically enhanced. Our results demonstrate that low temperature oxygen annealing is a simple and cost-efficient post-treatment technique which can greatly help to accelerate the potential high field applications of the iron-based superconductors. Published by AIP Publishing. C1 [Zhang, Cheng; Si, Weidong; Li, Qiang] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Zhang, Cheng] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Li, Q (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM qiangli@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-SC0012704] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract No. DE-SC0012704. NR 40 TC 0 Z9 0 U1 16 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 14 PY 2016 VL 109 IS 20 AR 202601 DI 10.1063/1.4967879 PG 5 WC Physics, Applied SC Physics GA EC3BR UT WOS:000388000000034 ER PT J AU Xiong, XYYZ Jiang, LJ Sha, WEI Lo, YH Fang, M Chew, WC Choy, WCH AF Xiong, Xiaoyan Y. Z. Jiang, Li Jun Sha, Wei E. I. Lo, Yat Hei Fang, Ming Chew, Weng Cho Choy, Wallace C. H. TI Strongly enhanced and directionally tunable second-harmonic radiation from a plasmonic particle-in-cavity nanoantenna SO PHYSICAL REVIEW A LA English DT Article ID CENTROSYMMETRIC MATERIAL; METALLIC NANOPARTICLES; GENERATION; RESONANCE; GOLD; NANOSTRUCTURES; METAMATERIALS; SCATTERING; SURFACES; ANTENNAS AB Second-harmonic (SH) generation is tremendously important for nonlinear sensing, microscopy, and communication systems. One of the great challenges of current designs is to enhance the SH signal and simultaneously tune its radiation direction with a high directivity. In contrast to the linear plasmonic scattering dominated by a bulk dipolar mode, a complex surface-induced multipolar source at the doubled frequency sets a fundamental limit to control the SH radiation from metallic nanostructures. In this work, we harness a plasmonic hybridization mechanism together with a special selection rule governing the SH radiation to achieve the high-intensity and tunable-direction emission by a metallic particle-in-cavity nanoantenna (PIC-NA). The nanoantenna is modelled with a first-principle, self-consistent boundary element method, which considers the depletion of pump waves. The giant SH enhancement arises from a hybridized gap plasmon resonance between the small particle and the large cavity that functions as a concentrator and reflector. Centrosymmetry breaking of the PIC-NA not only modifies the gap plasmon mode boosting the SH signal, but also redirects the SH wave with a unidirectional emission. The PIC-NA has a significantly larger SH conversion efficiency compared to existing literature. The main beam of the radiation pattern can be steered over a wide angle by tuning the particle's position. C1 [Xiong, Xiaoyan Y. Z.; Jiang, Li Jun; Sha, Wei E. I.; Lo, Yat Hei; Chew, Weng Cho; Choy, Wallace C. H.] Univ Hong Kong, Dept EEE, Hong Kong, Hong Kong, Peoples R China. [Fang, Ming] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Hefei 230000, Peoples R China. [Fang, Ming] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Fang, Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chew, Weng Cho] Univ Illinois, Dept ECE, Urbana, IL 61801 USA. RP Jiang, LJ (reprint author), Univ Hong Kong, Dept EEE, Hong Kong, Hong Kong, Peoples R China. EM ljiang@eee.hku.hk; wsha@eee.hku.hk RI Sha, Wei/G-4955-2010 OI Sha, Wei/0000-0002-7431-8121 FU Research Grants Council of Hong Kong [GRF 716713, GRF 17207114, GRF17210815]; National Science Foundation of China [61271158, 61201122]; Hong Kong UGC [AoE/-04/08]; Collaborative Research Fund from the Research Grants Council of Hong Kong [C7045-14E]; CAS-Croucher Funding Scheme for Joint Laboratories [CAS14601] FX This work was supported in part by the Research Grants Council of Hong Kong (GRF 716713, GRF 17207114, and GRF17210815), National Science Foundation of China (Grants No. 61271158 and No. 61201122), Hong Kong UGC AoE/-04/08, the Collaborative Research Fund (No. C7045-14E) from the Research Grants Council of Hong Kong, and Grant No. CAS14601 from CAS-Croucher Funding Scheme for Joint Laboratories. NR 42 TC 0 Z9 0 U1 15 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9926 EI 2469-9934 J9 PHYS REV A JI Phys. Rev. A PD NOV 14 PY 2016 VL 94 IS 5 AR 053825 DI 10.1103/PhysRevA.94.053825 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EC1QL UT WOS:000387881800019 ER PT J AU Kolodrubetz, M Fregoso, BM Moore, JE AF Kolodrubetz, Michael Fregoso, Benjamin M. Moore, Joel E. TI Nonadiabatic bulk-surface oscillations in driven topological insulators SO PHYSICAL REVIEW B LA English DT Article ID QUANTUM SPIN HALL; QUASI-PARTICLE INTERFERENCE; CRYSTALLINE INSULATOR; PHASE-TRANSITION; MAJORANA FERMIONS; SINGULAR SPECTRUM; FLOQUET OPERATORS; DIRAC SEMIMETAL; EDGE STATES; SUPERCONDUCTOR AB Recent theoretical and experimental work has suggested the tantalizing possibility of opening a topological gap upon driving the surface states of a three-dimensional strong topological insulator (TI) with circularly polarized light. With this motivation, we study the response of TIs to a driving field that couples to states near the surface. We unexpectedly find coherent oscillations between the surface and the bulk and trace their appearance to unavoidable resonances caused by photon absorption from the drive. We show how these resonant oscillations may be captured by the Demkov-Osherov model of multilevel Landau-Zener physics, leading to nontrivial consequences such as the loss of adiabaticity upon slow ramping of the amplitude. We numerically demonstrate that these oscillations are observable in the time-dependent Wigner distribution, which is directly measurable in time-resolved angle-resolved photoemission spectroscopy (ARPES) experiments. Our results apply to any system with surface states in the presence of a gapped bulk, and thus suggest experimental signatures of a generic surface-bulk coupling mechanism that is fundamental for proposals to engineer nontrivial states by periodic driving. C1 [Kolodrubetz, Michael; Fregoso, Benjamin M.; Moore, Joel E.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kolodrubetz, Michael; Moore, Joel E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kolodrubetz, M (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Kolodrubetz, M (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. FU AFOSR MURI; Conacyt; NERSC [DE-AC02-05CH11231]; Laboratory Directed Research and Development (LDRD) from Berkeley Laboratory by the Office of Science, of the U.S. Department of Energy [DEAC02-05CH11231]; Laboratory Directed Research and Development (LDRD) from Berkeley Laboratory by the Office of Science, of the U.S. Department of Energy (DOE) [DEAC02-05CH11231]; U.S. DOE, Office of Science, Basic Energy Sciences (BES) FX We thank J. Freericks, N. Gedik, A. Kemper, F. Mahmood, T. Morimoto, and M. Sentef for useful discussions. B.M.F. acknowledges support from AFOSR MURI, Conacyt, and computing resources from NERSC Contract No. DE-AC02-05CH11231. M.K. and J.E.M. acknowledge support from Laboratory Directed Research and Development (LDRD) funding from Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DEAC02-05CH11231. M.K. and J.E.M. acknowledge support from Laboratory Directed Research and Development (LDRD) funding from Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy (DOE) under Contract No. DEAC02-05CH11231 in addition to support by the U.S. DOE, Office of Science, Basic Energy Sciences (BES) as part of the TIMES initiative. NR 100 TC 1 Z9 1 U1 9 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 14 PY 2016 VL 94 IS 19 AR 195124 DI 10.1103/PhysRevB.94.195124 PG 16 WC Physics, Condensed Matter SC Physics GA EC1SJ UT WOS:000387887800002 ER PT J AU Liu, Y Pan, RQ Zhang, XH Han, JC Yuan, Q Tian, Y Yuan, Y Liu, F Wang, YT N'Diaye, AT Arenholz, E Chen, XL Sun, Y Song, B Zhou, SQ AF Liu, Yu Pan, Ruiqun Zhang, Xinghong Han, Jiecai Yuan, Quan Tian, Ying Yuan, Ye Liu, Fang Wang, Yutian N'Diaye, Alpha T. Arenholz, Elke Chen, Xiaolong Sun, Young Song, Bo Zhou, Shengqiang TI Vacancy defect complexes in silicon: Charges and spin order SO PHYSICAL REVIEW B LA English DT Article ID ARSENIC-DOPED SILICON; POSITRON-ANNIHILATION; FERROMAGNETISM; AL; SI; SEMICONDUCTORS; IDENTIFICATION; ABSORPTION AB We investigate the interaction between charges and spin order of the defect complex V6 in silicon. The first-principles calculations predict spin resolved band splitting incurred by a neutral V6 yet with no net spin. Therefore, any shift of Fermi level can trigger the spin polarization. Both s and p states contribute local moments in the positively charged V6. The ferromagnetic coupling is only obtained between a positively charged V6 and a neutral one. In silicon after neutron irradiation, magnetism is achieved even at room temperature. The 3s* 3p* hybrid states of V6 are probably responsible for the observed long-range magnetic order. Our results unravel the role of charged V6 in inducing magnetism and will be useful in understanding and further manipulating the intrinsic properties of defect complexes in silicon and other semiconductors. C1 [Liu, Yu; Yuan, Ye; Liu, Fang; Wang, Yutian; Zhou, Shengqiang] Helmholtz Zentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01328 Dresden, Germany. [Pan, Ruiqun] Changchun Univ Sci & Technol, Changchun 130022, Peoples R China. [Zhang, Xinghong; Han, Jiecai; Yuan, Quan] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Peoples R China. [Tian, Ying; Chen, Xiaolong; Sun, Young] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Yuan, Ye; Liu, Fang] Tech Univ Dresden, D-01062 Dresden, Germany. [N'Diaye, Alpha T.; Arenholz, Elke] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Song, Bo] Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150080, Peoples R China. RP Song, B (reprint author), Harbin Inst Technol, Acad Fundamental & Interdisciplinary Sci, Harbin 150080, Peoples R China. EM songbo@hit.edu.cn RI Sun, Young/A-7772-2013; Liu, Yu/A-1018-2012 OI Sun, Young/0000-0001-8879-3508; FU Helmholtz Postdoc Programme (Initiative and Networking Fund) [PD-146]; Science Fund for Creative Research Groups of the National Natural Science Foundation of China [10821201]; National Natural Science Foundation of China [51532010, 51372056, 51371192]; Fundamental Research Funds for the Central University [HIT.BRETIII.201220, HIT.NSRIF.2012045, HIT.ICRST.2010008]; International Science & Technology Cooperation Program of China [2012DFR50020]; Program for New Century Excellent Talents in University [NCET-13-0174]; Ion Beam Center (IBC) at HZDR; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Y.L. would like to thank Dr. S. Prucnal of HZDR for the fruitful discussions and Dr. Y.L. Zhao of Peking University for the discussion of ESR. This work is financially supported by the Helmholtz Postdoc Programme (Initiative and Networking Fund, PD-146), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 10821201), the National Natural Science Foundation of China (Grants No. 51532010, No. 51372056, and No. 51371192), Fundamental Research Funds for the Central University (Grants No. HIT. BRETIII.201220, No. HIT.NSRIF.2012045, and No. HIT.ICRST.2010008), International Science & Technology Cooperation Program of China (2012DFR50020), and the Program for New Century Excellent Talents in University (NCET-13-0174). Support by the Ion Beam Center (IBC) at HZDR is gratefully acknowledged. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 0 Z9 0 U1 21 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 14 PY 2016 VL 94 IS 19 AR 195204 DI 10.1103/PhysRevB.94.195204 PG 6 WC Physics, Condensed Matter SC Physics GA EC1SJ UT WOS:000387887800005 ER PT J AU Miao, H Yin, ZP Wu, SF Li, JM Ma, J Lv, BQ Wang, XP Qian, T Richard, P Xing, LY Wang, XC Jin, CQ Haule, K Kotliar, G Ding, H AF Miao, H. Yin, Z. P. Wu, S. F. Li, J. M. Ma, J. Lv, B. -Q. Wang, X. P. Qian, T. Richard, P. Xing, L. -Y. Wang, X. -C. Jin, C. Q. Haule, K. Kotliar, G. Ding, H. TI Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs SO PHYSICAL REVIEW B LA English DT Article ID ANGLE-RESOLVED PHOTOEMISSION; IRON CHALCOGENIDES; SUPERCONDUCTORS; PNICTIDES; DYNAMICS; STATE AB In iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d(xy) orbital than on the d(xz)/d(yz) orbital yield quasiparticles with a d(xy) orbital character having larger mass renormalization and an abnormal temperature evolution. However, the physical origin of this orbital differentiation is debated between the Hund's coupling-induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital-selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasiparticle (QP) anomaly in LiFeAs. The excellent agreement between our photoemission measurements and first-principles many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling. C1 [Miao, H.; Wu, S. F.; Li, J. M.; Ma, J.; Lv, B. -Q.; Wang, X. P.; Qian, T.; Richard, P.; Xing, L. -Y.; Wang, X. -C.; Jin, C. Q.; Ding, H.] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Miao, H.; Kotliar, G.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Yin, Z. P.; Haule, K.; Kotliar, G.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Yin, Z. P.] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China. [Yin, Z. P.] Beijing Normal Univ, Ctr Adv Quantum Studies, Beijing 100875, Peoples R China. [Wang, X. P.; Richard, P.; Jin, C. Q.; Ding, H.] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China. [Wang, X. P.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Richard, P.; Ding, H.] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China. RP Richard, P (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China.; Richard, P (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China.; Richard, P (reprint author), Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100190, Peoples R China. EM p.richard@aphy.iphy.ac.cn; dingh@iphy.ac.cn RI Richard, Pierre/F-7652-2010 OI Richard, Pierre/0000-0003-0544-4551 FU CAS [XDB07000000, 112111KYS820150017]; MOST [2011CBA001000, 2013CB921700, 2015CB921301, 2016YFA0401000, 2016YFA0300300]; NSFC [11234014, 11220101003, 11274362, 11674371]; Center for Emergent Superconductivity, an Energy Frontier Research Center - U.S. DOE, Office of Basic Energy Sciences; NSF-DMR [1308141, 1405303]; DOE Office of Science User Facility [DE-AC05-00OR22725] FX We thank J. Schmalian, Z. Wang, T. Valla, P.D. Johnson, and W.L. Zhang for useful discussions. The experimental work was supported by grants from CAS (XDB07000000, 112111KYS820150017), MOST (2011CBA001000, 2013CB921700, 2015CB921301, 2016YFA0401000, and 2016YFA0300300), and NSFC (11234014, 11220101003, 11274362, and 11674371). H.M. was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office of Basic Energy Sciences. Theoretical work was supported by NSF-DMR 1308141 (Z.P.Y. and G.K.) and NSF-DMR 1405303 (K.H.). Z.P.Y acknowledges the startup fund of Beijing Normal University. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract No. DE-AC05-00OR22725. NR 27 TC 0 Z9 0 U1 10 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 14 PY 2016 VL 94 IS 20 AR 201109 DI 10.1103/PhysRevB.94.201109 PG 6 WC Physics, Condensed Matter SC Physics GA EC1UG UT WOS:000387892800002 ER PT J AU Shi, YZ Stone, KH Guan, ZX Monti, M Cao, CT El Gabaly, F Chueh, WC Toney, MF AF Shi, Yezhou Stone, Kevin H. Guan, Zixuan Monti, Matteo Cao, Chuntian El Gabaly, Farid Chueh, William C. Toney, Michael F. TI Surface structure of coherently strained ceria ultrathin films SO PHYSICAL REVIEW B LA English DT Article ID METAL-OXIDE SURFACES; X-RAY; FUEL-CELLS; CRYSTAL-SURFACES; THIN-FILMS; IN-SITU; DIFFRACTION; CEO2(001); OXIDATION; NANOCRYSTALS AB Cerium oxide, or ceria, is an important material for solid oxide fuel cells and water splitting devices. Although the ceria surface is active in catalytic and electrochemical reactions, how its catalytic properties are affected by the surface structure under operating conditions is far from understood. We investigate the structure of the coherently strained CeO2 ultrathin films on yttria-stabilized zirconia (001) single crystals by specular synchrotron x-ray diffraction (XRD) under oxidizing conditions as a first step to study the surface structure in situ. An excellent agreement between the experiment data and the model is achieved by using a "stacks and islands" model that has a two-component roughness. One component is due to the tiny clusters of nanometer scale in lateral dimensions on each terrace, while the other component is due to slightly different CeO2 thickness that span over hundreds of nanometers on neighboring terraces. We attribute the nonuniform thickness to step depairing during the thin film deposition that is supported by the surface morphology results on the microscopic level. Importantly, our model also shows that the polarity of the ceria surface is removed by a half monolayer surface coverage of oxygen. The successful resolution of the ceria surface structure using in situ specular synchrotron XRD paves the way to study the structural evolution of ceria as a fuel cell electrode under catalytically relevant temperatures and gas pressures. C1 [Shi, Yezhou; Guan, Zixuan; Monti, Matteo; Cao, Chuntian; Chueh, William C.] Stanford Univ, Dept Mat Sci & Engn, 496 Lomita Mall, Stanford, CA 94305 USA. [Shi, Yezhou; Stone, Kevin H.; Chueh, William C.; Toney, Michael F.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [El Gabaly, Farid] Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. [Chueh, William C.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Toney, MF (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM mftoney@slac.stanford.edu FU Laboratory Directed Research and Development at the SLAC National Accelerator Laboratory [DE-AC02-76SF00515]; U.S. Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX This paper is financially supported by the Laboratory Directed Research and Development at the SLAC National Accelerator Laboratory DE-AC02-76SF00515. Portions of this research (SXRD) were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Part of the work (AFM and XPS) was performed at the Stanford Nano Shared Facilities (SNSF). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration (Contract No. DE-AC04-94AL85000). We acknowledge the assistance from the staff at SSRL, especially A. Prado, B. Johnson, C. Troxel Jr., and R. Marks. Y.S. is grateful for insightful discussions with J. Stubbs, C. Schleputz, H. Zhou, and D. Fong at the Advanced Photon Source, as well as helpful feedback on the manuscript from T. Petach at Stanford University. NR 59 TC 0 Z9 0 U1 16 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 14 PY 2016 VL 94 IS 20 AR 205420 DI 10.1103/PhysRevB.94.205420 PG 9 WC Physics, Condensed Matter SC Physics GA EC1UG UT WOS:000387892800010 ER PT J AU Luo, ZP AF Luo, Zhipu TI Selenourea: a convenient phasing vehicle for macromolecular X-ray crystal structures SO SCIENTIFIC REPORTS LA English DT Article ID ANOMALOUS DIFFRACTION; CRYSTALLOGRAPHY; PROTEINS; SIGNAL; DNA; DERIVATIZATION; SULFUR; MAD AB Majority of novel X-ray crystal structures of proteins are currently solved using the anomalous diffraction signal provided by selenium after incorporation of selenomethionine instead of natural methionine by genetic engineering methods. However, selenium can be inserted into protein crystals in the form of selenourea (SeC(NH2)(2)), by adding the crystalline powder of selenourea into mother liquor or cryo-solution with native crystals, in analogy to the classic procedure of heavy-atom derivatization. Selenourea is able to bind to reactive groups at the surface of macromolecules primarily through hydrogen bonds, where the selenium atom may serve as acceptor and amide groups as donors. Selenourea has different chemical properties than heavy-atom reagents and halide ions and provides a convenient way of phasing crystal structures of macromolecules. C1 [Luo, Zhipu] Argonne Natl Lab, Natl Canc Inst, Synchrotron Radiat Res Sect, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Luo, ZP (reprint author), Argonne Natl Lab, Natl Canc Inst, Synchrotron Radiat Res Sect, 9700 S Cass Ave, Argonne, IL 60439 USA. EM luozhipu@anl.gov FU Intramural Research Program of the National Cancer Institute FX This work was supported by the Intramural Research Program of the National Cancer Institute. The help of Zbigniew Dauter in preparation of this manuscript is gratefully appreciated. The instruction for CFP expression and purification and growth of HPP crystals by Milosz Ruszkowski are appreciated. Provision of thaumatin and trypsin crystals by Miroslawa Dauter is gratefully acknowledged. NR 29 TC 1 Z9 1 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 14 PY 2016 VL 6 AR 37123 DI 10.1038/srep37123 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC1GJ UT WOS:000387852600001 PM 27841370 ER PT J AU Liu, Z Wang, RZ Zapol, P AF Liu, Zhun Wang, Ru-Zhi Zapol, Peter TI An atomistic mechanism study of GaN step-flow growth in vicinal m-plane orientations SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID EDGE; ENERGY; MORPHOLOGY; SURFACES; NITRIDE; DIODES AB Elucidation of homoepitaxial growth mechanisms on vicinal non-polar surfaces of GaN is highly important for gaining an understanding of and control thin film surface morphology and properties. Using first-principles calculations, we study the step-flow growth in m-plane GaN based on atomic row nucleation and kink propagation kinetics. Ga-N dimer adsorption onto the m-plane is energetically more favorable than that of Ga and N isolated adatoms. Therefore, we have treated the dimers as the dominant growth species attached to the step edges. By calculating the free energies of sequentially attached Ga-N dimers, we have elucidated that the a-step edge kink growth proceeds by parallel attachment rather than by across the step edge approach. We found a series of favorable configurations of kink propagation and calculated the free energy and nucleation barriers for kink evolution on five types of step edges (a, +c, -c, +a +c, and -a -c). By changing the chemical potential mu(Ga) and the excess chemical potential Delta mu, the growth velocities at the five types of edges are controlled by the corresponding kink pair nucleation barrier E* in their free energy profiles. To explore the kink-flow growth instability observed at different Ga/N flux ratios, calculations of kink pairs on the incompact -c and +c-step edges are further performed to study their formation energies. Variations of these step edge morphologies with a tuned chemical environment are consistent with previous experimental observations, including stable diagonal +/- a +/- c-direction steps. Our work provides a first-principles approach to explore step growth and surface morphology of the vicinal m-plane GaN, which is applicable to analyze and control the step-flow growth of other binary thin films. C1 [Liu, Zhun; Wang, Ru-Zhi] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China. [Zapol, Peter] Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Wang, RZ (reprint author), Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China.; Zapol, P (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. EM wrz@bjut.edu.cn; zapol@anl.gov FU China Scholarship Council; National Natural Science Foundation of China (NSFC) [51472010, 11274029]; Jing-Hua Talents Project of Beijing University of Technology [2014-JH-L07]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX The work of ZL and RZW was partially supported by China Scholarship Council, the National Natural Science Foundation of China (NSFC) (Grant No. 51472010 and 11274029), and the Jing-Hua Talents Project of Beijing University of Technology (No. 2014-JH-L07). The work of PZ was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, We gratefully acknowledge the computing resources provided for the Blues high-performance computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. NR 35 TC 0 Z9 0 U1 30 U2 30 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD NOV 14 PY 2016 VL 18 IS 42 BP 29239 EP 29248 DI 10.1039/c6cp04479d PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EB0HI UT WOS:000387024300025 PM 27731436 ER PT J AU Pindzola, MS Li, Y Colgan, J AF Pindzola, M. S. Li, Y. Colgan, J. TI Multiphoton double ionization of helium using femtosecond laser pulses SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article DE ionization; femtosecond; multiphoton AB A time-dependent close-coupling method is used to calculate the multiphoton double ionization of He using femtosecond laser pulses. Total double ionization probabilities are calculated for 2, 3, 4, and 5 photon absorption in the photon energy range from 10 to 60 eV. Single and triple differential probabilities are calculated for 2, 3, 4, and 5 photon absorption at energies where the total ionization probability is near a maximum. For circular polarization the total and differential probabilities are consistently smaller compared to linear polarization as the number of photons absorbed is increased while keeping the radiation field intensity constant. For linear polarization, the total and differential probabilities vary substantially as a function of photons absorbed due to the presence of more absorption pathways. C1 [Pindzola, M. S.; Li, Y.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. FU NationalNuclear Security Administration of the US Department of Energy [DE-AC5206NA25396]; US Department of Energy; US National Science Foundation FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the NationalNuclear Security Administration of the US Department of Energy under Contract No. DE-AC5206NA25396. his work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational work was carried out at the National Energy Research Scientific Computing Center (NERSC) in Berkeley, California, and the High Performance Computing Center (HLRS) in Stuttgart, Germany. NR 16 TC 1 Z9 1 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 EI 1361-6455 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD NOV 14 PY 2016 VL 49 IS 21 BP 14 EP 20 DI 10.1088/0953-4075/49/21/215603 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EA4QA UT WOS:000386597000002 ER PT J AU Lu, ZY Reddy, MVVVS Liu, JF Kalichava, A Liu, JK Zhang, L Chen, F Wang, Y Holthauzen, LMF White, MA Seshadrinathan, S Zhong, XY Ren, G Rudenko, G AF Lu, Zhuoyang Reddy, M. V. V. V. Sekhar Liu, Jianfang Kalichava, Ana Liu, Jiankang Zhang, Lei Chen, Fang Wang, Yun Holthauzen, Luis Marcelo F. White, Mark A. Seshadrinathan, Suchithra Zhong, Xiaoying Ren, Gang Rudenko, Gabby TI Molecular Architecture of Contactin-associated Protein-like 2 (CNTNAP2) and Its Interaction with Contactin 2 (CNTN2) SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article DE cell adhesion; cell surface receptor; protein-protein interaction; structural biology; synapse; contactin; contactin-associated protein like; neuropsychiatric disorders; single particle analysis; synaptic organizer ID PARANEOPLASTIC CEREBELLAR-ATAXIA; NEGATIVE-STAINING PROTOCOL; AUTISM SPECTRUM DISORDERS; MYELINATED AXONS; ELECTRON-MICROSCOPY; SYNAPTIC CLEFT; EXTRACELLULAR DOMAIN; LIMBIC ENCEPHALITIS; NERVOUS-SYSTEM; K+ CHANNELS AB Contactin-associated protein-like 2 (CNTNAP2) is a large multidomain neuronal adhesion molecule implicated in a number of neurological disorders, including epilepsy, schizophrenia, autism spectrum disorder, intellectual disability, and language delay. We reveal here by electron microscopy that the architecture of CNTNAP2 is composed of a large, medium, and small lobe that flex with respect to each other. Using epitope labeling and fragments, we assign the F58C, L1, and L2 domains to the large lobe, the FBG and L3 domains to the middle lobe, and the L4 domain to the small lobe of the CNTNAP2 molecular envelope. Our data reveal that CNTNAP2 has a very different architecture compared with neurexin 1, a fellow member of the neurexin superfamily and a prototype, suggesting that CNTNAP2 uses a different strategy to integrate into the synaptic protein network. We show that the ectodomains of CNTNAP2 and contactin 2 (CNTN2) bind directly and specifically, with low nanomolar affinity. We show further that mutations in CNTNAP2 implicated in autism spectrum disorder are not segregated but are distributed over the whole ectodomain. The molecular shape and dimensions of CNTNAP2 place constraints on how CNTNAP2 integrates in the cleft of axo-glial and neuronal contact sites and how it functions as an organizing and adhesive molecule. C1 [Lu, Zhuoyang; Liu, Jianfang; Zhang, Lei; Ren, Gang] Lawrence Berkeley Natl Lab, Mol Foundry, Rm 2220,1 Cyclotron Rd,MS 67R2206, Berkeley, CA 94720 USA. [Lu, Zhuoyang; Liu, Jiankang] Xi An Jiao Tong Univ, Ctr Mitochondrial Biol & Med, Key Lab Biomed Informat Engn, Minist Educ,Sch Life Sci & Technol, Xian 710049, Peoples R China. [Lu, Zhuoyang; Liu, Jiankang] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Peoples R China. [Reddy, M. V. V. V. Sekhar; Kalichava, Ana; Seshadrinathan, Suchithra; Zhong, Xiaoying; Rudenko, Gabby] Univ Texas Med Branch, Dept Pharmacol & Toxicol, 301 Univ Blvd, Galveston, TX 77555 USA. [Reddy, M. V. V. V. Sekhar; Kalichava, Ana; Holthauzen, Luis Marcelo F.; White, Mark A.; Seshadrinathan, Suchithra; Zhong, Xiaoying; Rudenko, Gabby] Univ Texas Med Branch, Sealy Ctr Struct Biol & Mol Biophys, 301 Univ Blvd, Galveston, TX 77555 USA. [White, Mark A.] Univ Texas Med Branch, Dept Biochem & Mol Biol, Galveston, TX 77555 USA. [Chen, Fang; Wang, Yun] Univ Michigan, Ann Arbor, MI 48109 USA. RP Ren, G (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Rm 2220,1 Cyclotron Rd,MS 67R2206, Berkeley, CA 94720 USA.; Rudenko, G (reprint author), Univ Texas Med Branch, Dept Pharmacol & Toxicol, 301 Univ Blvd, Galveston, TX 77555 USA.; Rudenko, G (reprint author), Univ Texas Med Branch, Sealy Ctr Struct Biol & Mol Biophys, 301 Univ Blvd, Galveston, TX 77555 USA. EM gren@lbl.gov; garudenk@utmb.edu RI Liu, Jiankang/A-1610-2011 FU NIMH, National Institutes of Health [R01MH077303]; Sealy Center for Structural Biology and Molecular Biophysics (University of Texas Medical Branch); Brain and Behavior Research Foundation; United States Department of Energy [DE-AC02-05CH11231]; National Basic Research Program of the Ministry of Science and Technology, China [2015CB553602] FX This work was supported by NIMH, National Institutes of Health, Grant R01MH077303 with additional support provided by the Sealy Center for Structural Biology and Molecular Biophysics (University of Texas Medical Branch) and the Brain and Behavior Research Foundation (to G. Rudenko). Work at the Molecular Foundry (G. Ren) was supported by the United States Department of Energy under Contract DE-AC02-05CH11231. The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.; Supported in part by the National Basic Research Program of the Ministry of Science and Technology, China (Grant 2015CB553602). NR 64 TC 0 Z9 0 U1 3 U2 3 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD NOV 11 PY 2016 VL 291 IS 46 BP 24133 EP 24147 DI 10.1074/jbc.M116.748236 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EC9XR UT WOS:000388498100029 PM 27621318 ER PT J AU Rabe, F Bosch, J Stirnberg, A Guse, T Bauer, L Seitner, D Rabanal, FA Czedik-Eysenberg, A Uhse, S Bindics, J Genenncher, B Navarrete, F Kellner, R Ekker, H Kumlehn, J Vogel, JP Gordon, SP Marcel, TC Munsterkotters, M Walter, MC Sieber, CMK Mannhaupt, G Guldener, U Kahmann, R Djamei, A AF Rabe, Franziska Bosch, Jason Stirnberg, Alexandra Guse, Tilo Bauer, Lisa Seitner, Denise Rabanal, Fernando A. Czedik-Eysenberg, Angelika Uhse, Simon Bindics, Janos Genenncher, Bianca Navarrete, Fernando Kellner, Ronny Ekker, Heinz Kumlehn, Jochen Vogel, John P. Gordon, Sean P. Marcel, Thierry C. Muensterkoetters, Martin Walter, Mathias C. Sieber, Christian M. K. Mannhaupt, Gertrud Gueldener, Ulrich Kahmann, Regine Djamei, Armin TI A complete toolset for the study of Ustilago bromivora and Brachypodium sp as a fungal-temperate grass pathosystem SO ELIFE LA English DT Article ID AGROBACTERIUM-MEDIATED TRANSFORMATION; MATING-TYPE LOCUS; NEW-MODEL SYSTEM; RNA-SEQ DATA; SMUT FUNGI; FUNCTIONAL ANNOTATION; TRANSPOSABLE ELEMENTS; PHYLOGENETIC ANALYSIS; PUCCINIA-BRACHYPODII; EXPRESSION ANALYSIS AB Due to their economic relevance, the study of plant pathogen interactions is of importance. However, elucidating these interactions and their underlying molecular mechanisms remains challenging since both host and pathogen need to be fully genetically accessible organisms. Here we present milestones in the establishment of a new biotrophic model pathosystem: Ustilago bromivora and Brachypodium sp. We provide a complete toolset, including an annotated fungal genome and methods for genetic manipulation of the fungus and its host plant. This toolset will enable researchers to easily study biotrophic interactions at the molecular level on both the pathogen and the host side. Moreover, our research on the fungal life cycle revealed a mating type bias phenomenon. U. bromivora harbors a haplo-lethal allele that is linked to one mating type region. As a result, the identified mating type bias strongly promotes inbreeding, which we consider to be a potential speciation driver. C1 [Rabe, Franziska; Bosch, Jason; Stirnberg, Alexandra; Guse, Tilo; Bauer, Lisa; Seitner, Denise; Rabanal, Fernando A.; Czedik-Eysenberg, Angelika; Uhse, Simon; Bindics, Janos; Genenncher, Bianca; Navarrete, Fernando; Djamei, Armin] Austrian Acad Sci, Gregor Mendel Inst, Vienna Bioctr, Vienna, Austria. [Rabe, Franziska; Mannhaupt, Gertrud; Kahmann, Regine] Max Planck Inst Terr Microbiol, Marburg, Germany. [Kellner, Ronny] Max Planck Inst Plant Breeding Res, Cologne, Germany. [Ekker, Heinz] Core Facil GmbH, Vienna Bioctr, Vienna, Austria. [Kumlehn, Jochen] Leibniz Inst Pflanzengenet & Kulturpflanzenforsch, Gatersleben, Germany. [Vogel, John P.; Gordon, Sean P.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Marcel, Thierry C.] Univ Paris Saclay, AgroParisTech, INRA UMR BIOGER, Thiverval Grignon, France. [Muensterkoetters, Martin; Sieber, Christian M. K.; Mannhaupt, Gertrud; Gueldener, Ulrich] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, Neuherberg, Germany. [Walter, Mathias C.; Gueldener, Ulrich] Tech Univ Munich, Wissensch Zentrum Weihenstephan, Dept Genomeoriented Bioinformat, Freising Weihenstephan, Germany. [Rabe, Franziska; Bosch, Jason] Univ Utrecht, Fac Vet Med, Div Virol, Dept Infect Dis & Immunol, Utrecht, Netherlands. [Genenncher, Bianca] Vienna Bioctr, Max F Perutz Labs, Vienna, Austria. [Walter, Mathias C.] Bundeswehr Inst Microbiol, Munich, Germany. [Sieber, Christian M. K.] Univ Calif Berkeley, Joint Genome Inst, Dept Energy, Berkeley, CA 94720 USA. RP Djamei, A (reprint author), Austrian Acad Sci, Gregor Mendel Inst, Vienna Bioctr, Vienna, Austria. EM armin.djamei@gmi.oeaw.ac.at RI Guldener, Ulrich/G-5227-2012; OI Guldener, Ulrich/0000-0001-5052-8610; Rabanal, Fernando/0000-0003-1538-9752; Kellner, Ronny/0000-0002-4618-0110 FU European Research Council [EUP0012]; Austrian Science Fund [P27429-B22, P27818-B22]; Austrian Academy of Sciences; Max-Planck-Gesellschaft; U.S. Department of Energy [DE-AC02-05CH11231] FX European Research Council EUP0012 Effectomics Franziska Rabe Alexandra Stirnberg Denise Seitner Simon Uhse Janos Bindics; Austrian Science Fund P27429-B22 Franziska Rabe Angelika Czedik-Eysenberg; Austrian Academy of Sciences Franziska Rabe Jason Bosch Alexandra Stirnberg Tilo Guse Lisa Bauer Denise Seitner Fernando A Rabanal Angelika Czedik-Eysenberg Simon Uhse Janos Bindics Bianca Genenncher Fernando Navarrete Armin Djamei; Max-Planck-Gesellschaft Franziska Rabe Gertrud Mannhaupt Regine Kahmann Armin Djamei; Austrian Science Fund P27818-B22 Franziska Rabe Angelika Czedik-Eysenberg; U.S. Department of Energy DE-AC02-05CH11231 John P Vogel Sean P Gordon; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. NR 131 TC 0 Z9 0 U1 7 U2 7 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD NOV 11 PY 2016 VL 5 AR e20522 DI 10.7554/eLife.20522 PG 35 WC Biology SC Life Sciences & Biomedicine - Other Topics GA EC9YQ UT WOS:000388500600001 ER PT J AU Abgrall, N Arnquist, IJ Avignone, FT Barabash, AS Bertrand, FE Bradley, AW Brudanin, V Busch, M Buuck, M Caldwell, AS Chan, YD Christofferson, CD Chu, PH Cuesta, C Detwiler, JA Dunagan, C Efremenko, Y Ejiri, H Elliott, SR Finnerty, PS Galindo-Uribarri, A Gilliss, T Giovanetti, GK Goett, J Green, MP Gruszko, J Guinn, IS Guiseppe, VE Henning, R Hoppe, EW Howard, S Howe, MA Jasinski, BR Keeter, KJ Kidd, MF Konovalov, SI Kouzes, RT LaFerriere, BD Leon, J MacMullin, J Martin, RD Massarczyk, R Meijer, SJ Mertens, S Orrell, JL O'Shaughnessy, C Poon, AWP Radford, DC Rager, J Rielage, K Robertson, RGH Romero-Romero, E Shanks, B Shirchenko, M Suriano, AM Tedeschi, D Trimble, JE Varner, RL Vasilyev, S Vetter, K Vorren, K White, BR Wilkerson, JF Wiseman, C Xu, W Yakushev, E Yu, CH Yumatov, V Zhitnikov, I AF Abgrall, N. Arnquist, I. J. Avignone, F. T., III Barabash, A. S. Bertrand, F. E. Bradley, A. W. Brudanin, V. Busch, M. Buuck, M. Caldwell, A. S. Chan, Y. -D. Christofferson, C. D. Chu, P. -H. Cuesta, C. Detwiler, J. A. Dunagan, C. Efremenko, Yu. Ejiri, H. Elliott, S. R. Finnerty, P. S. Galindo-Uribarri, A. Gilliss, T. Giovanetti, G. K. Goett, J. Green, M. P. Gruszko, J. Guinn, I. S. Guiseppe, V. E. Henning, R. Hoppe, E. W. Howard, S. Howe, M. A. Jasinski, B. R. Keeter, K. J. Kidd, M. F. Konovalov, S. I. Kouzes, R. T. LaFerriere, B. D. Leon, J. MacMullin, J. Martin, R. D. Massarczyk, R. Meijer, S. J. Mertens, S. Orrell, J. L. O'Shaughnessy, C. Poon, A. W. P. Radford, D. C. Rager, J. Rielage, K. Robertson, R. G. H. Romero-Romero, E. Shanks, B. Shirchenko, M. Suriano, A. M. Tedeschi, D. Trimble, J. E. Varner, R. L. Vasilyev, S. Vetter, K. Vorren, K. White, B. R. Wilkerson, J. F. Wiseman, C. Xu, W. Yakushev, E. Yu, C. -H. Yumatov, V. Zhitnikov, I. TI Search for Pauli exclusion principle violating atomic transitions and electron decay with a p-type point contact germanium detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID EXPERIMENTAL LIMIT; BOSE STATISTICS; FERMI AB A search for Pauli-exclusion-principle-violating K electron transitions was performed using 89.5 kg-d of data collected with a p-type point contact high-purity germanium detector operated at the Kimballton Underground Research Facility. A lower limit on the transition lifetime of s at 90% C.L. was set by looking for a peak at 10.6 keV resulting from the X-ray and Auger electrons present following the transition. A similar analysis was done to look for the decay of atomic K-shell electrons into neutrinos, resulting in a lower limit of s at 90% C.L. It is estimated that the Majorana Demonstrator, a 44 kg array of p-type point contact detectors that will search for the neutrinoless double-beta decay of Ge, could improve upon these exclusion limits by an order of magnitude after three years of operation. C1 [Keeter, K. J.] Black Hills State Univ, Dept Phys, Spearfish, SD 57799 USA. Duke Univ, Dept Phys, Durham, NC USA. [Barabash, A. S.; Konovalov, S. I.; Yumatov, V.] Natl Res Ctr, Kurchatov Inst, Inst Theoret & Expt Phys, Moscow, Russia. [Brudanin, V.; Shirchenko, M.; Vasilyev, S.; Yakushev, E.; Zhitnikov, I.] Joint Inst Nucl Res, Dubna, Russia. [Chu, P. -H.; Elliott, S. R.; Goett, J.; Massarczyk, R.; Rielage, K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Abgrall, N.; Bradley, A. W.; Chan, Y. -D.; Mertens, S.; Poon, A. W. P.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. North Carolina State Univ, Dept Phys, Raleigh, NC USA. [Bertrand, F. E.; Galindo-Uribarri, A.; Radford, D. C.; Varner, R. L.; White, B. R.; Yu, C. -H.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Ejiri, H.] Osaka Univ, Nucl Phys Res Ctr, Ibaraki, Osaka, Japan. [Arnquist, I. J.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B. D.; Orrell, J. L.] Pacific Northwest Natl Lab, Richland, WA USA. [Martin, R. D.] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada. [Caldwell, A. S.; Christofferson, C. D.; Dunagan, C.; Howard, S.; Suriano, A. M.] South Dakota Sch Mines & Technol, Rapid City, SD USA. [Busch, M.; Finnerty, P. S.; Gilliss, T.; Giovanetti, G. K.; Green, M. P.; Henning, R.; Howe, M. A.; MacMullin, J.; Meijer, S. J.; O'Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J. E.; Vorren, K.; Wilkerson, J. F.; Xu, W.] Triangle Univ Nucl Lab, Durham, NC 27706 USA. [Kidd, M. F.] Tennessee Technol Univ, Cookeville, TN USA. [Finnerty, P. S.; Gilliss, T.; Giovanetti, G. K.; Henning, R.; Howe, M. A.; MacMullin, J.; Meijer, S. J.; O'Shaughnessy, C.; Rager, J.; Shanks, B.; Trimble, J. E.; Vorren, K.; Wilkerson, J. F.; Xu, W.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27514 USA. [Avignone, F. T., III; Guiseppe, V. E.; Tedeschi, D.; Wiseman, C.] Univ South Carolina, Dept Phys & Astron, Columbia, SC USA. [Jasinski, B. R.] Univ South Dakota, Dept Phys, Vermillion, SD USA. [Efremenko, Yu.; Romero-Romero, E.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN USA. [Buuck, M.; Cuesta, C.; Detwiler, J. A.; Gruszko, J.; Guinn, I. S.; Leon, J.; Robertson, R. G. H.] Univ Washington, Dept Phys, Ctr Expt Nucl Phys & Astrophys, Seattle, WA USA. [Vetter, K.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA USA. RP Giovanetti, GK (reprint author), Triangle Univ Nucl Lab, Durham, NC 27706 USA.; Giovanetti, GK (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27514 USA. EM gkg@princeton.edu RI Barabash, Alexander/S-8851-2016; Cuesta, Clara/L-5466-2014; Orrell, John/E-9313-2015 OI Cuesta, Clara/0000-0003-1190-7233; Orrell, John/0000-0001-7968-4051 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231, DE-AC52-06NA25396, DE-FG02-97ER41041, DE-FG02-97ER41033, DE-FG02-97ER41042, DE-SC0012612, DE-FG02-10ER41715, DE-SC0010254, DE-FG02-97ER41020]; Particle Astrophysics Program and Nuclear Physics Program of the National Science Foundation [PHY-0919270, PHY-1003940, 0855314, PHY-1202950, MRI 0923142, 1003399]; Russian Foundation for Basic Research [15-02-02919]; U.S. Department of Energy through the LANL/LDRD Program FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Numbers DE-AC02-05CH11231, DE-AC52-06NA25396, DE-FG02-97ER41041, DE-FG02-97ER41033, DE-FG02-97ER41042, DE-SC0012612, DE-FG02-10ER41715, DE-SC0010254, and DE-FG02-97ER41020. We acknowledge support from the Particle Astrophysics Program and Nuclear Physics Program of the National Science Foundation through Grant Numbers PHY-0919270, PHY-1003940, 0855314, PHY-1202950, MRI 0923142 and 1003399; the Russian Foundation for Basic Research, Grant No. 15-02-02919; and the U.S. Department of Energy through the LANL/LDRD Program. We thank our hosts and colleagues at the Kimballton Underground Research Facility, Virginia Polytechnic Institute, and the Triangle University Nuclear Laboratories for their support and assistance with remote detector operations. NR 23 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV 11 PY 2016 VL 76 IS 11 AR 619 DI 10.1140/epjc/s10052-016-4467-0 PG 5 WC Physics, Particles & Fields SC Physics GA EC5RE UT WOS:000388193100001 ER PT J AU Morales, J Kokkori, S Weidauer, D Chapman, J Goltsman, E Rokhsar, D Grossman, AR Nowack, ECM AF Morales, Jorge Kokkori, Sofia Weidauer, Diana Chapman, Jarrod Goltsman, Eugene Rokhsar, Daniel Grossman, Arthur R. Nowack, Eva C. M. TI Development of a toolbox to dissect host-endosymbiont interactions and protein trafficking in the trypanosomatid Angomonas deanei SO BMC EVOLUTIONARY BIOLOGY LA English DT Article DE Endosymbiosis; Bacterial endosymbiont; Protein targeting; Homologous recombination; Protist; Trypanosomatid ID PAULINELLA-CHROMATOPHORA; GENETIC MANIPULATION; CRITHIDIA-DEANEI; BACTERIA; BRUCEI; ORIGIN; GENOME; LEISHMANIA; EUKARYOTES; EXPRESSION AB Background: Bacterial endosymbionts are found across the eukaryotic kingdom and profoundly impacted eukaryote evolution. In many endosymbiotic associations with vertically inherited symbionts, highly complementary metabolic functions encoded by host and endosymbiont genomes indicate integration of metabolic processes between the partner organisms. While endosymbionts were initially expected to exchange only metabolites with their hosts, recent evidence has demonstrated that also host-encoded proteins can be targeted to the bacterial symbionts in various endosymbiotic systems. These proteins seem to participate in regulating symbiont growth and physiology. However, mechanisms required for protein targeting and the specific endosymbiont targets of these trafficked proteins are currently unexplored owing to a lack of molecular tools that enable functional studies of endosymbiotic systems. Results: Here we show that the trypanosomatid Angomonas deanei, which harbors a beta-proteobacterial endosymbiont, is readily amenable to genetic manipulation. Its rapid growth, availability of full genome and transcriptome sequences, ease of transfection, and high frequency of homologous recombination have allowed us to stably integrate transgenes into the A. deanei nuclear genome, efficiently generate null mutants, and elucidate protein localization by heterologous expression of a fluorescent protein fused to various putative targeting signals. Combining these novel tools with proteomic analysis was key for demonstrating the routing of a host-encoded protein to the endosymbiont, suggesting the existence of a specific endosymbiont-sorting machinery in A. deanei. Conclusions: After previous reports from plants, insects, and a cercozoan amoeba we found here that also in A. deanei, i.e. a member of a fourth eukaryotic supergroup, host-encoded proteins can be routed to the bacterial endosymbiont. This finding adds further evidence to our view that the targeting of host proteins is a general strategy of eukaryotes to gain control over and interact with a bacterial endosymbiont. The molecular resources reported here establish A. deanei as a time and cost efficient reference system that allows for a rigorous dissection of host-symbiont interactions that have been, and are still being shaped over evolutionary time. We expect this system to greatly enhance our understanding of the biology of endosymbiosis. C1 [Morales, Jorge; Kokkori, Sofia; Weidauer, Diana; Nowack, Eva C. M.] Heinrich Heine Univ Dusseldorf, Dept Biol, Univ Str 1, D-40225 Dusseldorf, Germany. [Chapman, Jarrod; Goltsman, Eugene; Rokhsar, Daniel] US DOE, Plant Genome Grp, Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [Grossman, Arthur R.] Carnegie Inst Sci, Dept Plant Biol, 260 Panama St, Stanford, CA 94305 USA. RP Nowack, ECM (reprint author), Heinrich Heine Univ Dusseldorf, Dept Biol, Univ Str 1, D-40225 Dusseldorf, Germany. EM e.nowack@uni-duesseldorf.de FU Deutsche Forschungsgemeinschaft [1090/1-1]; National Science Foundation [MCB-10370]; iGRAD Molecules of Infection (MOI) programme FX This study was supported by Deutsche Forschungsgemeinschaft grant NO 1090/1-1 (to E.C.M.N.), National Science Foundation grant MCB-10370 (to A.R.G.), and the iGRAD Molecules of Infection (MOI) programme (to S.K.). NR 52 TC 0 Z9 0 U1 5 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2148 J9 BMC EVOL BIOL JI BMC Evol. Biol. PD NOV 11 PY 2016 VL 16 AR 247 DI 10.1186/s12862-016-0820-z PG 12 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA EB9PL UT WOS:000387727400001 PM 27835948 ER PT J AU Feng, Z Leung, LR Hagos, S Houze, RA Burleyson, CD Balaguru, K AF Feng, Zhe Leung, L. Ruby Hagos, Samson Houze, Robert A. Burleyson, Casey D. Balaguru, Karthik TI More frequent intense and long-lived storms dominate the springtime trend in central US rainfall SO NATURE COMMUNICATIONS LA English DT Article ID LOW-LEVEL JET; UNITED-STATES; EXTREME RAINFALL; PRECIPITATION; REANALYSIS; INCREASE; EVENTS; SYSTEM; MODEL AB The changes in extreme rainfall associated with a warming climate have drawn significant attention in recent years. Mounting evidence shows that sub-daily convective rainfall extremes are increasing faster than the rate of change in the atmospheric precipitable water capacity with a warming climate. However, the response of extreme precipitation depends on the type of storm supported by the meteorological environment. Here using long-term satellite, surface radar and rain-gauge network data and atmospheric reanalyses, we show that the observed increases in springtime total and extreme rainfall in the central United States are dominated by mesoscale convective systems (MCSs), the largest type of convective storm, with increased frequency and intensity of long-lasting MCSs. A strengthening of the southerly low-level jet and its associated moisture transport in the Central/Northern Great Plains, in the overall climatology and particularly on days with long-lasting MCSs, accounts for the changes in the precipitation produced by these storms. C1 [Feng, Zhe; Leung, L. Ruby; Hagos, Samson; Houze, Robert A.; Burleyson, Casey D.; Balaguru, Karthik] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. RP Feng, Z (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM zhe.feng@pnnl.gov FU US Department of Energy, Office of Science, Biological and Environmental Research as part of the Regional and Global Climate Modeling Program; US Department of Energy [DE-AC06-76RLO1830] FX This research was supported by the US Department of Energy, Office of Science, Biological and Environmental Research as part of the Regional and Global Climate Modeling Program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under Contract DE-AC06-76RLO1830. We thank three anonymous reviewers for providing constructive comments in improving this paper. NR 39 TC 0 Z9 0 U1 9 U2 9 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 11 PY 2016 VL 7 AR 13429 DI 10.1038/ncomms13429 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB6CS UT WOS:000387469300001 PM 27834368 ER PT J AU Jo, NH Kaluarachchi, US Wu, Y Mou, DX Huang, LN Taufour, V Kaminski, A Bud'ko, SL Canfield, PC AF Jo, Na Hyun Kaluarachchi, Udhara S. Wu, Yun Mou, Daixiang Huang, Lunan Taufour, Valentin Kaminski, Adam Bud'ko, Sergey L. Canfield, Paul C. TI Anisotropic physical properties and pressure dependent magnetic ordering of CrAuTe4 SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-WAVE ANTIFERROMAGNETISM; QUANTUM CRITICALITY; SINGLE-CRYSTALS; FERMI-SURFACE; SUPERCONDUCTIVITY; TRANSITION; CHROMIUM; TEMPERATURE; GROWTH; METAL AB Systematic measurements of temperature-dependent magnetization, resistivity, and angle-resolved photoemission spectroscopy (ARPES) at ambient pressure as well as resistivity under pressures up to 5.25 GPa were conducted on single crystals of CrAuTe4. Magnetization data suggest that magnetic moments are aligned antiferromagnetically along the crystallographic c axis below T-N = 255 K. ARPES measurements show band reconstruction due to the magnetic ordering. Magnetoresistance data show clear anisotropy, and, at high fields, quantum oscillations. The Neel temperature decreases monotonically under pressure, decreasing to T-N = 236 K at 5.22 GPa. The pressure dependencies of (i) T-N, (ii) the residual resistivity ratio, and (iii) the size and power-law behavior of the low-temperature magnetoresistance all show anomalies near 2 GPa suggesting that there may be a phase transition (structural, magnetic, and/or electronic) induced by pressure. For pressures higher than 2 GPa a significantly different quantum oscillation frequency emerges, consistent with a pressure induced change in the electronic states. C1 [Canfield, Paul C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Canfield, PC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM canfield@ameslab.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358]; Gordon and Betty Moore Foundation EPiQS Initiative [GBMF4411] FX The authors would like to thank M. C. Nguyen for very helpful discussions. Research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energy by the Iowa State University under Contract No. DE-AC02-07CH11358. N. H. J. was supported by the Gordon and Betty Moore Foundation EPiQS Initiative (Grant No. GBMF4411). NR 35 TC 0 Z9 0 U1 9 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2016 VL 94 IS 18 AR 184413 DI 10.1103/PhysRevB.94.184413 PG 8 WC Physics, Condensed Matter SC Physics GA EB7AB UT WOS:000387536000007 ER PT J AU Massote, DVP Liang, LB Kharche, N Meunier, V AF Massote, Daniel V. P. Liang, Liangbo Kharche, Neerav Meunier, Vincent TI Electronic, vibrational, Raman, and scanning tunneling microscopy signatures of two-dimensional boron nanomaterials SO PHYSICAL REVIEW B LA English DT Article ID FIELD-EFFECT TRANSISTORS; AUGMENTED-WAVE METHOD; BLACK PHOSPHORUS; FEW-LAYER; SPECTROSCOPY; SEMICONDUCTOR; MONOLAYER; GRAPHENE; SPECTRA; WS2 AB Compared to graphene, the synthesis of large area atomically thin boron materials is particularly challenging, owing to the electronic shell structure of B, which does not lend itself to the straightforward assembly of pure B materials. This difficulty is evidenced by the fact that the first synthesis of a pure two-dimensional boron was only very recently reported, using silver as a growing substrate. In addition to experimentally observed 2D boron allotropes, a number of other stable and metastable 2D boron materials are predicted to exist, depending on growth conditions and the use of a substrate during growth. This first-principles study based on density functional theory aims at providing guidelines for the identification of these materials. To this end, this report presents a comparative description of a number of possible 2D B allotropes. Electronic band structures, phonon dispersion curves, Raman scattering spectra, and scanning tunneling microscopy images are simulated to highlight the differences between five distinct realizations of these B systems. The study demonstrates the existence of clear experimental signatures that constitute a solid basis for the unambiguous experimental identification of layered B materials. C1 [Massote, Daniel V. P.; Liang, Liangbo; Kharche, Neerav; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Astron & Appl Phys, Troy, NY 12180 USA. [Massote, Daniel V. P.] Univ Fed Juiz de Fora, Dept Fs, ICE, BR-36036900 Juiz De Fora, MG, Brazil. [Liang, Liangbo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Meunier, V (reprint author), Rensselaer Polytech Inst, Dept Phys Astron & Appl Phys, Troy, NY 12180 USA. EM meuniv@rpi.edu RI Liang, Liangbo/H-4486-2011 OI Liang, Liangbo/0000-0003-1199-0049 FU CNPq-Brazil; Eugene P. Wigner Fellowship at Oak Ridge National Laboratory; Office of Naval Research FX D.V.P.M. acknowledges CNPq-Brazil for financial support. The computations were performed using the resources of the Center for Computational Innovation at RPI. L.L. was supported by Eugene P. Wigner Fellowship at Oak Ridge National Laboratory and also acknowledges work at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. N.K. was supported by the Office of Naval Research. NR 50 TC 0 Z9 0 U1 32 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2016 VL 94 IS 19 AR 195416 DI 10.1103/PhysRevB.94.195416 PG 9 WC Physics, Condensed Matter SC Physics GA EB7AN UT WOS:000387537500001 ER PT J AU Ponath, P O'Hara, A Cao, HX Posadas, AB Vasudevan, R Okatan, MB Jesse, S Berg, M Li, ZY Zhang, DS Kellock, AJ de Lozanne, A Zhou, JS Kalinin, S Smith, DJ Demkov, AA AF Ponath, Patrick O'Hara, Andrew Cao, Hai-Xia Posadas, Agham B. Vasudevan, Rama Okatan, M. Baris Jesse, S. Berg, Morgann Li, Zongyao Zhang, Desai Kellock, Andrew J. de Lozanne, Alex Zhou, Jianshi Kalinin, Sergei Smith, David J. Demkov, Alexander A. TI Contradictory nature of Co doping in ferroelectric BaTiO3 SO PHYSICAL REVIEW B LA English DT Article ID BRILLOUIN-ZONE INTEGRATIONS; HEXAGONAL BARIUM-TITANATE; AUGMENTED-WAVE METHOD; FE-DOPED BATIO3; MAGNETIC-PROPERTIES; TEMPERATURE FERROMAGNETISM; THIN-FILMS; MULTIFERROICS; CERAMICS; SRTIO3 AB The growth of Co-substituted BaTiO3 (BTO) films on Ge(001) substrates by molecular beam epitaxy is demonstrated. Energy-dispersive x-ray spectroscopy and transmission electron microscopy images confirm the uniform Co distribution. However, no evidence of magnetic ordering is observed in samples grown for Co concentrations between 2% and 40%. Piezoresponse force microscopy measurements show that a 5% Co-substituted BTO sample exhibits ferroelectric behavior. First-principles calculations indicate that while Co atoms couple ferromagnetically in the absence of oxygen vacancies, the occurrence of oxygen vacancies leads to locally antiferromagnetically coupled complexes with relatively strong spin coupling. The presence of a significant amount of oxygen vacancies is suggested by x-ray photoelectron spectroscopy measurements. C1 [Ponath, Patrick; O'Hara, Andrew; Posadas, Agham B.; Berg, Morgann; de Lozanne, Alex; Demkov, Alexander A.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cao, Hai-Xia] Soochow Univ, Dept Phys, Suzhou 215006, Peoples R China. [Cao, Hai-Xia] Soochow Univ, Jiangsu Key Lab Thin Films, Suzhou 215006, Peoples R China. [Vasudevan, Rama; Okatan, M. Baris; Jesse, S.; Kalinin, Sergei] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, Zongyao; Zhou, Jianshi] Univ Texas Austin, Mat Sci & Engn Program, Mech Engn, Austin, TX 78712 USA. [Zhang, Desai; Smith, David J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Kellock, Andrew J.] IBM Almaden Res Ctr, San Jose, CA 95120 USA. RP Demkov, AA (reprint author), Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. EM demkov@physics.utexas.edu RI Okatan, M. Baris/E-1913-2016; O'Hara, Andrew/N-8010-2014 OI Okatan, M. Baris/0000-0002-9421-7846; O'Hara, Andrew/0000-0002-0323-9039 FU Air Force Office of Scientific Research [FA9550-12-10494]; Texas Advanced Computing Center; National Natural Science Foundation of China [11104194]; Division of Materials Sciences and Engineering, BES, DOE FX This work was supported by the Air Force Office of Scientific Research under Grant No. FA9550-12-10494 and the Texas Advanced Computing Center. H.X.C. thanks the National Natural Science Foundation of China for supporting her stay at the University of Texas at Austin under Grant No. 11104194. A portion of this research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE (R.K.V., S.V.K.). Research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility, with support from M.B.O. and S.J. NR 67 TC 0 Z9 0 U1 35 U2 35 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2016 VL 94 IS 20 AR 205121 DI 10.1103/PhysRevB.94.205121 PG 11 WC Physics, Condensed Matter SC Physics GA EB7AY UT WOS:000387538600004 ER PT J AU Wilson, MN Medina, T Munsie, TJ Cheung, SC Frandsen, BA Liu, L Yan, J Mandrus, D Uemura, YJ Luke, GM AF Wilson, M. N. Medina, T. Munsie, T. J. Cheung, S. C. Frandsen, B. A. Liu, L. Yan, J. Mandrus, D. Uemura, Y. J. Luke, G. M. TI mu SR and magnetometry study of superconducting 5% Pt-doped IrTe2 SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; STRUCTURAL PHASE-TRANSITION; II SUPERCONDUCTORS; PENETRATION DEPTH; EVOLUTION; SURFACE; STATE AB We present magnetometry and muon spin rotation (mu SR) measurements of the superconducting dichalcogenide Ir0.95Pt0.05Te2. From both sets of measurements, we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s-wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. We therefore see no evidence for exotic superconductivity in Ir0.95Pt0.05Te2. C1 [Wilson, M. N.; Medina, T.; Munsie, T. J.; Luke, G. M.] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. [Cheung, S. C.; Frandsen, B. A.; Liu, L.; Uemura, Y. J.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Yan, J.; Mandrus, D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yan, J.; Mandrus, D.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Luke, G. M.] Canadian Inst Adv Res, Toronto, ON M5G 1Z7, Canada. RP Wilson, MN (reprint author), McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RI Luke, Graeme/A-9094-2010 FU Natural Sciences and Engineering Research Council of Canada; Canadian Foundation for Innovation; Alexander Graham Bell Canada Graduate Scholarship program; NSF [DMR-1436095, OISE-0968226]; JAEA Reimei project; Friends of University of Tokyo Inc.; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX We thank G. D. Morris, B. S. Hitti, and D. J. Arseneau (TRIUMF) for their assistance with the mu SR measurements. Work at McMaster University was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Foundation for Innovation. M.N.W acknowledges support from the Alexander Graham Bell Canada Graduate Scholarship program. The Columbia University group acknowledges support from NSF DMR-1436095 (DMREF), OISE-0968226 (PIRE), JAEA Reimei project, and Friends of University of Tokyo Inc. Work at ORNL was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 37 TC 0 Z9 0 U1 13 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 11 PY 2016 VL 94 IS 18 AR 184504 DI 10.1103/PhysRevB.94.184504 PG 6 WC Physics, Condensed Matter SC Physics GA EB7AB UT WOS:000387536000008 ER PT J AU Eres, G Tischler, JZ Rouleau, CM Lee, HN Christen, HM Zschack, P Larson, BC AF Eres, Gyula Tischler, J. Z. Rouleau, C. M. Lee, Ho Nyung Christen, H. M. Zschack, P. Larson, B. C. TI Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO3 SO PHYSICAL REVIEW LETTERS LA English DT Article ID THIN-FILM GROWTH AB We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO3. We show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing in PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD "self-organizes" local step flow on a length scale consistent with the substrate temperature and PLD parameters. C1 [Eres, Gyula; Lee, Ho Nyung; Larson, B. C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Tischler, J. Z.; Zschack, P.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Urbana, IL 61801 USA. [Rouleau, C. M.; Christen, H. M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zschack, P.] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. RP Eres, G (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM eresg@ornl.gov RI Christen, Hans/H-6551-2013; Eres, Gyula/C-4656-2017 OI Christen, Hans/0000-0001-8187-7469; Eres, Gyula/0000-0003-2690-5214 FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX This research was sponsored by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 27 TC 1 Z9 1 U1 21 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2016 VL 117 IS 20 AR 206102 DI 10.1103/PhysRevLett.117.206102 PG 5 WC Physics, Multidisciplinary SC Physics GA EB7DB UT WOS:000387544900006 PM 27886490 ER PT J AU Schmit, PF Velikovich, AL McBride, RD Robertson, GK AF Schmit, P. F. Velikovich, A. L. McBride, R. D. Robertson, G. K. TI Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch SO PHYSICAL REVIEW LETTERS LA English DT Article ID INERTIAL CONFINEMENT FUSION; X-RAY-RADIATION; STABILITY ANALYSIS; WIRE ARRAYS; SUPPRESSION; GROWTH; SIMULATIONS; IMPLOSION; FACILITY; FLOWS AB Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells ("liners"), the magnetic field driving the implosion can exacerbate the RTI. We suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstrate that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M.R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies. C1 [Schmit, P. F.; McBride, R. D.; Robertson, G. K.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Velikovich, A. L.] Naval Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [McBride, R. D.] Univ Michigan, Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. RP Schmit, PF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering; Laboratory Directed Research and Development (LDRD) Program [165746]; Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation); U.S. Department of Energy [DE-AC04-94AL85000] FX The authors gratefully acknowledge Adam Sefkow, Matthew Martin, Kyle Peterson, Matthew Weis, Mike Desjarlais, and Dan Sinars for helpful discussions. We also are grateful to the referees for helpful suggestions regarding the manuscript. This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, which is part of the Laboratory Directed Research and Development (LDRD) Program, Project No. 165746, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000. NR 70 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2016 VL 117 IS 20 AR 205001 DI 10.1103/PhysRevLett.117.205001 PG 6 WC Physics, Multidisciplinary SC Physics GA EB7DB UT WOS:000387544900004 PM 27886504 ER PT J AU Wagner, M Lackner, P Seiler, S Gerhold, S Osiecki, J Schulte, K Boatner, LA Schmid, M Meyer, B Diebold, U AF Wagner, Margareta Lackner, Peter Seiler, Steffen Gerhold, Stefan Osiecki, Jacek Schulte, Karina Boatner, Lynn A. Schmid, Michael Meyer, Bernd Diebold, Ulrike TI Well-Ordered In Adatoms at the In2O3(111) Surface Created by Fe Deposition SO PHYSICAL REVIEW LETTERS LA English DT Article ID ATOMIC-SCALE; OXIDE; TIO2(110); FILMS; VIEW; STM AB Metal deposition on oxide surfaces usually results in adatoms, clusters, or islands of the deposited material, where defects in the surface often act as nucleation centers. Here an alternate configuration is reported. After the vapor deposition of Fe on the In2O3(111) surface at room temperature, ordered adatoms are observed with scanning tunneling microscopy. These are identical to the In adatoms that form when the sample is reduced by heating in ultrahigh vacuum. Density functional theory calculations confirm that Fe interchanges with In in the topmost layer, pushing the excess In atoms to the surface where they arrange as a well-ordered adatom array. C1 [Wagner, Margareta; Lackner, Peter; Gerhold, Stefan; Schmid, Michael; Diebold, Ulrike] TU Wien, Inst Appl Phys, Wiedner Hauptstr 8-10-134, A-1040 Vienna, Austria. [Seiler, Steffen; Meyer, Bernd] Friedrich Alexander Univ Erlangen Nurnberg, Interdisciplinary Ctr Mol Mat, Nagelsbachstr 25, D-91052 Erlangen, Germany. [Seiler, Steffen; Meyer, Bernd] Friedrich Alexander Univ Erlangen Nurnberg, Comp Chem Ctr, Nagelsbachstr 25, D-91052 Erlangen, Germany. [Osiecki, Jacek; Schulte, Karina] Lund Univ, MAX Lab 4, Ole Romers Vag 1, S-22363 Lund, Sweden. [Boatner, Lynn A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wagner, M (reprint author), TU Wien, Inst Appl Phys, Wiedner Hauptstr 8-10-134, A-1040 Vienna, Austria. EM wagner@iap.tuwien.ac.at RI Diebold, Ulrike/A-3681-2010 OI Diebold, Ulrike/0000-0003-0319-5256 FU FWF Project [T759-N27]; Austrian Science Fund (FWF) [SFB F45]; Fonds der Chemischen Industrie (FCI); U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; European Research Council Advanced Grant "OxideSurfaces" FX M. W. gratefully acknowledges the FWF Project No. T759-N27. P. L. was supported by the Austrian Science Fund (FWF) within SFB F45 "FOXSI." S. S. thanks the Fonds der Chemischen Industrie (FCI) for a Chemiefonds Fellowship. Research at the Oak Ridge National Laboratory for L. A. B. was sponsored by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. U. D. was supported by the European Research Council Advanced Grant "OxideSurfaces." NR 37 TC 1 Z9 1 U1 20 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 11 PY 2016 VL 117 IS 20 AR 206101 DI 10.1103/PhysRevLett.117.206101 PG 6 WC Physics, Multidisciplinary SC Physics GA EB7DB UT WOS:000387544900005 PM 27886498 ER PT J AU Lauritsen, T Korichi, A Zhu, S Wilson, AN Weisshaar, D Dudouet, J Ayangeakaa, AD Carpenter, MP Campbell, CM Clement, E Crawford, HL Cromaz, M Fallon, P Greene, JP Janssens, RVF Khoo, TL Lalovic, N Lee, IY Macchiavelli, A Perez-Vidal, RM Pietri, S Radford, DC Ralet, D Riley, LA Seweryniak, D Stezowski, O AF Lauritsen, T. Korichi, A. Zhu, S. Wilson, A. N. Weisshaar, D. Dudouet, J. Ayangeakaa, A. D. Carpenter, M. P. Campbell, C. M. Clement, E. Crawford, H. L. Cromaz, M. Fallon, P. Greene, J. P. Janssens, R. V. F. Khoo, T. L. Lalovic, N. Lee, I. Y. Macchiavelli, A. Perez-Vidal, R. M. Pietri, S. Radford, D. C. Ralet, D. Riley, L. A. Seweryniak, D. Stezowski, O. TI Characterization of a gamma-ray tracking array: A comparison of GRETINA and Gammasphere using a Co-60 source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Segmented germanium detectors; Efficiency measurements; gamma-Ray tracking; Gammasphere; GRETINA; GRETA; gamma-Ray spectroscopy; Nuclear structure ID SUM-PEAK METHOD; SPECTROMETER; PERFORMANCE; CALIBRATION; GENERATION; DETECTORS AB In this paper; we provide a formalism for the characterization of tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4 pi array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4 pi implementation of GRETA. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lauritsen, T.; Zhu, S.; Ayangeakaa, A. D.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Korichi, A.; Ralet, D.] CNRS, IN2P3, CSNSM, Bat 104-108,Orsay Campus, F-91405 Orsay, France. [Wilson, A. N.] Univ West Scotland, Paisley, Renfrew, Scotland. [Weisshaar, D.] Michigan State Univ, NSCL, E Lansing, MI 48824 USA. [Dudouet, J.; Stezowski, O.] CNRS, IPN Lyon, IN2P3, Lyon Campus, Lyon, France. [Campbell, C. M.; Crawford, H. L.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Perez-Vidal, R. M.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46920 Valencia, Spain. [Clement, E.] CEA DSM CNRS IN2P3, GANIL, BP 55027, F-14076 Caen, France. [Lalovic, N.; Pietri, S.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Radford, D. C.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Lalovic, N.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden. [Riley, L. A.] Ursinus Coll, Collegeville, PA 19426 USA. RP Lauritsen, T (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM torben@anl.gov FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-05CHI1231]; NSF [PHY-1303480]; French National Center of Research, CNRS; P2IO Excellence Laboratory FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357. This research used resources of the ANL's ATLAS facility, which is a DOE Office of Science User Facility. LBNL is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CHI1231 and L. Riley acknowledges support from NSF through grant no. PHY-1303480. This work was also supported by the French National Center of Research, CNRS. D.R. was partially supported by the P2IO Excellence Laboratory. We acknowledge valuable discussions with J. Ljunvall and A. Lopez-Martens. NR 36 TC 1 Z9 1 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2016 VL 836 BP 46 EP 56 DI 10.1016/j.nima.2016.07.027 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DZ1MB UT WOS:000385601400007 ER PT J AU Karny, M Rykaczewski, KP Fijalkowska, A Rasco, BC Wolinska-Cichocka, M Grzywacz, RK Goetz, KC Miller, D Zganjar, EF AF Karny, M. Rykaczewski, K. P. Fijalkowska, A. Rasco, B. C. Wolinska-Cichocka, M. Grzywacz, R. K. Goetz, K. C. Miller, D. Zganjar, E. F. TI Modular total absorption spectrometer SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Beta decay; Total absorption spectrometry; Nal(TI); Simulation ID BETA-DECAY; SIMULATION; SPECTRA AB The design and performance of the Modular Total Absorption Spectrometer built and commissioned at the Oak Ridge National Laboratory is presented. The active volume of the detector is approximately one ton of NaI(Tl), which results in very high full gamma energy peak efficiency of 71% at 6 MeV and nearly flat efficiency of around 81.5% for low energy gamma-rays between 300 keV and 1 MeV. In addition to the high peak efficiency, the modular construction of the detector permits the use of a gamma-coincidence technique in data analysis as well as beta-delayed neutron observation. (C) 2016 Elsevier B.V. All rights reserved. C1 [Karny, M.; Fijalkowska, A.] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. [Karny, M.; Fijalkowska, A.; Rasco, B. C.; Wolinska-Cichocka, M.] Joint Inst Nucl Phys & Applicat, Oak Ridge, TN 37831 USA. [Rykaczewski, K. P.; Rasco, B. C.; Wolinska-Cichocka, M.; Grzywacz, R. K.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Rasco, B. C.; Zganjar, E. F.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Wolinska-Cichocka, M.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland. [Grzywacz, R. K.; Goetz, K. C.; Miller, D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37966 USA. [Miller, D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Karny, M (reprint author), Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland. EM karny@mimuw.edu.pl FU US DOE, Office of Nuclear Physics [DE-AC05-00OR22725]; US DOE [DE-FG02-96ER40978]; U.S. Department of Energy NNSA under the Stewardship Science Academic Alliance program through DOE [DE-FG52-08NA28552]; Office of Science, U.S.DOE [DE-FG02-96ER40983, DOE DE-SC0007431]; Polish National Centre for Science [UMO-2013/08/T/ST2/00624] FX This work was supported by the US DOE, Office of Nuclear Physics through the contract No. DE-AC05-00OR22725, the US DOE award no. DE-FG02-96ER40978, and by U.S. Department of Energy NNSA under the Stewardship Science Academic Alliance program through DOE Cooperative Agreement No. DE-FG52-08NA28552, and by the Office of Science, U.S.DOE through contracts no. DE-FG02-96ER40983 and DOE DE-SC0007431, and by the Polish National Centre for Science under the contract No. UMO-2013/08/T/ST2/00624. NR 21 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2016 VL 836 BP 83 EP 90 DI 10.1016/j.nima.2016.08.046 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DZ1MB UT WOS:000385601400011 ER PT J AU Peters, WA Ilyushkin, S Madurga, M Matei, C Paulauskas, SV Grzywacz, RK Bardayan, DW Brune, CR Allen, J Allen, JM Bergstrom, Z Blackmon, J Brewer, NT Cizewski, JA Copp, P Howard, ME Ikeyama, R Kozub, RL Manning, B Massey, TN Matos, M Merino, E O'Malley, PD Raiola, F Reingold, CS Sarazin, F Spassova, I Taylor, S Walter, D AF Peters, W. A. Ilyushkin, S. Madurga, M. Matei, C. Paulauskas, S. V. Grzywacz, R. K. Bardayan, D. W. Brune, C. R. Allen, J. Allen, J. M. Bergstrom, Z. Blackmon, J. Brewer, N. T. Cizewski, J. A. Copp, P. Howard, M. E. Ikeyama, R. Kozub, R. L. Manning, B. Massey, T. N. Matos, M. Merino, E. O'Malley, P. D. e Raiola, F. Reingold, C. S. Sarazin, F. Spassova, I. Taylor, S. Walter, D. TI Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron detection; Plastic scintillator array; Carbon-nuclei light response ID PLASTIC SCINTILLATOR; RADIOACTIVE BEAMS; CF-252 SOURCE; SPECTROSCOPY; PROTONS; LENDA AB The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom GEANT4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. A low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV. (C) 2016 Elsevier B.V. All rights reserved. C1 [Peters, W. A.; Matei, C.; Spassova, I.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Peters, W. A.; Madurga, M.; Paulauskas, S. V.; Grzywacz, R. K.; Allen, J. M.; Brewer, N. T.; Taylor, S.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Peters, W. A.; Bardayan, D. W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Ilyushkin, S.; Raiola, F.; Sarazin, F.; Walter, D.] Colorado Sch Mines, Dept Phys & Astron, Golden, CO 80401 USA. [Allen, J.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Manning, B.; Merino, E.; O'Malley, P. D. e; Reingold, C. S.; Spassova, I.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Bardayan, D. W.; O'Malley, P. D. e] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Brune, C. R.; Massey, T. N.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Allen, J.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Bergstrom, Z.; Kozub, R. L.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. [Blackmon, J.; Matos, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Copp, P.; Ikeyama, R.] Univ Wisconsin, Dept Phys & Astron, La Crosse, WI 54601 USA. RP Peters, WA (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA.; Peters, WA (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA.; Peters, WA (reprint author), Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. EM wapeters@nuclearemail.org RI Matei, Catalin/B-2586-2008 OI Matei, Catalin/0000-0002-2254-3853 FU National Nuclear Security Administration (NNSA) under the Stewardship Science Academic Alliances program through U.S. Department of Energy (DOE) [DE- FG52-08NA28552, DE-FG52-09NA29455, DE-NA0002132]; DOE office of Science [DE-FG02-96ER40955]; National Science Foundation; NNSA Office of Defense Nuclear Nonproliferation Research and Development (NA-22) project [IN13-V-F(a,n)-PD2La] FX This research was sponsored in part by the National Nuclear Security Administration (NNSA) under the Stewardship Science Academic Alliances program through U.S. Department of Energy (DOE) Cooperative Agreements No. DE- FG52-08NA28552, DE-FG52-09NA29455, and DE-NA0002132, the DOE office of Science No. DE-FG02-96ER40955, National Science Foundation, and the NNSA Office of Defense Nuclear Nonproliferation Research and Development (NA-22) project IN13-V-F(a,n)-PD2La. NR 46 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 11 PY 2016 VL 836 BP 122 EP 133 DI 10.1016/j.nima.2016.08.054 PG 12 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DZ1MB UT WOS:000385601400016 ER PT J AU Khamesian, M Douguet, N dos Santos, SF Dulieu, O Raoult, M Kokoouline, V AF Khamesian, Marjan Douguet, Nicolas dos Santos, Samantha Fonseca Dulieu, Olivier Raoult, Maurice Kokoouline, Viatcheslav TI Study of the radiative electron attachment and photodetachment processes for the C2H/C2H- and C4H/C4H- molecules SO EUROPEAN PHYSICAL JOURNAL D LA English DT Article ID QUANTUM-CHEMICAL PREDICTIONS; AB-INITIO; ASTRONOMICAL IDENTIFICATION; CHAIN ANIONS; INTERSTELLAR; C4H; C6H; AFFINITIES; MECHANISMS; SCATTERING AB The photodetachment cross sections of the C2H- and C4H- molecular anions in their ground electronic and vibrational states are determined using the R-matrix approach. The obtained results are compared with available experimental data of absolute photodetachment cross sections. In addition, cross sections for the inverse process, i.e., radiative electron attachment, have also been determined and are used to obtain the corresponding thermally-averaged rate coefficients. At a temperature of 300 K, the rate coefficients are 2.3 x 10(-16) and 18 x 10(-16) cm(3)/s for C2H- and C4H-, respectively. C1 [Khamesian, Marjan; Kokoouline, Viatcheslav] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Douguet, Nicolas; dos Santos, Samantha Fonseca] Drake Univ, Dept Phys & Astron, Des Moines, IA 50311 USA. [dos Santos, Samantha Fonseca] Lawrence Berkeley Natl Lab, Chem Sci, Berkeley, CA 94720 USA. [Dulieu, Olivier; Raoult, Maurice] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Aime Cotton,ENS Cachan, Bat 505,Campus Orsay, F-91405 Orsay, France. RP Kokoouline, V (reprint author), Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. EM Viatcheslav.Kokoouline@ucf.edu FU National Science Foundation [PHY-15-06391] FX This work was supported by the National Science Foundation, Grant No PHY-15-06391. NR 40 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6060 EI 1434-6079 J9 EUR PHYS J D JI Eur. Phys. J. D PD NOV 10 PY 2016 VL 70 IS 11 AR 240 DI 10.1140/epjd/e2016-70138-1 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA EP0CS UT WOS:000397055000001 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S AlconadaVerzini, MJ Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, CN Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Baw, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairoa, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Mourslie, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duffield, EM Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravilae, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, J Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanisch, S Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F IturbePonce, JM Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D LaRosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, F Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Li, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, J Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, J Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindura, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, L Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Resseguie, ED Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzelb, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, AV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacooba, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. AlconadaVerzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, C. N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Baw, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J-B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Bossio Sola, J. D. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairoa, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Calvente Lopez, S. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Mourslie, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duffield, E. M. Duflot, L. Duguid, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Fernandez Perez, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravilae, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanisch, S. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S-C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. IturbePonce, J. M. Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G-Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Juste Rozas, A. Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E-E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. LaRosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Li, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Machado Miguens, J. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindura, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Oleiro Seabra, L. F. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Rodriguez, L. Pacheco Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Resseguie, E. D. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N-A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzelb, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H-C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tapia Araya, S. Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Ferrer, A. Valls Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the W-+/- Z boson pair-production cross section in pp collisions at root s=13 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID PARTON DISTRIBUTIONS; HADRON COLLIDERS; LHC AB The production of W-+/- Z events in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured with the ATLAS detector at the LHC. The collected data correspond to an integrated luminosity of 3.2 fb(-1). The W-+/- Z candidates are reconstructed using leptonic decays of the gauge bosons into electrons or muons. The measured inclusive cross section in the detector fiducial region for leptonic decay modes is sigma(fid.)(W +/- Z -> L'vll) = 63.2 +/- 3.2 (stat.) +/- 2.6 (sys.) +/- 1.5 (lumi.) fb. In comparison, the next-to-leading-order Standard Model prediction is 53.4(-2.8)(+3.6) fb. The extrapolation of the measurement from the fiducial to the total phase space yields sigma(tot.)(W +/- Z) = 50.6 +/- 2.6 (stat.) +/- 2.0 (sys.) +/- 0.9 (th.) +/- 1.2 (lumi.) pb, in agreement with a recent next-to-next-to-leading-order calculation of 48.2(-1.0)(+1.1) pb. The cross section as a function of jet multiplicity is also measured, together with the charge-dependent W+ Z and W- Z cross sections and their ratio. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. Istanbul Aydin Univ, Istanbul, Turkey. [Kuday, S.; Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, C. N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fernandez Perez, S.; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Saito, T.; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.; Peralva, B. S.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravilae, P. M.] West Univ Timisoara, Timisoara, Romania. [Bossio Sola, J. D.; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hanisch, S.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jakobsen, S.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nordberg, M.; Ogren, H.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairoa, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Frascati, Italy. [Cairoa, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindura, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Phys Inst 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N-A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Phys Inst 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E-E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H-C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Radescu, V.; Schaetzelb, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yakabe, R.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [AlconadaVerzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [AlconadaVerzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Calvente Lopez, S.; Cueto, A.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; IturbePonce, J. M.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Karastathis, N.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; LaRosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Schwindling, J.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Shulga, E.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, CNRS, IN2P3, LAL,Univ Paris Sud, Orsay, France. [Endo, M.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Mistry, K. P.; Nakano, I.; Reichert, J.; Resseguie, E. D.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Oleiro Seabra, L. F.; Onofre, A.; Palma, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Mourslie, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J-B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] Commissariat Energie Atom & Energies Alternat, CEA Saclay, Inst Rech Lois Fondament Univers, DSM IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S-C.; Johnson, W. J.; Lubatti, J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Baw, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, J.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G-Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Li, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Todome, K.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Ferrer, A. Valls; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Ferrer, A. Valls; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Ferrer, A. Valls; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Ferrer, A. Valls; Vos, M.] Univ Valencia, CNM, IMB, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Ferrer, A. Valls; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Nat Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Baw, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, J.] Inst Particle Phys, Victoria, BC, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Geng, C.; Guo, Y.; Li, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Hanagaki, K.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Igonkina, O.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Jenni, P.] CERN, Geneva, Switzerland. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Li, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, B.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Song, H. Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Tikhomirov, V. O.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Zhang, R.] CNRS, IN2P3, Marseille, France. PKU CHEP, Beijing, Peoples R China. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Doyle, Anthony/C-5889-2009; Warburton, Andreas/N-8028-2013; Vanyashin, Aleksandr/H-7796-2013; Gladilin, Leonid/B-5226-2011; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015; Livan, Michele/D-7531-2012; Prokoshin, Fedor/E-2795-2012 OI Doyle, Anthony/0000-0001-6322-6195; Warburton, Andreas/0000-0002-2298-7315; Vanyashin, Aleksandr/0000-0002-0367-5666; Gladilin, Leonid/0000-0001-9422-8636; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581; Livan, Michele/0000-0002-5877-0062; Prokoshin, Fedor/0000-0001-6389-5399 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Knut and Alice Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; Canarie, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Knut and Alice Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 60 TC 1 Z9 1 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 1 EP 22 DI 10.1016/j.physletb.2016.08.052 PG 22 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700001 ER PT J AU Sun, P Yuan, CP Yuan, F AF Sun, Peng Yuan, C. -P. Yuan, Feng TI Long range correlation in Higgs boson plus two jets production at the LHC SO PHYSICS LETTERS B LA English DT Article ID TRANSVERSE-MOMENTUM DISTRIBUTION; QCD AB We study Higgs boson plus two high energy jets production at the LHC in the kinematics where the two jets are well separated in rapidity. The partonic processes are dominated by the t-channel weak boson fusion (WBF) and gluon fusion (GF) contributions. We derive the associated QCD resummation formalism for the correlation analysis where the total transverse momentum q(perpendicular to) of the Higgs boson and two jets is small. Because of different color structures, the resummation results lead to distinguished behaviors: the WBF contribution peaks at relative low q(perpendicular to) while all GF channel contributions are strongly de-correlated and spread to a much wider q(perpendicular to) range. By applying a kinematic cut on q(perpendicular to), one can effectively increase the WBF signal to the GF background by a significant factor. This greatly strengthens the ability to investigate the WBF channel in Higgs boson production and study the couplings of Higgs to electroweak bosons. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Sun, Peng; Yuan, Feng] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Yuan, C. -P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Yuan, F (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. EM fyuan@lbl.gov FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231]; U.S. National Science Foundation [PHY-1417326] FX We thank Yoshitaka Hatta for discussions and comments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-05CH11231, and by the U.S. National Science Foundation under Grant No. PHY-1417326. NR 38 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 47 EP 51 DI 10.1016/j.physletb.2016.09.005 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700005 ER PT J AU Wang, XG Ji, CR Melnitchouk, W Salamu, Y Thomas, AW Wang, P AF Wang, X. G. Ji, Chueng-Ryong Melnitchouk, W. Salamu, Y. Thomas, A. W. Wang, P. TI Constraints on the s - (s)over-bar asymmetry of the proton in chiral effective theory SO PHYSICS LETTERS B LA English DT Article DE Strange asymmetry; Chiral symmetry; Kaon loops ID DEEP-INELASTIC-SCATTERING; DRELL-YAN PROCESS; LIGHT-QUARK SEA; PARTON DISTRIBUTIONS; SYMMETRY-BREAKING; NUCLEON SEA; FLAVOR ASYMMETRY; GLOBAL ANALYSIS; STRANGE SEA; CHARM AB We compute the s - (s) over bar asymmetry in the proton in chiral effective theory, using phenomenological constraints based upon existing data. Unlike previous meson cloud model calculations, which accounted for kaon loop contributions with on-shell intermediate states alone, this work includes off-shell terms and contact interactions, which impact the shape of the s - (s) over bar difference. We identify a valence-like component of s(x) which is balanced by a delta-function contribution to (s) over bar (x) at x = 0, so that the integrals of sand (s) over bar over the experimentally accessible region x > 0 are not equal. Using a regularization procedure that preserves chiral symmetry and Lorentz invariance, we find that existing data limit the integrated value of the second moment of the asymmetry to the range -0.07 x 10(-3) <= < x(s - (s) over bar)> <= 1.12 x 10(-3) at a scale of Q(2) = 1 GeV2. This is too small to account for the NuTeV anomaly and of the wrong sign to enhance it. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Wang, X. G.; Thomas, A. W.] Univ Adelaide, CoEPP, Adelaide, SA 5005, Australia. [Wang, X. G.; Thomas, A. W.] Univ Adelaide, CSSM, Adelaide, SA 5005, Australia. [Ji, Chueng-Ryong] North Carolina State Univ, Raleigh, NC 27695 USA. [Melnitchouk, W.] Jefferson Lab, Newport News, VA 23606 USA. [Salamu, Y.; Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Wang, P.] Chinese Acad Sci, Theoret Phys Ctr Sci Facil, Beijing 100049, Peoples R China. RP Melnitchouk, W (reprint author), Jefferson Lab, Newport News, VA 23606 USA. EM wmelnitc@jlab.org FU DOE [DE-AC05-06OR23177, DE-FG02-03ER41260]; Australian Research Council through the ARC Centre of Excellence for Particle Physics at the Terascale [CE110001104]; ARC Australian Laureate Fellowship [FL0992247, DP151103101]; NSFC [11475186]; DFG [CRC 110] FX We acknowledge helpful discussions with J.T. Londergan at an early stage of this work. This work was supported by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab, DOE Contract No. DE-FG02-03ER41260, the Australian Research Council through the ARC Centre of Excellence for Particle Physics at the Terascale (CE110001104), an ARC Australian Laureate Fellowship FL0992247 and DP151103101, and by NSFC under Grant No. 11475186, CRC 110 by DFG and NSFC. NR 55 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 52 EP 56 DI 10.1016/j.physletb.2016.09.014 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700006 ER PT J AU Gangadharan, D AF Gangadharan, Dhevan TI Multipion correlations induced by isospin conservation of coherent emission SO PHYSICS LETTERS B LA English DT Article ID BOSE-EINSTEIN CORRELATIONS; HEAVY-ION GENERATOR; INTERFEROMETRY; THERMINATOR; COLLISIONS AB Recent measurements have revealed a significant suppression of multipion Bose-Einstein correlations in heavy-ion collisions at the LHC. The suppression may be explained by postulating coherent pion emission. Typically, the suppression of Bose-Einstein correlations due to coherence is taken into account with the coherent state formalism in quantum optics. However, since charged pion correlations are most often measured, the additional constraint of isospin conservation, which is absent in quantum optics, needs to be taken into account. As a consequence, correlations emerge between pions of opposite charge. A calculation of the correlations induced by isospin conservation of coherent emission is made for two, three-and four-pion correlation functions and compared to the data from the LHC. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Gangadharan, Dhevan] Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 97420 USA. RP Gangadharan, D (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 97420 USA. EM dhevanga@gmail.com FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231] FX This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-05CH11231. NR 22 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 57 EP 63 DI 10.1016/j.physletb.2016.09.017 PG 7 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700007 ER PT J AU Aab, A Abreu, P Aglietta, M Ahn, EJ AlSamarai, I Albuquerque, IFM Allekotte, I Allison, P Almela, A Castillo, JV Alvarez-Muniz, J Ambrosio, M Anastasi, GA Anchordoqui, L Andrada, B Andringa, S Aramo, C Arqueros, F Arsene, N Asorey, H Assis, P Aublin, J Avila, G Badescu, AM Balaceanu, A Baus, C Beatty, JJ Becker, KH Bellido, JA Berat, C Bertaina, ME Bertou, X Biermann, PL Billoir, P Biteau, J Blaess, SG Blanco, A Blazek, J Bleve, C Bohacova, M Boncioli, D Bonifazi, C Borodai, N Botti, AM Brack, J Brancus, I Bretz, T Bridgeman, A Briechle, FL Buchholz, P Bueno, A Buitink, S Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Cancio, A Canfora, F Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Chavez, AG Chiavassa, A Chinellato, JA Chudoba, J Clay, RW Colalillo, R Coleman, A Collica, L Coluccia, MR Conceiao, R Contreras, F Cooper, MJ Coutu, S Covault, CE Cronin, J Dallier, R D'Amico, S Daniel, B Dasso, S Daumiller, K Dawson, BR Dealmeida, RM Dejong, SJ De Mauro, G de Mello Neto, JRT De Mitri, I de Oliveira, J de Souza, V Debatin, J del Peral, L Deligny, O Di Giulio, C Di Matteo, A Castro, MLD Diogo, F Dobrigkeit, C D'Olivo, JC Dorofeev, A Dosanjos, RC Dova, MT Dundovic, A Ebr, J Engel, R Erdmann, M Erfani, M Escobar, CO Espadanal, J Etchegoyen, A Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Fick, B Figueira, JM Filevich, A Filipcic, A Fratu, O Freire, MM Fujii, T Fuster, A Garcia, B Garcia-Pinto, D Gate, F Gemmeke, H Gherghel-Lascu, A Ghia, PL Giaccari, U Giammarchi, M Giller, M Glas, D Glaser, C Glass, H Golup, G Berisso, M Vitale, PFG Gonzalez, N Gookin, B Gordon, J Gorgi, A Gorham, P Gouffon, P Grillo, AF Grubb, TD Guarino, F Guedes, GP Hampel, MR Hansen, P Harari, D Harrison, TA Harton, JL Hasankiadeh, Q Haungs, A Hebbeker, T Heck, D Heimann, P Herve, AE Hill, GC Hojvat, C Holt, E Homola, P Hrandel, JR Horvath, P Hrabovsky, M Huege, T Hulsman, J Insolia, A Isar, PG Jandt, I Jansen, S Johnsen, JA Josebachuili, M Kaapa, A Kambeitz, O Kampert, KH Kasper, P Katkov, I Keilhauer, B Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Krause, R Krohm, N Kuempel, D KukecMezek, G Kunka, N Awad, AK LaHurd, D Latronico, L Lauscher, M Lautridou, P Lebrun, P Legumina, R de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopes, L Lopez, R Casado, AL Luce, Q Lucero, A Malacari, M Mallamaci, M Mandat, D Mantsch, P Mariazzi, AG Maris, IC Marsella, G Martello, D Martinez, H Bravo, OM Meza, JJM Mathes, HJ Mathys, S Matthews, J Matthews, JAJ Matthiae, G Mayotte, E Mazur, PO Medina, C Medina-Tanco, G Melo, D Menshikov, A Messina, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Mockler, D Molina-Bueno, L Mollerach, S Montanet, F Morello, C Mostafa, M Muller, G Muller, MA Muller, S Naranjo, I Navas, S Nellen, L Neuser, J Nguyen, PH Niculescu-Oglinzanu, M Niechciol, M Niemietz, L Niggemann, T Nitz, D Nosek, D Novotny, V Nozka, H Nunez, LA Ochilo, L Oikonomou, F Olinto, A PakkSelmi-Dei, D Palatka, M Pallotta, J Papenbreer, P Parente, G Parra, A Paul, T Pech, M Pedreira, F Pekala, J Pelayo, R Pea-Rodriguez, J Pereira, LAS Perrone, L Peters, C Petrera, S Phuntsok, J Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Porowski, C Prado, RR Privitera, P Prouza, M Quel, EJ Querchfeld, S Quinn, S Ramos-Pollant, R Rautenberg, J Ravel, O Ravignani, D Reinert, D Revenu, B Ridky, J Risse, M Ristori, P Rizi, V de Carvalho, WR Fernandez, GR Rojo, JR Rodriguez-Frias, MD Rogozin, D Rosado, J Roth, M Roulet, E Rovero, AC Saffi, SJ Saftoiu, A Salazar, H Saleh, A Greus, FS Salina, G Gomez, JDS Sanchez, F Sanchez-Lucas, P Santos, EM Santos, E Sarazin, F Sarkar, B Sarmento, R Sarmiento-Cano, C Sato, R Scarso, C Schauer, M Scherini, V Schieler, H Schmidt, D Scholten, O Schovanek, P Schroder, FG Schulz, A Schulz, J Schumacher, J Sciutto, SJ Segreto, A Settimo, M Shadkam, A Shellard, RC Sigl, G Silli, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sonntag, S Sorokin, J Squartini, R Stanca, D Stanic, S Stasielak, J Strafella, F Suarez, F Duran, MS Sudholz, T Suomijarvi, T Supanitsky, AD Sutherland, MS Swain, J Szadkowski, Z Taborda, OA Tapia, A Tepe, A Theodoro, VM Timmermans, C Peixoto, CJT Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Torri, M Travnicek, P Trini, M Ulrich, R Unger, M Urban, M Valbuena-Delgado, A Galicia, JFV Valino, I Valore, L van Aar, G Vanbodegom, P van den Berg, AM Van Vliet, A Varela, E Cardenas, BV Varner, G Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Villaseor, L Vorobiov, S Wahlberg, H Wainberg, O Walz, D Watson, AA Weber, M Weindl, A Wiencke, L Wilczynski, H Winchen, T Wittkowski, D Wundheiler, B Wykes, S Yang, L Yelos, D Younk, P Yushkov, A Zas, E Zavrtanik, D Zavrtanik, M Zepeda, A Zimmermann, B Ziolkowski, M Zong, Z Zuccarello, F AF Aab, A. Abreu, P. Aglietta, M. Ahn, E. J. AlSamarai, I. Albuquerque, I. F. M. Allekotte, I. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Ambrosio, M. Anastasi, G. A. Anchordoqui, L. Andrada, B. Andringa, S. Aramo, C. Arqueros, F. Arsene, N. Asorey, H. Assis, P. Aublin, J. Avila, G. Badescu, A. M. Balaceanu, A. Baus, C. Beatty, J. J. Becker, K. H. Bellido, J. A. Berat, C. Bertaina, M. E. Bertou, X. Biermann, P. L. Billoir, P. Biteau, J. Blaess, S. G. Blanco, A. Blazek, J. Bleve, C. Bohacova, M. Boncioli, D. Bonifazi, C. Borodai, N. Botti, A. M. Brack, J. Brancus, I. Bretz, T. Bridgeman, A. Briechle, F. L. Buchholz, P. Bueno, A. Buitink, S. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Cancio, A. Canfora, F. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Chavez, A. G. Chiavassa, A. Chinellato, J. A. Chudoba, J. Clay, R. W. Colalillo, R. Coleman, A. Collica, L. Coluccia, M. R. Conceiao, R. Contreras, F. Cooper, M. J. Coutu, S. Covault, C. E. Cronin, J. Dallier, R. D'Amico, S. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. Dealmeida, R. M. Dejong, S. J. De Mauro, G. de Mello Neto, J. R. T. De Mitri, I. de Oliveira, J. de Souza, V. Debatin, J. del Peral, L. Deligny, O. Di Giulio, C. Di Matteo, A. Castro, M. L. Diaz Diogo, F. Dobrigkeit, C. D'Olivo, J. C. Dorofeev, A. Dosanjos, R. C. Dova, M. T. Dundovic, A. Ebr, J. Engel, R. Erdmann, M. Erfani, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fratu, O. Freire, M. M. Fujii, T. Fuster, A. Garcia, B. Garcia-Pinto, D. Gate, F. Gemmeke, H. Gherghel-Lascu, A. Ghia, P. L. Giaccari, U. Giammarchi, M. Giller, M. Glas, D. Glaser, C. Glass, H. Golup, G. Berisso, M. Gomez Vitale, P. F. Gomez Gonzalez, N. Gookin, B. Gordon, J. Gorgi, A. Gorham, P. Gouffon, P. Grillo, A. F. Grubb, T. D. Guarino, F. Guedes, G. P. Hampel, M. R. Hansen, P. Harari, D. Harrison, T. A. Harton, J. L. Hasankiadeh, Q. Haungs, A. Hebbeker, T. Heck, D. Heimann, P. Herve, A. E. Hill, G. C. Hojvat, C. Holt, E. Homola, P. Hrandel, J. R. Horvath, P. Hrabovsky, M. Huege, T. Hulsman, J. Insolia, A. Isar, P. G. Jandt, I. Jansen, S. Johnsen, J. A. Josebachuili, M. Kaapa, A. Kambeitz, O. Kampert, K. H. Kasper, P. Katkov, I. Keilhauer, B. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Krause, R. Krohm, N. Kuempel, D. KukecMezek, G. Kunka, N. Awad, A. Kuotb LaHurd, D. Latronico, L. Lauscher, M. Lautridou, P. Lebrun, P. Legumina, R. de Oliveira, M. A. Leigui Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopes, L. Lopez, R. Casado, A. Lopez Luce, Q. Lucero, A. Malacari, M. Mallamaci, M. Mandat, D. Mantsch, P. Mariazzi, A. G. Maris, I. C. Marsella, G. Martello, D. Martinez, H. Bravo, O. Martinez Meza, J. J. Masias Mathes, H. J. Mathys, S. Matthews, J. Matthews, J. A. J. Matthiae, G. Mayotte, E. Mazur, P. O. Medina, C. Medina-Tanco, G. Melo, D. Menshikov, A. Messina, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Mockler, D. Molina-Bueno, L. Mollerach, S. Montanet, F. Morello, C. Mostafa, M. Mueller, G. Muller, M. A. Mueller, S. Naranjo, I. Navas, S. Nellen, L. Neuser, J. Nguyen, P. H. Niculescu-Oglinzanu, M. Niechciol, M. Niemietz, L. Niggemann, T. Nitz, D. Nosek, D. Novotny, V. Nozka, H. Nunez, L. A. Ochilo, L. Oikonomou, F. Olinto, A. PakkSelmi-Dei, D. Palatka, M. Pallotta, J. Papenbreer, P. Parente, G. Parra, A. Paul, T. Pech, M. Pedreira, F. Pekala, J. Pelayo, R. Pea-Rodriguez, J. Pereira, L. A. S. Perrone, L. Peters, C. Petrera, S. Phuntsok, J. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Porowski, C. Prado, R. R. Privitera, P. Prouza, M. Quel, E. J. Querchfeld, S. Quinn, S. Ramos-Pollant, R. Rautenberg, J. Ravel, O. Ravignani, D. Reinert, D. Revenu, B. Ridky, J. Risse, M. Ristori, P. Rizi, V. de Carvalho, W. Rodrigues Fernandez, G. Rodriguez Rojo, J. Rodriguez Rodriguez-Frias, M. D. Rogozin, D. Rosado, J. Roth, M. Roulet, E. Rovero, A. C. Saffi, S. J. Saftoiu, A. Salazar, H. Saleh, A. Greus, F. Salesa Salina, G. Gomez, J. D. Sanabria Sanchez, F. Sanchez-Lucas, P. Santos, E. M. Santos, E. Sarazin, F. Sarkar, B. Sarmento, R. Sarmiento-Cano, C. Sato, R. Scarso, C. Schauer, M. Scherini, V. Schieler, H. Schmidt, D. Scholten, O. Schovanek, P. Schroder, F. G. Schulz, A. Schulz, J. Schumacher, J. Sciutto, S. J. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sigl, G. Silli, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sonntag, S. Sorokin, J. Squartini, R. Stanca, D. Stanic, S. Stasielak, J. Strafella, F. Suarez, F. Duran, M. Suarez Sudholz, T. Suomijarvi, T. Supanitsky, A. D. Sutherland, M. S. Swain, J. Szadkowski, Z. Taborda, O. A. Tapia, A. Tepe, A. Theodoro, V. M. Timmermans, C. Peixoto, C. J. Todero Tomankova, L. Tome, B. Tonachini, A. Elipe, G. Torralba Machado, D. Torres Torri, M. Travnicek, P. Trini, M. Ulrich, R. Unger, M. Urban, M. Valbuena-Delgado, A. Galicia, J. F. Valdes Valino, I. Valore, L. van Aar, G. Vanbodegom, P. van den Berg, A. M. Van Vliet, A. Varela, E. Cardenas, B. Vargas Varner, G. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Villaseor, L. Vorobiov, S. Wahlberg, H. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weindl, A. Wiencke, L. Wilczynski, H. Winchen, T. Wittkowski, D. Wundheiler, B. Wykes, S. Yang, L. Yelos, D. Younk, P. Yushkov, A. Zas, E. Zavrtanik, D. Zavrtanik, M. Zepeda, A. Zimmermann, B. Ziolkowski, M. Zong, Z. Zuccarello, F. CA Pierre Auger Collaboration TI Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum SO PHYSICS LETTERS B LA English DT Article DE Pierre Auger Observatory; Cosmic rays; Mass composition; Ankle ID SHOWERS; TRIGGER; ENERGY AB We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the 'ankle' at lg(E/eV) = 18.5-19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Naranjo, I.; Roulet, E.; Taborda, O. A.] Consejo Nacl Invest Cient & Tecn, CNEA UNCuyo, Ctr Atom Bariloche, RA-1033 Buenos Aires, DF, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Berisso, M. Gomez; Harari, D.; Mollerach, S.; Naranjo, I.; Roulet, E.; Taborda, O. A.] Consejo Nacl Invest Cient & Tecn, CNEA UNCuyo, Inst Balseiro, RA-1033 Buenos Aires, DF, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres Aplicac, RA-1033 Buenos Aires, DF, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Brack, J.; Dasso, S.; Meza, J. J. Masias; Piegaia, R.; Pieroni, P.] Univ Buenos Aires, FCEyN, Dept Ciencias Atmosfera Oceanos, Dept Fis, Buenos Aires, DF, Argentina. [Dova, M. T.; Hansen, P.; Mariazzi, A. G.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, Univ Nacl Plata, IFLP, Buenos Aires, DF, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] Consejo Nacl Invest Cient & Tecn, IAFE, UBA, Inst Astronomia Fis Espacio, Buenos Aires, DF, Argentina. [Freire, M. M.; Micheletti, M. I.] Consejo Nacl Invest Cient & Tecn, UMR, IFIR, Buenos Aires, DF, Argentina. [Garcia, B.] Observ Pierre Auger, Buenos Aires, DF, Argentina. [Almela, A.; Andrada, B.; Botti, A. M.; Cancio, A.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Fuster, A.; Gonzalez, N.; Hampel, M. R.; Holt, E.; Hulsman, J.; Josebachuili, M.; Lucero, A.; Melo, D.; Mueller, S.; Platino, M.; Ravignani, D.; Sanchez, F.; Santos, E.; Sarmiento-Cano, C.; Schmidt, D.; Silli, G.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.; Yelos, D.; Yushkov, A.] Observ Pierre Auger & Comis Nacl Energia Atoma, Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Vitale, P. F. Gomez; Kleinfeller, J.; Rojo, J. Rodriguez; Sato, R.; Scarso, C.; Squartini, R.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Avila, G.; Contreras, F.; Vitale, P. F. Gomez] Univ Adelaide, Adelaide, SA, Australia. [Almela, A.; Cancio, A.; Etchegoyen, A.; Fuster, A.; Lucero, A.; Suarez, F.; Wainberg, O.; Yelos, D.] CBPF, Buenos Aires, DF, Brazil. [Bellido, J. A.; Biermann, P. L.; Blaess, S. G.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Hill, G. C.; Malacari, M.; Nguyen, P. H.; Saffi, S. J.; Sorokin, J.; Sudholz, T.; Vanbodegom, P.] Univ Sao Paulo, Escola Engn Lorena, BR-05508 Sao Paulo, Brazil. [de Souza, V.] Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, Brazil. [Peixoto, C. J. Todero] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [de Souza, V.; Prado, R. R.] Univ Estadual Campinas, BR-13081970 Campinas, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Santos, E. M.] Univ Estadual Feira de Santana, Feira de Santana, Brazil. [Chinellato, J. A.; Daniel, B.; Castro, M. L. Diaz; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; PakkSelmi-Dei, D.; Pereira, L. A. S.; Theodoro, V. M.] Univ Fed Pelotas, Pelotas, RS, Brazil. [Guedes, G. P.] Univ Fed Abc, Santo Andre, SP, Brazil. [Muller, M. A.] Univ Fed Parana, Setor Palotina, Brazil. [de Oliveira, M. A. Leigui] Univ Fed Rio Janeiro, Inst Fis, Rio De Janeiro, Brazil. [Dosanjos, R. C.] Univ Fed Fluminense, BR-24220000 Niteroi, RJ, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Giaccari, U.; Machado, D. Torres] Univ Ind Santander, Santander, Colombia. [Dealmeida, R. M.; de Oliveira, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Asorey, H.; Nunez, L. A.; Pea-Rodriguez, J.; Ramos-Pollant, R.; Gomez, J. D. Sanabria; Duran, M. Suarez; Valbuena-Delgado, A.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Blazek, J.; Bohacova, M.; Chudoba, J.; Ebr, J.; Mandat, D.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovanek, P.; Travnicek, P.; Vicha, J.] Univ Prague, Inst Particle & Nucl Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Nozka, H.] Univ Paris 11, CNRS IN2P3, IPNO, Paris, France. [Nosek, D.; Novotny, V.] Univ Paris 06, LPNHE, Paris, France. [Biteau, J.; Deligny, O.; Lhenry-Yvon, I.; Luce, Q.; Suomijarvi, T.; Zong, Z.] Univ Grenoble Alpes, CNRS IN2P3, LPSC, Grenoble Alpes, France. [AlSamarai, I.; Aublin, J.; Billoir, P.; Caccianiga, L.; Ghia, P. L.; Letessier-Selvon, A.; Settimo, M.] Berg Univ Wuppertal, Dept Phys, Wuppertal, Germany. [Berat, C.; Montanet, F.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, D-76021 Karlsruhe, Germany. [Becker, K. H.; Jandt, I.; Kaapa, A.; Kampert, K. H.; Krohm, N.; Mathys, S.; Mayotte, E.; Neuser, J.; Niemietz, L.; Papenbreer, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Schauer, M.; Winchen, T.; Wittkowski, D.] Karlsruhe Inst Technol, IKP, D-76021 Karlsruhe, Germany. [Baus, C.; Herve, A. E.; Kambeitz, O.; Katkov, I.; Link, K.; Mockler, D.] Karlsruhe Inst Technol, IPE, D-76021 Karlsruhe, Germany. [Botti, A. M.; Bridgeman, A.; Daumiller, K.; Debatin, J.; Engel, R.; Gonzalez, N.; Haungs, A.; Heck, D.; Holt, E.; Huege, T.; Hulsman, J.; Keilhauer, B.; Klages, H. O.; Awad, A. Kuotb; Mathes, H. J.; Mueller, S.; Pierog, T.; Rogozin, D.; Roth, M.; Schieler, H.; Schmidt, D.; Schroder, F. G.; Schulz, A.; Silli, G.; Smida, R.; Tomankova, L.; Ulrich, R.; Unger, M.; Veberic, D.; Weindl, A.] RWTH Aachen Univ III, Phys Inst A, Aachen, Germany. [Gemmeke, H.; Kleifges, M.; Kunka, N.; Menshikov, A.; Weber, M.; Zimmermann, B.] Univ Hamburg II, Inst Theoret Phys, Hamburg, Germany. [Bretz, T.; Briechle, F. L.; Erdmann, M.; Glaser, C.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Middendorf, L.; Mueller, G.; Niggemann, T.; Peters, C.; Plum, M.; Reinert, D.; Schumacher, J.; Urban, M.; Walz, D.] Univ Siegen, Fac Phys Expt Teilchenphys 7, Siegen, Germany. [Dundovic, A.; Sigl, G.] Gran Sasso Sci Inst INFN, Laquila, Italy. [Aab, A.; Buchholz, P.; Erfani, M.; Heimann, P.; Niechciol, M.; Ochilo, L.; Risse, M.; Sonntag, S.; Tepe, A.; Yushkov, A.; Ziolkowski, M.] INAF, Ist Astrofis Spaziale & Fis Cosm Palermo, Palermo, Italy. [Anastasi, G. A.; Petrera, S.] INFN, Lab Nazl Gran Sasso, Rome, Italy. [Segreto, A.] INFN, Grp Collegato Aquila, Laquila, Italy. [Boncioli, D.; Grillo, A. F.] INFN, Sez Catania, Catania, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] INFN, Sez Lecce, Lecce, Italy. [Buscemi, M.; Caruso, R.; Insolia, A.; Pirronello, V.; Segreto, A.; Zuccarello, F.] INFN, Sez Milano, Milan, Italy. [Bleve, C.; Cataldi, G.; Coluccia, M. R.; D'Amico, S.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.; Strafella, F.] INFN, Sez Napoli, Naples, Italy. [Caccianiga, B.; Giammarchi, M.; Mallamaci, M.; Miramonti, L.] INFN, Sez Roma Tor Vergata, Rome, Italy. [Ambrosio, M.; Aramo, C.; Colalillo, R.; Guarino, F.; Valore, L.] INFN, Sez Torino, Turin, Italy. [Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez; Salina, G.; Verzi, V.] INAF, Osserv Astrofis Torino, Turin, Italy. [Aglietta, M.; Bertaina, M. E.; Castellina, A.; Cester, R.; Chiavassa, A.; Collica, L.; Gorgi, A.; Latronico, L.; Morello, C.; Tonachini, A.] Univ Salento, Dipartimento Ingn, Salento, Italy. [Aglietta, M.; Castellina, A.; Gorgi, A.; Morello, C.] Univ Salento, Dipartimento Matemat Fis E Giorgi, Salento, Italy. [D'Amico, S.] Univ Aquila, Dipartimento Sci Fis Chim, Laquila, Italy. [Bleve, C.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Scherini, V.; Strafella, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Di Matteo, A.; Petrera, S.; Rizi, V.] Univ Milan, Dipartimento Fis, Milan, Italy. [Buscemi, M.; Caruso, R.; Insolia, A.; Pirronello, V.; Zuccarello, F.] Univ Naples Federico II, Dipartimento Fis Ettore Pancini, Naples, Italy. [Mallamaci, M.; Miramonti, L.; Torri, M.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Colalillo, R.; Guarino, F.; Valore, L.] Univ Torino, Dipartimento Fis, Turin, Italy. [Di Giulio, C.; Matthiae, G.; Fernandez, G. Rodriguez] BUAP, Mexico City, DF, Mexico. [Bertaina, M. E.; Cester, R.; Chiavassa, A.; Tonachini, A.] CINVESTAV, Ctr Invest Estudios Avanzados IPN, Mexico City, DF, Mexico. [Lopez, R.; Bravo, O. Martinez; Parra, A.; Salazar, H.; Varela, E.] UPIITA IPN, Mexico City, DF, Mexico. [Martinez, H.; Zepeda, A.] Univ Autonoma Chiapas, Mexico City, DF, Mexico. [Pelayo, R.] Univ Michoacana, Morelia, Michoacan, Mexico. [Caballero-Mora, K. S.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Chavez, A. G.; Villaseor, L.] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Nellen, L.; Galicia, J. F. Valdes; Cardenas, B. Vargas] Univ Groningen, KVI Ctr Adv Radiat Technol, Groningen, Netherlands. [Buitink, S.; Canfora, F.; Dejong, S. J.; De Mauro, G.; Falcke, H.; Hrandel, J. R.; Jansen, S.; Schulz, J.; Timmermans, C.; van Aar, G.; Van Vliet, A.; Wykes, S.] NIKHEF, Amsterdam, Netherlands. [Hasankiadeh, Q.; Messina, S.; Scholten, O.; van den Berg, A. M.] ASTRON, Dwingeloo, Netherlands. [Dejong, S. J.; Falcke, H.; Hrandel, J. R.; Jansen, S.; Timmermans, C.] Inst Nucl Phys PAN, Krakow, Poland. [Falcke, H.] Univ Lodz, Fac Astrophys, PL-90131 Lodz, Poland. [Borodai, N.; Homola, P.; Pekala, J.; Porowski, C.; Stasielak, J.; Wilczynski, H.] Univ Lodz, Fac High Energy Astrophys, PL-90131 Lodz, Poland. [Giller, M.; Legumina, R.; Smialkowski, A.] Univ Lisbon, Lab Instrumentacao Fis Expt Particulas, Lisbon, Portugal. [Glas, D.; Szadkowski, Z.] Univ Lisbon, IST, Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Blanco, A.; Cazon, L.; Conceiao, R.; Diogo, F.; Espadanal, J.; Lopes, L.; Pimenta, M.; Sarmento, R.; Tome, B.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Balaceanu, A.; Brancus, I.; Gherghel-Lascu, A.; Mitrica, B.; Niculescu-Oglinzanu, M.; Saftoiu, A.; Stanca, D.] Inst Space Sci, Bucharest, Romania. [Caramete, L.; Isar, P. G.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Arsene, N.; Sima, O.] Univ Politeh Bucharest, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] J Stefan Inst, Expt Particle Phys Dept, Ljubljana, Slovenia. [Filipcic, A.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gor, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Filipcic, A.; KukecMezek, G.; Saleh, A.; Stanic, S.; Trini, M.; Vorobiov, S.; Yang, L.; Zavrtanik, D.; Zavrtanik, M.] Univ Complutense Madrid, Madrid, Spain. [Arqueros, F.; Garcia-Pinto, D.; Minaya, I. A.; Rosado, J.; Vazquez, J. R.] Univ Alcala de Henares, Alcala De Henares, Spain. [del Peral, L.; Rodriguez-Frias, M. D.] Univ Granada, Granada, Spain. [Bueno, A.; Maris, I. C.; Molina-Bueno, L.; Navas, S.; Sanchez-Lucas, P.] Univ Santiago Compostela, Santiago De Compostela, Spain. [Alvarez-Muniz, J.; Casado, A. Lopez; Parente, G.; Pedreira, F.; de Carvalho, W. Rodrigues; Elipe, G. Torralba; Valino, I.; Vazquez, R. A.; Zas, E.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Covault, C. E.; LaHurd, D.; Quinn, S.] Colorado Sch Mines, Golden, CO 80401 USA. [Johnsen, J. A.; Medina, C.; Sarazin, F.; Wiencke, L.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brack, J.; Dorofeev, A.; Gookin, B.; Harton, J. L.] City Univ New York, Lehman Coll, Dept Phys & Astron, New York, NY USA. [Anchordoqui, L.; Paul, T.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Matthews, J.; Shadkam, A.] Michigan Technol Univ, Houghton, MI 49931 USA. [Fick, B.; Kieckhafer, R. M.; Nitz, D.] NYU, New York, NY 10003 USA. [Farrar, G.; Unger, M.] Northeastern Univ, Boston, MA USA. [Paul, T.; Swain, J.] Ohio State Univ, Columbus, OH 43210 USA. [Allison, P.; Beatty, J. J.; Gordon, J.; Sutherland, M. S.] Penn State Univ, University Pk, PA 16802 USA. [Coleman, A.; Coutu, S.; Mostafa, M.; Oikonomou, F.; Phuntsok, J.; Greus, F. Salesa; Sommers, P.] Univ Chicago, Chicago, IL 60637 USA. [Cronin, J.; Fang, K.; Fujii, T.; Olinto, A.; Privitera, P.] Univ Hawaii, Honolulu, HI 96822 USA. [Gorham, P.; Varner, G.] Univ Nebraska, Lincoln, NE 68583 USA. [Snow, G. R.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Yushkov, A (reprint author), Observ Pierre Auger & Comis Nacl Energia Atoma, Buenos Aires, DF, Argentina. EM auger_spokespersons@fnal.gov RI Navas, Sergio/N-4649-2014; Arqueros, Fernando/K-9460-2014; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; Beatty, James/D-9310-2011; Caramete, Laurentiu/C-2328-2011; Buscemi, Mario/R-5071-2016; OI Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Nunez, Luis/0000-0003-4575-5899; Navas, Sergio/0000-0003-1688-5758; Arqueros, Fernando/0000-0002-4930-9282; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Beatty, James/0000-0003-0481-4952; Buscemi, Mario/0000-0003-2123-5434; De Mitri, Ivan/0000-0002-8665-1730; Garcia, Beatriz/0000-0003-0919-2734 FU Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Argentina; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina; Gobierno de la Provincia de Mendoza, Argentina; Municipalidad de Malargue, Argentina; NDM Holdings, Argentina; Valle Las Lenas, Argentina; Australian Research Council, Brazil; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Brazil; Sao Paulo Research Foundation (FAPESP), Brazil [2010/07359-6, 1999/05404-3]; Ministerio de Ciencia e Tecnologia (MCT), Brazil; Czech Science Foundation, Czech Republic [14-17501S]; Centre de Calcul IN2P3/CNRS, France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), France; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Institut Lagrange de Paris (ILP), France within the Investissements d'Avenir Programme [LABEX ANR-10-LABX-63, ANR-11-IDEX-0004-02]; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Deutsche Forschungsgemeinschaft (DFG), Germany; Finanzministerium Baden-Wurttemberg, Germany; Helmholtz Alliance for Astroparticle Physics (HAP), Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Germany; Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Gran Sasso Center for Astroparticle Physics (CFA), Italy; CETEMPS Center of Excellence, Italy; Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico [167733]; Universidad Nacional Autonoma de Mexico (UNAM), PAPIIT DGAPA-UNAM, Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Poland [ERA-NET-ASPERA/01/11, ERA-NET-ASPERA/02/11]; National Science Centre, Poland [2013/08/M/ST9/00322, 2013/08/M/ST9/00728, HARMONIA 5 - 2013/10/M/ST9/00062]; Portuguese national funds Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects [20/2012, 194/2012, PN 16 42 01 02]; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Spain; Fondo Europeo de Desarrollo Regional (FEDER) funds, Spain; Xunta de Galicia, Spain; European Community 7th Framework Program, Spain [FP7-PEOPLE-2012-IEF-328826]; Science and Technology Facilities Council, United Kingdom; Department of Energy, USA [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, DE-SC0011689]; National Science Foundation, USA [0450696]; Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union 7th Framework Program [PIRSES-2009-GA-246806]; UNESCO; [MSMT CR LG15014]; [LO1305]; [LM2015038] FX The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support:r Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grant No. MSMT CR LG15014, LO1305 and LM2015038 and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT) No. 167733, Mexico; Universidad Nacional Autonoma de Mexico (UNAM), PAPIIT DGAPA-UNAM, Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5 - 2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012 and PN 16 42 01 02; Slovenian Research Agency, Slovenia; Comunidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) funds, Ministerio de Economia y Competitividad, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC02-07CH11359, No. DE-FR02-04ER41300, No. DE-FG02-99ER41107 and No. DE-SC0011689, National Science Foundation, Grant No.; 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 36 TC 3 Z9 3 U1 12 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 288 EP 295 DI 10.1016/j.physletb.2016.09.039 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700041 ER PT J AU He, S Luo, XF Nara, Y Esumi, S Xu, N AF He, Shu Luo, Xiaofeng Nara, Yasushi Esumi, ShinIchi Xu, Nu TI Effects of nuclear potential on the cumulants of net-proton and net-baryon multiplicity distributions in Au plus Au collisions atv root(NN)-N-S=5 GeV SO PHYSICS LETTERS B LA English DT Article ID HEAVY-ION COLLISIONS; FREEZE-OUT CONDITIONS; QCD PHASE-TRANSITION; QUANTUM CHROMODYNAMICS; CHARGE FLUCTUATIONS; BASE-LINE; DIAGRAM; FRAMEWORK; MODEL AB We analyze the rapidity and transverse momentum dependence for the cumulants of the net-proton and net-baryon distributions in Au+Au collisions at root SNN = 5 GeV with a microscopic hadronic transport (JAM) model. To study the effects of mean field potential and softening of equation of state (EoS) on the fluctuations of net-proton (baryon) in heavy-ion collisions, the calculations are performed with two different modes. The softening of EoS is realized in the model by implementing the attractive orbit in the two-body scattering to introduce a reduction pressure of the system. By comparing the results from the two modes with the results from default cascade, we find the mean field potential and softening of EoS have strong impacts on the rapidity distributions (dN/dy) and the shape of the net-proton (baryon) multiplicity distributions. The net-proton (baryon) cumulants and their ratios calculated from all of the three modes are with similar trends and show significant suppression with respect to unity, which can be explained by the presence of baryon number conservations. It indicates that the effects of mean field potential and softening of EoS might be not the ingredients that are responsible to the observed strong enhancement in the most central Au+Au collisions at 7.7 GeV measured by the STAR experiment at RHIC. (C) 2016 The Authors. Published by Elsevier B.V. C1 [He, Shu; Luo, Xiaofeng; Xu, Nu] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [He, Shu; Luo, Xiaofeng; Xu, Nu] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Nara, Yasushi] Akita Int Univ, Akita 0101292, Japan. [Esumi, ShinIchi] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki 305, Japan. [Xu, Nu] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Luo, XF (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.; Luo, XF (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. EM xfluo@mail.ccnu.edu.cn FU MOST of China 973-Project [2015CB856901]; NSFC [11575069, 11221504] FX The work was supported in part by the MOST of China 973-Project No. 2015CB856901, NSFC under grant Nos. 11575069, 11221504. NR 57 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 296 EP 300 DI 10.1016/j.physletb.2016.09.053 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700042 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antela, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arika, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartosa, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingulb, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bluniera, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E HBroughton, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Davia, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darboa, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R DeBenedetti, A De Castro, S DeCecco, S DeGroot, N de Jong, P De la Torre, H DeLorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobreb, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duffield, EM Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunforda, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V GasconBravo, A Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Gengb, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Gonaclo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Goessling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddade, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanisch, S Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodicea, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jina, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Karc, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-Zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubuab, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL LaRotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B LeDortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandellia, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurerb, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM McFadden, NC McGoldrick, G Mckee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrinia, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D Palma, A St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescub, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabilea, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsuia, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urbanb, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Pereza, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yange, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidand, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Nedden, MZ Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antela, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arika, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M. -S. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartosa, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingulb, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bluniera, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Bossio Sola, J. D. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. HBroughton, J. de Renstrom, P. A. Bruckman Bruncko, D. b Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvente Lopez, S. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Davia, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darboa, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. DeBenedetti, A. De Castro, S. DeCecco, S. DeGroot, N. de Jong, P. De la Torre, H. DeLorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobreb, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duffield, E. M. Duflot, L. Duguid, L. Duehrssen, M. Dumancic, M. Dunforda, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Fernandez Perez, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. GasconBravo, A. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Gengb, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Gonaclo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddade, N. Hadef, A. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanisch, S. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodicea, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jina, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Juste Rozas, A. Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Karc, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-Zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubuab, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Kruger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. LaRotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. LeDortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Lopez Mateos, D. Lopez Paredes, B. Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandellia, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurerb, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. McFadden, N. C. McGoldrick, G. Mckee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrinia, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Pacheco Rodriguez, L. Padilla Aranda, C. Pagacova, M. Pagan Griso, S. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. Palma, A. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescub, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Loyola, J. E. Salazar Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabilea, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tapia Araya, S. Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsuia, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urbanb, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Vigne, R. Villa, M. Pereza, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yange, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidand, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Nedden, M. zur Zwalinski, L. CA ATLAS Collaboration TI Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at root s=13 TeV with the ATLAS detector SO PHYSICS LETTERS B LA English DT Article ID PARTON DISTRIBUTIONS; CROSS-SECTION; COLLIDERS; QCD; EW AB A search for W' bosons in events with one lepton (electron or muon) and missing transverse momentum is presented. The search uses 3.2 fb(-1) of pp collision data collected at root s = 13 TeV by the ATLAS experiment at the LHC in 2015. The transverse mass distribution is examined and no significant excess of events above the level expected from Standard Model processes is observed. Upper limits on the W' boson cross-section times branching ratio to leptons are set as a function of the W' mass. Within the Sequential Standard Model W' masses below 4.07 TeV are excluded at the 95% confidence level. This extends the limit set using LHC data at root s = 8 TeV by around 800 GeV. (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Aloisio, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Phys Dept, Athens, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Natl Tech Univ Athens, Phys Dept, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Fischer, C.; Gerbaudo, D.; Gonzalez Parra, G.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Tripiana, M. F.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Cerri, A.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Duarte-Campderros, J.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Chang, P.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Pagan Griso, S.; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Chang, P.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Pagan Griso, S.; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; HBroughton, J.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arika, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingulb, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Massa, I.; Massa, L.; Mengarelli, A.; Negrinia, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Kruger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Phys Inst, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Amorim, A.; Cerqueira, A. S.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Manhaes de Andrade Filho, L.; Palma, A.; Pedro, R.; Peralva, B. S.; Tavares Delgado, A.; Veloso, F.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao dei Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobreb, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurerb, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Bossio Sola, J. D.; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Barisits, M. -S.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Cree, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hanisch, S.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Kapliy, A.; Merritt, F. S.; Miller, D. W.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Bluniera, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Loyola, J. E. Salazar; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jina, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Gengb, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Bret, M. Cano; Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Liu, B.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidand, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Guo, J.; Li, L.; Yange, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Aloisio, A.; Boumediene, D.; Busato, E.; Calvet, D.; Chomont, A. R.; Pallin, D.; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; LaRotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Phys Dept, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Phys Dept, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; GasconBravo, A.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; GasconBravo, A.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Nessi, M.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darboa, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubuab, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Justus Liebig Univ Giessen, Phys Inst 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Lafaye, R.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Phys Inst 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS IN2P3, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Lopez Mateos, D.; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Antela, C.; Baas, A. E.; Djuvsland, J. I.; Dunforda, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Radescub, V.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsuia, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; DeLorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Aloisio, A.; Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Natl Univ La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Phys Dept, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Leone, R.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; DeCecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Calderini, G.; Crescioli, F.; Demilly, A.; Derue, F.; Lacour, D.; Laforge, B.; Lefebvre, G.; Solis, A. Lopez; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; DeCecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; LeDortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Calvente Lopez, S.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Artz, S.; Becker, M.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Aloisio, A.; Barnes, S. L.; Bielski, R.; Cox, B. E.; Davia, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] CNRS IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Bertella, C.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Aloisio, A.; Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Guan, L.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mckee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Ragusa, F.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Goessling, C.; Lazzaroni, M.; Mandellia, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabilea, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Pereza, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Kyriazopoulos, D.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; McFadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM USA. [Caron, S.; Colasurdo, L.; Croft, V.; DeGroot, N.; Filthaut, F.; Galea, C.; Igonkina, O.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; DeBenedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, CNRS IN2P3, Univ Paris Sud, LAL, Orsay, France. [Endo, M.; Hanagaki, K.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Gonaclo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Palma, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Tavares Delgado, A.; Veloso, F.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dep Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr Inst High Energy Phys Protvino, Moscow, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodicea, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Moursli, R. Cherkaoui; El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA Marrakech, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda;, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Fassi, F.; Haddade, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Pacheco Rodriguez, L.; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Lopez Paredes, B.; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartosa, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D. b; Kladiva, E.; Strizenec, P.; Urbanb, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Karc, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Phys Dept, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; McGoldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Hod, N.; Jovicevic, J.; Oakham, F. G.; Codina, E. Perez; Savard, P.; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Naturwissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Rua Campo Alegre 823, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Gengb, C.; Guan, L.; Guo, Y.; Levin, D.; Li, B.; Liu, H.; Lu, N.; Marley, D. E.; Mckee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Ragusa, F.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubuab, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. PKU CHEP, Beijing, Peoples R China. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda;, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Doyle, Anthony/C-5889-2009; Warburton, Andreas/N-8028-2013; Vanyashin, Aleksandr/H-7796-2013; Gladilin, Leonid/B-5226-2011; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015; Livan, Michele/D-7531-2012; Prokoshin, Fedor/E-2795-2012; OI Doyle, Anthony/0000-0001-6322-6195; Belanger-Champagne, Camille/0000-0003-2368-2617; Warburton, Andreas/0000-0002-2298-7315; Vanyashin, Aleksandr/0000-0002-0367-5666; Gladilin, Leonid/0000-0001-9422-8636; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581; Livan, Michele/0000-0002-5877-0062; Prokoshin, Fedor/0000-0001-6389-5399; Veneziano, Stefano/0000-0002-2598-2659; Belyaev, Nikita/0000-0002-1131-7121 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 41 TC 1 Z9 1 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 334 EP 352 DI 10.1016/j.physletb.2016.09.040 PG 19 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700048 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahmad, S Ahn, SU Aiola, S Akindinov, A Alam, SN Albuquerque, DSD Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Almaraz, JRM Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Arnaldi, R Arnold, OW Arsene, IC Arslandok, M Audurier, B Augustinus, A Averbeck, R Azmi, MD Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Balasubramanian, S Baldisseri, A Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Beltran, LGE Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biro, G Biswas, R Biswas, S Bjelogrlic, S Blair, JT Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Bonora, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botta, E Bourjau, C Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Butt, JB Buxton, JT Cabala, J Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Carnesecchi, F Castellanos, JC Castro, AJ Casula, EAR Sanchez, CC Cepila, J Cerello, P Cerkala, J Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chauvin, A Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Cho, S Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crkovska, J Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danisch, MC Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S DeCaro, A de Cataldo, G de Conti, C de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S De Souza, RD Deisting, A Deloff, A Denes, E Deplano, C Dhankher, P Di Bari, D Di Mauro, A Di Nezza, P Di Ruzza, B Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Gimenez, DD Donigus, B Dordic, O Drozhzhova, T Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Endress, E Engel, H Epple, E Erazmus, B Erdemir, I Erhardt, F Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Feuillard, VJG Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Francisco, A Frankenfeld, U Fronze, GG Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gajdosova, K Gallio, M Galvan, CD Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Gauger, EF Germain, M Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Coral, DMG Ramirez, AG Gonzalez, AS Gonzalez, V Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Grachov, OA Graczykowski, LK Graham, KL Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gronefeld, JM Grosse-Oetringhaus, JF Grosso, R Gruber, L Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hamon, JC Hansen, A Harris, JW Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Hellbar, E Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hillemanns, H Hippolyte, B Horak, D Hosokawa, R Hristov, P Hughes, C Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Inaba, M Incani, E Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacak, B Jacazio, N Jacobs, PM Jadhav, MB Jadlovska, S Jadlovsky, J Jahnke, C Jakubowska, MJ Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jusko, A Kalinak, P Kalweit, A Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karayan, L Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, DW Kim, DJ Kim, D Kim, H Kim, JS Kim, J Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Klewin, S Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kopcik, M Kour, M Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Meethaleveedu, GK Kralik, I Kravackova, A Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kuhn, C Kuijer, PG Kumar, A Kumar, J Kumar, L Kumar, S Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lapidus, K Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, S Lehas, F Lehner, S Lemmon, RC Lenti, V Leogrande, E Monzon, IL Vargas, HL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, G Lupi, M Lutz, TH Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manko, V Manso, F Manzari, V Mao, Y Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, I Garcia, GM Pedreira, MM Mas, A Masciocchi, S Masera, M Masoni, A Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Melikyan, Y Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Mhlanga, S Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E De Godoy, DAM Moreno, LAP Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Mulligan, JD Munhoz, MG Munning, K Munzer, RH Murakami, H Murray, S Musa, L Musinsky, J Naik, B Nair, R Nandi, BK Nania, R Nappi, E Naru, MU da Luz, HN Nattrass, C Navarro, SR Nayak, K Nayak, R Nayak, TK Nazarenko, S Nedosekin, A De Oliveira, RAN Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Noris, JCC Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Orava, R Oravec, M Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, D Pagano, P Paic, G Pal, SK Pan, J Pandey, AK Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Pei, H Peitzmann, T Da Costa, HP Peresunko, D Lezama, EP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pimentel, LODL Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Poppenborg, H Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Rami, F Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Saarinen, S Sadhu, S Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salzwedel, J Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sarkar, D Sarkar, N Sarma, P Scapparone, E Scarlassara, F Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schmidt, M Schuchmann, S Schukraft, J Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Sefcik, M Seger, JE Sekiguchi, Y Sekihata, D Selyuzhenkov, I Senosi, K Senyukov, S Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shahzad, MI Shangaraev, A Sharma, A Sharma, M Sharma, M Sharma, N Sheikh, AI Shigaki, K Shou, Q Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singhal, V Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Song, J Song, M Song, Z Soramel, F Sorensen, S Sozzi, F Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Stachel, J Stan, I Stankus, P Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Suljic, M Sultanov, R Sumbera, M Sumowidagdo, S Szabo, A Szarka, I Szczepankiewicz, A Szymanski, M Tabassam, U Takahashi, J Tambave, GJ Tanaka, N Tarhini, M Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thakur, D Thomas, D Tieulent, R Tikhonov, A Timmins, AR Toia, A Trogolo, S Trombetta, G Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vala, M Palomo, LV Vallero, S Van der Maarel, J Van Hoorne, JW van Leeuwen, M Vanat, T Vande Vyvre, P Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Doce, OV Vechernin, V Veen, AM Veldhoen, M Velure, A Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viinikainen, J Vilakazi, Z Baillie, OV Tello, AV Vinogradov, A Vinogradov, L Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vralkova, J Vulpescu, B Wagner, B Wagner, J Wang, H Wang, M Watanabe, D Watanabe, Y Weber, M Weber, SG Weiser, DF Wessels, JP Westerhoff, U Whitehead, AM Wiechula, J Wikne, J Wilk, G Wilkinson, J Willems, GA Williams, MCS Windelband, B Winn, M Yang, P Yano, S Yasin, Z Yin, Z Yokoyama, H Yoo, IK Yoon, JH Yurchenko, V Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zardoshti, N Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhang, C Zhang, Z Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahmad, S. Ahn, S. U. Aiola, S. Akindinov, A. Alam, S. N. Albuquerque, D. S. D. Aleksandrov, D. Alessandro, B. Alexandre, D. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz, J. R. M. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Alves Garcia Prado, C. Andrei, C. Andronic, A. Anguelov, V. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Arnaldi, R. Arnold, O. W. Arsene, I. C. Arslandok, M. Audurier, B. Augustinus, A. Averbeck, R. Azmi, M. D. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Balasubramanian, S. Baldisseri, A. Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bello Martinez, H. Bellwied, R. Belmont, R. Belmont-Moreno, E. Beltran, L. G. E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biro, G. Biswas, R. Biswas, S. Bjelogrlic, S. Blair, J. T. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Bonora, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botta, E. Bourjau, C. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Butt, J. B. Buxton, J. T. Cabala, J. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Carnesecchi, F. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Ceballos Sanchez, C. Cepila, J. Cerello, P. Cerkala, J. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chauvin, A. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Cho, S. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Crkovska, J. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danisch, M. C. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. DeCaro, A. de Cataldo, G. de Conti, C. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. De Souza, R. D. Deisting, A. Deloff, A. Denes, E. Deplano, C. Dhankher, P. Di Bari, D. Di Mauro, A. Di Nezza, P. Di Ruzza, B. Diaz Corchero, M. A. Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Drozhzhova, T. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Endress, E. Engel, H. Epple, E. Erazmus, B. Erdemir, I. Erhardt, F. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Feuillard, V. J. G. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Francisco, A. Frankenfeld, U. Fronze, G. G. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gajdosova, K. Gallio, M. Galvan, C. D. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Gauger, E. F. Germain, M. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Gomez Coral, D. M. Ramirez, A. Gomez Gonzalez, A. S. Gonzalez, V. Gonzalez-Zamora, P. Gorbunov, S. Gorlich, L. Gotovac, S. Grabski, V. Grachov, O. A. Graczykowski, L. K. Graham, K. L. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gronefeld, J. M. Grosse-Oetringhaus, J. F. Grosso, R. Gruber, L. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hamon, J. C. Hansen, A. Harris, J. W. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Hellbaer, E. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hillemanns, H. Hippolyte, B. Horak, D. Hosokawa, R. Hristov, P. Hughes, C. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Inaba, M. Incani, E. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacak, B. Jacazio, N. Jacobs, P. M. Jadhav, M. B. Jadlovska, S. Jadlovsky, J. Jahnke, C. Jakubowska, M. J. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jusko, A. Kalinak, P. Kalweit, A. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karayan, L. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, M. Mohisin Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, D. W. Kim, D. J. Kim, D. Kim, H. Kim, J. S. Kim, J. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Klewin, S. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kopcik, M. Kour, M. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Meethaleveedu, G. Koyithatta Kralik, I. Kravackova, A. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kuhn, C. Kuijer, P. G. Kumar, A. Kumar, J. Kumar, L. Kumar, S. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Ladron de Guevara, P. Lagana Fernandes, C. Lakomov, I. Langoy, R. Lapidus, K. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, S. Lehas, F. Lehner, S. Lemmon, R. C. Lenti, V. Leogrande, E. Leon Monzon, I. Leon Vargas, H. Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loginov, V. Loizides, C. Lopez, X. Lopez Torres, E. Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Lupi, M. Lutz, T. H. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manko, V. Manso, F. Manzari, V. Mao, Y. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, I. Garcia, G. Martinez Pedreira, M. Martinez Mas, A. Masciocchi, S. Masera, M. Masoni, A. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Melikyan, Y. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Mhlanga, S. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. De Godoy, D. A. Moreira Moreno, L. A. P. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mulligan, J. D. Munhoz, M. G. Muenning, K. Munzer, R. H. Murakami, H. Murray, S. Musa, L. Musinsky, J. Naik, B. Nair, R. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. Natal da Luz, H. Nattrass, C. Navarro, S. R. Nayak, K. Nayak, R. Nayak, T. K. Nazarenko, S. Nedosekin, A. De Oliveira, R. A. Negrao Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Noris, J. C. C. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Oleniacz, J. Oliveira Da Silva, A. C. Oliver, M. H. Onderwaater, J. Oppedisano, C. Orava, R. Oravec, M. Ortiz Velasquez, A. Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, D. Pagano, P. Paic, G. Pal, S. K. Pan, J. Pandey, A. K. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Pei, H. Peitzmann, T. Da Costa, H. Pereira Peresunko, D. Lezama, E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pimentel, L. O. D. L. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Poppenborg, H. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Rami, F. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Rohrich, D. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Saarinen, S. Sadhu, S. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salzwedel, J. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sarkar, D. Sarkar, N. Sarma, P. Scapparone, E. Scarlassara, F. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schmidt, M. Schuchmann, S. Schukraft, J. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Sefcik, M. Seger, J. E. Sekiguchi, Y. Sekihata, D. Selyuzhenkov, I. Senosi, K. Senyukov, S. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shahzad, M. I. Shangaraev, A. Sharma, A. Sharma, M. Sharma, M. Sharma, N. Sheikh, A. I. Shigaki, K. Shou, Q. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singhal, V. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Sozzi, F. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Stachel, J. Stan, I. Stankus, P. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Suljic, M. Sultanov, R. Sumbera, M. Sumowidagdo, S. Szabo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Tabassam, U. Takahashi, J. Tambave, G. J. Tanaka, N. Tarhini, M. Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thader, J. Thakur, D. Thomas, D. Tieulent, R. Tikhonov, A. Timmins, A. R. Toia, A. Trogolo, S. Trombetta, G. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vala, M. Palomo, L. Valencia Vallero, S. Van der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vande Vyvre, P. Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Doce, O. Vazquez Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Villatoro Tello, A. Vinogradov, A. Vinogradov, L. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vralkova, J. Vulpescu, B. Wagner, B. Wagner, J. Wang, H. Wang, M. Watanabe, D. Watanabe, Y. Weber, M. Weber, S. G. Weiser, D. F. Wessels, J. P. Westerhoff, U. Whitehead, A. M. Wiechula, J. Wikne, J. Wilk, G. Wilkinson, J. Willems, G. A. Williams, M. C. S. Windelband, B. Winn, M. Yang, P. Yano, S. Yasin, Z. Yin, Z. Yokoyama, H. Yoo, I. -K. Yoon, J. H. Yurchenko, V. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zardoshti, N. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhang, C. Zhang, Z. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Pseudorapidity dependence of the anisotropic flow of charged particles in Pb-Pb collisions at root s(NN)=2.76 TeV SO PHYSICS LETTERS B LA English DT Article ID QUARK-GLUON PLASMA; LEAD-LEAD COLLISIONS; ATLAS DETECTOR; ELLIPTIC FLOW; COLLABORATION; PERSPECTIVE; CENTRALITY AB We present measurements of the elliptic (v(2)), triangular (v(3)) and quadrangular (v(4)) anisotropic azimuthal flow over a wide range of pseudorapidities (-3.5 < eta < 5). The measurements are performed with Pb-Pb collisions at root s(NN) = 2.76 TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow harmonics are obtained using two- and four-particle correlations from nine different centrality intervals covering central to peripheral collisions. We find that the shape of v(n)(eta) is largely independent of centrality for the flow harmonics n = 2-4, however the higher harmonics fall off more steeply with increasing vertical bar eta vertical bar. We assess the validity of extended longitudinal scaling of v(2) by comparing to lower energy measurements, and find that the higher harmonic flow coefficients are proportional to the charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both hydrodynamical and transport models, and find they both have challenges when it comes to describing our data. (C) 2016 The Author. Published by Elsevier B.V. C1 [Grigoryan, A.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Bello Martinez, H.; Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, I.; Moreno, L. A. P.; Navarro, S. R.; Noris, J. C. C.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.; Villatoro Tello, A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Senyukov, S.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Biswas, S.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Biswas, R.; Biswas, S.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Mao, Y.; Pei, H.; Ren, X.; Shou, Q.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhou, D.; Zhu, H.; Zhu, J.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Diaz Corchero, M. A.; Gonzalez, V.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Cruz Albino, R.; Herrera Corral, G.; Ladron de Guevara, P.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Cruz Albino, R.; Herrera Corral, G.; Ladron de Guevara, P.; Montano Zetina, L.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Alici, A.; Cifarelli, L.; DeCaro, A.; De Gruttola, D.; Noferini, F.; Zichichi, A.] Museo Storico Fis, Ctr Fermi, Rome, Italy. [Alici, A.; Cifarelli, L.; DeCaro, A.; De Gruttola, D.; Noferini, F.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Feuillard, V. J. G.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] CEA, IRFU, Saclay, France. [Butt, J. B.; Naru, M. U.; Shahzad, M. I.; Suleymanov, M.; Tabassam, U.; Yasin, Z.; Zaman, A.] CIIT Ctr Hlth Res, Islamabad, Pakistan. [Ferreiro, E. G.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Ferreiro, E. G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Alme, J.; Altinpinar, S.; Djuvsland, O.; Haaland, O.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rohrich, D.; Tambave, G. J.; Ullaland, K.; Velure, A.; Wagner, B.; Zhang, H.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Ahmad, S.; Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. Mohisin; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Mazzoni, M. A.; Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; De Falco, A.; Fionda, F. M.; Incani, E.; Puddu, G.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; De Falco, A.; Fionda, F. M.; Incani, E.; Masoni, A.; Puddu, G.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Suljic, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Suljic, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Barbano, A. M.; Beole, S.; Botta, E.; Bufalino, S.; Morales, Y. Corrales; Ferretti, A.; Fronze, G. G.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Puccio, M.; Russo, R.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Beole, S.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Fronze, G. G.; Gagliardi, M.; Gallio, M.; Giubellino, P.; La Pointe, S. L.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Oppedisano, C.; Paul, B.; Prino, F.; Puccio, M.; Russo, R.; Scomparin, E.; Shtejer, K.; Trogolo, S.; Vallero, S.; Van Hoorne, J. W.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Jacazio, N.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Guerzoni, B.; Hatzifotiadou, D.; Jacazio, N.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Pappalardo, G. S.; Petta, C.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Festanti, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Dainese, A.; Di Ruzza, B.; Fabris, D.; Festanti, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Turrisi, R.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [DeCaro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, Salerno, Italy. [DeCaro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Trombetta, G.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; de Cataldo, G.; Di Bari, D.; Elia, D.; Fiore, E. M.; Lenti, V.; Manzari, V.; Mastroserio, A.; Nappi, E.; Paticchio, V.; Trombetta, G.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvermyr, D.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Schmidt, M.; Wiechula, J.] Eberhard Karls Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Barnby, L. S.; Barth, K.; Berzano, D.; Betev, L.; Bonora, M.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Colella, D.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, M.; Giubellino, P.; Gonzalez, A. S.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Haake, R.; Hillemanns, H.; Hristov, P.; Kalweit, A.; Keil, M.; Klein, J.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Lakomov, I.; Laudi, E.; Lupi, M.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Musa, L.; De Oliveira, R. A. Negrao; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Ronchetti, F.; Safarik, K.; Schukraft, J.; Schutz, Y.; Senyukov, S.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vande Vyvre, P.; von Haller, B.; Vranic, D.; Weber, M.; Zampolli, C.; Zimmermann, M. B.] European Org Nucl Res CERN, Geneva, Switzerland. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Lapidus, K.; Munzer, R. H.; Doce, O. Vazquez; Vorobyev, I.] Tech Univ Munich, Excellence Cluster Universe, Munich, Germany. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Horak, D.; Petracek, V.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. [Bombara, M.; Kravackova, A.; Sefcik, M.; Vralkova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; de Cuveland, J.; Gorbunov, S.; Hutter, D.; Kirsch, S.; Kisel, I.; Krzewicki, M.; Lindenstruth, V.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, Frankfurt, Germany. [Kim, D. W.; Kim, J. S.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.; Sarma, P.] Gauhati Univ, Dept Phys, Gauhati, India. [Muenning, K.] Rhein Friedrich Wilhelms Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Bonn, Germany. [Brucken, E. J.; Mieskolainen, M. M.; Orava, R.; Rasanen, S. S.; Saarinen, S.] HIP, Helsinki, Finland. [Okubo, T.; Sekihata, D.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Dash, S.; Dhankher, P.; Jadhav, M. B.; Meethaleveedu, G. Koyithatta; Kumar, J.; Kumar, S.; Naik, B.; Nandi, B. K.; Nayak, R.; Pandey, A. K.; Varma, R.] Indian Inst Technol Bombay IIT, Mumbai, Maharashtra, India. [Behera, N. K.; Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.; Thakur, D.] IITI, Indore, Madhya Pradesh, India. [Sumowidagdo, S.] Indonesian Inst Sci, Jakarta, Indonesia. [Behera, N. K.; Cho, S.; Kweon, M. J.; Yoon, J. H.] Inha Univ, Incheon, South Korea. [del Valle, Z. Conesa; Crkovska, J.; Espagnon, B.; Hadjidakis, C.; Suire, C.; Tarhini, M.] Univ Paris 11, CNRS, IN2P3, IPNO, Orsay, France. [Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Drozhzhova, T.; Erdemir, I.; Heckel, S. T.; Hellbaer, E.; Klein, C.; Luettig, P.; Marquard, M.; Munzer, R. H.; Ozdemir, M.; Lezama, E. Perez; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Bathen, B.; Cunqueiro, L.; Feldkamp, L.; Klein-Boesing, C.; De Godoy, D. A. Moreira; Muehlheim, D.; Passfeld, A.; Poppenborg, H.; Wessels, J. P.; Westerhoff, U.; Willems, G. A.; Zimmermann, M. B.] Westfal Wilhelms Univ Munster, Inst Kernphys, Munster, Germany. [Belikov, I.; Hamon, J. C.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Rami, F.; Roy, C.] Univ Strasbourg, CNRS, IN2P3, IPHC, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.; Tikhonov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bjelogrlic, S.; Caliva, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Rocco, E.; Snellings, R. J. M.; Van der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Zhang, C.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow, Russia. [Colella, D.; Jadlovsky, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.] Inst Phys, Bhubaneswar, Orissa, India. [Danu, A.; Dobrin, A.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] ISS, Bucharest, Romania. [Cuautle, E.; Maldonado Cervantes, I.; Nellen, L.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City, DF, Mexico. [Alfaro Molina, R.; Belmont-Moreno, E.; Gomez Coral, D. M.; Grabski, V.; Leon Vargas, H.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Marchisone, M.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Baek, Y. W.; Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.] Korea Inst Sci & Technol Informat, Daejeon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Feuillard, V. J. G.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Blaise Pascal, Clermont Univ, LPC, CNRS,IN2P3, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Ricci, R. A.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Bock, F.; Collu, A.; Fasel, M.; Gangadharan, D. R.; Jacak, B.; Jacobs, P. M.; Loizides, C.; Milano, L.; Ploskon, M.; Porter, J.; Thader, J.; Zhang, X.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Melikyan, Y.; Peresunko, D.; Samsonov, V.] Moscow Engn Phys Inst, Moscow, Russia. [Oyama, K.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Deloff, A.; Kovalenko, O.; Kurashvili, P.; Nair, R.; Redlich, K.; Siemiarczuk, T.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Dash, A.; Mohanty, B.; Nayak, K.; Singh, R.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.] Kurchatov Inst, Natl Res Ctr, Moscow, Russia. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Bourjau, C.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gajdosova, K.; Gulbrandsen, K.; Hansen, A.; Nielsen, B. S.; Pimentel, L. O. D. L.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Christakoglou, P.; Deplano, C.; Dobrin, A.; Kuijer, P. G.; Manso, A. Rodriguez] Natl Inst Subatomaire Fys, Nikhef, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Pospisil, J.; Sumbera, M.; Vanat, T.] Acad Sci Czech Republic, Nucl Phys Inst, Prague, Czech Republic. [Cormier, T. M.; Poghosyan, M. G.; Read, K. F.; Stankus, P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Lehas, F.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.; Mhlanga, S.; Whitehead, A. M.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Kour, M.; Kumar, A.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.; Sharma, M.; Sharma, M.] Univ Jammu, Dept Phys, Jammu, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur, Rajasthan, India. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Doce, O. Vazquez; Vorobyev, I.] Tech Univ Munich, Phys Dept, Munich, Germany. [Anguelov, V.; Beck, H.; Bock, F.; Danisch, M. C.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Karayan, L.; Kim, J.; Klewin, S.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Schuchmann, S.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Weiser, D. F.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Phys Inst, Heidelberg, Germany. [Browning, T. A.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Song, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Res Div, Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Graham, K. L.; Jones, P. G.; Jusko, A.; Krivda, M.; Lietava, R.; Baillie, O. Villalobos; Zardoshti, N.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Endress, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Secc Fis, Dept Ciencias, Lima, Peru. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] SSC IHEP NRC Kurchatov Inst, Protvino, Russia. [Gruber, L.; Lehner, S.; Van Hoorne, J. W.; Weber, M.] Stefan Meyer Inst Subatomare Phys, Vienna, Austria. [Aphecetche, L.; Audurier, B.; Batigne, G.; Erazmus, B.; Estienne, M.; Francisco, A.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Zhu, J.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Cabala, J.; Cerkala, J.; Jadlovska, S.; Jadlovsky, J.; Kopcik, M.; Oravec, M.] Tech Univ Kosice, Kosice, Slovakia. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split, FESB, Split, Croatia. [Bartke, J.; Bhom, J.; Figiel, J.; Gladysz-Dziadus, E.; Gorlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Blair, J. T.; Gauger, E. F.; Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Almaraz, J. R. M.; Beltran, L. G. E.; Galvan, C. D.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Alves Garcia Prado, C.; Bregant, M.; Cosentino, M. R.; De, S.; de Conti, C.; Domenicis Gimenez, D.; Figueredo, M. A. S.; Jahnke, C.; Lagana Fernandes, C.; Mas, A.; Munhoz, M. G.; Natal da Luz, H.; Oliveira Da Silva, A. C.; Suaide, A. A. P.; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Albuquerque, D. S. D.; Chinellato, D. D.; De Souza, R. D.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Knospe, A. G.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Borri, M.; Chartier, M.; Figueredo, M. A. S.; Norman, J.] Univ Liverpool, Liverpool, Merseyside, England. [Castro, A. J.; Hughes, C.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Marchisone, M.; Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Murakami, H.; Sekiguchi, Y.; Tsuji, T.; Watanabe, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Hosokawa, R.; Inaba, M.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, Villeurbanne, France. [Pagano, D.] Univ Brescia, Brescia, Italy. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Patra, R. N.; Sadhu, S.; Saini, J.; Sarkar, D.; Sarkar, N.; Sheikh, A. I.; Singaraju, R.; Singhal, V.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Graczykowski, L. K.; Jakubowska, M. J.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szczepankiewicz, A.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI USA. [Barnafoldi, G. G.; Bencedi, G.; Berenyi, D.; Biro, G.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Balasubramanian, S.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Epple, E.; Grachov, O. A.; Harris, J. W.; Lapidus, K.; Lutz, T. H.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, D.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul, South Korea. [Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Connors, M. E.] Georgia State Univ, Atlanta, GA 30303 USA. [Khan, M. Mohisin] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl, Moscow, Russia. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague, Czech Republic. RI Kovalenko, Vladimir/C-5709-2013; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; OI Kovalenko, Vladimir/0000-0001-6012-6615; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Brucken, Jens Erik/0000-0001-6066-8756 FU Grid centres; Worldwide LHC Computing Grid (WLCG) collaboration; State Committee of Science, Armenia; World Federation of Scientists (WFS), Armenia; Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministry of Science & Technology of China (MSTC); National Natural Science Foundation of China (NSFC); Ministry of Education of the People's Republic of China (MOEC); Ministry of Science, Education and Sports of Croatia, Croatia; Unity through Knowledge Fund, Croatia; Ministry of Education, Youth and Sports of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3, France; 'Region Pays de Loire', France; 'Region Alsace', France; 'Region Auvergne', France; CEA, France; German Bundesministerium fur Bildung und Forschung (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Council of Scientific and Industrial Research (CSIR), New Delhi; Department of Atomic Energy, Government of India; Department of Science and Technology of the Government of India; Instituto Nazionale di Fisica Nucleare (INFN), Italy; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI , Japan; MEXT, Japan; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico (DGAPA); Amerique Latine Formation Academique - European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Pontificia Universidad Catolica del Peru; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics, Romania; National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Joint Institute for Nuclear Research, Dubna; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovation; Russian Foundation for Basic Research; Ministry of Education, Science, Research and Sport of the Slovak Republic; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN); Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut and Alice Wallenberg Foundation (KAW); National Science and Technology Development Agency (NS-DTA); Suranaree University of Technology (SUT); Office of the Higher Education Commission under NRU project of Thailand; Ministry of Education and Science of Ukraine; United Kingdom Science and Technology Facilities Council (STFC); U.S. Department of Energy; United States National Science Foundation; State of Texas Attorney General; State of Ohio FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministry of Science & Technology of China (MSTC), National Natural Science Foundation of China (NSFC) and Ministry of Education of the People's Republic of China (MOEC)"; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Ministry of Education, Youth and Sports of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung und Forschung (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Council of Scientific and Industrial Research (CSIR), New Delhi; Department of Atomic Energy, Government of India and Department of Science and Technology of the Government of India; Instituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico, Universidad Nacional Autonoma de Mexico (DGAPA), Amerique Latine Formation Academique - European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); Pontificia Universidad Catolica del Peru; National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Joint Institute for Nuclear Research, Dubna; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovation and The Russian Foundation for Basic Research; Ministry of Education, Science, Research and Sport of the Slovak Republic; Department of Science and Technology, Republic of South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW); National Science and Technology Development Agency (NS-DTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand; Ministry of Education and Science of Ukraine; United Kingdom Science and T; echnology Facilities Council (STFC); The U.S. Department of Energy, the United States National Science Foundation, the State of Texas Attorney General, and the State of Ohio. NR 52 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 376 EP 388 DI 10.1016/j.physletb.2016.07.017 PG 13 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700052 ER PT J AU Altmannshofer, W Chen, CY Dev, PSB Soni, A AF Altmannshofer, Wolfgang Chen, Chien-Yi Dev, P. S. Bhupal Soni, Amarjit TI Lepton flavor violating Z ' explanation of the muon anomalous magnetic moment SO PHYSICS LETTERS B LA English DT Article DE Muon anomalous magnetic moment; Light gauge boson; Lepton flavor violation ID NEUTRINO CROSS-SECTIONS; RELIC NEUTRINOS; ELECTROWEAK MEASUREMENTS; GAUGE BOSONS; DARK-MATTER; COSMIC-RAYS; TAU; DECAYS; ABSORPTION; SCATTERING AB We discuss a minimal solution to the long-standing (g - 2)(mu) anomaly in a simple extension of the Standard Model with an extra Z' vector boson that has only flavor off-diagonal couplings to the second and third generation of leptons, i.e. mu, tau, nu(mu), nu(tau) and their antiparticles. A simplified model realization, as well as various collider and low-energy constraints on this model, are discussed. We find that the (g - 2)(mu)-favored region for a Z' lighter than the tau lepton is totally excluded, while a heavier Z' solution is still allowed. Some testable implications of this scenario in future experiments, such as lepton-flavor universality-violating tau decays at Belle 2, and a new four-lepton signature involving same-sign di-muons and di-taus at HL-LHC and FCC-ee, are pointed out. A characteristic resonant absorption feature in the high-energy neutrino spectrum might also be observed by neutrino telescopes like IceCube and KM3NeT. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Altmannshofer, Wolfgang] Univ Cincinnati, Dept Phys, Cincinnati, OH 45221 USA. [Chen, Chien-Yi] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada. [Chen, Chien-Yi] Perimeter Inst Theoret Phys, Waterloo, ON N2J 2W9, Canada. [Dev, P. S. Bhupal] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. [Soni, Amarjit] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Dev, PSB (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. EM bhupal.dev@mpi-hd.mpg.de OI Dev, Bhupal/0000-0003-4655-2866 FU University of Cincinnati; NSERC, Canada; Government of Canada through NSERC; Province of Ontario through MEDT; DFG [RO 2516/5-1]; TUM University Foundation Fellowship; DFG cluster of excellence "Origin and Structure of the Universe"; Munich Institute for Astro- and Particle Physics (MIAPP); US DOE [DE-SC 0012704] FX W.A. acknowledges discussions with Stefania Gori and financial support by the University of Cincinnati. The work of C.-Y.C. is supported by NSERC, Canada. Research at the Perimeter Institute is supported in part by the Government of Canada through NSERC and by the Province of Ontario through MEDT. B.D. thanks Julian Heeck for comments on the manuscript. The work of B.D. is supported by the DFG grant No. RO 2516/5-1. B.D. also acknowledges partial support from the TUM University Foundation Fellowship, the DFG cluster of excellence "Origin and Structure of the Universe", and the Munich Institute for Astro- and Particle Physics (MIAPP) during various stages of this work. The work of A.S. is supported in part by the US DOE Contract No. DE-SC 0012704. B.D. and A.S. thank the organizers of WHEPP XIV at IIT Kanpur for the hospitality during an earlier phase of this work. NR 123 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 389 EP 398 DI 10.1016/j.physletb.2016.09.046 PG 10 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700053 ER PT J AU Soderstrom, PA Walker, PM Wu, J Liu, HL Regan, PH Watanabe, H Doornenbal, P Korkulu, Z Lee, P Liu, JJ Lorusso, G Nishimura, S Phong, VH Sumikama, T Xu, FR Yagi, A Zhang, GX Ahn, DS Alharbi, T Baba, H Browne, F Bruce, AM Carroll, RJ Chae, KY Dombradi, Z Estrade, A Fukuda, N Griffin, CJ Ideguchi, E Inabe, N Isobe, T Kanaoka, H Kanaya, S Kojouharov, I Kondev, FG Kubo, T Kubono, S Kurz, N Kuti, I Lalkovski, S Lane, GJ Lee, EJ Lee, CS Lotay, G Moon, CB Nishizuka, I Nita, CR Odahara, A Patel, Z Podolyak, Z Roberts, OJ Sakurai, H Schaffner, H Shand, CM Suzuki, H Takeda, H Terashima, S Vajta, Z Valiente-Dobon, JJ Xu, ZY AF Soderstrom, P. -A. Walker, P. M. Wu, J. Liu, H. L. Regan, P. H. Watanabe, H. Doornenbal, P. Korkulu, Z. Lee, P. Liu, J. J. Lorusso, G. Nishimura, S. Phong, V. H. Sumikama, T. Xu, F. R. Yagi, A. Zhang, G. X. Ahn, D. S. Alharbi, T. Baba, H. Browne, F. Bruce, A. M. Carroll, R. J. Chae, K. Y. Dombradi, Zs. Estrade, A. Fukuda, N. Griffin, C. J. Ideguchi, E. Inabe, N. Isobe, T. Kanaoka, H. Kanaya, S. Kojouharov, I. Kondev, F. G. Kubo, T. Kubono, S. Kurz, N. Kuti, I. Lalkovski, S. Lane, G. J. Lee, E. J. Lee, C. S. Lotay, G. Moon, C. -B. Nishizuka, I. Nita, C. R. Odahara, A. Patel, Z. Podolyak, Zs. Roberts, O. J. Sakurai, H. Schaffner, H. Shand, C. M. Suzuki, H. Takeda, H. Terashima, S. Vajta, Zs. Valiente-Dobon, J. J. Xu, Z. Y. TI K-mixing in the doubly mid-shell nuclide Dy-170 and the role of vibrational degeneracy SO PHYSICS LETTERS B LA English DT Article DE K isomer; Dysprosium; Mid-shell; gamma-Ray spectroscopy ID NEUTRON-RICH ISOTOPES; ISOMERS; NUCLEI; FORCE; MODEL AB A detailed study of the structure of the doubly mid-shell nucleus Dy-170(66)104 has been carried out, following isomeric and beta decay. We have measured the yrast band up to the spin-parity J(pi) = 6(+) state, the K = 2 gamma-vibration band up to the 5(+) state, a low-lying negative-parity band based on a 2(-) state that could be a candidate for the lowest energy octupole vibration state within this nucleus, and a candidate for the K-pi = 6(+) two quasi-particle isomer. This state was determined to have an excitation energy of 1643.91(23) keV and a half life of 0.99(4) mu s, with a reduced hindrance for its decay to the ground-state band an order of magnitude lower than predicted by NpNn systematics. This is interpreted as being due to gamma-vibrational mixing from a near degeneracy of the isomer and the 6(+) state of the gamma band. Furthermore, the parent nucleus Tb-170 has been determined to have a half-life of 0.91((+18)(-13)) s with a possible spin-parity of 2(-). (C) 2016 The Author(s). Published by Elsevier B.V. C1 [Soderstrom, P. -A.; Wu, J.; Doornenbal, P.; Korkulu, Z.; Lorusso, G.; Nishimura, S.; Phong, V. H.; Sumikama, T.; Ahn, D. S.; Baba, H.; Fukuda, N.; Inabe, N.; Isobe, T.; Kubo, T.; Kubono, S.; Sakurai, H.; Suzuki, H.; Takeda, H.] RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. [Walker, P. M.; Regan, P. H.; Carroll, R. J.; Lalkovski, S.; Lotay, G.; Patel, Z.; Podolyak, Zs.; Shand, C. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Wu, J.; Xu, F. R.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. [Liu, H. L.] Xi An Jiao Tong Univ, Sch Sci, Dept Appl Phys, Xian 710049, Peoples R China. [Regan, P. H.; Lorusso, G.] Natl Phys Lab, Teddington TW11 0LW, Middx, England. [Watanabe, H.] Beihang Univ, Int Res Ctr Nuclei & Particles Cosmos, Beijing 100191, Peoples R China. [Watanabe, H.; Zhang, G. X.; Terashima, S.] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China. [Korkulu, Z.; Dombradi, Zs.; Kuti, I.; Vajta, Zs.] Hungarian Acad Sci, Inst Nucl Res, POB 51, H-4001 Debrecen, Hungary. [Lee, P.; Lee, C. S.] Chung Ang Univ, Dept Phys, Seoul 156756, South Korea. [Liu, J. J.; Xu, Z. Y.] Univ Hong Kong, Dept Phys, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China. [Phong, V. H.] VNU Hanoi Univ Sci, 334 Nguyen Trai, Hanoi, Vietnam. [Sumikama, T.; Nishizuka, I.] Tohoku Univ, Dept Phys, Aoba Ku, Sendai, Miyagi 9808578, Japan. [Yagi, A.; Ideguchi, E.; Kanaoka, H.; Kanaya, S.; Odahara, A.] Osaka Univ, Dept Phys, Machikaneyama Machi 1-1, Toyonaka, Osaka 5600043, Japan. [Alharbi, T.] Almajmaah Univ, Coll Sci Zulfi, Dept Phys, POB 1712, Al Majmaah 11932, Saudi Arabia. [Browne, F.; Bruce, A. M.; Nita, C. R.] Univ Brighton, Sch Comp Engn & Math, Brighton BN2 4GJ, E Sussex, England. [Chae, K. Y.; Lee, E. J.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Estrade, A.; Griffin, C. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Ideguchi, E.] Osaka Univ, RCNP, Osaka 5670047, Japan. [Kojouharov, I.; Kurz, N.; Nishizuka, I.; Schaffner, H.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lane, G. J.] Australian Natl Univ, Dept Nucl Phys, RSPE, Canberra, ACT 0200, Australia. [Moon, C. -B.] Hoseo Univ, Asan 336795, Chungnam, South Korea. [Nita, C. R.] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, RO-077125 Bucharest, Romania. [Roberts, O. J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Sakurai, H.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Valiente-Dobon, J. J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Estrade, A.] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. [Xu, Z. Y.] Katholieke Univ Leuven, Inst Kern En Stralingsfys, B-3001 Leuven, Belgium. RP Soderstrom, PA (reprint author), RIKEN, Nishina Ctr, 2-1 Hirosawa, Wako, Saitama 3510198, Japan. EM pasoder@ribf.riken.jp RI Bruce, Alison/K-7663-2016; Xu, Furong/K-4178-2013; OI Bruce, Alison/0000-0003-2871-0517; Soderstrom, Par-Anders/0000-0002-9504-2814 FU STFC; RIKEN Foreign Postdoctoral Researcher Program; JSPS KAKENHI [25247045]; National Research Foundation of Korea [NRF-2009-0093817, NRF-2013R1A1A2063017, NRF-2014S1A2A2028636, NRF-2015R1D1A1A01056918]; Science Foundation Ireland [12/IP/1288]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; UK National Measurements Office FX This work was carried out at the RIBF operated by RIKEN Nishina Center, RIKEN and CNS, University of Tokyo. All UK authors are supported by STFC. PAS was financed by the RIKEN Foreign Postdoctoral Researcher Program. We acknowledge the EUROBALL Owners Committee for the loan of germanium detectors and the PreSpec Collaboration for the readout electronics of the cluster detectors. This work was partially supported by the JSPS KAKENHI (Grant No. 25247045) and the National Research Foundation of Korea (Grants No. NRF-2009-0093817, NRF-2013R1A1A2063017, NRF-2014S1A2A2028636 and NRF-2015R1D1A1A01056918). OJR acknowledges support from Science Foundation Ireland under Grant 12/IP/1288. Work at ANL is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-06CH11357. GL and PHR acknowledges support from the UK National Measurements Office. NR 39 TC 1 Z9 1 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 404 EP 408 DI 10.1016/j.physletb.2016.09.058 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700055 ER PT J AU Petreczky, P Schadler, HP Sharma, S AF Petreczky, Peter Schadler, Hans-Peter Sharma, Sayantan TI The topological susceptibility in finite temperature QCD and axion cosmology SO PHYSICS LETTERS B LA English DT Article ID CHIRAL FERMIONS; CP CONSERVATION; INVISIBLE AXION; GAUGE-THEORY; LATTICE QCD; INSTANTONS; MASSES; PSEUDOPARTICLES; CONSTRAINTS; VACUUM AB We study the topological susceptibility in 2 + 1flavor QCD above the chiral crossover transition temperature using Highly Improved Staggered Quark action and several lattice spacings corresponding to temporal extent of the lattice, N-tau= 6, 8, 10and 12. We observe very distinct temperature dependences of the topological susceptibility in the ranges above and below 250 MeV. While for temperatures above 250 MeV, the dependence is found to be consistent with dilute instanton gas approximation, at lower temperatures the fall-off of topological susceptibility is milder. We discuss the consequence of our results for cosmology wherein we estimate the bounds on the axion decay constant and the oscillation temperature if indeed the QCD axion is a possible dark matter candidate. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Petreczky, Peter; Schadler, Hans-Peter; Sharma, Sayantan] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Sharma, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM sayantans@bnl.gov FU U.S. Department of Energy [de-sc0012704] FX This work was supported by U.S. Department of Energy under Contract No. de-sc0012704. The calculations have been carried out on the clusters of USQCD collaboration. We thank Frithjof Karsch, Swagato Mukherjee and Robert Pisarski for many helpful discussions. SS is grateful to Soren Schlichting and Hooman Davoudiasl for very interesting discussions. NR 65 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 498 EP 505 DI 10.1016/j.physletb.2016.09.063 PG 8 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700069 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Konig, A Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rad, N Rahbaran, B Rohringer, H Schieck, J Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S De Wolf, EA Janssen, X Lauwers, J Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Lowette, S Moortgat, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Doninck, W Van Mulders, P Van Parijs, I Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Goldouzian, R Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Luetic, J Maerschalk, T Marinov, A Randle-Conde, A Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Cimmino, A Cornelis, T Dobur, D Fagot, A Garcia, G Gul, M Poyraz, D Salva, S Schofbeck, R Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A Ceard, L De Visscher, S Delaere, C Delcourt, M Forthomme, L Francois, B Giammanco, A Jafari, A Jez, P Komm, M Lemaitre, V Magitteri, A Mertens, A Musich, M Nuttens, C Piotrzkowski, K Quertenmont, L Selvaggi, M Marono, MV Wertz, S Beliy, N Alda, WL Alves, FL Alves, GA Brito, L Hensel, C Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Da Silveira, GG Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Herrera, CM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Fang, W Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Chen, Y Cheng, T Jiang, CH Leggat, D Liu, Z Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Zhao, J Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Hernandez, CFG Alvarez, JDR Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Ferencek, D Kadija, K Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Finger, M Finger, M Jarrin, EC Assran, Y Elkafrawy, T Kamel, AE Mahrous, A Calpas, B Kadastik, M Murumaa, M Perrini, L Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Peltola, T Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Ghosh, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Kucher, I Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Abdulsalam, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Davignon, O de Cassagnac, RG Jo, M Lisniak, S Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Grenier, G Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Popov, A Sabes, D Sordini, V Vander Donckt, M Verdier, P Viret, S Toriashvili, T Lomidze, D Autermann, C Beranek, S Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schomakers, C Schulte, JF Schulz, J Verlage, T Weber, H Zhukov, V Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Knutzen, S Merschmeyer, M Meyer, A Millet, P Mukherjee, S Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Hoehle, F Kargoll, B Kress, T Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asawatangtrakuldee, C Asin, I Beernaert, K Behnke, O Behrens, U Bin Anuar, AA Borras, K Campbell, A Connor, P Contreras-Campana, C Costanza, F Pardos, CD Dolinska, G Eckerlin, G Eckstein, D Gallo, E Garcia, JG Geiser, A Gizhko, A Luyando, JMG Gunnellini, P Harb, A Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Keaveney, J Kieseler, J Kleinwort, C Korol, I Lange, W Lelek, A Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Ntomari, E Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Seitz, C Spannagel, S Stefaniuk, N Trippkewitz, KD Van Onsem, GP Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Dreyer, T Garutti, E Goebel, K Gonzalez, D Haller, J Hoffmann, M Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Niedziela, M Nowatschin, D Ott, J Pantaleo, F Peiffer, T Perieanu, A Poehlsen, J Sander, C Scharf, C Schleper, P Schmidt, A Schumann, S Schwandt, J Stadie, H Steinbruck, G Stober, FM Stover, M Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Barth, C Baus, C Berger, J Butz, E Chwalek, T Colombo, F De Boer, W Dierlamm, A Fink, S Friese, R Giffels, M Gilbert, A Haitz, D Hartmann, F Heindl, SM Husemann, U Katkov, I Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Schroder, M Sieber, G Simonis, HJ Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Williamson, S Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Filipovic, N Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Makovec, A Molnar, J Szillasi, Z Bartok, M Raics, P Trocsanyi, ZL Ujvari, B Bahinipati, S Choudhury, S Mal, P Mandal, K Nayak, A Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Keshri, S Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, R Bhattacharya, S Chatterjee, K Dey, S Dutt, S Dutta, S Ghosh, S Majumdar, N Modak, A Mondal, K Mukhopadhyay, S Nandan, S Purohit, A Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Thakur, S Behera, PK Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Netrakanti, PK Pant, LM Shukla, P Topkar, A Aziz, T Dugad, S Kole, G Mahakud, B Mitra, S Mohanty, GB Sur, N Sutar, B Banerjee, S Bhowmik, S Dewanjee, RK Ganguly, S Guchait, M Jain, S Kumar, S Maity, M Majumder, G Mazumdar, K Parida, B Sarkar, T Wickramage, N Chauhan, S Dube, S Kapoor, A Kothekar, K Rane, A Sharma, S Bakhshiansohi, H Behnamian, H Chenarani, S Tadavani, EE Etesami, SM Fahim, A Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Albergo, S Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Pigazzini, S Ragazzi, S de Fatis, TT Buontempo, S Cavallo, N De Nardo, G Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Carlin, R De Oliveira, ACA Checchia, P Dall'Osso, M Manzano, PD Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Bilei, GM Ciangottini, D Fano, L Lariccia, P Leonardi, R Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Cipriani, M D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Cenna, F Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Shchelina, K Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Casarsa, M Cossutti, F Della Ricca, G La Licata, C Schizzi, A Zanetti, A Kim, DH Kim, GN Kim, MS Lee, S Lee, SW Oh, YD Sekmen, S Son, DC Yang, YC Kim, H Lee, A Cifuentes, JAB Kim, TJ Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, KS Lee, S Lim, J Park, SK Roh, Y Almond, J Kim, J Oh, SB Seo, SH Yang, UK Yoo, HD Yu, GB Choi, M Kim, H Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Hwang, C Kim, D Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Zolkapli, Z Castilla-Valdez, H De la Cruz-Burelo, E Heredia-De la Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Guisao, JM Sanchez-Hernandez, A Moreno, SC Barrera, CO Valencia, FV Carpinteyro, S Pedraza, I Ibarguen, HAS Estrada, CU Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Shah, MA Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Hollar, J Leonardo, N Iglesias, LL Nemallapudi, MV Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Voytishin, N Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Chistov, R Rusinov, V Tarkovskii, E Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Terkulov, A Baskakov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Klyukhin, V Kodolova, O Korneeva, N Lokhtin, I Miagkov, I Obraztsov, S Perfilov, M Savrin, V Volkov, P Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Caballero, IG Fernandez, JRG Cortezon, EP Cruz, SS Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Rivero, CM Matorras, F Gomez, JP Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gulhan, D Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Knunz, V Kornmayer, A Kortelainen, MJ Kousouris, K Krammer, M Lecoq, P Lourenco, C Lucchini, MT Malgeri, L Mannelli, M Martelli, A Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stoye, M Takahashi, Y Tosi, M Treille, D Triossi, A Tsirou, A Veckalns, V Veres, GI Wardle, N Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meinhard, MT Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Candelise, V Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Pozdnyakov, A Yu, SS Kumar, A Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Paganis, E Psallidas, A Tsai, JF Tzeng, YM Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Damarseckin, S Demiroglu, ZS Dozen, C Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Kara, O Kiminsu, U Oglakci, M Onengut, G Ozdemir, K Ozturk, S Polatoz, A Cerci, DS Turkcapar, S Zorbakir, IS Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, J Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-storey, SS Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G Lane, R Laner, C Lucas, R Lyons, L Magnan, AM Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Garabedian, A Hakala, J Heintz, U Jesus, O Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Florent, A Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, OR Malberti, M Negrete, MO Paneva, MI Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S Derdzinski, M Gerosa, R Holzner, A Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Della Porta, GZ Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mccoll, N Mullin, SD Ovcharova, A Richman, J Stuart, D Suarez, I West, C Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, SR Alexander, J Chaves, J Chu, J Dittmer, S Mcdermott, K Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Tan, SM Tao, Z Thom, J Tucker, J Wittich, P Zientek, M Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Cremonesi, M Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Magini, N Marraffino, JM Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Stoynev, S Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, HA Whitbeck, A Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Konigsberg, J Korytov, A Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Santra, A Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Turner, P Varelas, N Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-bataineh, A Baringer, P Bean, A Bowen, J Bruner, C Castle, J Kenny, RP Kropivnitskaya, A Majumder, D Mcbrayer, W Murray, M Sanders, S Stringer, R Takaki, JDT Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Abercrombie, D Allen, B Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Hsu, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Krajczar, K Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Benvenuti, AC Chatterjee, RM Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bartek, R Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Knowlton, D Kravchenko, I Rodrigues, AM Meier, F Monroy, J Siado, JE Snow, GR Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Bhattacharya, S Hahn, KA Kubik, A Low, JF Mucia, N Odell, N Pollack, B Schmitt, MH Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Anampa, KH Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Winer, BL Wulsin, HW Cooperstein, S Driga, O Elmer, P Hardenbrook, J Hebda, P Luo, J Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Stickland, D Tully, C Zuranski, A Malik, S Barker, A Barnes, VE Benedetti, D Folgueras, S Gutay, L Jha, MK Jones, M Jung, AW Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Duh, YT Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, KH Tan, P Verzetti, M Chou, JP Contreras-Campana, E Gershtein, Y Espinosa, TAG Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Elayavalli, RK Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Juska, E Kamon, T Krutelyov, V Mueller, R Pakhotin, Y Patel, R Perloff, A Pernie, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, R Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Wang, Z Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, MW Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, PE Lamichhane, P Sturdy, J Belknap, DA Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Koenig, A. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rad, N. Rahbaran, B. Rohringer, H. Schieck, J. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. De Wolf, E. A. Janssen, X. Lauwers, J. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Lowette, S. Moortgat, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Parijs, I. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Goldouzian, R. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Luetic, J. Maerschalk, T. Marinov, A. Randle-Conde, A. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Cimmino, A. Cornelis, T. Dobur, D. Fagot, A. Garcia, G. Gul, M. Poyraz, D. Salva, S. Schofbeck, R. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. Ceard, L. De Visscher, S. Delaere, C. Delcourt, M. Forthomme, L. Francois, B. Giammanco, A. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Magitteri, A. Mertens, A. Musich, M. Nuttens, C. Piotrzkowski, K. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Wertz, S. Beliy, N. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Hensel, C. Moraes, A. Pol, M. E. Teles, P. Rebello Batista Das Chagas, E. Belchior Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Da Silveira, G. G. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mora Herrera, C. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Perez Tomei, T. R. Fernandez Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Fang, W. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Chen, Y. Cheng, T. Jiang, C. H. Leggat, D. Liu, Z. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Zhao, J. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gonzalez Hernandez, C. F. Ruiz Alvarez, J. D. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Ferencek, D. Kadija, K. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Finger, M. Finger, M., Jr. Carrera Jarrin, E. Assran, Y. Elkafrawy, T. Kamel, A. Ellithi Mahrous, A. Calpas, B. Kadastik, M. Murumaa, M. Perrini, L. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Peltola, T. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Ghosh, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Kucher, I. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Abdulsalam, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Davignon, O. de Cassagnac, R. Granier Jo, M. Lisniak, S. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Grenier, G. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Popov, A. Sabes, D. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Toriashvili, T. Lomidze, D. Autermann, C. Beranek, S. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schomakers, C. Schulte, J. F. Schulz, J. Verlage, T. Weber, H. Zhukov, V. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Knutzen, S. Merschmeyer, M. Meyer, A. Millet, P. Mukherjee, S. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Hoehle, F. Kargoll, B. Kress, T. Kuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asawatangtrakuldee, C. Asin, I. Beernaert, K. Behnke, O. Behrens, U. Bin Anuar, A. A. Borras, K. Campbell, A. Connor, P. Contreras-Campana, C. Costanza, F. Pardos, C. Diez Dolinska, G. Eckerlin, G. Eckstein, D. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Luyando, J. M. Grados Gunnellini, P. Harb, A. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Keaveney, J. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Lelek, A. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Ntomari, E. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. Oe. Saxena, P. Schoerner-Sadenius, T. Seitz, C. Spannagel, S. Stefaniuk, N. Trippkewitz, K. D. Van Onsem, G. P. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Dreyer, T. Garutti, E. Goebel, K. Gonzalez, D. Haller, J. Hoffmann, M. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Niedziela, M. Nowatschin, D. Ott, J. Pantaleo, F. Peiffer, T. Perieanu, A. Poehlsen, J. Sander, C. Scharf, C. Schleper, P. Schmidt, A. Schumann, S. Schwandt, J. Stadie, H. Steinbrueck, G. Stober, F. M. Stoever, M. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Barth, C. Baus, C. Berger, J. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Dierlamm, A. Fink, S. Friese, R. Giffels, M. Gilbert, A. Haitz, D. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Schroeder, M. Sieber, G. Simonis, H. J. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Williamson, S. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Filipovic, N. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Makovec, A. Molnar, J. Szillasi, Z. Bartok, M. Raics, P. Trocsanyi, Z. L. Ujvari, B. Bahinipati, S. Choudhury, S. Mal, P. Mandal, K. Nayak, A. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Keshri, S. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, R. Bhattacharya, S. Chatterjee, K. Dey, S. Dutt, S. Dutta, S. Ghosh, S. Majumdar, N. Modak, A. Mondal, K. Mukhopadhyay, S. Nandan, S. Purohit, A. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Thakur, S. Behera, P. K. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Netrakanti, P. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Dugad, S. Kole, G. Mahakud, B. Mitra, S. Mohanty, G. B. Sur, N. Sutar, B. Banerjee, S. Bhowmik, S. Dewanjee, R. K. Ganguly, S. Guchait, M. Jain, Sa. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Parida, B. Sarkar, T. Wickramage, N. Chauhan, S. Dube, S. Kapoor, A. Kothekar, K. Rane, A. Sharma, S. Bakhshiansohi, H. Behnamian, H. Chenarani, S. Tadavani, E. Eskandari Etesami, S. M. Fahim, A. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Albergo, S. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Pigazzini, S. Ragazzi, S. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Nardo, G. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Carlin, R. De Oliveira, A. Carvalho Antunes Checchia, P. Dall'Osso, M. Manzano, P. De Castro Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Leonardi, R. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Cenna, F. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Shchelina, K. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Casarsa, M. Cossutti, F. Della Ricca, G. La Licata, C. Schizzi, A. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Kim, H. Lee, A. Cifuentes, J. A. Brochero Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Oh, S. B. Seo, S. H. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Hwang, C. Kim, D. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Zolkapli, Z. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-De la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Mejia Guisao, J. Sanchez-Hernandez, A. Carrillo Moreno, S. Oropeza Barrera, C. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. Uribe Estrada, C. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Shah, M. A. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Hollar, J. Leonardo, N. Lloret Iglesias, L. Nemallapudi, M. V. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Voytishin, N. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Chistov, R. Rusinov, V. Tarkovskii, E. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Klyukhin, V. Kodolova, O. Korneeva, N. Lokhtin, I. Miagkov, I. Obraztsov, S. Perfilov, M. Savrin, V. Volkov, P. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Gonzalez Fernandez, J. R. Palencia Cortezon, E. Sanchez Cruz, S. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duggan, D. Dunser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gulhan, D. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Knunz, V. Kornmayer, A. Kortelainen, M. J. Kousouris, K. Krammer, M. Lecoq, P. Lourenco, C. Lucchini, M. T. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Tosi, M. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. Martinez Ruiz del Arbol, P. Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schonenberger, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Candelise, V. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Paganis, E. Psallidas, A. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Kara, O. Kiminsu, U. Oglakci, M. Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Cerci, D. Sunar Turkcapar, S. Zorbakir, I. S. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-storey, S. Seif Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Garabedian, A. Hakala, J. Heintz, U. Jesus, O. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Malberti, M. Negrete, M. Olmedo Paneva, M. I. Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. Derdzinski, M. Gerosa, R. Holzner, A. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mccoll, N. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. West, C. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Mcdermott, K. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Tan, S. M. Tao, Z. Thom, J. Tucker, J. Wittich, P. Zientek, M. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Magini, N. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Turner, P. Varelas, N. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-bataineh, A. Baringer, P. Bean, A. Bowen, J. Bruner, C. Castle, J. Kenny, R. P., III Kropivnitskaya, A. Majumder, D. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Takaki, J. D. Tapia Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Abercrombie, D. Allen, B. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Chatterjee, R. M. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Knowlton, D. Kravchenko, I. Rodrigues, A. Malta Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Low, J. F. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Anampa, K. Hurtado Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Winer, B. L. Wulsin, H. W. Cooperstein, S. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Luo, J. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Benedetti, D. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Duh, Y. t. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Espinosa, T. A. Gomez Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Juska, E. Kamon, T. Krutelyov, V. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. Pernie, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Wang, Z. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Lamichhane, P. Sturdy, J. Belknap, D. A. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton plus jets final states produced in pp collisions at root s=8 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Top; Anomalous couplings; Helicity ID PARTON DISTRIBUTIONS; LHC; COUPLINGS AB The W boson helicity fractions from top quark decays in t (t) over bar events are measured using data from proton-proton collisions at a centre-of-mass energy of 8 TeV. The data were collected in 2012 with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.8 fb(-1). Events are reconstructed with either one muon or one electron, along with four jets in the final state, with two of the jets being identified as originating from b quarks. The measured helicity fractions from both channels are combined, yielding F-0 = 0.681 +/- 0.012 (stat) +/- 0.023 (syst), F-L = 0.323 +/- 0.008 (stat) +/- 0.014 (syst), and F-R = -0.004 +/- 0.005 (stat) +/- 0.014 (syst) for the longitudinal, left-, and right-handed components of the helicity, respectively. These measurements of the W boson helicity fractions are the most accurate to date and they agree with the predictions from the standard model. (C) 2016 The Author. Published by Elsevier B.V. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Koenig, A.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.] Univ Libre Bruxelles, Brussels, Belgium. [Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.; Schofbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Wertz, S.] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Teles, P. Rebello] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Batista Das Chagas, E. Belchior; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Perez Tomei, T. R. Fernandez; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.; Romero Abad, D.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Fang, W.] Beihang Univ, Beijing, Peoples R China. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.] Inst High Energy Phys, Beijing, Peoples R China. [Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gonzalez Hernandez, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Ferencek, D.; Kadija, K.; Micanovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Carrera Jarrin, E.] Univ San Francisco Quito, Quito, Ecuador. [Assran, Y.; Elkafrawy, T.; Kamel, A. Ellithi; Mahrous, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; de Cassagnac, R. Granier; Jo, M.; Lisniak, S.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Montoya, C. A. Carrillo; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.] Univ Claude Bernard Lyon1, Univ Lyon, Inst Phys Nucl Lyon, CNRS IN2P3, Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Lomidze, D.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuensken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asawatangtrakuldee, C.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Luyando, J. M. Grados; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Oe.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Dreyer, T.; Garutti, E.; Goebel, K.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrueck, G.; Stober, F. M.; Stoever, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Schroeder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, Ioannina, Greece. [Filipovic, N.] Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, H-1364 Budapest, Hungary. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Bartok, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India. [Ghosh, S.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.; Thakur, S.] Saha Inst Nucl Phys, Kolkata, India. [Behera, P. K.] Indian Inst Technol Madras, Madras, Tamil Nadu, India. [Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay, Maharashtra, India. [Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.] Tata Inst Fundamental Res A, Bombay, Maharashtra, India. [Banerjee, S.; Bhowmik, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Parida, B.; Sarkar, T.; Wickramage, N.] Tata Inst Fundamental Res B, Bombay, Maharashtra, India. [Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.] IISER, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Chenarani, S.; Tadavani, E. Eskandari; Etesami, S. M.; Fahim, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Napoli Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Manzano, P. De Castro; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Magnani, A.; Montagna, P.; Ratti, S. P.; Riccardi, C.; Vai, I.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Solestizi, L. Alunni; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Ciangottini, D.; Fano, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Santocchia, A.] Univ Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Cipriani, M.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Shchelina, K.; Solano, A.; Traczyk, P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, H.; Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea. [Cifuentes, J. A. Brochero; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Lee, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Purohit, A.; Kim, D. H.; Almond, J.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Hwang, C.; Kim, D.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-De la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Chistov, R.; Rusinov, V.; Tarkovskii, E.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] Ctr Invest Energet Medioambientalales & Tecnol CI, Madrid, Spain. [de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knunz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Paganis, E.; Psallidas, A.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Cerci, D. Sunar; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Burns, D.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Negrete, M. Olmedo; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado Boulder, Boulder, CO USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.] UIC, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Rodrigues, A. Malta; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska Lincoln, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Dev, N.; Hildreth, M.; Anampa, K. Hurtado; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Luo, J.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Dept Geol, Mayaguez, PR 00708 USA. [Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Espinosa, T. A. Gomez; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Krutelyov, V.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Pernie, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.] Texas Tech Univ, Lubbock, TX 79409 USA. [Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Fruehwirth, R.; Jeitler, M.; Schieck, J.; Wulz, C. -E.; Krammer, M.] Vienna Univ Technol, Vienna, Austria. [Zhang, F.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Beluffi, C.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Fang, W.] Univ Libre Bruxelles, Brussels, Belgium. [Chen, Y.] DESY, Hamburg, Germany. Joint Inst Nucl Res, Dubna, Russia. [Assran, Y.] Suez Univ, Suez, Egypt. [Assran, Y.] British Univ Egypt, Cairo, Egypt. [Elkafrawy, T.] Ain Shams Univ, Cairo, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Merlin, J. A.; Stahl, A.; Pantaleo, F.; Hartmann, F.; Mohanty, A. K.; Silvestris, L.; Tosi, N.; Viliani, L.; Primavera, F.; Manzoni, R. A.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Pazzini, J.; Azzurri, P.; D'imperio, G.; Del Re, D.; Arcidiacono, R.; Kornmayer, A.; Virdee, T.] European Org Nucl Res, CERN, Geneva, Switzerland. [Popov, A.; Zhukov, V.; Katkov, I.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Toriashvili, T.] Tbilisi State Univ, Tbilisi, Rep of Georgia. [Borras, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Gallo, E.] Univ Hamburg, Hamburg, Germany. [Hempel, M.; Karacheban, O.; Lohmann, W.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Vesztergombi, G.; Bartok, M.; Veres, G. I.] Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, Budapest, Hungary. [Karancsi, J.] Univ Debrecen, Debrecen, Hungary. [Choudhury, S.] Indian Inst Sci Educ & Res, Bhopal, India. [Nayak, A.] Inst Phys, Bhubaneswar, Orissa, India. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Chenarani, S.; Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] MOSTI, Malaysian Nucl Agcy, Kajang, Malaysia. [Heredia-De la Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Electron Syst, Warsaw, Poland. [Matveev, V.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Matveev, V.; Azarkin, M.; Dremin, I.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. Univ Florida, Gainesville, FL USA. [Chistov, R.] PN Lebedev Phys Inst, Moscow, Russia. [Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Di Marco, E.] Univ Rome, Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Veckalns, V.] Riga Tech Univ, Riga, Latvia. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.] Gaziosmanpasa Univ, Tokat, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Cerci, D. Sunar] Adiyaman Univ, Adiyaman, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Lucas, R.] Rutherford Appleton Lab, Didcot, Oxon, England. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. Utah Valley Univ, Orem, UT USA. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. RI Della Ricca, Giuseppe/B-6826-2013; Lokhtin, Igor/D-7004-2012; TUVE', Cristina/P-3933-2015; Terkulov, Adel/M-8581-2015; Goh, Junghwan/Q-3720-2016; Konecki, Marcin/G-4164-2015 OI Della Ricca, Giuseppe/0000-0003-2831-6982; TUVE', Cristina/0000-0003-0739-3153; Goh, Junghwan/0000-0002-1129-2083; Konecki, Marcin/0000-0001-9482-4841 FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MOST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CIN-VESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme; European Research Council (European Union); EPLANET (European Union); Leventis Foundation; Alfred P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science; European Union, Regional Development Fund; Mobility Plus programme of the Ministry of Science and Higher Education (Poland); OPUS programme of the National Science Center (Poland); Thalis programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Welch Foundation [C-1845] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CIN-VESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Mobility Plus programme of the Ministry of Science and Higher Education (Poland); the OPUS programme of the National Science Center (Poland); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. NR 47 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV 10 PY 2016 VL 762 BP 512 EP 534 DI 10.1016/j.physletb.2016.10.007 PG 23 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EC9OK UT WOS:000388473700071 ER PT J AU van der Laan, JD Wright, JB Scrymgeour, DA Kemme, SA Dereniak, EL AF van der Laan, John D. Wright, Jeremy B. Scrymgeour, David A. Kemme, Shanalyn A. Dereniak, Eustace L. TI Effects of collection geometry variations on linear and circular polarization persistence in both isotropic-scattering and forward-scattering environments SO APPLIED OPTICS LA English DT Article ID MONTE-CARLO MODEL; LIGHT; DEPOLARIZATION; MEMORY; RANGE AB We present simulation and experimental results showing circular polarization is more tolerant of optical collection geometry (field of view and collection area) variations than linear polarization for forward-scattering environments. Circular polarization also persists superiorly in the forward-scattering environment compared to linear polarization by maintaining its degree of polarization better through increasing optical thicknesses. In contrast, both linear and circular polarizations are susceptible to collection geometry variations for isotropic-scattering (Rayleigh regime) environments, and linear polarization maintains a small advantage in polarization persistence. Simulations and measurements are presented for laboratory-based environments of polystyrene microspheres in water. Particle diameters were 0.0824 mu m (for isotropic-scattering) and 1.925 mu m (for forward-scattering) with an illumination wavelength of 543.5 nm. (C) 2016 Optical Society of America C1 [van der Laan, John D.; Wright, Jeremy B.; Scrymgeour, David A.; Kemme, Shanalyn A.] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA. [Dereniak, Eustace L.] Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA. RP van der Laan, JD (reprint author), Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM 87123 USA. EM johvand@sandia.gov RI Scrymgeour, David/C-1981-2008 FU Sandia National Laboratories; U.S. Department of Energy (DOE) [DE-AC04-94AL85000] FX Sandia National Laboratories; U.S. Department of Energy (DOE) (DE-AC04-94AL85000). NR 16 TC 0 Z9 0 U1 5 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 10 PY 2016 VL 55 IS 32 BP 9042 EP 9048 DI 10.1364/AO.55.009042 PG 7 WC Optics SC Optics GA EC0BZ UT WOS:000387763900011 PM 27857287 ER PT J AU Aliu, E Archambault, S Archer, A Benbow, W Bird, R Biteau, J Buchovecky, M Buckley, JH Bugaev, V Byrum, K Cardenzana, JV Cerruti, M Chen, X Ciupik, L Connolly, MP Cui, W Dickinson, HJ Eisch, JD Falcone, A Feng, Q Finley, JP Fleischhack, H Flinders, A Fortin, P Fortson, L Furniss, A Gillanders, GH Griffin, S Grube, J Gyuk, G Hutten, M Hakansson, N Holder, J Humensky, TB Johnson, CA Kaaret, P Kar, P Kelley-Hoskins, N Kertzman, M Kieda, D Krause, M Lang, MJ Loo, A Maier, G McArthur, S McCann, A Meagher, K Moriarty, P Mukherjee, R Nguyen, T Nieto, D De Bhroithe, AO Ong, RA Otte, AN Pandel, D Park, N Pelassa, V Petrashyk, A Pohl, M Popkow, A Pueschel, E Quinn, J Ragan, K Reynolds, PT Richards, GT Roache, E Rulten, C Santander, M Sembroski, GH Shahinyan, K Smith, AW Staszak, D Telezhinsky, I Tucci, JV Tyler, J Varlotta, A Vincent, S Wakely, SP Weiner, OM Weinstein, A Wilhelm, A Williams, DA Zitzer, B Chernyakova, M Roberts, MSE AF Aliu, E. Archambault, S. Archer, A. Benbow, W. Bird, R. Biteau, J. Buchovecky, M. Buckley, J. H. Bugaev, V. Byrum, K. Cardenzana, J. V. Cerruti, M. Chen, X. Ciupik, L. Connolly, M. P. Cui, W. Dickinson, H. J. Eisch, J. D. Falcone, A. Feng, Q. Finley, J. P. Fleischhack, H. Flinders, A. Fortin, P. Fortson, L. Furniss, A. Gillanders, G. H. Griffin, S. Grube, J. Gyuk, G. Huetten, M. Hakansson, N. Holder, J. Humensky, T. B. Johnson, C. A. Kaaret, P. Kar, P. Kelley-Hoskins, N. Kertzman, M. Kieda, D. Krause, M. Lang, M. J. Loo, A. Maier, G. McArthur, S. McCann, A. Meagher, K. Moriarty, P. Mukherjee, R. Nguyen, T. Nieto, D. De Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Pandel, D. Park, N. Pelassa, V. Petrashyk, A. Pohl, M. Popkow, A. Pueschel, E. Quinn, J. Ragan, K. Reynolds, P. T. Richards, G. T. Roache, E. Rulten, C. Santander, M. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Telezhinsky, I. Tucci, J. V. Tyler, J. Varlotta, A. Vincent, S. Wakely, S. P. Weiner, O. M. Weinstein, A. Wilhelm, A. Williams, D. A. Zitzer, B. Chernyakova, M. Roberts, M. S. E. TI A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; gamma rays: general; pulsars: general; pulsars: individual (PSR J1023+0038) ID MILLISECOND PULSAR; PSR J1023+0038; 1ST J102347.6+003841; NUSTAR OBSERVATIONS; STATE CHANGE; EMISSION; TRANSITION; TELESCOPE; PERIASTRON; DISCOVERY AB The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than similar to 2 G before the disappearance of the radio pulsar and greater than similar to 10 G afterward. C1 [Aliu, E.; Mukherjee, R.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Archambault, S.; McCann, A.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Buckley, J. H.; Bugaev, V.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Cerruti, M.; Fortin, P.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Bird, R.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Biteau, J.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Buchovecky, M.; Ong, R. A.; Popkow, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Byrum, K.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Cardenzana, J. V.; Dickinson, H. J.; Weinstein, A.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Hakansson, N.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Fleischhack, H.; Huetten, M.; Kelley-Hoskins, N.; Krause, M.; Maier, G.; Telezhinsky, I.; Wilhelm, A.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Ciupik, L.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Varlotta, A.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [Flinders, A.; Kar, P.; Kieda, D.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Fortson, L.; Rulten, C.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Furniss, A.] Calif State Univ East Bay, Dept Phys, Hayward, CA 94542 USA. [Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Humensky, T. B.; Loo, A.; Weiner, O. M.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Meagher, K.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Pandel, D.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. [Park, N.; Staszak, D.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Phys Sci, Cork, Ireland. [Smith, A. W.] Univ Maryland, Coll Park NASA GSFC, College Pk, MD 20742 USA. [Chernyakova, M.] Dublin City Univ, Sch Phys Sci, Dublin 9, Ireland. [Chernyakova, M.] Dublin Inst Adv Studies, 31 Fitzwilliam Pl, Dublin 2, Ireland. [Roberts, M. S. E.] New York Univ Abu Dhabi, POB 129188 Saadiyat Isl, Abu Dhabi, U Arab Emirates. [Roberts, M. S. E.] Eureka Sci, 2452 Delmer St,Suite 100, Oakland, CA 94602 USA. RP Aliu, E (reprint author), Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. EM ester.aliu.fuste@gmail.com; gtrichards@gatech.edu; masha.chernyakova@dcu.ie; malloryr@gmail.com OI Krause, Maria/0000-0001-7595-0914; Roberts, Mallory/0000-0002-9396-9720; Pandel, Dirk/0000-0003-2085-5586; Bird, Ralph/0000-0002-4596-8563 FU U.S. Department of Energy Office of Science; Smithsonian Institution; NSERC in Canada; Spanish Ministerio de Economia y Competitividad (MINECO) [AYA2013-47447-C3-1-P]; U.S. National Science Foundation FX This research is supported by grants from the U.S. Department of Energy Office of Science, the U.S. National Science Foundation, and the Smithsonian Institution, and by NSERC in Canada. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. E.A. acknowledges support by the Spanish Ministerio de Economia y Competitividad (MINECO) under grants AYA2013-47447-C3-1-P. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible. NR 56 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 193 DI 10.3847/0004-637X/831/2/193 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC6DU UT WOS:000388227500004 ER PT J AU Margala, D Kirkby, D Dawson, K Bailey, S Blanton, M Schneider, DP AF Margala, Daniel Kirkby, David Dawson, Kyle Bailey, Stephen Blanton, Michael Schneider, Donald P. TI IMPROVED SPECTROPHOTOMETRIC CALIBRATION OF THE SDSS-III BOSS QUASAR SAMPLE SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; intergalactic medium; quasars: absorption lines; quasars: general ID LY-ALPHA FOREST; DIGITAL SKY SURVEY; OSCILLATION SPECTROSCOPIC SURVEY; COLD DARK-MATTER; DATA RELEASE 9; BARYON ACOUSTIC-OSCILLATIONS; LUMINOSITY FUNCTION; GRAVITATIONAL COLLAPSE; INTERGALACTIC MEDIUM; MODEL AB We present a model for spectrophotometric calibration errors in observations of quasars from the third generation of the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (BOSS) and describe the correction procedure we have developed and applied to this sample. Calibration errors are primarily due to atmospheric differential refraction and guiding offsets during each exposure. The corrections potentially reduce the systematics for any studies of BOSS quasars, including the measurement of baryon acoustic oscillations using the Ly alpha forest. Our model suggests that, on average, the observed quasar flux in BOSS is overestimated by similar to 19% at 3600 angstrom and understimated y similar to 24% at 10,000 angstrom. Our corrections for the entire BOSS quasar sample are publicly available. C1 [Margala, Daniel; Kirkby, David] Univ Calif Irvine, Dept Phys & Astron, Frederick Reines Hall, Irvine, CA 92697 USA. [Dawson, Kyle] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Bailey, Stephen] Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Blanton, Michael] NYU, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. RP Margala, D (reprint author), Univ Calif Irvine, Dept Phys & Astron, Frederick Reines Hall, Irvine, CA 92697 USA. EM dmargala@uci.edu OI Blanton, Michael/0000-0003-1641-6222 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 45 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 10 PY 2016 VL 831 IS 2 AR 157 DI 10.3847/0004-637X/831/2/157 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC1PI UT WOS:000387878200008 ER PT J AU Bhagia, S Li, HJ Gao, XD Kumar, R Wyman, CE AF Bhagia, Samarthya Li, Hongjia Gao, Xiadi Kumar, Rajeev Wyman, Charles E. TI Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Batch; Dilute acid; Flowthrough; Lignocellulosic biomass; Liquid hot water; Pretreatment; Poplar; Recalcitrance ID MOLECULAR-WEIGHT DISTRIBUTION; CORN STOVER; SULFURIC-ACID; ENZYMATIC-HYDROLYSIS; HOT-WATER; HEMICELLULOSE; TECHNOLOGIES; YIELDS; XYLAN; WOOD AB Background: Flowthrough pretreatment is capable of removing much higher quantities of hemicellulose and lignin from lignocellulosic biomass than batch pretreatment performed at otherwise similar conditions. Comparison of these two pretreatment configurations for sugar yields and lignin removal can provide insights into lignocellulosic biomass deconstruction. Therefore, we applied liquid hot water (LHW) and extremely dilute acid (EDA, 0.05%) flow-through and batch pretreatments of poplar at two temperatures and the same pretreatment severity for the solids. Composition of solids, sugar mass distribution with pretreatment, sugar yields, and lignin removal from pretreatment and enzymatic hydrolysis were measured. Results: Flowthrough aqueous pretreatment of poplar showed between 63 and 69% lignin removal at both 140 and 180 degrees C, while batch pretreatments showed about 20 to 33% lignin removal at similar conditions. Extremely dilute acid slightly enhanced lignin removal from solids with flowthrough pretreatment at both pretreatment temperatures. However, extremely dilute acid batch pretreatment did realize greater than 70% xylan yields largely in the form of monomeric xylose. Close to 100% total sugar yields were measured from LHW and EDA flowthrough pretreatments and one batch EDA pretreatment at 180 degrees C. The high lignin removal by flowthrough pretreatment enhanced cellulose digestibility compared to batch pretreatment, consistent with lignin being a key contributor to biomass recalcitrance. Furthermore, solids from 180 degrees C flowthrough pretreatment were much more digestible than solids pretreated at 140 degrees C despite similar lignin and extensive hemicellulose removal. Conclusions: Results with flowthrough pretreatment show that about 65-70% of the lignin is solubilized and removed before it can react further to form low solubility lignin rich fragments that deposit on the biomass surface in batch operations and hinder enzyme action. The leftover 30-35% lignin in poplar was a key player in biomass recalcitrance to enzymatic deconstruction and it might be more difficult to dislodge from biomass with lower temperature of pretreatment. These results also point to the possibility that hemicellulose removal is more important as an indicator of lignin disruption than in playing a direct role in reducing biomass recalcitrance. C1 [Bhagia, Samarthya; Li, Hongjia; Gao, Xiadi; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, 900 Univ Ave, Riverside, CA 92521 USA. [Bhagia, Samarthya; Li, Hongjia; Gao, Xiadi; Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA. [Bhagia, Samarthya; Li, Hongjia; Gao, Xiadi; Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, POB 2008 MS6341, Oak Ridge, TN 37831 USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, 900 Univ Ave, Riverside, CA 92521 USA. EM cewyman@engr.ucr.edu FU Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory [DE-PS02-06ER64304] FX This work was supported by Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science through the BioEnergy Science Center (BESC) at Oak Ridge National Laboratory (Contract DE-PS02-06ER64304). NR 62 TC 1 Z9 1 U1 9 U2 9 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD NOV 10 PY 2016 VL 9 AR 245 DI 10.1186/s13068-016-0660-5 PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EC0YV UT WOS:000387830600001 PM 27833657 ER PT J AU Levin, EM Riedemann, TM Howard, A Jo, NH Bud'ko, SL Canfield, PC Lograsso, TA AF Levin, E. M. Riedemann, T. M. Howard, A. Jo, N. H. Bud'ko, S. L. Canfield, P. C. Lograsso, T. A. TI Te-125 NMR and Seebeck Effect in Bi2Te3 Synthesized from Stoichiometric and Te-Rich Melts SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID TOPOLOGICAL INSULATORS; THERMAL-PROPERTIES; BISMUTH TELLURIDE; SINGLE-CRYSTALS; DEFECTS; GROWTH AB Bi2Te3 is a well-known thermoelectric material and, as a new form of quantum matter, a topological insulator. Variation of local chemical composition in Bi2Te3 results in formation of several types of atomic defects, including Bi and Te vacancies and Bi and Te antisite defects; these defects can strongly affect material functionality via generation of free electrons and/or holes. Nonuniform distribution of atomic defects produces electronic inhomogeneity, which can be detected by Te-125 nuclear magnetic resonance (NMR). Here we report on Te-125 NMR and Seebeck effect (heat to electrical energy conversion) for two single crystalline samples: (#1) grown from stoichiometric composition by Bridgman technique and (#2) grown out of Te-rich, high temperature flux. The Seebeck coefficients of these samples show p- and n-type conductivity, respectively, arising from different atomic defects. Te-125 NMR spectra and spin lattice relaxation measurements demonstrate that both Bi2Te3 samples are electronically inhomogeneous at the atomic scale, which can be attributed to a different Te environment due to spatial variation of the Bi/Te ratio and formation of atomic defects. Correlations between Te-125 NMR spectra, spin lattice relaxation times, the Seebeck coefficients, carrier concentrations, and atomic defects are discussed. Our data demonstrate that Te-125 NMR is an effective probe to study antisite defects in Bi2Te3. C1 [Levin, E. M.; Riedemann, T. M.; Howard, A.; Bud'ko, S. L.; Canfield, P. C.; Lograsso, T. A.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Levin, E. M.; Jo, N. H.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lograsso, T. A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Levin, EM (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.; Levin, EM (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM levin@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Authors thank the Materials Preparation Center at the Ames Laboratory U.S. Department of Energy (DOE), for sample synthesis. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract DE-AC02-07CH11358. NR 29 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 10 PY 2016 VL 120 IS 44 BP 25196 EP 25202 DI 10.1021/acs.jpcc.6b06973 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB9SR UT WOS:000387737900005 ER PT J AU Chen, SL Fu, L Chase, ZA Gan, W Wang, HF AF Chen, Shun-Li Fu, Li Chase, Zizwe A. Gan, Wei Wang, Hong-Fei TI Local Environment and Interactions of Liquid and Solid Interfaces Revealed by Spectral Line Shape of Surface Selective Nonlinear Vibrational Probe SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SUM-FREQUENCY GENERATION; SPECTROSCOPY SFG-VS; MOLECULAR-ORIENTATION; INFRARED PROBES; DYNAMICS; WATER; POLARIZATION; BIOMOLECULES; RESOLUTION; MONOLAYERS AB Vibrational spectral line shape contains important detailed information on SF molecular vibration and reports its specific interactions and couplings to its local environment. In this work, recently developed sub-1 cm(-1) high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS) was used to measure the-C IN stretch vibration in the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir or Langmuir-Blodgett (LB) monolayer as a unique vibrational probe, and the spectral line shape analysis revealed the local environment and interactions at the air/water, air/glass, air/calcium fluoride, and air/alpha-quartz interfaces for the first time. The 8CB Langmuir or LB film is uniform, and the vibrational spectral line shape of its-C N group has been well characterized, making it a good choice as the surface vibrational probe. Line shape analysis of the 8CB-C N stretch SFG vibrational spectra suggests the coherent vibrational dynamics and the structural and dynamic inhomogeneity of the-C N group at each interface are uniquely different. In addition, it is also found that there are significantly different roles for water molecules in the LB films on different substrate surfaces. These results demonstrated the novel capabilities of the surface nonlinear spectroscopy in characterization and in, understanding the specific structures and chemical interactions at the liquid and solid interfaces in general. C1 [Chen, Shun-Li] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Key Lab Funct Mat & Devices Special Environm, Lab Environm Sci & Technol, 40-1 South Beijing Rd, Urumqi 830011, Xinjiang, Peoples R China. [Fu, Li] Pacific Northwest Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Chase, Zizwe A.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Wang, Hong-Fei] Pacific Northwest Natl Lab, Phys Sci Div, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Chase, Zizwe A.] Washington State Univ, Sch Chem & Biol Engn, Pullman, WA 99364 USA. [Gan, Wei] Harbin Inst Technol, Shenzhen Grad Sch, Dept Nat Sci & Humanities, Shenzhen 518055, Peoples R China. RP Wang, HF (reprint author), Pacific Northwest Natl Lab, Phys Sci Div, Phys & Computat Sci Directorate, Richland, WA 99352 USA.; Gan, W (reprint author), Harbin Inst Technol, Shenzhen Grad Sch, Dept Nat Sci & Humanities, Shenzhen 518055, Peoples R China. EM ganwei@hitsz.edu.cn; hongfei.wang@pnnl.gov RI Wang, Hongfei/B-1263-2010 OI Wang, Hongfei/0000-0001-8238-1641 FU National Natural Science Foundation of China [21403292, 21273277]; "1000 Talent Program" (The Recruitment Program of Global Experts); Materials Synthesis and Simulation Across Scales (MS3) Initiative through the LDRD program at Pacific Northwest National Laboratory (PNNL); Department of Energy by Battelle [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research (BER) FX H.F.W. thanks Wei Xiong and Aaron Massari for helpful discussions on the Bloch dynamics and Kubo line shape theories. S.L.C. thanks Dr. Xuefeng Zhu (Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences) for helpful discussions. This work was partially supported by the National Natural Science Foundation of China (21403292, S.L.C.) (21273277, W.G.) and the "1000 Talent Program" (The Recruitment Program of Global Experts, W.G.). H.F.W. was supported by the Materials Synthesis and Simulation Across Scales (MS3) Initiative through the LDRD program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for Department of Energy by Battelle under Contract DE-AC05-76RL01830. Part of this work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the PNNL and sponsored by the Department of Energy's Office of Biological and Environmental Research (BER). S.L.C. and Z.C. are Alternate Sponsored Fellow (ASP) at PNNL, and L.F. was the William Wiley postdoctoral fellow at EMSL during this work. NR 62 TC 2 Z9 2 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 10 PY 2016 VL 120 IS 44 BP 25511 EP 25518 DI 10.1021/acs.jpcc.6b10215 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB9SR UT WOS:000387737900038 ER PT J AU Camillone, N AF Camillone, Nicholas, III TI NANOSCIENCE Single-molecule instant replay SO NATURE LA English DT Editorial Material ID SCANNING-TUNNELING-MICROSCOPY; SUBMILLIMETER WAVELENGTHS; OPTICAL-PROPERTIES; SPECTROSCOPY C1 [Camillone, Nicholas, III] Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA. RP Camillone, N (reprint author), Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA. EM nicholas@bnl.gov NR 20 TC 0 Z9 0 U1 14 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 10 PY 2016 VL 539 IS 7628 BP 170 EP 171 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB4CZ UT WOS:000387318500020 PM 27830801 ER EF