FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Riek, R Eisenberg, DS AF Riek, Roland Eisenberg, David S. TI The activities of amyloids from a structural perspective SO NATURE LA English DT Review ID ATOMIC-RESOLUTION STRUCTURE; CREUTZFELDT-JAKOB-DISEASE; ALPHA-SYNUCLEIN FIBRILS; REGISTER BETA-SHEETS; HUMAN PRION PROTEIN; X-RAY-DIFFRACTION; ALZHEIMERS-DISEASE; MUTANT P53; IN-VITRO; HUMAN TRANSTHYRETIN AB The aggregation of proteins into structures known as amyloids is observed in many neurodegenerative diseases, including Alzheimer's disease. Amyloids are composed of pairs of tightly interacting, many stranded and repetitive intermolecular beta-sheets, which form the cross-beta-sheet structure. This structure enables amyloids to grow by recruitment of the same protein and its repetition can transform a weak biological activity into a potent one through cooperativity and avidity. Amyloids therefore have the potential to self-replicate and can adapt to the environment, yielding cell-to-cell transmissibility, prion infectivity and toxicity. C1 [Riek, Roland] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Phys Chem Lab, CH-8093 Zurich, Switzerland. [Eisenberg, David S.] UCLA DOE Inst, Los Angeles, CA 90095 USA. [Eisenberg, David S.] Howard Hughes Med Inst, Los Angeles, CA 90095 USA. RP Riek, R (reprint author), Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Phys Chem Lab, CH-8093 Zurich, Switzerland.; Eisenberg, DS (reprint author), UCLA DOE Inst, Los Angeles, CA 90095 USA.; Eisenberg, DS (reprint author), Howard Hughes Med Inst, Los Angeles, CA 90095 USA. EM roland.riek@phys.chem.ethz.ch; david@mbi.ucla.edu FU Swiss National Science Foundation (SNSF); US National Institutes of Health; Howard Hughes Medical Institute; SNSF Sinergia grant FX We thank K. Comiotto and M. Sawaya for making figures and the Swiss National Science Foundation (SNSF), the US National Institutes of Health and the Howard Hughes Medical Institute for continuing support of our research, including an SNSF Sinergia grant to R.R. NR 137 TC 2 Z9 2 U1 44 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 10 PY 2016 VL 539 IS 7628 BP 227 EP 235 DI 10.1038/nature20416 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB4CZ UT WOS:000387318500033 PM 27830791 ER PT J AU Ruffing, AM Jensen, TJ Strickland, LM AF Ruffing, Anne M. Jensen, Travis J. Strickland, Lucas M. TI Genetic tools for advancement of Synechococcus sp PCC 7002 as a cyanobacterial chassis SO MICROBIAL CELL FACTORIES LA English DT Article DE Synechococcus; Synechococcus sp PCC 7002; Synechococcus 7002; Cyanobacterial chassis; Cyanobacterial genetic engineering; Cyanobacterial host; Cyanobacterial cell factories ID GREEN FLUORESCENT PROTEIN; TIME QUANTITATIVE PCR; FATTY-ACID PRODUCTION; SYNTHETIC BIOLOGY; PHOTOSYNTHETIC CONVERSION; ESCHERICHIA-COLI; CARBON-DIOXIDE; EXPRESSION; TEMPERATURE; CO2 AB Background: Successful implementation of modified cyanobacteria as hosts for industrial applications requires the development of a cyanobacterial chassis. The cyanobacterium Synechococcus sp. PCC 7002 embodies key attributes for an industrial host, including a fast growth rate and high salt, light, and temperature tolerances. This study addresses key limitations in the advancement of Synechococcus sp. PCC 7002 as an industrial chassis. Results: Tools for genome integration were developed and characterized, including several putative neutral sites for genome integration. The minimum homology arm length for genome integration in Synechococcus sp. PCC 7002 was determined to be approximately 250 bp. Three fluorescent protein reporters (hGFP, Ypet, and mOrange) were characterized for gene expression, microscopy, and flow cytometry applications in Synechococcus sp. PCC 7002. Of these three proteins, the yellow fluorescent protein (Ypet) had the best optical properties for minimal interference with the native photosynthetic pigments and for detection using standard microscopy and flow cytometry optics. Twenty-five native promoters were characterized as tools for recombinant gene expression in Synechococcus sp. PCC 7002 based on previous RNA-seq results. This characterization included comparisons of protein and mRNA levels as well as expression under both continuous and diurnal light conditions. Promoters A2520 and A2579 were found to have strong expression in Synechococcus sp. PCC 7002 while promoters A1930, A1961, A2531, and A2813 had moderate expression. Promoters A2520 and A2813 showed more than twofold increases in gene expression under light conditions compared to dark, suggesting these promoters may be useful tools for engineering diurnal regulation. Conclusions: The genome integration, fluorescent protein, and promoter tools developed in this study will help to advance Synechococcus sp. PCC 7002 as a cyanobacterial chassis. The long minimum homology arm length for Synechococcus sp. PCC 7002 genome integration indicates native exonuclease activity or a low efficiency of homologous recombination. Low correlation between transcript and protein levels in Synechococcus sp. PCC 7002 suggests that transcriptomic data are poor selection criteria for promoter tool development. Lastly, the conventional strategy of using promoters from photosynthetic operons as strong promoter tools is debunked, as promoters from hypothetical proteins (A2520 and A2579) were found to have much higher expression levels. C1 [Ruffing, Anne M.; Jensen, Travis J.; Strickland, Lucas M.] Sandia Natl Labs, Dept Bioenergy & Def Technol, POB 5800,MS 1413, Albuquerque, NM 87185 USA. RP Ruffing, AM (reprint author), Sandia Natl Labs, Dept Bioenergy & Def Technol, POB 5800,MS 1413, Albuquerque, NM 87185 USA. EM aruffin@sandia.gov FU Laboratory Directed Research and Development funds at Sandia National Laboratories; United States Department of Energy [DE-ACO4-94AL85000] FX This work was supported by Laboratory Directed Research and Development funds at Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000. NR 51 TC 0 Z9 0 U1 6 U2 6 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1475-2859 J9 MICROB CELL FACT JI Microb. Cell. Fact. PD NOV 10 PY 2016 VL 15 AR 190 DI 10.1186/s12934-016-0584-6 PG 14 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EB8KS UT WOS:000387640500003 PM 27832791 ER PT J AU Hayami, S Lin, SZ Kamiya, Y Batista, CD AF Hayami, Satoru Lin, Shi-Zeng Kamiya, Yoshitomo Batista, Cristian D. TI Vortices, skyrmions, and chirality waves in frustrated Mott insulators with a quenched periodic array of impurities SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-DIFFRACTION; MAGNETIC PHASE; BERRY PHASE; STATES; UNI4B; SPINS; HOLES AB Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities, which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or disturbing the impurity array with small quenched randomness. Alternative realizations of impurity superlattices are briefly discussed. C1 [Hayami, Satoru] Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan. [Lin, Shi-Zeng] Los Alamos Natl Lab, Theoret Div, T 4, Los Alamos, NM 87545 USA. [Lin, Shi-Zeng] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Kamiya, Yoshitomo] RIKEN, Condensed Matter Theory Lab, Wako, Saitama 3510198, Japan. [Batista, Cristian D.] Univ Tennessee, Dept Phys, Knoxville, TN 37996 USA. [Batista, Cristian D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Batista, Cristian D.] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA. RP Hayami, S (reprint author), Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan. RI Lin, Shi-Zeng/B-2906-2008; Kamiya, Yoshitomo/B-6307-2012 OI Lin, Shi-Zeng/0000-0002-4368-5244; Kamiya, Yoshitomo/0000-0002-0758-0234 FU U.S. DOE through the LDRD program [DE-AC52-06NA25396]; RIKEN iTHES project FX Computer resources for numerical calculations were supported by the Institutional Computing Program at LANL. This work was carried out under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396 through the LDRD program. Y.K. acknowledges the financial supports from the RIKEN iTHES project. NR 64 TC 0 Z9 0 U1 14 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 10 PY 2016 VL 94 IS 17 AR 174420 DI 10.1103/PhysRevB.94.174420 PG 19 WC Physics, Condensed Matter SC Physics GA EB6YZ UT WOS:000387532900002 ER PT J AU Denis-Petit, D Roig, O Meot, V Morillon, B Romain, P Jandel, M Kawano, T Vieira, DJ Bond, EM Bredeweg, TA Couture, AJ Haight, RC Keksis, AL Rundberg, RS Ullmann, JL AF Denis-Petit, D. Roig, O. Meot, V. Morillon, B. Romain, P. Jandel, M. Kawano, T. Vieira, D. J. Bond, E. M. Bredeweg, T. A. Couture, A. J. Haight, R. C. Keksis, A. L. Rundberg, R. S. Ullmann, J. L. TI Isomeric ratio measurements for the radiative neutron capture Lu-176(n, gamma) at the LANL DANCE facility SO PHYSICAL REVIEW C LA English DT Article ID CROSS-SECTION RATIOS; RESONANCES; SIMULATION; NUCLEI; DETECTOR; N,GAMMA AB The isomeric ratios for the neutron capture reaction Lu-176(n,gamma) to the J(pi) = 5/2(-), 761.7 keV, T-1/2 = 32.8 ns and the J(pi) = 15/2(+), 1356.9 keV, T-1/2 = 11.1 ns levels of Lu-177 have been measured for the first time. The experiment was carried out with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. Measured isomeric ratios are compared with TALYS calculations using different models for photon strength functions, level densities, and optical potentials. In order to reproduce the experimental. gamma-ray spectra, a low-energy resonance must be added in the photon strength function used in our Hauser-Feshbach calculations. C1 [Denis-Petit, D.; Roig, O.; Meot, V.; Morillon, B.; Romain, P.] CEA DAM DIF, F-91297 Arpajon, France. [Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Denis-Petit, D (reprint author), CEA DAM DIF, F-91297 Arpajon, France. EM david.denis-petit@cea.fr NR 50 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 10 PY 2016 VL 94 IS 5 AR 054612 DI 10.1103/PhysRevC.94.054612 PG 12 WC Physics, Nuclear SC Physics GA EB7BD UT WOS:000387539100002 ER PT J AU Jaiswal, A Egami, T Kelton, KF Schweizer, KS Zhang, Y AF Jaiswal, Abhishek Egami, Takeshi Kelton, K. F. Schweizer, Kenneth S. Zhang, Yang TI Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids SO PHYSICAL REVIEW LETTERS LA English DT Article ID GLASS-FORMING LIQUIDS; SUPERCOOLED LIQUIDS; TRANSITION TEMPERATURE; THERMOPHYSICAL PROPERTIES; HETEROGENEOUS DYNAMICS; STRUCTURAL RELAXATION; KINETIC FRAGILITY; ENERGY LANDSCAPE; BETA-RELAXATION; POISSONS RATIO AB We report the observation of a distinct correlation between the kinetic fragility index m and the reduced Arrhenius crossover temperature theta(A) = T-A/T-g in various glass-forming liquids, identifying three distinguishable groups. In particular, for 11 glass-forming metallic liquids, we universally observe a crossover in the mean diffusion coefficient from high-temperature Arrhenius to low-temperature super-Arrhenius behavior at approximately theta(A) approximate to 2 which is in the stable liquid phases. In contrast, for fragile molecular liquids, this crossover occurs at much lower theta(A) approximate to 1.4 and usually in their supercooled states. The theta(A) values for strong network liquids spans a wide range higher than 2. Intriguingly, the high-temperature activation barrier E-infinity is universally found to be similar to 11k(B)T(g) and uncorrelated with the fragility or the reduced crossover temperature theta(A) for metallic and molecular liquids. These observations provide a way to estimate the low-temperature glassy characteristics (T-g and m) from the high-temperature liquid quantities (E-infinity and theta(A)). C1 [Jaiswal, Abhishek; Zhang, Yang] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kelton, K. F.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Kelton, K. F.] Washington Univ, Inst Mat Sci & Engn, St Louis, MO 63130 USA. [Schweizer, Kenneth S.; Zhang, Yang] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. RP Zhang, Y (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA.; Zhang, Y (reprint author), Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. EM zhyang@illinois.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC-0014804] FX This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Award No. DE-SC-0014804. NR 91 TC 0 Z9 0 U1 36 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 10 PY 2016 VL 117 IS 20 AR 205701 DI 10.1103/PhysRevLett.117.205701 PG 6 WC Physics, Multidisciplinary SC Physics GA EB7CV UT WOS:000387544200010 PM 27886481 ER PT J AU Naumov, II Hemley, RJ AF Naumov, Ivan I. Hemley, Russell J. TI Topological Surface States in Dense Solid Hydrogen SO PHYSICAL REVIEW LETTERS LA English DT Article ID METALLIZATION; SPECTROSCOPY; POLARIZATION; BE(0001); PHASE; BANDS AB Metallization of dense hydrogen and associated possible high-temperature superconductivity represents one of the key problems of physics. Recent theoretical studies indicate that before becoming a good metal, compressed solid hydrogen passes through a semimetallic stage. We show that such semimetallic phases predicted to be the most stable at multimegabar (similar to 300 GPa) pressures are not conventional semimetals: they exhibit topological metallic surface states inside the bulk "direct" gap in the two-dimensional surface Brillouin zone; that is, metallic surfaces may appear even when the bulk of the material remains insulating. Examples include hydrogen in the Cmca-12 and Cmca-4 structures; Pbcn hydrogen also has metallic surface states but they are of a nontopological nature. The results provide predictions for future measurements, including probes of possible surface superconductivity in dense hydrogen. C1 [Naumov, Ivan I.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Hemley, Russell J.] George Washington Univ, Dept Civil & Environm Engn, Washington, DC 20052 USA. [Hemley, Russell J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Naumov, II (reprint author), Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. FU EFree, an Energy Frontier Research Center - U.S. DOE, Office of Science, Basic Energy Sciences [DE-SC0001057]; U.S. DOE/NNSA [DE-NA-0002006]; DOE [DE-AC52-07NA27344] FX This research was supported by EFree, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, Basic Energy Sciences (Award No. DE-SC0001057). The infrastructure and facilities used were supported by the U.S. DOE/NNSA (Award No. DE-NA-0002006, CDAC). Work at LLNL was performed under the auspices of the DOE (Contract No. DE-AC52-07NA27344). NR 44 TC 0 Z9 0 U1 18 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 10 PY 2016 VL 117 IS 20 AR 206403 DI 10.1103/PhysRevLett.117.206403 PG 5 WC Physics, Multidisciplinary SC Physics GA EB7CV UT WOS:000387544200012 PM 27886502 ER PT J AU Ai, G Wang, ZH Dai, YL Mao, WF Zhao, H Fu, YB En, YF Battaglia, V Liu, G AF Ai, Guo Wang, Zhihui Dai, Yiling Mao, Wenfeng Zhao, Hui Fu, Yanbao En, Yunfei Battaglia, Vincent Liu, Gao TI Improving the over-all performance of Li-S batteries via electrolyte optimization with consideration of loading condition SO ELECTROCHIMICA ACTA LA English DT Article DE Li-S battery; self-discharge; ionic liquid; over-all performance; high-loading ID LITHIUM-SULFUR BATTERIES; IONIC-LIQUID ELECTROLYTE; SELF-DISCHARGE; CATHODE; CARBON; ETHER; CELL AB Lithium sulfur (Li-S) batteries are very promising electrochemical storage system due to their high gravimetric energy density and low cost. Enormous efforts have been put on Li-S battery to achieve its commercialization. The function of electrolyte is a key issue in achieving the high performance of Li-S system, and several additives have been tried. But very few works have been working on the electrolyte optimization method with the consideration of over-all performance, including cycling stability, rate capability, especially self-discharge prevention ability, and the consideration of loading condition. In this work, we focus on the incorporation of room temperature ionic liquid (IL) as co-solvent, and the effect of IL in mitigating the polysulfide dissolution via systematical mechanism study of self-discharge phenomena. Moreover, the optimization of IL incorporation ratio is discussed for the sake of the better over-all electrochemical performance of Li-S cell by considering cycling stability, rate performance and self-discharge prevention ability, which is found to vary with loading condition. The improved understanding of the effect of IL on battery performance will help the development of electrolyte for Li-S batteries. Published by Elsevier Ltd. C1 [Ai, Guo; Wang, Zhihui; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Battaglia, Vincent; Liu, Gao] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Technol Area, Berkeley, CA 94720 USA. [Ai, Guo; En, Yunfei] Minist Ind & Informat Technol, Sci & Technol Reliabil Phys & Applicat Elect Comp, Elect Res Inst 5, Guangzhou 510610, Guangdong, Peoples R China. [Mao, Wenfeng] Guangzhou Automobile Grp Co Ltd, Guangzhou 511434, Guangdong, Peoples R China. RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Technol Area, Berkeley, CA 94720 USA. EM gliu@lbl.gov FU Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. Department of Energy (U.S. DOE) under the Advanced Battery Materials Research (BMR) program; National Center for Electron Microscopy of the Molecular Foundry; Advanced Light Source at the Lawrence Berkeley National Laboratory; U.S. Department of Energy [DE-AC02-05 CH11231]; China Scholarship Council; National Natural Science Foundation of China [51602058]; Distinguished Young Scientist Program of Guangdong Province [2015A030306002]; Science and Technology Research Project of Guangdong [2015B090912002] FX This work is funded by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. Department of Energy (U.S. DOE) under the Advanced Battery Materials Research (BMR) program, along with the National Center for Electron Microscopy of the Molecular Foundry and the Advanced Light Source at the Lawrence Berkeley National Laboratory, which are supported by the U.S. Department of Energy under Contract # DE-AC02-05 CH11231. Guo Ai and Wenfeng Mao are supported by the China Scholarship Council. Guo Ai is supported by the National Natural Science Foundation of China (No. 51602058), Distinguished Young Scientist Program of Guangdong Province (2015A030306002) and Science and Technology Research Project of Guangdong (2015B090912002). NR 43 TC 0 Z9 0 U1 71 U2 71 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 10 PY 2016 VL 218 BP 1 EP 7 DI 10.1016/j.electacta.2016.09.090 PG 7 WC Electrochemistry SC Electrochemistry GA DZ4PF UT WOS:000385840100001 ER PT J AU Gandomi, YA Aaron, DS Mench, MM AF Gandomi, Yasser Ashraf Aaron, D. S. Mench, M. M. TI Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries SO ELECTROCHIMICA ACTA LA English DT Article DE redox flow batteries; in-situ crossover measurement; UV/Vis spectroscopy; osmosis; water transport ID CATION-EXCHANGE MEMBRANES; HIGH-ENERGY DENSITY; WATER MANAGEMENT; NAFION MEMBRANES; HALF-CELL; CROSSOVER; MODEL; STATE; ELECTROLYTE; CHARGE AB One of the major sources of capacity loss in all-vanadium redox flow batteries (VRFBs) is the undesired transport of active vanadium species across the ion-exchange membrane, generically termed crossover. In this work, a novel system has been designed and built to investigate the concentration-and electrostatic potential gradient-driven crossover for all vanadium species through the membrane in real-time. For this study, a perfluorosulphonic acid membrane separator (Nafion (R) 117) was used. The test system utilizes ultraviolet/visible (UV/Vis) spectroscopy to differentiate vanadium ion species and separates contributions to crossover stemming from concentration and electrostatic potential gradients. It is shown that the rate of species transport through the ion-exchange membrane is state of charge dependent and, as a result, interaction coefficients have been deduced which can be used to better estimate expected crossover over a range of operating conditions. The electric field was shown to increase the negative-to-positive transport of V(II)/V(III) and suppress the positive-to-negative transport of V(IV)/V(V) during discharge, with an inverse trend during charging conditions. Electric-field-induced transport coefficients were deduced directly from experimental data. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Gandomi, Yasser Ashraf; Aaron, D. S.; Mench, M. M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Electrochem Energy Storage & Convers Lab, Knoxville, TN 37996 USA. [Mench, M. M.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Mench, MM (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Electrochem Energy Storage & Convers Lab, Knoxville, TN 37996 USA.; Mench, MM (reprint author), Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. EM y.a.gandomi@gmail.com; mmench@utk.edu FU University of Tennessee FX Mr. Yasser Ashraf Gandomi would like to acknowledge University of Tennessee for providing Chancellors Graduate Fellowship support. NR 70 TC 2 Z9 2 U1 39 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 10 PY 2016 VL 218 BP 174 EP 190 DI 10.1016/j.electacta.2016.09.087 PG 17 WC Electrochemistry SC Electrochemistry GA DZ4PF UT WOS:000385840100023 ER PT J AU Fang, GZ Liang, CW Zhou, J Cai, GM Liang, SQ Liu, J AF Fang, Guozhao Liang, Caiwu Zhou, Jiang Cai, Gemei Liang, Shuquan Liu, Jun TI Effect of crystalline structure on the electrochemical properties of K0.25V2O5 nanobelt for fast Li insertion SO ELECTROCHIMICA ACTA LA English DT Article DE K0.25V2O5; nanobelt; hierarchical architecture; long-cycle-life; electrochemical property ID LITHIUM-ION BATTERIES; LONG CYCLE LIFE; CATHODE MATERIAL; FACILE SYNTHESIS; ENERGY-STORAGE; INTERCALATION COMPOUND; VANADIUM PENTOXIDE; GENERAL-SYNTHESIS; PERFORMANCE; NANOWIRES AB Lithium vanadium oxides and vanadates have wide attention as cathode materials for Li ion battery applications, but there has been limited study on other cations substituted vanadium compounds, which could have favorable electrochemical properties. Here we report the synthesis and electrochemical properties of aggregated K0.25V2O5 nanobelts and the optimization of the crystalline structure for fast Li ion insertion. We propose a partial melting and self-alignment mechanism to produce the aggregated nanobelts. This material can deliver a high discharge capacity of 232 mA h(-1) at 100 mA g(-1) and high rate capability. It also exhibits superior long-term cycling performance with no capacity fading over 800 cycles at high current density of 1, 1.5, and 2 A g(-1). Remarkably, although some work has been devoted to potassium vanadates, there is little work introducing this class of materials with super long lifespan. The results demonstrate that the as-prepared K0.25V2O5 would be a potential candidate for LIBs. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Fang, Guozhao; Liang, Caiwu; Zhou, Jiang; Cai, Gemei; Liang, Shuquan] Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China. [Liu, Jun] Pacific Northwest Natl Lab, Richland, WA 99354 USA. RP Zhou, J; Liang, SQ (reprint author), Cent S Univ, Sch Mat Sci & Engn, Changsha 410083, Hunan, Peoples R China.; Liu, J (reprint author), Pacific Northwest Natl Lab, Richland, WA 99354 USA. EM zhou_jiang@csu.edu.cn; lsq@csu.edu.cn; Jun.Liu@pnnl.gov OI Zhou, Jiang/0000-0003-0858-4533 FU National High Technology Research and Development Program of China (863 Program) [2013AA110106]; National Natural Science Foundation of China [51374255, 51572299]; Fundamental Research Funds for Central Universities of Central South University [2015zzts174, 160210001]; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152] FX This work was supported by National High Technology Research and Development Program of China (863 Program) (Grant no. 2013AA110106), National Natural Science Foundation of China (Grant no. 51374255 and 51572299) and the Fundamental Research Funds for the Central Universities of Central South University (2015zzts174 and 160210001). Dr. Jun Liu (PNNL) would like to acknowledge the support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award KC020105-FWP12152> for providing guidance on the synthesis, characterization and insights into the crystalline structures. NR 68 TC 0 Z9 0 U1 27 U2 27 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 10 PY 2016 VL 218 BP 199 EP 207 DI 10.1016/j.electacta.2016.09.103 PG 9 WC Electrochemistry SC Electrochemistry GA DZ4PF UT WOS:000385840100025 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kraetschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieck, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Dobur, D Fasanella, G Favart, L Gay, APR Grebenyuk, A Leeonard, A Mohammadi, A Pernie, L Randle-Conde, A Reis, T Seva, T Thomas, L Velde, CV Vanlaer, P Wang, J Zenoni, F Beernaert, K Benucci, L Cimmino, A Crucy, S Fagot, A Garcia, G Gul, M Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Thyssen, F Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Beliy, N Hammad, GH Alda, WL Alves, GA Brito, L Martins, MCM Martins, TD Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Chagas, EBBD Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Genchev, V Hadjiiska, R Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Tao, J Wang, C Wang, Z Asawatangtrakuldee, C Ban, Y Chen, G Li, Q Liu, S Mao, Y Qian, SJ Wang, D Wang, M Wang, Q Xu, Z Yang, D Zhang, F Zhang, L Zhang, Z Zou, W Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finger, M Ali, A Aly, R Aly, S Elgammal, S Kamel, AE Lotfy, A Mahmoud, MA Masod, R Radi, A Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A de Cassagnac, RG Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Beaupere, N Bernet, C Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Lomidze, D Autermann, C Beranek, S Bontenackels, M Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Sammet, J Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Schmitz, SA Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Garcia, JG Geiser, A Gizhko, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Sahin, MO Salfeld-Nebgen, J Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Wissing, C Blobel, V Vignali, MC Draeger, AR Ere, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Kirschenmann, H Klanner, R Kogler, R Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Nowatschin, D Ott, J Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Gilbert, A Hartmann, F Husemann, U Katkov, I Kornmayer, A Pardo, PL Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Mal, P Mandal, K Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Nishu, N Singh, JB Kumar, A Kumar, A Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, R Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dey, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Sur, N Sutar, B Wickramage, N Sharma, S Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Chhibra, SS Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Sharma, A Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, C Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Calvelli, V Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R De Oliveira, ACA Checchia, P Dall'Osso, M Dorigo, T Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Montecassiano, F Passaseo, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zanetti, M Zotto, P Zucchetta, A Zumerle, G Gabusi, M Magnani, A Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, T Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Covarelli, R De Remigis, P Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Park, H Sakharov, A Son, DC Kim, H Kim, TJ Ryu, MS Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, JH Lee, JSH Park, IC Ryu, G Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Vaitkus, J Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Linares, EC Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez, GR Sanchez-Hernandez, A Moreno, SC Valencia, FV Carpinteyro, S Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Toriashvili, T Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Myagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, A Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cortezon, EP Garcia, JM Cifuentes, JAB Cabrillo, IJ Calderon, A De Saa, JRC Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Petrilli, A Petrucciani, G Pfeiffer, A Piparo, D Racz, A Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Sharma, A Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marini, AC Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Musella, P Nessi-Tedaldi, F Pandolfi, F Masciovecchio, M Meister, D Mohr, N Musella, P Nessi-Tedaldi, F Fi, FP Pata, J Pauss, F Perrozzi, L Peruzzi, M Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Weber, HA Aarrestad, TK Amsler, C Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Taroni, S Yang, Y Cardaci, M Chen, KH Doan, TH Ferro, C Konyushikhin, M Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Petrakou, E Tsai, JF Tzeng, YM Wilken, R Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Cerci, S Dozen, C Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Tali, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Surat, UE Yalvac, M Zeyrek, M Albayrak, EA Gumez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Gunaydin, YO Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Sharp, P Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Pastika, N Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J St John, J Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Sagir, S Sinthuprasith, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Sumowidagdo, S Wei, H Wimpenny, S Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Kovalskyi, D Letts, J Macneill, I Olivito, D Padhi, S Palmer, C Pieri, M Sani, M Sharma, V Simon, S Tadel, M Tu, Y Vartak, A Wasserbaech, S Welke, C Wurthwein, F Yagil, A Della Porta, GZ Barge, D Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Justus, C Mccoll, N Mullin, SD Richman, J Stuart, D To, W West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Smith, JG Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Skinnari, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Hu, Z Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwan, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K No, JMMF Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Whitbeck, A Yang, F Yin, H Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Muniz, L Rank, D Rinkevicius, A Shchutska, L Snowball, M Sperka, D Wang, SJ Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Veeraraghavan, V Weinberg, M Bhopatkar, V Hohlmann, M Kalakhety, H Mareskas-Palcek, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Sen, S Snyder, C Tan, P Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Nash, K Osherson, M Swartz, M Xiao, M Xin, Y Baringer, P Bean, A Benelli, G Bruner, C Gray, J Kenny, RP Majumder, D Malek, M Murray, M Noonan, D Sanders, S Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Saini, LK Skhirtladze, N Svintradze, I Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Lu, Y Mignerey, AC Pedro, K Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Mcginn, C Niu, X Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Finkel, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Nourbakhsh, S Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Won, S Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Meng, F Mueller, C Musienko, Y Pearson, T Planer, M Ruchti, R Smith, G Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Kress, M Leonardo, N Miller, DH Neumeister, N Primavera, F Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Zablocki, J Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Verzetti, M Vishnevskiy, D Demortier, L Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Elayavalli, RK Lath, A Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Flanagan, W Gilmore, J Kamon, T Krutelyov, V Montalvo, R Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Roe, J Rose, A Safonov, A Suarez, I Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kovitanggoon, K Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Christian, A Dasu, S Dodd, L Duric, S Friis, E Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Ruggles, T Sarangi, T Savin, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Knuenz, V. Koenig, A. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieck, J. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Dobur, D. Fasanella, G. Favart, L. Gay, A. P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Randle-Conde, A. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Zenoni, F. Beernaert, K. Benucci, L. Cimmino, A. Crucy, S. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Beliy, N. Hammad, G. H. Alda Junior, W. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Dos Reis Martins, T. Hensel, C. Mora Herrera, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Genchev, V. Hadjiiska, R. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Tao, J. Wang, C. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Chen, G. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Wang, M. Wang, Q. Xu, Z. Yang, D. Zhang, F. Zhang, L. Zhang, Z. Zou, W. Avila, C. Cabrera, A. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finger, M., Jr. Ali, A. Aly, R. Aly, S. Elgammal, S. Kamel, A. Ellithi Lotfy, A. Mahmoud, M. A. Masod, R. Radi, A. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. de Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Bernet, C. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Lomidze, D. Autermann, C. Beranek, S. Bontenackels, M. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Sammet, J. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Schmitz, S. A. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Garcia, J. Garay Geiser, A. Gizhko, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Ere, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Kirschenmann, H. Klanner, R. Kogler, R. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Nowatschin, D. Ott, J. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Mal, P. Mandal, K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Nishu, N. Singh, J. B. Kumar, Ashok Kumar, Arun Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, R. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Sur, N. Sutar, B. Wickramage, N. Sharma, S. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Chhibra, S. S. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Sharma, A. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Calvelli, V. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. De Oliveira, A. Carvalho Antunes Checchia, P. Dall'Osso, M. Dorigo, T. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Magnani, A. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Covarelli, R. De Remigis, P. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Sakharov, A. Son, D. C. Kim, H. Kim, T. J. Ryu, M. S. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Vaitkus, J. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Linares, E. Casimiro Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez, G. Ramirez Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Toriashvili, T. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Myagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Maestre, J. Alcaraz Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Petrilli, A. Petrucciani, G. Pfeiffer, A. Piparo, D. Racz, A. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schafer, C. Schwick, C. Sharma, A. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Wohri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Buchmann, M. A. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Dunser, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marini, A. C. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Masciovecchio, M. Meister, D. Mohr, N. Musella, P. Nessi-Tedaldi, F. Fi, F. Pandol Pata, J. Pauss, F. Perrozzi, L. Peruzzi, M. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Weber, H. A. Aarrestad, T. K. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Taroni, S. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Ferro, C. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Petrakou, E. Tsai, J. F. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Cerci, S. Dozen, C. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Tali, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Surat, U. E. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-Storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Sharp, P. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Pastika, N. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. St John, J. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Sagir, S. Sinthuprasith, T. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wei, H. Wimpenny, S. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Kovalskyi, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Palmer, C. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Welke, C. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Barge, D. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Justus, C. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Smith, J. G. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Skinnari, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Hu, Z. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwan, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. No, J. M. Marra Ffi Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Whitbeck, A. Yang, F. Yin, H. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Muniz, L. Rank, D. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Wang, S. J. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Veeraraghavan, V. Weinberg, M. Bhopatkar, V. Hohlmann, M. Kalakhety, H. Mareskas-Palcek, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Sen, S. Snyder, C. Tan, P. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Nash, K. Osherson, M. Swartz, M. Xiao, M. Xin, Y. Baringer, P. Bean, A. Benelli, G. Bruner, C. Gray, J. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Noonan, D. Sanders, S. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Skhirtladze, N. Svintradze, I. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Lu, Y. Mignerey, A. C. Pedro, K. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Mcginn, C. Niu, X. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Finkel, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Nourbakhsh, S. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Won, S. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Pearson, T. Planer, M. Ruchti, R. Smith, G. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Miller, D. H. Neumeister, N. Primavera, F. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Zablocki, J. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Verzetti, M. Vishnevskiy, D. Demortier, L. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Lath, A. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Krutelyov, V. Montalvo, R. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Roe, J. Rose, A. Safonov, A. Suarez, I. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kovitanggoon, K. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Christian, A. Dasu, S. Dodd, L. Duric, S. Friis, E. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Ruggles, T. Sarangi, T. Savin, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Search for third-generation scalar leptoquarks in the t tau channel in proton-proton collisions at root s = 8 TeV (vol 7, 042, 2015) SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Correction C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Zenoni, F.; Zhang, F.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Hammad, G. H.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.] Inst High Energy Phys, Beijing, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Wang, M.; Wang, Q.; Xu, Z.; Yang, D.; Zhang, F.; Zhang, L.; Zhang, Z.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. [Avila, C.; Cabrera, A.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.] Inst Rudjer Boskov, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Ali, A.; Aly, R.; Aly, S.; Elgammal, S.; Kamel, A. Ellithi; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Bernet, C.; Abdulsalam, A.] Ecole Polytech, Lab Leprince Ringuet, IN2P3, CNRS, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, CNRS, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, IN2P3,Inst Phys Nucl Lyon, Villeurbanne, France. [Lomidze, D.; Toriashvili, T.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Roland, B.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Woehrmann, C.; Wolf, R.] Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Abdulsalam, A.] Univ Ioannina, Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.] Panjab Univ, Chandigarh, India. [Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Bombay, Maharashtra, India. [Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Giordano, F.] CSFNSM, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trento, Trento, Italy. [Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Pavia, Italy. [Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, Perugia, Italy. [Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Micheli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; De Remigis, P.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Pacher, L.; Angioni, G. L. Pinna; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, H.; Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju, South Korea. [Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Linares, E. Casimiro; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez, G. Ramirez; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Exp Particulas, Lisbon, Portugal. [Finger, M., Jr.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Popov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Maestre, J. Alcaraz; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Rabady, D.; Genchev, V.; Sharma, A.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schafer, C.; Schwick, C.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wohri, H. K.; Zagozdzinska, A.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Ferro, F.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-Storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.] Brown Univ, Providence, RI 02912 USA. [Mulders, M.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; No, J. M. Marra Ffi; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Turner, M.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.] Johns Hopkins Univ, Baltimore, MD USA. [Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Abdulsalam, A.; Ackert, A.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Abdulsalam, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Fruehwirth, R.; Krammer, M.; Schieck, J.; Wulz, C. -E.] Vienna Univ Technol, Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Ali, A.; Masod, R.; Radi, A.] Ain Shams Univ, Cairo, Egypt. [Ali, A.; Elgammal, S.; Radi, A.] British Univ Egypt, Cairo, Egypt. [Aly, R.; Aly, S.] Helwan Univ, Cairo, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Lotfy, A.; Mahmoud, M. A.; Abdulsalam, A.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Karacheban, O.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Azarkin, M.; Dremin, I.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cerci, S.; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Albayrak, E. A.; Kaya, M.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Paulini, Manfred/N-7794-2014; Lokhtin, Igor/D-7004-2012; Manganote, Edmilson/K-8251-2013; Goh, Junghwan/Q-3720-2016; TUVE', Cristina/P-3933-2015; Della Ricca, Giuseppe/B-6826-2013; Tuominen, Eija/A-5288-2017 OI Paulini, Manfred/0000-0002-6714-5787; Goh, Junghwan/0000-0002-1129-2083; TUVE', Cristina/0000-0003-0739-3153; Della Ricca, Giuseppe/0000-0003-2831-6982; Tuominen, Eija/0000-0002-7073-7767 NR 1 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 9 PY 2016 IS 11 AR 056 DI 10.1007/JHEP11(2016)056 PG 20 WC Physics, Particles & Fields SC Physics GA EC5LF UT WOS:000388176100001 ER PT J AU Lee, JH Han, KS Lee, JS Lee, AS Park, SK Hong, SY Lee, JC Mueller, KT Hong, SM Koo, CM AF Lee, Jin Hong Han, Kee Sung Lee, Je Seung Lee, Albert S. Park, Seo Kyung Hong, Sung Yun Lee, Jong-Chan Mueller, Karl T. Hong, Soon Man Koo, Chong Min TI Facilitated Ion Transport in Smectic Ordered Ionic Liquid Crystals SO ADVANCED MATERIALS LA English DT Article ID BICONTINUOUS CUBIC PHASES; SELF-ORGANIZATION; FIELD GRADIENT; DIFFUSION; SALTS; ELECTROLYTES; CHALLENGES; CATIONS; ANIONS; FILMS AB A novel ionic mixture of an imidazolium-based room-temperature ionic liquid containing ethylene-oxide-functionalized phosphite anions is fabricated, which, when doped with lithium salt, self-assembles into a smectic-ordered ionic liquid crystal through Coulombic interactions between the ion species. Interestingly, the smectic order in the ionic-liquid-crystal ionogel facilitates ionic transport. C1 [Lee, Jin Hong; Lee, Albert S.; Hong, Soon Man; Koo, Chong Min] Korea Inst Sci & Technol, Mat Architecturing Res Ctr, Hwarang Ro 14 Gil 5, Seoul 136791, South Korea. [Lee, Jin Hong; Lee, Jong-Chan] Seoul Natl Univ, Sch Chem & Biol Engn, 599 Gwanak Ro, Seoul 151742, South Korea. [Lee, Je Seung; Lee, Jong-Chan] Seoul Natl Univ, Inst Chem Proc, 599 Gwanak Ro, Seoul 151742, South Korea. [Han, Kee Sung] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Lee, Je Seung; Park, Seo Kyung; Hong, Sung Yun] Kyung Hee Univ, Dept Chem, 26 Kyungheedae Ro, Seoul 02447, South Korea. [Mueller, Karl T.] Penn State Univ, Dept Chem, University Pk, PA 16802 USA. [Mueller, Karl T.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Hong, Soon Man; Koo, Chong Min] Univ Sci & Technol, Nanomat Sci & Engn, Daejeon 305350, South Korea. RP Koo, CM (reprint author), Korea Inst Sci & Technol, Mat Architecturing Res Ctr, Hwarang Ro 14 Gil 5, Seoul 136791, South Korea.; Lee, JS (reprint author), Seoul Natl Univ, Inst Chem Proc, 599 Gwanak Ro, Seoul 151742, South Korea.; Mueller, KT (reprint author), Penn State Univ, Dept Chem, University Pk, PA 16802 USA.; Mueller, KT (reprint author), Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA.; Koo, CM (reprint author), Univ Sci & Technol, Nanomat Sci & Engn, Daejeon 305350, South Korea. EM leejs70@khu.ac.kr; karl.mueller@pnnl.gov; koo@kist.re.kr FU Fundamental RAMP;D Program for Core Technology of Materials; Industrial Strategic Technology Development Program - Ministry of Knowledge Economy, Republic of Korea; Materials Architecturing Research Center of Korea Institute of Science and Technology (KIST); Disaster and Safety Management Institute - Ministry of Public Safety and Security of Korea government; DOE BER FX J.H.L. and K.S.H. contributed equally to this work. This work was financially supported by a grant from the Fundamental R&D Program for Core Technology of Materials, and Industrial Strategic Technology Development Program funded by the Ministry of Knowledge Economy, Republic of Korea, and partially supported by Materials Architecturing Research Center of Korea Institute of Science and Technology (KIST). This research was also supported by a grant from the Disaster and Safety Management Institute funded by the Ministry of Public Safety and Security of Korea government. Synchrotron X-ray diffraction measurements were performed at Pohang Light Source, South Korea, and NMR experiments were performed at EMSL, a DOE Office of Science user facility sponsored by the DOE BER and located at PNNL. NR 43 TC 0 Z9 0 U1 17 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 9 PY 2016 VL 28 IS 42 BP 9301 EP 9307 DI 10.1002/adma.201602702 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EG6RV UT WOS:000391174600004 PM 27604816 ER PT J AU Liao, WQ Zhao, DW Yu, Y Grice, CR Wang, CL Cimaroli, AJ Schulz, P Meng, WW Zhu, K Xiong, RG Yan, YF AF Liao, Weiqiang Zhao, Dewei Yu, Yue Grice, Corey R. Wang, Changlei Cimaroli, Alexander J. Schulz, Philip Meng, Weiwei Zhu, Kai Xiong, Ren-Gen Yan, Yanfa TI Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22% SO ADVANCED MATERIALS LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; PHOTOVOLTAIC APPLICATIONS; SELECTIVE LAYERS; CH3NH3PBI3; IODIDE; PERFORMANCE; RECOMBINATION; SEMICONDUCTORS; FABRICATION; HYSTERESIS AB Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI(3)) perovskite solar cells (PVSCs) are demonstrated. Our FASnI(3) PVSCs achieved average power conversion effi ciencies (PCEs) of 5.41% +/- 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state effi ciency of approximate to 6.00% for over 100 s. C1 [Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R.; Wang, Changlei; Cimaroli, Alexander J.; Meng, Weiwei; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R.; Wang, Changlei; Cimaroli, Alexander J.; Meng, Weiwei; Yan, Yanfa] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA. [Liao, Weiqiang; Xiong, Ren-Gen] Southeast Univ, Ordered Matter Sci Res Ctr, Nanjing 211189, Jiangsu, Peoples R China. [Schulz, Philip; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. RP Zhao, DW; Yan, YF (reprint author), Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA.; Zhao, DW; Yan, YF (reprint author), Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA.; Xiong, RG (reprint author), Southeast Univ, Ordered Matter Sci Res Ctr, Nanjing 211189, Jiangsu, Peoples R China. EM dewei.zhao@utoledo.edu; xiongrg@seu.edu.cn; yanfa.yan@utoledo.edu OI Grice, Corey/0000-0002-0841-5943 FU U.S. Department of Energy (DOE) SunShot Initiative [DE-FOA-0000990]; National Science Foundation [CHE-1230246, DMR-1534686]; Ohio Research Scholar Program; U.S. Department of Energy [DE-AC36-08-GO28308]; National Center for Photovoltaics - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; National Natural Science Foundation of China (NSFC) [91422301] FX W.L. and D.Z. contributed equally to this work. This work was financially supported by the U.S. Department of Energy (DOE) SunShot Initiative under the Next Generation Photovoltaics 3 program (DE-FOA-0000990), the National Science Foundation under Contract Nos. CHE-1230246 and DMR-1534686, and the Ohio Research Scholar Program. The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy under under Contract No. DE-AC36-08-GO28308. P.S. acknowledges the support by the Hybrid Perovskite Solar Cell program of the National Center for Photovoltaics funded by U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. This research used the resources of the Ohio Supercomputer Center and the National Energy Research Scientific Computing Center, which was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The work at the Southeast University (P.R. China) was supported by the National Natural Science Foundation of China (NSFC) under Contract No. 91422301. NR 67 TC 5 Z9 5 U1 71 U2 71 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 9 PY 2016 VL 28 IS 42 BP 9333 EP + DI 10.1002/adma.201602992 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EG6RV UT WOS:000391174600009 PM 27571446 ER PT J AU Crable, BR Sieber, JR Mao, X Alvarez-Cohen, L Gunsalus, R Loo, RRO Nguyen, H McInerney, MJ AF Crable, Bryan R. Sieber, Jessica R. Mao, Xinwei Alvarez-Cohen, Lisa Gunsalus, Robert Loo, Rachel R. Ogorzalek Nguyen, Hong McInerney, Michael J. TI Membrane Complexes of Syntrophomonas wolfei Involved in Syntrophic Butyrate Degradation and Hydrogen Formation SO FRONTIERS IN MICROBIOLOGY LA English DT Article DE syntrophy; methanogenesis; biohydrogen; hydrogenase; fatty acids ID METHANOSPIRILLUM-HUNGATII; BACTERIAL NANOWIRES; SP-NOV; METABOLISM; FATTY; MICROORGANISMS; METHANOGENS; COOPERATION; COCULTURES; TRANSPORT AB Syntrophic butyrate metabolism involves the thermodynamically unfavorable production of hydrogen and/or formate from the high potential electron donor, butyryl-CoA. Such redox reactions can occur only with energy input by a process called reverse electron transfer. Previous studies have demonstrated that hydrogen production from butyrate requires the presence of a proton gradient, but the biochemical machinery involved has not been clearly elucidated. In this study, the gene and enzyme systems involved in reverse electron transfer by Syntrophomonas wolfei were investigated using proteomic and gene expression approaches. S. wolfei was grown in co-culture with Methanospirillum hungatei or Dehalococcoides mccartyi under conditions requiring reverse electron transfer and compared to both axenic S. wolfei cultures and co-cultures grown in conditions that do not require reverse electron transfer. Blue native gel analysis of membranes solubilized from syntrophically grown cells revealed the presence of a membrane-bound hydrogenase, Hyd2, which exhibited hydrogenase activity during in gel assays. Bands containing a putative iron-sulfur (FeS) oxidoreductase were detected in membranes of crotonate-grown and butyrate grown S. wolfei cells. The genes for the corresponding hydrogenase subunits, hyd2ABC, were differentially expressed at higher levels during syntrophic butyrate growth when compared to growth on crotonate. The expression of the FeS oxidoreductase gene increased when S. wolfei was grown with M. hungatei. Additional membrane-associated proteins detected included FoF1 ATP synthase subunits and several membrane transporters that may aid syntrophic growth. Furthermore, syntrophic butyrate metabolism can proceed exclusively by interspecies hydrogen transfer, as demonstrated by growth with D. mccartyi, which is unable to use formate. These results argue for the importance of Hyd2 and FeS oxidoreductase in reverse electron transfer during syntrophic butyrate degradation. C1 [Crable, Bryan R.; Sieber, Jessica R.; McInerney, Michael J.] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Mao, Xinwei; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Gunsalus, Robert] Univ Calif Los Angeles, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA USA. [Loo, Rachel R. Ogorzalek; Nguyen, Hong] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90024 USA. [Crable, Bryan R.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Sieber, Jessica R.] Univ Minnesota, Dept Biol, Duluth, MN 55812 USA. [Mao, Xinwei] SUNY Stony Brook, Dept Civil Engn, Stony Brook, NY 11794 USA. RP McInerney, MJ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. EM mcinerney@ou.edu FU Department of Energy from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences [DE-EG02-96ER20214]; National Institutes of Health [R01GM085402]; Department of Energy Office of Science (BER) [DE-FC-02-02ER63421]; U.S. Department of Energy [DE-FG03-86ER13498]; National Institute of Environmental Health and Safety [P42-ES04705-14]; National Science Foundation [CBET-1336709] FX Cultivation, gene expression and blue native gel analyses were supported by Department of Energy contract DE-EG02-96ER20214 from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences to MM. Proteomic analyses were supported by the National Institutes of Health contract R01GM085402 to Joseph A. Loo and RO and Department of Energy Office of Science (BER) contract DE-FC-02-02ER63421 for the UCLA-DOE Institute. Assistance in cloning and expression provided by RG group was supported by U.S. Department of Energy contract DE-FG03-86ER13498. Work on S. wolfei-D. mccarlyi was supported by the National Institute of Environmental Health and Safety contract P42-ES04705-14 and the National Science Foundation contract CBET-1336709 to I,A-C. NR 34 TC 0 Z9 0 U1 7 U2 7 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1664-302X J9 FRONT MICROBIOL JI Front. Microbiol. PD NOV 9 PY 2016 VL 7 AR 1795 DI 10.3389/fmicb.2016.01795 PG 9 WC Microbiology SC Microbiology GA ED2SG UT WOS:000388698400001 PM 27881975 ER PT J AU Xiao, LG Chen, S Gao, K Peng, XB Liu, F Cao, Y Wong, WY Wong, WK Zhu, XJ AF Xiao, Liangang Chen, Song Gao, Ke Peng, Xiaobin Liu, Feng Cao, Yong Wong, Wai-Yeung Wong, Wai-Kwok Zhu, Xunjin TI New Terthiophene-Conjugated Porphyrin Donors for Highly Efficient Organic Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE porphyrin; organic solar cells; terthiophene; peripheral substitutions; molecular packing ID POWER CONVERSION EFFICIENCY; SMALL-MOLECULE; PHOTOVOLTAIC CELLS; FILL FACTOR; BULK; POLYMER; PERFORMANCE; DIKETOPYRROLOPYRROLE; UNIT; LENGTH AB To mimic the natural photosynthetic systems utilizing chlorophylls to absorb light and store light energy, two new porphyrin-based small molecules of PTTR and PTTCNR have been developed for photovoltaic applications. The highest power conversion efficiency of 8.21% is achieved, corresponding to a short-circuit current of 14.30 mA cm(-2), open-circuit voltage of 0.82 V, and fill factor of 70.01%. The excellent device performances can be ascribed to the engineering of molecule structure and film morphology. The horizontal conjugation of 3,3 ''-dihexyl-terthiophene to porphyrin-core with the vertical aliphatic 2-octylundecyl peripheral substitutions, can not only effectively increase the solar flux coverage between the conventional Soret and Q bands of porphyrin unit, but also optimize molecular packing through polymorphism associated with side-chains and the linear pi-conjugated backbones. And the additive of 1,8-diiodooctane and subsequent chloroform solvent vapor annealing facilitate the formation of the blend films with [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) characteristics of bicontinuous, interpenetrating networks required for efficient charge separation and transportation. C1 [Xiao, Liangang; Gao, Ke; Peng, Xiaobin; Cao, Yong] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China. [Chen, Song; Wong, Wai-Kwok; Zhu, Xunjin] Hong Kong Baptist Univ, Dept Chem, Res Ctr Excellence Organ Elect, Inst Mol Funct Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China. [Chen, Song; Wong, Wai-Kwok; Zhu, Xunjin] Hong Kong Baptist Univ, Inst Adv Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China. [Liu, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wong, Wai-Yeung] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Hong Kong, Peoples R China. RP Peng, XB (reprint author), South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, 381 Wushan Rd, Guangzhou 510640, Guangdong, Peoples R China.; Zhu, XJ (reprint author), Hong Kong Baptist Univ, Dept Chem, Res Ctr Excellence Organ Elect, Inst Mol Funct Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China.; Zhu, XJ (reprint author), Hong Kong Baptist Univ, Inst Adv Mat, Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China.; Liu, F (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Wong, WY (reprint author), Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hong Kong, Hong Kong, Peoples R China. EM chxbpeng@scut.edu.cn; iamfengliu@gmail.com; ywywong@hkbu.edu.hk; xjzhu@hkbu.edu.hk RI Gao, Ke/B-3412-2017; Liu, Feng/J-4361-2014 OI Liu, Feng/0000-0002-5572-8512 FU International Science & Technology Cooperation Program of China [2013DFG52740, 2010DFAS2150]; National Natural Science Foundation of China [51473053, 51073060, 91222201, 91333206]; Hong Kong Research Grants Council [HKBU 22304115-ECS, HKBU 203011]; Hong Kong Baptist University [FRG1/14-15/058, FRG2/13-14/083, RC-ICRS/15-16/02]; Areas of Excellence Scheme [AoE/P-03/08]; Hong Kong Polytechnic University; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001087] FX This work was financially supported by International Science & Technology Cooperation Program of China (2013DFG52740, 2010DFAS2150) and the National Natural Science Foundation of China (51473053, 51073060, 91222201, 91333206). X.Z., W.-K.W., and W.-Y.W. thank Hong Kong Research Grants Council (HKBU 22304115-ECS, HKBU 203011), Hong Kong Baptist University (FRG1/14-15/058, FRG2/13-14/083, and RC-ICRS/15-16/02) and Areas of Excellence Scheme ([AoE/P-03/08]) for the financial support. W.-Y.W. also acknowledges the Hong Kong Polytechnic University for the financial support. F.L. was financially supported by the U.S. Department of Energy, Office of Basic Energy Sciences (DE-SC0001087). Specifically, X.Z. and X.B.P. thank Chang Liu, Junbiao Peng (SCUT), and Ben Ong (HKBU) for their help and discussions in this work. NR 42 TC 3 Z9 3 U1 35 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 9 PY 2016 VL 8 IS 44 BP 30176 EP 30183 DI 10.1021/acsami.6b09790 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EB9SK UT WOS:000387737200038 PM 27731985 ER PT J AU Jia, L Wu, TP Lu, J Ma, L Zhu, WT Qiu, XP AF Jia, Lei Wu, Tianpin Lu, Jun Ma, Lu Zhu, Wentao Qiu, Xinping TI Polysulfides Capture-Copper Additive for Long Cycle Life Lithium Sulfur Batteries SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE sulfur utilization; polysulfides capture; shuttle effect free; in situ generation; Coulombic efficiency; lithium sulfur battery ID S BATTERIES; CARBON NANOTUBES; PERFORMANCE; COMPOSITE; CATHODE; ELECTRODE AB Copper powder was introduced into the lithium sulfur battery system to capture intermediate polysulfides and CuxS (x = 1 or 2) species was generated depending on the chain length of polysulfides. This phenomenon was verified by X-ray absorption near edge structure technique. The results indicated that copper can be oxidized to CuS by Li2Sx (x >= 6), and a mixture of Cu2S and CuS was obtained when x ranges from 3 to 6. While Cu2S is eventually formed in the presence of Li2S3. After several cycles activation, the polysulfide-shuttle effect and self-discharge phenomenon which hinder the application of lithium sulfur batteries are found nearly eliminated Further experiments demonstrated that in the case of Cu2S generation, a high specific sulfur capacity of 1300 mAh g(-1) could be delivered, corresponding to 77.6% sulfur utilization, while the Coulombic efficiency approximates around 100%. Self-discharge experiment further demonstrated that polysulfides almost disappear in the electrolyte, which verified the polysulfide-capture capability of copper. C1 [Jia, Lei; Zhu, Wentao; Qiu, Xinping] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China. [Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Lu, Jun; Ma, Lu] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Qiu, XP (reprint author), Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China. EM qiuxp@mail.tsinghua.edu.cn FU National Key Project on Basic Research [2015CB251104]; China-US Electric Vehicle Project [S2016G9004]; National Natural Science Foundation of China [51361130151]; Beijing Science Foundation [2120001]; U.S. DOE [DE-AC02-06CH11357] FX The authors appreciate the support from National Key Project on Basic Research (2015CB251104), China-US Electric Vehicle Project (S2016G9004), National Natural Science Foundation of China (51361130151), and Beijing Science Foundation (2120001). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 31 TC 0 Z9 0 U1 42 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 9 PY 2016 VL 8 IS 44 BP 30248 EP 30255 DI 10.1021/acsami.6b10366 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EB9SK UT WOS:000387737200046 PM 27753479 ER PT J AU Wardrip, NC Dsouza, M Urgun-Demirtas, M Snyder, SW Gilbert, JA Arnusch, CJ AF Wardrip, Nathaniel C. Dsouza, Melissa Urgun-Demirtas, Meltem Snyder, Seth W. Gilbert, Jack A. Arnusch, Christopher J. TI Printing-Assisted Surface Modifications of Patterned Ultrafiltration Membranes SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE 3D printing; maskless lithography; ultrafiltration membranes; UV-initiated graft polymerization; fouling; microbial community analysis ID WASTE-WATER TREATMENT; FILM COMPOSITE MEMBRANES; CROSS-FLOW FILTRATION; NANOFILTRATION MEMBRANES; POLYMER BRUSHES; FABRICATION; COPOLYMER; BIOREACTORS; DIVERSITY; SEQUENCES AB Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a masidess lithographic patterning technique for the generation of patterned polymer coatings, on ultrafiltration membranes. Polyethylene glycol, zwitterionic, Or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89);which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. This study broadens the tools for sulfate modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces. C1 [Wardrip, Nathaniel C.; Arnusch, Christopher J.] Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Dept Desalinat & Water Treatment, Sede Boqer Campus, IL-84990 Sede Boqer, Israel. [Urgun-Demirtas, Meltem; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Lemont, IL 60439 USA. [Gilbert, Jack A.] Argonne Natl Lab, BioSci Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Dsouza, Melissa; Gilbert, Jack A.] Univ Chicago, Dept Surg, 5841 S Maryland Ave, Chicago, IL 60637 USA. [Dsouza, Melissa; Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. RP Arnusch, CJ (reprint author), Ben Gurion Univ Negev, Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Dept Desalinat & Water Treatment, Sede Boqer Campus, IL-84990 Sede Boqer, Israel. EM arnusch@bgu.ac.il FU Ben Gurion University of the Negev - University of Chicago Institute for Molecular Engineering - Argonne National Laboratory Collaborative Program on Molecular Engineering of Water Resources; Israel Science Foundation [1474-13] FX We acknowledge financial support provided by the Ben Gurion University of the Negev - University of Chicago Institute for Molecular Engineering - Argonne National Laboratory Collaborative Program on Molecular Engineering of Water Resources, and the Israel Science Foundation (Grant 1474-13) to C.J.A. NR 49 TC 0 Z9 0 U1 25 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 9 PY 2016 VL 8 IS 44 BP 30271 EP 30280 DI 10.1021/acsami.6b11331 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EB9SK UT WOS:000387737200049 PM 27749035 ER PT J AU Rudd, ND Wang, H Fuentes-Fernandez, EMA Teat, SJ Chen, F Hall, G Chabal, YJ Li, J AF Rudd, Nathan D. Wang, Hao Fuentes-Fernandez, Erika M. A. Teat, Simon J. Chen, Feng Hall, Gene Chabal, Yves J. Li, Jing TI Highly Efficient Luminescent Metal-Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE luminescent metal-organic framework; heavy metal detection; heavy metal adsorption; ligand-based emission; isoreticular series ID AQUEOUS-SOLUTION; SELECTIVE DETECTION; ENHANCED REMOVAL; ELECTROCHEMICAL DETECTION; ULTRASENSITIVE DETECTION; GOLD NANOPARTICLES; MERCURY(II) IONS; HG2+ REMOVAL; FLUORESCENT; SENSOR AB We have designed and synthesized an isoreticular series of luminescent metal-organic frameworks (LMOFs) by incorporating a strongly emissive molecular fluorophore and functionally diverse colinkers into Zn-based structures. The three-dimensional porous networks of LMOF-261,-262, and-263 represent a unique/new type of nets, classified as a 2-nodal, (4,4)-c net (mot-e type) with 4-fold, class ilia interpenetration. All compounds crystallize in a body-centered tetragonal crystal system (space group I4(1)/a). A systematic study has been implemented to analyze their interactions with heavy metals. LMOF-263 exhibits impressive water stability, high porosity, and strong luminescence, making it an excellent candidate as a fluorescent chemical sensor and adsorbent for aqueous contaminants. It is extremely responsive to toxic heavy metals at a parts per billion level (3.3 ppb Hg2+, 19.7 ppb Pb2+) and demonstrates high selectivity for heavy metals over light metals, with detection ratios of 167.4 and 209.5 for Hg2+/Ca2+ and Hg2+/Mg2+, respectively. Mixed-metal adsorption experiments also show that LMOF-263 selectively adsorbs Hg2+ over other heavy metal ions in addition to light metals. The Pb2+ K-SV value for LMOF-263 (55,017 M-1) is the highest among LMOFs reported to date, and the Hg2+ K-SV value is the second highest (459,4-46 M-1). LMOF-263 exhibits a maximum adsorption capacity of 380 mg Hg2+/g. The Hg2+ adsorption process follows pseudo-second-order kinetics, removing 99.1% of the metal within 30 min. An in situ XPS study provides insight to help understand the interaction mechanism between Hg2+ and LMOF-263. No other MOFs have demonstrated such a high performance in both the detection and the capture of Hg2+ from aqueous solution. C1 [Rudd, Nathan D.; Wang, Hao; Hall, Gene; Li, Jing] Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA. [Fuentes-Fernandez, Erika M. A.; Chabal, Yves J.] Univ Texas Dallas, Dept Mat Sci & Engn, 800 West Campbell Rd, Dallas, TX 75080 USA. [Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Chen, Feng] Rider Univ, Dept Chem Biochem & Phys, 2083 Lawrenceville Rd, Lawrenceville, NJ 08648 USA. RP Li, J (reprint author), Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA. EM jingli@rutgers.edu FU Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-08ER-46491]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We are grateful for the financial support from the Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering through Grant No. DE-FG02-08ER-46491. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would also like to thank Horiba Scientific for the loan of the XGT-1000WR EDXRF spectrometer. N.R. would like to especially thank Ben Deibert and Baiyan Li for their extensive and valued discussions. NR 70 TC 4 Z9 4 U1 90 U2 90 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 9 PY 2016 VL 8 IS 44 BP 30294 EP 30303 DI 10.1021/acsami.6b10890 PG 10 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EB9SK UT WOS:000387737200052 PM 27736058 ER PT J AU Abgrall, N Aduszkiewicz, A Ajaz, M Ali, Y Andronov, E Anticic, T Antoniou, N Baatar, B Bay, F Blondel, A Blumer, J Bogomilov, M Brandin, A Bravar, A Brzychczyk, J Bunyatov, SA Busygina, O Christakoglou, P Cirkovic, M Czopowicz, T Davis, N Debieux, S Dembinski, H Deveaux, M Diakonos, F Di Luise, S Dominik, W Dumarchez, J Dynowski, K Engel, R Ereditato, A Feofilov, GA Fodor, Z Garibov, A Gazdzicki, M Golubeva, M Grebieszkow, K Grzeszczuk, A Guber, F Haesler, A Hasegawa, T Herve, AE Hierholzer, M Igolkin, S Ivashkin, A Johnson, SR Kadija, K Kapoyannis, A Kaptur, E Kisiel, J Kobayashi, T Kolesnikov, VI Kolev, D Kondratiev, VP Korzenev, A Kowalik, K Kowalski, S Koziel, M Krasnoperov, A Kuich, M Kurepin, A Larsen, D Laszlo, A Lewicki, M Lyubushkin, VV Mackowiak-Pawlowska, M Maksiak, B Malakhov, AI Manic, D Marcinek, A Marino, AD Marton, K Mathes, HJ Matulewicz, T Matveev, V Melkumov, GL Messerly, B Mills, GB Morozov, S Mrowczynski, S Nagai, Y Nakadaira, T Naskret, M Nirkko, M Nishikawa, K Panagiotou, AD Paolone, V Pavin, M Petukhov, O Pistillo, C Planeta, R Popov, BA Posiadala-Zezula, M Pulawski, S Puzovic, J Rauch, W Ravonel, M Redij, A Renfordt, R Richter-Was, E Robert, A Rohrich, D Rondio, E Roth, M Rubbia, A Rumberger, BT Rustamov, A Rybczynski, M Sadovsky, A Sakashita, K Sarnecki, R Schmidt, K Sekiguchi, T Selyuzhenkov, I Seryakov, A Seyboth, P Sgalaberna, D Shibata, M Slodkowski, M Staszel, P Stefanek, G Stepaniak, J Strobele, H Susa, T Szuba, M Tada, M Taranenko, A Tefelska, A Tefelski, D Tereshchenko, V Tsenov, R Turko, L Ulrich, R Unger, M Vassiliou, M Veberic, D Vechernin, VV Vesztergombi, G Vinogradov, L Wilczek, A Wlodarczyk, Z Wojtaszek-Szwarc, A Wyszynski, O Yarritu, K Zambelli, L Zimmerman, ED Friend, M Galymov, V Hartz, M Hiraki, T Ichikawa, A Kubo, H Matsuoka, K Murakami, A Nakaya, T Suzuki, K Tzanov, M Yu, M AF Abgrall, N. Aduszkiewicz, A. Ajaz, M. Ali, Y. Andronov, E. Anticic, T. Antoniou, N. Baatar, B. Bay, F. Blondel, A. Bluemer, J. Bogomilov, M. Brandin, A. Bravar, A. Brzychczyk, J. Bunyatov, S. A. Busygina, O. Christakoglou, P. Cirkovic, M. Czopowicz, T. Davis, N. Debieux, S. Dembinski, H. Deveaux, M. Diakonos, F. Di Luise, S. Dominik, W. Dumarchez, J. Dynowski, K. Engel, R. Ereditato, A. Feofilov, G. A. Fodor, Z. Garibov, A. Gazdzicki, M. Golubeva, M. Grebieszkow, K. Grzeszczuk, A. Guber, F. Haesler, A. Hasegawa, T. Herve, A. E. Hierholzer, M. Igolkin, S. Ivashkin, A. Johnson, S. R. Kadija, K. Kapoyannis, A. Kaptur, E. Kisiel, J. Kobayashi, T. Kolesnikov, V. I. Kolev, D. Kondratiev, V. P. Korzenev, A. Kowalik, K. Kowalski, S. Koziel, M. Krasnoperov, A. Kuich, M. Kurepin, A. Larsen, D. Laszlo, A. Lewicki, M. Lyubushkin, V. V. Mackowiak-Pawlowska, M. Maksiak, B. Malakhov, A. I. Manic, D. Marcinek, A. Marino, A. D. Marton, K. Mathes, H. -J. Matulewicz, T. Matveev, V. Melkumov, G. L. Messerly, B. Mills, G. B. Morozov, S. Mrowczynski, S. Nagai, Y. Nakadaira, T. Naskret, M. Nirkko, M. Nishikawa, K. Panagiotou, A. D. Paolone, V. Pavin, M. Petukhov, O. Pistillo, C. Planeta, R. Popov, B. A. Posiadala-Zezula, M. Pulawski, S. Puzovic, J. Rauch, W. Ravonel, M. Redij, A. Renfordt, R. Richter-Was, E. Robert, A. Rohrich, D. Rondio, E. Roth, M. Rubbia, A. Rumberger, B. T. Rustamov, A. Rybczynski, M. Sadovsky, A. Sakashita, K. Sarnecki, R. Schmidt, K. Sekiguchi, T. Selyuzhenkov, I. Seryakov, A. Seyboth, P. Sgalaberna, D. Shibata, M. Slodkowski, M. Staszel, P. Stefanek, G. Stepaniak, J. Stroebele, H. Susa, T. Szuba, M. Tada, M. Taranenko, A. Tefelska, A. Tefelski, D. Tereshchenko, V. Tsenov, R. Turko, L. Ulrich, R. Unger, M. Vassiliou, M. Veberic, D. Vechernin, V. V. Vesztergombi, G. Vinogradov, L. Wilczek, A. Wlodarczyk, Z. Wojtaszek-Szwarc, A. Wyszynski, O. Yarritu, K. Zambelli, L. Zimmerman, E. D. Friend, M. Galymov, V. Hartz, M. Hiraki, T. Ichikawa, A. Kubo, H. Matsuoka, K. Murakami, A. Nakaya, T. Suzuki, K. Tzanov, M. Yu, M. CA NA61 SHINE Collaboration TI Measurements of pi(+/-) differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID FLUKA CODE AB Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of pi(+/-)-mesons from the surface of the T2K replica target for incoming 31 GeV/c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed. C1 [Garibov, A.; Rustamov, A.] Natl Ctr Nucl Res, Baku, Azerbaijan. [Bogomilov, M.; Kolev, D.; Tsenov, R.] Univ Sofia, Fac Phys, Sofia, Bulgaria. [Anticic, T.; Kadija, K.; Pavin, M.; Susa, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Dumarchez, J.; Pavin, M.; Popov, B. A.; Robert, A.; Zambelli, L.] Univ Paris VI & VII, LPNHE, Paris, France. [Bluemer, J.; Dembinski, H.; Engel, R.; Herve, A. E.; Mathes, H. -J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D.] Karlsruhe Inst Technol, Karlsruhe, Germany. [Rauch, W.] Fachhsch Frankfurt, Frankfurt, Germany. [Deveaux, M.; Gazdzicki, M.; Koziel, M.; Renfordt, R.; Rustamov, A.; Stroebele, H.] Goethe Univ Frankfurt, Frankfurt, Germany. [Antoniou, N.; Christakoglou, P.; Davis, N.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A. D.; Vassiliou, M.] Univ Athens, Athens, Greece. [Fodor, Z.; Laszlo, A.; Marton, K.; Vesztergombi, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M.; Zambelli, L.; Friend, M.] Inst Particle & Nucl Studies, Tsukuba, Ibaraki, Japan. [Rohrich, D.] Univ Bergen, Bergen, Norway. [Gazdzicki, M.; Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.] Jan Kochanowski Univ Humanities & Sci, Kielce, Poland. [Kowalik, K.; Rondio, E.; Stepaniak, J.] Natl Ctr Nucl Res, Warsaw, Poland. [Ali, Y.; Brzychczyk, J.; Larsen, D.; Marcinek, A.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O.] Jagiellonian Univ, Krakow, Poland. [Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A.] Univ Silesia, Katowice, Poland. [Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala-Zezula, M.] Univ Warsaw, Warsaw, Poland. [Fodor, Z.; Lewicki, M.; Marcinek, A.; Naskret, M.; Turko, L.] Univ Wroclaw, Wroclaw, Poland. [Czopowicz, T.; Dynowski, K.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D.] Warsaw Univ Technol, Warsaw, Poland. [Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Morozov, S.; Petukhov, O.; Sadovsky, A.] Inst Nucl Res, Moscow, Russia. [Baatar, B.; Bunyatov, S. A.; Kolesnikov, V. I.; Krasnoperov, A.; Lyubushkin, V. V.; Malakhov, A. I.; Matveev, V.; Melkumov, G. L.; Popov, B. A.; Tereshchenko, V.] Joint Inst Nucl Res, Dubna, Russia. [Brandin, A.; Morozov, S.; Petukhov, O.; Selyuzhenkov, I.; Taranenko, A.] Natl Res Nucl Univ, MEPhI Moscow Engn Phys Inst, Moscow, Russia. [Andronov, E.; Feofilov, G. A.; Igolkin, S.; Kondratiev, V. P.; Seryakov, A.; Vechernin, V. V.; Vinogradov, L.] St Petersburg State Univ, St Petersburg, Russia. [Cirkovic, M.; Manic, D.; Puzovic, J.] Univ Belgrade, Belgrade, Serbia. [Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D.] ETH, Zurich, Switzerland. [Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A.] Univ Bern, Bern, Switzerland. [Abgrall, N.; Ajaz, M.; Blondel, A.; Bravar, A.; Debieux, S.; Haesler, A.; Korzenev, A.; Ravonel, M.] Univ Geneva, Geneva, Switzerland. [Mills, G. B.; Yarritu, K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Johnson, S. R.; Marino, A. D.; Rumberger, B. T.; Zimmerman, E. D.] Univ Colorado, Boulder, CO 80309 USA. [Messerly, B.; Nagai, Y.; Paolone, V.] Univ Pittsburgh, Pittsburgh, PA USA. [Galymov, V.] Univ Lyon, IPNL, Villeurbanne, France. [Hartz, M.] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba, Japan. [Hartz, M.] TRIUMF, Vancouver, BC, Canada. [Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.] Kyoto Univ, Dept Phys, Kyoto, Japan. [Tzanov, M.] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA. [Yu, M.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Ali, Y.] COMSATS Inst Informat Technol, Dept Phys, Islamabad 44000, Pakistan. RP Korzenev, A (reprint author), Univ Geneva, Geneva, Switzerland. EM alexander.korzenev@cern.ch RI Grebieszkow, Katarzyna/F-2640-2012; Vechernin, Vladimir/J-5832-2013; Seryakov, Andrey/D-8376-2017; Andronov, Evgeny/G-2325-2015 OI Vechernin, Vladimir/0000-0003-1458-8055; Seryakov, Andrey/0000-0002-5759-5485; Andronov, Evgeny/0000-0003-0437-9292 FU Hungarian Scientific Research Fund [OTKA68506, 71989]; Hungarian Academy of Sciences; Polish Ministry of Science and Higher Education [667/N-CERN/2010/0, NN202 48 4339, NN202 23 1837]; Polish National Center for Science [2011/03/N/ST2/03691, 2012/04/M/ST2/00816, 2013/11/N/ST2/03879]; Foundation for Polish Science - MPD program - European Union within the European Regional Development Fund; Federal Agency of Education of the Ministry of Education and Science of the Russian Federation [11.38.193.2014]; Russian Academy of Science; Russian Foundation for Basic Research [08-02-00018, 09-02-00664, 12-02-91503-CERN]; Ministry of Education, Culture, Sports, Science and Technology, Japan [18071005, 19034011, 19740162, 20740160, 20039012]; German Research Foundation [GA1480/2-2]; U.S. Department of Energy; EU [PIOF-GA-2013-624803]; Bulgarian Nuclear Regulatory Agency; Joint Institute for Nuclear Research, Dubna [4418-1-15/17]; Ministry of Education and Science of the Republic of Serbia [OI171002]; Swiss Nationalfonds Foundation [206621_117734, 20FL20_154223]; ETH [TH-01 07-3] FX We would like to thank the CERN PH, BE and EN Departments for the strong support of NA61/SHINE. This work was supported by the Hungarian Scientific Research Fund (Grants OTKA68506 and 71989), the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the Polish Ministry of Science and Higher Education (Grants 667/N-CERN/2010/0, NN202 48 4339 and NN202 23 1837), the Polish National Center for Science (Grants 2011/03/N/ST2/03691, 2012/04/M/ST2/00816 and 2013/11/N/ST2/03879), the Foundation for Polish Science - MPD program, co-financed by the European Union within the European Regional Development Fund, the Federal Agency of Education of the Ministry of Education and Science of the Russian Federation (SPbSU Research Grant 11.38.193.2014), the Russian Academy of Science and the Russian Foundation for Basic Research (Grants 08-02-00018, 09-02-00664 and 12-02-91503-CERN), the Ministry of Education, Culture, Sports, Science and Technology, Japan, Grant-in-Aid for Scientific Research (Grants 18071005, 19034011, 19740162, 20740160 and 20039012), the German Research Foundation (Grant GA1480/2-2), the U.S. Department of Energy, the EU-funded Marie Curie Outgoing Fellowship, Grant PIOF-GA-2013-624803, the Bulgarian Nuclear Regulatory Agency and the Joint Institute for Nuclear Research, Dubna (bilateral contract No. 4418-1-15/17), Ministry of Education and Science of the Republic of Serbia (Grant OI171002), Swiss Nationalfonds Foundation (Grants 206621_117734 and 20FL20_154223) and ETH Research Grant TH-01 07-3. NR 24 TC 0 Z9 0 U1 19 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV 9 PY 2016 VL 76 IS 11 AR 617 DI 10.1140/epjc/s10052-016-4440-y PG 27 WC Physics, Particles & Fields SC Physics GA EB8WZ UT WOS:000387673400005 ER PT J AU Alioli, S Bauer, CW Guns, S Tackmann, FJ AF Alioli, Simone Bauer, Christian W. Guns, Sam Tackmann, Frank J. TI Underlying-event sensitive observables in Drell-Yan production using GENEVA SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID ATLAS DETECTOR; PP COLLISIONS; ROOT-S=7 TEV; SCATTERING; LHC AB We present an extension of the Geneva Monte Carlo framework to include multiple parton interactions (MPI) provided by Pythia8. This allows us to obtain predictions for underlying-event sensitive measurements in Drell-Yan production, in conjunction with Geneva's fully differential NNLO calculation, NNLL' resummation for the 0-jet resolution variable (beam thrust), and NLL resummation for the 1-jet resolution variable. We describe the interface with the parton-shower algorithm and MPI model of Pythia8, which preserves both the precision of the partonic N-jet cross sections in Geneva as well as the shower accuracy and good description of soft hadronic physics of Pythia8. We present results for several underlying-event sensitive observables and compare to data from ATLAS and CMS as well as to standalone Pythia8 predictions. This includes a comparison with the recent ATLAS measurement of the beam thrust spectrum, which provides a potential avenue to fully disentangle the physical effects from the primary hard interaction, primary soft radiation, multiple parton interactions, and nonperturbative hadronization. C1 [Alioli, Simone] CERN Theory Div, CH-1211 Geneva 23, Switzerland. [Bauer, Christian W.; Guns, Sam] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tackmann, Frank J.] Deutsch Elektronen Synchrotron DESY, Theory Grp, D-22607 Hamburg, Germany. RP Alioli, S (reprint author), CERN Theory Div, CH-1211 Geneva 23, Switzerland. EM simone.alioli@cern.ch; cwbauer@lbl.gov; sguns@lbl.gov; frank.tackmann@desy.de OI Alioli, Simone/0000-0001-8234-2247 FU KITP in Santa Barbara; Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; DFG [TA867/1-1]; COFUND Fellowship [PCOFUND-GA-2012-600377]; Belgian American Educational Foundation; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank J. Lindert and P. Maierhoefer for help and support in interfacing GENEVA to OPENLOOPS. CWB would like the thank the KITP in Santa Barbara for financial support during the final stages of this project. This work was supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under the Contract No. DE-AC02-05CH11231 (CWB, SG), the DFG Emmy-Noether Grant No. TA867/1-1 (FT), the COFUND Fellowship under grant agreement PCOFUND-GA-2012-600377 (SA), and a fellowship from the Belgian American Educational Foundation (SG). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 70 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV 9 PY 2016 VL 76 IS 11 AR 614 DI 10.1140/epjc/s10052-016-4458-1 PG 17 WC Physics, Particles & Fields SC Physics GA EB8WZ UT WOS:000387673400002 ER PT J AU Ruiz Vargas, JC Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S De Wolf, EA Janssen, X Lauwers, J Van de Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Brun, H Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Fasanella, G Favart, L Cimmino, A Cornelis, T Dobur, D Fagot, A Garcia, G Gul, M Poyraz, D Salva, S Bakhshiansohi, H Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A De Visscher, S Beliy, N Alda, WL Alves, FL Alves, GA Brito, L Hensel, C Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Battilana, C Pigazzini, S De Nardo, G Thyssen, F Zanetti, M Fedi, G Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Cipriani, M D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bartosik, N Bellan, R Biino, C Cartiglia, N Cenna, F Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Shchelina, K Sola, V Solano, A Staiano, A Traczyk, P Belforte, S Casarsa, M Cossutti, F Della Ricca, G La Licata, C Schizzi, A Zanetti, A Kim, DH Kim, GN Kim, MS Lee, S Lee, SW Oh, YD Sekmen, S Son, DC Yang, YC Lee, A Brochero Cifuentes, JA Kim, TJ Cho, S Choi, S Go, Y Gyun, D Ha, S Hong, B Jo, Y Kim, Y Lee, B Lee, K Lee, KS Lee, S Lim, J Park, SK Roh, Y Almond, J Kim, J Oh, SB Seo, SH Yang, UK Yoo, HD Yu, GB Choi, M Kim, H Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Hwang, C Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Md Ali, MAB Mohamad Idris, F Wan Abdullah, WAT Yusli, MN Zolkapli, Z Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Magaa Villalba, R Mejia Guisao, J Sanchez-Hernandez, A Carrillo Moreno, S Oropeza Barrera, C Vazquez Valencia, F Carpinteyro, S Pedraza, I Salazar Ibarguen, HA Uribe Estrada, C Morelos Pineda, A Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Shah, MA Shoaib, M Waqas, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Groski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Beiro Da Cruz E Silva, C Di Francesco, A Faccioli, P Ferreira Parracho, PG Gallinaro, M Hollar, J Leonardo, N Lloret Iglesias, L Nemallapudi, MV Rodrigues Antunes, J Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Golutvin, I Kamenev, A Karjavin, V Korenkov, V Lanev, A Malakhov, A Matveev, V Mitsyn, VV Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Tikhonenko, E Yuldashev, BS Zarubin, A Chtchipounov, L Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Murzin, V Oreshkin, V Sulimov, V Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Toms, M Vlasov, E Zhokin, A Bylinkin, A Chistov, R Danilov, M Rusinov, V Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Terkulov, A Baskakov, A Belyaev, A Boos, E Demiyanov, A Ershov, A Gribushin, A Kodolova, O Korotkikh, V Lokhtin, I Miagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Vardanyan, I Blinov, V Skovpen, Y Azhgirey, I Bayshev, I Bitioukov, S Elumakhov, D Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Cirkovic, P Devetak, D Dordevic, M Milosevic, J Rekovic, V Alcaraz Maestre, J Barrio Luna, M Calvo, E Cerrada, M Chamizo Llatas, M Colino, N De La Cruz, B Delgado Peris, A Escalante Del Valle, A Fernandez Bedoya, C Fernandez Ramos, JP Flix, J Fouz, MC Garcia-Abia, P Gonzalez Lopez, O Goy Lopez, S Hernandez, JM Josa, MI Navarro De Martino, E Perez-Calero Yzquierdo, A Puerta Pelayo, J Quintario Olmeda, A Redondo, I Romero, L Soares, MS de Trocniz, JF Missiroli, M Moran, D Cuevas, J Fernandez Menendez, J Gonzalez Caballero, I Gonzalez Fernandez, JR Palencia Cortezon, E Sanchez Cruz, S Suarez Andres, I Garcia, JMV Cabrillo, IJ Calderon, A Castieiras De Saa, JR Curras, E Fernandez, M Garcia-Ferrero, J Gomez, G Lopez Virto, A Marco, J Martinez Rivero, C Matorras, F Piedra Gomez, J Rodrigo, T Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Vilar Cortabitarte, R Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bloch, P Bocci, A Bonato, A Botta, C Camporesi, T Castello, R Cepeda, M Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A Di Marco, E Dobson, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Fartoukh, S Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Girone, M Glege, F Gulhan, D Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Knunz, V Kornmayer, A Kortelainen, MJ Kousouris, K Krammer, M Lecoq, P Lourenco, C Lucchini, MT Malgeri, L Mannelli, M Martelli, A Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Pfeiffer, A Pierini, M Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Sauvan, JB Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stoye, M Takahashi, Y Tosi, M Treille, D Triossi, A Tsirou, A Veckalns, V Veres, GI Wardle, N Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega , M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lecomte, P Lustermann, W Mangano, B Marionneau, M Martinez Ruiz del Arbol, P Masciovecchio, M Meinhard, MT Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrin, G Perrozzi, L Quittnat, M Rossini, M Schonenberger, M Starodumov, A Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Rauco, G Robmann, P Salerno, D Yang, Y Candelise, V Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Pozdnyakov, A Yu, SS Kumar, A Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Hou, WS Hsiung, Y Liu, YF Lu, RS Miano Moya, M Paganis, E Psallidas, A Tsai, JF Tzeng, YM Asavapibhop, B Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Cerci, S Damarseckin, S Demiroglu, ZS Dozen, C Dumanoglu, I Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Kara, O Kayis Topaksu, A Kiminsu, U Oglakci, M Onengut, G Ozdemir, K Sunar Cerci, D Topakli, H Turkcapar, S Zorbakir, IS Zorbilmez, C Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Burns, D Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Newbold, DM Paramesvaran, S Poll, A Sakuma, T Seif El Nasr-storey, S Smith, D Smith, VJ Barducci, D Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Dauncey, P Davies, G De Wit, A Della Negra, M Di Maria, R Dunne, P Elwood, A Futyan, D Haddad, Y Hall, G Iles, G James, T Lane, R Laner, C Lucas, R Lyons, L Magnan, AM Malik, S Mastrolorenzo, L Nash, J Nikitenko, A Pela, J Penning, B Pesaresi, M Raymond, DM Richards, A Rose, A Seez, C Summers, S Tapper, A Uchida, K Vazquez Acosta, M Virdee, T Wright, J Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Arcaro, D Avetisyan, A Bose, T Gastler, D Rankin, D Richardson, C Rohlf, J Sulak, L Zou, D Benelli, G Berry, E Cutts, D Garabedian, A Hakala, J Heintz, U Hogan, JM Jesus, O Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Spencer, E Syarif, R Breedon, R Breto, G Burns, D Calderon De La Barca Sanchez, M Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Flores, C Funk, G Gardner, M Ko, W Lander, R Mclean, C Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Florent, A Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Kennedy, E Lacroix, F Long, OR Malberti, M Olmedo Negrete, M Paneva, MI Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S Derdzinski, M Gerosa, R Holzner, A Klein, D Krutelyov, V Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wood, J Wurthwein, F Yagil, A Zevi Della Porta, G Bhandari, R Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Franco Sevilla, M Geffert, P George, C Golf, F Gouskos, L Gran, J Heller, R Incandela, J Mccoll, N Mullin, SD Ovcharova, A Richman, J Stuart, D Suarez, I West, C Yoo, J Anderson, D Apresyan, A Bendavid, J Bornheim, A Bunn, J Chen, Y Duarte, J Lawhorn, JM Mott, A Newman, HB Pena, C Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Jensen, F Johnson, A Krohn, M Mulholland, T Stenson, K Wagner, SR Alexander, J Chaves, J Chu, J Dittmer, S Mcdermott, K Mirman, N Nicolas Kaufman, G Patterson, J Rinkevicius, A Ryd, A Skinnari, L Soffi, L Tan, SM Tao, Z Thom, J Tucker, J Wittich, P Zientek, M Winn, D Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Cremonesi, M Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Klima, B Kreis, B Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T Lopes De Sa, R Lykken, J Maeshima, K Magini, N Marraffino, JM Maruyama, S Mason, D McBride, P Merkel, P Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Ristori, L Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Stoynev, S Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Wang, M Weber, HA Whitbeck, A Acosta, D Avery, P Bortignon, P Bourilkov, D Brinkerhoff, A Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Konigsberg, J Korytov, A Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Shchutska, L Sperka, D Thomas, L Wang, J Wang, S Yelton, J Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Diamond, B Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Santra, A Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Trauger, H Turner, P Varelas, N Wang, H Wu, Z Zakaria, M Zhang, J Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Blumenfeld, B Cocoros, A Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Osherson, M Roskes, J Sarica, U Swartz, M Xiao, M Xin, Y You, C Al-bataineh, A Baringer, P Bean, A Bowen, J Bruner, C Castle, J Kenny, RP Kropivnitskaya, A Majumder, D Mcbrayer, W Murray, M Sanders, S Stringer, R Tapia Takaki, JD Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Abercrombie, D Allen, B Apyan, A Barbieri, R Baty, A Bi, R Bierwagen, K Brandt, S Busza, W Cali, I Demiragli, Z Di Matteo, L Gomez Ceballos, G Goncharov, M Hsu, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Krajczar, K Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Tatar, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Benvenuti, AC Chatterjee, RM Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bartek, R Bloom, K Claes, DR Dominguez, A Fangmeier, C Gonzalez Suarez, R Kamalieddin, R Kravchenko, I Malta Rodrigues, A Meier, F Monroy, J Siado, J Snow, GR Stieger, B Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Parker, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Hortiangtham, A Knapp, B Massironi, A Morse, D Nash, D Orimoto, T Teixeira De Lima, R Trocino, D Wang, RJ Wood, D Bhattacharya, S Hahn, KA Kubik, A Kumar, A Low, JF Mucia, N Odell, N Pollack, B Schmitt, MH Sung, K Trovato, M Velasco, M Dev, N Hildreth, M Hurtado Anampa, K Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Alimena, J Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Francis, B Hart, A Hill, C Hughes, R Ji, W Liu, B Luo, W Puigh, D Winer, BL Wulsin, HW Cooperstein, S Driga, O Elmer, P Hardenbrook, J Hebda, P Lange, D Luo, J Marlow, D Medvedeva, T Mei, K Mooney, M Olsen, J Palmer, C Piroue, P Stickland, D Tully, C Zuranski, A Malik, S Barker, A Barnes, VE Folgueras, S Gutay, L Jha, MK Jones, M Jung, AW Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Duh, YT Ferbel, T Galanti, M Garcia-Bellido, A Han, J Hindrichs, O Khukhunaishvili, A Lo, KH Tan, P Verzetti, M Chou, JP Contreras-Campana, E Gershtein, Y Gmez Espinosa, TA Halkiadakis, E Heindl, M Hidas, D Hughes, E Kaplan, S Kunnawalkam Elayavalli, R Kyriacou, S Lath, A Nash, K Saka, H Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Heideman, J Riley, G Rose, K Spanier, S Thapa, K Bouhali, O Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Juska, E Kamon, T Mueller, R Pakhotin, Y Patel, R Perloff, A Pernis, L Rathjens, D Rose, A Safonov, A Tatarinov, A Ulmer, K Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Wang, Z Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Melo, A Ni, H Sheldon, P Tuo, S Velkovska, J Xu, Q Arenton, MW Barria, P Cox, B Goodell, J Hirosky, R Ledovskoy, A Li, H Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Xia, F Clarke, C Harr, R Karchin, PE Lamichhane, P Sturdy, J Belknap, DA Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Ruiz Vargas, J. C. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Ero, J. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. De Wolf, E. A. Janssen, X. Lauwers, J. Van de Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Fasanella, G. Favart, L. Cimmino, A. Cornelis, T. Dobur, D. Fagot, A. Garcia, G. Gul, M. Poyraz, D. Salva, S. Bakhshiansohi, H. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. De Visscher, S. Beliy, N. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Hensel, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. Battilana, C. Pigazzini, S. De Nardo, G. Thyssen, F. Zanetti, M. Fedi, G. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Cipriani, M. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bartosik, N. Bellan, R. Biino, C. Cartiglia, N. Cenna, F. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Pinna Angioni, G. L. Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Shchelina, K. Sola, V. Solano, A. Staiano, A. Traczyk, P. Belforte, S. Casarsa, M. Cossutti, F. Della Ricca, G. La Licata, C. Schizzi, A. Zanetti, A. Kim, D. H. Kim, G. N. Kim, M. S. Lee, S. Lee, S. W. Oh, Y. D. Sekmen, S. Son, D. C. Yang, Y. C. Lee, A. Brochero Cifuentes, J. A. Kim, T. J. Cho, S. Choi, S. Go, Y. Gyun, D. Ha, S. Hong, B. Jo, Y. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Lim, J. Park, S. K. Roh, Y. Almond, J. Kim, J. Oh, S. B. Seo, S. H. Yang, U. K. Yoo, H. D. Yu, G. B. Choi, M. Kim, H. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Hwang, C. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Md Ali, M. A. B. Mohamad Idris, F. Wan Abdullah, W. A. T. Yusli, M. N. Zolkapli, Z. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-De La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Magaa Villalba, R. Mejia Guisao, J. Sanchez-Hernandez, A. Carrillo Moreno, S. Oropeza Barrera, C. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. Uribe Estrada, C. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Shah, M. A. Shoaib, M. Waqas, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Groski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Beiro Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Hollar, J. Leonardo, N. Lloret Iglesias, L. Nemallapudi, M. V. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Korenkov, V. Lanev, A. Malakhov, A. Matveev, V. Mitsyn, V. V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Tikhonenko, E. Yuldashev, B. S. Zarubin, A. Chtchipounov, L. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Murzin, V. Oreshkin, V. Sulimov, V. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Toms, M. Vlasov, E. Zhokin, A. Bylinkin, A. Chistov, R. Danilov, M. Rusinov, V. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Terkulov, A. Baskakov, A. Belyaev, A. Boos, E. Demiyanov, A. Ershov, A. Gribushin, A. Kodolova, O. Korotkikh, V. Lokhtin, I. Miagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Vardanyan, I. Blinov, V. Skovpen, Y. Azhgirey, I. Bayshev, I. Bitioukov, S. Elumakhov, D. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Cirkovic, P. Devetak, D. Dordevic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Barrio Luna, M. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. de Trocniz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Gonzalez Caballero, I. Gonzalez Fernandez, J. R. Palencia Cortezon, E. Sanchez Cruz, S. Suarez Andres, I. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castieiras De Saa, J. R. Curras, E. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Piedra Gomez, J. Rodrigo, T. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bloch, P. Bocci, A. Bonato, A. Botta, C. Camporesi, T. Castello, R. Cepeda, M. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. Di Marco, E. Dobson, M. Dorney, B. du Pree, T. Duggan, D. Dunser, M. Dupont, N. Elliott-Peisert, A. Fartoukh, S. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Girone, M. Glege, F. Gulhan, D. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Knunz, V. Kornmayer, A. Kortelainen, M. J. Kousouris, K. Krammer, M. Lecoq, P. Lourenco, C. Lucchini, M. T. Malgeri, L. Mannelli, M. Martelli, A. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Pfeiffer, A. Pierini, M. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Sauvan, J. B. Schafer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stoye, M. Takahashi, Y. Tosi, M. Treille, D. Triossi, A. Tsirou, A. Veckalns, V. Veres, G. I. Wardle, N. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lecomte, P. Lustermann, W. Mangano, B. Marionneau, M. Martinez Ruiz del Arbol, P. Masciovecchio, M. Meinhard, M. T. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrin, G. Perrozzi, L. Quittnat, M. Rossini, M. Schonenberger, M. Starodumov, A. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Rauco, G. Robmann, P. Salerno, D. Yang, Y. Candelise, V. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Pozdnyakov, A. Yu, S. S. Kumar, Arun Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Miano Moya, M. Paganis, E. Psallidas, A. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Cerci, S. Damarseckin, S. Demiroglu, Z. S. Dozen, C. Dumanoglu, I. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Kara, O. Kayis Topaksu, A. Kiminsu, U. Oglakci, M. Onengut, G. Ozdemir, K. Sunar Cerci, D. Topakli, H. Turkcapar, S. Zorbakir, I. S. Zorbilmez, C. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Burns, D. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. Seif El Nasr-storey, S. Smith, D. Smith, V. J. Barducci, D. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Di Maria, R. Dunne, P. Elwood, A. Futyan, D. Haddad, Y. Hall, G. Iles, G. James, T. Lane, R. Laner, C. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Mastrolorenzo, L. Nash, J. Nikitenko, A. Pela, J. Penning, B. Pesaresi, M. Raymond, D. M. Richards, A. Rose, A. Seez, C. Summers, S. Tapper, A. Uchida, K. Vazquez Acosta, M. Virdee, T. Wright, J. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Arcaro, D. Avetisyan, A. Bose, T. Gastler, D. Rankin, D. Richardson, C. Rohlf, J. Sulak, L. Zou, D. Benelli, G. Berry, E. Cutts, D. Garabedian, A. Hakala, J. Heintz, U. Hogan, J. M. Jesus, O. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Spencer, E. Syarif, R. Breedon, R. Breto, G. Burns, D. Calderon De La Barca Sanchez, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Flores, C. Funk, G. Gardner, M. Ko, W. Lander, R. Mclean, C. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Florent, A. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Malberti, M. Olmedo Negrete, M. Paneva, M. I. Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. Derdzinski, M. Gerosa, R. Holzner, A. Klein, D. Krutelyov, V. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wood, J. Wurthwein, F. Yagil, A. Zevi Della Porta, G. Bhandari, R. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Franco Sevilla, M. Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Heller, R. Incandela, J. Mccoll, N. Mullin, S. D. Ovcharova, A. Richman, J. Stuart, D. Suarez, I. West, C. Yoo, J. Anderson, D. Apresyan, A. Bendavid, J. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Lawhorn, J. M. Mott, A. Newman, H. B. Pena, C. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Stenson, K. Wagner, S. R. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Mcdermott, K. Mirman, N. Nicolas Kaufman, G. Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Tan, S. M. Tao, Z. Thom, J. Tucker, J. Wittich, P. Zientek, M. Winn, D. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cremonesi, M. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kreis, B. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. Lopes De Sa, R. Lykken, J. Maeshima, K. Magini, N. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Merkel, P. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Ristori, L. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Stoynev, S. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Wang, M. Weber, H. A. Whitbeck, A. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Brinkerhoff, A. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Konigsberg, J. Korytov, A. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Shchutska, L. Sperka, D. Thomas, L. Wang, J. Wang, S. Yelton, J. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Diamond, B. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Santra, A. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Sandoval Gonzalez, I. D. Trauger, H. Turner, P. Varelas, N. Wang, H. Wu, Z. Zakaria, M. Zhang, J. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Blumenfeld, B. Cocoros, A. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Osherson, M. Roskes, J. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Al-bataineh, A. Baringer, P. Bean, A. Bowen, J. Bruner, C. Castle, J. Kenny, R. P., III Kropivnitskaya, A. Majumder, D. Mcbrayer, W. Murray, M. Sanders, S. Stringer, R. Tapia Takaki, J. D. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Abercrombie, D. Allen, B. Apyan, A. Barbieri, R. Baty, A. Bi, R. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Gomez Ceballos, G. Goncharov, M. Hsu, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Krajczar, K. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Tatar, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Benvenuti, A. C. Chatterjee, R. M. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bartek, R. Bloom, K. Claes, D. R. Dominguez, A. Fangmeier, C. Gonzalez Suarez, R. Kamalieddin, R. Kravchenko, I. Malta Rodrigues, A. Meier, F. Monroy, J. Siado, J. E. Snow, G. R. Stieger, B. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Parker, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Hortiangtham, A. Knapp, B. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. Teixeira De Lima, R. Trocino, D. Wang, R. -J. Wood, D. Bhattacharya, S. Hahn, K. A. Kubik, A. Kumar, A. Low, J. F. Mucia, N. Odell, N. Pollack, B. Schmitt, M. H. Sung, K. Trovato, M. Velasco, M. Dev, N. Hildreth, M. Hurtado Anampa, K. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Alimena, J. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Francis, B. Hart, A. Hill, C. Hughes, R. Ji, W. Liu, B. Luo, W. Puigh, D. Winer, B. L. Wulsin, H. W. Cooperstein, S. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Lange, D. Luo, J. Marlow, D. Medvedeva, T. Mei, K. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barker, A. Barnes, V. E. Folgueras, S. Gutay, L. Jha, M. K. Jones, M. Jung, A. W. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Duh, Y. T. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Hindrichs, O. Khukhunaishvili, A. Lo, K. H. Tan, P. Verzetti, M. Chou, J. P. Contreras-Campana, E. Gershtein, Y. Gmez Espinosa, T. A. Halkiadakis, E. Heindl, M. Hidas, D. Hughes, E. Kaplan, S. Kunnawalkam Elayavalli, R. Kyriacou, S. Lath, A. Nash, K. Saka, H. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Heideman, J. Riley, G. Rose, K. Spanier, S. Thapa, K. Bouhali, O. Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Juska, E. Kamon, T. Mueller, R. Pakhotin, Y. Patel, R. Perloff, A. Pernis, L. Rathjens, D. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Wang, Z. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Melo, A. Ni, H. Sheldon, P. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Barria, P. Cox, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Lamichhane, P. Sturdy, J. Belknap, D. A. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Decomposing transverse momentum balance contributions for quenched jets in PbPb collisions at root s(NN)=2.76 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Jet substructure; Heavy Ion Experiments; Heavy-ion collision; Quark gluon plasma AB Interactions between jets and the quark-gluon plasma produced in heavy ion collisions are studied via the angular distributions of summed charged-particle transverse momenta (p(T)) with respect to both the leading and subleading jet axes in high-p(T) dijet events. The contributions of charged particles in different momentum ranges to the overall event p(T) balance are decomposed into short-range jet peaks and a long-range azimuthal asymmetry in charged-particle p(T). The results for PbPb collisions are compared to those in pp collisions using data collected in 2011 and 2013, at collision energy root s(NN) = 2.76 TeV with integrated luminosities of 166 mu b(-1) and 5.3 pb(-1), respectively, by the CMS experiment at the LHC. Measurements are presented as functions of PbPb collision centrality, charged-particle p(T), relative azimuth, and radial distance from the jet axis for balanced and unbalanced dijets. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Ero, J.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van de Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.] Vrije Univ Brussel, Brussels, Belgium. [Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.] Univ Libre Bruxelles, Brussels, Belgium. [Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Poyraz, D.; Salva, S.] Univ Ghent, Ghent, Belgium. [Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.] Catholic Univ Louvain, Louvain, Belgium. [Beliy, N.] Univ Mons, Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.] Univ Estado Rio De Janeiro, Rio De Janeiro, Brazil. [Ruiz Vargas, J. C.] Univ Estadual Paulista, Sao Paulo, Brazil. Univ Fed ABC, Sao Paulo, Brazil. Inst Nucl Energy Res, Sofia, Bulgaria. Univ Sofia, Sofia, Bulgaria. Beihang Univ, Beijing, Peoples R China. Inst High Energy Phys, Beijing, Peoples R China. Peking Univ, State Key Lab Nucl Phys & Technol, Beijing, Peoples R China. Univ Los Andes, Bogota, Colombia. Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. Univ Split, Fac Sci, Split, Croatia. Inst Rudjer Boskov, Zagreb, Croatia. Univ Cyprus, Nicosia, Cyprus. Charles Univ Prague, Prague, Czech Republic. Univ San Francisco Quito, Quito, Ecuador. Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. NICPB, Tallinn, Estonia. Univ Helsinki, Dept Phys, Helsinki, Finland. Helsinki Inst Phys, Helsinki, Finland. Lappeenranta Univ Technol, Lappeenranta, Finland. Univ Paris Saclay, IRFU, CEA, Gif Sur Yvette, France. Ecole Polytech, Lab Leprince Ringuet, CNRS, IN2P3, Palaiseau, France. Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. Ctr Calcul, Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Villeurbanne, France. Univ Claude Bernard Lyon 1, Inst Phys Nucl, Univ Lyon, CNRS,IN2P3, Villeurbanne, France. Georgian Tech Univ, Tbilisi, Rep of Georgia. Tbilisi State Univ, Tbilisi, Rep of Georgia. Rhein Westfal TH Aachen, Inst Phys, Aachen, Germany. Rhein Westfal TH Aachen, Phys Inst A3, Aachen, Germany. Rhein Westfal TH Aachen, Phys Inst B3, Aachen, Germany. DESY, Hamburg, Germany. Univ Hamburg, Hamburg, Germany. Inst Expt Kernphys, Karlsruhe, Germany. NCSR Demokritos, Inst Nucl & Particle Phys INPP, Aghia Paraskevi, Greece. Univ Athens, Athens, Greece. Univ Ioannina, Ioannina, Greece. Eotvos Lorand Univ, MTA ELTE Lendulet CMS Particle & Nucl Phys Grp, Budapest, Hungary. Wigner Res Ctr Phys, Budapest, Hungary. Inst Nucl Res ATOMKI, Debrecen, Hungary. Univ Debrecen, Debrecen, Hungary. Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. Panjab Univ, Chandigarh, India. Univ Delhi, Delhi, India. Saha Inst Nucl Phys, Kolkata, India. Indian Inst Technol Madras, Madras, Tamil Nadu, India. Bhabha Atom Res Ctr, Mumbai, Maharashtra, India. Tata Inst Fundamental Res, Mumbai, Maharashtra, India. Indian Inst Sci Educ & Res IISER, Pune, Maharashtra, India. Inst Res Fundamental Sci IPM, Tehran, Iran. Univ Coll Dublin, Dublin, Ireland. INFN, Sez Bari, Bari, Italy. Univ Bari, Bari, Italy. Politecn Bari, Bari, Italy. INFN, Sez Bologna, Bologna, Italy. Univ Bologna, Bologna, Italy. INFN, Sez Catania, Catania, Italy. Univ Catania, Catania, Italy. INFN, Sez Firenze, Florence, Italy. Univ Firenze, Florence, Italy. INFN, Lab Nazl Frascati, Frascati, Italy. INFN, Sez Genova, Genoa, Italy. Univ Genoa, Genoa, Italy. INFN, Sez Milano Bicocca, Milan, Italy. Univ Milano Bicocca, Milan, Italy. INFN, Sez Napoli, Naples, Italy. Univ Napoli Federico II, Naples, Italy. Univ Basilicata, Potenza, Italy. Univ G Marconi, Rome, Italy. INFN, Sez Padova, Padua, Italy. Univ Padua, Padua, Italy. Univ Trento, Trento, Italy. INFN, Sez Pavia, Pavia, Italy. Univ Pavia, Pavia, Italy. INFN, Sez Perugia, Perugia, Italy. Univ Perugia, Perugia, Italy. [Giassi, A.; Lomtadze, T.; Palla, F.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.] INFN, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Cavallari, F.; Diemoz, M.; Jorda, C.; Meridiani, P.; Paramatti, R.; Rovelli, C.] INFN, Sez Roma, Rome, Italy. [Barone, L.; Cipriani, M.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.] Univ Roma, Rome, Italy. [Bartosik, N.; Biino, C.; Cartiglia, N.; Demaria, N.; Mariotti, C.; Maselli, S.; Pastrone, N.; Pelliccioni, M.; Sola, V.; Staiano, A.] INFN, Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Sacchi, R.; Shchelina, K.; Solano, A.; Traczyk, P.] Univ Torino, Turin, Italy. [Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Casarsa, M.; Cossutti, F.; Zanetti, A.] INFN, Sez Trieste, Trieste, Italy. [Della Ricca, G.; La Licata, C.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.] Kyungpook Natl Univ, Seoul, South Korea. [Lee, A.] Chonbuk Natl Univ, Jeonju, South Korea. [Brochero Cifuentes, J. A.; Kim, T. J.] Hanyang Univ, Seoul, South Korea. [Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Almond, J.; Kim, J.; Oh, S. B.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaa Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.] IPN, Ctr Invest Estudios Avanzados, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autnoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Shah, M. A.; Shoaib, M.; Waqas, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Groski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Beiro Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumenta Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Korenkov, V.; Lanev, A.; Malakhov, A.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.] St Petersburg Nucl Phys Inst, Gatchina, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow, Russia. Moscow Inst Phys & Technol, Moscow, Russia. [Matveev, V.; Bylinkin, A.; Rusinov, V.] Natl Res Nucl Univ Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Chistov, R.; Danilov, M.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. Novosibirsk State Univ NSU, Novosibirsk, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.] Univ Belgrade, Fac Phys, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, Madrid, Spain. [de Trocniz, J. F.; Missiroli, M.; Moran, D.] Univ Autnoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Gonzalez Fernandez, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suarez Andres, I.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castieiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain. [D'imperio, G.; Del Re, D.; Arcidiacono, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dunser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knunz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Lecoq, P.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schafer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schonenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Miano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ NTU, Taipei, Taiwan. [Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Dept Phys, Fac Sci, Bangkok, Thailand. [Adiguzel, A.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Bilin, B.; Bilmis, S.; Yalvac, M.; Zeyrek, M.] Middle East Tech Univ, Dept Phys, Ankara, Turkey. [Gulmez, E.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.] Istanbul Tech Univ, Istanbul, Turkey. [Grynyov, B.] Inst Scintillat Mat Natl Acad Sci Ukraine, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Barducci, D.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.] Rutherford Appleton Lab, Didcot, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Virdee, T.; Wright, J.; Zenz, S. C.] Imperial Coll, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Benelli, G.; Berry, E.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Welke, C.; Wood, J.; Wurthwein, F.; Yagil, A.; Zevi Della Porta, G.] Univ Calif San Diego, San Diego, CA 92103 USA. [Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.] Univ Colorado Boulder, Boulder, CO USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sa, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Kuznetsova, E.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Trauger, H.; Turner, P.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.] Univ Illinois, Chicago, IL USA. [Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Al-bataineh, A.; Baringer, P.; Bean, A.; Bowen, J.; Bruner, C.; Castle, J.; Kenny, R. P., III; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD USA. [Abercrombie, D.; Allen, B.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bartek, R.; Bloom, K.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.] Univ Nebraska Lincoln, Lincoln, NE USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Hortiangtham, A.; Knapp, B.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R. -J.; Wood, D.] Northeastern Univ, Boston, MA 02115 USA. [Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Kumar, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. T.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, MN USA. [Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gmez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.] Univ Tennessee, Knoxville, TN USA. [Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Pernis, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.] Texas Tech Univ, Lubbock, TX 79409 USA. [Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin Madison, Madison, WI USA. [Krammer, M.] Vienna Univ Technol, Vienna, Austria. Univ Estadual Campinas, Campinas, SP, Brazil. Univ Fed Pelotas, Pelotas, Brazil. Cairo Univ, Cairo, Egypt. Fayoum Univ, Al Fayyum, Egypt. British Univ Egypt, Cairo, Egypt. Ain Shams Univ, Cairo, Egypt. Univ Haute Alsace, Mulhouse, France. Brandenburg Tech Univ Cottbus, Cottbus, Germany. Indian Inst Sci Educ & Res, Bhopal, India. Inst Phys, Bhubaneswar, Orissa, India. Visva Bharati Univ, Santini Ketan, W Bengal, India. Univ Ruhuna, Matara, Sri Lanka. Isfahan Univ Technol, Esfahan, Iran. Univ Tehran, Dept Engn Sci, Tehran, Iran. Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Grippo, M. T.] Univ Siena, Siena, Italy. [Md Ali, M. A. B.] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Mohamad Idris, F.] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-De La Cruz, I.] Consejo Nacl Ciencia Tecnol, Mexico City, DF, Mexico. [Byszuk, A.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Yuldashev, B. S.] Uzbek Acad Sci, Inst Nucl Phys, Tashkent, Uzbekistan. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Blinov, V.; Skovpen, Y.] Budker Inst Nucl Phys, Novosibirsk, Russia. [Adzic, P.] Univ Belgrade, Fac Phys, Belgrade, Serbia. [Di Marco, E.] Univ Roma, INFN, Sez Roma, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale Super Pisa, Pisa, Italy. [Veckalns, V.] Riga Tech Univ, Riga, Latvia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Cerci, S.; Sunar Cerci, D.] Adiyaman Univ, Adiyaman, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Istanbul Bilgi Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Vazquez Acosta, M.] Inst Astrofis Canarias, San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [CMS Collaboration] CERN, CH-1211 Geneva 23, Switzerland. RP Vargas, JCR (reprint author), Univ Estadual Paulista, Sao Paulo, Brazil. RI Danilov, Mikhail/C-5380-2014; Kirakosyan, Martin/N-2701-2015; Della Ricca, Giuseppe/B-6826-2013; Goh, Junghwan/Q-3720-2016; Azarkin, Maxim/N-2578-2015; Lokhtin, Igor/D-7004-2012; Konecki, Marcin/G-4164-2015; Chistov, Ruslan/B-4893-2014; Da Silveira, Gustavo Gil/N-7279-2014; Andreev, Vladimir/M-8665-2015; Leonidov, Andrey/M-4440-2013; Paulini, Manfred/N-7794-2014; Terkulov, Adel/M-8581-2015; Smirnov, Vitaly/B-5001-2017; Moraes, Arthur/F-6478-2010; Ogul, Hasan/S-7951-2016; Dremin, Igor/K-8053-2015 OI Danilov, Mikhail/0000-0001-9227-5164; Della Ricca, Giuseppe/0000-0003-2831-6982; Goh, Junghwan/0000-0002-1129-2083; Konecki, Marcin/0000-0001-9482-4841; Chistov, Ruslan/0000-0003-1439-8390; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Paulini, Manfred/0000-0002-6714-5787; Moraes, Arthur/0000-0002-5157-5686; Ogul, Hasan/0000-0002-5121-2893; FU BMWFW (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER (Estonia); ERC IUT (Estonia); ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NIH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP (Republic of Korea); NRF (Republic of Korea); LAS (Lithuania); MOE (Malaysia); UM (Malaysia); BUAP (Mexico); CINVESTAV (Mexico); CONACYT (Mexico); LNS (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Dubna); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MESTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter (Thailand); IPST (Thailand); STAR (Thailand); NSTDA (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); SFFR (Ukraine); STFC (United Kingdom); DOE (U.S.A.); NSF (U.S.A.); Marie-Curie programme and the European Research Council and EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science; European Union; Regional Development Fund; Mobility Plus programme of the Ministry of Science and Higher Education; National Science Center (Poland) [2014/14/M/ST2/00428, 2013/11/B/ST2/04202, 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, 2012/07/E/ST2/01406]; Thalis and Aristeia programmes - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Programa Clarin-COFUND del Principado de Asturias; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University; Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); Welch Foundation [C-1845] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.A.).; IIndividuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2013/11/B/ST2/04202, 2014/13/B/ST2/02543 and 2014/15/B/ST2/03998, Sonata-bis 2012/07/E/ST2/01406; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarin-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845. NR 31 TC 0 Z9 0 U1 28 U2 28 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV 9 PY 2016 IS 11 AR 055 DI 10.1007/JHEP11(2016)055 PG 43 WC Physics, Particles & Fields SC Physics GA EC0TP UT WOS:000387813900001 ER PT J AU Hu, L Chen, J Xu, JL Wang, N Han, F Ren, Y Pan, Z Rong, YC Huang, RJ Deng, JX Li, LF Xing, XR AF Hu, Lei Chen, Jun Xu, Jiale Wang, Na Han, Fei Ren, Yang Pan, Zhao Rong, Yangchun Huang, Rongjin Deng, Jinxia Li, Laifeng Xing, Xianran TI Atomic Linkage Flexibility Tuned Isotropic Negative, Zero, and Positive Thermal Expansion in MZrF6 (M = Ca, Mn, Fe, Co, Ni, and Zn) SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID CUBIC SCF3; TEMPERATURE; FERROMAGNETISM; MECHANISMS; DEPENDENCE; BEHAVIOR; CAZRF6; ZRW2O8 AB The controllable isotropic thermal expansion with a broad coefficient of thermal expansion (CTE) window is intriguing but remains challenge. Herein we report a cubic MZrF6 series (M = Ca, Mn, Fe, Co, Ni and Zn), which exhibit controllable thermal expansion over a wide temperature range and with a broader CTE window (-6.69 to +18.23 X 10(-6)/K). In particular, an isotropic zero thermal expansion (ZTE) is achieved in ZnZrF6, which is one of the rarely documented high-temperature isotropic ZTE compounds. By utilizing temperature dependent high-energy synchrotron X-ray total scattering diffraction, it is found that the flexibility of metal center dot center dot center dot F atomic linkages in MZrF6 plays a critical role in distinct thermal expansions. The flexible metal center dot center dot center dot F atomic linkages induce negative thermal expansion (NTE) for CaZrF6, whereas the stiff ones bring positive thermal expansion (PTE) for NiZrF6. Thermal expansion could be transformed from striking negative, to zero, and finally to considerable positive though tuning the flexibility of metal center dot center dot center dot F atomic linkages by substitution with a series of cations on M sites of MZrF6. The present study not only extends the scope of NTE families and rare high-temperature isotropic ZTE compounds but also proposes a new method to design systematically controllable isotropic thermal expansion frameworks from the perspective of atomic linkage flexibility. C1 [Hu, Lei; Chen, Jun; Xu, Jiale; Wang, Na; Han, Fei; Pan, Zhao; Rong, Yangchun; Deng, Jinxia; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Huang, Rongjin; Li, Laifeng] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Cryogen, Beijing 100190, Peoples R China. RP Chen, J (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. EM junchen@ustb.edu.cn FU National Natural Science Foundation of China [21322102, 91422301, 21231001, 21590793]; Changjiang Young Scholars Award; National Program for Support of Top-Notch Young Professionals; Fundamental Research Funds for the Central Universities, China [FRF-TP-14-012C1]; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (grant nos. 21322102, 91422301, 21231001, and 21590793), the Changjiang Young Scholars Award. National Program for Support of Top-Notch Young Professionals, the Fundamental Research Funds for the Central Universities, China (FRF-TP-14-012C1). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We acknowledge the discussions on PDF analysis with Dr. R.Z. Yu and Dr. E. Bozin, and theoretical calculation with Dr. X.X. Jiang and Prof. Z.S. Lin. NR 32 TC 4 Z9 4 U1 34 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 9 PY 2016 VL 138 IS 44 BP 14530 EP 14533 DI 10.1021/jacs.6b08746 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EB8EW UT WOS:000387625300003 PM 27783492 ER PT J AU White, MA Miller, GJ Vela, J AF White, Miles A. Miller, Gordon J. Vela, Javier TI Polytypism and Unique Site Preference in LiZnSb: A Superior Thermoelectric Reveals Its True Colors SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID MGAGAS-TYPE COMPOUNDS; SEMICONDUCTORS AB The first example of polytypism in the I II-V semiconductors has been demonstrated with the synthesis of cubic LiZnSb by a low-temperature solution phase method. This phase exhibits a unique coloring pattern that is novel for this class of compounds. The choice of site configuration has a considerable impact on the band structure of these materials, which in turn affects the transport properties. While the hexagonal polytype has been suggested as a promising n-type and extremely poor p-type thermoelectric material, the cubic analogue is calculated to have high efficiencies for both the n- and p-type derivatives (1.64 and 1.43, respectively, at 600 K). Furthermore, the cubic phase is found to be the energetically favored polytype. This surprising result provides a rationale for the lack of success in synthesizing the hexagonal polytype in either stoichiometric or n-type compositions. C1 [White, Miles A.; Miller, Gordon J.; Vela, Javier] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Miller, Gordon J.; Vela, Javier] US DOE, Ames Lab, Ames, IA 50011 USA. RP Miller, GJ; Vela, J (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Miller, GJ; Vela, J (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM gmiller@iastate.edu; vela@iastate.edu RI Vela, Javier/I-4724-2014 OI Vela, Javier/0000-0001-5124-6893 FU U.S. National Science Foundation [1253058]; College of Liberal Arts and Sciences Computational Advisory Committee (LASCAC) at Iowa State University [202-04-36-03-1000]; Chemistry Department FX J.V. thanks the U.S. National Science Foundation for a CAREER Grant from the Division of Chemistry, Macro molecular, Supramolecular, and Nanochemistry Program (1253058). Computations were performed on cluster funded by the College of Liberal Arts and Sciences Computational Advisory Committee (LASCAC) at Iowa State University (202-04-36-03-1000), with additional support from the Chemistry Department. NR 22 TC 1 Z9 1 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 9 PY 2016 VL 138 IS 44 BP 14574 EP 14577 DI 10.1021/jacs.6b10054 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EB8EW UT WOS:000387625300014 PM 27766839 ER PT J AU Yu, CJ Graham, MJ Zadrozny, JM Niklas, J Krzyaniak, MD Wasielewski, MR Poluektov, OG Freedman, DE AF Yu, Chung-Jui Graham, Michael J. Zadrozny, Joseph M. Niklas, Jens Krzyaniak, Matthew D. Wasielewski, Michael R. Poluektov, Oleg G. Freedman, Danna E. TI Long Coherence Times in Nuclear Spin-Free Vanadyl Qubits SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LATTICE-RELAXATION RATES; CRYSTAL-STRUCTURE; NITROXYL RADICALS; QUANTUM COHERENCE; MOLECULAR QUBITS; GLASSY SOLVENTS; COMPLEXES; TRANSITIONS; TEMPERATURE; RESONANCE AB Quantum information processing (QIP) offers the potential to create new frontiers in fields ranging from quantum biology to cryptography. Two key figures of merit for electronic spin qubits, the smallest units of QIP, are the coherence time (T-2), the lifetime of the qubit, and the spin lattice relaxation time (T-1), the thermally defined upper limit of T-2. To achieve QIP, processable qubits with long coherence times are required. Recent studies on (Ph4P-d(20))(2)[V(C8S8)(3)], a vanadium-based qubit, demonstrate that millisecond T-2 times are achievable in transition metal complexes with nuclear spin free environments. Applying these principles to vanadyl complexes offers a route to combine the previously established surface compatibility of the flatter vanadyl structures with a long T-2. Toward those ends, we investigated a series of four qubits, (Ph4P)(2)[VO(C8S8)(2)] (1), (Ph4P)(2)[VO(beta-C3S5)(2)] (2), (Ph4P)(2)[VO(alpha-C3S5)(2)] (3), and (Ph4P)(2)[VO(C3S4O)(2)] (4), by pulsed electron paramagnetic resonance (EPR) spectroscopy and compared the performance of these species with our recently reported set of vanadium tris(dithiolene) complexes. Crucially we demonstrate that solutions of 1-4 in SO2, a uniquely polar nuclear spin free solvent, reveal T-2 values of up to 152(6) mu s, comparable to the best molecular qubit candidates. Upon transitioning to vanadyl species from the tris(dithiolene) analogues, we observe a remarkable order of magnitude increase in T-1 attributed to stronger solute solvent interactions with the polar vanadium-oxo moiety. Simultaneously, we detect a small decrease in T-2 for the vanadyl analogues relative to the tris(dithiolene) complexes. We attribute this decrease to the absence of one nuclear spin free ligand, which served to shield the vanadium centers against solvent nuclear spins. Our results highlight new design principles for long T-1 and T-2 times by demonstrating the efficacy of ligand-based tuning of solute-solvent interactions. C1 [Yu, Chung-Jui; Graham, Michael J.; Zadrozny, Joseph M.; Krzyaniak, Matthew D.; Wasielewski, Michael R.; Freedman, Danna E.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Niklas, Jens; Poluektov, Oleg G.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Krzyaniak, Matthew D.; Wasielewski, Michael R.] Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA. RP Freedman, DE (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM danna.freedman@northwestern.edu RI Zadrozny, Joseph/A-1429-2017; Niklas, Jens/I-8598-2016 OI Zadrozny, Joseph/0000-0002-1309-6545; Niklas, Jens/0000-0002-6462-2680 FU Northwestern University; State of Illinois; National Science Foundation [CHE-1455017, CHE-1565925]; NSF GRFP fellowship [DGE-1324585]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences at Argonne National Laboratory [DE-AC02-06CH11357] FX We thank M. S. Fataftah and M. L. Kelty for experimental assistance, and C. Stern for helpful discussions. We acknowledge support from Northwestern University, the State of Illinois, and the National Science Foundation for CAREER Award No. CHE-1455017 (C.-J.Y., M.J.G., J.M.Z., and D.E.F.) and Award No. CHE-1565925 (M.R.W.). M.J.G. acknowledges an NSF GRFP fellowship (DGE-1324585). This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC02-06CH11357 at Argonne National Laboratory (J.N. and O.G.P.). NR 65 TC 5 Z9 5 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 9 PY 2016 VL 138 IS 44 BP 14678 EP 14685 DI 10.1021/jacs.6b08467 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA EB8EW UT WOS:000387625300027 PM 27797487 ER PT J AU Malliakas, CD Chung, DY Claus, H Kanatzidis, MG AF Malliakas, Christos D. Chung, Duck Young Claus, Helmut Kanatzidis, Mercouri G. TI Superconductivity in the Narrow Gap Semiconductor RbBi11/3Te6 SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID STRUCTURAL EVOLUTION; PHASE HOMOLOGIES; TEMPERATURE; DESIGN AB Superconductivity was discovered in the layered compound RbBi11/3Te6, featuring Bi vacancies and a narrow band gap of 0.25(2) eV at room temperature. A sharp superconducting transition at similar to 3.2 K was observed in polycrystalline ingots. The superconducting volume fraction of oriented single crystals is almost 100%, confirming bulk superconductivity. Systematic Se and Sb substitutions in RbBi11/3-ySbySexTe6-x, revealed a dependence of the superconducting transition on composition that can increase the T-c up to similar to 10%. The RbBi11/3Te6 system is the first member of the new homologous series Rb[Bi2n+11/3Te3n+6] with infinite Bi2Te3-like layers. The large degree of chemical tunability of the electronic structure of the homology via doping and/or substitution gives rise to a new family of superconductors. C1 [Malliakas, Christos D.; Chung, Duck Young; Claus, Helmut; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 25 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 9 PY 2016 VL 138 IS 44 BP 14694 EP 14698 DI 10.1021/jacs.6b08732 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EB8EW UT WOS:000387625300029 PM 27744685 ER PT J AU Boulesbaa, A Wang, K Mahjouri-Samani, M Tian, M Puretzky, AA Ivanov, I Rouleau, CM Xiao, K Sumpter, BG Geohegan, DB AF Boulesbaa, Abdelaziz Wang, Kai Mahjouri-Samani, Masoud Tian, Mengkun Puretzky, Alexander A. Ivanov, Ilia Rouleau, Christopher M. Xiao, Kai Sumpter, Bobby G. Geohegan, David B. TI Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID TRANSITION-METAL DICHALCOGENIDES; ELECTRON-HOLE RECOMBINATION; CDSE QUANTUM DOTS; ENERGY-TRANSFER; SEMICONDUCTOR NANOCRYSTALS; LAYER MOS2; DYNAMICS; ABSORPTION; MONOLAYERS AB Photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors, i.e., monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions has attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge-transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure for optoelectronic applications. Here, we incorporate femtosecond pump probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/OD heterostructure composed of tungsten disulfide monolayers (2D-WS2) and a single layer of cadmium selenide/zinc sulfide core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that, following electron transfer from the 2D to the OD, hybrid excitons, wherein the electron resides in the OD and the hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of similar to 140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs. C1 [Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; Tian, Mengkun; Puretzky, Alexander A.; Ivanov, Ilia; Rouleau, Christopher M.; Xiao, Kai; Sumpter, Bobby G.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Boulesbaa, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM boulesbaaa@ornl.gov RI Sumpter, Bobby/C-9459-2013 OI Sumpter, Bobby/0000-0001-6341-0355 FU Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Synthesis of the two-dimensional materials was supported by the Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 33 TC 0 Z9 0 U1 89 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 9 PY 2016 VL 138 IS 44 BP 14713 EP 14719 DI 10.1021/jacs.6b08883 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA EB8EW UT WOS:000387625300032 PM 27754655 ER PT J AU Bellora, N Moline, M David-Palma, M Coelho, MA Hittinger, CT Sampaio, JP Goncalves, P Libkind, D AF Bellora, Nicolas Moline, Martin David-Palma, Marcia Coelho, Marco A. Hittinger, Chris Todd Sampaio, Jose P. Goncalves, Paula Libkind, Diego TI Comparative genomics provides new insights into the diversity, physiology, and sexuality of the only industrially exploited tremellomycete: Phaffia rhodozyma SO BMC GENOMICS LA English DT Article DE Xanthophyllomyces dendrorhous; Mycosporines; Aquaculture; Phylogenomics; Basidiomycete; Mating type; Photoprotection; Yeast; Type strain ID MYCOSPORINE-GLUTAMINOL-GLUCOSIDE; MULTIPLE SEQUENCE ALIGNMENT; ASTAXANTHIN BIOSYNTHESIS; SUNSCREEN BIOSYNTHESIS; SINGLET OXYGEN; YEAST; EVOLUTION; IDENTIFICATION; CAROTENOIDS; ANNOTATION AB Background: The class Tremellomycete (Agaricomycotina) encompasses more than 380 fungi. Although there are a few edible Tremella spp., the only species with current biotechnological use is the astaxanthin-producing yeast Phaffia rhodozyma (Cystofilobasidiales). Besides astaxanthin, a carotenoid pigment with potent antioxidant activity and great value for aquaculture and pharmaceutical industries, P. rhodozyma possesses multiple exceptional traits of fundamental and applied interest. The aim of this study was to obtain, and analyze two new genome sequences of representative strains from the northern (CBS 7918(T), the type strain) and southern hemispheres (CRUB 1149) and compre them to a previously published genome sequence (strain CBS 6938). Photoprotection and antioxidant related genes, as well as genes involved in sexual reproduction were analyzed. Results: Both genomes had ca. 19 Mb and 6000 protein coding genes, similar to CBS 6938. Compared to other fungal genomes P. rhodozyma strains and other Cystofilobasidiales have the highest number of intron-containing genes and highest number of introns per gene. The Patagonian strain showed 4.4 % of nucleotide sequence divergence compared to the European strains which differed from each other by only 0.073 %. All known genes related to the synthesis of astaxanthin were annotated. A hitherto unknown gene cluster potentially responsible for photoprotection (mycosporines) was found in the newly sequenced P. rhodozyma strains but was absent in the non-mycosporinogenic strain CBS 6938. A broad battery of enzymes that act as scavengers of free radical oxygen species were detected, including catalases and superoxide dismutases (SODs). Additionally, genes involved in sexual reproduction were found and annotated. Conclusions: A draft genome sequence of the type strain of P. rhodozyma is now available, and comparison with that of the Patagonian population suggests the latter deserves to be assigned to a distinct variety. An unexpected genetic trait regarding high occurrence of introns in P. rhodozyma and other Cystofilobasidiales was revealed. New genomic insights into fungal homothallism were also provided. The genetic basis of several additional photoprotective and antioxidant strategies were described, indicating that P. rhodozyma is one of the fungi most well-equipped to cope with environmental oxidative stress, a factor that has probably contributed to shaping its genome. C1 [Bellora, Nicolas; Moline, Martin; Libkind, Diego] CONICET UNComahue, Inst Andino Patag nico Tecnologias Biol gicas Geo, Lab Microbiol Aplicada Biotecnol & Bioinformat Le, Inst Andinopatagon Tecnol Biol & Geoambientales I, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [David-Palma, Marcia; Coelho, Marco A.; Sampaio, Jose P.; Goncalves, Paula] Univ Nova Lisboa, Dept Ciencias Vida, UCIBIO REQUIMTE, Fac Ciencias & Tecnol, Caparica, Portugal. [Hittinger, Chris Todd] Univ Wisconsin, Genet Lab, Genome Ctr Wisconsin,JF Crow Inst Study Evolut, DOE Great Lakes Bioenergy Res Ctr,Wisconsin Energ, Madison, WI 53706 USA. RP Libkind, D (reprint author), CONICET UNComahue, Inst Andino Patag nico Tecnologias Biol gicas Geo, Lab Microbiol Aplicada Biotecnol & Bioinformat Le, Inst Andinopatagon Tecnol Biol & Geoambientales I, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. EM libkindfd@comahue-conicet.gob.ar OI Coelho, Marco/0000-0002-5716-0561 FU ANPCYT [PICT 1814, PICT 2542]; CONICET [PIP 424]; UNComahue [B171]; Unidade de Ciencias Biomoleculares Aplicadas-UCIBIO; FCT/MEC [UID/Multi/04378/2013]; ERDF [POCI-01-0145-FEDER-007728]; National Science Foundation [DEB-1253634, DEB-1442148]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; Pew Charitable Trusts; Alexander von Humboldt Foundation; Fundacao para a Ciencia e a Tecnologia, Portugal [SFRH/BPD/79198/2011, SFRH/BD/81895/2011]; [PTDC/BIA-GEN/112799/2009] FX This work was partially funded in Argentina by grants PICT 1814 and PICT 2542 (ANPCYT), PIP 424 (CONICET) and B171 (UNComahue), in Portugal by grant PTDC/BIA-GEN/112799/2009 and by the Unidade de Ciencias Biomoleculares Aplicadas-UCIBIO, which is financed by national funds from FCT/MEC (UID/Multi/04378/2013) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728), and in USA by the National Science Foundation under grants DEB-1253634 and DEB-1442148 and funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). CTH is a Pew Scholar in the Biomedical Sciences and an Alfred Toepfer Faculty Fellow, supported by the Pew Charitable Trusts and the Alexander von Humboldt Foundation, respectively. MAC and MD-P hold, respectively, grants SFRH/BPD/79198/2011 and SFRH/BD/81895/2011 from Fundacao para a Ciencia e a Tecnologia, Portugal. We thank Jim Dover for technical support and Mark Johnston for providing access to an Illumina GAIIx instrument at the University of Colorado School of Medicine. To Dr. Cifuentes (U.N. Chile) for providing a set of mRNAs for annotation and quality checks. We thank Laurie Connell, Christina Cuomo, Ratan Gachhui, and Joseph Heitman for the authorization of use of their genome sequences. NR 77 TC 0 Z9 0 U1 20 U2 20 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 9 PY 2016 VL 17 AR 901 DI 10.1186/s12864-016-3244-7 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA EB5PH UT WOS:000387428000005 PM 27829365 ER PT J AU Gofryk, K Griveau, JC Riseborough, PS Durakiewicz, T AF Gofryk, K. Griveau, J. -C. Riseborough, P. S. Durakiewicz, T. TI Thermoelectric power as a probe of density of states in correlated actinide materials: The case of PuCoGa5 superconductor SO PHYSICAL REVIEW B LA English DT Article ID HEAVY-FERMION COMPOUNDS; ELECTRONIC-STRUCTURE; KONDO LATTICES; HIGH-PRESSURE; TRANSITION; CERIUM; TEMPERATURE; DEPENDENCE; SYSTEMS; METALS AB We present measurements of the thermoelectric power of the plutonium-based unconventional superconductor PuCoGa5. The data is interpreted within a phenomenological model for the quasiparticle density of states of intermediate valence systems, and the results are compared with results obtained from photoemission spectroscopy. The results are consistent with the intermediate valence nature of 5f electrons; furthermore, we propose that measurements of the Seebeck coefficient can be used as a probe of density of states in this material, thereby providing a link between transport measurements and photoemission in strongly correlated materials. We discuss these results and their implications for the electronic structure determination of other strongly correlated systems, especially actinide materials. C1 [Gofryk, K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Griveau, J. -C.] European Commiss, Joint Res Ctr, Directorate Nucl Safety & Secur, Postfach 2340, D-76125 Karlsruhe, Germany. [Riseborough, P. S.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Durakiewicz, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Durakiewicz, T.] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. RP Gofryk, K (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM krzysztof.gofryk@inl.gov RI Riseborough, Peter/D-4689-2011 FU Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division [DOE FG02-01ER45872] FX This work was supported by the Department of Energy, Office of Basic Energy Sciences, Materials Sciences, and Engineering Division and through Grant No. DOE FG02-01ER45872. We are grateful to J. Rebizant for sample preparation and characterization. High purity Pu metal was made available through a loan agreement between Lawrence Livermore National Laboratory and ITU, in the frame of a collaboration involving LLNL, Los Alamos National Laboratory, and the US Department of Energy. NR 43 TC 0 Z9 0 U1 9 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 9 PY 2016 VL 94 IS 19 AR 195117 DI 10.1103/PhysRevB.94.195117 PG 5 WC Physics, Condensed Matter SC Physics GA EB7AJ UT WOS:000387537100002 ER PT J AU Doux, C Schaan, E Aubourg, E Ganga, K Lee, KG Spergel, DN Treguer, J AF Doux, Cyrille Schaan, Emmanuel Aubourg, Eric Ganga, Ken Lee, Khee-Gan Spergel, David N. Treguer, Julien TI First detection of cosmic microwave background lensing and Lyman-alpha forest bispectrum SO PHYSICAL REVIEW D LA English DT Article ID OSCILLATION SPECTROSCOPIC SURVEY; BARYON ACOUSTIC-OSCILLATIONS; DATA RELEASE 9; POWER SPECTRUM; DARK-MATTER; BOSS; MASS; QUASARS; REIONIZATION; DENSITY AB We present the first detection of a correlation between the Lyman-alpha forest and cosmic microwave background gravitational lensing. For each Lyman-a forest in SDSS-III/BOSS DR12, we correlate the one-dimensional power spectrum with the cosmic microwave background lensing convergence on the same line of sight from Planck. This measurement constitutes a position-dependent power spectrum, or a squeezed bispectrum, and quantifies the nonlinear response of the Lyman-alpha forest power spectrum to a large-scale overdensity. The signal is measured at 5 sigma and is consistent with the expectation of the standard Lambda CDM cosmological model. We measure the linear bias of the Lyman-a forest with respect to the dark matter distribution and constrain a combination of nonlinear terms including the nonlinear bias. This new observable provides a consistency check for the Lyman-alpha forest as a large-scale structure probe and tests our understanding of the relation between intergalactic gas and dark matter. In the future, it could be used to test hydrodynamical simulations and calibrate the relation between the Lyman-a forest and dark matter. C1 [Doux, Cyrille; Aubourg, Eric; Ganga, Ken; Treguer, Julien] Univ Paris Diderot, AstroParticule & Cosmol, CNRS, Sorbonne Paris Cite,CEA,Observ Paris, Batiment Condorcet, F-75205 Paris 13, France. [Schaan, Emmanuel; Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. [Lee, Khee-Gan] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Doux, C (reprint author), Univ Paris Diderot, AstroParticule & Cosmol, CNRS, Sorbonne Paris Cite,CEA,Observ Paris, Batiment Condorcet, F-75205 Paris 13, France. EM cdoux@apc.in2p3.fr FU Centre National de la Recherche Scientifique (CNRS) grant PICS APC-Princeton; NSF [AST-1311756]; NASA through Hubble Fellowship - Space Telescope Science Institute [HF2-51361]; NASA [NAS5-26555]; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/Joint Institute for Nuclear Astrophysics (JINA) Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Spanish Participation Group FX The authors warmly thank the referee for interesting and useful questions and comments. C. D., E. S., and E. A. acknowledge support from Centre National de la Recherche Scientifique (CNRS) grant PICS APC-Princeton. C. D., E. S., and D. N. S. acknowledge support from NSF Grant No. AST-1311756. K.-G. L. acknowledges support for this work by NASA through Hubble Fellowship Grant No. HF2-51361 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under Contract No. NAS5-26555. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/Joint Institute for Nuclear Astrophysics (JINA) Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 44 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 9 PY 2016 VL 94 IS 10 AR 103506 DI 10.1103/PhysRevD.94.103506 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EB5DA UT WOS:000387392400002 ER PT J AU Fu, Q Wheaton, BR Geisinger, KL Credle, AJ Wang, J AF Fu, Qiang Wheaton, Bryan R. Geisinger, Karen L. Credle, Allen J. Wang, Jie TI Crystallization, Microstructure, and Viscosity Evolutions in Lithium Aluminosilicate Glass-Ceramics SO FRONTIERS IN MATERIALS LA English DT Article DE lithium aluminosilicate glass-ceramics; crystallization; viscosity; microstructure; phase assemblage ID X-RAY-DIFFRACTION; DIFFERENTIAL THERMAL-ANALYSIS; LI2O-AL2O3-SIO2 GLASSES; DISILICATE GLASS; SILICATE GLASS; NUCLEATION; TIO2; SPODUMENE; GROWTH AB Lithium aluminosilicate glass-ceramics have found widespread commercial success in areas such as consumer products, telescope mirrors, fireplace windows, etc. However, there is still much to learn regarding the fundamental mechanisms of crystallization, especially related to the evolution of viscosity as a function of the crystallization (ceramming) process. In this study, the impact of phase assemblage and microstructure on the viscosity was investigated using high-temperature X-ray diffraction (HTXRD), beam bending viscometry (BBV), and transmission electron microscopy (TEM). Results from this study provide a first direct observation of viscosity evolution as a function of ceramming time and temperature. Sharp viscosity increases due to phase separation, nucleation, and phase transformation are noticed through BBV measurement. A near-net shape ceramming can be achieved in TiO2-containing compositions by keeping the glass at a high viscosity (>10(9) Pa s) throughout the whole thermal treatment. C1 [Fu, Qiang; Wheaton, Bryan R.; Geisinger, Karen L.; Credle, Allen J.] Corning Inc, Div Sci & Technol, Corning, NY 14831 USA. [Wang, Jie] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL USA. RP Fu, Q (reprint author), Corning Inc, Div Sci & Technol, Corning, NY 14831 USA. EM fuq2@corning.com NR 38 TC 0 Z9 0 U1 0 U2 0 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 2296-8016 J9 FRONT MATER JI Front. Mater. PD NOV 8 PY 2016 VL 3 AR UNSP 49 DI 10.3389/fmats.2016.00049 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA EK0VP UT WOS:000393645500001 ER PT J AU Diamanti, E Lo, HK Qi, B Yuan, ZL AF Diamanti, Eleni Lo, Hoi-Kwong Qi, Bing Yuan, Zhiliang TI Practical challenges in quantum key distribution SO NPJ QUANTUM INFORMATION LA English DT Review ID SINGLE-PHOTON DETECTORS; CONTINUOUS-VARIABLES; SIGNAL DISTURBANCE; COHERENT STATES; OPTICAL-FIBER; UP-CONVERSION; HIGH-SPEED; CRYPTOGRAPHY; SECURITY; COMMUNICATION AB Quantum key distribution (QKD) promises unconditional security in data communication and is currently being deployed in commercial applications. Nonetheless, before QKD can be widely adopted, it faces a number of important challenges such as secret key rate, distance, size, cost and practical security. Here, we survey those key challenges and the approaches that are currently being taken to address them. C1 [Diamanti, Eleni] Univ Paris Saclay, Telecom ParisTech, CNRS, Lab Traitement & Commun Informat, Paris, France. [Lo, Hoi-Kwong] Univ Toronto, Ctr Quantum Informat & Quantum Control, Dept Phys, Toronto, ON, Canada. [Lo, Hoi-Kwong] Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada. [Qi, Bing] Oak Ridge Natl Lab, Computat Sci & Engn Div, Quantum Informat Sci Grp, Oak Ridge, TN USA. [Qi, Bing] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Yuan, Zhiliang] Toshiba Res Europe Ltd, Cambridge, England. [Yuan, Zhiliang] Toshiba Co Ltd, Corp Res & Dev Ctr, Kawasaki, Kanagawa, Japan. RP Lo, HK (reprint author), Univ Toronto, Ctr Quantum Informat & Quantum Control, Dept Phys, Toronto, ON, Canada.; Lo, HK (reprint author), Univ Toronto, Dept Elect & Comp Engn, Toronto, ON, Canada. EM hklo@ece.utoronto.ca FU NSERC; CFI; ORF; US Office of Naval Research (ONR); Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory; City of Paris; French National Research Agency; Ile-de-France Region; France-USA Partner University Fund; Commissioned Research of National Institute of Information and Communications Technology (NICT), Japan FX We acknowledge helpful comments from many colleagues including Romain Alleaume, Hoi-Fung Chau, Marcos Curty, Philippe Grangier, Anthony Leverrier, Charles Ci Wen Lim, Marco Lucamarini, Xiongfeng Ma, Joyce Poon, Li Qian, Kiyoshi Tamaki and Feihu Xu. We thank our colleagues including Ping Koy Lam, Vikas Anant, Jessie Qin-Dregely, Chris Erven, Masato Koashi, Philip Sibson, Mark Thompson and Qiang Zhang for allowing us to reproduce some of their figures. We thank Warren Raye of Nature Partner Journals for securing the permission for reproductions of figures from various publishers. We acknowledge financial support from NSERC, CFI, ORF, the US Office of Naval Research (ONR), the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory (managed by UT-Battelle LLC for the US Department of Energy), the City of Paris, the French National Research Agency, the Ile-de-France Region, the France-USA Partner University Fund, and the Commissioned Research of National Institute of Information and Communications Technology (NICT), Japan. NR 180 TC 1 Z9 1 U1 15 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2056-6387 J9 NPJ QUANTUM INFORM PD NOV 8 PY 2016 VL 2 AR 16025 DI 10.1038/npjqi.2016.25 PG 12 WC Physics, Applied; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter SC Physics GA EI1YP UT WOS:000392283100001 ER PT J AU Wu, F Xing, Y Zeng, XQ Yuan, YF Zhang, XY Shahbazian-Yassar, R Wen, JG Miller, DJ Li, L Chen, RJ Lu, J Amine, K AF Wu, Feng Xing, Yi Zeng, Xiaoqiao Yuan, Yifei Zhang, Xiaoyi Shahbazian-Yassar, Reza Wen, Jianguo Miller, Dean J. Li, Li Chen, Renjie Lu, Jun Amine, Khalil TI Platinum-Coated Hollow Graphene Nanocages as Cathode Used in Lithium-Oxygen Batteries SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID RECHARGEABLE LI-O-2 BATTERIES; AIR BATTERIES; ELECTRODE MATERIALS; CARBON NANOCAGES; POROUS GRAPHENE; LONG-LIFE; CATALYST; PERFORMANCE; NANOPARTICLE; MORPHOLOGY AB One of the formidable challenges facing aprotic lithium-oxygen (Li-O-2) batteries is the high charge overpotential, which induces the formation of byproducts, loss in efficiency, and poor cycling performance. Herein, the synthesis of the ultrasmall Pt-coated hollow graphene nano cages as cathode in Li-O-2 batteries is reported. The charge voltage plateau can reduce to 3.2 V at the current density of 100 mA g(-1), even maintain below 3.5 V when the current density increased to 500 mA g(-1). The unique hollow graphene nanocages matrix can not only provide numerous nanoscale tri-phase regions as active sites for efficient oxygen reduction, but also offer sufficient amount of mesoscale pores for rapid oxygen diffusion. Furthermore, with strong atomic-level oxygen absorption into its subsurface, ultrasmall Pt catalytically serves as the nucleation site for Li2O2 growth. The Li2O2 is subsequently induced into a favorable form with small size and amorphous state, decomposed more easily during recharge. Meanwhile, the conductive hollow graphene substrate can enhance the catalytic activity of noble metal Pt catalysts due to the graphene-metal interfacial interaction. Benefiting from the above synergistic effects between the hollow graphene nanocages and the nanosized Pt catalysts, the ultrasmall Pt-decorated graphene nanocage cathode exhibits enhanced electrochemical performances. C1 [Wu, Feng; Xing, Yi; Li, Li; Chen, Renjie] Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Wu, Feng; Li, Li; Chen, Renjie] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China. [Zeng, Xiaoqiao; Yuan, Yifei; Lu, Jun; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. [Yuan, Yifei; Shahbazian-Yassar, Reza] Michigan Technol Univ, Dept Mat Sci & Engn, 1400 Townsend Dr, Houghton, MI 49931 USA. [Zhang, Xiaoyi] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Div Mat Sci, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Chen, RJ (reprint author), Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, Beijing 100081, Peoples R China.; Chen, RJ (reprint author), Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM chenrj@bit.edu.cn; junlu@anl.gov FU Major Achievements Transformation Project for Central University in Beijing; National Natural Science Foundation of China [21373028]; National Key Program for Basic Research of China [2015CB251100]; Beijing Science and Technology Project [D151100003015001]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX F.W. and Y.X. contributed equally to this work. This work was supported by Major Achievements Transformation Project for Central University in Beijing, the National Natural Science Foundation of China (21373028), National Key Program for Basic Research of China (2015CB251100), and Beijing Science and Technology Project (D151100003015001). The authors also acknowledge the use of the Advanced Photon Source (APS) and the Center for Nanoscale Materials (CNM) that are supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 52 TC 2 Z9 2 U1 59 U2 59 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD NOV 8 PY 2016 VL 26 IS 42 BP 7626 EP 7633 DI 10.1002/adfm.201602246 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EC5IC UT WOS:000388166700009 ER PT J AU Liu, PF Li, YJ Wang, Y Gilles, MK Zaveri, RA Bertram, AK Martin, ST AF Liu, Pengfei Li, Yong Jie Wang, Yan Gilles, Mary K. Zaveri, Rahul A. Bertram, Allan K. Martin, Scot T. TI Lability of secondary organic particulate matter SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE atmospheric chemistry; secondary organic aerosol; evaporation ID COMPLEX REFRACTIVE-INDEXES; PARTICLE-PHASE CHEMISTRY; ALPHA-PINENE OZONOLYSIS; VOLATILITY BASIS-SET; AEROSOL FORMATION; RELATIVE-HUMIDITY; EVAPORATION KINETICS; SOA PARTICLES; M-XYLENE; PHOTOOXIDATION AB The energy flows in Earth's natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate D-org for the biogenic case is at least 103 times greater than that of the anthropogenic case. These differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PMin Earth's atmosphere. C1 [Liu, Pengfei; Li, Yong Jie; Wang, Yan; Martin, Scot T.] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Li, Yong Jie] Univ Macau, Fac Sci & Technol, Dept Civil & Environm Engn, Macau 999078, Peoples R China. [Wang, Yan] Harvard Univ, TH Chan Sch Publ Hlth, Boston, MA 02115 USA. [Gilles, Mary K.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Zaveri, Rahul A.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. [Bertram, Allan K.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. [Martin, Scot T.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Martin, ST (reprint author), Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA.; Martin, ST (reprint author), Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. EM scot_martin@harvard.edu RI Martin, Scot/G-1094-2015; Li, Yongjie/D-2856-2009 OI Martin, Scot/0000-0002-8996-7554; Li, Yongjie/0000-0002-7631-9136 FU Radiation Science Program of the National Aeronautics and Space Administration; Atmospheric System Research Program of the Office of Science of the Department of Energy; Geosciences Directorate of the National Science Foundation; Earth and Space Science Fellowship Program; Condensed Phase Interfacial Molecular Science Program of the Department of Energy Basic Energy Sciences FX We acknowledge Liuhua Shi, Yingjun Liu, Onye Ahanotu, Jiaxi Cui, and Christopher Johnson for fruitful discussions and assistance with the experiments. This research was funded by the Radiation Science Program of the National Aeronautics and Space Administration, the Atmospheric System Research Program of the Office of Science of the Department of Energy, and the Geosciences Directorate of the National Science Foundation. P.L. was supported by an Earth and Space Science Fellowship Program. M.K.G. acknowledges support from the Condensed Phase Interfacial Molecular Science Program of the Department of Energy Basic Energy Sciences. The QCM experiments were performed at the Wyss Institute for Biologically Inspired Engineering-Material Characterization Core of Harvard University. NR 56 TC 2 Z9 2 U1 29 U2 29 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 8 PY 2016 VL 113 IS 45 BP 12643 EP 12648 DI 10.1073/pnas.1603138113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC4CL UT WOS:000388073300045 ER PT J AU Mesaros, A Fujita, K Edkins, SD Hamidian, MH Eisaki, H Uchida, SI Davis, JCS Lawler, MJ Kim, EA AF Mesaros, Andrej Fujita, Kazuhiro Edkins, Stephen D. Hamidian, Mohammad H. Eisaki, Hiroshi Uchida, Shin-ichi Davis, J. C. Saemus Lawler, Michael J. Kim, Eun-Ah TI Commensurate 4a(0)-period charge density modulations throughout the Bi2Sr2CaCu2O8+x pseudogap regime SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE CuO2 pseudogap; commensurate charge density modulation; phase discommensuration ID DOPED MOTT INSULATOR; ELECTRONIC NEMATICITY; LONG-RANGE; ORDER; PHASE; SUPERCONDUCTIVITY; TRANSITION; MODEL; WAVE; DISCOMMENSURATIONS AB Theories based upon strong real space (r-space) electron-electron interactions have long predicted that unidirectional charge density modulations (CDMs) with four-unit-cell (4a(0)) periodicity should occur in the hole-doped cuprate Mott insulator (MI). Experimentally, however, increasing the hole density p is reported to cause the conventionally defined wavevector Q(A) of the CDM to evolve continuously as if driven primarily by momentum-space (k-space) effects. Here we introduce phase-resolved electronic structure visualization for determination of the cuprate CDM wavevector. Remarkably, this technique reveals a virtually doping-independent locking of the local CDM wavevector at vertical bar Q(0)vertical bar= 2 pi/4a(0) throughout the underdoped phase diagram of the canonical cuprate Bi2Sr2CaCu2O8. These observations have significant fundamental consequences because they are orthogonal to a k-space (Fermi-surface)-based picture of the cuprate CDMs but are consistent with strong-coupling r-space-based theories. Our findings imply that it is the latter that provides the intrinsic organizational principle for the cuprate CDM state. C1 [Mesaros, Andrej; Edkins, Stephen D.; Davis, J. C. Saemus; Lawler, Michael J.; Kim, Eun-Ah] Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA. [Fujita, Kazuhiro; Davis, J. C. Saemus] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Edkins, Stephen D.; Davis, J. C. Saemus] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Hamidian, Mohammad H.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Hamidian, Mohammad H.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Eisaki, Hiroshi; Uchida, Shin-ichi] Natl Inst Adv Ind Sci & Technol, Elect & Photon Res Inst, Superconducting Elect Grp, Tsukuba, Ibaraki 3058568, Japan. [Uchida, Shin-ichi] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Davis, J. C. Saemus] Univ Coll Cork, Tyndall Natl Inst, T12R5C, Cork, Ireland. [Lawler, Michael J.] SUNY Binghamton, Dept Phys, Binghamton, NY 13902 USA. RP Davis, JCS; Kim, EA (reprint author), Cornell Univ, Dept Phys, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA.; Davis, JCS (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA.; Davis, JCS (reprint author), Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland.; Davis, JCS (reprint author), Univ Coll Cork, Tyndall Natl Inst, T12R5C, Cork, Ireland. EM jcseamusdavis@gmail.com; eun-ah.kim@cornell.edu FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0010313]; Engineering and Physical Sciences Research Council [EP/G03673X/1, EP/1031014/1]; Moore Foundation's Emergent Phenomena in Quantum Systems Initiative Grant [GBMF4544]; Ministry of Science and Education (Japan); Global Centers of Excellence Program; Tyndall National Institute, University College Cork; Center for Emergent Superconductivity, an Energy Frontier Research Center; US Department of Energy [DE-2009-BNL-PM015]; [392182] FX A.M. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award DE-SC0010313; E.-A.K. acknowledges Simons Fellow in Theoretical Physics Award 392182; S.D.E. acknowledges funding from Engineering and Physical Sciences Research Council Grants EP/G03673X/1 and EP/1031014/1; M.H.H. acknowledges support from the Moore Foundation's Emergent Phenomena in Quantum Systems Initiative Grant GBMF4544; S.-i.U. and H.E. acknowledge support from a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan) and the Global Centers of Excellence Program for the Japan Society for the Promotion of Science. J.C.S.D. acknowledges gratefully the hospitality and support of the Tyndall National Institute, University College Cork. Experimental studies were supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center, headquartered at Brookhaven National Laboratory and funded by US Department of Energy Grant DE-2009-BNL-PM015. NR 53 TC 4 Z9 4 U1 7 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 8 PY 2016 VL 113 IS 45 BP 12661 EP 12666 DI 10.1073/pnas.1614247113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC4CL UT WOS:000388073300048 ER PT J AU Yu, F Hirschberger, M Loew, T Li, G Lawson, BJ Asaba, T Kemper, JB Liang, T Porras, J Boebinger, GS Singleton, J Keimer, B Li, L Ong, NP AF Yu, Fan Hirschberger, Max Loew, Toshinao Li, Gang Lawson, Benjamin J. Asaba, Tomoya Kemper, J. B. Liang, Tian Porras, Juan Boebinger, Gregory S. Singleton, John Keimer, Bernhard Li, Lu Ong, N. Phuan TI Magnetic phase diagram of underdoped YBa2Cu3Oy inferred from torque magnetization and thermal conductivity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE cuprate superconductivity; high-field phase diagram; vortex liquid; torque magnetometry; thermal conductivity ID HIGH-TEMPERATURE SUPERCONDUCTOR; DENSITY-WAVE ORDER; T-C SUPERCONDUCTOR; FERMI-SURFACE; CHARGE ORDER; VORTEX STATE; FIELD AB Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3Oy was obtained by NMR and resonant X-ray scattering. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D charge-density-wave (CDW) formation with long-range order (LRO) was observed by X-ray diffraction in H> 15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity kappa(xx) to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and kappa(xx) at the fields H-K and H-p, which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field H-m(T) of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (41 T), the second vortex solid melts to a vortex liquid which survives to fields well above 41 T. de Haas-van Alphen oscillations appear at fields 24-28 T, below the lower bound for the upper critical field Hc(2). C1 [Yu, Fan; Li, Gang; Lawson, Benjamin J.; Asaba, Tomoya; Li, Lu] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Hirschberger, Max; Liang, Tian; Ong, N. Phuan] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Loew, Toshinao; Porras, Juan; Keimer, Bernhard] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Kemper, J. B.; Boebinger, Gregory S.] Florida State Univ, Dept Phys, Tallahassee, FL 32310 USA. [Kemper, J. B.; Boebinger, Gregory S.] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Singleton, John] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Kemper, J. B.] Gonzaga Univ, Dept Phys, Spokane, WA 99258 USA. RP Ong, NP (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. EM npo@princeton.edu RI Li, Gang/E-3033-2015 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0008110]; National Science Foundation (NSF)-MRSEC (Materials Research Science and Engineering Centers) [DMR 1420541]; Gordon and Betty Moore Foundations EPiQS (Emergent Phenomena in Quantum Systems) Initiative [GBMF4539]; NSF [DMR-1157490]; State of Florida; US Department of Energy FX The research of L.L. is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008110 (high-field magnetization). M.H. and N.P.O. were supported by National Science Foundation (NSF)-MRSEC (Materials Research Science and Engineering Centers) Grant DMR 1420541 and the Gordon and Betty Moore Foundations EPiQS (Emergent Phenomena in Quantum Systems) Initiative through Grant GBMF4539 (thermal conductivity and analysis). The experiments were performed at the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement DMR-1157490, the State of Florida, and the US Department of Energy. NR 28 TC 0 Z9 0 U1 8 U2 8 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 8 PY 2016 VL 113 IS 45 BP 12667 EP 12672 DI 10.1073/pnas.1612591113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EC4CL UT WOS:000388073300049 ER PT J AU Ong, RG Higbee, A Bottoms, S Dickinson, Q Xie, D Smith, SA Serate, J Pohlmann, E Jones, AD Coon, JJ Sato, TK Sanford, GR Eilert, D Oates, LG Piotrowski, JS Bates, DM Cavalier, D Zhang, YP AF Ong, Rebecca Garlock Higbee, Alan Bottoms, Scott Dickinson, Quinn Xie, Dan Smith, Scott A. Serate, Jose Pohlmann, Edward Jones, Arthur Daniel Coon, Joshua J. Sato, Trey K. Sanford, Gregg R. Eilert, Dustin Oates, Lawrence G. Piotrowski, Jeff S. Bates, Donna M. Cavalier, David Zhang, Yaoping TI Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Biofuel; Corn stover; Drought; Fermentation inhibition; Lignocellulose; Saccharomyces cerevisiae; Switchgrass ID MISCANTHUS-X-GIGANTEUS; CELLULOSIC ETHANOL; SACCHAROMYCES-CEREVISIAE; BIOENERGY CROPS; UNITED-STATES; CORN STOVER; EXPANSION; RESPONSES; PROFILES; SOFTWARE AB Background: Interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strains of Saccharomyces cerevisiae and Zymomonas mobilis. A chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates. Results: While most corn stover and switchgrass hydrolysates were readily fermented, growth of S. cerevisiae was completely inhibited in hydrolysate generated from drought-stressed switchgrass. Based on chemical genomics analysis, yeast strains deficient in genes related to protein trafficking within the cell were significantly more resistant to the drought-year switchgrass hydrolysate. Detailed biomass and hydrolysate characterization revealed that switchgrass accumulated greater concentrations of soluble sugars in response to the drought and these sugars were subsequently degraded to pyrazines and imidazoles during ammonia-based pretreatment. When added ex situ to normal switchgrass hydrolysate, imidazoles and pyrazines caused anaerobic growth inhibition of S. cerevisiae. Conclusions: In response to the osmotic pressures experienced during drought stress, plants accumulate soluble sugars that are susceptible to degradation during chemical pretreatments. For ammonia-based pretreatment, these sugars degrade to imidazoles and pyrazines. These compounds contribute to S. cerevisiae growth inhibition in drought-year switchgrass hydrolysate. This work discovered that variation in environmental conditions during the growth of bioenergy crops could have significant detrimental effects on fermentation organisms during biofuel production. These findings are relevant to regions where climate change is predicted to cause an increased incidence of drought and to marginal lands with poor water-holding capacity, where fluctuations in soil moisture may trigger frequent drought stress response in lignocellulosic feedstocks. C1 [Ong, Rebecca Garlock; Cavalier, David] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Ong, Rebecca Garlock] Michigan Technol Univ, Dept Chem Engn, E Lansing, MI 48824 USA. [Ong, Rebecca Garlock] Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA. [Higbee, Alan; Coon, Joshua J.] Univ Wisconsin Madison, Dept Chem, Madison, WI USA. [Bottoms, Scott; Dickinson, Quinn; Xie, Dan; Serate, Jose; Pohlmann, Edward; Sato, Trey K.; Sanford, Gregg R.; Eilert, Dustin; Oates, Lawrence G.; Piotrowski, Jeff S.; Bates, Donna M.; Zhang, Yaoping] Univ Wisconsin Madison, DOE Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Smith, Scott A.; Jones, Arthur Daniel] Michigan State Univ, RTSF Mass Spectrometry & Metabol Core, E Lansing, MI 48824 USA. [Jones, Arthur Daniel] Michigan State Univ, Dept Biochem & Molecu Biol, E Lansing, MI 48824 USA. [Jones, Arthur Daniel] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Coon, Joshua J.] Univ Wisconsin Madison, Dept Biomol Chem, Madison, WI USA. [Coon, Joshua J.] Univ Wisconsin Madison, Genome Ctr Wisconsin, Madison, WI USA. [Sanford, Gregg R.; Oates, Lawrence G.] Univ Wisconsin Madison, Dept Agron, Madison, WI USA. RP Ong, RG (reprint author), Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.; Ong, RG (reprint author), Michigan Technol Univ, Dept Chem Engn, E Lansing, MI 48824 USA.; Ong, RG (reprint author), Michigan Technol Univ, Dept Chem Engn, Houghton, MI 49931 USA. EM rgong1@mtu.edu OI Jones, A. Daniel/0000-0002-7408-6690 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; DOE OBP Office of Energy Efficiency and Renewable Energy [DE-AC05-76RL01830] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). Additional funding for L.G.O. is under DOE OBP Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830). AFEX is a trademark of MBI, International (Lansing, MI). NR 50 TC 0 Z9 0 U1 9 U2 9 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD NOV 8 PY 2016 VL 9 AR 237 DI 10.1186/s13068-016-0657-0 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA EC0YT UT WOS:000387830400001 PM 27826356 ER PT J AU Zhang, YM Kirshenbaum, KC Marschilok, AC Takeuchi, ES Takeuchi, KJ AF Zhang, Yiman Kirshenbaum, Kevin C. Marschilok, Amy C. Takeuchi, Esther S. Takeuchi, Kenneth J. TI Battery Relevant Electrochemistry of Ag7Fe3(P2O7)(4): Contrasting Contributions from the Redox Chemistries of Ag+ and Fe3+ SO CHEMISTRY OF MATERIALS LA English DT Article ID SODIUM-ION BATTERIES; POSITIVE ELECTRODE MATERIAL; CATHODE MATERIAL; RECHARGEABLE BATTERIES; PYROPHOSPHATE CATHODES; IRON PYROPHOSPHATE; LITHIUM BATTERIES; PHOSPHATE CATHODE; NA2FEP2O7; COMPOSITE AB Ag7Fe3(P2O7)(4) is an example of an electrochemical displacement material which contains two different electrochemically active metal cations, where one cation (Ag+) forms metallic silver nanoparticles external to the crystals of Ag7Fe3(P2O7)(4) via an electrochemical reduction displacement reaction, while the other cation (Fe3+) is electrochemically reduced with the retention of iron cations within the anion structural framework concomitant with lithium insertion. These contrasting redox chemistries within one pure cathode material enable high rate capability and reversibility when Ag7Fe3(P2O7)(4) is employed as cathode material in a lithium ion battery (LIB). Further, pyrophosphate materials are thermally and electrically stable, desirable attributes for cathode materials in LIBs. In this paper, a bimetallic pyrophosphate material Ag7Fe3(P2O7)(4) is synthesized and confirmed to be a single phase by Rietveld refinement. Electrochemistry of Ag7Fe3(P2O7)(4) is reported for the first time in the context of lithium based batteries using cyclic voltammetry and galvanostatic discharge-charge cycling. The reduction displacement reaction and the lithium (de)insertion processes are investigated using ex situ X-ray absorption spectroscopy and X-ray diffraction of electrochemically reduced and oxidized Ag7Fe3(P2O7)(4). Ag7Fe3(P2O7)(4) exhibits good reversibility at the iron centers indicated by similar to 80% capacity retention over 100 cycles following the initial formation cycle and excellent rate capability exhibited by similar to 70% capacity retention upon a 4-fold increase in current. C1 [Zhang, Yiman; Marschilok, Amy C.; Takeuchi, Esther S.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Kirshenbaum, Kevin C.; Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. [Marschilok, Amy C.; Takeuchi, Esther S.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Marschilok, AC; Takeuchi, ES; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA.; Marschilok, AC; Takeuchi, ES; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM amy.marschilok@stonybrook.edu; esther.takeuchi@stonybrook.edu; kenneth.takeuchi.1@stonybrook.edu FU Department of Energy, Basic Energy Sciences [DE-SC0008512]; Center for Mesoscale Transport Properties, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; U.S. Department of Energy [DE-AC02-98CH10886]; Brookhaven National Laboratory; Gertrude and Maurice Goldhaber Distinguished Fellowship FX Funds for synthesis of the material were provided by the Department of Energy, Basic Energy Sciences, under grant DE-SC0008512. Characterization and electrochemical evaluation was supported by the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. Utilization of the National Synchrotron Light Source (NSLS) beamline X17B1 was supported by U.S. Department of Energy Contract DE-AC02-98CH10886. K.C.K. acknowledges postdoctoral support from Brookhaven National Laboratory and the Gertrude and Maurice Goldhaber Distinguished Fellowship. NR 56 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 8 PY 2016 VL 28 IS 21 BP 7619 EP 7628 DI 10.1021/acs.chemmater.6b02343 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TM UT WOS:000387518500010 ER PT J AU Bikowski, A Holder, A Peng, HW Siol, S Norman, A Lany, S Zakutayev, A AF Bikowski, Andre Holder, Aaron Peng, Haowei Siol, Sebastian Norman, Andrew Lany, Stephan Zakutayev, Andriy TI Synthesis and Characterization of (Sn,Zn)O Alloys SO CHEMISTRY OF MATERIALS LA English DT Article ID SNO THIN-FILMS; SOLAR-CELLS; PHOTOVOLTAICS; PHOTOANODES; SCATTERING; EVOLUTION; MOBILITY; DEVICES AB SnO exhibits electrical properties that render it promising for solar energy conversion applications, but it also has a strongly indirect band gap. Recent theoretical calculations predict that this disadvantage can be mitigated by isovalent alloying with other group II oxides, such as ZnO. Here, we have synthesized new metastable isovalent (Sn,Zn)O alloy thin films by combinatorial reactive co-sputtering and characterized their structural, optical, and electrical properties. The alloying of ZnO into SnO leads to a change of the valence state of the tin from Sn-0 via Sn2+ to Sn4+, which can be counteracted by reducing the oxygen partial pressure during the deposition. The optical characterization of the smooth <10 at. % Sn1-xZnxO thin films showed an increase in the absorption coefficient in the range from 1 eV to 2 eV, which is consistent with the theoretical predictions for the isovalent alloying. However, the experimentally observed alloying effect may be convoluted with the effect of local variations of the Sn oxidation state. This effect would have to be minimized to improve the (Sn,Zn)O optical and electrical properties for their use as absorbers in solar energy conversion applications. C1 [Bikowski, Andre; Holder, Aaron; Peng, Haowei; Siol, Sebastian; Norman, Andrew; Lany, Stephan; Zakutayev, Andriy] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Zakutayev, A (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Andriy.Zakutayev@nrel.gov RI Norman, Andrew/F-1859-2010; OI Norman, Andrew/0000-0001-6368-521X; Siol, Sebastian/0000-0002-0907-6525 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory, as a part of the SunShot initiative FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, as a part of the SunShot initiative. NR 41 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 8 PY 2016 VL 28 IS 21 BP 7765 EP 7772 DI 10.1021/acs.chemmater.6b02968 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TM UT WOS:000387518500026 ER PT J AU Mao, LL Tsai, H Nie, WY Ma, L Im, J Stoumpos, CC Malliakas, CD Hao, F Wasielewski, MR Mohite, AD Kanatzidis, MG AF Mao, Lingling Tsai, Hsinhan Nie, Wanyi Ma, Lin Im, Jino Stoumpos, Constantinos C. Malliakas, Christos D. Hao, Feng Wasielewski, Michael R. Mohite, Aditya D. Kanatzidis, Mercouri G. TI Role of Organic Counterion in Lead- and Tin-Based Two-Dimensional Semiconducting Iodide Perovskites and Application in Planar Solar Cells SO CHEMISTRY OF MATERIALS LA English DT Article ID ORGANOMETAL HALIDE PEROVSKITES; LIGHT-EMITTING-DIODES; OPTICAL-PROPERTIES; SOLID-STATE; CRYSTAL-STRUCTURE; HIGH-EFFICIENCY; BAND-GAP; INORGANIC PEROVSKITES; HYBRID PEROVSKITE; THIN-FILMS AB Hybrid halide perovskites are emerging semiconducting materials, with a diverse set of remarkable optoelectronic properties. Besides the widely studied three-dimensional (3D) perovskites, two-dimensional (2D) perovskites show significant potential as photovoltaic (PV) active layers while exhibiting high moisture resistance. Here, we report two series of new 2D halide perovskite solid solutions: (HA)Pb1-xSnxI4 and (BZA)(2)Pb1-xSnxI4 (x = 1, 0.75, 0.5, 0.25, 0), where HA stands for the organic spacer histammonium and BZA stands for benzylammonium cations. These compounds are assembled by corner-sharing octahedral [MI6](4-) units stabilizing single-layered, anionic, inorganic perovskite sheets with organic cations filled in between. The optical band gaps are heavily affected by the M-I-M perovksite angles with the band gap steadily decreasing when the angle approaches 180 degrees, ranging from 2.18 eV for (BZA)(2)PbI4 to 2.05 eV for (HA)PbI4. We find an anomalous trend in electronic band gap in the mixed compositions (HA)Pb1-xSnxI4 and (BZA)(2)Pb1-xSnxI4. When Sn substitutes for Pb to form a solid solution, the band gap further decreases to 1.67 eV for (HA)SnI4. The minimum band gap is at x = 0.75 at 1.74 eV. For BZA, the irregular trend is more intense, as all the intermediate compounds (BZA)(2)Pb(1-x)SnxI(4) (x = 0.75, 0.5, 0.25) have even slightly lower band gaps than (BZA)(2)SnI4 (1.89 eV). DFT calculations confirm the pure Pb and Sn compounds are direct band gap semiconductors. Relatively shorter photoluminescence (PL) lifetime in (BZA)2PbI4 than (HA)PbI4 is observed, suggesting faster recombination rates of the carriers. Solution deposited thin films of (HA)PbI4 and (BZA)2PbI4 show drastically different orientations with (HA)PbI4 displaying a perpendicular rather than parallel growth orientation with respect to the substrate, which is more favorable for PV devices. The higher potential in PV applications of the HA system is indicated by device performance, as the champion air stable planar device with the structure ITO/PEDOT:PSS/2D-perovskite/PCBM/Al of (HA)PbI4 achieves a preliminary power conversion efficiency (PCE) of 1.13%, featuring an open-circuit voltage (VOC) of 0.91 V. C1 [Mao, Lingling; Ma, Lin; Stoumpos, Constantinos C.; Malliakas, Christos D.; Hao, Feng; Wasielewski, Michael R.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ma, Lin; Hao, Feng; Wasielewski, Michael R.; Kanatzidis, Mercouri G.] Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA. [Tsai, Hsinhan; Nie, Wanyi; Mohite, Aditya D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Tsai, Hsinhan] Rice Univ, Mat Sci & Nano Engn, Houston, TX 77005 USA. [Im, Jino] Korea Res Inst Chem Technol, Ctr Mol Modeling & Simulat, Daejeon 34114, South Korea. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.; Kanatzidis, MG (reprint author), Northwestern Univ, Argonne Northwestern Solar Energy Res ANSER Ctr, Evanston, IL 60208 USA. OI Stoumpos, Constantinos/0000-0001-8396-9578 FU Department of Energy, Office of Science, Basic Energy Sciences [SC0012541]; Argonne-Northwestern Solar Energy Research (MRW, ANSER) Center, an Energy Frontier Research Center - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [DE-SC0001059]; Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF) [NNCI-1542205]; MRSEC program (NSF) at the Materials Research Center [DMR-1121262]; International Institute for Nanotechnology (IIN); Keck Foundation; State of Illinois through IIN FX This work was supported by the Department of Energy, Office of Science, Basic Energy Sciences, under Grant SC0012541 (synthesis and characterization of materials, M.G.K.). The photoexcitation time-resolved studies were supported by the Argonne-Northwestern Solar Energy Research (MRW, ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, under award number DE-SC0001059 (M.R.W.). The solar cell work (A.D.M.) acknowledges the LDRD Program at Los Alamos National Laboratory (LANL). This work made use of the (EPIC, Keck-II, and/or SPID) facility(ies) of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; the State of Illinois, through the IIN. We thank Prof. Joseph Hupp and Prof. Omar Farha for use of the TGA instrument. NR 76 TC 3 Z9 3 U1 59 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 8 PY 2016 VL 28 IS 21 BP 7781 EP 7792 DI 10.1021/acs.chemmater.6b03054 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TM UT WOS:000387518500028 ER PT J AU Shi, QR Zhu, CZ Li, YJ Xia, HB Engelhard, MH Fu, SF Du, D Lin, YH AF Shi, Qiurong Zhu, Chengzhou Li, Yijing Xia, Haibing Engelhard, Mark H. Fu, Shaofang Du, Dan Lin, Yuehe TI A Facile Method for Synthesizing Dendritic Core-Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances SO CHEMISTRY OF MATERIALS LA English DT Article ID OXYGEN REDUCTION REACTION; DENSITY-FUNCTIONAL THEORY; PEM FUEL-CELLS; ELECTROCATALYTIC ACTIVITY; CATALYTIC PERFORMANCE; GOLD NANOPARTICLES; CITRATE REDUCTION; ALLOY NANOWIRES; PARTICLE-SIZE; AU AB Currently, three-dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity, etc., that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of Au@Pt3Pd ternary metallic aerogels with a unique dendritic core-shell structure via a one-pot self-assembly gelation strategy. This strategy is simple and saves time without any concentration or destabilizer steps. The as-prepared Au@Pt3Pd ternary metallic aerogels demonstrated enhanced electrochemical performance toward the oxygen reduction reaction compared to that of commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells, and cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction via the electronic effect, geometric effect, and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties holds great promise in a variety of applications. C1 [Shi, Qiurong; Zhu, Chengzhou; Fu, Shaofang; Du, Dan; Lin, Yuehe] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. [Li, Yijing; Xia, Haibing] Shandong Univ, Inst Crystal Mat, Jinan 250100, Peoples R China. [Engelhard, Mark H.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Zhu, CZ; Lin, YH (reprint author), Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. EM chengzhou.zhu@wsu.edu; yuehe.lin@wsu.edu RI Xia, Haibing/A-8711-2008; FU, SHAOFANG/D-2328-2016 OI Xia, Haibing/0000-0003-2262-7958; FU, SHAOFANG/0000-0002-7871-6573 FU Washington State University; China Scholarship Council; Department of Energy's Office of Biological and Environmental Research FX This work was supported by start-up funds from Washington State University. We thank the Franceschi Microscopy & Image Center at Washington State University for TEM and SEM measurement. Q.S. thanks the China Scholarship Council for the financial support. XPS measurements were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 54 TC 0 Z9 0 U1 27 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 8 PY 2016 VL 28 IS 21 BP 7928 EP 7934 DI 10.1021/acs.chemmater.6b03549 PG 7 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TM UT WOS:000387518500043 ER PT J AU Liu, J Amit, Y Li, YY Plonka, AM Ghose, S Zhang, LH Stach, EA Banin, U Frenkel, AI AF Liu, Jing Amit, Yorai Li, Yuanyuan Plonka, Anna M. Ghose, Sanjit Zhang, Lihua Stach, Eric A. Banin, Uri Frenkel, Anatoly I. TI Reversed Nanoscale Kirkendall Effect in Au-InAs Hybrid Nanoparticles SO CHEMISTRY OF MATERIALS LA English DT Article ID FERMI-LEVEL EQUILIBRATION; EXCITON-PLASMON INTERACTIONS; CORE-SHELL NANOCRYSTALS; METAL NANOPARTICLES; CHARGE SEPARATION; HOLLOW NANOCRYSTALS; SURFACE-DIFFUSION; SELF-DIFFUSION; GROWTH; NANOSTRUCTURES AB Metal-semiconductor hybrid nanoparticles (NPs) offer interesting synergistic properties, leading to unique behaviors that have already been exploited in photocatalysis, electrical, and optoelectronic applications. A fundamental aspect in the synthesis of metal-semiconductor hybrid NPs is the possible diffusion of the metal species through the semiconductor lattice. The importance of understanding and controlling the co-diffusion of different constituents is demonstrated in the synthesis of various hollow-structured NPs via the Kirkendall effect. Here, we used a postsynthesis room-temperature reaction between AuCl3 and InAs nano crystals (NCs) to form metal-semiconductor core-shell hybrid NPs through the "reversed Kirkendall effect". In the presented system, the diffusion rate of the inward diffusing species (Au) is faster than that of the outward diffusing species (InAs), which results in the formation of a crystalline metallic Au core surrounded by an amorphous, oxidized InAs shell containing nanoscale voids. We used time-resolved X-ray absorption fine structure (XAFS) spectroscopy to monitor the diffusion process and found that both the size of the Au core and the extent of the disorder of the InAs shell depend strongly on the Au-to-NC ratio. We have determined, based on multielement fit analysis, that Au diffuses into the NC via the kick-out mechanism, substituting for In host atoms; this compromises the structural stability of the lattice and triggers the formation of In-O bonds. These bonds were used as markers to follow the diffusion process and indicate the extent of degradation of the NC lattice. Time-resolved X-ray diffraction (XRD) was used to measure the changes in the crystal structures of InAs and the nanoscale Au phases. By combining the results of XAFS, XRD, and electron microscopy, we correlated the changes in the local structure around Au, As, and In atoms and the changes in the overall InAs crystal structure. This correlative analysis revealed a co-dependence of different structural consequences when introducing Au into the InAs NCs. Therefore, this study of diffusion effects in nanocrystals has relevance to powerful concepts in solid-state nanochemistry related to processes of cation exchange, doping reactions, and diffusion mechanisms. C1 [Liu, Jing; Li, Yuanyuan; Plonka, Anna M.; Frenkel, Anatoly I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. [Amit, Yorai; Banin, Uri] Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel. [Amit, Yorai; Banin, Uri] Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel. [Ghose, Sanjit] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Zhang, Lihua; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Frenkel, Anatoly I.] SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA. RP Frenkel, AI (reprint author), Yeshiva Univ, Dept Phys, New York, NY 10016 USA.; Banin, U (reprint author), Hebrew Univ Jerusalem, Inst Chem, IL-91904 Jerusalem, Israel.; Banin, U (reprint author), Hebrew Univ Jerusalem, Ctr Nanosci & Nanotechnol, IL-91904 Jerusalem, Israel.; Frenkel, AI (reprint author), SUNY Stony Brook, Dept Mat Sci & Chem Engn, Stony Brook, NY 11794 USA. EM uri.banin@mail.huji.ac.il; anatoly.frenkel@stonybrook.edu RI Stach, Eric/D-8545-2011; Frenkel, Anatoly/D-3311-2011 OI Stach, Eric/0000-0002-3366-2153; Frenkel, Anatoly/0000-0002-5451-1207 FU NSF-BSF International Collaboration in Chemistry program; NSF [CHE-1413937]; BSF [2013/610]; DOE Office of Science by Brookhaven National Laboratory [DE-SC0012704] FX The research leading to these results received funding through the NSF-BSF International Collaboration in Chemistry program. J.L., Y.A., A.I.F., and U.B. acknowledge support of this work by NSF Grant No. CHE-1413937 and BSF Grant No. 2013/610. U.B. thanks the Alfred and Erica Larisch Memorial Chair. This research used Hitachi 2700C of the Center for Functional Nanomaterials for STEM/EELS studies and X-rays from the XPD beamline of National Synchrotron Light Source II, both of which are U.S. Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 84 TC 0 Z9 0 U1 18 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0897-4756 EI 1520-5002 J9 CHEM MATER JI Chem. Mat. PD NOV 8 PY 2016 VL 28 IS 21 BP 8032 EP 8043 DI 10.1021/acs.chemmater.6b03779 PG 12 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TM UT WOS:000387518500055 ER PT J AU Shang, J Hong, KL Wang, T Zhu, D Shen, J AF Shang, Jing Hong, Kunlun Wang, Tao Zhu, Dan Shen, Jian TI Dielectric and Mechanical Investigations on the Hydrophilicity and Hydrophobicity of Polyethylene Oxide Modified on a Silicon Surface SO LANGMUIR LA English DT Article ID GRAFTED POLY(ETHYLENE GLYCOL); SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; POLYMER BRUSHES; SPECTROSCOPY; PROTEINS; GOLD; ADSORPTION; RESONANCE; CELLS AB Polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (M-w), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the M-w of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO with higher 4, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young's modulus decreases and the loss factor increases with the increase in the M-w, of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics. C1 [Shang, Jing; Zhu, Dan; Shen, Jian] Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Tao] Univ Sci & Technol China, Dept Chem Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China. RP Zhu, D (reprint author), Nanjing Normal Univ, Sch Chem & Mat Sci, Jiangsu Key Lab Biofunct Mat, Nanjing 210023, Jiangsu, Peoples R China.; Hong, KL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM hongkq@ornl.gov; zhudan@njnu.edu.cn RI Hong, Kunlun/E-9787-2015 OI Hong, Kunlun/0000-0002-2852-5111 FU National Natural Science Foundation of China [21204037, 51273091] FX Project was supported by the National Natural Science Foundation of China (Grant No. 21204037 and 51273091). The functionalized PEOs were synthesized at the Center for Nanophase Materials Sciences, which is a DOE Office of the Science User Facility. We appreciate the helpful discussions from Prof. Guangming Liu, University of Science and Technology of China, and Prof. Chi Wu, The Chinese University of Hong Kong. NR 53 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 8 PY 2016 VL 32 IS 44 BP 11395 EP 11404 DI 10.1021/acs.langmuir.6b02436 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TR UT WOS:000387519000006 PM 27690462 ER PT J AU Liu, QQ Qin, HL Boscoboinik, JA Zhou, GW AF Liu, Qianqian Qin, Hailang Boscoboinik, Jorge Anibal Zhou, Guangwen TI Comparative Study of the Oxidation of NiAl(100) by Molecular Oxygen and Water Vapor Using Ambient-Pressure X-ray Photoelectron Spectroscopy SO LANGMUIR LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; THIN-FILM AL2O3/NIAL(100); ALUMINUM-OXIDE FILMS; HYDROXYL-GROUPS; CHEMICAL-STATE; GROWTH; SURFACE; NIAL(001); AL2O3; NANOCLUSTERS AB The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O-2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 degrees C. By contrast, H2O exposure results in the selective oxidation of Al at 40 and 200 C, and increasing the oxidation temperature above 300 degrees C leads to simultaneous formation of both Al and Ni oxides. These results demonstrate that the O-2 oxidation forms a nearly stoichiometric Al2O3 structure that provides improved protection to the metallic substrate by barring the outward diffusion of metals. By contrast, the H2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation. C1 [Liu, Qianqian; Qin, Hailang; Zhou, Guangwen] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA. [Liu, Qianqian; Qin, Hailang; Zhou, Guangwen] SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. [Boscoboinik, Jorge Anibal] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Zhou, GW (reprint author), SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA.; Zhou, GW (reprint author), SUNY Binghamton, Multidisciplinary Program Mat Sci & Engn, Binghamton, NY 13902 USA. EM gzhou@binghamton.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0001135]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0001135. The research was carried out in part at the Center for Functional Nanomaterials and the National Synchrotron Light Source, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 41 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 8 PY 2016 VL 32 IS 44 BP 11414 EP 11421 DI 10.1021/acs.langmuir.6b02752 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TR UT WOS:000387519000008 PM 27728766 ER PT J AU Zhang, SL Perez-Page, M Guan, K Yu, E Tringe, J Castro, RHR Faller, R Stroeve, P AF Zhang, Shenli Perez-Page, Maria Guan, Kelly Yu, Erick Tringe, Joseph Castro, Ricardo H. R. Faller, Roland Stroeve, Pieter TI Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties SO LANGMUIR LA English DT Article ID MOLECULAR SIMULATION; THERMAL-STABILITY; DYNAMICS; CHEMISTRY; ZEOLITES; MIXTURES; NITROGEN; SYSTEMS; MODEL; N-2 AB Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 +/- 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N-2, Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica. C1 [Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Faller, Roland; Stroeve, Pieter] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. [Zhang, Shenli; Perez-Page, Maria; Guan, Kelly; Yu, Erick; Castro, Ricardo H. R.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA. [Tringe, Joseph] Lawrence Livermore Lab, Livermore, CA 94550 USA. RP Faller, R; Stroeve, P (reprint author), Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. EM rfaller@ucdavis.edu; pstroeve@ucdavis.edu FU U.S. Department of Energy Nuclear Energy University program [DE-NE0000704]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the U.S. Department of Energy Nuclear Energy University program under Grant DE-NE0000704. Some parts of this work were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. NR 32 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 8 PY 2016 VL 32 IS 44 BP 11422 EP 11431 DI 10.1021/acs.langmuir.6b02814 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TR UT WOS:000387519000009 PM 27749080 ER PT J AU Rock, W Oruc, ME Ellis, RJ Uysal, A AF Rock, William Oruc, Muhammed E. Ellis, Ross J. Uysal, Ahmet TI Molecular Scale Description of Anion Competition on Amine-Functionalized Surfaces SO LANGMUIR LA English DT Article ID X-RAY REFLECTIVITY; SOLVENT-EXTRACTION SYSTEM; CHLORO-COMPLEXES; WATER INTERFACES; HYDRATION; IONS; LANTHANIDE; SEPARATION; DYNAMICS; METALS AB Many industrial and biological processes involve the competitive adsorption of ions with different valencies and sizes at charged surfaces; heavy and precious metal ions are separated on the basis of their propensity to adsorb onto interfaces, often as anionic ion clusters (e.g., [MClx](n-)). However, very little is known, both theoretically and experimentally, about the competition of factors that drive preferential adsorption, such as charge density or valence, at interfaces in technologically relevant systems. There are even contradictory pictures described by interfacial studies and real life applications, such as chlorometalate extractions, in which charge diffuse chlorometalate ions are extracted efficiently even though charge dense chloride ions present in the background are expected to occupy the interface. We studied the competition between divalent chlorometalate anions (PtCl62- and PdCl42-) and monovalent chloride anions on positively charged aminefunctionalized surfaces using in situ specular X-ray reflectivity. Chloride anions were present in vast excess to simulate the conditions used in the commercial separation of heavy and precious metal ions. Our results suggest that divalent chlorometalate adsorption is a two-step process and that the divalent anions preferentially adsorb at the interface despite having a charge/volume ratio lower than that of chloride. These results provide fundamental insight into the structural mechanisms that underpin transport in phases that are relevant to heavy and precious metal ion separations, explaining the high efficiency of low charge density ion transport processes in the presence of charge dense anions. C1 [Rock, William; Ellis, Ross J.; Uysal, Ahmet] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Oruc, Muhammed E.] Yildiz Tech Univ, Dept Chem Engn, Istanbul, Turkey. RP Uysal, A (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ahmet@anl.gov FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences [DE-AC02-06CH11357] FX XR experiments were conducted at Sector 12-IDD and Sector 33-IDD of the Advanced Photon Source at Argonne National Laboratory. This work and the use of the Advanced Photon Source are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, under Contract DE-AC02-06CH11357. We thank Lynda Soderholm for her comments on the manuscript. We also thank Paul Fenter and Sang Soo Lee for fruitful discussions and access to their atomic force microscope. NR 44 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 8 PY 2016 VL 32 IS 44 BP 11532 EP 11539 DI 10.1021/acs.langmuir.6b03479 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TR UT WOS:000387519000022 PM 27715067 ER PT J AU Cordeiro, MAL Leite, ER Stach, EA AF Cordeiro, Marco A. L. Leite, Edson R. Stach, Eric A. TI Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior SO LANGMUIR LA English DT Article ID STERIC STABILIZATION; METAL NANOPARTICLES; SILVER NANOCRYSTALS; ENTROPY DIFFERENCE; FORCES; PARTICLES; STABILITY; NANOCUBES; POLYMER; SUPERCRYSTALS AB The tailoring of nanoparticle superlattices is fundamental to the design of novel nanostructured materials and devices. To obtain specific collective properties of these nanoparticle superlattices, reliable protocols for their self assembly are required. This study provides insight into the self assembly process by using oleate-covered CeO2 nanoparticles (cubic and polyhedral shapes) through the correlation of experimental and theoretical investigations. The self-assembly of CeO2 nanoparticles is controlled by tuning the colloid deposition parameters (temperature and evaporation rate), and the ordered structures so obtained were correlated to the Gibbs free energy variation of the system. The analysis of the interparticle force contributions for each structure showed the importance of both the effective ligand mean size and its Flory Huggins parameter in determining the total potential energies. Additionally, the roles of ligand solubility and effective mean size were used to understand the formation of specific superlattice phases as a function of temperature and ligand accommodation in the arrangement. Furthermore, the face-to-face interactions between nanoparticles were correlated to the type of exposed crystallographic facet in each particle. C1 [Cordeiro, Marco A. L.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Leite, Edson R.] Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil. RP Cordeiro, MAL (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM mcordeiro@bnl.gov RI Stach, Eric/D-8545-2011; FAPESP, CDMF/J-3591-2015; Leite, Edson/B-7741-2012 OI Stach, Eric/0000-0002-3366-2153; FU Center for Functional Nanomaterials, a U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory [DE-SC0012704] FX This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. We thank Dr. Eli A. Sutter for suggesting the sandwich method described herein. NR 52 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 8 PY 2016 VL 32 IS 44 BP 11606 EP 11614 DI 10.1021/acs.langmuir.6b03026 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EB6TR UT WOS:000387519000030 PM 27673391 ER PT J AU Brady, MA Ku, SY Perez, LA Cochran, JE Schmidt, K Weiss, TM Toney, MF Ade, H Hexemer, A Wang, C Hawker, CJ Kramer, EJ Chabinyc, ML AF Brady, Michael A. Ku, Sung-Yu Perez, Louis A. Cochran, Justin E. Schmidt, Kristin Weiss, Thomas M. Toney, Michael F. Ade, Harald Hexemer, Alexander Wang, Cheng Hawker, Craig J. Kramer, Edward J. Chabinyc, Michael L. TI Role of Solution Structure in Self-Assembly of Conjugated Block Copolymer Thin Films SO MACROMOLECULES LA English DT Article ID POLYMER SOLAR-CELLS; FIELD-EFFECT TRANSISTORS; X-RAY SCATTERING; BICONTINUOUS DONOR/ACCEPTOR MORPHOLOGIES; 25TH ANNIVERSARY ARTICLE; ONE-POT SYNTHESIS; DIBLOCK COPOLYMERS; HIGH-EFFICIENCY; SEMICONDUCTING POLYMERS; MICROPHASE SEPARATION AB Conjugated block copolymers provide a pathway to achieve thermally stable nanostructured thin films for organic solar cells. We characterized the structural evolution of poly(3-hexylthiophene)-block-poly(diketopyrrolopyrrole-terthiophene) (P3HT-b-DPPT-T) from solution to nanostructured thin films. Aggregation of the DPPT-T block of P3HT-b-DPPT-T was found in solution by small-angle X-ray scattering with the P3HT block remaining well-solvated. The nanostructure in thin films was determined using a combination of wide and small-angle X-ray scattering techniques as a function of processing conditions. The structure in solution controlled the initial nanostructure in spin-cast thin films, allowing subsequent thermal annealing processes to further improve the ordering. In contrast to the results for thin films, nanostructural ordering was not observed in the bulk samples by small-angle X-ray scattering. These results suggest the importance of controlling solvent induced aggregation in forming nanostructured thin films of conjugated block copolymers. C1 [Brady, Michael A.; Ku, Sung-Yu; Perez, Louis A.; Hawker, Craig J.; Kramer, Edward J.; Chabinyc, Michael L.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Cochran, Justin E.; Hawker, Craig J.] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Kramer, Edward J.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Schmidt, Kristin; Weiss, Thomas M.; Toney, Michael F.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Ade, Harald] North Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA. [Hexemer, Alexander; Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Brady, Michael A.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Ku, Sung-Yu] Dow Chem Co USA, Freeport, TX USA. [Perez, Louis A.] Apeel Sci, Santa Barbara, CA USA. RP Chabinyc, ML (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM mchabinyc@engineering.ucsb.edu RI Wang, Cheng/A-9815-2014 FU National Science Foundation; California NanoSystems Institute Graduate Research Fellowships; Advanced Light Source Doctoral Fellowship; NSF [DMR 1207549, 1207032]; MRSEC Program of the National Science Foundation [DMR 1121053]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-76SF00515]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX M.A.B. acknowledges support from National Science Foundation and California NanoSystems Institute Graduate Research Fellowships and an Advanced Light Source Doctoral Fellowship. M.L.C. and H.A. were supported by NSF DMR 1207549 and 1207032. The authors thank the SAXS/WAXS team at Beamline 7.3.3, including Dr. Eric Schaible, Dr. Ilja Gunkel, and Dr. Chenhui Zhu, and the Soft X-ray Scattering team at Beamline 11.0.1.2, including Dr. Anthony Young, of the Advanced Light Source at Lawrence Berkeley National Lab for their help with the GIWAXS, GISAXS, RSoXS, and NEXAFS measurements; Dr. Cherno Jaye and Dr. Dan Fischer of Beamline U7A at the National Synchrotron Light Source at Brookhaven National Laboratory for their assistance with NEXAFS experiments; Dr. Charles Troxel, Jr., and Dr. Badri Shyam of Beamline 2-1, Ron Marks of Beamline 7-2, Dr. Chris Tassone, Dr. Alex Ayzner, Dr. Chad Miller, and Dr. Stefan Mannsfeld of Beamline 11-3 at the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory for their assistance with GIWAXS and XRD measurements. This work made use of the UCSB Materials Research Laboratory Central Facilities, supported by the MRSEC Program of the National Science Foundation under Award DMR 1121053. Use of the Advanced Light Source, Lawrence Berkeley National Laboratory, was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, under Contract DE-AC02-05CH11231. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-76SF00515. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-98CH10886. Prof. Karen Winey is gratefully thanked for valuable discussions. NR 79 TC 0 Z9 0 U1 22 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 8 PY 2016 VL 49 IS 21 BP 8187 EP 8197 DI 10.1021/acs.macromol.6b01686 PG 11 WC Polymer Science SC Polymer Science GA EB6TT UT WOS:000387519200016 ER PT J AU Wang, X Chintapalli, M Newstein, MC Balsara, NP Garetz, BA AF Wang, Xin Chintapalli, Mahati Newstein, Maurice C. Balsara, Nitash P. Garetz, Bruce A. TI Characterization of a Block Copolymer with a Wide Distribution of Grain Sizes SO MACROMOLECULES LA English DT Article ID DEPOLARIZED LIGHT-SCATTERING; ORDER-DISORDER TRANSITION; IONIC-CONDUCTIVITY; DIBLOCK COPOLYMER; MICROPHASE SEPARATION; GROWTH-KINETICS; ELECTROLYTES; PHASE; SALT; THERMODYNAMICS AB Block copolymer/lithium salt mixtures are an emerging class of lithium battery electrolytes. Previous studies have shown that the ionic conductivity of these materials is a sensitive function of grain size. Both depolarized light scattering (DPLS) and small-angle X-ray scattering (SAXS) have proven to be effective techniques for elucidating the grain structure of block copolymer (BCP) materials. DPLS is particularly useful for the characterization of samples with grain sizes larger than 1 mu m, whereas SAXS is particularly well suited for samples with grain sizes smaller than 0.1 mu m. We present the results of both DPLS and SAXS measurements of grain structure in a BCP/lithium salt mixture that was annealed after being initially prepared by freeze-drying from solution. The combination of the two techniques demonstrates that our sample is characterized by an extremely wide distribution of grain sizes. In particular, the sample has a large population of small sub-micrometer-sized grains that cannot be detected optically. A bimodal grain distribution model is presented to support this interpretation of the experimental data. The presence of both large grains and regions of undetectable small grains was confirmed by polarized optical microscopy (POM). Two-wavelength DPLS measurements provide an additional approach for characterizing block copolymer samples with a broad distribution of grain sizes. C1 [Wang, Xin; Garetz, Bruce A.] NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, Brooklyn, NY 11201 USA. [Newstein, Maurice C.] NYU, Tandon Sch Engn, Dept Elect & Comp Engn, Brooklyn, NY 11201 USA. [Chintapalli, Mahati] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Chintapalli, Mahati; Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Balsara, Nitash P.] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. RP Garetz, BA (reprint author), NYU, Tandon Sch Engn, Dept Chem & Biomol Engn, Brooklyn, NY 11201 USA. EM bgaretz@nyu.edu FU National Science Foundation [DMR-1505444, DMR-1505476] FX The authors acknowledge the generous support of the National Science Foundation through Awards DMR-1505444 and DMR-1505476. Any opinions, findings and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the National Science Foundation. NR 45 TC 0 Z9 0 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 8 PY 2016 VL 49 IS 21 BP 8198 EP 8208 DI 10.1021/acs.macromol.6b01380 PG 11 WC Polymer Science SC Polymer Science GA EB6TT UT WOS:000387519200017 ER PT J AU Xu, WS Douglas, JF Freed, KF AF Xu, Wen-Sheng Douglas, Jack F. Freed, Karl F. TI Influence of Cohesive Energy on the Thermodynamic Properties of a Model Glass-Forming Polymer Melt SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED ENTROPY THEORY; CROSS-SECTIONAL AREA; LIQUID-STATE; TEMPERATURE-DEPENDENCE; AMORPHOUS POLYMERS; CHAIN STIFFNESS; IONIC POLYMERS; TRANSITION-TEMPERATURES; INTERMOLECULAR FORCES AB Monomer chemical structure and architecture represent the most important characteristics of polymers that affect basic molecular parameters (such as the microscopic cohesive energy parameter epsilon and chain persistence length) and that correspondingly govern the bulk physical properties of polymer materials. Here, we focus on elucidating how the microscopic parameter e influences the bulk thermodynamic properties of polymer melts by using molecular dynamics simulations for a standard coarse grained bead-spring model of unentangled polymer melts under both constant volume and constant pressure conditions. Basic dimensionless thermodynamic properties, such as the cohesive energy density, thermal expansion coefficient, isothermal compressibility, and surface tension, are found to be universal functions of the temperature scaled by e, and thermodynamic signatures for the onset and end of glass formation are identified based on observable features from the static structure factor. We also find that general trends in the thermodynamics and the characteristic temperatures of glass formation determined from our simulations qualitatively accord with the predictions of the generalized entropy theory of polymer glass formation. C1 [Xu, Wen-Sheng; Freed, Karl F.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Freed, Karl F.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. [Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Xu, WS; Freed, KF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA.; Douglas, JF (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wsxu0312@gmail.com; jack.douglas@nist.gov; freed@uchicago.edu FU University of Chicago Research Computing Center; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0008631] FX We thank Prof. Salvatore Torquato (Princeton University) for helpful discussions on hyperuniformity and valuable comments on the manuscript, Prof. Francis Starr (Wesleyan University) for helpful conversations, and Dr. Alexandros Chremos (NIST) for useful comments on the manuscript. W.-S.X. is grateful to Prof. Juan J. de Pablo and his group members for providing the opportunity to attend their group meeting while working at the University of Chicago, from which the present work has greatly benefited. We are grateful for the support of the University of Chicago Research Computing Center for assistance with the simulations carried out in this work. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008631. NR 103 TC 4 Z9 4 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 8 PY 2016 VL 49 IS 21 BP 8341 EP 8354 DI 10.1021/acs.macromol.6b01503 PG 14 WC Polymer Science SC Polymer Science GA EB6TT UT WOS:000387519200032 ER PT J AU Xu, WS Douglas, JF Freed, KF AF Xu, Wen-Sheng Douglas, Jack F. Freed, Karl F. TI Influence of Cohesive Energy on Relaxation in a Model Glass Forming Polymer Melt SO MACROMOLECULES LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; GENERALIZED ENTROPY THEORY; COOPERATIVE MOTION; IONIC POLYMERS; FREE-VOLUME; TEMPERATURE-DEPENDENCE; VISCOUS-FLOW; LIQUIDS; VISCOSITY; TRANSITION AB The wide range of chemical compositions exhibited by polymers enables the fabrication of materials having highly tunable cohesive energy strength epsilon, and many of the properties that make polymers so useful as structural and responsive materials in both manufacturing and living systems derive from the variability of this basic property. The design and characterization of polymer materials then inevitably leads to a consideration of how e impacts the thermodynamic and relaxation properties of polymer liquids. Our prior paper uses molecular dynamics simulations of a model coarse-grained polymer melt to systematically investigate the dependence of commonly measured thermodynamic properties on e, while the present work focuses on the relaxation dynamics of the same molecular model. After demonstrating, as expected, that e greatly influences the segmental relaxation time, we obtain a universal reduction of all our data for relaxation in terms of an activated transport model in which the activation free energy is increased from its high temperature value by a factor precisely determined by the average extent of the cooperative motion of monomers in the polymer liquid. This data reduction is consistent with the recently developed string model of glass formation, as well as with the assumptions of the generalized entropy theory of glass formation derived from a combination of the classical Adam-Gibbs model with a statistical mechanical model of polymer melts. In addition to providing firm observational data facilitating the development of improved theories of polymer glass formation, our results also yield insights into the molecular origin of particular thermodynamic and relaxation properties of polymers, insights that should aid in the design of polymer materials. C1 [Xu, Wen-Sheng; Freed, Karl F.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Freed, Karl F.] Univ Chicago, Dept Chem, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Xu, WS; Freed, KF (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Freed, KF (reprint author), Univ Chicago, Dept Chem, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Douglas, JF (reprint author), NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM wsxu0312@gmail.com; jack.douglas@nist.gov; freed@uchicago.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0008631] FX We thank Prof. Salvatore Torquato (Princeton University) for helpful discussions on hyperuniformity and valuable comments on the manuscript, Prof. Francis Starr (Wesleyan University) for helpful conversations, and Dr. Alexandros Chremos (NIST) for useful comments on the manuscript. W.-S.X. is grateful to Prof. Juan J. de Pablo and his group members for providing the opportunity to attend their group meeting while working at the University of Chicago, from which the present work has greatly benefited. We are grateful for the support of the University of Chicago Research Computing Center for assistance with the simulations carried out in this work. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008631. NR 83 TC 4 Z9 4 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0024-9297 EI 1520-5835 J9 MACROMOLECULES JI Macromolecules PD NOV 8 PY 2016 VL 49 IS 21 BP 8355 EP 8370 DI 10.1021/acs.macromol.6b01504 PG 16 WC Polymer Science SC Polymer Science GA EB6TT UT WOS:000387519200033 ER PT J AU Dickinson, GD Ellefsen, KL Dawson, SP Pearson, JE Parker, I AF Dickinson, George D. Ellefsen, Kyle L. Dawson, Silvina Ponce Pearson, John E. Parker, Ian TI Hindered cytoplasmic diffusion of inositol trisphosphate restricts its cellular range of action SO SCIENCE SIGNALING LA English DT Article ID CA2+ SIGNALS; 1,4,5-TRISPHOSPHATE RECEPTORS; CHANNEL ACTIVITY; XENOPUS OOCYTES; CALCIUM SIGNALS; PUFFS; CELLS; WAVES; LOCALIZATION; STIMULATION AB The range of action of intracellular messengers is determined by their rates of diffusion and degradation. Previous measurements in oocyte cytoplasmic extracts indicated that the Ca2+-liberating second messenger inositol trisphosphate (IP3) diffuses with a coefficient(similar to 280 mu m(2) s(-1)) similar to that in water, corresponding to a range of action of similar to 25 mm. Consequently, IP3 is generally considered a "global" cellular messenger. We reexamined this issue by measuring local IP3-evoked Ca2+ puffs to monitor IP3 diffusing from spot photorelease in neuroblastoma cells. Fitting these data by numerical simulations yielded a diffusion coefficient (<= 10 mu m(2) s-1) about 30-fold slower than that previously reported. We propose that diffusion of IP3 in mammalian cells is hindered by binding to immobile, functionally inactive receptors that were diluted in oocyte extracts. The predicted range of action of IP3 (< 5 mu m) is thus smaller than the size of typical mammalian cells, indicating that IP3 should better be considered as a local rather than a global cellular messenger. C1 [Dickinson, George D.; Ellefsen, Kyle L.; Parker, Ian] Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. [Dawson, Silvina Ponce] FCEN UBA, Dept Fis, Buenos Aires, DF, Argentina. [Dawson, Silvina Ponce] Consejo Nacl Invest Cient & Tecn, IFIBA, Buenos Aires, DF, Argentina. [Pearson, John E.] Los Alamos Natl Lab, Theoret Biol & Biophys, T-10 MS K710, Los Alamos, NM 87545 USA. [Parker, Ian] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA. RP Dickinson, GD (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. EM dickinsg@uci.edu FU NIH [R37 GM048071, RO1 GM065830, F31 GM119330-01]; UBA; FONCyT (Argentina) [UBACyT 20020130100480BA, PICT 2013-1301] FX This work was supported by the NIH through grants R37 GM048071 (to I.P.), RO1 GM065830 (to J.E.P. and I.P.), and F31 GM119330-01 (to K.E.); and by UBA and FONCyT (Argentina) through grants UBACyT 20020130100480BA and PICT 2013-1301 (to S.D.). NR 37 TC 2 Z9 2 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 1945-0877 EI 1937-9145 J9 SCI SIGNAL JI Sci. Signal. PD NOV 8 PY 2016 VL 9 IS 453 AR ra108 DI 10.1126/scisignal.aag1625 PG 10 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EC3GG UT WOS:000388013500002 PM 27919026 ER PT J AU Frazier, TP Palmer, NA Xie, FL Tobias, CM Donze-Reiner, TJ Bombarely, A Childs, KL Shu, SQ Jenkins, JW Schmutz, J Zhang, BH Sarath, G Zhao, BY AF Frazier, Taylor P. Palmer, Nathan A. Xie, Fuliang Tobias, Christian M. Donze-Reiner, Teresa J. Bombarely, Aureliano Childs, Kevin L. Shu, Shengqiang Jenkins, Jerry W. Schmutz, Jeremy Zhang, Baohong Sarath, Gautam Zhao, Bingyu TI Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass SO BMC GENOMICS LA English DT Article DE Biofuel; Disease resistance; Gene expression; NB-LRR; Panicum virgatum (switchgrass); RNA-seq; SNP ID NBS-LRR GENES; GENOME-WIDE ANALYSIS; RICH REPEAT GENES; DISEASE-RESISTANCE; PUCCINIA-EMACULATA; SEQUENCE ALIGNMENTS; DEFENSE RESPONSES; NETWORK ANALYSIS; PROTEIN DOMAIN; HOST-DEFENSE AB Background: Switchgrass (Panicum virgatum L.) is a warm-season perennial grass that can be used as a second generation bioenergy crop. However, foliar fungal pathogens, like switchgrass rust, have the potential to significantly reduce switchgrass biomass yield. Despite its importance as a prominent bioenergy crop, a genome-wide comprehensive analysis of NB-LRR disease resistance genes has yet to be performed in switchgrass. Results: In this study, we used a homology-based computational approach to identify 1011 potential NB-LRR resistance gene homologs (RGHs) in the switchgrass genome (v 1.1). In addition, we identified 40 RGHs that potentially contain unique domains including major sperm protein domain, jacalin-like binding domain, calmodulin-like binding, and thioredoxin. RNA-sequencing analysis of leaf tissue from 'Alamo', a rust-resistant switchgrass cultivar, and 'Dacotah', a rust-susceptible switchgrass cultivar, identified 2634 high quality variants in the RGHs between the two cultivars. RNA-sequencing data from field-grown cultivar 'Summer' plants indicated that the expression of some of these RGHs was developmentally regulated. Conclusions: Our results provide useful insight into the molecular structure, distribution, and expression patterns of members of the NB-LRR gene family in switchgrass. These results also provide a foundation for future work aimed at elucidating the molecular mechanisms underlying disease resistance in this important bioenergy crop. C1 [Frazier, Taylor P.; Bombarely, Aureliano; Zhao, Bingyu] Virginia Tech, Dept Hort, Blacksburg, VA 24061 USA. [Palmer, Nathan A.; Sarath, Gautam] USDA ARS, Grain Forage & Bioenergy Res Unit, Lincoln, NE 68583 USA. [Xie, Fuliang; Zhang, Baohong] East Carolina Univ, Dept Biol, Greenville, NC 27858 USA. [Tobias, Christian M.] USDA ARS, Crop Improvement & Genet Res, Albany, CA 94710 USA. [Donze-Reiner, Teresa J.] West Chester Univ Penn, Dept Biol, Wester Chester, PA 19382 USA. [Childs, Kevin L.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Shu, Shengqiang] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94595 USA. [Jenkins, Jerry W.; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Zhao, Bingyu] 407 Latham Hall,220 Ag Quad Lane, Blacksburg, VA 24061 USA. RP Zhao, BY (reprint author), Virginia Tech, Dept Hort, Blacksburg, VA 24061 USA.; Zhao, BY (reprint author), 407 Latham Hall,220 Ag Quad Lane, Blacksburg, VA 24061 USA. EM bzhao07@vt.edu OI Bombarely, Aureliano/0000-0001-6257-8914 FU USDA-NIFA [2011-67009-30133, 2011-67009-30096]; Virginia Tech CALS integrative grant; Virginia Agricultural Experiment Station [VA135872]; Office of Science (BER), U. S. Department of Energy [DE-AI02-09ER64829]; USDA-ARS CRIS project [3042-21000-030-00D]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX The project was supported by USDA-NIFA Grant Number 2011-67009-30133. The project was also partially supported by a Virginia Tech CALS integrative grant and the Virginia Agricultural Experiment Station (VA135872). Work performed by the ARS was supported in part by the Office of Science (BER), U. S. Department of Energy Grant Number DE-AI02-09ER64829, USDA-NIFA Grant Number 2011-67009-30096, and by the USDA-ARS CRIS project 3042-21000-030-00D. The U. S. Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. NR 75 TC 0 Z9 0 U1 11 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 8 PY 2016 VL 17 AR 892 DI 10.1186/s12864-016-3201-5 PG 17 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA EB2IQ UT WOS:000387183300002 PM 27821048 ER PT J AU Keenan, TF Prentice, IC Canadell, JG Williams, CA Wang, H Raupach, M Collatz, GJ AF Keenan, Trevor F. Prentice, I. Colin Canadell, Josep G. Williams, Christopher A. Wang, Han Raupach, Michael Collatz, G. James TI Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake SO NATURE COMMUNICATIONS LA English DT Article ID CLIMATE-CHANGE; SOIL RESPIRATION; LAND; SINK; DROUGHT; MODEL; PHOTOSYNTHESIS; FORESTS; DIOXIDE; TRENDS AB Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly. C1 [Keenan, Trevor F.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA. [Keenan, Trevor F.; Prentice, I. Colin; Wang, Han] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. [Prentice, I. Colin] Imperial Coll London, Dept Life Sci, Silwood Pk Campus,Buckhurst Rd, Ascot SL5 7PY, Berks, England. [Canadell, Josep G.; Raupach, Michael] CSIRO Oceans & Atmosphere, Global Carbon Project, Canberra, ACT 2601, Australia. [Williams, Christopher A.] Clark Univ, Grad Sch Geog, Dept Biol, Worcester, MA 01610 USA. [Wang, Han] Northwest A&F Univ, Coll Forestry, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling 712100, Peoples R China. [Collatz, G. James] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Keenan, TF (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94709 USA.; Keenan, TF (reprint author), Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. EM trevorkeenan@lbl.gov RI Keenan, Trevor/B-2744-2010; Canadell, Josep/E-9419-2010; collatz, george/D-5381-2012 OI Keenan, Trevor/0000-0002-3347-0258; Canadell, Josep/0000-0002-8788-3218; FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; Macquarie University Research Fellowship; Australian Climate Change Science Program; U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program [DE-FG02-04ER63917, DE-FG02-04ER63911, DE-SC0006708]; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval and Environment Canada; US Department of Energy FX T.F.K. acknowledges support from the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231, and a Macquarie University Research Fellowship. This research contributes to the AXA Chair Programme in Biosphere and Climate Impacts and the Imperial College initiative on Grand Challenges in Ecosystems and the Environment. J.G.C. thanks the support from the Australian Climate Change Science Program. Eddy covariance data used was acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911, DE-SC0006708)), CarboEuropeIP, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada and NRCan). We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment Canada and US Department of Energy and the database development and technical support from Lawrence Berkeley National Laboratory, Berkeley Water Center, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. We thank Ranga Myneni and Zaichun Zhu for the provision of the fAPAR data set, the Max Planck Institute for Biogeochemistry Department of Biogeochemical Integration for the provision of the upscaled GPP data and Miguel Mahecha for advice on the S.S.A. We thank the TRENDY team, Stephen Sitch, Pierre Friedlingstein, Chris Huntingford, Ben Poulter, Anders Ahlstrom, Mark Lomas, Peter Levy, Sam Levis, Sonke Zaehle, Nicolas Viovy, Ning Zeng and Phillipe Peylin for the provision of the DGVM simulations, and the researchers of the Global Carbon Project for making their data available. NR 69 TC 1 Z9 1 U1 50 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 8 PY 2016 VL 7 AR 13428 DI 10.1038/ncomms13428 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB3JI UT WOS:000387260000001 PM 27824333 ER PT J AU Butterfield, CN Li, Z Andeer, PF Spaulding, S Thomas, BC Singh, A Hettich, RL Suttle, KB Probst, AJ Tringe, SG Northen, T Pan, C Banfield, JF AF Butterfield, Cristina N. Li, Zhou Andeer, Peter F. Spaulding, Susan Thomas, Brian C. Singh, Andrea Hettich, Robert L. Suttle, Kenwyn B. Probst, Alexander J. Tringe, Susannah G. Northen, Trent Pan, Chongle Banfield, Jillian F. TI Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone SO PEERJ LA English DT Article DE Genome-resolved metagenomics; Methanol dehydrogenase; Soil bacteria; Soil archaea; Proteomics; Metabolomics ID SOIL MICROBIAL COMMUNITY; MULTIPLE SEQUENCE ALIGNMENT; CARBON-DIOXIDE PULSES; 16S RIBOSOMAL-RNA; METHANOL DEHYDROGENASE; MARINE-SEDIMENTS; HIGH-THROUGHPUT; FOREST SOIL; GENES; POPULATIONS AB Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO2. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10-20 cm and 30-40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate, From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into he spatial distribution. bacteria. and archaea whose activities. combine. to degrade plant-derived. organics, limiting the transport. of methanol, amino acids and sugars into underlying weathered rock. The new insights.into the soil carbon cycle during. intense period of an including carbon turnover, including biogeochemical roles to previously little known soil microbes,made possible via the combination of metagenomics, proteomics, and metabolomics. C1 [Butterfield, Cristina N.; Spaulding, Susan; Thomas, Brian C.; Singh, Andrea; Probst, Alexander J.; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Hettich, Robert L.; Pan, Chongle] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. [Andeer, Peter F.; Northen, Trent; Banfield, Jillian F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Suttle, Kenwyn B.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA. [Tringe, Susannah G.] DOE Joint Genome Inst, Walnut Creek, CA USA. RP Banfield, JF (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA.; Banfield, JF (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jbanfield@berkeley.edu OI Northen, Trent/0000-0001-8404-3259 FU Office of Science of the US Department of Energy [DOE-SC10010566]; US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, and Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Office of Biological and Environmental Research of the US Department of Energy [DOE-SC10010566] FX This work is supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy Grant DOE-SC10010566. The sequencing was conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, and Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 99 TC 1 Z9 1 U1 25 U2 25 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD NOV 8 PY 2016 VL 4 AR e2687 DI 10.7717/peerj.2687 PG 28 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB2EZ UT WOS:000387171900011 PM 27843720 ER PT J AU Fauseweh, B Groitl, F Keller, T Rolfs, K Tennant, DA Habicht, K Uhrig, GS AF Fauseweh, B. Groitl, F. Keller, T. Rolfs, K. Tennant, D. A. Habicht, K. Uhrig, G. S. TI Time-dependent correlations in quantum magnets at finite temperature SO PHYSICAL REVIEW B LA English DT Article ID HEISENBERG ANTIFERROMAGNETS; SPIN-LIQUID; DYNAMICS; WAVES AB In this Rapid Communication we investigate the time dependence of the gap mode of copper nitrate at various temperatures. We combine state-of-the-art theoretical calculations with high precision neutron resonance spin-echo measurements to understand the anomalous decoherence effects found previously in this material. It is shown that the time domain offers a complementary view on this phenomenon, which allows us to directly compare experimental data and theoretical predictions without the need of further intensive data analysis, such as (de)convolution. C1 [Fauseweh, B.; Uhrig, G. S.] Tech Univ Dortmund, Lehrstuhl Theoret Phys 1, Otto Hahn Str 4, Dortmund, Germany. [Groitl, F.] Ecole Polytech Fed Lausanne, Lab Quantum Magnetism, CH-1015 Lausanne, Switzerland. [Groitl, F.] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland. [Keller, T.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Keller, T.] FRM II, Max Planck Soc Outstn, D-85748 Garching, Germany. [Rolfs, K.] Paul Scherrer Inst, Lab Sci Dev & Novel Mat, CH-5232 Villigen, Switzerland. [Tennant, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Habicht, K.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. RP Fauseweh, B (reprint author), Tech Univ Dortmund, Lehrstuhl Theoret Phys 1, Otto Hahn Str 4, Dortmund, Germany. EM benedikt.fauseweh@tu-dortmund.de; felix.groitl@psi.ch; goetz.uhrig@tu-dortmund.de RI Tennant, David/Q-2497-2015; Habicht, Klaus/K-3636-2013 OI Tennant, David/0000-0002-9575-3368; Habicht, Klaus/0000-0002-9915-7221 FU Helmholtz Virtual Institute "New states of matter and their excitations"; Fakultat Physik of TU Dortmund University FX We acknowledge financial support of the Helmholtz Virtual Institute "New states of matter and their excitations." B.F. acknowledges the Fakultat Physik of TU Dortmund University for funding in the context of the "Bestenforderung." NR 43 TC 0 Z9 0 U1 11 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 8 PY 2016 VL 94 IS 18 AR 180404 DI 10.1103/PhysRevB.94.180404 PG 6 WC Physics, Condensed Matter SC Physics GA EB6ZJ UT WOS:000387534000001 ER PT J AU Hardy, F Bohmer, AE de' Medici, L Capone, M Giovannetti, G Eder, R Wang, L He, M Wolf, T Schweiss, P Heid, R Herbig, A Adelmann, P Fisher, RA Meingast, C AF Hardy, F. Boehmer, A. E. de' Medici, L. Capone, M. Giovannetti, G. Eder, R. Wang, L. He, M. Wolf, T. Schweiss, P. Heid, R. Herbig, A. Adelmann, P. Fisher, R. A. Meingast, C. TI Strong correlations, strong coupling, and s-wave superconductivity in hole-doped BaFe2As2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON PNICTIDES; IMPURITY SCATTERING; PRESSURE-DEPENDENCE; OVERLAPPING BANDS; HEAT; STATES; GAP; CHALCOGENIDES; PARAMETERS AB We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1-xKxFe2As2 series (0 < x < 1) and the end-members RbFe2As2 and CsFe2As2. A large increase of the Sommerfeld coefficient gamma(n) is observed with both decreasing band filling and isovalent substitution (K, Rb, and Cs) revealing a strong enhancement of electron correlations and the possible proximity of these materials to a Mott insulator. This trend is well reproduced theoretically by our density functional theory + slave-spin (DFT+SS) calculations, confirming that 122-iron pnictides are effectively Hund metals, in which sizable Hund's coupling and orbital selectivity are the key ingredients for tuning correlations. We also find direct evidence for the existence of a coherence-incoherence crossover between a low-temperature heavy Fermi liquid and a highly incoherent high-temperature regime similar to heavy fermion systems. In the superconducting state, clear signatures of multiband superconductivity are observed with no evidence for nodes in the energy gaps, ruling out the existence of a doping-induced change of symmetry (from s to d wave). We argue that the disappearance of the electron band in the range 0.4 < x < 1.0 is accompanied by a strong-to-weak coupling crossover and that this shallow band remains involved in the superconducting pairing, although its contribution to the normal state fades away. Differences between hole-and electron-doped BaFe2As2 series are emphasized and discussed in terms of strong pair breaking by potential scatterers beyond the Born limit. C1 [Hardy, F.; Boehmer, A. E.; Eder, R.; Wang, L.; He, M.; Wolf, T.; Schweiss, P.; Heid, R.; Herbig, A.; Adelmann, P.; Meingast, C.] Inst Festkorperphys, Karlsruher Inst Technol, D-76021 Karlsruhe, Germany. [de' Medici, L.] European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble 9, France. [Capone, M.; Giovannetti, G.] CNR IOM Democritos Natl Simulat Ctr, Via Bonomea 265, I-34136 Trieste, Italy. [Capone, M.; Giovannetti, G.] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy. [Fisher, R. A.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hardy, F (reprint author), Inst Festkorperphys, Karlsruher Inst Technol, D-76021 Karlsruhe, Germany. EM frederic.hardy@kit.edu RI Capone, Massimo/A-7762-2008; OI Capone, Massimo/0000-0002-9811-5089; He, Mingquan/0000-0003-4890-3332 NR 137 TC 3 Z9 3 U1 20 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 8 PY 2016 VL 94 IS 20 AR 205113 DI 10.1103/PhysRevB.94.205113 PG 18 WC Physics, Condensed Matter SC Physics GA EB7AR UT WOS:000387537900003 ER PT J AU Lindsay, L AF Lindsay, L. TI Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF SO PHYSICAL REVIEW B LA English DT Article ID LITHIUM-FLUORIDE; ALKALI-HALIDES; GRUNEISEN PARAMETERS; LATTICE-DYNAMICS; LOW-TEMPERATURES; EXPANSION; HEAT; CRYSTALS; HYDRIDE; DIAMOND AB Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (.) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements, isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach, the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance via modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where. values of isotopically pure systems ((LiH)-Li-6, (LiH)-Li-7-H-2, and (LiF)-Li-6) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these. differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated. are also discussed. This paper provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems. C1 [Lindsay, L.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Lindsay, L (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Lindsay, Lucas/C-9221-2012 OI Lindsay, Lucas/0000-0001-9645-7993 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility - Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX L.L. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division and the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 64 TC 2 Z9 2 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 8 PY 2016 VL 94 IS 17 AR 174304 DI 10.1103/PhysRevB.94.174304 PG 10 WC Physics, Condensed Matter SC Physics GA EB6YT UT WOS:000387532300002 ER PT J AU Wang, ZT Barros, K Chern, GW Maslov, DL Batista, CD AF Wang, Zhentao Barros, Kipton Chern, Gia-Wei Maslov, Dmitrii L. Batista, Cristian D. TI Resistivity Minimum in Highly Frustrated Itinerant Magnets SO PHYSICAL REVIEW LETTERS LA English DT Article ID TRANSPORT; ALLOYS; RESISTANCE; ANOMALIES AB We study the transport properties of frustrated itinerant magnets comprising localized classical moments, which interact via exchange with the conduction electrons. Strong frustration stabilizes a liquidlike spin state, which extends down to temperatures well below the effective Ruderman-Kittel-Kasuya-Yosida interaction scale. The crossover into this state is characterized by spin structure factor enhancement at wave vectors smaller than twice the Fermi wave vector magnitude. The corresponding enhancement of electron scattering generates a resistivity upturn at decreasing temperatures. C1 [Wang, Zhentao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Wang, Zhentao; Batista, Cristian D.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Barros, Kipton; Batista, Cristian D.] Los Alamos Natl Lab, Theoret Div, T 4, Los Alamos, NM 87545 USA. [Barros, Kipton; Batista, Cristian D.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Chern, Gia-Wei] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Maslov, Dmitrii L.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Batista, Cristian D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Batista, Cristian D.] Oak Ridge Natl Lab, Shull Wollan Ctr, Oak Ridge, TN 37831 USA. RP Wang, ZT (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA.; Wang, ZT (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Wang, Zhentao/F-8328-2016; OI Wang, Zhentao/0000-0001-7442-2933; Barros, Kipton/0000-0002-1333-5972 FU CNLS summer student program; Welch Foundation [C-1818]; Institutional Computing Program at LANL; NNSA of the U.S. DOE at LANL [DE-AC52-06NA25396]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Science Foundation [NSF DMR-1308972]; Stanislaw Ulam Scholarship at the CNLS, LANL FX We thank A. Chubukov, S. Maiti, F. Ronning, E. V. Sampathkumaran, and J. D. Thompson for useful discussions. Z. W. acknowledges support from the CNLS summer student program and Welch Foundation Grant No. C-1818. Computer resources for numerical calculations were supported by the Institutional Computing Program at LANL. This work was carried out under the auspices of the NNSA of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. D. L. M. acknowledges support from the National Science Foundation via Grant No. NSF DMR-1308972 and a Stanislaw Ulam Scholarship at the CNLS, LANL. NR 27 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 8 PY 2016 VL 117 IS 20 AR 206601 DI 10.1103/PhysRevLett.117.206601 PG 5 WC Physics, Multidisciplinary SC Physics GA EB5GH UT WOS:000387401600010 PM 27886479 ER PT J AU Boehm-Cagen, A Bar, R Harats, D Shaish, A Levkovitz, H Bielicki, JK Johansson, JO Michaelson, DM AF Boehm-Cagen, Anat Bar, Roni Harats, Dror Shaish, Aviv Levkovitz, Hana Bielicki, John K. Johansson, Jan O. Michaelson, Daniel M. TI Differential Effects of apoE4 and Activation of ABCA1 on Brain and Plasma Lipoproteins SO PLOS ONE LA English DT Article ID HIGH-DENSITY-LIPOPROTEINS; CENTRAL-NERVOUS-SYSTEM; SPORADIC ALZHEIMERS-DISEASE; APOLIPOPROTEIN-E; TRANSGENIC MICE; CARDIOVASCULAR-DISEASE; CHOLESTEROL TRANSPORT; TARGETED REPLACEMENT; MOUSE MODEL; WILD-TYPE AB Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms. C1 [Boehm-Cagen, Anat; Bar, Roni; Michaelson, Daniel M.] Tel Aviv Univ, Sagol Sch Neurosci, George S Wise Fac Life Sci, Dept Neurobiol, IL-6997801 Tel Aviv, Israel. [Harats, Dror] Tel Aviv Univ, Sackler Fac Med, IL-6997801 Tel Aviv, Israel. [Harats, Dror; Shaish, Aviv; Levkovitz, Hana] Bert W Strassburger Lipid Ctr, Sheba Med Ctr, IL-5265601 Tel Hashomer, Israel. [Bielicki, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Johansson, Jan O.] Artery Therapeut Inc, San Ramon, CA USA. RP Michaelson, DM (reprint author), Tel Aviv Univ, Sagol Sch Neurosci, George S Wise Fac Life Sci, Dept Neurobiol, IL-6997801 Tel Aviv, Israel. EM dmichael@post.tau.ac.il FU Legacy Heritage Bio-Medical Program of the Israel Science Foundation [1575/14]; Joseph K. and Inez Eichenbaum Foundation; Harold and Eleanore Foonberg Foundation; Teva Pharmaceutical Industries Ltd., Israeli National Network of Excellence in Neuroscience (NNE); Artery Therapeutics, Inc. FX This research was supported in part by grants from the Legacy Heritage Bio-Medical Program of the Israel Science Foundation (grant No. 1575/14), from the Joseph K. and Inez Eichenbaum Foundation, from the Harold and Eleanore Foonberg Foundation, and from Teva Pharmaceutical Industries Ltd., as part of the Israeli National Network of Excellence in Neuroscience (NNE). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Artery Therapeutics, Inc. provided support in the form of salaries for author JOJ, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific role of this authors is articulated in the 'author contributions' section.; We thank Alex Smolar for his technical assistance. This research was supported in part by grants from the Legacy Heritage Bio-Medical Program of the Israel Science Foundation (grant No. 1575/14), from the Joseph K. and Inez Eichenbaum Foundation, from the Harold and Eleanore Foonberg Foundation, and from Teva Pharmaceutical Industries Ltd., as part of the Israeli National Network of Excellence in Neuroscience (NNE). DMM is the incumbent of the Myriam Lebach Chair in Molecular Neurodegeneration. NR 70 TC 1 Z9 1 U1 6 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 8 PY 2016 VL 11 IS 11 AR e0166195 DI 10.1371/journal.pone.0166195 PG 17 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB8BE UT WOS:000387615200070 PM 27824936 ER PT J AU Vesselinova, N Alexandrov, BS Wall, ME AF Vesselinova, Neda Alexandrov, Boian S. Wall, Michael E. TI Dynamical Model of Drug Accumulation in Bacteria: Sensitivity Analysis and Experimentally Testable Predictions SO PLOS ONE LA English DT Article ID ESCHERICHIA-COLI; EFFLUX; RESISTANCE; PERMEABILITY; SPECIFICITY; AGENTS AB We present a dynamical model of drug accumulation in bacteria. The model captures key features in experimental time courses on ofloxacin accumulation: initial uptake; two-phase response; and long-term acclimation. In combination with experimental data, the model provides estimates of import and export rates in each phase, the time of entry into the second phase, and the decrease of internal drug during acclimation. Global sensitivity analysis, local sensitivity analysis, and Bayesian sensitivity analysis of the model provide information about the robustness of these estimates, and about the relative importance of different parameters in determining the features of the accumulation time courses in three different bacterial species: Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results lead to experimentally testable predictions of the effects of membrane permeability, drug efflux and trapping (e.g., by DNA binding) on drug accumulation. A key prediction is that a sudden increase in ofloxacin accumulation in both E. coli and S. aureus is accompanied by a decrease in membrane permeability. C1 [Vesselinova, Neda; Alexandrov, Boian S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Vesselinova, Neda] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Wall, Michael E.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. EM mewall@lanl.gov OI Alexandrov, Ludmil/0000-0003-3596-4515; Alexandrov, Boian/0000-0001-8636-4603 FU US Department of Energy [DE-AC52-06NA25396] FX This study was supported by the US Department of Energy under Contract DE-AC52-06NA25396 through the Laboratory-Directed Research and Development Program at Los Alamos National Laboratory. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; We are grateful to the reviewers for their comments, which led to substantial improvements in the paper. This study was performed under the auspices of the Laboratory-Directed Research and Development Program at Los Alamos National Laboratory, which is managed for the US Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396. NR 29 TC 0 Z9 0 U1 1 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 8 PY 2016 VL 11 IS 11 AR e0165899 DI 10.1371/journal.pone.0165899 PG 20 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB8BE UT WOS:000387615200041 PM 27824914 ER PT J AU Duan, XZ Zhang, R Zhang, Y Ding, MM Shi, TF An, LJ Huang, QR Xu, WS AF Duan, Xiaozheng Zhang, Ran Zhang, Yang Ding, Mingming Shi, Tongfei An, Lijia Huang, Qingrong Xu, Wen-Sheng TI Monte Carlo study on a complex of cationic polymers and anionic lipid monolayer SO POLYMER LA English DT Article DE Cationic polymers; Anionic lipid; Membrane; Anchoring; Sequestration; Monte Carlo ID OPPOSITELY CHARGED SURFACES; POLYELECTROLYTE ADSORPTION; ORDERED MEDIA; PLASMA-MEMBRANE; HYDROPHOBIC POLYELECTROLYTES; ELECTROSTATIC INTERACTIONS; PROTEIN LOCALIZATION; CHAIN RIGIDITY; MACROMOLECULES; SIMULATIONS AB We develop a coarse-grained Monte Carlo model for the anchoring of cationic polymers onto a phosphatidyl-choline (PC) lipid monolayer, doped with univalent phosphatidylserine (PS) and tetravalent phosphatidylinositol 4, 5-bisphosphate (PIP2) anionic lipids. Using this model, we extensively explore the effects of important factors on the structural alterations of the polymers/monolayer complex, including the polymer concentration, the polymer ionization fraction and the ionic concentration of the salt solution. We find the substantial disparity in the scaling of the anchoring/dissociation transition for polymers/monolayer complex and polyelectrolyte/surface system, which demonstrates that the mobile anionic monolayer exerts stronger attraction on cationic polymers than uniformly charged surface, thereby illustrating the significant predominance of PIP2 lipids in the anchoring procedure. In the polymer anchoring regime, increasing the polymer ionization fraction drastically strengthens the attractions between polymers and the monolayer at low polymer concentrations, which in turn results in the transformation of individual polymer chains from a brush-like structure to a pancake-like structure and leads to the enhancement of PIP2 sequestration. Elevating the polymer concentration strengthens the competition of the anchoring between individual polymers, and the fraction of anchored polymers can even saturate at sufficiently high polymer concentrations. At high polymer concentrations, this competition forces both weakly and strongly charged polymers to anchor onto the membrane in the brush-like conformation, thereby sequestering smaller PIP2 clusters. The PS lipids cluster around the polymer/PIP2 complexes when the amount of tetravalent PIP2 lipids is insufficient to neutralize the anchored cationic polymers. We also observe that the monolayer can be overcharged due to the anchoring of polymers at high polymer concentrations. Our work thus approaches an improved understanding of the anchoring processes from a fundamental perspective based on the estimates of the stability and the structural variations of the polymers/monolayer complex with important molecular factors. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Duan, Xiaozheng; Zhang, Ran; Ding, Mingming; Shi, Tongfei; An, Lijia] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China. [Zhang, Yang] Northeast Normal Univ, Changchun 130024, Peoples R China. [Huang, Qingrong] Rutgers State Univ, Dept Food Sci, 65 Dudley Rd, New Brunswick, NJ 08901 USA. [Xu, Wen-Sheng] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Xu, Wen-Sheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ding, MM; Shi, TF (reprint author), Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China.; Xu, WS (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA.; Xu, WS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM mmding@ciac.ac.cn; tfshi@ciac.ac.cn; wsxu0312@gmail.com FU National Natural Science Foundation of China [21234007, 21404103, 21604086, 51473168]; Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund FX This work is supported by the National Natural Science Foundation of China (Nos. 21234007, 21404103, 21604086 and 51473168) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase). We are grateful to the Computing Center of Jilin Province for the essential support. NR 60 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD NOV 8 PY 2016 VL 104 BP 138 EP 148 DI 10.1016/j.polymer.2016.10.007 PG 11 WC Polymer Science SC Polymer Science GA EA8ZA UT WOS:000386927700015 ER PT J AU Jambovane, SR Nune, SK Kelly, RT McGrail, BP Wang, ZM Nandasiri, MI Katipamula, S Trader, C Schaef, HT AF Jambovane, Sachin R. Nune, Satish K. Kelly, Ryan T. McGrail, B. Peter Wang, Zheming Nandasiri, Manjula I. Katipamula, Shanta Trader, Cameron Schaef, Herbert T. TI Continuous, One-pot Synthesis and Post-Synthetic Modification of NanoMOFs Using Droplet Nanoreactors SO SCIENTIFIC REPORTS LA English DT Article ID METAL-ORGANIC FRAMEWORKS; POROUS COORDINATION POLYMERS; COLLOIDAL NANOCRYSTALS; MICROFLUIDIC APPROACH; SCALABLE PRODUCTION; ADSORPTION; STABILITY; CRYSTALS; MOFS; FUNCTIONALIZATION AB Metal-organic frameworks (MOFs); also known as porous coordination polymers (PCP) are a class of porous crystalline materials constructed by connecting metal clusters via organic linkers. The possibility of functionalization leads to virtually infinite MOF designs using generic modular methods. Functionalized MOFs can exhibit interesting physical and chemical properties including accelerated adsorption kinetics and catalysis. Although there are discrete methods to synthesize well-defined nanoscale MOFs, rapid and flexible methods are not available for continuous, one-pot synthesis and post-synthetic modification (functionalization) of MOFs. Here, we show a continuous, scalable nanodroplet-based microfluidic route that not only facilitates the synthesis of MOFs at a nanoscale, but also offers flexibility for direct functionalization with desired functional groups (e.g., -COCH3, fluorescein isothiocyanate; FITC). In addition, the presented route of continuous manufacturing of functionalized nanosized MOFs takes significantly less time compared to state-of-the-art batch methods currently available (1 hr vs. several days). We envisage our approach to be a breakthrough method for synthesizing complex functionalized nanomaterials (metal, metal oxides, quantum dots and MOFs) that are not accessible by direct batch processing and expand the range of a new class of functionalized MOF-based functional nanomaterials. C1 [Jambovane, Sachin R.; Kelly, Ryan T.; Wang, Zheming; Nandasiri, Manjula I.; Katipamula, Shanta; Trader, Cameron] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Nune, Satish K.; McGrail, B. Peter] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Schaef, Herbert T.] Pacific Northwest Natl Lab, Fundamental Chem Sci Directorate, Richland, WA 99354 USA. RP Nune, SK (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM satish.nune@pnnl.gov RI Wang, Zheming/E-8244-2010; OI Wang, Zheming/0000-0002-1986-4357; Jambovane, Sachin/0000-0002-5063-6969 FU U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy's Geothermal Technologies Program under Funding Opportunity Announcement [DE-PS36-09GO99017]; U.S. Department of Energy [DE-AC05-76RL01830]; Department of Energy's Office of Biological and Environmental Research FX The U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy's Geothermal Technologies Program under Funding Opportunity Announcement DE-PS36-09GO99017 supported this work. The Pacific Northwest National Laboratory is a multi-program national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. IR, Fluorescence and SEM characterizations were performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, located at PNNL. NR 64 TC 0 Z9 0 U1 52 U2 52 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 8 PY 2016 VL 6 AR 36657 DI 10.1038/srep36657 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB4ES UT WOS:000387323300001 PM 27821866 ER PT J AU Ban, CM George, SM AF Ban, Chunmei George, Steven M. TI Molecular Layer Deposition for Surface Modification of Lithium-Ion Battery Electrodes SO ADVANCED MATERIALS INTERFACES LA English DT Review ID CHEMICAL-VAPOR-DEPOSITION; POLYMER-FILMS; ELECTROCHEMICAL PERFORMANCE; SILICON NANOWIRES; ETHYLENE-GLYCOL; ANODE MATERIALS; AL2O3 FILMS; GROWTH; TRIMETHYLALUMINUM; LITHIATION AB Inspired by recent successes in applying molecular layer deposition (MLD) to stabilize lithium-ion (Li-ion) electrodes, this review presents the MLD process and its outstanding attributes for electrochemical applications. The review discusses various MLD materials and their implementation in Li-ion electrodes. The rationale behind these emerging uses of MLD is examined to motivate future efforts on the fundamental understanding of interphase chemistry and the development of new materials for enhanced electrochemical performance. C1 [Ban, Chunmei] Natl Renewable Energy Lab, Ctr Chem & Nanosci, Golden, CO 80401 USA. [George, Steven M.] Univ Colorado Boulder, Dept Chem & Biochem, Boulder, CO 80309 USA. [George, Steven M.] Univ Colorado Boulder, Dept Mech Engn, Boulder, CO 80309 USA. RP Ban, CM (reprint author), Natl Renewable Energy Lab, Ctr Chem & Nanosci, Golden, CO 80401 USA.; George, SM (reprint author), Univ Colorado Boulder, Dept Chem & Biochem, Boulder, CO 80309 USA.; George, SM (reprint author), Univ Colorado Boulder, Dept Mech Engn, Boulder, CO 80309 USA. EM chunmei.ban@nrel.gov; steven.george@colorado.edu FU Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, U.S. Department of Energy under Applied Batteries Research (ABR) Program [DE-AC-36-08GO28308] FX Financial support is greatly appreciated from Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, U.S. Department of Energy under Contract No. DE-AC-36-08GO28308 under the Applied Batteries Research (ABR) Program. NR 76 TC 0 Z9 0 U1 8 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD NOV 7 PY 2016 VL 3 IS 21 SI SI AR 1600762 DI 10.1002/admi.201600762 PG 12 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EK2QS UT WOS:000393772400016 ER PT J AU Ma, L Nuwayhid, RB Wu, TP Lei, Y Amine, K Lu, J AF Ma, Lu Nuwayhid, Ramsay B. Wu, Tianpin Lei, Yu Amine, Khalil Lu, Jun TI Atomic Layer Deposition for Lithium-Based Batteries SO ADVANCED MATERIALS INTERFACES LA English DT Review ID LI-ION BATTERY; ENHANCED ELECTROCHEMICAL PERFORMANCE; LINI0.5CO0.2MN0.3O2 CATHODE MATERIAL; CHEMICAL-VAPOR-DEPOSITION; THIN OXIDE COATINGS; SULFUR BATTERIES; HIGH-CAPACITY; SURFACE MODIFICATION; S BATTERIES; CYCLING PERFORMANCE AB With the increasing demand for energy at a low cost and minimal environmental impact, the development of next-generation high-performance batteries has drawn considerable attention. Owing to the capability of forming conformal coatings of thin films and nanoparticles, atomic layer deposition (ALD) has shown great potential in deposition and surface modification of electrode materials with various nanostructures, deposition of solid-state electrolyte, and fabrication of electrochemical catalysts. This paper reviews the recent development and applications of ALD in Li-based batteries, especially beyond Li-ion systems, and provides suggestions for further development of ALD techniques for these batteries. C1 [Ma, Lu] Ohio State Univ, Dept Chem & Biochem, 100 West 18th Ave, Columbus, OH 43210 USA. [Ma, Lu; Wu, Tianpin] Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA. [Nuwayhid, Ramsay B.; Lei, Yu] Univ Alabama Huntsville, Dept Chem & Mat Engn, 301 Sparkman Dr, Huntsville, AL 35899 USA. [Amine, Khalil; Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Wu, TP (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 South Cass Ave, Argonne, IL 60439 USA.; Lei, Y (reprint author), Univ Alabama Huntsville, Dept Chem & Mat Engn, 301 Sparkman Dr, Huntsville, AL 35899 USA.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 South Cass Ave, Argonne, IL 60439 USA. EM twu@aps.anl.gov; yu.lei@uah.edu; junlu@anl.gov FU U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX This work was supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 143 TC 0 Z9 0 U1 20 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2196-7350 J9 ADV MATER INTERFACES JI Adv. Mater. Interfaces PD NOV 7 PY 2016 VL 3 IS 21 SI SI AR 1600564 DI 10.1002/admi.201600564 PG 15 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA EK2QS UT WOS:000393772400014 ER PT J AU Neupane, M Alidoust, N Hosen, MM Zhu, JX Dimitri, K Xu, SY Dhakal, N Sankar, R Belopolski, I Sanchez, DS Chang, TR Jeng, HT Miyamoto, K Okuda, T Lin, H Bansil, A Kaczorowski, D Chou, FC Hasan, MZ Durakiewicz, T AF Neupane, Madhab Alidoust, Nasser Hosen, M. Mofazzel Zhu, Jian-Xin Dimitri, Klauss Xu, Su-Yang Dhakal, Nagendra Sankar, Raman Belopolski, Ilya Sanchez, Daniel S. Chang, Tay-Rong Jeng, Horng-Tay Miyamoto, Koji Okuda, Taichi Lin, Hsin Bansil, Arun Kaczorowski, Dariusz Chou, Fangcheng Hasan, M. Zahid Durakiewicz, Tomasz TI Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd SO NATURE COMMUNICATIONS LA English DT Article ID TOPOLOGICAL INSULATORS; DISCOVERY; SEMIMETAL; FERMION; METALS AB Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of such spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials. C1 [Neupane, Madhab; Hosen, M. Mofazzel; Dimitri, Klauss; Dhakal, Nagendra] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Alidoust, Nasser; Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S.; Hasan, M. Zahid] Princeton Univ, Joseph Henry Lab, Princeton, NJ 08544 USA. [Alidoust, Nasser; Xu, Su-Yang; Belopolski, Ilya; Sanchez, Daniel S.; Hasan, M. Zahid] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Sankar, Raman; Chou, Fangcheng] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan. [Chang, Tay-Rong; Jeng, Horng-Tay] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jeng, Horng-Tay] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Miyamoto, Koji; Okuda, Taichi] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, 2-313 Kagamiyama, Higashihiroshima 7390046, Japan. [Lin, Hsin] Natl Univ Singapore, Ctr Adv Mat & Graphene Res Ctr 2D, Singapore 117546, Singapore. [Lin, Hsin] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Bansil, Arun] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Kaczorowski, Dariusz] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland. [Durakiewicz, Tomasz] Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA. [Durakiewicz, Tomasz] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. RP Neupane, M (reprint author), Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. EM Madhab.Neupane@ucf.edu RI Chang, Tay-Rong/K-3943-2015 OI Chang, Tay-Rong/0000-0003-1222-2527 FU University of Central Florida; LANL LDRD Program; NSF IR/D program; National Science Centre (Poland) [2015/18/A/ST3/00057]; Center for Integrated Nanotechnologies; U.S. DOE Office of Basic Energy Sciences; LANL Institutional Computing Program for computational resources; Office of Basic Energy Sciences, US Department of Energy (DOE) [DE-FG-02-40105ER46200]; DOE, Office of Science, Basic Energy Sciences [DE-FG02-07ER46352]; NERSC supercomputing center through DOE [DE-AC02-05CH11231]; Singapore National Research Foundation under NRF [NRF-NRFF2013-03]; National Science Council, Taiwan FX M.N. is supported by the start-up fund from University of Central Florida and LANL LDRD Program. T.D. was supported by NSF IR/D program. D.K. was supported by the National Science Centre (Poland) under research grant 2015/18/A/ST3/00057. J.-X.Z. is supported by the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility, in partnership with the LANL Institutional Computing Program for computational resources. The work at Princeton and synchrotron X-ray-based measurements are supported by the Office of Basic Energy Sciences, US Department of Energy (DOE) grant no. DE-FG-02-40105ER46200. The work at Northeastern University is supported by the DOE, Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352, and benefited from Northeastern University's Advanced Scientific Computation Center (ASCC) and the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231. H.L. acknowledges the Singapore National Research Foundation for the support under NRF award no. NRF-NRFF2013-03. T.R.C. and H.T.J. were supported by the National Science Council, Taiwan. We also thank NCHC, CINC-NTU and NCTS, Taiwan, for technical support. The measurements at HiSOR were performed with the approval of the Proposal Assessing Committee of HSRC (Proposal No. 15-A-66). We thank Sung-Kwan Mo and Makoto Hashimoto for beamline assistance at the LBNL and the SSRL. NR 38 TC 0 Z9 0 U1 18 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV 7 PY 2016 VL 7 AR 13315 DI 10.1038/ncomms13315 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EH6MV UT WOS:000391888100001 PM 27819655 ER PT J AU Amsbury, S Hunt, L Elhaddad, N Baillie, A Lundgren, M Verhertbruggen, Y Scheller, HV Knox, JP Fleming, AJ Gray, JE AF Amsbury, Sam Hunt, Lee Elhaddad, Nagat Baillie, Alice Lundgren, Marjorie Verhertbruggen, Yves Scheller, Henrik V. Knox, J. Paul Fleming, Andrew J. Gray, Julie E. TI Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall SO CURRENT BIOLOGY LA English DT Article ID GENETIC MANIPULATION; TRANSCRIPTION FACTOR; SIGNAL-TRANSDUCTION; CARBON-DIOXIDE; ABSCISIC-ACID; ARABIDOPSIS; MECHANICS; DENSITY; GROWTH; TOLERANCE AB Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomata! function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomata! opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomata! function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomata! function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomata! function and plant physiology. C1 [Amsbury, Sam; Baillie, Alice; Lundgren, Marjorie; Fleming, Andrew J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Hunt, Lee; Elhaddad, Nagat; Gray, Julie E.] Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England. [Elhaddad, Nagat] Univ Omar Al Mukhtar, Dept Bot, Al Baida, Libya. [Verhertbruggen, Yves; Scheller, Henrik V.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Verhertbruggen, Yves; Scheller, Henrik V.] Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Knox, J. Paul] Univ Leeds, Fac Biol Sci, Ctr Plant Sci, Leeds LS2 9JT, W Yorkshire, England. RP Fleming, AJ (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England.; Gray, JE (reprint author), Univ Sheffield, Dept Mol Biol & Biotechnol, Sheffield S10 2TN, S Yorkshire, England. EM a.fleming@sheffield.ac.uk; j.e.gray@sheffield.ac.uk RI Scheller, Henrik/A-8106-2008; OI Scheller, Henrik/0000-0002-6702-3560; Amsbury, Sam/0000-0002-2767-9768 FU White Rose BBSRC-DTP award; BBSRC [BB/I002154/1]; Gatsby Foundation; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Leverhulme Research Fellowship FX The work reported here was funded by a White Rose BBSRC-DTP award (to S.A. and A.J.F.); BBSRC grant BB/I002154/1 (to L.H. and J.E.G.); the Gatsby Foundation (to A.B.), the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between the Lawrence Berkeley National Lab and the U.S. Department of Energy (to Y.V. and H.V.S.); and a Leverhulme Research Fellowship (to A.J.F.). Ray Wightman (SLCU, Cambridge) assisted with SEM. The Microscopy Facility at the Sainsbury Laboratory is supported by the Gatsby Charitable Foundation. NR 32 TC 0 Z9 0 U1 18 U2 18 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0960-9822 EI 1879-0445 J9 CURR BIOL JI Curr. Biol. PD NOV 7 PY 2016 VL 26 IS 21 BP 2899 EP 2906 DI 10.1016/j.cub.2016.08.021 PG 8 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA EC1AK UT WOS:000387835700025 PM 27720618 ER PT J AU Hempel, H Redinger, A Repins, I Moisan, C Larramona, G Dennler, G Handwerg, M Fischer, SF Eichberger, R Unold, T AF Hempel, Hannes Redinger, Alex Repins, Ingrid Moisan, Camille Larramona, Gerardo Dennler, Gilles Handwerg, Martin Fischer, Saskia F. Eichberger, Rainer Unold, Thomas TI Intragrain charge transport in kesterite thin films-Limits arising from carrier localization SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID RESOLVED TERAHERTZ SPECTROSCOPY; CU2ZNSNS4; DYNAMICS; CONDUCTIVITY; MOBILITY; DISORDER; BULKS; CZTS AB Intragrain charge carrier mobilities measured by time-resolved terahertz spectroscopy in state of the art Cu2ZnSn(S,Se)(4) kesterite thin films are found to increase from 32 to 140 cm(2) V-1 s(-1) with increasing Se content. The mobilities are limited by carrier localization on the nanometer-scale, which takes place within the first 2 ps after carrier excitation. The localization strength obtained from the Drude-Smith model is found to be independent of the excited photocarrier density. This is in accordance with bandgap fluctuations as a cause of the localized transport. Charge carrier localization is a general issue in the probed kesterite thin films, which were deposited by co-evaporation, colloidal inks, and sputtering followed by annealing with varying Se/S contents and yield 4.9%-10.0% efficiency in the completed device. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Hempel, Hannes; Redinger, Alex; Unold, Thomas] Helmholtz Zentrum Berlin Mat & Energie GmbH, Dept Struct & Dynam Energy Mat, Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Repins, Ingrid] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Moisan, Camille; Larramona, Gerardo; Dennler, Gilles] IMRA Europe SAS, 220 Rue Albert Caquot BP213, F-06904 Sophia Antipolis, France. [Handwerg, Martin; Fischer, Saskia F.] Humboldt Univ, Novel Mat Grp, D-12489 Berlin, Germany. [Eichberger, Rainer] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Solar Fuels, Hahn Meitner Pl 1, D-14109 Berlin, Germany. RP Hempel, H (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Dept Struct & Dynam Energy Mat, Hahn Meitner Pl 1, D-14109 Berlin, Germany. EM hannes.hempel@helmholtz-berlin.de; unold@helmholtz-berlin.de FU Helmholtz Association Initiative and Network Fund (HNSEI-Project); Fonds national de la recherche [7842175] FX The authors gratefully acknowledge the Helmholtz Association Initiative and Network Fund (HNSEI-Project) and the Fonds national de la recherche, Project No. 7842175 for the financial support of this work. NR 48 TC 0 Z9 0 U1 14 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 7 PY 2016 VL 120 IS 17 AR 175302 DI 10.1063/1.4965868 PG 6 WC Physics, Applied SC Physics GA EC4JV UT WOS:000388095800030 ER PT J AU Quirinale, DG Rustan, GE Kreyssig, A Lapidus, SH Kramer, MJ Goldman, AI AF Quirinale, D. G. Rustan, G. E. Kreyssig, A. Lapidus, S. H. Kramer, M. J. Goldman, A. I. TI The solidification products of levitated Fe83B17 studied by high-energy x-ray diffraction SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GAMMA-FE FILMS; MAGNETIC-PROPERTIES; AMORPHOUS-ALLOYS; METALLIC GLASSES; PSEUDOMORPHIC GROWTH; THIN-FILMS; B ALLOYS; PHASE; IRON; LIQUID AB Detailed high-energy x-ray diffraction studies were performed to gain insight into the evolution of phase formation in undercooled Fe83B17 and the mechanism for the stabilization of face-centered cubic (fcc) Fe in the presence of Fe23B6 center dot Fe83B17 solidifies directly into either the equilibrium Fe2B + Fe phases or the metastable Fe23B6 + Fe phases. When formed, the metastable Fe23B6 phase either rapidly transforms into the equilibrium Fe2B phase within the solidification plateau or can persist down to ambient temperature. Here, we detail these different solidification behaviors in a set of thermal cycles taken from one sample and demonstrate the absence of a direct correlation with cooling rate and thermal history. We show that the coherent growth of Fe23B6 and fcc Fe suppresses the allotropic transition from fcc Fe to bcc Fe. The temperature evolution of the phase fractions and lattice parameters is also presented. Published by AIP Publishing. C1 [Quirinale, D. G.; Rustan, G. E.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Kreyssig, A.; Kramer, M. J.] Iowa State Univ, Ames Lab, USDOE, Ames, IA 50011 USA. [Lapidus, S. H.] US DOE, Argonne Natl Lab, Argonne, IL 60439 USA. RP Quirinale, DG (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. FU National Science Foundation [DMR-1308099]; U.S. Department of Energy, Basic Energy Sciences, of Materials Science and Engineering Division [DE-AC02-07CH11358] FX This material is based upon work supported by the National Science Foundation under Grant No. DMR-1308099. The work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, of Materials Science and Engineering Division, under Contract No. DE-AC02-07CH11358. The authors wish to acknowledge the assistance of K. F. Kelton, M. Johnson, C. Pueblo, M. Blodgett, A. Vogt, N. Mauro, K. Derendorf, M. Besser, T. Cullinan, E. Simsek, A. Meiszberg, and D. S. Robinson with the high-energy x-ray measurements, and L. Jones at the Materials Preparation Center at the Ames Laboratory for providing the samples in this study. We also wish to acknowledge useful discussions with P. C. Canfield. NR 47 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 7 PY 2016 VL 120 IS 17 AR 175104 DI 10.1063/1.4966596 PG 10 WC Physics, Applied SC Physics GA EC4JV UT WOS:000388095800026 ER PT J AU Garcia, A Evans, JW AF Garcia, Andres Evans, James W. TI Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID SINGLE-FILE DIFFUSION; ZEOLITE; SYSTEMS; PERMEATION; SIMULATION; KINETICS; LATTICE; MODELS; PORES AB We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. This work elucidates unconventional chemical kinetics in interacting confined systems. Published by AIP Publishing. C1 [Evans, James W.] US DOE, Div Chem & Biol Sci, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Evans, JW (reprint author), US DOE, Div Chem & Biol Sci, Ames Lab, Ames, IA 50011 USA. EM evans@ameslab.gov OI Evans, James/0000-0002-5806-3720 FU U.S. Department of Energy (USDOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Ames Laboratory Chemical Physics program; USDOE by Iowa State University [DE-AC02-07CH11358] FX We acknowledge discussions with Igor Slowing and Marek Pruski motivating this study. We thank Tiago Oliveira for discussions on the theoretical formulation. This work was supported by the U.S. Department of Energy (USDOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory Chemical Physics program. The work was performed at Ames Laboratory which is operated for the USDOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 29 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2016 VL 145 IS 17 AR 174705 DI 10.1063/1.4966543 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EC4MJ UT WOS:000388105100034 PM 27825244 ER PT J AU Johnson, GE Moser, T Engelhard, M Browning, ND Laskin, J AF Johnson, Grant E. Moser, Trevor Engelhard, Mark Browning, Nigel D. Laskin, Julia TI Fabrication of electrocatalytic Ta nanoparticles by reactive sputtering and ion soft landing SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID GAS AGGREGATION SOURCE; MASS-SELECTED IONS; OXYGEN-REDUCTION ELECTROCATALYSTS; PHASE SYNTHESIS; HETEROGENEOUS CATALYSIS; SILVER NANOPARTICLES; TUNGSTEN CARBIDE; METAL-CLUSTERS; GOLD CLUSTERS; THIN-FILMS AB About 40 years ago, it was shown that tungsten carbide exhibits similar catalytic behavior to Pt for certain commercially relevant reactions, thereby suggesting the possibility of cheaper and earth-abundant substitutes for costly and rare precious metal catalysts. In this work, reactive magnetron sputtering of Ta in the presence of three model hydrocarbons (2-butanol, heptane, and m-xylene) combined with gas aggregation and ion soft landing was employed to prepare organic-inorganic hybrid nanoparticles (NPs) on surfaces for evaluation of catalytic activity and durability. The electrocatalytic behavior of the NPs supported on glassy carbon was evaluated in acidic aqueous solution by cyclic voltammetry. The Ta-heptane and Ta-xylene NPs were revealed to be active and robust toward promotion of the oxygen reduction reaction, an important process occurring at the cathode in fuel cells. In comparison, pure Ta and Ta-butanol NPs were essentially unreactive. Characterization techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) were applied to probe how different sputtering conditions such as the flow rates of gases, sputtering current, and aggregation length affect the properties of the NPs. AFM images reveal the focused size of the NPs as well as their preferential binding along the step edges of graphite surfaces. In comparison, TEM images of the same NPs on carbon grids show that they bind randomly to the surface with some agglomeration but little coalescence. The TEM images also reveal morphologies with crystalline cores surrounded by amorphous regions for NPs formed in the presence of 2-butanol and heptane. In contrast, NPs formed in the presence of m-xylene are amorphous throughout. XPS spectra indicate that while the percentage of Ta, C, and O in the NPs varies depending on the sputtering conditions and hydrocarbon employed, the electron binding energies of the elements are similar for all of the NPs. The difference in reactivity between the NPs is attributed to their Ta/C ratios. Collectively, the findings presented herein indicate that reactive magnetron sputtering and gas aggregation combined with ion soft landing offer a promising physical approach for the synthesis of organic-inorganic hybrid NPs that have potential as low-cost durable substitutes for precious metals in catalysis. Published by AIP Publishing. C1 [Johnson, Grant E.; Browning, Nigel D.; Laskin, Julia] Pacific Northwest Natl Lab, Phys Sci Div, POB 999,MSIN K8-88, Richland, WA 99352 USA. [Moser, Trevor] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA. [Engelhard, Mark] Pacific Northwest Natl Lab, Environm Mol Sci Lab, POB 999, Richland, WA 99352 USA. RP Johnson, GE (reprint author), Pacific Northwest Natl Lab, Phys Sci Div, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Grant.Johnson@pnnl.gov RI Laskin, Julia/H-9974-2012 OI Laskin, Julia/0000-0002-4533-9644 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy (DOE); Department of Energy's Office of Biological and Environmental Research FX The research described in this paper is part of the Chemical Imaging Initiative, at Pacific Northwest National Laboratory (PNNL). It was conducted under the Laboratory Directed Research and Development Program at PNNL. G.E.J. and J.L. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy (DOE). This work was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. NR 97 TC 0 Z9 0 U1 17 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2016 VL 145 IS 17 AR 174701 DI 10.1063/1.4966199 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EC4MJ UT WOS:000388105100030 PM 27825213 ER PT J AU Lincoff, J Sasmal, S Head-Gordon, T AF Lincoff, James Sasmal, Sukanya Head-Gordon, Teresa TI Comparing generalized ensemble methods for sampling of systems with many degrees of freedom SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID EXCHANGE MOLECULAR-DYNAMICS; AMYLOID-BETA PEPTIDES; BIOMOLECULES; SIMULATIONS; WATER AB We compare two standard replica exchange methods using temperature and dielectric constant as the scaling variables for independent replicas against two new corresponding enhanced sampling methods based on non-equilibrium statistical cooling (temperature) or descreening (dielectric). We test the four methods on a rough 1D potential as well as for alanine dipeptide in water, for which their relatively small phase space allows for the ability to define quantitative convergence metrics. We show that both dielectric methods are inferior to the temperature enhanced sampling methods, and in turn show that temperature cool walking (TCW) systematically outperforms the standard temperature replica exchange (TREx) method. We extend our comparisons of the TCW and TREx methods to the 5 residue met-enkephalin peptide, in which we evaluate the Kullback-Leibler divergence metric to show that the rate of convergence between two independent trajectories is faster for TCW compared to TREx. Finally we apply the temperature methods to the 42 residue amyloid-beta peptide in which we find non-negligible differences in the disordered ensemble using TCW compared to the standard TREx. All four methods have been made available as software through the OpenMM Omnia software consortium(http://www.omnia.md/). Published by AIP Publishing. C1 [Lincoff, James; Sasmal, Sukanya; Head-Gordon, Teresa] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Head-Gordon, Teresa] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Head-Gordon, Teresa] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Head-Gordon, Teresa] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. RP Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Head-Gordon, T (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA.; Head-Gordon, T (reprint author), Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA. EM thg@berkeley.edu FU NSF [CHE-1363320]; NIH Molecular Biophysics TG [T32-GM008295]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX T.H.G. acknowledges support from the NSF under Grant No. CHE-1363320. J.L. acknowledges partial support under the NIH Molecular Biophysics TG, T32-GM008295. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2016 VL 145 IS 17 AR 174107 DI 10.1063/1.4965439 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EC4MJ UT WOS:000388105100010 PM 27825215 ER PT J AU Whitmore, MD Grest, GS Douglas, JF Kent, MS Suo, TC AF Whitmore, Mark D. Grest, Gary S. Douglas, Jack F. Kent, Michael S. Suo, Tongchuan TI End-anchored polymers in good solvents from the single chain limit to high anchoring densities SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID DIBLOCK COPOLYMER MONOLAYERS; SELF-CONSISTENT-FIELD; ADSORBED BLOCK-COPOLYMERS; TETHERED CHAINS; MOLECULAR-DYNAMICS; MONTE-CARLO; BRUSH; INTERFACE; LAYERS AB An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, sigma, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of sigma. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h similar to N sigma(1/3), for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and sigma, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions. Published by AIP Publishing. C1 [Whitmore, Mark D.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. [Grest, Gary S.; Kent, Michael S.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Douglas, Jack F.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Suo, Tongchuan] Tianjin Univ Tradit Chinese Med, Coll Pharmaceut Engn Tradit Chinese Med, Tianjin 300193, Peoples R China. RP Whitmore, MD (reprint author), Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. EM mark.whitmore@umanitoba.ca OI Suo, Tongchuan/0000-0003-4603-0339 FU Natural Sciences and Engineering Research Council of Canada; Sandia Laboratory Directed Research and Development Program; U.S. Department of Energy [DE-AC04-94AL85000] FX We thank Dr. Marc Pepin for discussions and early contributions. The work was supported in part by the Natural Sciences and Engineering Research Council of Canada and the Sandia Laboratory Directed Research and Development Program. Research was carried out, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 32 TC 0 Z9 0 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD NOV 7 PY 2016 VL 145 IS 17 AR 174904 DI 10.1063/1.4966576 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EC4MJ UT WOS:000388105100042 PM 27825206 ER PT J AU Enriquez, E Zhang, YY Chen, AP Bi, ZX Wang, YQ Fu, EG Harrell, Z Lu, XJ Dowden, P Wang, HY Chen, CL Jia, QX AF Enriquez, Erik Zhang, Yingying Chen, Aiping Bi, Zhenxing Wang, Yongqiang Fu, Engang Harrell, Zachary Lu, Xujie Dowden, Paul Wang, Haiyan Chen, Chonglin Jia, Quanxi TI Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition (vol 109, 081907, 2016) SO APPLIED PHYSICS LETTERS LA English DT Correction C1 [Enriquez, Erik; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Lu, Xujie; Dowden, Paul; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. [Zhang, Yingying] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China. [Harrell, Zachary; Chen, Chonglin] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Wang, Haiyan] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. RP Enriquez, E (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. EM emenriquez@lanl.gov; yingyingzhang@mail.tsinghua.edu.cn; qxjia@lanl.gov NR 1 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 7 PY 2016 VL 109 IS 19 AR 199901 DI 10.1063/1.4967441 PG 1 WC Physics, Applied SC Physics GA EC3BN UT WOS:000387999600074 ER PT J AU Hu, GL Ma, CR Wei, W Sun, ZX Lu, L Mi, SB Liu, M Ma, BH Wu, J Jia, CL AF Hu, Guangliang Ma, Chunrui Wei, Wei Sun, Zixiong Lu, Lu Mi, Shao-Bo Liu, Ming Ma, Beihai Wu, Judy Jia, Chun-lin TI Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID SOL-GEL PROCESS; FERROELECTRIC PROPERTIES; STORAGE; CAPACITORS; TITANATE AB High-quality epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films of thickness of similar to 880 nm were fabricated using pulsed laser deposition on (001) Nb doped SrTiO3 (Nb: STO) substrates. Besides a confirmation of the epitaxial relationship [100](PLZT)//[100](Nb:STO) and (001)(PLZT)//(001)(Nb:STO) using X-ray diffraction, a transmission electron microscopy study has revealed a columnar structure across the film thickness. The recoverable energy density (W-rec) of the epitaxial PLZT thin film capacitors increases linearly with the applied electric field and the best value of similar to 31 J/cm(3) observed at 2.27 MV/cm is considerably higher by 41% than that of the polycrystalline PLZT film of a comparable thickness. In addition to the high W-rec value, an excellent thermal stability as illustrated in a negligible temperature dependence of the W-rec in the temperature range from room temperature to 180 degrees C is achieved. The enhanced W-rec and the thermal stability are attributed to the reduced defects and grain boundaries in epitaxial PLZT thin films, making them promising for energy storage applications that require both high energy density, power density, and wide operation temperatures. Published by AIP Publishing. C1 [Hu, Guangliang; Ma, Chunrui; Mi, Shao-Bo] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Hu, Guangliang; Wei, Wei; Sun, Zixiong; Lu, Lu; Liu, Ming; Jia, Chun-lin] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China. [Hu, Guangliang; Wu, Judy] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Ma, Beihai] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Ma, CR (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.; Liu, M (reprint author), Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China. EM chunrui.ma@mail.xjtu.edu.cn; m.liu@mail.xjtu.edu.cn FU China Postdoctoral Science Foundation [2015M582649]; National "973" projects of China [2015CB654903]; Natural Science Foundation of China [51202185, 51390472]; Shaaxi Province Postdoctoral Science Foundation; Fundamental Research Funds for the Central Universities; NASA [NNX13AD42A]; NSF [NSF-DMR1509484] FX This research was supported by the China Postdoctoral Science Foundation (No. 2015M582649), National "973" projects of China (No. 2015CB654903), Natural Science Foundation of China (Nos. 51202185 and 51390472), Shaaxi Province Postdoctoral Science Foundation, and the Fundamental Research Funds for the Central Universities. J.W. acknowledges the support in part by NASA Contract NNX13AD42A and NSF Contract NSF-DMR1509484. NR 34 TC 1 Z9 1 U1 22 U2 22 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 7 PY 2016 VL 109 IS 19 AR 193904 DI 10.1063/1.4967223 PG 5 WC Physics, Applied SC Physics GA EC3BN UT WOS:000387999600066 ER PT J AU Wang, SM Antonakos, C Bordel, C Bouma, DS Fischer, P Hellman, F AF Wang, Siming Antonakos, C. Bordel, C. Bouma, D. S. Fischer, P. Hellman, F. TI Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes SO APPLIED PHYSICS LETTERS LA English DT Article ID BEAM-ASSISTED DEPOSITION; THIN-FILMS; CONDUCTORS; TEMPLATE; SILICON; LAYERS; PDP AB A fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (similar to 1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis of IBAD MgO, fundamentally solves the "wrinkle" issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry. Published by AIP Publishing. C1 [Wang, Siming; Bordel, C.; Bouma, D. S.; Fischer, P.; Hellman, F.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Siming; Bordel, C.; Bouma, D. S.; Hellman, F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Antonakos, C.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bordel, C.] Univ Rouen, CNRS, UMR 6634, GPM, F-76801 St Etienne, France. [Fischer, P.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 94056 USA. RP Hellman, F (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Hellman, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fhellman@lbl.gov RI Fischer, Peter/A-3020-2010 OI Fischer, Peter/0000-0002-9824-9343 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy within Nonequilibrium Magnetic Materials Program [DE-AC02-05-CH11231, KC2204]; NSF Graduate Fellowship FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the Nonequilibrium Magnetic Materials Program (KC2204). C.A. acknowledges the support from an NSF Graduate Fellowship. NR 29 TC 0 Z9 0 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 7 PY 2016 VL 109 IS 19 AR 191603 DI 10.1063/1.4966956 PG 5 WC Physics, Applied SC Physics GA EC3BN UT WOS:000387999600010 ER PT J AU Zhang, YW Krishnamoorthy, S Akyol, F Allerman, AA Moseley, MW Armstrong, AM Rajan, S AF Zhang, Yuewei Krishnamoorthy, Sriram Akyol, Fatih Allerman, Andrew A. Moseley, Michael W. Armstrong, Andrew M. Rajan, Siddharth TI Design of p-type cladding layers for tunnel-injected UV-A light emitting diodes SO APPLIED PHYSICS LETTERS LA English DT Article ID ALGAN AB We discuss the engineering of p-AlGaN cladding layers for achieving efficient tunnel-injected III-Nitride ultraviolet light emitting diodes (UV LEDs) in the UV-A spectral range. We show that the capacitance-voltage measurements can be used to estimate the compensation and doping in the p-AlGaN layers located between the multi-quantum well region and the tunnel junction layer. By increasing the p-type doping concentration to overcome the background compensation, on-wafer external quantum efficiency and wall-plug efficiency of 3.37% and 1.62%, respectively, were achieved for the tunnel-injected UV LEDs emitting at 325 nm. We also show that interband tunneling hole injection can be used to realize UV LEDs without any acceptor doping. The work discussed here provides new understanding of hole doping and transport in AlGaN-based UV LEDs and demonstrates the excellent performance of tunnel-injected LEDs for the UV-A wavelength range. Published by AIP Publishing. C1 [Zhang, Yuewei; Krishnamoorthy, Sriram; Akyol, Fatih; Rajan, Siddharth] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Allerman, Andrew A.; Moseley, Michael W.; Armstrong, Andrew M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Rajan, Siddharth] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19th Ave, Columbus, OH 43210 USA. RP Zhang, YW; Rajan, S (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA.; Rajan, S (reprint author), Ohio State Univ, Dept Mat Sci & Engn, 116 W 19th Ave, Columbus, OH 43210 USA. EM zhang.3789@osu.edu; rajan@ece.osu.edu RI Krishnamoorthy, Sriram/B-2258-2012; OI Krishnamoorthy, Sriram/0000-0002-4682-1002; Zhang, Yuewei /0000-0002-4192-1442 FU National Science Foundation [ECCS-1408416]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the funding from the National Science Foundation (ECCS-1408416). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 34 TC 1 Z9 1 U1 19 U2 19 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD NOV 7 PY 2016 VL 109 IS 19 AR 191105 DI 10.1063/1.4967698 PG 5 WC Physics, Applied SC Physics GA EC3BN UT WOS:000387999600005 ER PT J AU Cole, JM Cheng, X Payne, MC AF Cole, Jacqueline M. Cheng, Xie Payne, Michael C. TI Modeling Pair Distribution Functions of Rare-Earth Phosphate Glasses Using Principal Component Analysis SO INORGANIC CHEMISTRY LA English DT Article ID LOSS OPTICAL-FIBERS; X-RAY-DIFFRACTION; SCATTERING FACTORS; ND; FABRICATION; (R2O3)(X)(P2O5)(1-X); LASERS; EXAFS; EU; CE AB The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, codoped with two rare-earth ions (R and R') of different sizes and optical properties, are of interest to the laser industry. The determination of structure property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of codoped REPGs presents significant challenges relative to their singly doped counterparts; specifically, R and R' are difficult to distinguish in terms of establishing relative material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown codoped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are prevalidated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. While this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials and be exploited in large-scale data-mining efforts that probe many t(r) functions. C1 [Cole, Jacqueline M.; Cheng, Xie; Payne, Michael C.] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England. [Cole, Jacqueline M.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. [Cole, Jacqueline M.] STFC Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England. [Cole, Jacqueline M.] Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0FS, England. RP Cole, JM (reprint author), Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England.; Cole, JM (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA.; Cole, JM (reprint author), STFC Rutherford Appleton Lab, ISIS Neutron & Muon Source, Harwell Sci & Innovat Campus, Didcot OX11 0QX, Oxon, England.; Cole, JM (reprint author), Univ Cambridge, Dept Chem Engn & Biotechnol, West Cambridge Site,Philippa Fawcett Dr, Cambridge CB3 0FS, England. EM jmc61@cam.ac.uk RI Cole, Jacqueline/C-5991-2008 FU EPSRC Collaborative Computational Project, CCP9 [EP/J010057/1]; Fulbright Commission; Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX J.M.C. and M.C.P. acknowledge the EPSRC Collaborative Computational Project, CCP9, (Grant No. EP/J010057/1) for funding. J.M.C. is also indebted to the Fulbright Commission for a U.K.-U.S. Fulbright Scholar Award, and to Argonne National Laboratory, where work done was supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 41 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 7 PY 2016 VL 55 IS 21 BP 10870 EP 10880 DI 10.1021/acs.inorgchem.6b00907 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB5PJ UT WOS:000387428200009 PM 27753490 ER PT J AU Sadeghi, O Falaise, C Molina, PI Hufschmid, R Campana, CF Noll, BC Browning, ND Nyman, M AF Sadeghi, Omid Falaise, Clement Molina, Pedro I. Hufschmid, Ryan Campana, Charles F. Noll, Bruce C. Browning, Nigel D. Nyman, May TI Chemical Stabilization and Electrochemical Destabilization of the Iron Keggin Ion in Water SO INORGANIC CHEMISTRY LA English DT Article ID SMALL-ANGLE SCATTERING; X-RAY-SCATTERING; STRUCTURAL-CHARACTERIZATION; CRYSTAL-STRUCTURE; CLUSTERS; METAL; COMPLEXES; CRYSTALLOGRAPHY; NANOPARTICLES; NUCLEATION AB The iron Keggin ion is identified as a structural building block in both magnetite and ferrihydrite, two important iron oxide phases in nature and in technology. Discrete molecular forms of the iron Keggin ion that can be both manipulated in water and chemically converted to the related metal oxides are important for understanding growth mechanisms, in particular, nonclassical nucleation in which cluster building units are preserved in the aggregation and condensation processes. Here we describe two iron Keggin ion structures, formulated as [Bi6FeO4Fe12O12(OH)(12)- (CF3COO)(10)(H2O)(2)](3+) (Kegg-1) and [Bi6FeO4Fe12O12-(OH)(12)(CF3COO)(12)](1+) (Kegg-2). Experimental and simulated Xray scattering studies show indefinite stability of these clusters in water from pH 1-3. The tridecameric iron Keggin-ion core is protected from hydrolysis by a synergistic effect of the capping Bi3+ cations and the trifluoroacetate ligands that, respectively, bond to the iron and bridge to the bismuth. By introducing electrons to the aqueous solution of clusters, we achieve complete separation of bismuth from the cluster, and the iron Keggin ion rapidly converts to magnetite and/or ferrihydrite, depending on the mechanism of reduction. In this strategy, we take advantage of the easily accessible reduction potential and crystallization energy of bismuth. Reduction was executed in bulk by chemical means, by voltammetry, and by secondary effects of transmission electron microscopy imaging of solutions. Prior, we showed a less stable analogue of the iron Keggin cluster converted to ferrihydrite simply upon dissolution. The prior and currently studied clusters with a range of reactivity provide a chemical system to study molecular cluster to metal oxide conversion processes in detail. C1 [Sadeghi, Omid; Falaise, Clement; Molina, Pedro I.; Nyman, May] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. [Hufschmid, Ryan; Browning, Nigel D.] Univ Washington, Dept Mat Sci & Engn, Box 352120, Seattle, WA 98195 USA. [Campana, Charles F.; Noll, Bruce C.] Bruker AXS Inc, Madison, WI 53711 USA. [Browning, Nigel D.] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. RP Nyman, M (reprint author), Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA. EM may.nyman@oregonstate.edu OI Molina Sanchez, Pedro/0000-0002-4491-3739 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010802]; DOE [DE-AC05-76RL01830]; DOE's Office of Biological and Environmental Research FX The work led by and performed at Oregon State University was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DE-SC0010802. A portion of this work was done as part of the Chemical Imaging Initiative conducted under the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE under Contract No. DE-AC05-76RL01830. This work was performed in part using the William R. Wiley Environmental Molecular Sciences Laboratory, a U.S. DOE national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. NR 51 TC 1 Z9 1 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 7 PY 2016 VL 55 IS 21 BP 11078 EP 11088 DI 10.1021/acs.inorgchem.6b01694 PG 11 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB5PJ UT WOS:000387428200031 PM 27753497 ER PT J AU Chen, Z Pan, YX Xi, LQ Pang, R Huang, SM Liu, GK AF Chen, Zhen Pan, Yuexiao Xi, Luqing Pang, Ran Huang, Shaoming Liu, Guokui TI Tunable Yellow-Red Photoluminescence and Persistent Afterglow in Phosphors Ca4LaO(BO3)(3):Eu3+ and Ca4EuO(BO3)(3) SO INORGANIC CHEMISTRY LA English DT Article ID LONG-LASTING PHOSPHORESCENCE; LUMINESCENCE PROPERTIES; ENERGY; DY3+ AB In most Eu3+ activated phosphors, only red luminescence from the D-5(0) is obtainable, and efficiency is limited by concentration quenching. Herein we report a new phosphor of Ca4LaO(BO3)(3):Eu-3 (CLBO:Eu) with advanced photoluminescence properties. The yellow luminescence emitted from the D-5(1,2) states is not thermally quenched at room temperature. The relative intensities of the yellow and red emission bands depend strongly on the Eu3+ doping concentration. More importantly, concentration quenching of Eu3+ photoluminescence is absent in this phosphor, and the stoichiometric compound of Ca4EuO(BO3)(3) emits stronger luminescence than the Eu3+ doped compounds of CLBO:Eu; it is three times stronger than that of a commercial red phosphor of Y2O3:Eu3+. Another beneficial phenomenon is that ligand-to-metal charge transfer (CT) transitions occur in the long UV region with the lowest charge transfer band (CTB) stretched down to about 3.67 eV (similar to 30 nm). The CT transitions significantly enhance Eu3+ excitation, and thus result in stronger photoluminescence and promote trapping of excitons for persistent afterglow emission. Along with structure characterization, optical spectra and luminescence dynamics measured under various conditions as a function of Eu3+ doping, temperature, and excitation wavelength are analyzed for a fundamental understanding of electronic interactions and for potential applications. C1 [Chen, Zhen; Pan, Yuexiao; Xi, Luqing; Huang, Shaoming] Wenzhou Univ, Coll Chem & Mat Engn, Key Lab Carbon Mat Zhejiang Prov, Wenzhou 325035, Peoples R China. [Liu, Guokui] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Pang, Ran] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China. RP Pan, YX (reprint author), Wenzhou Univ, Coll Chem & Mat Engn, Key Lab Carbon Mat Zhejiang Prov, Wenzhou 325035, Peoples R China.; Liu, GK (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM yxpan8@gmail.com; gkliu@anl.gov FU National Natural Science Foundation of China [51572200, 51102185]; Zhejiang Province [Y16E020041]; Public Industrial Technology Research Project of Zhejiang Province [2015C33142]; Public Industrial Technology Research Project of Wenzhou City [G20140040] FX This research was jointly supported by the National Natural Science Foundation of China (51572200, 51102185) and Zhejiang Province (Y16E020041), and the Public Industrial Technology Research Projects of Zhejiang Province (2015C33142) and Wenzhou City (G20140040). NR 31 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 7 PY 2016 VL 55 IS 21 BP 11249 EP 11257 DI 10.1021/acs.inorgchem.6b01786 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB5PJ UT WOS:000387428200047 PM 27782399 ER PT J AU Khatri, NM Pablico-Lansigan, MH Boncher, WL Mertzman, JE Labatete, AC Grande, LM Wunder, D Prushan, MJ Zhang, WG Halasyamani, PS Monteiro, JHSK de Bettencourt-Dias, A Stoll, SL AF Khatri, Natasha M. Pablico-Lansigan, Michele H. Boncher, William L. Mertzman, Julie E. Labatete, Aura C. Grande, Laura M. Wunder, Donald Prushan, Michael J. Zhang, Weiguo Halasyamani, P. Shiv Monteiro, Jorge H. S. K. de Bettencourt-Dias, Ana Stoll, Sarah L. TI Luminescence and Nonlinear Optical Properties in Copper(I) Halide Extended Networks SO INORGANIC CHEMISTRY LA English DT Article ID LIGHT-EMITTING-DIODES; ACTIVATED DELAYED FLUORESCENCE; 2-DIMENSIONAL COORDINATION POLYMER; CRYSTAL-STRUCTURE; PHOTOLUMINESCENCE PROPERTIES; SUBSTITUTED PYRIDINE; STRUCTURAL MOTIFS; IODIDE-PYRIDINE; COMPLEXES; LIGANDS AB The syntheses, structures, and luminescence properties of a series of copper(I) halide coordination polymers, prepared with mono- and bidentate N-heteroaromatic ligands, are reported. These metal organic coordination networks form [Cu2I2L](n) for bidentate ligands (where L = pyrazine (1), quinazoline (2)) and [CULL](n) for monodentate ligands (where L = 3-benzoylpyridine (3) and 4-benzoylpyridine(4)). Both sets of compounds exhibit a double-stranded stair-Cu2I2-polymer, or "ladder" structure with the ligand coordinating to the metal in a bidentate (bridging two stairs) or monodentate mode. The copper bromide analogues for the bidentate ligands were also targeted, [Cu2Br2L](n) for L = pyrazine (5) with the same stair structure, as well as compositions of [CuBr(L)](n) for L = pyrazine (6) and quinazoline (7), which have a different structure type, where the -Cu-Br- forms a single-stranded "zigzag" chain. These copper halide polymers were found to be luminescent at room temperature, with emission peaks ranging from,similar to 550 to 680 nm with small shifts at low temperature. The structure (stair or chain), the halide (I or Br), as well as the ligand play an important role in determining the position and intensity of emission. Lifetime measurements at room and low temperatures confirm the presence of thermally activated delayed fluorescence, or singlet harvesting for compounds 1, 2, and 7. We also investigated the nonlinear optical properties and found that, of this series, [CuBr(quinazoline)](n) shows a very strong second harmonic generating response that is,similar to 150 times greater than that of alpha-SiO2. C1 [Khatri, Natasha M.; Pablico-Lansigan, Michele H.; Boncher, William L.; Mertzman, Julie E.; Labatete, Aura C.; Grande, Laura M.; Wunder, Donald; Prushan, Michael J.; Zhang, Weiguo; Halasyamani, P. Shiv; Monteiro, Jorge H. S. K.; de Bettencourt-Dias, Ana; Stoll, Sarah L.] Georgetown Univ, Dept Chem, 3700 O St NW, Washington, DC 20057 USA. [Pablico-Lansigan, Michele H.] Amer Univ, Dept Chem, Washington, DC 20016 USA. [Boncher, William L.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Grande, Laura M.; Prushan, Michael J.] La Salle Univ, Dept Chem, Philadelphia, PA 19141 USA. [Zhang, Weiguo; Halasyamani, P. Shiv] Univ Houston, Dept Chem, Univ Pk, Houston, TX 77204 USA. [Monteiro, Jorge H. S. K.; de Bettencourt-Dias, Ana] Univ Nevada, Dept Chem, Reno, NV 89557 USA. RP Stoll, SL (reprint author), Georgetown Univ, Dept Chem, 3700 O St NW, Washington, DC 20057 USA. EM sls55@georgetown.edu FU National Science Foundation [CHE-1156788, CHE-1112387, CHE-136325]; MRI program at NSF [CHE-0959546]; REU Program [CHE-1156788, CHE-0552586, CHE-0851581]; CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico Brazil) for a Postdoctoral Fellowship [232574/2014-6] FX We thank the National Science Foundation for funding this work (CHE-1112387) and (CHE-1156788). X-ray powder diffraction was obtained using an instrument purchased from the MRI program at NSF (CHE-0959546). Gaussian calculations were performed on the Medusa cluster maintained by UIS Georgetown. The authors also thank J. Bertke for assistance with the crystal structures. P.S.H. acknowledges DMR-1503573. S.L.S. thanks the REU Program (CHE-0552586, CHE-0851581, CHE-1156788), which supported L. Grande, A. Labatete, and D. Wunder. Ad.B.D. acknowledges financial support through the National Science Foundation (CHE-136325). J.H.S.K.M. thanks CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-Brazil) for a Postdoctoral Fellowship (Grant No. 232574/2014-6). NR 56 TC 2 Z9 2 U1 24 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 7 PY 2016 VL 55 IS 21 BP 11408 EP 11417 DI 10.1021/acs.inorgchem.6b01879 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB5PJ UT WOS:000387428200065 PM 27735188 ER PT J AU AbdulHalim, LG Hooshmand, Z Parida, MR Aly, SM Le, D Zhang, X Rahman, TS Pelton, M Losovyj, Y Dowben, PA Bakr, OM Mohammed, OF Katsiev, K AF AbdulHalim, Lina G. Hooshmand, Zahra Parida, Manas R. Aly, Shawkat M. Le, Duy Zhang, Xin Rahman, Talat S. Pelton, Matthew Losovyj, Yaroslav Dowben, Peter A. Bakr, Osman M. Mohammed, Omar F. Katsiev, Khabiboulakh TI pH-Induced Surface Modification of Atomically Precise Silver Nanoclusters: An Approach for Tunable Optical and Electronic Properties SO INORGANIC CHEMISTRY LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; LIGAND-EXCHANGE; QUANTUM-DOT; MASS-SPECTROMETRY; CHARGE-TRANSFER; GOLD CLUSTERS; COLLOIDAL NANOCRYSTALS; METAL NANOCLUSTERS; NANOPARTICLES; INTERFACE AB Noble metal nanoclusters (NCs) play a pivotal role in bridging the gap between molecules and quantum dots. Fundamental understanding of the evolution of the structural, optical, and electronic properties of these materials in various environments is of paramount importance for many applications. Using state-of-the-art spectroscopy, we provide the first decisive experimental evidence that the structural, electronic, and optical properties of Ag-44(MNBA)(30) NCs can now be tailored by controlling the chemical environment. Infrared and photoelectron spectroscopies clearly indicate that there is a dimerization between two adjacent ligands capping the NCs that takes place upon lowering the pH from 13 to 7. C1 [AbdulHalim, Lina G.; Parida, Manas R.; Aly, Shawkat M.; Bakr, Osman M.; Mohammed, Omar F.; Katsiev, Khabiboulakh] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Solar & Photovolta Engn Res Ctr, Thuwal 239556900, Saudi Arabia. [Hooshmand, Zahra; Le, Duy; Rahman, Talat S.] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA. [Zhang, Xin; Dowben, Peter A.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Pelton, Matthew] Univ Maryland Baltimore Cty, Dept Phys, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Pelton, Matthew] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Argonne, IL 60439 USA. [Losovyj, Yaroslav] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. RP Mohammed, OF; Katsiev, K (reprint author), King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Solar & Photovolta Engn Res Ctr, Thuwal 239556900, Saudi Arabia. EM omar.abdelsaboor@kaust.edu.sa; katsievk@sabic.com FU King Abdullah University of Science and Technology (KAUST); Saudi Arabia Basic Industries Corporation (SABIC) [RGC/3/2470-01]; U. S. Department of Energy [DE-FG02-07ER15842]; U.S. Department of Energy Office of Science User Facility [DE-AC02-06CH11357]; NSF [CHE-1310327] FX This work was supported by King Abdullah University of Science and Technology (KAUST), and part of this work was supported by Saudi Arabia Basic Industries Corporation (SABIC) grant RGC/3/2470-01. The work at U Nebraska was partly supported by the U. S. Department of Energy through grant #DE-FG02-07ER15842. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357. DFT calculations (ZH, DL, and TSR) were performed at the UCF Advanced Research Computing Center and partially supported by NSF grant CHE-1310327. We thank Sampyo Hong for fruitful discussions. NR 61 TC 0 Z9 0 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 7 PY 2016 VL 55 IS 21 BP 11522 EP 11528 DI 10.1021/acs.inorgchem.6b02067 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB5PJ UT WOS:000387428200079 PM 27775334 ER PT J AU Heathman, CR Grimes, TS Zalupski, PR AF Heathman, Colt R. Grimes, Travis S. Zalupski, Peter R. TI Coordination Chemistry and f-Element Complexation by Diethylenetriamine-N,N ''-bis(acetylglycine)-N,N ',N ''-triacetic Acid SO INORGANIC CHEMISTRY LA English DT Article ID DTPA-BISAMIDE COMPLEXES; DIETHYLENETRIAMINEPENTAACETIC ACID; STABILITY-CONSTANTS; CONTRAST AGENTS; EQUILIBRIUM-CONSTANTS; TALSPEAK SEPARATIONS; CARBOXYLIC-ACIDS; AQUEOUS-SOLUTION; THERMODYNAMICS; LANTHANIDES AB Potentiometric and spectroscopic techniques were used to evaluate the coordination behavior and thermodynamic features of trivalent f-element complexation by diethylenetriamine-N,N ''-bis(acetylglycine)-N,N',N ''-triacetic acid (DTTA-DAG) and its di(acetylglycine ethyl ester) analogue [diethylenetriamine-N,N"-bis(acetylglycine ethyl ester)-N,N',N ''-triacetic acid (DTTA-DAGEE)]. Protonation constants and stability constants of trivalent lanthanide complexes (except Pm3+) were determined by potentiometry. Six protonation sites and three metal-ligand complexes [ML2-, MHL-, and MH2L(aq)] were quantified for DTTA-DAG. Four protonation sites and one metal-ligand complex [ML(aq)] were observed for DTTA-DAGEE, consistent with the presence of two ester groups. Absorption spectroscopy was utilized to measure the stability constants for complexation of trivalent neodymium and americium by DTTA-DAG and trivalent neodymium by DTTA-DAGEE. The coordination environment of trivalent europium in the presence of DTTA-DAG was investigated at various acidities by luminescence lifetime measurements. Decay constants indicate one water molecule in the inner coordination sphere across the 1.0 < pH < 5.5 range, presumably due to octadentate coordination by DTTA-DAG. A trans-lanthanide pattern of complex stabilities for DTTA-DAG was found to be analogous to that observed for DTPA, with a similar to 10(6) reduction of the complex stability. The lessened strength of complexation, relative to DTPA, was attributed to significant reduction of the total ligand basicity for DTTA-DAG due to the electronic influence of amide functionalization. When DTTA-DAG is used as an aqueous holdback complexant in liquid-liquid distribution experiments, the preferential coordination of Am3+ in the aqueous environment offers efficient An/Ln differentiation. The separation extends to pH 2 conditions, where the kinetics of phase transfer in such liquid-liquid systems are aided by the acid-catalyzed dissociation of a metal/aminopolycarboxylate complex. C1 [Heathman, Colt R.; Grimes, Travis S.; Zalupski, Peter R.] Idaho Natl Lab, Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA. RP Heathman, CR; Zalupski, PR (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem, Idaho Falls, ID 83415 USA. EM colt.heathman@inl.gov; peter.zalupski@inl.gov RI Heathman, Colt/B-4783-2017 OI Heathman, Colt/0000-0001-9436-5972 FU U.S. Department of Energy, Office of Nuclear Energy, DOE Idaho Operations Office [DE-AC07-05ID14517] FX All experimental work was conducted at the. Idaho National Laboratory and supported by the U.S. Department of Energy, Office of Nuclear Energy, DOE Idaho Operations Office, under Contract DE-AC07-05ID14517. NR 46 TC 1 Z9 1 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD NOV 7 PY 2016 VL 55 IS 21 BP 11600 EP 11611 DI 10.1021/acs.inorgchem.6b02158 PG 12 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB5PJ UT WOS:000387428200087 PM 27787988 ER PT J AU Jiang, GM Huang, YX Zhang, S Zhu, HY Wu, ZB Sun, SH AF Jiang, Guangming Huang, Yuxi Zhang, Sen Zhu, Huiyuan Wu, Zhongbiao Sun, Shouheng TI Controlled synthesis of Au-Fe heterodimer nanoparticles and their conversion into Au-Fe3O4 heterostructured nanoparticles SO NANOSCALE LA English DT Article ID COLLOIDAL HYBRID NANOPARTICLES; SURFACE-PLASMON RESONANCE; OXYGEN REDUCTION REACTION; CHEMICAL TRANSFORMATION; SEEDED GROWTH; DUMBBELL; NANOSTRUCTURES; HETEROTRIMERS; NANOCRYSTALS; PARTICLES AB We report a facile synthesis of Au-Fe heterodimer nanoparticles (NPs) with tunable Au/Fe sizes and their sequential oxidations to Au-Fe3O4 heterostructured NPs with controllable morphologies. The size of Au in Au-Fe heterodimer NPs was tuned to be 4, 7 and 10 nm, while the Fe crystal structure was maintained as single-crystal bcc. Further oxidation of the as-synthesized Au-Fe NPs led to the formation of Au-hollow Fe3O4 yolk-shell, Au-hollow Fe3O4 heterodimer NPs and Au-porous hollow Fe3O4 yolk-shell NPs, depending on the size of the Au-Fe NPs and the oxidation conditions used. Our study has provided not only a variety of bifunctional NPs with tunable surface plasmon absorption and magnetic properties, but also a new general approach to design and synthesize multicomponent NPs with multiple heterostructures. C1 [Jiang, Guangming] Chongqing Technol & Business Univ, Engn Res Ctr Waste Oil Recovery Technol & Equipme, Minist Educ, Chongqing 400067, Peoples R China. [Jiang, Guangming; Huang, Yuxi; Zhu, Huiyuan; Sun, Shouheng] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Zhang, Sen] Univ Virginia, Dept Chem, Charlottesville, VA 22904 USA. [Wu, Zhongbiao] Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China. [Zhu, Huiyuan] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Sun, SH (reprint author), Brown Univ, Dept Chem, Providence, RI 02912 USA.; Wu, ZB (reprint author), Zhejiang Univ, Dept Environm Engn, Hangzhou 310058, Zhejiang, Peoples R China. EM zbwu@zju.edu.cn; ssun@brown.edu RI WU, Zhongbiao/D-2634-2009 FU U.S. Army Research Office [W911NF-15-1-0147]; National Natural Science Foundation of China [51508055]; Natural Science Foundation of Chongqing Science & Technology Commission [cstc2016jcyjA0154] FX This work was supported in part by the U.S. Army Research Office (Grant W911NF-15-1-0147), the National Natural Science Foundation of China (Project 51508055) and the Natural Science Foundation of Chongqing Science & Technology Commission (cstc2016jcyjA0154). NR 31 TC 2 Z9 2 U1 36 U2 36 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 2040-3364 EI 2040-3372 J9 NANOSCALE JI Nanoscale PD NOV 7 PY 2016 VL 8 IS 41 BP 17947 EP 17952 DI 10.1039/c6nr06395k PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EB4HI UT WOS:000387331100028 PM 27731449 ER PT J AU Butch, NP Ran, S Jeon, I Kanchanavatee, N Huang, K Breindel, A Maple, MB Stillwell, RL Zhao, Y Harriger, L Lynn, JW AF Butch, Nicholas P. Ran, Sheng Jeon, Inho Kanchanavatee, Noravee Huang, Kevin Breindel, Alexander Maple, M. Brian Stillwell, Ryan L. Zhao, Yang Harriger, Leland Lynn, Jeffrey W. TI Distinct magnetic spectra in the hidden order and antiferromagnetic phases in URu2-xFexSi2 SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON SUPERCONDUCTOR URU2SI2; NEUTRON-SCATTERING; SPECTROMETER; EXCITATIONS; PRESSURE; LATTICE; SYSTEM AB We use neutron scattering to compare the magnetic excitations in the hidden order (HO) and antiferromagnetic (AFM) phases in URu2-xFexSi2 as a function of Fe concentration. The magnetic excitation spectra change significantly between x = 0.05 and x = 0.10, following the enhancement of the AFM ordered moment, in good analogy to the behavior of the parent compound under applied pressure. Prominent lattice-commensurate low-energy excitations characteristic of the HO phase vanish in the AFM phase. The magnetic scattering is dominated by strong excitations along the Brillouin zone edges, underscoring the important role of electron hybridization to both HO and AFM phases and the similarity of the underlying electronic structure. The stability of the AFM phase is correlated with enhanced local-itinerant electron hybridization. C1 [Butch, Nicholas P.; Zhao, Yang; Harriger, Leland; Lynn, Jeffrey W.] NIST, NIST Ctr Neutron Res, 100 Bur Dr, Gaithersburg, MD 20899 USA. [Butch, Nicholas P.] Univ Maryland, Ctr Nanophys & Adv Mat, Dept Phys, College Pk, MD 20742 USA. [Ran, Sheng; Kanchanavatee, Noravee; Breindel, Alexander; Maple, M. Brian] Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Ran, Sheng; Jeon, Inho; Kanchanavatee, Noravee; Huang, Kevin; Breindel, Alexander; Maple, M. Brian] Univ Calfornia San Diego, Ctr Adv Nanosci, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Jeon, Inho; Huang, Kevin; Maple, M. Brian] Univ Calfornia San Diego, Mat Sci & Engn Program, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Stillwell, Ryan L.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Zhao, Yang] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Kanchanavatee, Noravee] Chulalongkorn Univ, Dept Phys, Pathumwan, Thailand. [Huang, Kevin] Fudan Univ, Dept Phys, State Key Lab Surface Phys, Shanghai, Peoples R China. RP Butch, NP (reprint author), NIST, NIST Ctr Neutron Res, 100 Bur Dr, Gaithersburg, MD 20899 USA.; Butch, NP (reprint author), Univ Maryland, Ctr Nanophys & Adv Mat, Dept Phys, College Pk, MD 20742 USA. EM nicholas.butch@nist.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DEFG02-04-ER46105]; National Science Foundation [DMR 1206553] FX We thank M. Janoschek and J. S. Helton for helpful discussions, and T. J. Williams and H.-H. Kung for sharing their unpublished data. Single- crystal growth and characterization at UCSD were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Grant No. DEFG02-04-ER46105. Low-temperature measurements at UCSD were sponsored by the National Science Foundation under Grant No. DMR 1206553. NR 42 TC 1 Z9 1 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 7 PY 2016 VL 94 IS 20 AR 201102 DI 10.1103/PhysRevB.94.201102 PG 5 WC Physics, Condensed Matter SC Physics GA EB7AP UT WOS:000387537700001 ER PT J AU Enamullah Johnson, DD Suresh, KG Alam, A AF Enamullah Johnson, D. D. Suresh, K. G. Alam, Aftab TI Half-metallic Co-based quaternary Heusler alloys for spintronics: Defect- and pressure-induced transitions and properties SO PHYSICAL REVIEW B LA English DT Article ID CO2FESI/GAAS(001) HYBRID STRUCTURES; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; FERROMAGNETISM; FILMS AB Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2(1)) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range. Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. This information should help in controlling these potential spintronic materials. C1 [Enamullah; Suresh, K. G.; Alam, Aftab] Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. [Johnson, D. D.] Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Johnson, D. D.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Enamullah (reprint author), Indian Inst Technol, Dept Phys, Bombay 400076, Maharashtra, India. EM enamullah@phy.iitb.ac.in; ddj@ameslab.gov; aftab@phy.iitb.ac.in FU IIT Bombay; U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE [DE-AC02-07CH11358] FX Enamullah (an institute post-doctoral fellow) acknowledges IIT Bombay for funding to support this research. Work at Ames Lab was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 38 TC 0 Z9 0 U1 19 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 7 PY 2016 VL 94 IS 18 AR 184102 DI 10.1103/PhysRevB.94.184102 PG 10 WC Physics, Condensed Matter SC Physics GA EB6ZD UT WOS:000387533400005 ER PT J AU Li, LL Wang, LH Li, RF Zhao, HY Qu, DD Chapman, KW Chupas, PJ Liu, HZ AF Li, Liangliang Wang, Luhong Li, Renfeng Zhao, Haiyan Qu, Dongdong Chapman, Karena W. Chupas, Peter J. Liu, Haozhe TI Constant real-space fractal dimensionality and structure evolution in Ti62Cu38 metallic glass under high pressure SO PHYSICAL REVIEW B LA English DT Article ID MEDIUM-RANGE ORDER; POWER-LAW; ATOMIC PACKING; LIQUIDS; PROGRAM; ALLOYS; DECAY AB The structure of binary Ti62Cu38 metallic glass is investigated under pressures up to 33.8 GPa using the pair distribution function analysis based on high-energy x-ray scattering and reverse Monte Carlo (RMC) simulations. At a global scale, its relative volume shows a continuously smooth curve as a function of pressure. The isothermal bulk modulus of Ti62Cu38 metallic glass is estimated as B-0 = 132(3) GPa with B-0' = 5.8(0.4). At a local scale, the atomic packing structure under compression conditions, which is extracted from RMC simulations, shows that the topological short-range order is dominated by the deformed icosahedron polyhedra and basically maintains stable. From the relationship between the relative volume and changing ratio of the atomic separation distances, the real-space fractal dimensionality of this metallic glass is determined as about 2.5 for all of the first four peaks. This experimental result reveals the consistent nature of the fractal feature on the degree of self-similarity in this sample within the entire experimental pressure range. C1 [Li, Liangliang; Wang, Luhong; Li, Renfeng; Liu, Haozhe] Harbin Inst Technol, Harbin 150080, Peoples R China. [Li, Liangliang; Li, Renfeng; Liu, Haozhe] Ctr High Pressure Sci & Technol Adv Res, Changchun 130015, Peoples R China. [Zhao, Haiyan] Univ Idaho, Ctr Adv Energy Studies, Idaho Falls, ID 83406 USA. [Zhao, Haiyan; Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Qu, Dongdong] Univ Queensland, Sch Mech & Min Engn, Brisbane, Qld 4072, Australia. RP Wang, LH (reprint author), Harbin Inst Technol, Harbin 150080, Peoples R China. EM luhong1@hit.edu.cn; haozhe.liu@hpstar.ac.cn RI Liu, Haozhe/E-6169-2011 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Natural Science Foundation of China [U1530402, 11374075]; Heilongjiang Province Science Fund for Distinguished Young Scholars [JC201005]; Heilongjiang Natural Science Foundation [E200948]; Fundamental Research Funds for the Central Universities [HIT.BRET1.2010002, HIT.IBRSEM.A.201403]; HIT-Argonne Overseas Collaborative Base Project; Chinese Scholarship Council FX This work was performed at Argonne National Laboratory and use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was partially supported by Natural Science Foundation of China (Grants No. U1530402 and No. 11374075), Heilongjiang Province Science Fund for Distinguished Young Scholars (Grant No. JC201005), Heilongjiang Natural Science Foundation (Grant No. E200948), Longjiang Scholar, the Fundamental Research Funds for the Central Universities (Grants No. HIT.BRET1.2010002 and No. HIT.IBRSEM.A.201403), HIT-Argonne Overseas Collaborative Base Project, and Chinese Scholarship Council. NR 31 TC 1 Z9 1 U1 15 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 7 PY 2016 VL 94 IS 18 AR 184201 DI 10.1103/PhysRevB.94.184201 PG 6 WC Physics, Condensed Matter SC Physics GA EB6ZD UT WOS:000387533400007 ER PT J AU Shafer, T Engel, J Frohlich, C McLaughlin, GC Mumpower, M Surman, R AF Shafer, T. Engel, J. Frohlich, C. McLaughlin, G. C. Mumpower, M. Surman, R. TI beta decay of deformed r-process nuclei near A=80 and A=160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method SO PHYSICAL REVIEW C LA English DT Article ID ATOMIC MASS EVALUATION; NEUTRON-STAR MERGERS; GAMOW-TELLER STRENGTH; PROCESS NUCLEOSYNTHESIS; GROSS THEORY; DRIVEN WINDS; TEMPERATURE; ELEMENT; APPROXIMATION; EQUATIONS AB After identifying the nuclei in the A similar or equal to 80 and A similar or equal to 160 regions for which beta-decay rates have the greatest effect on weak and main r-process abundance patterns, we apply the finite-amplitude method (FAM) with Skyrme energy-density functionals (EDFs) to calculate beta-decay half-lives of those nuclei in the quasiparticle random-phase approximation (QRPA). We use the equal filling approximation to extend our implementation of the charge-changing FAM, which incorporates pairing correlations and allows axially symmetric deformation, to odd-A and odd-odd nuclei. Repeated calculations with A similar or equal to 160 nuclei and multiple EDFs show a spread of 1.9-3.3 in beta-decay half-lives, with differences in calculated Q values playing an important role. We compare our results with those of previous work and investigate their implications for r-process simulations. C1 [Shafer, T.; Engel, J.] Univ N Carolina, Dept Phys & Astron, CB 3255, Chapel Hill, NC 27599 USA. [Frohlich, C.; McLaughlin, G. C.] North Carolina State Univ, Dept Phys, Box 8202, Raleigh, NC 27695 USA. [Mumpower, M.; Surman, R.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Mumpower, M.] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87544 USA. RP Shafer, T (reprint author), Univ N Carolina, Dept Phys & Astron, CB 3255, Chapel Hill, NC 27599 USA. EM tom@tshafer.com; engelj@physics.unc.edu FU US Department of Energy [DE-SC0004142, SC0010263, DE-FG02-97ER41019, DE-FG02-02ER41216, DE-SC0013039]; National Science Foundation through the Joint Institute for Nuclear Astrophysics [PHY0822648, PHY1419765]; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; National Science Foundation [ACI-1053575] FX T.S. gratefully acknowledges many helpful conversations with M. T. Mustonen, clarifying notes on SV-min from P.-G. Reinhardt, a useful HFB fitting program from N. Schunck, and discussions with D. L. Fang. This work was supported by the US Department of Energy through the Topical Collaboration in Nuclear Science "Neutrinos and Nucleosynthesis in Hot and Dense Matter," under Contract No. DE-SC0004142; through Early Career Award Grant No. SC0010263 (C.F.); and under individual Contracts No. DE-FG02-97ER41019 (J.E.), No. DE-FG02-02ER41216 (G.C.M.), and No. DE-SC0013039 (R.S.). M. M. was supported by the National Science Foundation through the Joint Institute for Nuclear Astrophysics Grants No. PHY0822648 and No. PHY1419765 and under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. We carried out some of our calculations in the Extreme Science and Engineering Discovery Environment (XSEDE) [89], which is supported by National Science Foundation Grant No. ACI-1053575, and with HPC resources provided by the Texas Advanced Computing Center (TACC) at The University of Texas at Austin. NR 90 TC 1 Z9 1 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 7 PY 2016 VL 94 IS 5 AR 055802 DI 10.1103/PhysRevC.94.055802 PG 18 WC Physics, Nuclear SC Physics GA EB5BL UT WOS:000387388000008 ER PT J AU Niu, KY Fang, L Ye, R Nordlund, D Doeff, MM Lin, F Zheng, HM AF Niu, Kai-Yang Fang, Liang Ye, Rong Nordlund, Dennis Doeff, Marca M. Lin, Feng Zheng, Haimei TI Tailoring Transition-Metal Hydroxides and Oxides by Photon-Induced Reactions SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE nanostructures; photochemistry; reaction pathways; transition-metal hydroxides; vibrational excitation ID LASER-ABLATION; ABSORPTION-SPECTROSCOPY; ALLOY NANOPARTICLES; INFRARED-SPECTRA; CHEMISTRY; WATER; NANOCRYSTALS; LIQUID; NANOSTRUCTURES; IRRADIATION AB Controlled synthesis of transition-metal hydroxides and oxides with earth-abundant elements have attracted significant interest because of their wide applications, for example as battery electrode materials or electrocatalysts for fuel generation. Here, we report the tuning of the structure of transition-metal hydroxides and oxides by controlling chemical reactions using an unfocused laser to irradiate the precursor solution. A Nd:YAG laser with wavelengths of 532 nm or 1064 nm was used. The Ni2+, Mn2+, and Co2+ ion-containing aqueous solution undergoes photo-induced reactions and produces hollow metal-oxide nanospheres (Ni0.18Mn0.45Co0.37Ox) or core-shell metal hydroxide nanoflowers ([Ni0.15Mn0.15Co0.7(OH)(2)](NO3)(0.2)center dot H2O), depending on the laser wavelengths. We propose two reaction pathways, either by photo-induced redox reaction or hydrolysis reaction, which are responsible for the formation of distinct nanostructures. The study of photon-induced materials growth shines light on the rational design of complex nanostructures with advanced functionalities. C1 [Niu, Kai-Yang; Fang, Liang; Zheng, Haimei] Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Fang, Liang] Chongqing Univ, Coll Phys, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China. [Ye, Rong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Doeff, Marca M.; Lin, Feng] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Lin, Feng] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. [Zheng, Haimei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Zheng, HM (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Zheng, HM (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM hmzheng@lbl.gov OI Ye, Rong/0000-0002-4171-5964; Doeff, Marca/0000-0002-2148-8047; Niu, Kaiyang/0000-0003-3289-1322 FU U.S. Department of Energy Office of Basic Energy Sciences [DE-AC02-05CH11231]; National Natural Science Foundation of China (NSFC) [11544010, 11547305]; Virginia Tech; DOE Office of Science Early Career Research Program FX We used Tecnai and TitanX microscopes for structural analysis at National Center for Electron Microscopy of Lawrence Berkeley National Laboratory (LBNL), which is supported by the U.S. Department of Energy Office of Basic Energy Sciences under contract number DE-AC02-05CH11231. The synchrotron X-ray portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (Beam Lines 10-1 and 8-2), a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. K.N. thanks Dr. Xin Liu for the help on the UV/Vis absorption spectra. L.F. acknowledges the support of National Natural Science Foundation of China (NSFC) under numbers 11544010 and 11547305. F.L. acknowledges the support from Virginia Tech. F.L. and D.N. thank Dr. Jun-Sik Lee and Glen Kerr for the help at SSRL Beam Line 8-2. H.Z. acknowledges the SinBeRise program of BEARS at University of California, Berkeley for travel support. She thanks the support of DOE Office of Science Early Career Research Program. NR 44 TC 1 Z9 1 U1 37 U2 37 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 7 PY 2016 VL 55 IS 46 BP 14270 EP 14274 DI 10.1002/anie.201606775 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EB0IR UT WOS:000387028000010 PM 27754583 ER PT J AU Page, K Siewenie, JE Quadrelli, P Malavasi, L AF Page, Katharine Siewenie, Joan E. Quadrelli, Paolo Malavasi, Lorenzo TI Short-Range Order of Methylammonium and Persistence of Distortion at the Local Scale in MAPbBr(3) Hybrid Perovskite SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE hybrid perovskites; methylammonium lead bromide; neutron scattering; pair distribution function; photovoltaics ID LEAD IODIDE; PHASE; BR; CL AB Short-range investigation by means of variable-temperature neutron total scattering and pair distribution function analysis revealed that the local environment around the methylammonium (MA) cation in MAPbBr(3) hybrid perovskite is maintained through the different phase transitions observed as a function of temperature. In addition, the orthorhombic distortion of the lattice is present at any temperature. Local structure around MA changes from static to configurationally averaged or dynamic with temperature but the local structure of the low-temperature orthorhombic phase is preserved. C1 [Page, Katharine] Oak Ridge Natl Lab, Spallat Neutron Source, Chem & Engn Mat Div, Oak Ridge, TN USA. [Siewenie, Joan E.] Oak Ridge Natl Lab, Instruments & Source Div, Spallat Neutron Source, Oak Ridge, TN USA. [Quadrelli, Paolo; Malavasi, Lorenzo] Univ Pavia, Dept Chem, I-27100 Pavia, Italy. [Quadrelli, Paolo; Malavasi, Lorenzo] Univ Pavia, INSTM, I-27100 Pavia, Italy. RP Malavasi, L (reprint author), Univ Pavia, Dept Chem, I-27100 Pavia, Italy.; Malavasi, L (reprint author), Univ Pavia, INSTM, I-27100 Pavia, Italy. EM lorenzo.malavasi@unipv.it OI Malavasi, Lorenzo/0000-0003-4724-2376 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX Research conducted at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Giuseppe Amoroso and Ambra Pisanu are acknowledged for samples' preparation. Prof. Chiara Milanese is acknowledged for DSC mesaurements. NR 12 TC 1 Z9 1 U1 16 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 7 PY 2016 VL 55 IS 46 BP 14318 EP 14322 DI 10.1002/anie.201608602 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA EB0IR UT WOS:000387028000020 PM 27735122 ER PT J AU Stack, AG Borreguero, JM Prisk, TR Mamontov, E Wang, HW Vlcek, L Wesolowski, DJ AF Stack, Andrew G. Borreguero, Jose M. Prisk, Timothy R. Mamontov, Eugene Wang, Hsiu-Wen Vlcek, Lukas Wesolowski, David J. TI Precise determination of water exchanges on a mineral surface SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID ELASTIC NEUTRON-SCATTERING; MOLECULAR-DYNAMICS SIMULATIONS; AQUEOUS-SOLUTION; GROWTH-KINETICS; HYDRATION WATER; IONIC SOLUTION; METAL-IONS; DISSOLUTION; CRYSTALS; RATES AB Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. We probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but as temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Ba-aq(2+) is 208 ps and SO4aq2- is 5.8 ps. This work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements. C1 [Stack, Andrew G.; Prisk, Timothy R.; Wesolowski, David J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Borreguero, Jose M.] Oak Ridge Natl Lab, Neutron Data Anal & Visualizat Div, Oak Ridge, TN USA. [Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN USA. [Wang, Hsiu-Wen] Oak Ridge Natl Lab, UTK ORNL Shull Wollan Ctr, Oak Ridge, TN USA. [Vlcek, Lukas] UTK ORNL Joint Inst Computat Sci, Oak Ridge, TN USA. [Prisk, Timothy R.] Natl Inst Stand & Technol, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Stack, AG (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM stackag@ornl.gov RI Mamontov, Eugene/Q-1003-2015; Vlcek, Lukas/N-7090-2013; OI Mamontov, Eugene/0000-0002-5684-2675; Vlcek, Lukas/0000-0003-4782-7702; Prisk, Timothy/0000-0002-7943-5175 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; Center for Accelerating Materials Modeling (CAMM) - U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under FWP-3ERKCSNL; U.S. Department of Energy, Office of Basic Energy Sciences FX This material is primarily based upon work supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Research by J. M. B. is supported by the Center for Accelerating Materials Modeling (CAMM), funded by U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division under FWP-3ERKCSNL. QENS measurements were made at Oak Ridge National Laboratory's Spallation Neutron Source, sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences. NR 48 TC 0 Z9 0 U1 19 U2 19 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD NOV 7 PY 2016 VL 18 IS 41 BP 28819 EP 28828 DI 10.1039/c6cp05836a PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EA5NR UT WOS:000386668200042 PM 27722503 ER PT J AU Borin, VA Matveev, SM Budkina, DS El-Khoury, PZ Tarnovsky, AN AF Borin, Veniamin A. Matveev, Sergey M. Budkina, Darya S. El-Khoury, Patrick Z. Tarnovsky, Alexander N. TI Direct photoisomerization of CH2I2 vs. CHBr3 in the gas phase: a joint 50 fs experimental and multireference resonance-theoretical study SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; PHOTODISSOCIATION DYNAMICS; AB-INITIO; CONICAL INTERSECTIONS; METHYLENE IODIDE; ULTRAVIOLET PHOTODISSOCIATION; CYCLOPROPANATION REACTIONS; RAMAN OBSERVATION; ALKYL-HALIDES; 300 NM AB Femtosecond transient absorption measurements powered by 40 fs laser pulses reveal that ultrafast isomerization takes place upon S-1 excitation of both CH2I2 and CHBr3 in the gas phase. The photochemical conversion process is direct and intramolecular, i.e., it proceeds without caging media that have long been implicated in the photo-induced isomerization of polyhalogenated alkanes in condensed phases. Using multistate complete active space second order perturbation theory (MS-CASPT2) calculations, we investigate the structure of the photochemical reaction paths connecting the photoexcited species to their corresponding isomeric forms. Unconstrained minimum energy paths computed starting from the S1 Franck-Condon points lead to S-1/S-0 conical intersections, which directly connect the parent CHBr3 and CH2I2 molecules to their isomeric forms. Changes in the chemical bonding picture along the S-1/S-0 isomerization reaction path are described using multireference average coupled pair functional (MRACPF) calculations in conjunction with natural resonance theory (NRT) analysis. These calculations reveal a complex interplay between covalent, radical, ylidic, and ion-pair dominant resonance structures throughout the nonadiabatic photochemical isomerization processes described in this work. C1 [Borin, Veniamin A.; Matveev, Sergey M.; Budkina, Darya S.; Tarnovsky, Alexander N.] Bowling Green State Univ, Dept Chem, Ctr Photochem Sci, Bowling Green, OH 43403 USA. [El-Khoury, Patrick Z.] Pacific Northwest Natl Lab, Div Phys Sci, POB 999, Richland, WA 99352 USA. RP Tarnovsky, AN (reprint author), Bowling Green State Univ, Dept Chem, Ctr Photochem Sci, Bowling Green, OH 43403 USA. EM atarnov@bgsu.edu FU NSF [CAREER CHE-0847707, CHE-0923360, DMR-1006761]; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL) FX This work was supported by the NSF (CAREER CHE-0847707, CHE-0923360 and DMR-1006761). An allocation of computer time from the Ohio Supercomputer Center (PCS0204-7) is gratefully acknowledged. We thank R. Marshall Wilson, Carlos E. Crespo-Hernandez, and Massimo Olivucci for many useful discussions. We thank Dr Jose-Luis Alvarez for making the TOC graphic. PZE acknowledges support by the Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). NR 105 TC 0 Z9 0 U1 13 U2 13 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1463-9076 EI 1463-9084 J9 PHYS CHEM CHEM PHYS JI Phys. Chem. Chem. Phys. PD NOV 7 PY 2016 VL 18 IS 41 BP 28883 EP 28892 DI 10.1039/c6cp05129d PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EA5NR UT WOS:000386668200048 PM 27722308 ER PT J AU Migdisov, A Williams-Jones, AE Brugger, J Caporuscio, FA AF Migdisov, A. Williams-Jones, A. E. Brugger, J. Caporuscio, F. A. TI Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations SO CHEMICAL GEOLOGY LA English DT Review DE Rare earth elements; Hydrothermal; Transport; Deposition; Fractionation ID RARE-EARTH-ELEMENTS; INITIO MOLECULAR-DYNAMICS; FLUID-ROCK INTERACTION; NB-FE DEPOSIT; 500 DEGREES-C; AQUEOUS-SOLUTIONS; IONIC-STRENGTH; HEAT-CAPACITY; ELEVATED-TEMPERATURES; CHLORIDE SOLUTIONS AB For many years, our understanding of the behavior of the REE in hydrothermal systems was based on semi empirical estimates involving extrapolation of thermodynamic data obtained at 25 degrees C (Haas et al., 1995; Wood, 1990a). Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling hydrothermal transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamic properties of even the most common REE minerals. The discrepancies between the predictions of Haas et al. (1995) and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the hydrothermal mobility of these critical metals. In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for hydrothermal transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their hydrothermal transport and deposition. Our calculations suggest that in hydrothermal solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated hydrothermally due to the differences in the stability of the LREE and HREE as aqueous chloride complexes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Migdisov, A.; Caporuscio, F. A.] Los Alamos Natl Lab, Earth & Environm Div, POB 1663,MS J535, Los Alamos, NM 87545 USA. [Williams-Jones, A. E.] McGill Univ, Dept Earth & Planetary Sci, 3450 Univ St, Montreal, PQ H3A 0E8, Canada. [Brugger, J.] Monash Univ, Sch Earth Atmosphere & Environm, 9 Rainforest Walk, Clayton, Vic 3800, Australia. RP Migdisov, A (reprint author), Los Alamos Natl Lab, Earth & Environm Div, POB 1663,MS J535, Los Alamos, NM 87545 USA. EM artas@lanl.gov RI Brugger, Joel/C-7113-2008; OI Brugger, Joel/0000-0003-1510-5764; Migdisov, Artaches/0000-0001-7734-2082 NR 146 TC 6 Z9 6 U1 44 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2541 EI 1878-5999 J9 CHEM GEOL JI Chem. Geol. PD NOV 7 PY 2016 VL 439 BP 13 EP 42 DI 10.1016/j.chemgeo.2016.06.005 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DU6ST UT WOS:000382345600002 ER PT J AU Zahr, MJ Persson, PO Wilkening, J AF Zahr, M. J. Persson, P. -O. Wilkening, J. TI A fully discrete adjoint method for optimization of flow problems on deforming domains with time-periodicity constraints SO COMPUTERS & FLUIDS LA English DT Article DE Time-periodic solutions; Shooting methods; Fully discrete adjoint equations; PDE-constrained optimization; Energetically optimal flapping flight; Time-periodicity constraints ID PARTIAL-DIFFERENTIAL-EQUATIONS; PLANE COUETTE TURBULENCE; NAVIER-STOKES EQUATIONS; OPTIMUM-SHAPE DESIGN; RIGHT-HAND SIDES; INCOMPRESSIBLE LIMIT; FLAPPING AIRFOILS; STANDING WAVES; DEEP-WATER; UNSTEADY AB A variety of shooting methods for computing fully discrete time-periodic solutions of partial differential equations, including Newton-Krylov and optimization-based methods, are discussed and used to determine the periodic, compressible, viscous flow around a 2D flapping airfoil. The Newton-Krylov method uses matrix-free GMRES to solve the linear systems of equations that arise in the nonlinear iterations, with matrix-vector products computed via the linearized sensitivity evolution equations. The adjoint method is used to compute gradients for the gradient-based optimization shooting methods. The Newton-Krylov method is shown to exhibit superior convergence to the optimal solution for these fluid problems, and fully leverages quality starting data. The central contribution of this work is the derivation of the adjoint equations and the corresponding adjoint method for fully discrete, time-periodically constrained partial differential equations. These adjoint equations constitute a linear, two-point boundary value problem that is provably solvable. The periodic adjoint method is used to compute gradients of quantities of interest along the manifold of time-periodic solutions of the discrete partial differential equation, which is verified against a second order finite difference approximation. These gradients are then used in a gradient-based optimization framework to determine the energetically optimal flapping motion of a 2D airfoil in compressible, viscous flow over a single cycle, such that the time-averaged thrust is identically zero. In less than 20 optimization iterations, the flapping energy was reduced nearly an order of magnitude and the thrust constraint satisfied to 5 digits of accuracy. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zahr, M. J.] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94035 USA. [Persson, P. -O.; Wilkening, J.] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA. [Persson, P. -O.; Wilkening, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zahr, MJ (reprint author), Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94035 USA. EM mzahr@stanford.edu; persson@berkeley.edu; wilken@math.berkeley.edu FU Department of Energy Computational Science Graduate Fellowship Program of the Office of Science; National Nuclear Security Administration in the Department of Energy [DE-FG02-97ER25308]; U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Department of Energy Computational Science Graduate Fellowship Program of the Office of Science and National Nuclear Security Administration in the Department of Energy under contract DE-FG02-97ER25308 (MZ), and by the Director, Office of Science, Computational and Technology Research, U.S. Department of Energy under contract number DE-AC02-05CH11231 (PP and JW). The content of this publication does not necessarily reflect the position or policy of any of these supporters, and no official endorsement should be inferred. NR 83 TC 0 Z9 0 U1 0 U2 0 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 EI 1879-0747 J9 COMPUT FLUIDS JI Comput. Fluids PD NOV 5 PY 2016 VL 139 SI SI BP 130 EP 147 DI 10.1016/j.compfluid.2016.05.021 PG 18 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA EB3WC UT WOS:000387298600012 ER PT J AU Zhang, C Zhang, F Diao, HY Gao, MC Tang, Z Poplawsky, JD Liaw, PK AF Zhang, Chuan Zhang, Fan Diao, Haoyan Gao, Michael C. Tang, Zhi Poplawsky, Jonathan D. Liaw, Peter K. TI Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys SO MATERIALS & DESIGN LA English DT Article DE High-entropy alloy; Phase stability; CALPHAD; Phase diagram; Atom probe tomography (APT) ID MECHANICAL-PROPERTIES; MICROSTRUCTURE; BEHAVIOR; ELEMENTS; DESIGN; FCC AB The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. The phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhang, Chuan; Zhang, Fan] CompuTherm LLC, 8401 Greenway Blvd,Suite248, Middleton, WI 53562 USA. [Diao, Haoyan; Tang, Zhi; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Michael C.] Natl Energy Technol Lab AECOM, 1450 Queen Ave SW, Albany, OR 97321 USA. [Poplawsky, Jonathan D.] Oak Ridge Natl Lab, Ctr Nanophases Mat Sci, 1 Bethel Valle Rd, Oak Ridge, TN 37831 USA. RP Zhang, C (reprint author), CompuTherm LLC, 8401 Greenway Blvd,Suite248, Middleton, WI 53562 USA. EM czhang.wisc@gmail.com FU U.S. Army Office Project [W911NF-13-1-0438]; U.S. Department of Energy (DOE) Office of Fossil Energy, National Energy Technology Laboratory (NETL) [DE-FE-0008855, DE-FE-0024054]; Cross-Cutting Technologies Program at NETL under the RES [DE-FE-0004000] FX The authors very much appreciate the financial support from the U.S. Army Office Project (W911NF-13-1-0438), and U.S. Department of Energy (DOE) Office of Fossil Energy, National Energy Technology Laboratory (NETL) (DE-FE-0008855 and DE-FE-0024054). M.C.G. acknowledges the support by the Cross-Cutting Technologies Program at NETL under the RES contract DE-FE-0004000. APT was conducted at ORNL's Center for Nanophase Materials Sciences (CNMS), which is a U.S. DOE Office of Science User Facility. U.S. DOE Office of Science User Facility. NR 38 TC 5 Z9 5 U1 70 U2 70 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-1275 EI 1873-4197 J9 MATER DESIGN JI Mater. Des. PD NOV 5 PY 2016 VL 109 BP 425 EP 433 DI 10.1016/j.matdes.2016.07.073 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA DX1DE UT WOS:000384105000046 ER PT J AU Jiang, P Li, YB Liu, GL Yang, GD Lagos, L Yin, YG Gu, BH Jiang, GB Cai, Y AF Jiang, Ping Li, Yanbin Liu, Guangliang Yang, Guidi Lagos, Leonel Yin, Yongguang Gu, Baohua Jiang, Guibin Cai, Yong TI Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Cinnabar dissolution; Hg re-adsorption on cinnabar surface; Isotope tracer technique; Isotope dilution; Redox condition ID NATURAL ORGANIC-MATTER; PLASMA-MASS SPECTROMETRY; METACINNABAR BETA-HGS; MERCURIC SULFIDE; OXIDATIVE DISSOLUTION; ENHANCED DISSOLUTION; FLORIDA EVERGLADES; ALPHA-HGS; ICP-MS; KINETICS AB Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked 202Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred mu g L-1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies. (C) 2016 Elsevier B.V. All rights reserved. C1 [Jiang, Ping; Liu, Guangliang; Cai, Yong] Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. [Liu, Guangliang; Cai, Yong] Florida Int Univ, Southeast Environm Res Ctr, Miami, FL 33199 USA. [Li, Yanbin] Ocean Univ China, Qingdao Collaborat Innovat Ctr Marine Sci & Techn, Minist Educ, Key Lab Marine Chem Theory & Technol, Qjngdao 266100, Peoples R China. [Lagos, Leonel] Florida Int Univ, Appl Res Ctr, Miami, FL 33199 USA. [Yin, Yongguang; Jiang, Guibin] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, State Key Lab Environm Chem & Ecotoxicol, Beijing 100085, Peoples R China. [Yang, Guidi] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou 350002, Peoples R China. [Gu, Baohua] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. RP Cai, Y (reprint author), Florida Int Univ, Dept Chem & Biochem, Miami, FL 33199 USA. EM cai@fiu.edu FU National Basic Research Program of China [2013CB430002]; National Natural Science Foundation of China [21120102040, 21577134]; US Department of Energy [DE-FG01-05EW07033] FX This research was partially supported by the National Basic Research Program of China (2013CB430002), National Natural Science Foundation of China (21120102040, 21577134), and US Department of Energy (DE-FG01-05EW07033). This is contribution number 798 of the Southeast Environmental Research Center at Florida International University. NR 47 TC 0 Z9 0 U1 24 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD NOV 5 PY 2016 VL 317 BP 466 EP 475 DI 10.1016/j.jhazmat.2016.05.084 PG 10 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DT5OV UT WOS:000381533400050 PM 27322904 ER PT J AU Li, D Egodawatte, S Kaplan, DI Larsen, SC Serkiz, SM Seaman, JC AF Li, Dien Egodawatte, Shani Kaplan, Daniel I. Larsen, Sarah C. Serkiz, Steven M. Seaman, John C. TI Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater SO JOURNAL OF HAZARDOUS MATERIALS LA English DT Article DE Magnetic mesoporous silica nanoparticles; Surface functionalization with organic molecules; Uranium removal; Acidic and alkaline groundwater ID SELF-ASSEMBLED MONOLAYERS; AQUEOUS-SOLUTION; SUPPORTS SAMMS; ACTINIDE SEQUESTRATION; URANIUM EXTRACTION; EFFICIENT SORPTION; ADSORPTION; U(VI); SBA-15; PHOSPHONATE AB U(VI) species display limited adsorption onto sediment minerals and synthetic sorbents in pH <4 or pH >8 groundwater. In this work, magnetic mesoporous silica nanoparticles (MMSNs) with magnetite nanoparticle cores were functionalized with various organic molecules using post-synthetic methods. The functionalized MMSNs were characterized using N-2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), C-13 cross polarization and magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) spectroscopy, and powder X-ray diffraction (XRD), which indicated that mesoporous silica (MCM-41) particles of 100-200 nm formed around a core of magnetic iron oxide, and the functional groups were primarily grafted into the mesopores of 3.0 nm in size. The functionalized MMSNs were effective for U removal from pH 3.5 and 9.6 artificial groundwater (AGW). Functionalized MMSNs removed U from the pH 3.5 AGW by as much as 6 orders of magnitude more than unfunctionalized nanoparticles or silica and had adsorption capacities as high as 38 mg/g. They removed U from the pH 9.6 AGW as much as 4 orders of magnitude greater than silica and 2 orders of magnitude greater than the unfunctionalized nanoparticles with adsorption capacities as high as 133 mg/g. These results provide an applied solution for treating U contamination that occurs at extreme pH environments and a scientific foundation for solving critical industrial issues related to environmental stewardship and nuclear power production. (C) 2016 Elsevier B.V. All rights reserved. C1 [Li, Dien; Kaplan, Daniel I.; Serkiz, Steven M.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Egodawatte, Shani; Larsen, Sarah C.] Univ Iowa, Dept Chem, Iowa City, IA 52242 USA. [Serkiz, Steven M.] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA. [Seaman, John C.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Li, D (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM dien.li@srs.gov FU Laboratory Directed Research and Development (LDRD) program within the Savannah River National Laboratory (SRNL) [LDRD-2014-00028, LDRD-2015-00014]; SRNL under the U.S. Department of Energy [DE-AC09-96SR18500]; U.S. Department of Energy [DE-FC09-07SR22506] FX This work was supported by the Laboratory Directed Research and Development (LDRD) program (Grant Nos.: LDRD-2014-00028 and LDRD-2015-00014) within the Savannah River National Laboratory (SRNL). Work was conducted at SRNL under the U.S. Department of Energy Contract DE-AC09-96SR18500. Dr. Seaman's participation was supported by the U.S. Department of Energy under Award Numbers DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 53 TC 2 Z9 2 U1 76 U2 89 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3894 EI 1873-3336 J9 J HAZARD MATER JI J. Hazard. Mater. PD NOV 5 PY 2016 VL 317 BP 494 EP 502 DI 10.1016/j.jhazmat.2016.05.093 PG 9 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DT5OV UT WOS:000381533400053 PM 27341378 ER PT J AU Novikov, VV Zhemoedov, NA Matovnikov, AV Mitroshenkov, NV Ueland, BG Bud'ko, SL AF Novikov, V. V. Zhemoedov, N. A. Matovnikov, A. V. Mitroshenkov, N. V. Ueland, B. G. Bud'ko, S. L. TI The influence of crystal electric field on thermal properties of non-stoichiometric ErB50 boride at low temperatures SO JOURNAL OF ALLOYS AND COMPOUNDS LA English DT Article DE Rare earth alloys and compounds; Crystal and ligand fields; Heat capacity; Thermal expansion; X-ray diffraction ID RARE-EARTH HEXABORIDES; RANGE 5-300 K; HEAT-CAPACITY; THERMODYNAMIC FUNCTIONS; NEODYMIUM HEXABORIDE; LATTICE-DYNAMICS; EXPANSION; CONDUCTIVITY; POTENTIALS; ANOMALIES AB The temperature dependences of heat capacity, C-p(T), and lattice parameters, a(T), b(T), c(T), of ErB50 in the temperature range of 2-300 K were experimentally studied. Two features in C-p(T) were observed: a maximum at T-m1 = 3.12 K, that is associated with a magnetic ordering (transition to an antiferromagnetic state), and a broad anomaly at about T-m2 = 27 K that is due to the effects of the crystal electric field (CEF) on the boride heat capacity. Based on these data a scheme of splitting of Er3+ ions f-levels by the crystal field was suggested. Comparison of the temperature dependence of unit cell volume V(T) for ErB50 with the literature data for LuB50 revealed an excess contribution into the thermal expansion of erbium boride at low temperatures. It was determined that this contribution is due to the CEF effects on ErB50 thermal expansion. (C) 2016 Elsevier B.V. All rights reserved. C1 [Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.] Petrovsky Bryansk State Univ, Bryansk Phys Lab, Training Res Ctr, 14 Bezhitskaya St, Bryansk 241036, Russia. [Ueland, B. G.; Bud'ko, S. L.] Iowa State Univ, Ames Lab US DOE, Dept Phys & Astron, Ames, IA 50011 USA. RP Novikov, VV (reprint author), Petrovsky Bryansk State Univ, Bryansk Phys Lab, Training Res Ctr, 14 Bezhitskaya St, Bryansk 241036, Russia. EM vvnovikov@mail.ru RI Ueland, Benjamin/B-2312-2008; Novikov, Vladimir/D-3413-2011; Mitroshenkov, Nikolay/E-1912-2017; Zhemoedov, Nikolay/E-8013-2017 OI Ueland, Benjamin/0000-0001-9784-6595; Novikov, Vladimir/0000-0003-2081-6691; Mitroshenkov, Nikolay/0000-0002-4418-9613; Zhemoedov, Nikolay/0000-0003-2225-2228 FU Russian Science Foundation [16-12-00004] FX The research was done at the expense of the grant of the Russian Science Foundation (Project No16-12-00004). NR 34 TC 1 Z9 1 U1 11 U2 20 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-8388 EI 1873-4669 J9 J ALLOY COMPD JI J. Alloy. Compd. PD NOV 5 PY 2016 VL 684 BP 714 EP 718 DI 10.1016/j.jallcom.2016.05.113 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Chemistry; Materials Science; Metallurgy & Metallurgical Engineering GA DR3HD UT WOS:000379792800099 ER PT J AU Fitzgerald, TJ Kang, Y Bridges, CB Talbert, T Vagi, SJ Lamont, B Graitcer, SB AF Fitzgerald, Thomas J. Kang, Yoonjae Bridges, Carolyn B. Talbert, Todd Vagi, Sara J. Lamont, Brock Graitcer, Samuel B. TI Integrating pharmacies into public health program planning for pandemic influenza vaccine response SO VACCINE LA English DT Article ID WILLINGNESS; EMERGENCIES; CARE AB Background: During an influenza pandemic, to achieve early and rapid vaccination coverage and maximize the benefit of an immunization campaign, partnerships between public health agencies and vaccine providers are essential. Immunizing pharmacists represent an important group for expanding access to pandemic vaccination. However, little is known about nationwide coordination between public health programs and pharmacies for pandemic vaccine response planning. Methods: To assess relationships and planning activities between public health programs and pharmacies, we analyzed data from Centers for Disease Control and Prevention assessments of jurisdictions that received immunization and emergency preparedness funding from 2012 to 2015. Results: Forty-seven (88.7%) of 53 jurisdictions reported including pharmacies in pandemic vaccine distribution plans, 24 (45.3%) had processes to recruit pharmacists to vaccinate, and 16 (30.8%) of 52 established formal relationships with pharmacies. Most jurisdictions plan to allocate less than 10% of pandemic vaccine supply to pharmacies. Discussion: While most jurisdictions plan to include pharmacies as pandemic vaccine providers, work is needed to establish formalized agreements between public health departments and pharmacies to improve pandemic preparedness coordination and ensure that vaccinating pharmacists are fully utilized during a pandemic. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Fitzgerald, Thomas J.] IHRC Inc, Atlanta, GA USA. [Fitzgerald, Thomas J.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Fitzgerald, Thomas J.; Kang, Yoonjae; Bridges, Carolyn B.; Lamont, Brock; Graitcer, Samuel B.] Ctr Dis Control & Prevent, Natl Ctr Immunizat & Resp Dis, Immunizat Serv Div, Atlanta, GA USA. [Talbert, Todd; Vagi, Sara J.] Ctr Dis Control & Prevent, Div State & Local Readiness, Off Publ Hlth Preparedness & Response, Atlanta, GA USA. RP Fitzgerald, TJ (reprint author), Ctr Dis Control & Prevent, Immunizat Serv Div, 1600 Clifton Rd,MS A19, Atlanta, GA 30329 USA. EM ymi8@cdc.gov FU Intramural CDC HHS [CC999999] NR 23 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-410X EI 1873-2518 J9 VACCINE JI Vaccine PD NOV 4 PY 2016 VL 34 IS 46 BP 5643 EP 5648 DI 10.1016/j.vaccine.2016.09.020 PG 6 WC Immunology; Medicine, Research & Experimental SC Immunology; Research & Experimental Medicine GA EA9TT UT WOS:000386988300026 PM 27686834 ER PT J AU Frew, PM Fisher, AK Basket, MM Chung, YM Schamel, J Weiner, JL Mullen, J Omer, SB Orenstein, WA AF Frew, Paula M. Fisher, Allison Kennedy Basket, Michelle M. Chung, Yunmi Schamel, Jay Weiner, Judith L. Mullen, Jennifer Omer, Saad B. Orenstein, Walter A. TI Changes in childhood immunization decisions in the United States: Results froth 2012 & 2014 National Parental Surveys SO VACCINE LA English DT Article DE Vaccine acceptability; Vaccine delay; Vaccine refusal; Immunization coverage; Vaccine hesitancy ID AREA VACCINATION COVERAGE; AGED 19-35 MONTHS; PERTUSSIS-VACCINE; CHILDREN; REFUSAL; HESITANCY; DELAY; ASSOCIATION; RISK; CONSEQUENCES AB Objective: Understanding the current status of parents' vaccine decision making is crucial to inform public policy. We sought to assess changes in vaccine decisions among parents of young children. Methods: We conducted a web-based national poll of parents of children <7 years in 2012 and 2014. Participants reported vaccine decisions for their youngest child. We calculated survey-weighted population estimates of overall immunizations decisions, and delay/refusal rates for specific vaccines. Results: In 2012, 89.2% (95% CI, 87.3-90.8%)-reported accepting or planning to accept all recommended non-influenza childhood vaccines, 5.5% (4.5-6.6%) reported intentionally delaying one or more, and 5.4% (4.1-6.9%) reported refusing one or more vaccines. In 2014, the acceptance, delay, and refusal rates were 90.8% (89.3-92.1%), 5.6% (4.6-6.9%), and 3.6% (2.8-4.5%), respectively. Between 2012 and 2014, intentional vaccine refusal decreased slightly among parents of older children (2-6 years) but not younger children (0-1 years). The proportion of parents working to catch up on all vaccines increased while those refusing some but not all vaccines decreased. The South experienced a significant increase in estimated acceptance (90.1-94.1%) and a significant decrease in intentional ongoing refusal (5.0-2.1%). Vaccine delay increased in the Northeast (3.2-8.8%). Conclusions: Nationally, acceptance and ongoing intentional delay of recommended non-influenza childhood vaccines were stable. These findings suggest that more effort is warranted to counter persistent vaccine hesitancy, particularly at the local level. Longitudinal monitoring of immunization attitudes is also warranted to evaluate temporal shifts over time and geographically. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Frew, Paula M.; Omer, Saad B.; Orenstein, Walter A.] Emory Univ, Sch Med, 1760 Haygood Rd, Atlanta, GA 30322 USA. [Frew, Paula M.; Omer, Saad B.; Orenstein, Walter A.] Emory Univ, Rollins Sch Publ Hlth, 1518 Clifton Rd, Atlanta, GA 30322 USA. [Frew, Paula M.; Fisher, Allison Kennedy; Basket, Michelle M.; Mullen, Jennifer] Natl Ctr Immunizat & Resp Dis, US Ctr Dis Control & Prevent, 1600 Clifton Rd, Atlanta, GA 30333 USA. [Chung, Yunmi; Schamel, Jay] ORISE, POB 117 MS-36, Oak Ridge, TN 37831 USA. [Weiner, Judith L.] Northrop Grumman, 2800 Century Pkwy NE, Chamblee, GA 30345 USA. RP Frew, PM (reprint author), Emory Univ, Sch Med, Dept Med, Div Infect Dis, 1760 Haygood Rd,Suite W327, Atlanta, GA 30322 USA. EM pfrew@emory.edu FU U.S. Centers for Disease Control and Prevention (CDC) FX This research was supported in part by a grant from the U.S. Centers for Disease Control and Prevention (CDC) and an appointment to the Research Participation Program at the CDC administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and CDC. The findings and conclusions in this article are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. NR 55 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-410X EI 1873-2518 J9 VACCINE JI Vaccine PD NOV 4 PY 2016 VL 34 IS 46 BP 5689 EP 5696 DI 10.1016/j.vaccine.2016.08.001 PG 8 WC Immunology; Medicine, Research & Experimental SC Immunology; Research & Experimental Medicine GA EA9TT UT WOS:000386988300032 PM 27720447 ER PT J AU Rulbel, O Dougherty, M Prabhat Denes, P Conant, D Chang, EF Bouchard, K AF Rulbel, Oliver Dougherty, Max Prabhat Denes, Peter Conant, David Chang, Edward F. Bouchard, Kristofer TI Methods for Specifying Scientific Data Standards and Modeling Relationships with Applications to Neuroscience SO FRONTIERS IN NEUROINFORMATICS LA English DT Article DE data format specification; relationship modeling; electrophysiology; neuroscience ID FORMAT AB Neuroscience continues to experience a tremendous growth in data; in terms of the volume and variety of data, the velocity at which data is acquired, and in turn the veracity of data. These challenges are a serious impediment to sharing of data, analyses, and tools within and across labs. Here, we introduce BRAINformat, a novel data standardization framework for the design and management of scientific data formats. The BRAINformat library defines application independent design concepts and modules that together create a general framework for standardization of scientific data. We describe the formal specification of scientific data standards, which facilitates sharing and verification of data and formats. We introduce the concept of Managed Objects, enabling semantic components of data formats to be specified as self-contained units, supporting modular and reusable design of data format components and file storage. We also introduce the novel concept of Relationship Attributes for modeling and use of semantic relationships between data objects. Based on these concepts we demonstrate the application of our framework to design and implement a standard format for electrophysiology data and show how data standardization and relationship-modeling facilitate data analysis and sharing. The format uses HDF5, enabling portable, scalable, and self-describing data storage and integration with modern high-performance computing for data-driven discovery. The BRAINformat library is open source, easy-to-use, and provides detailed user and developer documentation and is freely available at: https://bitbucket.org/oruebel/brainformat. C1 [Rulbel, Oliver] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Dougherty, Max; Bouchard, Kristofer] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Prabhat] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA USA. [Denes, Peter] Lawrence Berkeley Natl Lab, Div Phys Sci, Berkeley, CA USA. [Conant, David; Chang, Edward F.] Univ Calif San Francisco, Med Ctr, Neurosci, San Francisco, CA USA. RP Rulbel, O (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Bouchard, K (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. EM oruebel@lbl.gov; kebouchard@fbi.gov FU Laboratory Directed Research and Development (LDRD) from Berkeley Lab; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by Laboratory Directed Research and Development (LDRD) finding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We thank Katherine Louie, Michael Balamotis, Ben Bowen, and Trent Northen for the MSI dataset used in this manuscript that they have made accessible via OpenMSI at https://openmsi.nersc.gov. We would like to thank Fritz Sommer, Jeff Teeters, Annette Greiner for helpful discussions. We would like to thank the members of the Chang Lab (UCSF), Bouchard Lab (LBNL), and Denes Lab (LBNL) for helpful discussions, data, and support. NR 19 TC 0 Z9 0 U1 1 U2 1 PU FRONTIERS MEDIA SA PI LAUSANNE PA PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND SN 1662-5196 J9 FRONT NEUROINFORM JI Front. Neuroinformatics PD NOV 4 PY 2016 VL 10 AR 48 DI 10.3389/fninf.2016.00048 PG 16 WC Mathematical & Computational Biology; Neurosciences SC Mathematical & Computational Biology; Neurosciences & Neurology GA EA9JQ UT WOS:000386959900001 ER PT J AU Gorchon, J Wilson, RB Yang, Y Pattabi, A Chen, JY He, L Wang, JP Li, M Bokor, J AF Gorchon, J. Wilson, R. B. Yang, Y. Pattabi, A. Chen, J. Y. He, L. Wang, J. P. Li, M. Bokor, J. TI Role of electron and phonon temperatures in the helicity-independent all-optical switching of GdFeCo SO PHYSICAL REVIEW B LA English DT Article ID ULTRAFAST; FILMS; DYNAMICS; REVERSAL AB Ultrafast optical heating of the electrons in ferrimagnetic metals can result in all-optical switching (AOS) of the magnetization. Here we report quantitative measurements of the temperature rise of GdFeCo thin films during helicity-independent AOS. Critical switching fluences are obtained as a function of the initial temperature of the sample and for laser pulse durations from 55 fs to 15 ps. We conclude that nonequilibrium phenomena are necessary for helicity-independent AOS, although the peak electron temperature does not play a critical role. Pump-probe time-resolved experiments show that the switching time increases as the pulse duration increases, with 10 ps pulses resulting in switching times of similar to 13 ps. These results raise new questions about the fundamental mechanism of helicity-independent AOS. C1 [Gorchon, J.; Wilson, R. B.; Bokor, J.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Gorchon, J.; Wilson, R. B.; Pattabi, A.; Bokor, J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Wilson, R. B.] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA. [Wilson, R. B.] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA. [Yang, Y.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chen, J. Y.; He, L.; Wang, J. P.; Li, M.] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA. RP Gorchon, J (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Gorchon, J (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM jgorchon@lbl.gov; rwilson@engr.ucr.edu RI Chen, Junyang/B-8732-2012 OI Chen, Junyang/0000-0002-5258-9035 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy within the Nonequilibrium Magnetic Materials Program (MSMAG) [DE-AC02-05-CH11231]; C-SPIN: one of the six SRC STARnet Centers - MARCO; C-SPIN: one of the six SRC STARnet Centers - DARPA; National Sciences Foundation Center for Energy Efficient Electronics Science [0939514] FX This work was primarily supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the Nonequilibrium Magnetic Materials Program (MSMAG). Sample fabrication was supported by C-SPIN: one of the six SRC STARnet Centers, sponsored by MARCO and DARPA. We also acknowledge the National Sciences Foundation Center for Energy Efficient Electronics Science (Award No. 0939514) for providing most of the experimental equipment and partially supporting operation of the experiments. NR 37 TC 0 Z9 0 U1 15 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 4 PY 2016 VL 94 IS 18 AR 184406 DI 10.1103/PhysRevB.94.184406 PG 7 WC Physics, Condensed Matter SC Physics GA EA8OF UT WOS:000386895000008 ER PT J AU Vlasko-Vlasov, VK Colauto, F Buzdin, AA Carmo, D Andrade, AMH Oliveira, AAM Ortiz, WA Rosenmann, D Kwok, WK AF Vlasko-Vlasov, V. K. Colauto, F. Buzdin, A. A. Carmo, D. Andrade, A. M. H. Oliveira, A. A. M. Ortiz, W. A. Rosenmann, D. Kwok, W. -K. TI Crossing fields in thin films of isotropic superconductors SO PHYSICAL REVIEW B LA English DT Article ID FLUX; STABILITY; LATTICE AB We study interactions of perpendicular and longitudinal magnetic fields in niobium films of different thickness in a wide range of temperatures below the superconducting transition temperature (T-C). In 100-nm Nb film at all temperatures the longitudinal field H-parallel to practically does not influence the dynamics of the normal flux. However, in 200-nm Nb film, a considerable anisotropy in the vortex motion is found with advanced propagation of the normal flux along H-parallel to atT > T-C/2 and the preferential jumpwise growth of the thermomagnetic flux dendrites across H-parallel to atT < T-C. Appearance of the in-plane vortices and their cutting reconnection with tilted vortices induced by the normal field H-perpendicular to is the reason for the observed anisotropy in the thicker film. Absence of the in-plane vortices and much smaller tilt of vortices generated by H. explain the isotropic normal flux dynamics in the thinner film. Our results open an alternative way of manipulating both slow vortex motion and fast thermomagnetic avalanches. C1 [Vlasko-Vlasov, V. K.; Colauto, F.; Rosenmann, D.; Kwok, W. -K.] Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. [Colauto, F.; Carmo, D.; Ortiz, W. A.] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil. [Buzdin, A. A.] Univ Bordeaux, LOMA, CNRS, UMR 5798, F-33405 Talence, France. [Andrade, A. M. H.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Oliveira, A. A. M.] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Campus Sao Carlos, BR-13565905 Sao Carlos, SP, Brazil. RP Vlasko-Vlasov, VK (reprint author), Argonne Natl Lab, 9700 South Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division; Sao Paulo Research Foundation FAPESP [2015/06.085-3]; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division. The work of F. Colauto at Argonne National Laboratory was supported by the Sao Paulo Research Foundation FAPESP (Grant No. 2015/06.085-3). We used sample manufacturing facilities of Laboratorio de Conformacao Nanometrica, Laboratorio de Microfabricacao, and Center for Nanoscale Materials, supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 27 TC 0 Z9 0 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 4 PY 2016 VL 94 IS 18 AR 184502 DI 10.1103/PhysRevB.94.184502 PG 10 WC Physics, Condensed Matter SC Physics GA EA8OF UT WOS:000386895000009 ER PT J AU Duke, DL Tovesson, F Laptev, AB Mosby, S Hambsch, FJ Brys, T Vidali, M AF Duke, D. L. Tovesson, F. Laptev, A. B. Mosby, S. Hambsch, F. -J. Brys, T. Vidali, M. TI Fission-fragment properties in U-238(n, f) between 1 and 30 MeV SO PHYSICAL REVIEW C LA English DT Article ID NEUTRON-INDUCED FISSION; ENERGY-DEPENDENCE; YIELDS; PLUTONIUM; PU-239 AB The fragment mass and kinetic energy in neutron-induced fission of U-238 has been measured for incident energies from 1 to 30 MeV at the Los Alamos Neutron Science Center. The change in mass distributions over this energy range were studied, and the transition from highly asymmetric to more symmetric mass distributions is observed. A decrease in average total kinetic energy ((TKE) over bar) with increasing excitation energy is observed, consistent with previous experimental work. Additional structure at multichance fission thresholds is present in the (TKE) over bar data. The correlations between fragment masses and total kinetic energy and how that changes with excitation energy of the fissioning compound nucleus were also measured. The fission mass yields and average total kinetic energy are important for fission-based technologies such as nuclear reactors to understand nuclear waste generation and energy output when developing new and advanced concepts. The correlations between fragment mass and kinetic energy are needed both as input for theoretical calculations of the deexcitation process in fission fragments by prompt radiation emission and for validating advanced theoretical fission models describing the formation of the primordial fragments. C1 [Duke, D. L.; Tovesson, F.; Laptev, A. B.; Mosby, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hambsch, F. -J.; Brys, T.; Vidali, M.] EC Joint Res Ctr, Retiseweg 111, B-2440 Geel, Belgium. RP Duke, DL (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Laptev, Alexander/D-4686-2009 OI Laptev, Alexander/0000-0002-9759-9907 NR 27 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 4 PY 2016 VL 94 IS 5 AR 054604 DI 10.1103/PhysRevC.94.054604 PG 11 WC Physics, Nuclear SC Physics GA EA8OP UT WOS:000386896200005 ER PT J AU Fossez, K Rotureau, J Michel, N Liu, Q Nazarewicz, W AF Fossez, K. Rotureau, J. Michel, N. Liu, Quan Nazarewicz, W. TI Single-particle and collective motion in unbound deformed Mg-39 SO PHYSICAL REVIEW C LA English DT Article ID RESONANT STATES; SHELL-MODEL; NUCLEI; HALOS; NORMALIZATION; EXPANSIONS; SCATTERING; ISOTOPES; MATRIX; LIMITS AB Background: Deformed neutron-rich magnesium isotopes constitute a fascinating territory where the interplay between collective rotation and single-particle motion is strongly affected by the neutron continuum. The unbound fp-shell nucleus Mg-39 is an ideal candidate to study this interplay. Purpose: In this work, we predict the properties of low-lying resonant states of Mg-39, using a suite of realistic theoretical approaches rooted in the open quantum system framework. Method: To describe the spectrum and decay modes of Mg-39 we use the conventional shell model, Gamow shell model, resonating group method, density matrix renormalization group method, and the nonadiabatic particle-plus-rotor model formulated in the Berggren basis. Results: The unbound ground state of Mg-39 is predicted to be either a J(pi) = 7/2(-) state or a 3/2(-) state. A narrow J(pi) = 7/2(-) ground-state candidate exhibits a resonant structure reminiscent of that of its one-neutron halo neighbor Mg-37, which is dominated by the f(7/2) partial wave at short distances and a p(3/2) component at large distances. A J(pi) = 3/2(-) ground-state candidate is favored by the large deformation of the system. It can be associated with the 1/2(-)[321] Nilsson orbital dominated by the l = 1 wave; hence its predicted width is large. The excited J(pi) = 1/2(-) and 5/2(-) states are expected to be broad resonances, while the J(pi) = 9/2(-) and 11/2(-) members of the ground-state rotational band are predicted to have very small neutron decay widths. Conclusion: We demonstrate that the subtle interplay between deformation, shell structure, and continuum coupling can result in a variety of excitations in an unbound nucleus just outside the neutron drip line. C1 [Fossez, K.; Rotureau, J.; Michel, N.; Liu, Quan; Nazarewicz, W.] Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA. [Rotureau, J.] Oak Ridge Natl Lab, JINPA, Oak Ridge, TN 37831 USA. [Liu, Quan] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Peoples R China. [Nazarewicz, W.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Nazarewicz, W.] Univ Warsaw, Fac Phys, Inst Theoret Phys, Warsaw, Poland. RP Fossez, K (reprint author), Michigan State Univ, NSCL FRIB Lab, E Lansing, MI 48824 USA. RI rotureau, jimmy/B-2365-2013 FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-SC0013365, DE-SC0008511]; National Science Foundation [PHY-1403906] FX Useful discussions with Augusto Macchiavelli and Heather Crawford are gratefully acknowledged. We are grateful to Erik Olsen for carefully reading the manuscript. This work was supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under Grants No. DE-SC0013365 (Michigan State University) and No. DE-SC0008511 (NU-CLEI SciDAC-3 collaboration), and by the National Science Foundation under Grant No. PHY-1403906. An award of computer time was provided by the Institute for Cyber-Enabled Research at Michigan State University and by Chalmers Centre for Computational Science and Engineering (C3SE) through the Swedish National Infrastructure for Computing (SNIC). NR 63 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 4 PY 2016 VL 94 IS 5 AR 054302 DI 10.1103/PhysRevC.94.054302 PG 9 WC Physics, Nuclear SC Physics GA EA8OP UT WOS:000386896200001 ER PT J AU Jiang, Y Liao, JF AF Jiang, Yin Liao, Jinfeng TI Pairing Phase Transitions of Matter under Rotation SO PHYSICAL REVIEW LETTERS LA English DT Article ID HEAVY-ION COLLISIONS; QUANTUM-FIELD-THEORY; MAGNETIC-FIELD; CHROMODYNAMICS; VIOLATION AB The phases and properties of matter under global rotation have attracted much interest recently. In this Letter we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point. C1 [Jiang, Yin; Liao, Jinfeng] Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Jiang, Yin; Liao, Jinfeng] Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. [Liao, Jinfeng] Brookhaven Natl Lab, RIKEN, Res Ctr, Bldg 510A, Upton, NY 11973 USA. RP Jiang, Y (reprint author), Indiana Univ, Dept Phys, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA.; Jiang, Y (reprint author), Indiana Univ, Ctr Explorat Energy & Matter, 2401 N Milo B Sampson Lane, Bloomington, IN 47408 USA. EM jiangyin@indiana.edu; liaoji@indiana.edu FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration; National Science Foundation [PHY-1352368]; RIKEN BNL Research Center FX The authors thank K. Fukushima, X.-G. Huang, D. Kharzeev, L. McLerran, M. Stephanov, H.-U. Yee, and P. Zhuang for discussions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The work is also supported in part by the National Science Foundation under Grant No. PHY-1352368. J. L. is grateful to the RIKEN BNL Research Center for partial support. NR 43 TC 1 Z9 1 U1 10 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 4 PY 2016 VL 117 IS 9 AR 192302 DI 10.1103/PhysRevLett.117.192302 PG 5 WC Physics, Multidisciplinary SC Physics GA EA8QS UT WOS:000386903400009 PM 27858435 ER PT J AU Alexandrov, LB Ju, YS Haase, K Van Loo, P Martincorena, I Nik-Zainal, S Totoki, Y Fujimoto, A Nakagawa, H Shibata, T Campbell, PJ Vineis, P Phillips, DH Stratton, MR AF Alexandrov, Ludmil B. Ju, Young Seok Haase, Kerstin Van Loo, Peter Martincorena, Inigo Nik-Zainal, Serena Totoki, Yasushi Fujimoto, Akihiro Nakagawa, Hidewaki Shibata, Tatsuhiro Campbell, Peter J. Vineis, Paolo Phillips, David H. Stratton, Michael R. TI Mutational signatures associated with tobacco smoking in human cancer SO SCIENCE LA English DT Article ID LUNG-CANCER; PROTEIN ADDUCTS; HUMAN TISSUES; DNA; CARCINOGENS; LANDSCAPE; PATTERNS; EXPOSURE; HOTSPOTS; GENOMES AB Tobacco smoking increases the risk of at least 17 classes of human cancer. We analyzed somatic mutations and DNA methylation in 5243 cancers of types for which tobacco smoking confers an elevated risk. Smoking is associated with increased mutation burdens of multiple distinct mutational signatures, which contribute to different extents in different cancers. One of these signatures, mainly found in cancers derived from tissues directly exposed to tobacco smoke, is attributable to misreplication of DNA damage caused by tobacco carcinogens. Others likely reflect indirect activation of DNA editing by APOBEC cytidine deaminases and of an endogenous clocklike mutational process. Smoking is associated with limited differences in methylation. The results are consistent with the proposition that smoking increases cancer risk by increasing the somatic mutation load, although direct evidence for this mechanism is lacking in some smoking-related cancer types. C1 [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Theoret Biol & Biophys T 6, Los Alamos, NM 87545 USA. [Alexandrov, Ludmil B.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Alexandrov, Ludmil B.] Univ New Mexico, Ctr Comprehens Canc, Albuquerque, NM 87102 USA. [Ju, Young Seok] Korea Adv Inst Sci & Technol, Grad Sch Med Sci & Engn, Daejeon 34141, South Korea. [Haase, Kerstin; Van Loo, Peter] Francis Crick Inst, 1 Midland Rd, London NW1 1AT, England. [Van Loo, Peter] Univ Leuven, Dept Human Genet, B-3000 Louvain, Belgium. [Martincorena, Inigo; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.] Wellcome Trust Sanger Inst, Canc Genome Project, Hinxton CB10 1SA, Cambs, England. [Nik-Zainal, Serena] Addenbrookes Hosp Natl Hlth Serv Trust, Dept Med Genet, Cambridge, England. [Totoki, Yasushi] Natl Canc Ctr, Res Inst, Div Canc Genom, Chuo Ku, Tokyo, Japan. [Fujimoto, Akihiro; Nakagawa, Hidewaki] RIKEN, Ctr Integrat Med Sci, Lab Genome Sequencing Anal, Tokyo, Japan. [Fujimoto, Akihiro] Kyoto Univ, Grad Sch Med, Dept Drug Discovery Med, Kyoto 6068507, Japan. [Shibata, Tatsuhiro] Univ Tokyo, Ctr Human Genome, Inst Med Sci, Lab Mol Med,Minato Ku, Tokyo, Japan. [Campbell, Peter J.] Univ Cambridge, Dept Haematol, Cambridge CB2 0XY, England. [Vineis, Paolo] Human Genet Fdn, I-10126 Turin, Italy. [Vineis, Paolo] Imperial Coll London, Ctr Environm & Hlth, Sch Publ Hlth, PHE,MRC,Dept Epidemiol & Biostat, Norfolk Pl, London W2 1PG, England. [Phillips, David H.] Kings Coll London, MRC PHE Ctr Environm & Hlth, Analyt & Environm Sci Div, Franklin Wilkins Bldg,150 Stamford St, London SE1 9NH, England. RP Alexandrov, LB (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys T 6, Los Alamos, NM 87545 USA.; Alexandrov, LB (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA.; Alexandrov, LB (reprint author), Univ New Mexico, Ctr Comprehens Canc, Albuquerque, NM 87102 USA.; Stratton, MR (reprint author), Wellcome Trust Sanger Inst, Canc Genome Project, Hinxton CB10 1SA, Cambs, England. EM lba@lanl.gov; mrs@sanger.ac.uk OI Ju, Young Seok/0000-0002-5514-4189; Alexandrov, Ludmil/0000-0003-3596-4515 FU Wellcome Trust [098051, WT100183MA, WT088340MA, FC001202, 101126/Z/13/Z, 101126/B/13/Z]; GRAIL; J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory; U.S. Department of Energy (DOE) National Nuclear Security Administration [DE-AC52-06NA25396]; National Nuclear Security Administration of the DOE; Francis Crick Institute - Cancer Research UK [FC001202]; UK MRC [FC001202]; Cancer Research UK [C313/A14329]; National Institute for Health Research (NIHR) Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London; PHE; European Commission [308610-FP7]; Practical Research for Innovative Cancer Control from Japan Agency for Medical Research and Development [15ck0106094h0002]; National Cancer Center Research and Development Funds [26-A-5] FX This work was supported by the Wellcome Trust (grant 098051). S.N.-Z. is a Wellcome-Beit Prize Fellow and is supported through a Wellcome Trust Intermediate Fellowship (grant WT100183MA). P.J.C. is personally funded through a Wellcome Trust Senior Clinical Research Fellowship (grant WT088340MA). M.R.S. is a paid advisor for GRAIL, a company developing technologies for sequencing of circulating tumor DNA for the purpose of early cancer detection. L.B.A. is personally supported through a J. Robert Oppenheimer Fellowship at Los Alamos National Laboratory. This research used resources provided by the Los Alamos National Laboratory Institutional Computing Program, which is supported by the U.S. Department of Energy (DOE) National Nuclear Security Administration under contract no. DE-AC52-06NA25396. Research performed at Los Alamos National Laboratory was carried out under the auspices of the National Nuclear Security Administration of the DOE. This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK (grant FC001202), the UK MRC (grant FC001202), and the Wellcome Trust (grant FC001202). P.V.L. is a Winton Group Leader in recognition of the Winton Charitable Foundation's support toward the establishment of The Francis Crick Institute. D.H.P. is funded by Cancer Research UK (grant C313/A14329), the Wellcome Trust (grants 101126/Z/13/Z and 101126/B/13/Z), the National Institute for Health Research (NIHR) Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in partnership with PHE [the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, the Department of Health, or PHE], and by the project EXPOSOMICS (grant agreement 308610-FP7) (European Commission). P.V. was partially supported by the project EXPOSOMICS (grant agreement 308610-FP7) (European Commission). Y.T. and T.S. are supported by the Practical Research for Innovative Cancer Control from Japan Agency for Medical Research and Development (grant 15ck0106094h0002) and National Cancer Center Research and Development Funds (26-A-5). We thank The Cancer Genome Atlas, the International Cancer Genome Consortium, and the authors of all studies cited in table S1 for providing free access to their somatic mutational data. NR 31 TC 4 Z9 4 U1 35 U2 35 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 4 PY 2016 VL 354 IS 6312 BP 618 EP 622 DI 10.1126/science.aag0299 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EA8FD UT WOS:000386869800049 PM 27811275 ER PT J AU Boyle, TJ Neville, ML Sears, JM Cramer, RE Rodriguez, MA Alam, TM Bingham, SP AF Boyle, Timothy J. Neville, Michael L. Sears, Jeremiah M. Cramer, Roger E. Rodriguez, Mark A. Alam, Todd M. Bingham, Samuel P. TI Synthesis, X-ray structures, and characterization of hexafluoro-iso-propoxide group 3 and lanthanide precursors SO POLYHEDRON LA English DT Article DE Alkoxide; Fluorinated; Lanthanides; Hexafluoro-iso-propoxide; Lanthanide ID TERTIARY-ALKOXIDES; COMPLEXES; LIGANDS; YTTRIUM; Y(OCME(CF3)2)3(THF)3; CLUSTER; OXIDES; SERIES AB A series of hydrated hexafluoro-iso-propoxide (hfip) lanthanide complexes was synthesized from the amide-alkoxide exchange reaction of the lanthanide bis-trimethylsilyl amide dissolved in toluene and an excess amount of H-hfip. The products were isolated and identified by single crystal X-ray diffraction as: [cis-(H2O)(2)(hfip)(2)Ln(mu-hfip)](2) (Ln = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y), [trans-(H2O)(2)(hfip)(2)Sc(mu-hfip)](2) (Sc), [(H2O)(2)(hfip)(2)La-2(mu-hfip)(3)(mu(3)-OH)](2) (La-OH), and [(H2O)(hfip)(2)Sc(mu-hfip) (mu-OH)(mu(3)-OH)Sc(H2O)(hfip)](2) (Sc-OH). All species were found to have bound H2O molecules thought to be present in the hfip. For the non-oxo species, dinuclear species were formed with one bridging and two terminal hfip ligands. The waters were cis-oriented for all samples but the smallest derivative, Sc, where they were located in trans arrangement. Oxo species were formed by 'aged' hfip and generated tetranuclear species (La-OH and Sc-OH) that possessed different ligand sets. Initial efforts to determine these compounds utility for LnF(3) nanomaterial production were undertaken using amine solvent in solvothermal (SOLVO) or solution precipitation (SPPT) routes. LnF(3) phases were noted but often this was mixed with the Ln(O,F) or Ln(2)O(3) phases. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Cramer, Roger E.] Univ Hawaii Manoa, Dept Chem, 2545 McCarthy Mall, Honolulu, HI 96822 USA. [Rodriguez, Mark A.; Alam, Todd M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah M.; Bingham, Samuel P.] Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. RP Boyle, TJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE, Albuquerque, NM 87106 USA. EM tjboyle@Sandia.gov FU Geothermal Technologies Office of the Office of Efficient Energy & Reliable Energy of the Department of Energy; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Geothermal Technologies Office of the Office of Efficient Energy & Reliable Energy of the Department of Energy. The Bruker X-ray diffractometer used for some crystal solutions was purchased via a National Science Foundation CRIF: MU award to the University of New Mexico (CHE04-43580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 52 TC 0 Z9 0 U1 15 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0277-5387 J9 POLYHEDRON JI Polyhedron PD NOV 4 PY 2016 VL 118 BP 52 EP 60 DI 10.1016/j.poly.2016.07.030 PG 9 WC Chemistry, Inorganic & Nuclear; Crystallography SC Chemistry; Crystallography GA DZ1KD UT WOS:000385596400007 ER PT J AU Scheer, AM Eskola, AJ Osborn, DL Sheps, L Taatjes, CA AF Scheer, Adam M. Eskola, Arkke J. Osborn, David L. Sheps, Leonid Taatjes, Craig A. TI Resonance Stabilization Effects on Ketone Autoxidation: Isomer-Specific Cyclic Ether and Ketohydroperoxide Formation in the Low-Temperature (400-625 K) Oxidation of Diethyl Ketone SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAS-PHASE OXIDATION; PHOTOIONIZATION MASS-SPECTROMETRY; NORMAL-HEXADECANE AUTOXIDATION; SET MODEL CHEMISTRY; ELEVATED-TEMPERATURES; COMBUSTION CHEMISTRY; AUTOIGNITION CHEMISTRY; ORGANIC-COMPOUNDS; MOLECULAR-OXYGEN; PRODUCTS AB The pulsed photolytic chlorine-initiated oxidation of diethyl ketone [DEK; (CH3CH2)(2)C=O], 2,2,4,4-d(4)-DEK [d(4)-DEK; (CH3CD2)(2)C=O], and 1,1,1,5,5,5-d(6)-DEK [d(6)-DEK; (CD3CH2)(2)C=O] is studied at 8 torr and 1-2 atm and from 400-625 K. Cl atoms produced by laser photolysis react with diethyl ketone to form either primary (3-pentan-on-1-yl, R-P) or secondary (3-pentan-on-2-yl, R-s) radicals, which in turn react with O-2. Multiplexed time-of-flight mass spectrometry, coupled to either a hydrogen discharge lamp or tunable-synchrotron photoionizing radiation, is used to detect products as a function of mass, time, and photon energy. At 8 torr, the nature of the chain propagating cyclic ether + OH channel changes as a function of temperature. At 450 K, the production of OH is mainly in conjunction with formation of 2,4-dimethyloxetan-3-one, resulting from reaction of the resonance-stabilized secondary R-s with O-2. In contrast, at 550 K and 8 torr, 2-methyl-tetrahydrofuran-3-one, originating from oxidation of the primary radical (R-P), is observed as the dominant cyclic ether product. Formation of both of these cyclic ether production channels proceeds via a resonance-stabilized hydroperoxy alkyl (QOOH) intermediate. Little or no ketohydroperoxide (KHP) is observed under the low-pressure conditions. At higher O-2 concentrations and higher pressures (1-2 atm), a strong KHP signal appears as the temperature is increased above 450 K. Definitive isomeric identification from measurements on the deuterated DEK isotopologiles indicates the favored pathway produces a gamma-KHP via resonance-stabilized alkyl, QOOH, and HOOPOOH radicals. Time-resolved measurements reveal the KHP formation becomes faster and signal more intense upon increasing temperature from 450 to 575 K before intensity drops significantly at 625 K. The KHP time profile also shows a peak followed by a gradual depletion for the extent of experiment. Several tertiary products exhibit a slow accumulation in coincidence with the observed KHP decay. These products can be associated with decomposition of KHP by beta-scission pathways or via isomerization of a gamma-KHP into a cyclic peroxide intermediate (Korcek mechanism). The oxidation of d(4)-DEK, where kinetic isotope effects disfavor gamma-KHP formation, shows greatly reduced KHP formation and associated signatures from KHP decomposition products. C1 [Scheer, Adam M.; Eskola, Arkke J.; Osborn, David L.; Sheps, Leonid; Taatjes, Craig A.] Sandia Natl Labs, Combust Res Facil, MS 9055, Livermore, CA 94551 USA. RP Taatjes, CA (reprint author), Sandia Natl Labs, Combust Res Facil, MS 9055, Livermore, CA 94551 USA. EM cataatj@sandia.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), United States Department of Energy (USDOE); development of the high-pressure multiplexed photoionization mass spectrometry capability; Argonne-Sandia Consortium on High-Pressure Combustion Chemistry; USDOE's National Nuclear Security Administration [DEAC04-94AL85000]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; USDOE [DE-AC02-05CH11231] FX This material is based upon work supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences (BES), United States Department of Energy (USDOE); the development of the high-pressure multiplexed photoionization mass spectrometry capability and the work of L.S. were funded as part of the Argonne-Sandia Consortium on High-Pressure Combustion Chemistry. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the USDOE's National Nuclear Security Administration under Contract No. DEAC04-94AL85000. This research used resources of the Advanced Light Source of Lawrence Berkeley National Laboratory, which is a USDOE Office of Science User Facility. The Advanced Light Source is supported by the Director, Office of Science, BES/USDOE, under Contract No. DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the USDOE. NR 37 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 3 PY 2016 VL 120 IS 43 BP 8625 EP 8636 DI 10.1021/acs.jpca.6b07370 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EB2NH UT WOS:000387198600016 PM 27726367 ER PT J AU Jacobs, MI Xu, B Kostko, O Heine, N Ahmed, M Wilson, KR AF Jacobs, Michael I. Xu, Bo Kostko, Oleg Heine, Nadja Ahmed, Musahid Wilson, Kevin R. TI Probing the Heterogeneous Ozonolysis of Squalene Nanoparticles by Photoemission SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID SECONDARY ORGANIC AEROSOL; OH-INITIATED OXIDATION; HYDROXYL RADICALS; OLEIC-ACID; PHOTOELECTRON EMISSION; NACL NANOPARTICLES; MODEL SYSTEM; K-EDGE; PARTICLES; OZONE AB The heterogeneous reaction of ozone (O-3) with 200 nm squalene nanoparticles is studied using near-edge X-ray absorption fine structure (NEXAFS) and ultraviolet (UPS) and X-ray photoelectron spectroscopy (XPS). Photoelectrons are detected from free nanoparticle beams using a velocity map imaging (VMI) spectrometer capable of detecting photoelectrons with up to 40 eV of kinetic energy. Heterogeneous kinetics are quantified using changes in the UPS, XPS, and NEXAFS spectrum, yielding uptake coefficients for the decay of the double bonds in squalene of (3.1 +/- 0.7) x 10(-4), (2.6 +/- 0.6) x 10(-4), and (2.9 +/- 0.7) x 10(-4), respectively. When comparing these values with the uptake coefficient, (1.0 +/- 0.2) x 10(-3), determined by the molecular decay of squalene measured with aerosol mass spectrometry, it is found that on average 1.6 +/- 0.2 double bonds are removed for each ozone-squalene reactive collision, suggesting the importance of evaporation of small molecular weight reaction products from the aerosol. From further analysis of the nanoparticle XPS spectrum, it is found that ozonolysis increases the oxygen-to-carbon (O:C) ratio of the aerosol to 0.43 +/- 0.03 and produces 16 +/- 4% and 84 +/- 4% secondary ozonides and carbonyls, respectively. The methods developed here show how aerosol photoemission can be used to quantify heterogeneous reaction on free nanoparticles. C1 [Jacobs, Michael I.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Jacobs, Michael I.; Xu, Bo; Kostko, Oleg; Heine, Nadja; Ahmed, Musahid; Wilson, Kevin R.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Wilson, KR (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM krwilson@lbl.gov FU Office of Energy Research, Office of Basic Energy Science of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [DGE-1106400]; Department of Energy, Office of Science Early Career Research Program FX This work and the Advanced Light Source were supported by the Director, Office of Energy Research, Office of Basic Energy Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M.I.J. thanks the NSF for an NSF Graduate Research Fellowship under DGE-1106400. K.R.W. was supported by the Department of Energy, Office of Science Early Career Research Program. We thank Lena Trotochaud, Osman Karslioglu, and Hendrik Bluhm for discussions about XPS fitting. We also thank Royce Lam for discussions about NEXAFS data interpretations. NR 68 TC 2 Z9 2 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD NOV 3 PY 2016 VL 120 IS 43 BP 8645 EP 8656 DI 10.1021/acs.jpca.6b09061 PG 12 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA EB2NH UT WOS:000387198600018 PM 27748598 ER PT J AU Zeno, WF Johnson, KE Sasaki, DY Risbud, SH Longo, ML AF Zeno, Wade F. Johnson, Kaitlin E. Sasaki, Darryl Y. Risbud, Subhash H. Longo, Marjorie L. TI Dynamics of Crowding-Induced Mixing in Phase Separated Lipid Bilayers SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID SUPPORTED BILAYERS; TAGGED PROTEINS; MEMBRANES; DIFFUSION; PATTERNS; BEHAVIOR; NANODISCS; VESICLES; SILICA; LAYERS AB We use fluorescence microscopy to examine the dynamics of the crowding-induced mixing transition of liquid ordered (L.)-liquid disordered (L-d) phase separated lipid bilayers when the following particles of increasing size bind to either the L-o or Ld phase: Ubiquitin, green fluorescent protein (GFP), and nanolipoprotein particles (NLPs) of two diameters. These proteinaceous particles contained histidine-tags, which were phase targeted by binding to iminodiacetic acid (IDA) head groups, via a Cu2+ chelating mechanism, of lipids that specifically partition into either the L-o phase or L-d phase. The degree of steric pressure was controlled by varying the size of the bound particle (10-240 kDa) and the amount of binding sites present (i.e., DPIDA concentrations of 9 and 12 mol%) in the supported lipid multibilayer platform used here. We develop a mass transfer-based diffusional model to analyze the observed L. phase domain dissolution that, along with visual observations and activation energy calculations, provides insight into the sequence of events in crowding-induced mixing. Our results suggest that the degree of steric pressure and target phase influence not only the efficacy of steric-pressure induced mixing, but the rate and controlling mechanism for which it occurs. C1 [Zeno, Wade F.; Johnson, Kaitlin E.; Longo, Marjorie L.] Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. [Sasaki, Darryl Y.] Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. [Risbud, Subhash H.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA. RP Longo, ML (reprint author), Univ Calif Davis, Dept Chem Engn, Davis, CA 95616 USA. EM mllongo@ucdavis.edu FU National Science Foundation [DMR-1500275]; NIGMS-NIH [T32-GM008799]; Blacutt-Underwood Endowed Chair funds; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX M.L.L., S.H.R, W.F.Z., and K.E.J. acknowledge partial support from the National Science Foundation under award number DMR-1500275. W.F.Z. was partially supported by Grant Number T32-GM008799 from NIGMS-NIH. S.H.R. also acknowledges partial support derived from his Blacutt-Underwood Endowed Chair funds. D.Y.S. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD NOV 3 PY 2016 VL 120 IS 43 BP 11180 EP 11190 DI 10.1021/acs.jpcb.6b07119 PG 11 WC Chemistry, Physical SC Chemistry GA EB2NG UT WOS:000387198500011 PM 27723342 ER PT J AU Petit, S Melissen, STAG Duclaux, L Sougrati, MT Le Bahers, T Sautet, P Dambournet, D Borkiewicz, O Laberty-Robert, C Durupthy, O AF Petit, Sarah Melissen, Sigismund T. A. G. Duclaux, Loraine Sougrati, Moulay T. Le Bahers, Tangui Sautet, Philippe Dambournet, Damien Borkiewicz, Olaf Laberty-Robert, Christel Durupthy, Olivier TI How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties? SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID MICROWAVE-HYDROTHERMAL SYNTHESIS; TIO2 ANATASE NANOPARTICLES; ENHANCED CHARGE SEPARATION; PHOTOCATALYTIC ACTIVITY; NANOSTRUCTURED ALPHA-FE2O3; HEMATITE PHOTOANODES; MOLECULAR CLUSTERS; AQUEOUS-MEDIUM; THIN-FILMS; SOL-GEL AB We discuss here for the first time how to combine iron and titanium metal ions to achieve a high photoelectrochemical activity for TiO2-based photoanodes in water splitting devices. To do so, a wide range of photo electrode materials with tailored Ti/Fe ratio and element vicinity were synthesized by using the versatility of aqueous sol gel chemistry in combination with a microwave-assisted crystallization process. At low ferric concentrations, single phase TiO2 anatase doped with various Fe amounts were prepared. Strikingly, at higher ferric concentrations, we observed the concomitant crystallization of two polymorphs of Fe2TiO5. The as-synthesized compounds were tested as photoelectrodes and compared with pure nanoparticles of TiO2, Fe2TiO5, and alpha- or gamma-Fe2O3 and with corresponding nanocomposites. When TiO2 is slightly doped by Fe, the performance of this photoelectrode improves particularly in the low-bias region (<1.0 V vs reversible hydrogen electrode.) The photoanode exhibits a higher photocurrent than nanocomposite with TiO2/Fe2O3 and FeTi2O5 and more cathodic onset potential. The former can be partly explained by a lower bandgap and a hole with a longer lifetime. For the latter, we propose that the nature of the heterojunction impacts charge carrier recombination. The results presented herein not only answer whether iron and titanium should be combined in the same structure or into heterostructured systems but also on the importance of the arrangement of ions in the structure to improve the performances of the photoanode. C1 [Petit, Sarah; Duclaux, Loraine; Laberty-Robert, Christel; Durupthy, Olivier] UPMC Univ Paris 06, Sorbonne Univ, CNRS, Coll France,Lab Chim Matiere Condensee Paris, 4 Pl Jussieu, F-75005 Paris, France. [Melissen, Sigismund T. A. G.; Le Bahers, Tangui; Sautet, Philippe] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, Ecole Normale Super Lyon,Lab Chim,UMR 5182, 46 Allee Italie, F-69342 Lyon, France. [Sougrati, Moulay T.] Univ Montpellier 2, ICGM Equipe AIME UMR5253, 2 Pl Eugene Bataillon CC1502, F-34095 Montpellier 5, France. [Dambournet, Damien] UPMC Univ Paris 06, Sorbonne Univ, CNRS, UMR 8234,PHENIX, F-75005 Paris, France. [Borkiewicz, Olaf] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Sautet, Philippe] Univ Calif Los Angeles, Dept Chem & Biomol Engn, Los Angeles, CA 90095 USA. RP Durupthy, O (reprint author), UPMC Univ Paris 06, Sorbonne Univ, CNRS, Coll France,Lab Chim Matiere Condensee Paris, 4 Pl Jussieu, F-75005 Paris, France. EM olivier.durupthy@upmc.fr RI Sougrati, Moulay Tahar/B-6283-2011; OI Sougrati, Moulay Tahar/0000-0003-3740-2807; Laberty-Robert, christel/0000-0003-3230-3164 FU MATISSE; TOTAL; l'Institut du Developpement et des Ressources en Informatique Scientifique (IDRIS) [x2015080609]; U.S. DOE [DE-AC02-06CH11357] FX S.P., C.L.R., and O.D. thank MATISSE for the financial support of LD and TOTAL for the financial support of S.P. S.T.M. and T.L.B. gratefully acknowledge the computational resources provided by l'Institut du Developpement et des Ressources en Informatique Scientifique (IDRIS, under project x2015080609) of the Centre Nationale de la Recherche Scientifique (CNRS) and the Pole Scientifique de Modelisation Numerique (PSMN) of Ecole Normale Superieure de Lyon. The work done at the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract DE-AC02-06CH11357. NR 85 TC 1 Z9 1 U1 43 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 3 PY 2016 VL 120 IS 43 BP 24521 EP 24532 DI 10.1021/acs.jpcc.6b05794 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB2NF UT WOS:000387198400003 ER PT J AU Oosterhout, SD Ferguson, AJ Larson, BW Olson, DC Kopidakis, N AF Oosterhout, Stefan D. Ferguson, Andrew J. Larson, Bryon W. Olson, Dana C. Kopidakis, Nikos TI Modeling the Free Carrier Recombination Kinetics in PTB7:PCBM Organic Photovoltaics SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID POLYMER SOLAR-CELLS; POWER-CONVERSION EFFICIENCY; CONJUGATED POLYMERS; CHARGE-CARRIERS; MICROWAVE CONDUCTIVITY; POLY(3-HEXYLTHIOPHENE); TRANSPORT; MOBILITY; BLENDS; FILMS AB Currently the exact recombination mechanism of free carriers in organic photovoltaic (OPV) devices is poorly understood. Often a reduced Langevin model is used to describe the decay behavior of electrons and holes. Here we propose a novel, simple kinetic model that accurately describes the decay behavior of free carriers in the PTB7:PCBM organic photovoltaic blend. This model needs to only take into account free and trapped holes in the polymer, and free electrons in the fullerene, to accurately describe the recombination behavior of free carriers as measured by time-resolved microwave conductivity (TRMC). The model is consistent for different PTB7:PCBM blend ratios and spans a light intensity range of over 3 orders of magnitude. The model demonstrates that dark carriers exist in the polymer and interact with photoinduced charge carriers, and that the trapping and detrapping rates of the holes are of high importance to the overall carrier lifetime. C1 [Oosterhout, Stefan D.; Ferguson, Andrew J.; Larson, Bryon W.; Olson, Dana C.; Kopidakis, Nikos] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Oosterhout, Stefan D.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,Bldg 120, Menlo Pk, CA 94025 USA. [Kopidakis, Nikos] Macquarie Univ, Dept Engn, N Ryde, NSW 2109, Australia. RP Oosterhout, SD (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.; Oosterhout, SD (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,Bldg 120, Menlo Pk, CA 94025 USA. EM stefanoosterhout@gmail.com OI Ferguson, Andrew/0000-0003-2544-1753 FU Solar Energy Technology Office (SETO), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE); DOE [DE-AC36-08GO28308] FX This work was funded by the Solar Energy Technology Office (SETO), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE). NREL is supported by the DOE under contract no. DE-AC36-08GO28308. The U.S. Government retains (and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains) a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 44 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 3 PY 2016 VL 120 IS 43 BP 24597 EP 24604 DI 10.1021/acs.jpcc.6b07614 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB2NF UT WOS:000387198400011 ER PT J AU Rimsza, JM Yeon, J van Duin, ACT Du, JC AF Rimsza, J. M. Yeon, Jejoon van Duin, A. C. T. Du, Jincheng TI Water Interactions with Nanoporous Silica: Comparison of ReaxFF and ab lnitio based Molecular Dynamics Simulations SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID REACTIVE FORCE-FIELD; AMORPHOUS SILICA; COMPUTER-SIMULATION; VITREOUS SILICA; ORTHOSILICIC ACID; FRACTURE SURFACES; INTERFACIAL WATER; PROTON-TRANSFER; GLASS STRUCTURE; MAS-NMR AB Detailed understanding of the reactions and processes which govern silicatewater interactions is critical to geological, materials, and environmental sciences. Interactions between water and nanoporous silica were studied using classical molecular dynamics with a Reactive Force Field (ReaxFF), and the results were compared with density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations. Two versions of ReaxFF Si/O/H parametrizations (Yeon et al. J. Phys. Chem. C 2016, 120, 305 and Fogarty et al. J. Chem. Phys. 2010, 132, 174704) were compared with AIMD results to identify differences in local structures, water dissociation mechanisms, energy barriers, and diffusion behaviors. Results identified reaction mechanisms consisting of two different intermediate structures involved in the removal of high energy two-membered ring (2-Ring) defects on complex nanoporous silica surfaces. Intermediate defects lifetimes affect hydroxylation and 2-Ring defect removal. Additionally, the limited internal volume of the nanoporous silica results in decreased water diffusion related to the development of nanoconfined water. Hydrogen atoms in the water diffused 1030% faster than the oxygen atoms, suggesting that increased hydrogen diffusion through hydrogen hopping mechanisms may be enhanced in nanoconfined conditions. Comparison of the two different ReaxFF parametrizations with AIMD data indicated that the Yeon et al. parameters resulted in reaction mechanisms, hydroxylation rates, defect concentrations, and activation energies more consistent with the AIMD simulations. Therefore, this ReaxFF parametrization is recommended for future studies of watersilica systems with high concentrations of surface defects and highly strained siloxane bonds such as in complex silica nanostructures. C1 [Rimsza, J. M.; Du, Jincheng] Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. [Yeon, Jejoon; van Duin, A. C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Rimsza, J. M.] Univ Calif Merced, Sch Engn, Merced, CA USA. [Yeon, Jejoon] Sandia Natl Labs, Geochem Dept, Carlsbad, NM USA. RP Du, JC (reprint author), Univ North Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA. EM Jincheng.du@unt.edu OI Rimsza, Jessica/0000-0003-0492-852X FU US Department of Energy (DOE) Nuclear Energy University Project [13-5494]; National Science Foundation (NSF) DMR Ceramics Program [1508001]; National Science Foundation Graduate Research Fellowship Program [DGE-114248] FX This work is supported by the US Department of Energy (DOE) Nuclear Energy University Project (Project No. 13-5494) and National Science Foundation (NSF) DMR Ceramics Program (Project No. 1508001). J.M.R. acknowledges that this material is based on work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-114248. Computational resources are provided by the University of North Texas high performance computing cluster. NR 89 TC 0 Z9 0 U1 26 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 3 PY 2016 VL 120 IS 43 BP 24803 EP 24816 DI 10.1021/acs.jpcc.6b07939 PG 14 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB2NF UT WOS:000387198400034 ER PT J AU Strand, MB Leong, GJ Tassone, CJ Larsen, B Neyerlin, KC Gorman, B Diercks, DR Pylypenko, S Pivovar, B Richards, RM AF Strand, Matthew B. Leong, G. Jeremy Tassone, Christopher J. Larsen, Brian Neyerlin, K. C. Gorman, Brian Diercks, David R. Pylypenko, Svitlana Pivovar, Bryan Richards, Ryan M. TI Mechanistic Study of Shape-Anisotropic Nanomaterials Synthesized via Spontaneous Galvanic Displacement SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID OXYGEN REDUCTION REACTION; REPLACEMENT REACTION; HOLLOW NANOSTRUCTURES; REACTION ELECTROCATALYSTS; CATALYTIC-PROPERTIES; ALLOY NANOPARTICLES; AG; NANOWIRES; METAL; MONOLAYER AB Among the broad portfolio of preparations for nanoscale materials, spontaneous galvanic displacement (SGD) is emerging as an important technology because it is capable of creating functional nanomaterials that cannot be obtained through other routes and may be used to thrift precious metals used in a broad range of applications including catalysis. With advances resulting from increased understanding of the SGD process, materials that significantly improve efficiency and potentially enable widespread adoption of next generation technologies can be synthesized. In this work, PtAg nanotubes synthesized via displacement of Ag nanowires by Pt were used as a model system to elucidate the fundamental mechanisms of SGD. Characterization by X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and atom probe tomography (APT) indicates nanotubes are formed as Ag is oxidized first from the surface and then from the center of the nanowire, with Pt deposition forming a rough, heterogeneous surface on the PtAg nanotube. C1 [Strand, Matthew B.; Leong, G. Jeremy; Richards, Ryan M.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Gorman, Brian; Diercks, David R.; Pylypenko, Svitlana] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Leong, G. Jeremy; Larsen, Brian; Neyerlin, K. C.; Pivovar, Bryan; Richards, Ryan M.] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. [Tassone, Christopher J.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Richards, RM (reprint author), Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA.; Richards, RM (reprint author), Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. EM rrichard@mines.edu OI Strand, Matthew/0000-0001-8810-1743 FU Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory [UGA-0-41025-63]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; NSF [1040456] FX This work is funded by the Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory, under contract award UGA-0-41025-63. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Use of the Stanford Synchrotron Radiation Lightsource, SLAG National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The atom probe used in this work was funded through the NSF by Major Research Instrumentation Grant No. 1040456. NR 48 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD NOV 3 PY 2016 VL 120 IS 43 BP 25053 EP 25060 DI 10.1021/acs.jpcc.6b07363 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB2NF UT WOS:000387198400062 ER PT J AU Berto, TF Sanwald, KE Byers, JP Browning, ND Gutierrez, OY Lercher, JA AF Berto, Tobias F. Sanwald, Kai E. Byers, J. Paige Browning, Nigel D. Gutierrez, Oliver Y. Lercher, Johannes A. TI Enabling Overall Water Splitting on Photocatalysts by CO-Covered Noble Metal Co-catalysts SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID CARBON-MONOXIDE; DECOMPOSITION; CATALYSTS; OXIDE; ADSORPTION; ELECTRODES; OXIDATION; HYDROGEN; PHOTODEPOSITION; NANOPARTICLES AB Photocatalytic overall water splitting requires co-catalysts that efficiently promote the generation of H-2 but do not catalyze its reverse oxidation. We demonstrate that CO chemisorbed on metal co-catalysts (Rh, Pt, Pd) suppresses the back reaction while maintaining the rate of H-2 evolution. On Rh/GaN:ZnO, the highest H-2 production rates were obtained with 4-40 mbar of CO, the back reaction remaining suppressed below 7 mbar of O-2. The O-2 and H-2 evolution rates compete with CO oxidation and the back reaction. The rates of all reactions increased with increasing photon absorption. However, due to different dependencies on the rate of charge carrier generation, the selectivities for O-2 and H-2 formation increased in comparison to CO oxidation and the back reaction with increasing photon flux and/or quantum efficiency. Under optimum conditions, the impact of CO to prevent the back reaction is identical to that of a Cr2O3 layer covering the active metal particle. C1 [Berto, Tobias F.; Sanwald, Kai E.; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany. [Berto, Tobias F.; Sanwald, Kai E.; Gutierrez, Oliver Y.; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany. [Byers, J. Paige] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA. [Browning, Nigel D.] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. [Lercher, Johannes A.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. RP Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Dept Chem, Lichtenbergstr 4, D-85747 Garching, Germany.; Gutierrez, OY; Lercher, JA (reprint author), Tech Univ Munich, Catalysis Res Ctr, Lichtenbergstr 4, D-85747 Garching, Germany.; Lercher, JA (reprint author), Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM oliver.gutierrez@mytum.de; johannes.lercher@ch.tum.de FU Federal Ministry of Education and Research (BMBF) [01RC1106A]; Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL); Environmental Molecular Sciences Laboratory (EMSL) - DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RL01830]; Fond der Chemischen Industrie (FCI) FX The authors thank the Federal Ministry of Education and Research (BMBF) for financial support (Project No. 01RC1106A) and Clariant for productive discussions within the framework of MuniCat and the iC4 PhotoCOO project. HRTEM imaging was funded by the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL) and the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under Contract DE-AC05-76RL01830. K.E.S. gratefully acknowledges financial support by the Fond der Chemischen Industrie (FCI). The authors thank Kazuhiro Takanabe, Garry Haller, and Hany El-Sayed for fruitful discussions, as well as Xaver Hecht, Martin Neukamm, and Udishnu Sanyal for technical support, physicochemical characterization, and TEM measurements. NR 27 TC 0 Z9 0 U1 25 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD NOV 3 PY 2016 VL 7 IS 21 BP 4358 EP 4362 DI 10.1021/acs.jpclett.6b02151 PG 5 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EB2PT UT WOS:000387205000019 PM 27750428 ER PT J AU Han, CS Martin, MA Dichosa, AEK Daughton, AR Frietze, S Kaplan, H Gurven, MD Alcock, J AF Han, Cliff S. Martin, Melanie Ann Dichosa, Armand E. K. Daughton, Ashlynn R. Frietze, Seth Kaplan, Hillard Gurven, Michael D. Alcock, Joe TI Salivary microbiomes of indigenous Tsimane mothers and infants are distinct despite frequent premastication SO PEERJ LA English DT Article DE Oral microbiota; Gingivitis; Vertical transmission; Microbial diversity; Oral disease; Microbe sharing; Premastication; Kinship; Infant microbial development ID STREPTOCOCCUS-MUTANS; ORAL MICROBIOTA; GUT MICROBIOME; YOUNG-CHILDREN; HEALTH; FOOD; TRANSMISSION; CARIES; RISK; COMMUNITIES AB Background. Premastication, the transfer of pre-chewed food, is a common infant and Young child feeding practice among the Tsimane, forager-horticulturalists living in the Bolivian Amazon, Research conducted primarily with Western populations has shown that infants harbor distinct oral microbiota from their mothers. Premastication, which is less common in these populations, may influence the colonization and maturation of infant oral microbiota, including via transmission of oral pathogens. We collected premasticated food and saliva samples from Tsimane mothers and infants (9-24 months of age) to test for evidence of bacterial transmission in prernasticated foods and overlap in maternal and infant salivary microbiota. We extracted bacterial DNA from two premasticated food samples and 12 matched salivary samples from maternal-infant pairs. DNA sequencing was performed with MiSeq (Illumina), We evaluated maternal and infant microbial composition in terms of relative abundance of specific taxa, alpha and beta diversity, and dissimilarity distances. Results. The bacteria in saliva and premasticated food were mapped to 19 phyla and 400 genera and were dominated by Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The oral microbial communities of Tsimane mothers and infants who frequently share premasticated food were well-separated in a non-metric multidimensional scaling ordination (NMDS) plot, Infant microbiotas clustered together, with weighted Unifrac distances significantly differing between mothers and infants, Infant saliva contained more Firmicutes (p < 0.01) and fewer Proteobacteria (p < 0.05) than did maternal saliva. Many genera previously associated with dental and periodontal infections, e.g. Neisseri a, Gemella, Rothia, Actinomyces, Fusobacterium, and Leptotrichia, were more abundant in mothers than in infants. Conclusions. Salivary microbiota of Tsimane infants and young children up to two years of age do not appear closely related to those of their mothers, despite frequent premastication and preliminary evidence that maternal bacteria is transmitted to premasticated foods. Infant physiology and diet may constrain colonization by maternal bacteria, including several oral pathogens. C1 [Han, Cliff S.; Dichosa, Armand E. K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Martin, Melanie Ann] Yale Univ, Dept Anthropol, New Haven, CA 06520 USA. [Daughton, Ashlynn R.] Los Alamos Natl Lab, Analyt Intelligence & Technol Div A, Los Alamos, NM USA. [Frietze, Seth] Univ Vermont, Dept Med Lab & Radiat Sci, Burlington, VT USA. [Kaplan, Hillard] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA. [Gurven, Michael D.] Univ Calif Santa Barbara, Dept Anthropol, Santa Barbara, CA 93106 USA. [Alcock, Joe] Univ New Mexico, Dept Emergency Med, Albuquerque, NM 87131 USA. RP Alcock, J (reprint author), Univ New Mexico, Dept Emergency Med, Albuquerque, NM 87131 USA. EM joalcock@salud.unm.edu OI Dichosa, Armand/0000-0003-0640-6629; Martin, Melanie/0000-0003-0368-2791 FU Los Alamos National Laboratory through Laboratory Directed Research and Development [20110034DR]; NSF Doctoral Dissertation Grant [BCS-1232370]; Wenner-Gren Dissertation Fieldwork Grant; NIH/NIA [R01AG024119-01] FX This project is supported by Los Alamos National Laboratory through Laboratory Directed Research and Development 20110034DR (Author 1); NSF Doctoral Dissertation Grant BCS-1232370 and Wenner-Gren Dissertation Fieldwork Grant (Author 2); NIH/NIA R01AG024119-01 (Authors 5 and 6). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 57 TC 0 Z9 0 U1 7 U2 7 PU PEERJ INC PI LONDON PA 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND SN 2167-8359 J9 PEERJ JI PeerJ PD NOV 3 PY 2016 VL 4 AR e2660 DI 10.7717/peerj.2660 PG 21 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB2EP UT WOS:000387170800010 PM 27833819 ER PT J AU Savytskii, D Jain, H Tamura, N Dierolf, V AF Savytskii, D. Jain, H. Tamura, N. Dierolf, V. TI Rotating lattice single crystal architecture on the surface of glass SO SCIENTIFIC REPORTS LA English DT Article ID BIOLOGICAL-MATERIALS; SPHERULITIC GROWTH; LIQUID SELENIUM; CRYSTALLIZATION; INTERFACES; SB2S3; FILMS; DISCLINATIONS; MECHANISMS; NUCLEATION AB Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted. C1 [Savytskii, D.; Jain, H.] Lehigh Univ, Mat Sci & Engn Dept, Bethlehem, PA 18015 USA. [Tamura, N.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dierolf, V.] Lehigh Univ, Dept Phys, Bldg 16, Bethlehem, PA 18015 USA. RP Jain, H (reprint author), Lehigh Univ, Mat Sci & Engn Dept, Bethlehem, PA 18015 USA. EM H.Jain@Lehigh.edu FU Basic Energy Sciences Division, Department of Energy [DE-SC0005010]; US Department of Energy at Lawrence Berkeley National Laboratory and University of California, Berkeley, California [DE-AC02-05CH11231] FX This work was supported by the Basic Energy Sciences Division, Department of Energy (DE-SC0005010). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory and University of California, Berkeley, California. NR 55 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 3 PY 2016 VL 6 AR 36449 DI 10.1038/srep36449 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB4MI UT WOS:000387345500001 PM 27808168 ER PT J AU Soltanian, MR Amooie, MA Dai, ZX Cole, D Moortgat, J AF Soltanian, Mohamad Reza Amooie, Mohammad Amin Dai, Zhenxue Cole, David Moortgat, Joachim TI Critical Dynamics of Gravito-Convective Mixing in Geological Carbon Sequestration SO SCIENTIFIC REPORTS LA English DT Article ID NATURAL GRADIENT EXPERIMENT; CO2 TRAPPING PROCESSES; SALINE FORMATIONS; SOLUTE TRANSPORT; SAND AQUIFER; HETEROGENEITY; STORAGE; DISSOLUTION; SIMULATION; DISPERSION AB When CO2 is injected in saline aquifers, dissolution causes a local increase in brine density that can cause Rayleigh-Taylor-type gravitational instabilities. Depending on the Rayleigh number, density-driven flow may mix dissolved CO2 throughout the aquifer at fast advective time-scales through convective mixing. Heterogeneity can impact density-driven flow to different degrees. Zones with low effective vertical permeability may suppress fingering and reduce vertical spreading, while potentially increasing transverse mixing. In more complex heterogeneity, arising from the spatial organization of sedimentary facies, finger propagation is reduced in low permeability facies, but may be enhanced through more permeable facies. The connectivity of facies is critical in determining the large-scale transport of CO2-rich brine. We perform high-resolution finite element simulations of advection-diffusion transport of CO2 with a focus on facies-based bimodal heterogeneity. Permeability fields are generated by a Markov Chain approach, which represent facies architecture by commonly observed characteristics such as volume fractions. CO2 dissolution and phase behavior are modeled with the cubic-plus-association equation-of-state. Our results show that the organization of high-permeability facies and their connectivity control the dynamics of gravitationally unstable flow. We discover new flow regimes in both homogeneous and heterogeneous media and present quantitative scaling relations for their temporal evolution. C1 [Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Cole, David; Moortgat, Joachim] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Dai, Zhenxue] Los Alamos Natl Lab, Los Alamos, NM USA. RP Moortgat, J (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. EM moortgat.1@osu.edu RI Moortgat, Joachim/J-7450-2013; OI Moortgat, Joachim/0000-0002-0259-3597; Dai, Zhenxue/0000-0002-0805-7621 FU U.S. Department of Energy's (DOE) Office of Fossil Energy [FEAA-045]; U.S. DOE [DE-AC05-00OR22725] FX The first author was supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy funding to Oak Ridge National Laboratory (ORNL) under project FEAA-045. ORNL is managed by UT-Battelle for the U.S. DOE under Contract DE-AC05-00OR22725. NR 60 TC 0 Z9 0 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 3 PY 2016 VL 6 AR 35921 DI 10.1038/srep35921 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EB2TA UT WOS:000387214300001 PM 27808178 ER PT J AU Colletier, JP Sawaya, MR Gingery, M Rodriguez, JA Cascio, D Brewster, AS Michels-Clark, T Hice, RH Coquelle, N Boutet, S Williams, GJ Messerschmidt, M DePonte, DP Sierra, RG Laksmono, H Koglin, JE Hunter, MS Park, HW Uervirojnangkoorn, M Bideshi, DK Brunger, AT Federici, BA Sauter, NK Eisenberg, DS AF Colletier, Jacques-Philippe Sawaya, Michael R. Gingery, Mari Rodriguez, Jose A. Cascio, Duilio Brewster, Aaron S. Michels-Clark, Tara Hice, Robert H. Coquelle, Nicolas Boutet, Sebastien Williams, Garth J. Messerschmidt, Marc DePonte, Daniel P. Sierra, Raymond G. Laksmono, Hartawan Koglin, Jason E. Hunter, Mark S. Park, Hyun-Woo Uervirojnangkoorn, Monarin Bideshi, Dennis K. Brunger, Axel T. Federici, Brian A. Sauter, Nicholas K. Eisenberg, David S. TI De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure SO NATURE LA English DT Article ID SERIAL FEMTOSECOND CRYSTALLOGRAPHY; BACILLUS-SPHAERICUS; CRYSTAL-STRUCTURE; TOXIN; THURINGIENSIS; PORE; MECHANISM; BINDING; COMPLEMENTARITY; IDENTIFICATION AB BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally to toxic oligomeric pores. The small size of the crystals-50 unit cells per edge, on average-has impeded structural characterization by conventional means. Here we report the structure of Lysinibacillus sphaericus BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser. The structure reveals tyrosine-and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears to be responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation. C1 [Colletier, Jacques-Philippe; Coquelle, Nicolas] Univ Grenoble Alpes, CEA, CNRS, IBS, F-38044 Grenoble, France. [Sawaya, Michael R.; Gingery, Mari; Rodriguez, Jose A.; Cascio, Duilio; Eisenberg, David S.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Biol Chem, Los Angeles, CA 90095 USA. [Sawaya, Michael R.; Eisenberg, David S.] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. [Michels-Clark, Tara; Hice, Robert H.; Sauter, Nicholas K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Hice, Robert H.; Park, Hyun-Woo; Bideshi, Dennis K.; Federici, Brian A.] Univ Calif Riverside, Dept Entomol, Riverside, CA 92521 USA. [Hice, Robert H.; Park, Hyun-Woo; Bideshi, Dennis K.; Federici, Brian A.] Univ Calif Riverside, Grad Program Cell Mol & Dev Biol, Riverside, CA 92521 USA. [Boutet, Sebastien; Williams, Garth J.; Messerschmidt, Marc; DePonte, Daniel P.; Sierra, Raymond G.; Laksmono, Hartawan; Koglin, Jason E.; Hunter, Mark S.] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Park, Hyun-Woo; Bideshi, Dennis K.] Calif Baptist Univ, Dept Biol Sci, Riverside, CA 92504 USA. [Uervirojnangkoorn, Monarin; Brunger, Axel T.] Stanford Univ, Mol & Cellular Physiol, Stanford, CA 94305 USA. [Uervirojnangkoorn, Monarin; Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. RP Colletier, JP (reprint author), Univ Grenoble Alpes, CEA, CNRS, IBS, F-38044 Grenoble, France.; Eisenberg, DS (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Dept Biol Chem, Los Angeles, CA 90095 USA.; Eisenberg, DS (reprint author), Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA. EM colletier@ibs.fr; david@mbi.ucla.edu OI Sawaya, Michael/0000-0003-0874-9043 FU W.M. Keck Foundation [2843398]; NIH [AG-029430, GM095887, GM102520, AI45817]; National Science Foundation [MCB 0958111]; DOE [DE-FC02-02ER63421]; France Alzheimer Foundation [FA-AAP-2013-65-101349]; Agence Nationale de la Recherche [ANR-12-BS07-0008-03]; CNRS [PEPS-SASLELX-2013, PEPS-SASLELX-2014]; US Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-AC02-76SF00515]; Linac Coherent Light Source Ultrafast Science Instruments project; DOE Office of Basic Energy Sciences; National Institutes of Health [P41GM103393, P41RR001209] FX We acknowledge the help of the following people during data collection: S. Lee, J. Koralek, R. Shoeman, S. Botha, B. Doak and O. Zeldin. We thank A. Volveda for advice regarding sequence-wise Fourier difference map integration; J. Brooks-Bartlett and E. Garman for help with dose calculations; and M. Weik for discussions and continuing support. We thank the HCIA program of HHMI, the W.M. Keck Foundation (grant 2843398), the NIH (grant AG-029430), National Science Foundation (grant MCB 0958111) and DOE (DE-FC02-02ER63421) (to D.S.E.), the France Alzheimer Foundation (FA-AAP-2013-65-101349) and the Agence Nationale de la Recherche (ANR-12-BS07-0008-03) (to J.-P.C.), NIH grants GM095887 and GM102520 for dataprocessing methods (to N.K.S.), and NIH grant AI45817 (to B.A.F.). Support by the CNRS (PEPS-SASLELX-2013, PEPS-SASLELX-2014) funded travel to LCLS. Use of the LCLS at SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The CXI instrument was funded by the Linac Coherent Light Source Ultrafast Science Instruments project, itself funded by the DOE Office of Basic Energy Sciences. Parts of the sample injector used at LCLS for this research were funded by the National Institutes of Health, P41GM103393, formerly P41RR001209. NR 60 TC 2 Z9 2 U1 23 U2 23 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD NOV 3 PY 2016 VL 539 IS 7627 BP 43 EP + DI 10.1038/nature19825 PG 27 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EA5OJ UT WOS:000386670100025 PM 27680699 ER PT J AU Sivak, DA Crooks, GE AF Sivak, David A. Crooks, Gavin E. TI Thermodynamic geometry of minimum-dissipation driven barrier crossing SO PHYSICAL REVIEW E LA English DT Article ID FREE-ENERGY DIFFERENCES; SYNTHASE; MOTOR AB We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors. C1 [Sivak, David A.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Crooks, Gavin E.] Lawrence Berkeley Natl Lab, Mol Biophys Div, Berkeley, CA 94720 USA. [Crooks, Gavin E.] Kavli Energy NanoSci Inst Berkeley, Berkeley, CA 94720 USA. RP Sivak, DA (reprint author), Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. EM dsivak@sfu.ca FU Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant; U.S. Army Research Laboratory; U.S. Army Research Office [W911NF-13-1-0390]; WestGrid; Compute Canada Calcul Canada FX The authors thank Leonid Chindelevitch (SFU Computing Science), Bingyun Sun (SFU Chemistry), and Aliakbar Mehdizadeh, Steven J. Large, and Alzbeta Medvedova (SFU Physics) for insightful comments on the paper. This work was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (D.A.S.) and by U.S. Army Research Laboratory and the U.S. Army Research Office under Contract No. W911NF-13-1-0390 (G.E.C.). This research was enabled in part by support provided by WestGrid (www.westgrid.ca) and Compute Canada Calcul Canada (www.computecanada.ca). NR 37 TC 0 Z9 0 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 3 PY 2016 VL 94 IS 5 AR 052106 DI 10.1103/PhysRevE.94.052106 PG 8 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EA6YZ UT WOS:000386776400001 PM 27967045 ER PT J AU Li, ZY Zhou, Y Qi, H Pan, QW Zhang, Z Shi, NN Lu, M Stein, A Li, CY Ramanathan, S Yu, NF AF Li, Zhaoyi Zhou, You Qi, Hao Pan, Qiwei Zhang, Zhen Shi, Norman Nan Lu, Ming Stein, Aaron Li, Christopher Y. Ramanathan, Shriram Yu, Nanfang TI Correlated Perovskites as a New Platform for Super-Broadband-Tunable Photonics SO ADVANCED MATERIALS LA English DT Article ID METAL-INSULATOR-TRANSITION; MEMORY; LIGHT; FILMS; METASURFACES; ABSORBERS; BATTERIES; MODULATOR AB The electron-doping-induced phase transition of a prototypical perovskite SmNiO3 induces a large and non-volatile optical refractive-index change and has great potential for active-photonic-device applications. Strong optical modulation from the visible to the mid-infrared is demonstrated using thin-film SmNiO3. Modulation of a narrow band of light is demonstrated using plasmonic meta-surfaces integrated with SmNiO3. C1 [Li, Zhaoyi; Shi, Norman Nan; Yu, Nanfang] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Zhou, You] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Qi, Hao; Pan, Qiwei; Li, Christopher Y.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Zhang, Zhen; Ramanathan, Shriram] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Lu, Ming; Stein, Aaron] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Yu, NF (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Ramanathan, S (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. EM shriram@purdue.edu; ny2214@columbia.edu FU Defense Advanced Research Projects Agency Young Faculty Award [D15AP00111]; Office of Naval Research Young Investigator Award [N00014-16-1-2442]; Air Force Office of Scientific Research through Multidisciplinary University Research Initiative program [FA9550-14-1-0389]; Air Force Office of Scientific Research [FA9550-12-1-0189]; National Science Foundation [ECCS1307948]; Army Research Office [W911NF-16-1-0042, W911NF-14-1-0669]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX The work was supported by Defense Advanced Research Projects Agency Young Faculty Award (Grant No. D15AP00111), Office of Naval Research Young Investigator Award program (Grant No. N00014-16-1-2442), Air Force Office of Scientific Research (Grant No. FA9550-14-1-0389 through a Multidisciplinary University Research Initiative program, and Grant No. FA9550-12-1-0189), National Science Foundation (Grant No. ECCS1307948), and Army Research Office (Grant Nos. W911NF-16-1-0042 and W911NF-14-1-0669). Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. The authors acknowledge helpful discussions with Yuan Yang. NR 38 TC 2 Z9 2 U1 17 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV 2 PY 2016 VL 28 IS 41 BP 9117 EP + DI 10.1002/adma.201601204 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EG6RU UT WOS:000391174400006 PM 27573540 ER PT J AU Barai, P Kumar, A Mukherjee, PP AF Barai, Pallab Kumar, Aloke Mukherjee, Partha P. TI Modeling of Mesoscale Variability in Biofilm Shear Behavior SO PLOS ONE LA English DT Article ID MICROFLUIDIC DEVICE; FINITE-ELEMENT; FRACTURE; TRANSPORT; MATRIX; ELASTICITY; MECHANICS; STRENGTH; SYSTEMS; SOLIDS AB Formation of bacterial colonies as biofilm on the surface/interface of various objects has the potential to impact not only human health and disease but also energy and environmental considerations. Biofilms can be regarded as soft materials, and comprehension of their shear response to external forces is a key element to the fundamental understanding. A mesoscale model has been presented in this article based on digitization of a biofilm microstructure. Its response under externally applied shear load is analyzed. Strain stiffening type behavior is readily observed under high strain loads due to the unfolding of chains within soft polymeric substrate. Sustained shear loading of the biofilm network results in strain localization along the diagonal direction. Rupture of the soft polymeric matrix can potentially reduce the intercellular interaction between the bacterial cells. Evolution of stiffness within the biofilm network under shear reveals two regimes: a) initial increase in stiffness due to strain stiffening of polymer matrix, and b) eventual reduction in stiffness because of tear in polymeric substrate. C1 [Barai, Pallab; Mukherjee, Partha P.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Kumar, Aloke] Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada. [Barai, Pallab] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA USA. RP Mukherjee, PP (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA.; Kumar, A (reprint author), Univ Alberta, Dept Mech Engn, Edmonton, AB, Canada. EM aloke.kumar@ualberta.ca; pmukherjee@tamu.edu FU Texas A&M University, Faculty Research Initiation Grant FX This work was supported by Texas A&M University, Faculty Research Initiation Grant to PPM. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; Financial support from Texas A&M University faculty research initiation grant is gratefully acknowledged. NR 58 TC 0 Z9 0 U1 2 U2 2 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD NOV 2 PY 2016 VL 11 IS 11 AR e0165593 DI 10.1371/journal.pone.0165593 PG 16 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EA6DJ UT WOS:000386715500040 PM 27806068 ER PT J AU Ievlev, AV Maksymovych, P Trassin, M Seidel, J Ramesh, R Kalinin, SV Ovchinnikova, OS AF Ievlev, Anton V. Maksymovych, Petro Trassin, Morgan Seidel, Jan Ramesh, Ramamoorthy Kalinin, Sergei V. Ovchinnikova, Olga S. TI Chemical State Evolution in Ferroelectric Films during Tip-Induced Polarization and Electroresistive Switching SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE ferroelectric thin film; polarization switching; atomic force microscopy; time-of-flight secondary ion mass spectrometry; chemical phenomena; ion intermixing ID PIEZORESPONSE FORCE MICROSCOPY; SURFACE-POTENTIAL MICROSCOPY; CHARGE GRADIENT MICROSCOPY; THIN-FILMS; DOMAIN-WALLS; NANOSCALE; GENERATION; FUTURE; BIFEO3 AB Domain formation and ferroelectric switching is fundamentally inseparable from polarization screening, which on free surfaces can be realized via band bending and ionic adsorption. In the latter case, polarization switching is intrinsically coupled to the surface electrochemical phenomena, and the electrochemical stage can control kinetics and induce long-range interactions. However, despite extensive evidence toward the critical role of surface electrochemistry, little is known about the nature of the associated processes. Here we combine SPM tip induce polarization switching and secondary ion mass spectrometry to explore the evolution of chemical state of ferroelectric during switching. Surprisingly, we find that even pristine surfaces contain ions (e.g., Cl-) that are not anticipated based on chemistry of the system and processing. In the ferroelectric switching regime, we find surprising changes in surface chemistry, including redistribution of base cations. At higher voltages in the electroforming regime significant surface deformation was observed and associated with a strong ion intermixing. C1 [Ievlev, Anton V.; Maksymovych, Petro; Kalinin, Sergei V.; Ovchinnikova, Olga S.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Ievlev, Anton V.; Maksymovych, Petro; Kalinin, Sergei V.; Ovchinnikova, Olga S.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Trassin, Morgan; Seidel, Jan; Ramesh, Ramamoorthy] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Trassin, Morgan] Swiss Fed Inst Technol, Dept Mat, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland. [Seidel, Jan] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. RP Ievlev, AV; Ovchinnikova, OS (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA.; Ievlev, AV; Ovchinnikova, OS (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM ievlevav@ornl.gov; ovchinnikovo@ornl.gov RI Ievlev, Anton/H-3678-2012 OI Ievlev, Anton/0000-0003-3645-0508 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC05-00OR22725]; Division of Materials Sciences and Engineering Division, Office of Basic Energy Sciences; U.S. DOE; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory FX This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC05-00OR22725. Interpretation of BFO ferroelectric switching was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (PM), the understanding of ion mixing and ionic motion in BFO was supported by Division of Materials Sciences and Engineering Division, Office of Basic Energy Sciences, development of AFM/SIMS approach for understanding electromechanical motion in ferroelectrics was supported U.S. DOE (SVK), and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy (AVI, OSO). NR 51 TC 0 Z9 0 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV 2 PY 2016 VL 8 IS 43 BP 29588 EP 29593 DI 10.1021/acsami.6b10784 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA EB1FP UT WOS:000387095300046 PM 27726329 ER PT J AU Corona, T Ribas, L Rovira, M Farquhar, ER Ribas, X Ray, K Company, A AF Corona, Teresa Ribas, Lidia Rovira, Mireia Farquhar, Erik R. Ribas, Xavi Ray, Kallol Company, Anna TI Characterization and Reactivity Studies of a Terminal Copper-Nitrene Species SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE copper-nitrene species; density functional calculations; hydrogen atom abstraction; mass spectrometry; nitrene transfer ID C-H AMINATION; COUPLING REACTIONS; DICOPPER NITRENES; IMIDO COMPLEXES; CARBENE; LIGANDS; BOND; CHEMISTRY; RELEVANT; CYCLE AB High-valent terminal copper-nitrene species have been postulated as key intermediates in copper-catalyzed aziridination and amination reactions. The high reactivity of these intermediates has prevented their characterization for decades, thereby making the mechanisms ambiguous. Very recently, the Lewis acid adduct of a copper-nitrene intermediate was trapped at -90 degrees C and shown to be active in various oxidation reactions. Herein, we describe for the first time the synthesis and spectroscopic characterization of a terminal copper(II)-nitrene radical species that is stable at room temperature in the absence of any Lewis acid. The azide derivative of a triazamacrocyclic ligand that had previously been utilized in the stabilization of aryl-Cu-III intermediates was employed as an ancillary ligand in the study. The terminal copper(II)-nitrene radical species is able to transfer a nitrene moiety to phosphines and abstract a hydrogen atom from weak C-H bonds, leading to the formation of oxidized products in modest yields. C1 [Corona, Teresa; Ribas, Lidia; Rovira, Mireia; Ribas, Xavi; Company, Anna] Univ Girona, Dept Quim, IQCC, Grp Quim Bioinspirada Supramol & Catalisi QBIS CA, Campus Montilivi, E-17003 Girona, Catalonia, Spain. [Farquhar, Erik R.] Case Western Reserve Univ, Ctr Synchrotron Biosci, Upton, NY 11973 USA. [Farquhar, Erik R.] Brookhaven Natl Lab, Ctr Prote & Bioinformat, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Ray, Kallol] Humboldt Univ, Dept Chem, Brook Taylor Str 2, D-12489 Berlin, Germany. RP Ribas, X; Company, A (reprint author), Univ Girona, Dept Quim, IQCC, Grp Quim Bioinspirada Supramol & Catalisi QBIS CA, Campus Montilivi, E-17003 Girona, Catalonia, Spain.; Ray, K (reprint author), Humboldt Univ, Dept Chem, Brook Taylor Str 2, D-12489 Berlin, Germany. EM xavi.ribas@udg.edu; kallol.ray@chemie.hu-berlin.de; anna.company@udg.edu RI Company, Anna/B-4121-2014; Ribas, Xavi/F-3945-2014; OI Company, Anna/0000-0003-4845-4418; Ribas, Xavi/0000-0002-2850-4409; Corona Prieto, Teresa/0000-0001-8033-8180 FU European Commission [2011-CIG-303522]; MINECO of Spain [CTO2013-43012-P]; Clara Immerwahr award of UniCat; European Research Council [ERC-2011-StG-277801]; Generalitat de Catalunya [2014 SGR 862]; DFG; US Department of Energy, Office of Science [DE-AC02-76SF00515, DE-SC0012704]; US National Institutes of Health [P30-EB-009998] FX This work was supported by the European Commission (2011-CIG-303522 to A.C.), the MINECO of Spain ("Ramon y Cajal" contract to A.C. and CTO2013-43012-P to A.C. and X.R.), the Clara Immerwahr award of UniCat (to A.C.), the European Research Council (Starting Grant ERC-2011-StG-277801 to X.R.), and the Generalitat de Catalunya (2014 SGR 862). K.R. thanks the DFG for a Heisenberg Professorship. X.R. also acknowledges an ICREA Academia award. The XAS measurements at SSRL BL 2-2 were made possible by the US Department of Energy, Office of Science (DE-AC02-76SF00515 and DE-SC0012704 to SSRL and NSLS-II, respectively) and the US National Institutes of Health (P30-EB-009998 to the CWRU Center for Synchrotron Biosciences). NR 30 TC 0 Z9 0 U1 18 U2 18 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD NOV 2 PY 2016 VL 55 IS 45 BP 14005 EP 14008 DI 10.1002/anie.201607238 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA EB0EM UT WOS:000387016200015 PM 27723252 ER PT J AU Kusuma, VA Li, ZW Hopkinson, D Luebke, DR Chen, SG AF Kusuma, Victor A. Li, Zhiwei Hopkinson, David Luebke, David R. Chen, Shiaoguo TI Evaluating the Energy Performance of a Hybrid Membrane-Solvent Process for Flue Gas Carbon Dioxide Capture SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CO2 CAPTURE; AMINES; PLANTS AB A particularly energy intensive step in the conventional amine absorption process to remove carbon dioxide is solvent regeneration using a steam stripping column. An attractive alternative to reduce the energy requirement is gas pressurized stripping, in which a high pressure non condensable gas is used to strip CO2 off the rich solvent stream. The gas pressurized stripping column product, having CO2 at high concentration and high partial pressure, can then be regenerated readily using membrane separation. In this study, we performed an energetic analysis in the form of total equivalent work and found that, for capturing CO2 from flue gas, this hybrid stripping process consumes 49% less energy compared to the base case conventional MEA absorption/steam-stripping process. We also found the amount of membrane required in this process is much less than required for direct CO2 Capture from the flue gas: approximately 100-fold less than a previously published two-stage cross-flow scheme, mostly due to the more favorable pressure ratio and CO2 concentration. There does exist a trade-off between energy consumption and required membrane area that is most strongly affected by the gas pressurized stripper operating pressure. While initial analysis looks promising from both an energy requirement and membrane unit capital cost, the viability of this hybrid process depends on the availability of advanced, next generation gas separation membranes to perform the stripping gas regeneration. C1 [Kusuma, Victor A.; Hopkinson, David; Luebke, David R.] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. [Kusuma, Victor A.] AECOM Corp, POB 10940, Pittsburgh, PA 15236 USA. [Li, Zhiwei; Chen, Shiaoguo] Carbon Capture Sci LLC, POB 188, South Pk, PA 15129 USA. [Luebke, David R.] LumiShield Technol Inc, 1817 Pkwy View Dr,Bldg 18, Pittsburgh, PA 15205 USA. RP Kusuma, VA; Hopkinson, D (reprint author), US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA.; Kusuma, VA (reprint author), AECOM Corp, POB 10940, Pittsburgh, PA 15236 USA. EM victor.kusuma@contr.netl.doe.gov FU Department of Energy, National Energy Technology Laboratory (DOE/NETL) [DE-FE0007567]; DOE/NETL under the RES contract [DE-FE0004000]; U.S. Department of Energy FX This report was prepared as an account of work sponsored by the Department of Energy, National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0007567 and in support of DOE/NETL ongoing research on CO2 capture under the RES contract DE-FE0004000. This research was also supported in part by an appointment to the NETL Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. Neither the United States Government nor any agency thereof, nor any of their employees, nor AECOM, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 25 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD NOV 2 PY 2016 VL 55 IS 43 BP 11329 EP 11337 DI 10.1021/acs.iecr.6b01656 PG 9 WC Engineering, Chemical SC Engineering GA EB1FN UT WOS:000387095100013 ER PT J AU Pirovano, P Farquhar, ER Swart, M McDonald, AR AF Pirovano, Paolo Farquhar, Erik R. Swart, Marcel McDonald, Aidan R. TI Tuning the Reactivity of Terminal Nickel(III)-Oxygen Adducts for C-H Bond Activation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID COUPLED ELECTRON-TRANSFER; HYDROGEN-ATOM TRANSFER; NONHEME FE(IV)O OXIDANTS; CARBON-DIOXIDE FIXATION; NICKEL SITE; STRUCTURAL-CHARACTERIZATION; METAL OXO; 2-STATE REACTIVITY; MARCUS-THEORY; COMPLEXES AB Two metastable Ni-III complexes, [Ni-III(OAc)(L)] and [Ni-III(ONO2)(L)] (L = N,N'-(2,6-dimethylphenyl)-2,6-pyridinedicarboxamidate, OAc = acetate), were prepared, adding to the previously prepared [Ni-III(OCO2H)(L)], with the purpose of probing the properties of terminal late-transition metal oxidants. These high-valent oxidants were prepared by the one-electron oxidation of their Ni-II precursors ([Ni-II(OAc)(L)]- and [Ni-II(ONO2)(L)]-) with tris(4-bromophenyl)ammoniumyl hexachloroantimonate. Fascinatingly, the reaction between any [Ni-II(X)(L)]- and NaOCl/acetic acid (AcOH) or cerium ammonium nitrate ((NH4)(2)[Ce-IV(NO3)(6)], CAN), yielded [Ni-III(OAc)(L)] and [Ni-III(ONO2)(L)], respectively. An array of spectroscopic characterizations (electronic absorption, electron paramagnetic resonance, X-ray absorption spectroscopies), electrochemical methods, and computational predictions (density functional theory) have been used to determine the structural, electronic, and magnetic properties of these highly reactive metastable oxidants. The Ni-III-oxidants proved competent in the oxidation of phenols (weak O-H bonds) and a series of hydrocarbon substrates (some with strong CH bonds). Kinetic investigation of the reactions with di-tert-butylphenols showed a 15-fold enhanced reaction rate for [Ni-III(ONO2)(L)] compared to [Ni-III(OCO2H)(L)] and [Ni-III(OAc)(L)], demonstrating the effect of electron-deficiency of the O-ligand on oxidizing power. The oxidation of a series of hydrocarbons by [Ni-III(OAc)(L)] was further examined. A linear correlation between the rate constant and the bond dissociation energy of the C-H bonds in the substrates was indicative of a hydrogen atom transfer mechanism. The reaction rate with dihydroanthracene (k(2) = 8.1 M-1 s(-1)) compared favorably with the most reactive high-valent metal-oxidants, and showcases the exceptional reactivity of late transition metaloxygen adducts. C1 [Pirovano, Paolo; McDonald, Aidan R.] Univ Dublin, Trinity Coll Dublin, Sch Chem, Coll Green, Dublin 2, Ireland. [Pirovano, Paolo; McDonald, Aidan R.] Univ Dublin, Trinity Coll Dublin, CRANN AMBER Nanosci Inst, Coll Green, Dublin 2, Ireland. [Farquhar, Erik R.] Case Western Reserve Univ, Brookhaven Natl Lab, Ctr Synchrotron Biosci, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Swart, Marcel] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain. [Swart, Marcel] Univ Girona, Fac Ciencies, Inst Quim Computac & Catalisi, Campus Montilivi, Girona 17003, Spain. RP McDonald, AR (reprint author), Univ Dublin, Trinity Coll Dublin, Sch Chem, Coll Green, Dublin 2, Ireland.; McDonald, AR (reprint author), Univ Dublin, Trinity Coll Dublin, CRANN AMBER Nanosci Inst, Coll Green, Dublin 2, Ireland. EM aidan.mcdonald@tcd.ie OI McDonald, Aidan/0000-0002-8930-3256 FU European Union [FP7-333948, ERC-2015-STG-678202]; Science Foundation Ireland [SFI/12/RC/2278]; Swart lab by the Ministerio de Economia y Competitividad (MINECO) [CTQ2014-59212-P, CTQ2015-70851-ERC]; DIUE of the Generalitat de Catalunya [2014SGR1202]; European Fund for Regional Development (FEDER) [UNGI10-4E-801]; DOE Office of Science [DE-AC02-76SF00515, DE-SC0012704]; NIH [P30-EB-009998] FX This publication has emanated from research supported by the European Union (FP7-333948, ERC-2015-STG-678202). Research in the McDonald lab is supported in part by a research grant from Science Foundation Ireland (SFI/12/RC/2278), and in the Swart lab by the Ministerio de Economia y Competitividad (MINECO, Projects CTQ2014-59212-P and CTQ2015-70851-ERC), the DIUE of the Generalitat de Catalunya (Project 2014SGR1202), and the European Fund for Regional Development (FEDER, UNGI10-4E-801). XAS experiments were conducted at SSRL beamline 2-2 (SLAC National Accelerator Laboratory), with support from the DOE Office of Science (DE-AC02-76SF00515 and DE-SC0012704) and NIH (P30-EB-009998). We are grateful to: COST Action CM1305 (ECOSTBio) for networking support; Dr. Brendan Twamley for performing X-ray crystallography measurements; Dr. Anthony Fitzpatrick and Dr. Grace Morgan for EPR technical support; Chiara Cecchini for exploratory studies; Dr. Apparao Draksharapu and Prof. Wesley Browne for identifying NaOCl/AcOH as a useful oxidant. NR 73 TC 1 Z9 1 U1 35 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 2 PY 2016 VL 138 IS 43 BP 14362 EP 14370 DI 10.1021/jacs.6b08406 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA EB1FM UT WOS:000387095000034 PM 27739688 ER PT J AU Xiao, DNJ Oktawiec, J Milner, PJ Long, JR AF Xiao, Dianne J. Oktawiec, Julia Milner, Phillip J. Long, Jeffrey R. TI Pore Environment Effects on Catalytic Cyclohexane Oxidation in Expanded Fe-2(dobdc) Analogues SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORKS; NONHEME OXOIRON(IV) COMPLEXES; IRON(II) COORDINATION SITES; C-H HYDROXYLATION; LIQUID-PHASE; (FEO)-O-IV COMPLEXES; DIOXYGEN ACTIVATION; AEROBIC OXIDATION; FUNCTIONAL-GROUPS; BOND ACTIVATION AB Metal organic frameworks are a new class of heterogeneous catalysts in which molecular-level control over both the immediate and long-range chemical environment surrounding a catalytic center can be readily achieved. Here, the oxidation of cyclohexane to cyclohexanol and cyclohexanone is used as a model reaction to investigate the effect of a hydrophobic pore environment on product selectivity and catalyst stability in a series of iron-based frameworks. Specifically, expanded analogues of Fe-2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) were synthesized and evaluated, including the biphenyl derivative Fe-2(dobpdc) (H(4)dobpdc = 4,4'-dihydroxy- [1,1'-biphenyl]-3,3'-dicarboxylic acid), the terphenyl derivative Fe-2(dotpdc) (H(4)dotpdc = 4,4"-dihydroxy-[1,1':4',1"-terpheny1]-3,3"-dicarboxylicacid), and three modified terphenyl derivatives in which the central ring is replaced with tetrafluoro-, tetramethyl-, or di-tert-butylaryl groups. Within these five materials, a remarkable 3-fold enhancement of the alcohol:ketone (A:K) ratio and an order of magnitude increase in turnover number are achieved by simply altering the framework pore diameter and installing nonpolar functional groups near the iron site. Mossbauer spectroscopy, kinetic isotope effect, and gas adsorption measurements reveal that variations in the A:K selectivities arise from differences in the cyclohexane adsorption enthalpies of these frameworks, which become more favorable as the number of hydrophobic residues and thus van der Waals interactions increase. C1 [Xiao, Dianne J.; Oktawiec, Julia; Milner, Phillip J.; Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Long, Jeffrey R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Long, JR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Long, JR (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA.; Long, JR (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM jrlong@berkeley.edu FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001015]; Nanoporous Materials Genome Center; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences [DE-FG02-12ER16362]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The synthetic chemistry, structural analysis, and characterization of gas adsorption properties were supported through the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0001015. The reactivity studies were supported by the Nanoporous Materials Genome Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, under Award DE-FG02-12ER16362. This research also used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We thank Douglas A. Reed, Miguel I. Gonzalez, and David Z. Zee for experimental assistance and helpful discussions. NR 79 TC 2 Z9 2 U1 34 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD NOV 2 PY 2016 VL 138 IS 43 BP 14371 EP 14379 DI 10.1021/jacs.6b08417 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA EB1FM UT WOS:000387095000035 PM 27704846 ER PT J AU Bouchard, KE Aimone, JB Chun, MY Dean, T Denker, M Diesmann, M Donofrio, DD Frank, LM Kasthuri, N Koch, C Ruebel, O Simon, HD Sommer, FT Prabhat AF Bouchard, Kristofer E. Aimone, James B. Chun, Miyoung Dean, Thomas Denker, Michael Diesmann, Markus Donofrio, David D. Frank, Loren M. Kasthuri, Narayanan Koch, Chirstof Ruebel, Oliver Simon, Horst D. Sommer, Friedrich T. Prabhat TI High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination SO NEURON LA English DT Editorial Material ID NETWORK; SIMULATION AB Opportunities offered by new neuro-technologies are threatened by lack of coherent plans to analyze,manage, and understand the data. High-performance computing will allow exploratory analysis of massive datasets stored in standardized formats, hosted in open repositories, and integrated with simulations. C1 [Bouchard, Kristofer E.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA. [Bouchard, Kristofer E.; Frank, Loren M.] UC San Francisco, Kavli Inst Fundamental Neurosci, San Francisco, CA 94158 USA. [Bouchard, Kristofer E.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Aimone, James B.] Sandia Natl Labs, Ctr Comp Res, POB 5800, Albuquerque, NM 87185 USA. [Chun, Miyoung] Kavli Fdn, Oxnard, CA 93030 USA. [Dean, Thomas] Google Res, Mountain View, CA 94043 USA. [Denker, Michael; Diesmann, Markus] Julich Res Ctr, JARA BRAIN Inst, Inst Adv Simulat IAS 6, Inst Neurosci & Med INM 6, D-52425 Julich, Germany. [Diesmann, Markus] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, D-52062 Aachen, Germany. [Diesmann, Markus] Rhein Westfal TH Aachen, Dept Phys, D-52062 Aachen, Germany. [Donofrio, David D.; Ruebel, Oliver] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Frank, Loren M.] UC San Francisco, Howard Hughes Med Inst, San Francisco, CA 94158 USA. [Frank, Loren M.] UC San Francisco, Dept Physiol, San Francisco, CA 94158 USA. [Kasthuri, Narayanan] Argonne Natl Lab, Nanosci Div, Lemont, IL 60439 USA. [Kasthuri, Narayanan] Univ Chicago, Dept Neurobiol, Chicago, IL 60637 USA. [Koch, Chirstof] Allen Inst Brain Sci, Seattle, WA 98109 USA. [Simon, Horst D.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sommer, Friedrich T.] Univ Calif Berkeley, Redwood Ctr Theoret Neurosci, Berkeley, CA 94720 USA. [Prabhat] Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA. RP Bouchard, KE (reprint author), Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94720 USA.; Bouchard, KE (reprint author), UC San Francisco, Kavli Inst Fundamental Neurosci, San Francisco, CA 94158 USA.; Bouchard, KE (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA.; Prabhat (reprint author), Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA. EM kebouchard@lbl.gov; prabhat@lbl.gov NR 14 TC 3 Z9 3 U1 1 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0896-6273 EI 1097-4199 J9 NEURON JI Neuron PD NOV 2 PY 2016 VL 92 IS 3 BP 628 EP 631 DI 10.1016/j.neuron.2016.10.035 PG 4 WC Neurosciences SC Neurosciences & Neurology GA EA6TU UT WOS:000386762700016 PM 27810006 ER PT J AU Morozovska, AN Eliseev, EA Genenko, YA Vorotiahin, IS Silibin, MV Cao, Y Kim, Y Glinchuk, MD Kalinin, SV AF Morozovska, Anna N. Eliseev, Eugene A. Genenko, Yuri A. Vorotiahin, Ivan S. Silibin, Maxim V. Cao, Ye Kim, Yunseok Glinchuk, Maya D. Kalinin, Sergei V. TI Flexocoupling impact on size effects of piezoresponse and conductance in mixed-type ferroelectric semiconductors under applied pressure SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL OXIDES; THIN-FILM PROPERTIES; ION BATTERY CATHODE; NANOSCALE; FLEXOELECTRICITY; MICROSCOPY; FIELD; MULTIFERROICS; COEFFICIENTS; PHYSICS AB We explore the role of flexoelectric effect in functional properties of nanoscale ferroelectric films with mixed electronic-ionic conductivity. Using a coupled Ginzburg-Landau model, we calculate spontaneous polarization, effective piezoresponse, elastic strain and compliance, carrier concentration, and piezoconductance as a function of thickness and applied pressure. In the absence of flexoelectric coupling, the studied physical quantities manifest well-explored size-induced phase transitions, including transition to paraelectric phase below critical thickness. Similarly, in the absence of external pressure flexoelectric coupling affects properties of these films only weakly. However, the combined effect of flexoelectric coupling and external pressure induces polarizations at the film surfaces, which cause the electric built-in field that destroys the thickness-induced phase transition to paraelectric phase and induces the electretlike state with irreversible spontaneous polarization below critical thickness. Interestingly, the built-in field leads to noticeable increase of the average strain and elastic compliance in this thickness range. We further illustrate that the changes of the electron concentration by several orders of magnitude under positive or negative pressures can lead to the occurrence of high-or low-conductivity states, i.e., the nonvolatile piezoresistive switching, in which the swing can be controlled by the film thickness and flexoelectric coupling. The obtained theoretical results can be of fundamental interest for ferroic systems, and can provide a theoretical model for explanation of a set of recent experimental results on resistive switching and transient polar states in these systems. C1 [Morozovska, Anna N.; Vorotiahin, Ivan S.] Natl Acad Sci Ukraine, Inst Phys, 46 Prospekt Nauky, UA-03028 Kiev, Ukraine. [Eliseev, Eugene A.; Glinchuk, Maya D.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, Krjijanovskogo 3, UA-03142 Kiev, Ukraine. [Genenko, Yuri A.; Vorotiahin, Ivan S.] Tech Univ Darmstadt, Inst Mat Wissensch, Jovanka Bontschits Str 2, D-64287 Darmstadt, Germany. [Silibin, Maxim V.] Natl Res Univ Elect Technol MIET, Bldg 1,Shokin Sq, Moscow 124498, Russia. [Cao, Ye; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kim, Yunseok] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Phys, 46 Prospekt Nauky, UA-03028 Kiev, Ukraine. EM anna.n.morozovska@gmail.com; genenko@mm.tu-darmstadt.de; sergei2@ornl.gov RI Genenko, Yuri/A-2663-2008 OI Genenko, Yuri/0000-0002-2943-2363 FU National Academy of Sciences of Ukraine [07-06-15, CNMS2016-061]; Office of Basic Energy Sciences, U.S. Department of Energy; German Research Foundation [GE 1171/7-1]; President of the Russian Federation [14.Y30.15.2883-MK]; project part of the state tasks in the field of scientific activity [11.2551.2014/K]; Basic Science Research program through the National Research Foundation of Korea - Ministry of Science, ICT and Future Planning [NRF-2014R1A4A1008474] FX E.A.E. and A.N.M. acknowledge the National Academy of Sciences of Ukraine (Grant No. 07-06-15) and Grant No. CNMS2016-061. S.V.K. acknowledges the Office of Basic Energy Sciences, U.S. Department of Energy. I.S.V. is grateful to the German Research Foundation for support through Grant No. GE 1171/7-1. M.V.S. acknowledges the grant of the President of the Russian Federation for state support of young Russian scientists-Ph.D. (Grant No. 14.Y30.15.2883-MK) and the project part of the state tasks in the field of scientific activity Grant No. 11.2551.2014/K. Y.K. acknowledges that a portion of this work was supported by the Basic Science Research program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (Grant No. NRF-2014R1A4A1008474). NR 65 TC 1 Z9 1 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 2 PY 2016 VL 94 IS 17 AR 174101 DI 10.1103/PhysRevB.94.174101 PG 10 WC Physics, Condensed Matter SC Physics GA EA5JN UT WOS:000386656100001 ER PT J AU Badran, H Scholey, C Auranen, K Grahn, T Greenlees, PT Herzan, A Jakobsson, U Julin, R Juutinen, S Konki, J Leino, M Mallaburn, M Pakarinen, J Papadakis, P Partanen, J Peura, P Rahkila, P Sandzelius, M Saren, J Sorri, J Stolze, S Uusitalo, J AF Badran, H. Scholey, C. Auranen, K. Grahn, T. Greenlees, P. T. Herzan, A. Jakobsson, U. Julin, R. Juutinen, S. Konki, J. Leino, M. Mallaburn, M. Pakarinen, J. Papadakis, P. Partanen, J. Peura, P. Rahkila, P. Sandzelius, M. Saren, J. Sorri, J. Stolze, S. Uusitalo, J. TI Confirmation of the new isotope Pb-178 SO PHYSICAL REVIEW C LA English DT Article ID TOTAL DATA READOUT; EVEN-EVEN NUCLEI; ALPHA-DECAY; FINE-STRUCTURE; BRANCHING RATIOS; SHELL AB The extremely neutron-deficient isotope Pb-178 has been produced. The GREAT spectrometer at the focal plane position of the gas-filled separator RITU was used to study the alpha decay of Pb-178 and its alpha-decay chain through alpha-alpha correlations. The alpha decay was measured to have an energy and half-life of E-alpha = 7610(30) keV and t(1/2) = 0.21(-0.08)(+0.21) ms, respectively. The half-life is consistent with recent theoretical calculations using the Coulomb and proximity potential model. The alpha-decay reduced width and hindrance factor for Pb-178 were deduced and correspond to an unhindered Delta l = 0 transition. In addition, the mass excess of Pb-178 and the alpha-decay Q value were calculated from the experimental results and compared to theoretical values. C1 [Badran, H.; Scholey, C.; Auranen, K.; Grahn, T.; Greenlees, P. T.; Herzan, A.; Julin, R.; Juutinen, S.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Peura, P.; Rahkila, P.; Sandzelius, M.; Saren, J.; Sorri, J.; Stolze, S.; Uusitalo, J.] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Jakobsson, U.] KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Mallaburn, M.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Auranen, K.] Argonne Natl Lab, 9700 Cass Ave, Lemont, IL 60439 USA. [Auranen, K.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Jakobsson, U.] Univ Helsinki, Lab Radiochem, Dept Chem, POB 55, FI-00014 Helsinki, Finland. [Peura, P.] Univ Helsinki, Helsinki Inst Phys, POB 64, FIN-00014 Helsinki, Finland. RP Badran, H (reprint author), Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. EM hussam.h.badran@jyu.fi RI Scholey, Catherine/G-2720-2014 OI Scholey, Catherine/0000-0002-8743-6071 FU Academy of Finland under the Finnish Center of Excellence Program [213503]; Marie Curie Career Integration Grant [304033]; Academy of Finland [257562] FX The authors would like to thank John Green from Argonne National Laboratory and B. Lommel and the GSI target laboratory staff for producing the Pd targets. This work has been supported by the Academy of Finland under the Finnish Center of Excellence Program (Contract No. 213503), the Marie Curie Career Integration Grant (Grant No. 304033), and the Academy of Finland (Grant No. 257562). NR 38 TC 0 Z9 0 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD NOV 2 PY 2016 VL 94 IS 5 AR 054301 DI 10.1103/PhysRevC.94.054301 PG 6 WC Physics, Nuclear SC Physics GA EA5JP UT WOS:000386656400001 ER PT J AU Liu, J Hill, JC Sherwin, BD Petri, A Bohm, V Haiman, Z AF Liu, Jia Hill, J. Colin Sherwin, Blake D. Petri, Andrea Boehm, Vanessa Haiman, Zoltan TI CMB lensing beyond the power spectrum: Cosmological constraints from the one-point probability distribution function and peak counts SO PHYSICAL REVIEW D LA English DT Article ID COSMIC SHEAR; NEW-MODEL; WEAK; STATISTICS; BISPECTRUM; POLARIZATION; INFORMATION; TEMPERATURE; PREDICTIONS; PARAMETERS AB Unprecedentedly precise cosmic microwave background (CMB) data are expected from ongoing and near-future CMB stage III and IV surveys, which will yield reconstructed CMB lensing maps with effective resolution approaching several arcminutes. The small-scale CMB lensing fluctuations receive non-negligible contributions from nonlinear structure in the late-time density field. These fluctuations are not fully characterized by traditional two-point statistics, such as the power spectrum. Here, we use N-body ray-tracing simulations of CMB lensing maps to examine two higher-order statistics: the lensing convergence one-point probability distribution function (PDF) and peak counts. We show that these statistics contain significant information not captured by the two-point function and provide specific forecasts for the ongoing stage III Advanced Atacama Cosmology Telescope (AdvACT) experiment. Considering only the temperature-based reconstruction estimator, we forecast 9 sigma (PDF) and 6 sigma (peaks) detections of these statistics with AdvACT. Our simulation pipeline fully accounts for the non-Gaussianity of the lensing reconstruction noise, which is significant and cannot be neglected. Combining the power spectrum, PDF, and peak counts for AdvACT will tighten cosmological constraints in the Omega(m)-sigma(8) plane by approximate to 30%, compared to using the power spectrum alone. C1 [Liu, Jia] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Liu, Jia; Hill, J. Colin; Haiman, Zoltan] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, LBL, Berkeley, CA 94720 USA. [Sherwin, Blake D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Petri, Andrea] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Boehm, Vanessa] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Haiman, Zoltan] Columbia Univ, ISCAP, New York, NY 10027 USA. RP Liu, J (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Liu, J (reprint author), Columbia Univ, Dept Astron, New York, NY 10027 USA. EM jia@astro.princeton.edu FU NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1602663]; Simons Foundation; Simons Fellowship; Miller Institute for Basic Research in Science at the University of California, Berkeley; National Science Foundation (NSF) [AST-1210877]; ROADS award at Columbia University; NSF [ACI-1053575]; Canada Foundation for Innovation under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto FX We thank Nick Battaglia, Francois Bouchet, Simone Ferraro, Antony Lewis, Mark Neyrinck, Emmanuel Schaan, and Marcel Schmittfull for useful discussions. We acknowledge helpful comments from an anonymous referee. J. L. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under Award No. AST-1602663. This work is partially supported by a Junior Fellowship from the Simons Foundation to JCH and a Simons Fellowship to Z. H.. B. D. S. is supported by a Fellowship from the Miller Institute for Basic Research in Science at the University of California, Berkeley. This work is partially supported by National Science Foundation (NSF) Grant No. AST-1210877 (to Z. H.) and by a ROADS award at Columbia University. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant No. ACI-1053575. Computations were performed on the GPC supercomputer at the SciNet HPC consortium. SciNet is funded by the Canada Foundation for Innovation under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence, and the University of Toronto. NR 80 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD NOV 2 PY 2016 VL 94 IS 10 AR 103501 DI 10.1103/PhysRevD.94.103501 PG 15 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EA5ID UT WOS:000386651900001 ER PT J AU Harvey-Thompson, AJ Sefkow, AB Wei, MS Nagayama, T Campbell, EM Blue, BE Heeter, RF Koning, JM Peterson, KJ Schmitt, A AF Harvey-Thompson, A. J. Sefkow, A. B. Wei, M. S. Nagayama, T. Campbell, E. M. Blue, B. E. Heeter, R. F. Koning, J. M. Peterson, K. J. Schmitt, A. TI Laser propagation measurements in long-scale-length underdense plasmas relevant to magnetized liner inertial fusion SO PHYSICAL REVIEW E LA English DT Article ID SIMULATIONS; TARGETS AB We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n(e)/n(crit) similar to 0.04 is irradiated by a multi-ns, multi-kJ, 0.35-mu m, phase-plate-smoothed laser at spot-averaged intensities ranging from 1.0 x 10(14) to 2.5 x 10(14) W/cm(2) and pulse widths from 2 to 10 ns. Time-resolved x-ray images of the laser-heated plasma are compared to two-dimensional radiation-hydrodynamic simulations that show agreement with the propagating emission front, a comparison that constrains laser energy deposition to the plasma. The experiments show that long-pulse, modest-intensity (I = 1.5 x 10(14) W/cm(2)) beams can efficiently couple energy (similar to 82% of the incident energy) to MagLIF-relevant long-length (9.5 mm) underdense plasmas. The demonstrated heating efficiency is significantly higher than is thought to have been achieved in early integrated MagLIF experiments [A. B. Sefkow et al., Phys. Plasmas 21, 072711 (2014)]. C1 [Harvey-Thompson, A. J.; Sefkow, A. B.; Nagayama, T.; Peterson, K. J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Wei, M. S.; Blue, B. E.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Campbell, E. M.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Heeter, R. F.; Koning, J. M.] Lawrence Livermore Natl Lab, POB 808,L-472, Livermore, CA 94551 USA. [Schmitt, A.] Naval Res Lab, Washington, DC 20375 USA. RP Harvey-Thompson, AJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Laboratory Directed Research and Development Program at Sandia; National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge the outstanding support of S. B. Hansen, C. A. Jennings, R. D. McBride, J. Emig, D. Canning, C. Sorce, V. Gelbov, C. Stoeckl, and the entire OMEGA-EP crew at the Laboratory for Laser Energetics and General Atomics for target fabrication. A. B. S. gratefully acknowledges M. M. Marinak, M. Pehul, and H. A. Scott for code support. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Support was also provided in part by the Laboratory Directed Research and Development Program at Sandia. NR 10 TC 0 Z9 0 U1 6 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD NOV 2 PY 2016 VL 94 IS 5 AR 051201 DI 10.1103/PhysRevE.94.051201 PG 5 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA EA6YX UT WOS:000386776200001 PM 27967028 ER PT J AU Woods, LM Dalvit, DAR Tkatchenko, A Rodriguez-Lopez, P Rodriguez, AW Podgornik, R AF Woods, L. M. Dalvit, D. A. R. Tkatchenko, A. Rodriguez-Lopez, P. Rodriguez, A. W. Podgornik, R. TI Materials perspective on Casimir and van der Waals interactions SO REVIEWS OF MODERN PHYSICS LA English DT Article ID DENSITY-FUNCTIONAL-THEORY; GENERALIZED GRADIENT APPROXIMATION; FLUCTUATION-INDUCED INTERACTIONS; CONDUCTING SPHERICAL-SHELL; WALLED CARBON NANOTUBES; LONG-RANGE INTERACTIONS; ZERO-POINT ENERGY; MU-M RANGE; DISPERSION FORCES; TOPOLOGICAL INSULATORS AB Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications. C1 [Woods, L. M.] Univ S Florida, Dept Phys, Tampa, FL 33620 USA. [Dalvit, D. A. R.] Los Alamos Natl Lab, Div Theoret, MS B213, Los Alamos, NM 87545 USA. [Tkatchenko, A.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Tkatchenko, A.] Univ Luxembourg, Phys & Mat Sci Res Unit, L-1511 Luxembourg, Luxembourg. [Rodriguez-Lopez, P.] Univ Paris 11, CNRS UMR 8626, Lab Phys Theor & Modeles Stat, Bat 100, F-91405 Orsay, France. [Rodriguez-Lopez, P.] Univ Paris 11, CNRS UMR 8626, GISC, Bat 100, F-91405 Orsay, France. [Rodriguez, A. W.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08540 USA. [Podgornik, R.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Podgornik, R.] Jozef Stefan Inst, Dept Theoret Phys, SI-1000 Ljubljana, Slovenia. [Podgornik, R.] Univ Ljubljana, Fac Math & Phys, Dept Phys, SI-1000 Ljubljana, Slovenia. RP Woods, LM (reprint author), Univ S Florida, Dept Phys, Tampa, FL 33620 USA. EM lmwoods@usf.edu OI Rodriguez-Lopez, Pablo/0000-0003-0625-2682 FU U.S. Department of Energy [DE-FG02-06ER46297]; LANL LDRD program; European Research Council (ERC StG VDW-CMAT); People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme under REA grant [302005]; project TerMic (Spanish Government) [FIS2014-52486-R]; U.S. National Science Foundation [DMR-1454836]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0008176] FX L. M. W. acknowledges financial support from the U.S. Department of Energy under Award No. DE-FG02-06ER46297. D. A. R. D. was supported by the LANL LDRD program. A. T. thanks the European Research Council (ERC StG VDW-CMAT) for funding. P. R.-L. acknowledges financial support from People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (No. FP7/2007-2013) under REA grant agreement No. 302005 and by project TerMic (Grant No. FIS2014-52486-R, Spanish Government) and also acknowledges helpful discussions with A. G. Grushin. A. W. R. acknowledges financial support from the U.S. National Science Foundation under Grant No. DMR-1454836. R. P. acknowledges the support of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0008176. R. P. thanks V. Adrian Parsegian, Roger H. French, Wai-Yim Ching, Nicole F. Steinmetz, and Jaime C. Hopkins for their input in preparing this review. NR 628 TC 6 Z9 6 U1 44 U2 44 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0034-6861 EI 1539-0756 J9 REV MOD PHYS JI Rev. Mod. Phys. PD NOV 2 PY 2016 VL 88 IS 4 AR 045003 DI 10.1103/RevModPhys.88.045003 PG 48 WC Physics, Multidisciplinary SC Physics GA EA5IQ UT WOS:000386653300001 ER PT J AU Kim, BS Rhim, JW Kim, B Kim, C Park, SR AF Kim, Beom Seo Rhim, Jun-Won Kim, Beomyoung Kim, Changyoung Park, Seung Ryong TI Determination of the band parameters of bulk 2H-MX2 (M = Mo, W; X = S, Se) by angle-resolved photoemission spectroscopy SO SCIENTIFIC REPORTS LA English DT Article ID MOLYBDENUM-DISULFIDE; VALLEY POLARIZATION; MONOLAYER WSE2; LAYER MOS2; SEMICONDUCTOR; GENERATION; GRAPHENE; FILMS; FIELD AB Monolayer MX2 (M = Mo, W; X = S, Se) has recently been drawn much attention due to their application possibility as well as the novel valley physics. On the other hand, it is also important to understand the electronic structures of bulk MX2 for material applications since it is very challenging to grow large size uniform and sustainable monolayer MX2. We performed angle-resolved photoemission spectroscopy and tight binding calculations to investigate the electronic structures of bulk 2H-MX2. We could extract all the important electronic band parameters for bulk 2H-MX2, including the band gap, direct band gap size at K (-K) point and spin splitting size. Upon comparing the parameters for bulk 2H-MX2 (our work) with mono-and multi-layer MX2 (published), we found that stacked layers, substrates for thin films, and carrier concentration significantly affect the parameters, especially the band gap size. The origin of such effect is discussed in terms of the screening effect. C1 [Kim, Beom Seo; Kim, Changyoung] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 08826, South Korea. [Kim, Beom Seo; Kim, Changyoung] Seoul Natl Univ, Dept Phys & Astron, Seoul 08826, South Korea. [Kim, Beom Seo; Park, Seung Ryong] Incheon Natl Univ, Dept Phys, Inchon 22012, South Korea. [Rhim, Jun-Won] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. [Kim, Beomyoung] Pohang Univ Sci & Technol, Dept Phys, Pohang 37673, South Korea. [Kim, Beomyoung] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Park, SR (reprint author), Incheon Natl Univ, Dept Phys, Inchon 22012, South Korea.; Rhim, JW (reprint author), Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany. EM phyruth@gmail.com; AbePark@inu.ac.kr FU Incheon National University Research Grant; [IBS-R009-G2] FX We thank Yeongkwan Kim, Jonathan D. Denlinger, Jongkeun Jung, and Soohyun Cho for assistance in the experiments. We also thank Wonshik Kyung for helpful discussions. This work was supported by the Incheon National University Research Grant in 2013. B.S.K. and C.K. were supported by IBS-R009-G2, Korea. NR 43 TC 0 Z9 0 U1 15 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 2 PY 2016 VL 6 AR 36389 DI 10.1038/srep36389 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EA6UA UT WOS:000386763300001 PM 27805019 ER PT J AU Ryu, J No, K Kim, Y Park, E Hong, S AF Ryu, Jeongjae No, Kwangsoo Kim, Yeontae Park, Eugene Hong, Seungbum TI Synthesis and Application of Ferroelectric Poly(Vinylidene Fluoride-co-Trifluoroethylene) Films using Electrophoretic Deposition SO SCIENTIFIC REPORTS LA English DT Article ID THICK-FILMS; COPOLYMER; SPECTROSCOPY; FABRICATION; CERAMICS; FLUORIDE; SPECTRA AB In this study, we investigated the deposition kinetics of polyvinylidene fluoride copolymerized with trifluoroethylene (P(VDF-TrFE)) particles on stainless steel substrates during the electrophoretic deposition (EPD) process. The effect of applied voltage and deposition time on the structure and ferroelectric property of the P(VDF-TrFE) films was studied in detail. A method of repeated EPD and heat treatment above melting point were employed to fabricate crack-free P(VDF-TrFE) thick films. This method enabled us to fabricate P(VDF-TrFE) films with variable thicknesses. The morphology of the obtained films was investigated by scanning electron microscopy (SEM), and the formation of beta-phase was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. P(VDF-TrFE) films prepared with various thicknesses showed remnant polarization (P-r) of around 4 mu C/cm(2). To demonstrate the applicability of our processing recipe to complex structures, we fabricated a spring-type energy harvester by depositing P(VDF-TrFE) films on stainless steel springs using EPD process. Our preliminary results show that an electrophoretic deposition can be applied to produce high-quality P(VDF-TrFE) films on planar as well as three-dimensional (3-D) substrates. C1 [Ryu, Jeongjae; No, Kwangsoo; Kim, Yeontae; Hong, Seungbum] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea. [Park, Eugene] Nelson Mandela African Inst Sci & Technol, Mat & Energy Sci & Engn, Arusha 447, Tanzania. [Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP No, K; Hong, S (reprint author), Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Daejeon 34141, South Korea.; Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM ksno@kaist.ac.kr; hong@anl.gov RI No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009 OI Hong, Seungbum/0000-0002-2667-1983 FU Mid-career Researcher Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2010-0015063]; Conversion Research Center Program through the National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology (MEST) [2011K000674]; Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2015R1D1A1A01056983]; Laboratory Directed Research and Development (LDRD) from Argonne National Laboratory [DE-AC02-06CH11357] FX This research was supported by the Mid-career Researcher Program (No. 2010-0015063) and Conversion Research Center Program (No. 2011K000674) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) and Basic Science Research Program (No. 2015R1D1A1A01056983) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education. Work at Argonne National Laboratory (S.H., data analysis and contribution to writing of manuscript) was supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 38 TC 0 Z9 0 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 2 PY 2016 VL 6 AR 36176 DI 10.1038/srep36176 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EA6HN UT WOS:000386727600001 PM 27805008 ER PT J AU Soheilypour, M Mofrad, MRK AF Soheilypour, M. Mofrad, M. R. K. TI Regulation of RNA-binding proteins affinity to export receptors enables the nuclear basket proteins to distinguish and retain aberrant mRNAs SO SCIENTIFIC REPORTS LA English DT Article ID AGENT-BASED MODEL; PORE COMPLEX; QUALITY-CONTROL; NUCLEOCYTOPLASMIC TRANSPORT; SACCHAROMYCES-CEREVISIAE; SPLICING FACTORS; YEAST; DYNAMICS; MICROSCOPY; INTERACTS AB Export of messenger ribonucleic acids (mRNAs) into the cytoplasm is a fundamental step in gene regulation processes, which is meticulously quality controlled by highly efficient mechanisms in eukaryotic cells. Yet, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus. Using a new modelling approach for complex systems, namely the agent-based modelling (ABM) approach, we develop a minimal model of the mRNA quality control (QC) mechanism. Our results demonstrate that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs are the minimum requirements to distinguish and retain aberrant mRNAs. Our results show that the affinity between Tpr and RBPs is optimized to maximize the retention of aberrant mRNAs. In addition, we demonstrate how the length of mRNA affects the QC process. Since longer mRNAs spend more time in the nuclear basket to form a compact conformation and initiate their export, nuclear bask et proteins could more easily capture and retain them inside the nucleus. C1 [Soheilypour, M.; Mofrad, M. R. K.] Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA. [Soheilypour, M.; Mofrad, M. R. K.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Mofrad, M. R. K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. RP Mofrad, MRK (reprint author), Univ Calif Berkeley, Mol Cell Biomech Lab, Dept Bioengn, Berkeley, CA 94720 USA.; Mofrad, MRK (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA.; Mofrad, MRK (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. EM mofrad@berkeley.edu FU National Science Foundation through a CAREER Award [CBET-0955291]; Intel Corporation FX We gratefully acknowledge fruitful discussions with and suggestions by Dr. Karsten Weis. We also thank Dr. Mohammad Azimi for his foundational contributions in creating the original version of our ABM model and codes, and Mohaddeseh Peyro, Kiavash Garakani, and the rest of Molecular Cell Biomechanics Laboratory for their fruitful discussions. Financial support from National Science Foundation through a CAREER Award (CBET-0955291) is gratefully acknowledged. Simulations were conducted on a computer cluster, which was partly funded by Intel Corporation. NR 67 TC 0 Z9 0 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD NOV 2 PY 2016 VL 6 AR 35380 DI 10.1038/srep35380 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EA6FZ UT WOS:000386723300001 PM 27805000 ER PT J AU Ma, JL Mahapatra, P Zitney, SE Biegler, LT Miller, DC AF Ma, Jinliang Mahapatra, Priyadarshi Zitney, Stephen E. Biegler, Lorenz T. Miller, David C. TI D-RM Builder: A software tool for generating fast and accurate nonlinear dynamic reduced models from high-fidelity models SO COMPUTERS & CHEMICAL ENGINEERING LA English DT Article DE Data-driven dynamic reduced models; Nonlinear system identification models; Dynamic simulation; Model predictive control; Engineering software development; Carbon capture ID CARBON CAPTURE SYSTEMS; IDENTIFICATION; SIMULATION; OPTIMIZATION; NETWORKS AB Dynamic reduced models (D-RMs) derived from rigorous models are highly desired for speeding up dynamic simulations. A useful software tool named D-RM Builder was developed to automatically generate data-driven D-RMs from high-fidelity dynamic models. It allows a user to configure input/output variables, sample input space and generate sequences of step changes, launch high-fidelity model simulations, fit simulation results to a D-RM, and finally visualize and validate the D-RM. The Decoupled A-B Net (DABNet) nonlinear system identification model was used as the main D-RM type and was enhanced to model nonlinear multiple input and multiple output dynamic systems with options for double-pole formulation to handle fast/slow time scales and pole value optimization. The D-RM Builder tool has been successfully used to generate D-RMs for a highly nonlinear pH neutralization reactor system and a two-time-scale bubbling fluidized bed adsorber-reactor for CO2 capture. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ma, Jinliang; Mahapatra, Priyadarshi; Zitney, Stephen E.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Ma, Jinliang] AECOM, Morgantown, WV 26505 USA. [Mahapatra, Priyadarshi] West Virginia Univ, Corp Res, Morgantown, WV 26506 USA. [Biegler, Lorenz T.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15289 USA. [Miller, David C.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Ma, JL (reprint author), Natl Energy Technol Lab, Morgantown, WV 26507 USA. EM jinliang.ma@netl.doe.gov FU U.S. Department of Energy, Office of Fossil Energy as part of the Carbon Capture Simulation Initiative (CCSI); National Energy Technology Laboratory [DE-FE0004000] FX This work was supported by the U.S. Department of Energy, Office of Fossil Energy as part of the Carbon Capture Simulation Initiative (CCSI). This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 23 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-1354 EI 1873-4375 J9 COMPUT CHEM ENG JI Comput. Chem. Eng. PD NOV 2 PY 2016 VL 94 BP 60 EP 74 DI 10.1016/j.compchemeng.2016.07.021 PG 15 WC Computer Science, Interdisciplinary Applications; Engineering, Chemical SC Computer Science; Engineering GA EA0BA UT WOS:000386247700005 ER PT J AU Hu, YY Smith, CE Cai, ZH Donnelly, LAJ Yang, J Hu, JCC Simmer, JP AF Hu, Yuanyuan Smith, Charles E. Cai, Zhonghou Donnelly, Lorenza A. -J. Yang, Jie Hu, Jan C. -C. Simmer, James P. TI Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelx(-/-) mice and Amelx(+/-) lyonization SO MOLECULAR GENETICS & GENOMIC MEDICINE LA English DT Article DE Ameloblast; amelogenesis imperfecta; amelogenin; amorphous calcium phosphate; enamel; incisor; molar; octacalcium phosphate ID LINKED AMELOGENESIS IMPERFECTA; DEVELOPING DENTAL ENAMEL; PRIMARY RNA TRANSCRIPT; AMINO-ACID-SEQUENCE; MOUSE MOLAR TOOTH; RAT INCISOR; MESSENGER-RNA; GENE-EXPRESSION; BOVINE ENAMEL; NULL MICE AB Background Amelogenin is required for normal enamel formation and is the most abundant protein in developing enamel. Methods Amelx(+/+), Amelx(+/,) and Amelx(-/-) molars and incisors from C57BL/6 mice were characterized using RT-PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and X-ray diffraction. Results No amelogenin protein was detected by Western blot analyses of enamel extracts from Amelx(-/-) mice. Amelx(-/-) incisor enamel averaged 20.3 +/- 3.3 mu m in thickness, or only 1/6th that of the wild type (122.3 +/- 7.9 mu m). Amelx(-/-) incisor enamel nanohardness was 1.6 Gpa, less than half that of wild-type enamel (3.6 Gpa). Amelx(+/-) incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelx(-/-) enamel and varied levels of amelogenin in Amelx(+/-) incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx(+/+) and Amelx(-/-) enamel extending from mineralized dentin collagen to the ameloblast. The Amelx(-/-) enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. X-ray diffraction determined that the predominant mineral in Amelx(-/-) enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelx(-/-) ameloblasts were similar to wild-type ameloblasts except no Tomes' processes extended into the thin enamel. Amelx(-/-) and Amelx(+/-) molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage. Conclusion Amelogenin forms a resorbable matrix that separates and supports, but does not shape early secretory-stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomes' process. C1 [Hu, Yuanyuan; Smith, Charles E.; Donnelly, Lorenza A. -J.; Yang, Jie; Hu, Jan C. -C.; Simmer, James P.] Univ Michigan, Dept Biol & Mat Sci, Sch Dent, 1210 Eisenhower Pl, Ann Arbor, MI 48108 USA. [Smith, Charles E.] McGill Univ, Dept Anat & Cell Biol, Facil Electron Microscopy Res, Fac Dent, Montreal, PQ H3A 2B2, Canada. [Cai, Zhonghou] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave Bldg 431-B005, Argonne, IL 60439 USA. [Yang, Jie] Peking Univ, Sch & Hosp Stomatol, Dept Pediat Dent, 22 South Ave, Beijing 100081, Peoples R China. RP Simmer, JP (reprint author), Univ Michigan, Dept Biol & Mat Sci, Dent Res Lab, 1210 Eisenhower Pl, Ann Arbor, MI 48108 USA. EM jsimmer@umich.edu FU National Institute of Dental and Craniofacial Research [DE012769, DE015846]; Basic Energy Sciences [DE-AC02-06CH11357] FX National Institute of Dental and Craniofacial Research (Grant/Award Number: 'DE012769', 'DE015846'), Basic Energy Sciences (Grant/Award Number: 'DE-AC02-06CH11357'). NR 118 TC 1 Z9 1 U1 0 U2 0 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2324-9269 J9 MOL GENET GENOM MED JI Mol. Genet. Genom. Med. PD NOV PY 2016 VL 4 IS 6 BP 641 EP + DI 10.1002/mgg3.252 PG 21 WC Genetics & Heredity SC Genetics & Heredity GA EL2LP UT WOS:000394451500008 PM 27896287 ER PT J AU Al Hosni, M Vialle, S Gurevich, B Daley, TM AF Al Hosni, Mohammed Vialle, Stephanie Gurevich, Boris Daley, Thomas M. TI Estimation of rock frame weakening using time-lapse crosswell: The Frio brine pilot project SO GEOPHYSICS LA English DT Article ID CO2 GEOLOGICAL STORAGE; NORTH-SEA; SEISMIC VELOCITY; INJECTED CO2; SATURATION; PHYSICS; SANDSTONE; INTEGRITY; TRANSPORT; CEMENTATION AB CO2 injection into subsurface reservoirs leads to pressure and saturation changes. Furthermore, CO2-brine-minerals interaction could result in dissolution or reprecipitation of rock frame-forming minerals. Observed time-lapse seismic associated with CO2 injection into poorly consolidated sandstone at the Frio CO2 injection site (Texas, USA) could not be predicted using classical rock-physics models (i.e., models involving elastic changes in the rock frame due to saturations and/or pressures changes only, and assuming no changes in the rock microstructure). That, and the changes in the fluid chemistry after CO2 injection, suggests that the assumption of a constant rock microstructure might be violated. Using high-resolution time-lapse crosswell data, we have developed a methodology for estimating changes in the rock frame by quantifying the rock-frame drained moduli before and after CO2 injection. Based on rock microstructure diagnostics, we found that the changes in the drained frame elastic properties are due to the changes in the grain contact-cement percentage. The reduction in contact-cement percent is found to be variable throughout the reservoir, with a maximum near the injection well, down to 0.01% from the initial 0.1% contact cement; this results in more than 40% reduction in the drained frame shear and bulk moduli. CO2 saturation was estimated using this model for uniform and patchy saturation cases. Our rock-physics analysis may allow improved interpretation of time-lapse seismic for CO2 saturation in the context of other poorly consolidated sandstones with similar geomechanical properties. Having the P-and S-wave velocity time-lapse data is key to improve saturation estimates with this analysis method. C1 [Al Hosni, Mohammed; Vialle, Stephanie; Gurevich, Boris] Curtin Univ, Perth, WA, Australia. [Al Hosni, Mohammed; Vialle, Stephanie; Gurevich, Boris] Cooperat Res Ctr Greenhouse Gas Technol CO2CRC Lt, Canberra, ACT, Australia. [Gurevich, Boris] CSIRO, Canberra, ACT, Australia. [Daley, Thomas M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Al Hosni, M (reprint author), Curtin Univ, Perth, WA, Australia.; Al Hosni, M (reprint author), Cooperat Res Ctr Greenhouse Gas Technol CO2CRC Lt, Canberra, ACT, Australia. EM m.alhosni@postgrad.curtin.edu.au; stephanie.vialle@curtin.edu.au; b.gurevich@curtin.edu.au; tmdaley@lbl.gov FU Curtin University of Technology's Reservoir Geophysics Consortium; Commonwealth of Australia; [DE-AC02-05CH11231] FX The Frio crosswell data set was acquired with the support of the United States Department of Energy under the GEO-SEQ project led by the Lawrence Berkeley National Laboratory. This work has been funded by Curtin University of Technology's Reservoir Geophysics Consortium and the Commonwealth of Australia through its support to CO2CRC Ltd. The Lawrence Berkeley National Laboratory is supported under contract DE-AC02-05CH11231. NR 63 TC 0 Z9 0 U1 1 U2 1 PU SOC EXPLORATION GEOPHYSICISTS PI TULSA PA 8801 S YALE ST, TULSA, OK 74137 USA SN 0016-8033 EI 1942-2156 J9 GEOPHYSICS JI Geophysics PD NOV-DEC PY 2016 VL 81 IS 6 BP B235 EP B245 DI 10.1190/GEO2015-0684.1 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ0UQ UT WOS:000392926400028 ER PT J AU Chen, AP Zhou, HH Zhu, YY Li, LG Zhang, WR Narayan, J Wang, HY Jia, QX AF Chen, Aiping Zhou, Honghui Zhu, Yuanyuan Li, Leigang Zhang, Wenrui Narayan, Jagdish Wang, Haiyan Jia, Quanxi TI Stabilizing new bismuth compounds in thin film form SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID SUPERCELL STRUCTURE; TIO2 FILMS; STRAIN; NANOCOMPOSITES; GROWTH; MAGNETORESISTANCE; NANOSTRUCTURES; INTERFACES; BI2FECRO6; LAALO3 AB Growth of unexpected phases from a composite target of BiFeO3:BiMnO3 and/or BiFeO3:BiCrO3 has been explored using pulsed laser deposition. The Bi2FeMnO6 tetragonal phase can be grown directly on SrTiO3 (STO) substrate, while two phases (S1 and S2) were found to grow on LaAlO3 (LAO) substrates with narrow growth windows. However, introducing a thin CeO2 buffer layer effectively broadens the growth window for the pure S1 phase, regardless of the substrate. Moreover, we discovered two new phases (X1 and X2) when growing on STO substrates using a BiFeO3:BiCrO3 target. Pure X2 phase can be obtained on CeO2-buffered STO and LAO substrates. This work demonstrates that some unexpected phases can be stabilized in a thin film form by using composite perovskite BiRO3 (R = Cr, Mn, Fe, Co, Ni) targets. Furthermore, it also indicates that CeO2 can serve as a general template for the growth of bismuth compounds with potential room-temperature multiferroicity. C1 [Chen, Aiping; Jia, Quanxi] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. [Zhou, Honghui; Narayan, Jagdish] North Carolina State Univ, Dept Mat Sci & Engn, NSF Ctr Adv Mat & Smart Struct, Raleigh, NC 27695 USA. [Zhu, Yuanyuan] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Li, Leigang; Zhang, Wenrui; Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. [Wang, Haiyan] Purdue Univ, Sch Mat Engn Elect & Comp Engn, W Lafayette, IN 47907 USA. RP Chen, AP; Jia, QX (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. EM apchen@lanl.gov; qxjia@lanl.gov OI Chen, Aiping/0000-0003-2639-2797 FU NNSA's Laboratory Directed Research and Development Program; Center for Integrated Nanotechnologies; U.S. Department of Energy (DOE) Office of Science; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Office of Naval Research [N00014-15-1-2362, N00014-16-1-2465]; U.S. National Science Foundation [DMR-1565822] FX The work at Los Alamos National Laboratory was supported by the NNSA's Laboratory Directed Research and Development Program and was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. The work at Texas A&M and Purdue University is funded by the Office of Naval Research N00014-15-1-2362 (Texas A&M) and N00014-16-1-2465 (Purdue). The TEM work is funded by the U.S. National Science Foundation (DMR-1565822). NR 55 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2016 VL 31 IS 22 BP 3530 EP 3537 DI 10.1557/jmr.2016.391 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA EO3KX UT WOS:000396594700006 ER PT J AU Niehaus, EM Munsterkotter, M Proctor, RH Brown, DW Sharon, A Idan, Y Oren-Young, L Sieber, CM Novak, O Pencik, A Tarkowska, D Hromadova, K Freeman, S Maymon, M Elazar, M Youssef, SA El-Shabrawy, EM Shalaby, ABA Houterman, P Brock, NL Burkhardt, I Tsavkelova, EA Dickschat, JS Galuszka, P Guldener, U Tudzynski, B AF Niehaus, Eva-Maria Muensterkoetter, Martin Proctor, Robert H. Brown, Daren W. Sharon, Amir Idan, Yifat Oren-Young, Liat Sieber, Christian M. Novak, Ondrej Pencik, Ales Tarkowska, Danuse Hromadova, Kristyna Freeman, Stanley Maymon, Marcel Elazar, Meirav Youssef, Sahar A. El-Shabrawy, El Said M. Shalaby, Abdel Baset A. Houterman, Petra Brock, Nelson L. Burkhardt, Immo Tsavkelova, Elena A. Dickschat, Jeroen S. Galuszka, Petr Gueldener, Ulrich Tudzynski, Bettina TI Comparative "Omics" of the Fusarium fujikuroi Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis SO GENOME BIOLOGY AND EVOLUTION LA English DT Article DE Fusarium fujikuroi species complex; genome sequencing; secondary metabolism; in planta expression; metabolomics; evolution ID FUNCTIONAL-CHARACTERIZATION; GIBBERELLA-FUJIKUROI; NATURAL-PRODUCTS; RNA-SEQ; TRANSCRIPTION FACTORS; BIOSYNTHETIC-PATHWAY; POLYKETIDE SYNTHASES; AUXIN BIOSYNTHESIS; MANGO MALFORMATION; ACID AB Species of the Fusarium fujikuroi species complex (FFC) cause a wide spectrum of often devastating diseases on diverse agricultural crops, including coffee, fig, mango, maize, rice, and sugarcane. Although species within the FFC are difficult to distinguish by morphology, and their genes often share 90% sequence similarity, they can differ in host plant specificity and life style. FFC species can also produce structurally diverse secondary metabolites (SMs), including the mycotoxins fumonisins, fusarins, fusaric acid, and beauvericin, and the phytohormones gibberellins, auxins, and cytokinins. The spectrum of SMs produced can differ among closely related species, suggesting that SMs might be determinants of host specificity. To date, genomes of only a limited number of FFC species have been sequenced. Here, we provide draft genome sequences of three more members of the FFC: a single isolate of F. mangiferae, the cause of mango malformation, and two isolates of F. proliferatum, one a pathogen of maize and the other an orchidendophyte. We compared these genomes to publicly available genome sequences of three other FFC species. The comparisons revealed species-specific and isolate-specific differences in the composition and expression (in vitro and in planta) of genes involved in SM production including those for phytohormome biosynthesis. Such differences have the potential to impact host specificity and, as in the case of F. proliferatum, the pathogenic versus endophytic life style. C1 [Niehaus, Eva-Maria; Tudzynski, Bettina] Westfal Wilhelms Univ Munster, Mol Biol & Biotechnol Fungi, Inst Biol & Biotechnol Pflanzen, Munster, Germany. [Muensterkoetter, Martin] German Res Ctr Environm Hlth GmbH, Helmholtz Zentrum Munchen, Inst Bioinformat & Syst Biol, Neuherberg, Germany. [Proctor, Robert H.; Brown, Daren W.] USDA, Natl Ctr Agr Utilizat Res, Peoria, IL USA. [Sharon, Amir; Idan, Yifat; Oren-Young, Liat] Tel Aviv Univ, Dept Mol Biol & Ecol Plants, Tel Aviv, Israel. [Sieber, Christian M.] Univ Calif, Dept Energy, Joint Genome Inst, Berkeley, CA USA. [Novak, Ondrej; Pencik, Ales; Tarkowska, Danuse; Hromadova, Kristyna; Galuszka, Petr] Palacky Univ, Ctr Reg Hana Biotechnol & Agr Res, Olomouc, Czech Republic. [Freeman, Stanley; Maymon, Marcel; Elazar, Meirav] Agr Res Org, Volcani Ctr, Dept Plant Pathol & Weed Res, Bet Dagan, Israel. [Youssef, Sahar A.; El-Shabrawy, El Said M.; Shalaby, Abdel Baset A.] Agr Res Ctr, Plant Pathol Res Inst, Giza, Egypt. [Houterman, Petra] Univ Amsterdam, Swammerdam Inst Life Sci, Plant Pathol, Amsterdam, Netherlands. [Brock, Nelson L.; Burkhardt, Immo; Dickschat, Jeroen S.] Rhein Friedrich Wilhelms Univ Bonn, Kekule Inst Organ Chem & Biochem, Bonn, Germany. [Tsavkelova, Elena A.] Lomonosov Moscow State Univ, Fac Biol, Dept Microbiol, Moscow, Russia. [Gueldener, Ulrich] Tech Univ Munich, Wissenschaftszentrum Weihenstephan, Dept Genome Oriented Bioinformat, Maximus von Imhof Forum 3, Freising Weihenstephan, Germany. RP Tudzynski, B (reprint author), Westfal Wilhelms Univ Munster, Mol Biol & Biotechnol Fungi, Inst Biol & Biotechnol Pflanzen, Munster, Germany.; Guldener, U (reprint author), Tech Univ Munich, Wissenschaftszentrum Weihenstephan, Dept Genome Oriented Bioinformat, Maximus von Imhof Forum 3, Freising Weihenstephan, Germany. EM u.gueldener@tum.de; tudzynsb@uni-muenster.de OI Guldener, Ulrich/0000-0001-5052-8610 FU Deutsche Forschungsgemeinschaft (DFG) [TU101/17-2, GU1205/2-2]; Austrian Science Fund FWF [F3705/DFG ME1682/6-1]; National Science Foundation, Czech Republic [16-10602S] FX This study was supported by the Deutsche Forschungsgemeinschaft (DFG), projects TU101/17-2 and GU1205/2-2, by the Austrian Science Fund FWF (special research project Fusarium, F3705/DFG ME1682/6-1) and the National Science Foundation, Czech Republic (grant number 16-10602S). Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer. We are grateful for the technical assistance of Stephanie Folmar, Marcie Moore and Crystal Probyn. We thank Martijn Rep (University of Amsterdam, The Netherlands) for support in performing CHEF gel analysis. We thank also Jose J. Espino for transforming Fusarium strains. NR 125 TC 1 Z9 1 U1 4 U2 4 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1759-6653 J9 GENOME BIOL EVOL JI Genome Biol. Evol. PD NOV PY 2016 VL 8 IS 11 BP 3574 EP 3599 DI 10.1093/gbe/evw259 PG 26 WC Evolutionary Biology; Genetics & Heredity SC Evolutionary Biology; Genetics & Heredity GA EK3GU UT WOS:000393815300022 PM 28040774 ER PT J AU Hesse, CN Torres-Cruz, TJ Tobias, TB Al-Matruk, M Porras-Alfaro, A Kuske, CR AF Hesse, Cedar N. Torres-Cruz, Terry J. Tobias, Terri Billingsley Al-Matruk, Maryam Porras-Alfaro, Andrea Kuske, Cheryl R. TI Ribosomal RNA gene detection and targeted culture of novel nitrogen-responsive fungal taxa from temperate pine forest soil SO MYCOLOGIA LA English DT Article DE Duke Forest; Endogone; Mucoromycotina; Saccharomycotina; soil nitrogen ID ATMOSPHERIC CO2; HIGH-THROUGHPUT; LARGE-SUBUNIT; DIVERSITY; COMMUNITIES; BACTERIAL; CLASSIFICATION; IDENTIFICATION; ALIGNMENT; REVEALS AB Soil fungal communities are responsible for carbon and nitrogen (N) cycling. The high complexity of the soil fungal community and the high proportion of taxonomically unidentifiable sequences confound ecological interpretations in field studies because physiological information is lacking for many organisms known only by their rRNA sequences. This situation forces experimental comparisons to be made at broader taxonomic racks where functions become difficult to infer. The objective of this study was to determine OTU (operational taxonomic units) level responses of the soil fungal community to N enrichment in a temperate pine forest experiment and to use the sequencing data to guide culture efforts of novel N-responsive fungal taxa. Replicate samples from four soil horizons (up to 10 cm depth) were obtained from ambient, enriched CO2 and N-fertilization plots. Through a fungal large subunit rRNA gene (LSU) sequencing survey, we identified two novel fungal clades that were abundant in our soil sampling (representing up to 27% of the sequences in some samples) and responsive to changes in soil N. The two N-responsive taxa with no predicted taxonomic association were targeted for isolation and culturing from specific soil samples where their sequences were abundant. Representatives of both OTUs were successfully cultured using a filtration approach. One taxon (OTU6) was most closely related to Saccharomycotina; the second taxon (OTU69) was most closely related to Mucoromycotina. Both taxa likely represent novel species. This study shows how observation of specific OTUs level responses to altered N status in a large rRNA gene field survey provided the impetus to design targeted culture approaches for isolation of novel N-responsive fungal taxa. C1 [Hesse, Cedar N.; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Torres-Cruz, Terry J.; Tobias, Terri Billingsley; Al-Matruk, Maryam; Porras-Alfaro, Andrea] Western Illinois Univ, Dept Biol Sci, Macomb, IL 61455 USA. [Hesse, Cedar N.] ARS, USDA, Corvallis, OR 97331 USA. RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM kuske@lanl.gov FU Science Focus Area grant from the US Department of Energy, Biological and Environmental Research Division; RISE (Research Inspiring Student Excellence) and Women in Science programs at Western Illinois University FX This study was supported through a Science Focus Area grant to CRK from the US Department of Energy, Biological and Environmental Research Division, and through the RISE (Research Inspiring Student Excellence) and Women in Science programs at Western Illinois University. NR 40 TC 0 Z9 0 U1 2 U2 2 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 EI 1557-2536 J9 MYCOLOGIA JI Mycologia PD NOV-DEC PY 2016 VL 108 IS 6 BP 1082 EP 1090 DI 10.3852/16-086 PG 9 WC Mycology SC Mycology GA EJ5PA UT WOS:000393269000003 ER PT J AU Altieri, AS Ladner, JE Li, Z Robinson, H Sallman, ZF Marino, JP Kelman, Z AF Altieri, Amanda S. Ladner, Jane E. Li, Zhuo Robinson, Howard Sallman, Zahur F. Marino, John P. Kelman, Zvi TI A small protein inhibits proliferating cell nuclear antigen by breaking the DNA clamp (vol 44, pg 6232, 2016) SO NUCLEIC ACIDS RESEARCH LA English DT Correction C1 [Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; Sallman, Zahur F.; Marino, John P.; Kelman, Zvi] Univ Maryland, Inst Biosci & Biotechnol, 9600 Gudelsky Dr, Rockville, MD 20850 USA. [Altieri, Amanda S.; Ladner, Jane E.; Li, Zhuo; Sallman, Zahur F.; Marino, John P.; Kelman, Zvi] NIST, 9600 Gudelsky Dr, Rockville, MD 20850 USA. [Li, Zhuo] State Ocean Adm, Inst Oceanog 3, 184 Daxue Rd, Xiamen 361005, Fujian, Peoples R China. [Robinson, Howard] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Kelman, Zvi] Univ Maryland, Inst Biosci & Biotechnol Res, Biomol Labeling Lab, 9600 Gudelsky Dr, Rockville, MD 20850 USA. RP Kelman, Z (reprint author), Univ Maryland, Inst Biosci & Biotechnol, 9600 Gudelsky Dr, Rockville, MD 20850 USA.; Kelman, Z (reprint author), NIST, 9600 Gudelsky Dr, Rockville, MD 20850 USA.; Kelman, Z (reprint author), Univ Maryland, Inst Biosci & Biotechnol Res, Biomol Labeling Lab, 9600 Gudelsky Dr, Rockville, MD 20850 USA. EM zkelman@umd.edu NR 1 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 EI 1362-4962 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD NOV PY 2016 VL 44 IS 20 BP 10015 EP 10015 DI 10.1093/nar/gkw824 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EK3HR UT WOS:000393817800007 PM 27625392 ER PT J AU Chen, ZH Wang, X Qi, YJ Yang, S Soares, JANT Apgar, BA Gao, R Xu, RJ Lee, Y Zhang, X Yao, J Martin, LW AF Chen, Zuhuang Wang, Xi Qi, Yajun Yang, Sui Soares, Julio A. N. T. Apgar, Brent A. Gao, Ran Xu, Ruijuan Lee, Yeonbae Zhang, Xiang Yao, Jie Martin, Lane W. TI Self-Assembled, Nanostructured, Tunable Metamaterials via Spinodal Decomposition SO ACS NANO LA English DT Article DE self-assembly; spinodal decomposition; nanoscale phase separation; metamaterials; VO2; epitaxial thin films ID NEAR-INFRARED METAMATERIALS; PHASE-TRANSITION; NEGATIVE REFRACTION; HYPERBOLIC METAMATERIALS; THIN-FILMS; VO2; SYSTEM; OXIDES; INDEX; NANOCOMPOSITES AB Self-assembly via nanoscale phase separation offers an elegant route to fabricate nanocomposites with physical properties unattainable in single-component systems. One important class of nanocomposites are optical meta materials which exhibit exotic properties and lead to opportunities for agile control of light propagation. Such metamaterials are typically fabricated via expensive and hard to -scale top-down processes requiring precise integration of dissimilar materials. In turn, there is a need for alternative, more efficient routes to fabricate large-scale metamaterials for practical applications with deep-subwavelength resolution. Here, we demonstrate a bottom-up approach to fabricate scalable nanostructured metamaterials via spinodal decomposition. To demonstrate the potential of such an approach, we leverage the innate spinodal decomposition of the VO2-TiO2 system, the metal-to-insulator transition in VO2, and thin-film epitaxy, to produce self-organized nanostructures with coherent interfaces and a structural unit cell down to 15 nm (tunable between horizontally and vertically aligned lamellae) wherein the iso-frequency surface is temperature-tunable from elliptic to hyperbolic dispersion producing metamaterial behavior. These results provide an efficient route for the fabrication of nanostructured metamaterials and other nanocomposites for desired functionalities. C1 [Chen, Zuhuang; Wang, Xi; Apgar, Brent A.; Gao, Ran; Xu, Ruijuan; Lee, Yeonbae; Yao, Jie; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Chen, Zuhuang; Yang, Sui; Zhang, Xiang; Yao, Jie; Martin, Lane W.] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Qi, Yajun] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Key Lab Green Preparat & Applicat Mat, Minist Educ,Dept Mat Sci & Engn, Wuhan 430062, Peoples R China. [Yang, Sui; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA. [Soares, Julio A. N. T.] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. RP Chen, ZH; Martin, LW (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Chen, ZH; Martin, LW (reprint author), Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. EM zuhuang@berkeley.edu; lwmartin@berkeley.edu FU Air Force Office of Scientific Research [FA9550-12-1-0471]; National Science Foundation of China [11204069, 51472078]; Department of Energy, Basic Energy Science [DE-SC0012375]; National Science Foundation [DMR-1451219]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; Hellman Family Foundation FX We would like to thank Dr. Jingbo Sun for useful discussion. Z.H.C. and R.G. acknowledge the support of the Air Force Office of Scientific Research under Grant No. FA9550-12-1-0471. Y.Q, acknowledges support of the National Science Foundation of China under Grant Nos. 11204069 and 51472078. B.A.A. acknowledges support from the Department of Energy, Basic Energy Science, under Grant No. DE-SC0012375 for the development of various oxide films and optical studies. R.X. acknowledges support from the National Science Foundation under Grant No. DMR-1451219. L.W.M. acknowledges support from the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231 for the development of light-matter interactions in materials. X.W. and J.Y. acknowledge the support from the Hellman Family Foundation. The ellipsometry measurements were carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. NR 59 TC 1 Z9 1 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 10237 EP 10244 DI 10.1021/acsnano.6b05736 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100053 PM 27934083 ER PT J AU Pulcherio, MC Renjit, AA Illindala, MS Khalsa, AS Eto, JH Klapp, DA Lasseter, RH AF Pulcherio, Mariana C. Renjit, Ajit Anbiah Illindala, Mahesh S. Khalsa, Amrit S. Eto, Joseph H. Klapp, David A. Lasseter, Robert H. TI Evaluation of Control Methods to Prevent Collapse of a Mixed-Source Microgrid SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Control systems; energy resources; governors; industrial power systems; internal combustion engines; inverters; power system modeling; synchronous generators AB For a microgrid with a mix of distributed energy resources (DERs), major challenges on its survivability are found in the islanded condition. In particular, a sudden loss of generation or a large and fluctuating load could force the microgrid to operate near its capacity limits. Such a situation can cause a cascading collapse of the mixed-source microgrid, even when the load demand is within the system's power rating. This condition was observed during several tests carried out at the Consortium for Electric Reliability Technology Solutions Microgrid Test Bed. This paper analyzes the root causes behind the collapse. It highlights that the capacity of a low-inertia system to support load changes is contributed by faster responding DERs initially. Therefore, the microgrid is particularly susceptible if the faster responding DERs do not have adequate reserve margin. Two control methods are evaluated for providing safeguards to these DERs and prevent the system collapse. C1 [Pulcherio, Mariana C.] Ohio State Univ, Columbus, OH 43210 USA. [Illindala, Mahesh S.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Renjit, Ajit Anbiah] Spirae Inc, Ft Collins, CO 80524 USA. [Khalsa, Amrit S.] Amer Elect Power Co, Groveport, OH 43125 USA. [Eto, Joseph H.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Klapp, David A.] Adv Microgrid Syst, Westerville, OH 43081 USA. [Lasseter, Robert H.] Univ Wisconsin, Dept Elect & Comp Engnineer, Madison, WI 63705 USA. RP Pulcherio, MC (reprint author), Ohio State Univ, Columbus, OH 43210 USA. EM costa.85@osu.edu; arenjit@spirae.com; millindala@ieee.org; askhalsa@aep.com; jheto@lbl.gov; microgrids@outlook.com; lasseter@engr.wisc.edu OI Illindala, Mahesh/0000-0002-2015-1338; Renjit, Ajit Anbiah/0000-0002-4599-7647 FU Office of Electricity Delivery and Energy Reliability, Transmission Reliability Program of the U.S. Department of Energy [7004227]; Ohio State University FX This work was supported by the Office of Electricity Delivery and Energy Reliability, Transmission Reliability Program of the U.S. Department of Energy under Subcontract 7004227 with The Ohio State University administered by the Lawrence Berkeley National Laboratory. NR 24 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD NOV-DEC PY 2016 VL 52 IS 6 BP 4566 EP 4576 DI 10.1109/TIA.2016.2599139 PG 11 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA EJ3FQ UT WOS:000393098400005 ER PT J AU Fan, YC Shen, NH Zhang, FL Wei, ZY Li, HQ Zhao, Q Fu, QH Zhang, P Koschny, T Soukoulis, CM AF Fan, Yuancheng Shen, Nian-Hai Zhang, Fuli Wei, Zeyong Li, Hongqiang Zhao, Qian Fu, Quanhong Zhang, Peng Koschny, Thomas Soukoulis, Costas M. TI Electrically Tunable Goos-Hanchen Effect with Graphene in the Terahertz Regime SO ADVANCED OPTICAL MATERIALS LA English DT Article ID MONOLAYER GRAPHENE; ABSORBING MEDIA; META-SURFACE; METAMATERIALS; SHIFT; REFLECTION; PLASMONICS; METASURFACES; ABSORPTION; PHASE AB Goos-Hanchen (G-H) effect is of great interest in the manipulation of optical beams. However, it is still fairly challenging to attain efficient controls of the G-H shift for diverse applications. Here, a mechanism to realize tunable G-H shift in the terahertz regime with electrically controllable graphene is proposed. Taking monolayer graphene covered epsilon-near-zero metamaterial as a planar model system, it is found that the G-H shifts for the orthogonal s-polarized and p-polarized terahertz beams at oblique incidence are positive and negative, respectively. The G-H shift can be modified substantially by electrically controlling the Fermi energy of the monolayer graphene. Reversely, the Fermi energy dependent G-H effect can also be used as a strategy for measuring the doping level of graphene. In addition, the G-H shifts of the system are of strong frequency-dependence at oblique angles of incidence, therefore the proposed graphene hybrid system can potentially be used for the generation of terahertz "rainbow," a flat analog of the dispersive prism in optics. The proposed scheme of hybrid system involving graphene for dynamic control of G-H shift will have potential applications in the manipulation of terahertz waves. C1 [Fan, Yuancheng; Zhang, Fuli; Fu, Quanhong] Northwestern Polytech Univ, Minist Educ, Key Lab Space Appl Phys & Chem, Xian 710129, Peoples R China. [Fan, Yuancheng; Zhang, Fuli; Fu, Quanhong] Northwestern Polytech Univ, Dept Appl Phys, Sch Sci, Xian 710129, Peoples R China. [Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Shen, Nian-Hai; Zhang, Peng; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wei, Zeyong; Li, Hongqiang] Tongji Univ, Key Lab Adv Microstruct Mat MOE, Shanghai 200092, Peoples R China. [Wei, Zeyong; Li, Hongqiang] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China. [Zhao, Qian] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China. [Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Fan, YC (reprint author), Northwestern Polytech Univ, Minist Educ, Key Lab Space Appl Phys & Chem, Xian 710129, Peoples R China.; Fan, YC (reprint author), Northwestern Polytech Univ, Dept Appl Phys, Sch Sci, Xian 710129, Peoples R China. EM phyfan@nwpu.edu.cn RI Soukoulis, Costas/A-5295-2008; OI Fan, Yuancheng/0000-0002-7919-4148 FU National Science Foundation of China (NSFC) [61505164, 11372248, 61275176, 11404213]; Program for Scientific Activities of Returned Overseas Professionals in Shaanxi Province; Fundamental Research Funds for the Central Universities [3102015ZY079, 3102015ZY058]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-AC02-07CH11358]; U.S. Office of Naval Research [N00014-14-1-0474]; European Research Council [320081] FX The authors would like to acknowledge financial support from the National Science Foundation of China (NSFC) (Grant Nos. 61505164, 11372248, 61275176, and 11404213), the Program for Scientific Activities of Returned Overseas Professionals in Shaanxi Province, and the Fundamental Research Funds for the Central Universities (Grant Nos. 3102015ZY079 and 3102015ZY058). Work at Ames Laboratory was partially supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering (Ames Laboratory was operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358), by the U.S. Office of Naval Research, Award No. N00014-14-1-0474 (simulations). The European Research Council under the ERC Advanced Grant No. 320081 (PHOTOMETA) supported work (theory) at FORTH. NR 54 TC 3 Z9 3 U1 16 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD NOV PY 2016 VL 4 IS 11 BP 1824 EP 1828 DI 10.1002/adom.201600303 PG 5 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA EI3PR UT WOS:000392404200021 ER PT J AU Ailes, EC Gilboa, SM Gill, SK Broussard, CS Crider, KS Berry, RJ Carter, TC Hobbs, CA Interrante, JD Reefhuis, J AF Ailes, Elizabeth C. Gilboa, Suzanne M. Gill, Simerpal K. Broussard, Cheryl S. Crider, Krista S. Berry, Robert J. Carter, Tonia C. Hobbs, Charlotte A. Interrante, Julia D. Reefhuis, Jennita CA Natl Birth Defects Prevention TI Association between Antibiotic Use Among Pregnant Women with Urinary Tract Infections in the First Trimester and Birth Defects, National Birth Defects Prevention Study 1997 to 2011 SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE birth defects; antibiotic; cephalosporin; nitrofurantoin; penicillin; trimethoprim-sulfamethoxazole; urinary tract infection ID FOLIC-ACID ANTAGONISTS; CONGENITAL-ABNORMALITIES; MEDICATION USE; PRIMARY-CARE; RISK; EXPOSURE; NITROFURANTOIN; TRIMETHOPRIM; COHORT; MALFORMATIONS AB Background: Previous studies noted associations between birth defects and some antibiotics (e.g., nitrofurantoin, sulfonamides) but not others (e.g., penicillins). It is unclear if previous findings were due to antibiotic use, infections, or chance. To control for potential confounding by indication, we examined associations between antibiotic use and birth defects, among women reporting urinary tract infections (UTIs). Methods: The National Birth Defects Prevention Study is a multi-site, population-based case-control study. Case infants/fetuses have any of over 30 major birth defects and controls are live-born infants without major birth defects. We analyzed pregnancies from 1997 to 2011 to estimate the association between maternally reported periconceptional (month before conception through the third month of pregnancy) use of nitrofurantoin, trimethoprim-sulfamethoxazole, or cephalosporins and specific birth defects, among women with periconceptional UTIs. Women with periconceptional UTIs who reported penicillin use served as the comparator. Results: Periconceptional UTIs were reported by 7.8% (2029/26,068) of case and 6.7% (686/10,198) of control mothers. Most (68.2% of case, 66.6% of control mothers) also reported antibiotic use. Among 608 case and 231 control mothers reporting at least one periconceptional UTI and certain antibiotic use, compared with penicillin, nitrofurantoin use was associated with oral clefts in the offspring (adjusted odds ratio, 1.97 [95% confidence interval, 1.10-3.53]), trimethoprim-sulfamethoxazole use with esophageal atresia (5.31 [1.39-20.24]) and diaphragmatic hernia (5.09 [1.20-21.69]), and cephalosporin use with anorectal atresia/stenosis (5.01 [1.34-18.76]). Conclusion: Periconceptional exposure to some antibiotics might increase the risk for certain birth defects. However, because individual birth defects are rare, absolute risks should drive treatment decisions. (C) 2016 Wiley Periodicals, Inc. C1 [Ailes, Elizabeth C.; Gilboa, Suzanne M.; Broussard, Cheryl S.; Crider, Krista S.; Berry, Robert J.; Interrante, Julia D.; Reefhuis, Jennita] Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 4770 Buford Hwy NE,MS E-86, Atlanta, GA 30341 USA. [Gill, Simerpal K.] Duchesnay Inc, Blainville, PQ, Canada. [Carter, Tonia C.] Marshfield Clin Fdn Med Res & Educ, Marshfield, WI USA. [Hobbs, Charlotte A.] Univ Arkansas Med Sci, Coll Med, Little Rock, AR 72205 USA. [Interrante, Julia D.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Ailes, EC (reprint author), Ctr Dis Control & Prevent, Natl Ctr Birth Defects & Dev Disabil, 4770 Buford Hwy NE,MS E-86, Atlanta, GA 30341 USA. EM eailes@cdc.gov FU U.S. Department of Energy; CDC FX Supported by an appointment to the Research Participation Program at the National Carter or Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention (CDC), administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC. NR 36 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD NOV PY 2016 VL 106 IS 11 SI SI BP 940 EP 949 DI 10.1002/bdra.23570 PG 10 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA EI9HC UT WOS:000392817500011 PM 27891788 ER PT J AU MacMartin, DG Kravitz, B Long, JCS Rasch, PJ AF MacMartin, Douglas G. Kravitz, Ben Long, Jane C. S. Rasch, Philip J. TI Geoengineering with stratospheric aerosols: What do we not know after a decade of research? SO Earths Future LA English DT Article ID INTERCOMPARISON PROJECT GEOMIP; CLIMATE; MODEL; RADIATION; SULFATE; IMPACT; OZONE; INJECTIONS; CHEMISTRY; SCENARIO AB Any well-informed future decision on whether and how to deploy solar geoengineering requires balancing the impacts (both intended and unintended) of intervening in the climate against the impacts of not doing so. Despite tremendous progress in the last decade, the current state of knowledge remains insufficient to support an assessment of this balance, even for stratospheric aerosol geoengineering (SAG), arguably the best understood (practical) geoengineering method. We articulate key unknowns associated with SAG, including both climate-science and design questions, as an essential step toward developing a future strategic research program that could address outstanding uncertainties. C1 [MacMartin, Douglas G.] Cornell Univ, Mech & Aerosp Engn, Ithaca, NY 14850 USA. [Kravitz, Ben; Rasch, Philip J.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. [Long, Jane C. S.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP MacMartin, DG (reprint author), Cornell Univ, Mech & Aerosp Engn, Ithaca, NY 14850 USA. EM dgm224@cornell.edu FU U.S. Department of Energy [DE-AC05-76RL01830] FX The comments of S. Tilmes and an anonymous reviewer are greatly appreciated. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 48 TC 0 Z9 0 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2328-4277 J9 EARTHS FUTURE JI Earth Future PD NOV PY 2016 VL 4 IS 11 BP 543 EP 548 DI 10.1002/2016EF000418 PG 6 WC Environmental Sciences; Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Geology; Meteorology & Atmospheric Sciences GA EI9FI UT WOS:000392812800008 ER PT J AU Raduha, S Butler, D Mozley, PS Person, M Evans, J Heath, JE Dewers, TA Stauffer, PH Gable, CW Kelkar, S AF Raduha, S. Butler, D. Mozley, P. S. Person, M. Evans, J. Heath, J. E. Dewers, T. A. Stauffer, P. H. Gable, C. W. Kelkar, S. TI Potential seal bypass and caprock storage produced by deformation-band-to-opening-mode-fracture transition at the reservoir/caprock interface SO GEOFLUIDS LA English DT Article DE caprock; carbon storage; deformation bands; fractures; multiphase flow; reservoir rock; seal bypass ID FLUID-FLOW; CO2; EQUATION; SYSTEMS; UTAH; SEQUESTRATION; LEAKAGE; WATER AB We examined the potential impact on CO2 transport of zones of deformation bands in reservoir rock that transition to opening-mode fractures within overlying caprock. Sedimentological and petrophysical measurements were collected along an approximately 5 m x 5 m outcrop of the Slick Rock and Earthy Members of the Entrada Sandstone on the eastern flank of the San Rafael Swell, Utah, USA. Measured deformation band permeability (2 mD) within the reservoir facies is about three orders of magnitude lower than the host sandstone. Average permeability of the caprock facies (0.0005 mD) is about seven orders of magnitude lower than the host sandstone. Aperture-based permeability estimates of the opening-mode caprock fractures are high (3.3 x 10(7) mD). High-resolution CO2-H2O transport models incorporate these permeability data at the millimeter scale. We varied fault properties at the reservoir/caprock interface between open fractures and deformation bands as part of a sensitivity study. Numerical modeling results suggest that zones of deformation bands within the reservoir strongly compartmentalize reservoir pressures largely blocking lateral, cross-fault flow of supercritical CO2. Significant vertical CO2 transport into the caprock occurred in some scenarios along opening-mode fractures. The magnitude of this vertical CO2 transport depends on the small-scale geometry of the contact between the openingmode fracture and the zone of deformation bands, as well as the degree to which fractures penetrate caprock. The presence of relatively permeable units within the caprock allows storage of significant volumes of CO2, particularly when the fracture network does not extend all the way through the caprock. C1 [Raduha, S.; Butler, D.; Mozley, P. S.; Person, M.] New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. [Evans, J.] Utah State Univ, Dept Geol, Logan, UT 84322 USA. [Heath, J. E.; Dewers, T. A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Stauffer, P. H.; Gable, C. W.; Kelkar, S.] Los Alamos Natl Labs, Los Alamos, NM USA. RP Mozley, PS (reprint author), New Mexico Inst Min & Technol, Dept Earth & Environm Sci, Socorro, NM 87801 USA. EM mozley@nmt.edu OI Stauffer, Philip/0000-0002-6976-221X FU US Department of Energy (DOE) National Energy Technology Laboratory (NETL) [DEFE0004844]; DOE/NETL; Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center - US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001114]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; US Department of Energy [DE-AC52-06NA25396] FX Many people helped us with various aspects of this project. In particular, we thank Elizabeth Petrie, Dave Richie, and Alex Urquhart for help in the field. This material is based upon work supported by the US Department of Energy (DOE) National Energy Technology Laboratory (NETL) under Grant Number DEFE0004844. The project was managed and administered by the New Mexico Institute of Mining and Technology and funded by DOE/NETL and cost-sharing partners. Our project managers at NETL, first Dawn Deal and then Brian Dressel, kept us on track with reporting and budget matters and were always available to answer our questions. We acknowledge partial support from the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001114. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Los Alamos National Laboratory, an affirmative action/equal-opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 43 TC 1 Z9 1 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1468-8115 EI 1468-8123 J9 GEOFLUIDS JI Geofluids PD NOV PY 2016 VL 16 IS 4 BP 752 EP 768 DI 10.1111/gfl.12177 PG 17 WC Geochemistry & Geophysics; Geology SC Geochemistry & Geophysics; Geology GA EI7ZS UT WOS:000392724300007 ER PT J AU Knapik, J Steelman, R AF Knapik, Joseph Steelman, Ryan TI Risk Factors for Injuries During Military Static-Line Airborne Operations: A Systematic Review and Meta-Analysis SO JOURNAL OF ATHLETIC TRAINING LA English DT Review DE parachutes; parachuting; wind speed; night; temperature; parachute ankle brace; terrain; wounds; trauma; musculoskeletal ID PARACHUTE LANDING INJURIES; ANKLE BRACE; PHYSICAL-FITNESS; US ARMY; FEMALE; RATES; SURVEILLANCE; REDUCTION; BATTALION; ALTITUDE AB Objective: To identify and analyze articles in which the authors examined risk factors for soldiers during military staticline airborne operations. Data Sources: We searched for articles in PubMed, the Defense Technical Information Center, reference lists, and other sources using the key words airborne, parachuting, parachutes, paratrooper, injuries, wounds, trauma, and musculoskeletal. Study Selection: The search identified 17 684 potential studies. Studies were included if they were written in English, involved military static-line parachute operations, recorded injuries directly from events on the landing zone or from safety or medical records, and provided data for quantitative assessment of injury risk factors. A total of 23 studies met the review criteria, and 15 were included in the meta-analysis. Data Extraction: The summary statistic obtained for each risk factor was the risk ratio, which was the ratio of the injury risk in 1 group to that of another (baseline) group. Where data were sufficient, meta-analyses were performed and heterogeneity and publication bias were assessed. Data Synthesis: Risk factors for static-line parachuting injuries included night jumps, jumps with extra equipment, higher wind speeds, higher air temperatures, jumps from fixedwing aircraft rather than balloons or helicopters, jumps onto certain types of terrain, being a female paratrooper, greater body weight, not using the parachute ankle brace, smaller parachute canopies, simultaneous exits from both sides of an aircraft, higher heat index, winds from the rear of the aircraft on exit entanglements, less experience with a particular parachute system, being an enlisted soldier rather than an officer, and jumps involving a greater number of paratroopers. Conclusions: We analyzed and summarized factors that increased the injury risk for soldiers during military static-line parachute operations. Understanding and considering these factors in risk evaluations may reduce the likelihood of injury during parachuting. C1 [Knapik, Joseph; Steelman, Ryan] US Army, Portfolio Epidemiol & Dis Surveillance, Publ Hlth Ctr, 5154 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. [Knapik, Joseph] Oak Ridge Inst Sci & Educ, Aberdeen Proving Ground, MD USA. RP Knapik, J (reprint author), US Army, Portfolio Epidemiol & Dis Surveillance, Publ Hlth Ctr, 5154 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM joseph.j.knapik.ctr@mail.mil NR 67 TC 0 Z9 0 U1 0 U2 0 PU NATL ATHLETIC TRAINERS ASSOC INC PI DALLAS PA 2952 STEMMONS FREEWAY, DALLAS, TX 75247 USA SN 1062-6050 EI 1938-162X J9 J ATHL TRAINING JI J. Athl. Train. PD NOV PY 2016 VL 51 IS 11 BP 962 EP 980 DI 10.4085/1062-6050-51.9.10 PG 19 WC Sport Sciences SC Sport Sciences GA EI9WZ UT WOS:000392861400016 PM 28068166 ER PT J AU Roettgen, DR Allen, MS Mayes, RL AF Roettgen, Daniel R. Allen, Matthew S. Mayes, Randall L. TI Wind Turbine Substructuring Using the Transmission Simulator Method SO SOUND AND VIBRATION LA English DT Article ID MASS AB This work contains an example of the transmission simulator method for experimental dynamic substructuring using the Ampair 600 wind turbine. A modal test was performed on the hub with a single blade attached and then, using the hub as a transmission simulator, this subsubstructure was replicated three times, rotated into the correct orientation and then assembled together with two negative copies of the hub. Substructuring predictions of the modes and frequency response functions for the three-bladed assembly were compared to a set-of-truth test data. The article also highlights the dynamic substructuring wiki, where the test data for this structure and other helpful resources are available for researchers or engineers who wish to test these techniques using real measurements. C1 [Roettgen, Daniel R.; Allen, Matthew S.] Univ Wisconsin, Madison, WI 53706 USA. [Mayes, Randall L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Allen, MS (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM msallen@engr.wisc.edu NR 11 TC 0 Z9 0 U1 0 U2 0 PU ACOUSTICAL PUBL INC PI BAY VILLAGE PA 27101 E OVIATT RD, PO BOX 40416, BAY VILLAGE, OH 44140 USA SN 1541-0161 J9 SOUND VIB JI Sound Vib. PD NOV PY 2016 VL 50 IS 11 BP 14 EP 17 PG 4 WC Acoustics; Engineering, Mechanical; Mechanics SC Acoustics; Engineering; Mechanics GA EI8IY UT WOS:000392750800005 ER PT J AU Chuang, MT Fu, JS Lee, CT Lin, NH Gao, Y Wang, SH Sheu, GR Hsiao, TC Wang, JL Yen, MC Lin, TH Thongboonchoo, N AF Chuang, Ming-Tung Fu, Joshua S. Lee, Chung-Te Lin, Neng-Huei Gao, Yang Wang, Sheng-Hsiang Sheu, Guey-Rong Hsiao, Ta-Chih Wang, Jia-Lin Yen, Ming-Cheng Lin, Tang-Huang Thongboonchoo, Narisara TI The Simulation of Long-Range Transport of Biomass Burning Plume and Short-Range Transport of Anthropogenic Pollutants to a Mountain Observatory in East Asia during the 7-SEAS/2010 Dongsha Experiment SO AEROSOL AND AIR QUALITY RESEARCH LA English DT Article DE Biomass burning; Lulin high-mountain site; Simulation; 2010 Dongsha experiment ID SOUTHEAST-ASIA; AIR-QUALITY; TAIWAN; AEROSOLS; SITE; CHINA; DUST; MASS; ENHANCEMENT; CONTINENT AB The Community Multi-scale Air Quality Model (CMAQ) is used to simulate the long-range transport of biomass burning (BB) pollutants from Southeast Asia (SEA) towards the Taiwan Central Mountain Range (CMR) in March and April 2010. The results show that a proportion of the BB plume was blocked and compressed at the windward side of CMR. High-altitude BB plume is shown to influence air quality on the ground via three mechanisms: (1) the subsidence in the anticyclone, (2) the downward motion in the cold surge, and (3) the vertical mixing of the boundary layer over land. Two case studies are further investigated to probe the chemical evolution of the air parcel approaching Mt. Lulin. The first case shows that the third mechanism also explained the increase in the concentrations of peroxyacyl nitrate (PAN), higher peroxyacyl nitrate (PANX), NH3, SO2, and volatile organic compounds in the BB plume when entering the land over western Taiwan. Meanwhile, the percentage of NO3- in the plume is also significantly increased. The second case reveals that valley wind transported air pollutants from the ground to the mountains. The air parcel, accompanied with considerable concentrations of PAN, PANX, SULF, and anthropogenic secondary organic aerosol, moved up Mt. Lulin. The pollutant concentrations, except for elemental carbon, in the air parcel decreased on approach to Mt. Lulin because the air parcel was mixed with a clean air. C1 [Chuang, Ming-Tung] Natl Cent Univ, Grad Inst Energy Engn, Chungli 32001, Taiwan. [Fu, Joshua S.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. [Lee, Chung-Te; Hsiao, Ta-Chih] Natl Cent Univ, Grad Inst Environm Engn, Chungli 32001, Taiwan. [Lin, Neng-Huei; Wang, Sheng-Hsiang; Sheu, Guey-Rong; Yen, Ming-Cheng] Natl Cent Univ, Grad Inst Atmospher Phys, Chungli 32001, Taiwan. [Wang, Jia-Lin] Natl Cent Univ, Dept Chem, Chungli 32001, Taiwan. [Lin, Tang-Huang] Natl Cent Univ, Ctr Space & Remote Sensing Res, Chungli 32001, Taiwan. [Thongboonchoo, Narisara] King Mongkuts Inst Technol, Coll Chem Engn, Bangkok, Thailand. [Gao, Yang] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. RP Chuang, MT (reprint author), Natl Cent Univ, Grad Inst Energy Engn, Chungli 32001, Taiwan. EM mtchuang100@gmail.com FU Taiwan National Science Council [NSC 100-2111-M-008-017, NSC 101-2111-M-008-005, NSC 102-2111-M-008-010, MOST 103-2111-M-008-005] FX We would like to express our gratitude to the Taiwan National Science Council (NSC 100-2111-M-008-017, NSC 101-2111-M-008-005, NSC 102-2111-M-008-010, and MOST 103-2111-M-008-005). We would also like to thank the Taiwan Environmental Protection Agency for the data obtained at Lulin Atmospheric Background Station (LABS). We acknowledge the US National Centers for Environmental Prediction (NCEP) for providing the Final Operation Global Analysis (FNL) data and the Taiwan Central Weather Bureau and Data Bank of Atmospheric Research (DBAR) managed by the National Taiwan University for the meteorological maps. NR 48 TC 4 Z9 4 U1 4 U2 4 PU TAIWAN ASSOC AEROSOL RES-TAAR PI TAICHUNG COUNTY PA CHAOYANG UNIV TECH, DEPT ENV ENG & MGMT, PROD CTR AAQR, NO 168, JIFONG E RD, WUFONG TOWNSHIP, TAICHUNG COUNTY, 41349, TAIWAN SN 1680-8584 EI 2071-1409 J9 AEROSOL AIR QUAL RES JI Aerosol Air Qual. Res. PD NOV PY 2016 VL 16 IS 11 SI SI BP 2933 EP 2949 DI 10.4209/aaqr.2015.07.0440 PG 17 WC Environmental Sciences SC Environmental Sciences & Ecology GA EI2HI UT WOS:000392307100027 ER PT J AU Gibbons, SM Scholz, M Hutchison, AL Dinner, AR Gilbert, JA Coleman, ML AF Gibbons, Sean M. Scholz, Monika Hutchison, Alan L. Dinner, Aaron R. Gilbert, Jack A. Coleman, Maureen L. TI Disturbance Regimes Predictably Alter Diversity in an Ecologically Complex Bacterial System SO MBIO LA English DT Article ID INTERMEDIATE DISTURBANCE; SPECIES-DIVERSITY; HUMAN MICROBIOME; COMMUNITY; HYPOTHESIS; PRODUCTIVITY; STABILITY; FREQUENCY; SEQUENCES; ECOLOGY AB Diversity is often associated with the functional stability of ecological communities from microbes to macroorganisms. Understanding how diversity responds to environmental perturbations and the consequences of this relationship for ecosystem function are thus central challenges in microbial ecology. Unimodal diversity-disturbance relationships, in which maximum diversity occurs at intermediate levels of disturbance, have been predicted for ecosystems where life history tradeoffs separate organisms along a disturbance gradient. However, empirical support for such peaked relationships in macrosystems is mixed, and few studies have explored these relationships in microbial systems. Here we use complex microbial microcosm communities to systematically determine diversity-disturbance relationships over a range of disturbance regimes. We observed a reproducible switch between community states, which gave rise to transient diversity maxima when community states were forced to mix. Communities showed reduced compositional stability when diversity was highest. To further explore these dynamics, we formulated a simple model that reveals specific regimes under which diversity maxima are stable. Together, our results show how both unimodal and non-unimodal diversity-disturbance relationships can be observed as a system switches between two distinct microbial community states; this process likely occurs across a wide range of spatially and temporally heterogeneous microbial ecosystems. IMPORTANCE The diversity of microbial communities is linked to the functioning and stability of ecosystems. As humanity continues to impact ecosystems worldwide, and as diet and disease perturb our own commensal microbial communities, the ability to predict how microbial diversity will respond to disturbance is of critical importance. Using microbial microcosm experiments, we find that community diversity responds to different disturbance regimes in a reproducible and predictable way. Maximum diversity occurs when two communities, each suited to different environmental conditions, are mixed due to disturbance. This maximum diversity is transient except under specific regimes. Using a simple mathematical model, we show that transient unimodality is likely a common feature of microbial diversity-disturbance relationships in fluctuating environments. C1 [Gibbons, Sean M.; Scholz, Monika; Hutchison, Alan L.; Dinner, Aaron R.; Gilbert, Jack A.; Coleman, Maureen L.] Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA. [Gibbons, Sean M.; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA. [Hutchison, Alan L.] Univ Chicago, Med Scientist Training Program, Chicago, IL 60637 USA. [Dinner, Aaron R.] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. [Scholz, Monika; Dinner, Aaron R.] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, 940 E 57Th St, Chicago, IL 60637 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Univ Chicago, Dept Surg, 5841 S Maryland Ave, Chicago, IL 60637 USA. [Coleman, Maureen L.] Univ Chicago, Dept Geophys Sci, 5734 S Ellis Ave, Chicago, IL 60637 USA. [Gibbons, Sean M.] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Gibbons, SM (reprint author), Univ Chicago, Grad Program Biophys Sci, Chicago, IL 60637 USA.; Gibbons, SM (reprint author), Argonne Natl Lab, Inst Genom & Syst Biol, 9700 S Cass Ave, Argonne, IL 60439 USA.; Gibbons, SM (reprint author), MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sean.gibbons@fulbrightmail.org FU HHS | National Institutes of Health (NIH) [5T-32EB-009412, T32GM07281]; National Science Foundation (NSF) [PHY-1305542]; EPA STAR graduate fellowship; HHMI International Student Research Fellowship FX This work, including the efforts of Sean M. Gibbons, was funded by HHS | National Institutes of Health (NIH) (5T-32EB-009412). This work, including the efforts of Alan L. Hutchison, was funded by HHS | National Institutes of Health (NIH) (T32GM07281). This work, including the efforts of Aaron R. Dinner, was funded by National Science Foundation (NSF) (PHY-1305542).; SMG was supported by an EPA STAR graduate fellowship. MS was supported by a HHMI International Student Research Fellowship. NR 64 TC 0 Z9 0 U1 6 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD NOV-DEC PY 2016 VL 7 IS 6 AR e01372 DI 10.1128/mBio.01372-16 PG 10 WC Microbiology SC Microbiology GA EH9GK UT WOS:000392079500067 ER PT J AU Vineis, JH Ringus, DL Morrison, HG Delmont, TO Dalal, S Raffals, LH Antonopoulos, DA Rubin, DT Eren, AM Chang, EB Sogin, ML AF Vineis, Joseph H. Ringus, Daina L. Morrison, Hilary G. Delmont, Tom O. Dalal, Sushila Raffals, Laura H. Antonopoulos, Dionysios A. Rubin, David T. Eren, A. Murat Chang, Eugene B. Sogin, Mitchell L. TI Patient-Specific Bacteroides Genome Variants in Pouchitis SO MBIO LA English DT Article ID INFLAMMATORY-BOWEL-DISEASE; ANTIBIOTIC-RESISTANCE GENES; CAPSULAR POLYSACCHARIDE; ULCERATIVE-COLITIS; SYMBIOTIC BACTERIA; ILEAL POUCH; SURFACE ARCHITECTURE; ESCHERICHIA-COLI; SEQUENCING DATA; CROHNS-DISEASE AB A 2-year longitudinal microbiome study of 22 patients who underwent colectomy with an ileal pouch anal anastomosis detected significant increases in distinct populations of Bacteroides during 9 of 11 patient visits that coincided with inflammation (pouchitis). Oligotyping and metagenomic short-read annotation identified Bacteroides populations that occurred in early samples, bloomed during inflammation, and reappeared after antibiotic treatment. Targeted cultivation of Bacteroides isolates from the same individual at multiple time points and from several patients detected subtle genomic changes, including the identification of rapidly evolving genomic elements that differentiate isogenic strains of Bacteroides fragilis from the mucosa versus lumen. Each patient harbored Bacteroides spp. that are closely related to commonly occurring clinical isolates, including Bacteroides ovatus, B. thetaiotaomicron, B. vulgatus, and B. fragilis, which contained unique loci in different patients for synthesis of capsular polysaccharides. The presence of unique Bacteroides capsular polysaccharide loci within different hosts and between the lumen and mucosa may represent adaptations to stimulate, suppress, and evade host-specific immune responses at different microsites of the ileal pouch. IMPORTANCE This longitudinal study provides an opportunity to describe shifts in the microbiomes of individual patients who suffer from ulcerative colitis (UC) prior to and following inflammation. Pouchitis serves as a model for UC with a predictable incidence of disease onset and enables prospective longitudinal investigations of UC etiology prior to inflammation. Because of insufficient criteria for predicting which patients will develop UC or pouchitis, the interpretation of cross-sectional study designs suffers from lack of information about the microbiome structure and host gene expression patterns that directly correlate with the onset of disease. Our unique longitudinal study design allows each patient to serve as their own control, providing information about the state of the microbiome and host prior to and during the course of disease. Of significance to the broader community, this study identifies microbial strains that may have genetic elements that trigger the onset of disease in susceptible hosts. C1 [Vineis, Joseph H.; Morrison, Hilary G.; Eren, A. Murat; Sogin, Mitchell L.] Josephine Bay Paul Ctr, Marine Biol Lab, Woods Hole, MA 02543 USA. [Ringus, Daina L.; Delmont, Tom O.; Dalal, Sushila; Antonopoulos, Dionysios A.; Rubin, David T.; Eren, A. Murat; Chang, Eugene B.] Univ Chicago, Dept Med, Gastroenterol Sect, Knapp Ctr Biomed Discovery, Chicago, IL 60637 USA. [Raffals, Laura H.] Mayo Clin, Div Gastroenterol & Hepatol, Dept Internal Med, Rochester, MN USA. [Antonopoulos, Dionysios A.] Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Sogin, ML (reprint author), Josephine Bay Paul Ctr, Marine Biol Lab, Woods Hole, MA 02543 USA. EM mitchellsogin@gmail.com FU Leona M. and Harry B. Helmsley Charitable Trust (Helmsley Charitable Trust); Bay and Paul Foundations (Bay & Paul Foundations); Frank R. Lillie Research Innovation Award; Gastrointestinal Research Foundation of Chicago FX This work, including the efforts of Eugene B. Chang, was funded by Leona M. and Harry B. Helmsley Charitable Trust (Helmsley Charitable Trust). This work, including the efforts of Mitchell L. Sogin, was funded by Bay and Paul Foundations (Bay & Paul Foundations). This work, including the efforts of A. Murat Eren, was funded by the Frank R. Lillie Research Innovation Award. This work, including the efforts of Eugene B. Chang and David T. Rubin, was funded by the Gastrointestinal Research Foundation of Chicago. NR 68 TC 1 Z9 1 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD NOV-DEC PY 2016 VL 7 IS 6 AR e01713-16 DI 10.1128/mBio.01713-16 PG 11 WC Microbiology SC Microbiology GA EH9GK UT WOS:000392079500027 ER PT J AU Pavlenko, V Liu, FZ Hoffbauer, MA Moody, NA Batista, ER AF Pavlenko, Vitaly Liu, Fangze Hoffbauer, Mark A. Moody, Nathan A. Batista, Enrique R. TI Kinetics of alkali-based photocathode degradation SO AIP ADVANCES LA English DT Article ID ANTIMONIDE PHOTOCATHODES AB We report on a kinetic model that describes the degradation of the quantum efficiency (QE) of Cs3Sb and negative electron affinity (NEA) GaAs photocathodes under UHV conditions. In addition to the generally accepted irreversible chemical change of a photocathode's surface due to reactions with residual gases, such as O-2, CO2, and H2O, the model incorporates an intermediate reversible physisorption step, similar to Langmuir adsorption. This intermediate step is needed to satisfactorily describe the strongly non-exponential QE degradation curves for two distinctly different classes of photocathodes -surface-activated and "bulk," indicating that in both systems the QE degradation results from surface damage. The recovery of the QE upon improvement of vacuum conditions is also accurately predicted by this model with three parameters (rates of gas adsorption, desorption, and irreversible chemical reaction with the surface) comprising metrics to better characterize the lifetime of the cathodes, instead of time-pressure exposure expressed in Langmuir units. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Pavlenko, Vitaly; Moody, Nathan A.] Los Alamos Natl Lab, Accelerator Operat & Technol Div, Los Alamos, NM 87545 USA. [Liu, Fangze] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Hoffbauer, Mark A.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Batista, Enrique R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Moody, NA (reprint author), Los Alamos Natl Lab, Accelerator Operat & Technol Div, Los Alamos, NM 87545 USA. EM nmoody@lanl.gov; erb@lanl.gov FU U.S. Department of Energy through the LANL/LDRD Program; U.S. Department of Energy [DE-AC52-06NA25396] FX We gratefully acknowledge the support of the U.S. Department of Energy through the LANL/LDRD Program. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (contract DE-AC52-06NA25396). We thank J. Lewellen and V. Bermudez for critical reading of the manuscript, D. Lizon, A. Mohite, G. Gupta, and H. Yamaguchi for help with the sample fabrication, and S. Gerashchenko, and A. Malyzhenkov for valuable technical discussions. NR 18 TC 1 Z9 1 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD NOV PY 2016 VL 6 IS 11 AR 115008 DI 10.1063/1.4967349 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EH9HO UT WOS:000392082600016 ER PT J AU Zhang, RL Damewood, L Fong, CY Yang, LH Peng, RW Felser, C AF Zhang, R. L. Damewood, L. Fong, C. Y. Yang, L. H. Peng, R. W. Felser, C. TI A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant SO AIP ADVANCES LA English DT Article AB For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803 angstrom, and has the maximum atomic-like magnetic moment of 5 mu(B). The challenges of its growth and the effects of the spin-orbit effect in this alloy will be discussed. (C) 2016Author(s). C1 [Zhang, R. L.; Peng, R. W.] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, R. L.; Peng, R. W.] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, R. L.; Damewood, L.; Fong, C. Y.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Yang, L. H.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Felser, C.] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany. RP Zhang, RL (reprint author), Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China.; Zhang, RL (reprint author), Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.; Zhang, RL (reprint author), Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. EM rlzhang@nju.edu.cn FU National Natural Science Foundation of China [10904061, 11034005, 61475070, 11474157, 11321063]; Ministry of Science and Technology of China [2012CB921502]; China Scholarship Council; National Science Foundation [ECCS-0725902]; U.S. Department of Energy [DE-AC52-07NA27344] FX This work was supported by grants from the National Natural Science Foundation of China (Grant Nos. 10904061, 11034005, 61475070, 11474157, and 11321063), the State Key Program for Basic Research from the Ministry of Science and Technology of China (Grant Nos. 2012CB921502), and China Scholarship Council. Work at UC Davis was supported in part by the National Science Foundation Grant No. ECCS-0725902. Work at Lawrence Livermore National Laboratory was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD NOV PY 2016 VL 6 IS 11 AR 115209 DI 10.1063/1.4967365 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EH9HO UT WOS:000392082600061 ER PT J AU Kravitz, B Guenther, AB Gu, LH Karl, T Kaser, L Pallardy, SG Penuelas, J Potosnak, MJ Seco, R AF Kravitz, Ben Guenther, Alex B. Gu, Lianhong Karl, Thomas Kaser, Lisa Pallardy, Stephen G. Penuelas, Josep Potosnak, Mark J. Seco, Roger TI A new paradigm of quantifying ecosystem stress through chemical signatures SO ECOSPHERE LA English DT Article DE chemical signatures; ecosystem; stress; volatile organic compounds ID ORGANIC-COMPOUND EMISSIONS; PLANT VOLATILE EMISSIONS; FLUX MEASUREMENTS; BIOGENIC EMISSIONS; ISOPRENE EMISSION; AEROSOL FORMATION; FLORAL VOLATILE; MODEL; SCALE; REFLECTANCE AB Stress-induced emissions of biogenic volatile organic compounds (VOCs) from terrestrial ecosystems may be one of the dominant sources of VOC emissions worldwide. Understanding the ecosystem stress response could reveal how ecosystems will respond and adapt to climate change and, in turn, quantify changes in the atmospheric burden of VOC oxidants and secondary organic aerosols. Here, we argue, based on preliminary evidence from several opportunistic measurement sources, that chemical signatures of stress can be identified and quantified at the ecosystem scale. We also outline future endeavors that we see as next steps toward uncovering quantitative signatures of stress, including new advances in both VOC data collection and analysis of "big data." C1 [Kravitz, Ben] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-30, Richland, WA 99352 USA. [Guenther, Alex B.; Seco, Roger] Univ Calif Irvine, Dept Earth Syst Sci, 3200 Croul Hall St, Irvine, CA 92697 USA. [Gu, Lianhong] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Karl, Thomas] Univ Innsbruck, Inst Atmospher & Crysopher Sci, Innrain 52f, A-6020 Innsbruck, Austria. [Kaser, Lisa] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Pallardy, Stephen G.] Univ Missouri, Dept Forestry, 203 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA. [Penuelas, Josep] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain. [Penuelas, Josep] CSIC, Global Ecol Unit CREAF CSIC UAB, Cerdanyola Del Valles 08193, Catalonia, Spain. [Potosnak, Mark J.] Depaul Univ, Dept Environm Sci & Studies, McGowan South,Suite 203, Chicago, IL 60604 USA. RP Kravitz, B (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, POB 999,MSIN K9-30, Richland, WA 99352 USA. EM ben.kravitz@pnnl.gov RI Seco, Roger/F-7124-2011; OI Seco, Roger/0000-0002-2078-9956; Gu, Lianhong/0000-0001-5756-8738 FU EMSL, a DOE Office of Science user facility - Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-76RL01830]; National Science Foundation; European Research Council [SyG-2013-610028 IMBALANCE-P] FX We thank two anonymous reviewers for their helpful comments. We also thank the members of the Signature Discovery Initiative team for their support and guidance throughout this process. Special thanks go to Vanessa Bailey, Nathan Baker, George Bonheyo, Ryan Hafen, Alejandro Heredia-Langner, Jenna Larson, LeeAnn McCue, Trenton Pulsipher, Landon Sego, Yannan Sun, Mark Tardiff, and Tim White. A portion of this research was supported by EMSL, a DOE Office of Science user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. A portion of this research was conducted under the laboratory Directed Research and Development Program at PNNL, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Josep Penuelas's research was supported by the European Research Council Synergy grant SyG-2013-610028 IMBALANCE-P. NR 63 TC 0 Z9 0 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2150-8925 J9 ECOSPHERE JI Ecosphere PD NOV PY 2016 VL 7 IS 11 AR e01559 DI 10.1002/ecs2.1559 PG 15 WC Ecology SC Environmental Sciences & Ecology GA EI1AP UT WOS:000392207600017 ER PT J AU Hertzberg, M Schreuder, H AF Hertzberg, Martin Schreuder, Hans TI Role of atmospheric carbon dioxide in climate change SO ENERGY & ENVIRONMENT LA English DT Article DE IPCC paradigm; atmospheric CO2; human emission; atmospheric temperatures; ice core data; satellite data AB The authors evaluate the United Nations Intergovernmental Panel on Climate Change (IPCC) consensus that the increase of carbon dioxide in the Earth's atmosphere is of anthropogenic origin and is causing dangerous global warming, climate change and climate disruption. The totality of the data available on which that theory is based is evaluated. The data include: (a) Vostok ice-core measurements; (b) accumulation of CO2 in the atmosphere; (c) studies of temperature changes that precede CO2 changes; (d) global temperature trends; (e) current ratio of carbon isotopes in the atmosphere; (f) satellite data for the geographic distribution of atmospheric CO2; (g) effect of solar activity on cosmic rays and cloud cover. Nothing in the data supports the supposition that atmospheric CO2 is a driver of weather or climate, or that human emissions control atmospheric CO2. C1 [Hertzberg, Martin] US Naval Postgrad Sch, Monterey, CA USA. [Hertzberg, Martin] Fleet Weather Cent, Washington, DC USA. [Hertzberg, Martin] US Bur Mines Facil, Explos Testing Lab, Pittsburgh, PA USA. [Hertzberg, Martin] MSHA, Washington, DC USA. [Hertzberg, Martin] DOE, Washington, DC USA. [Hertzberg, Martin] NAS, Washington, DC USA. [Hertzberg, Martin] EPRI, Palo Alto, CA USA. [Schreuder, Hans] MENSA, Caythorpe, England. EM ruthhertzberg@msn.com NR 7 TC 0 Z9 0 U1 17 U2 17 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0958-305X EI 2048-4070 J9 ENERG ENVIRON-UK JI Energy Environ. PD NOV PY 2016 VL 27 IS 6-7 BP 785 EP 797 DI 10.1177/0958305X16674637 PG 13 WC Environmental Studies SC Environmental Sciences & Ecology GA EH4ZV UT WOS:000391783300009 ER PT J AU Dashti, H Conejo, AJ Jiang, RW Wang, JH AF Dashti, Hossein Conejo, Antonio J. Jiang, Ruiwei Wang, Jianhui TI Weekly Two-Stage Robust Generation Scheduling for Hydrothermal Power Systems SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Hydrothermal coordination; robust optimization; unit commitment; vector autoregressive model ID UNIT COMMITMENT PROBLEM; DAY ELECTRICITY PRICES; HYDRO PRODUCER; MARKET; OPTIMIZATION; RESERVOIR; ALGORITHM; DISPATCH; MODELS; WIND AB As compared to short-term forecasting (e.g., 1 day), it is often challenging to accurately forecast the volume of precipitation in a medium-term horizon (e.g., 1 week). As a result, fluctuations in water inflow can trigger generation shortage and electricity price spikes in a power system with major or predominant hydro resources. In this paper, we study a two-stage robust scheduling approach for a hydrothermal power system. We consider water inflow uncertainty and employ a vector autoregressive (VAR) model to represent its seasonality and accordingly construct an uncertainty set in the robust optimization approach. We design a Benders' decomposition algorithm to solve this problem. Results are presented for the proposed approach on a real-world case study. C1 [Dashti, Hossein] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. [Conejo, Antonio J.] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA. [Conejo, Antonio J.] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Jiang, Ruiwei] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA. [Wang, Jianhui] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Dashti, H (reprint author), Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ 85721 USA. EM hdashti@email.arizona.edu; conejonavarro.1@osu.edu; ruiwei@umich.edu; jianhui.wang@anl.gov RI Conejo, Antonio/I-2757-2012 OI Conejo, Antonio/0000-0002-2324-605X FU University of Arizona Renewable Energy Network; National Science Foundation (NSF) [60050502]; NSF [CMMI-1555983]; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX The work of H. Dashti was supported in part by the University of Arizona Renewable Energy Network. The work of A. J. Conejo was supported in part by the National Science Foundation (NSF) under grant 60050502. The work of R. Jiang was supported in part by the NSF under grant CMMI-1555983. The work of J. Wang was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. Paper no. TPWRS-00750-2015. NR 41 TC 1 Z9 1 U1 6 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2016 VL 31 IS 6 BP 4554 EP 4564 DI 10.1109/TPWRS.2015.2510628 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA EH2ES UT WOS:000391580900036 ER PT J AU Kang, M Kim, K Muljadi, E Park, JW Kang, YC AF Kang, Moses Kim, Keonhui Muljadi, Eduard Park, Jung-Wook Kang, Yong Cheol TI Frequency Control Support of a Doubly-Fed Induction Generator Based on the Torque Limit SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Rotor speed; over-deceleration (OD); torque limit; second frequency dip (SFD); frequency nadir (FN) ID SPEED WIND TURBINES; SYSTEMS; ENERGY AB This paper proposes a torque limit-based inertial control scheme of a doubly-fed induction generator (DFIG) that supports the frequency control of a power system. If a frequency deviation occurs, the proposed scheme aims to release a large amount of kinetic energy (KE) stored in the rotating masses of a DFIG to raise the frequency nadir (FN). Upon detecting the event, the scheme instantly increases its output to the torque limit and then reduces the output with the rotor speed so that it converges to the stable operating range. To restore the rotor speed while causing a small second frequency dip (SFD), after the rotor speed converges the power reference is reduced by a small amount and maintained until it meets the reference for maximum power point tracking control. The test results demonstrate that the scheme can improve the FN and maximum rate of change of frequency while causing a small SFD in any wind conditions and in a power system that has a high penetration of wind power, and thus the scheme helps maintain the required level of system reliability. The scheme releases the KE from 2.9 times to 3.7 times the Hydro-Quebec requirement depending on the power reference. C1 [Kang, Moses; Kim, Keonhui] Chonbuk Natl Univ, Dept Elect Engn, Chonju 561756, South Korea. [Kang, Moses; Kim, Keonhui] Chonbuk Natl Univ, Wind Energy Grid Adapt Technol WeGAT Res Ctr, Chonju 561756, South Korea. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Park, Jung-Wook] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120749, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Chonju 561756, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Chonju 561756, South Korea. RP Kang, YC (reprint author), Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Chonju 561756, South Korea.; Kang, YC (reprint author), Chonbuk Natl Univ, Smart Grid Res Ctr, Chonju 561756, South Korea. EM bass0680@jbnu.ac.kr; keonhuikim@jbnu.ac.kr; eduard.muljadi@nrel.gov; jungpark@yonsei.ac.kr; yckang@jbnu.ac.kr FU National Research Foundation of Korea (NRF) - Korea government (MSIP) [2010-0028509, 2010-0028065]; U.S. Department of Energy [DE-AC36-08-GO28308]; NREL FX This work was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2010-0028509) and in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2010-0028065). NREL's contribution to this work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with NREL. Paper no. TPWRS-00762-2015. (Corresponding author: Yong Cheol Kang.) NR 21 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2016 VL 31 IS 6 BP 4575 EP 4583 DI 10.1109/TPWRS.2015.2514240 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EH2ES UT WOS:000391580900038 ER PT J AU Li, ZS Guo, QL Sun, HB Wang, JH AF Li, Zhengshuo Guo, Qinglai Sun, Hongbin Wang, Jianhui TI Coordinated Economic Dispatch of Coupled Transmission and Distribution Systems Using Heterogeneous Decomposition SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Active distribution grid (ADG); decentralized optimization; decomposition; economic dispatch (ED); locational marginal price (LMP); transmission ID OPTIMAL POWER-FLOW; DISTRIBUTION NETWORK; DC-OPF; MANAGEMENT; OPTIMIZATION AB Because distributed generations are extensively integrated into active distribution grids (ADGs), the transmission and distribution coordinated economic dispatch (TDCED) should be investigated to optimally dispatch the generation resources and evaluate the locational marginal prices (LMPs) of the entire system. In this paper, the TDCED problem is formulated, and a new heterogeneous decomposition (HGD) algorithm is proposed. In the HGD algorithm, the transmission LMP at the boundary bus and ADGs' power are exchanged among transmission and ADGs. The optimality and convergency of HGD are proven and numerically verified. In addition, several related issues are further discussed: a) methods to improve the convergency of HGD, b) considerations regarding security issues and voltage constraints in TDCED and corresponding modified HGD algorithms, and c) the practicality of HGD in either separate or transparent interaction modes of transmission and distribution in future grids. Numerical simulations indicate that the generation resources are optimally utilized and that LMPs are reasonably evaluated in TDCED. Congestion in the traditional isolated dispatch mode can also be prevented. Moreover, simulations on several systems from T6D2 to T300D60 verify that the HGD algorithm is an efficient and robust algorithm with limited communication burdens to solve TDCED. C1 [Li, Zhengshuo; Guo, Qinglai; Sun, Hongbin] Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA. RP Sun, HB (reprint author), Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China. EM shb@tsinghua.edu.cn; jianhui.wang@anl.gov FU National Key Basic Research Program of China (973 Program) [2013CB228203]; National Science Foundation of China [51025725, 51321005]; Tsinghua University Initiative Scientific Research Program; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX This work was supported in part by the National Key Basic Research Program of China (973 Program) (2013CB228203), in part by the National Science Foundation of China (51025725 & 51321005), and in part by the Tsinghua University Initiative Scientific Research Program. The work of J. Wang was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. Paper no. TPWRS-01014-2015. NR 36 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2016 VL 31 IS 6 BP 4817 EP 4830 DI 10.1109/TPWRS.2016.2515578 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA EH2ES UT WOS:000391580900061 ER PT J AU Castillo, A Laird, C Silva-Monroy, CA Watson, JP O'Neill, RP AF Castillo, Anya Laird, Carl Silva-Monroy, Cesar A. Watson, Jean-Paul O'Neill, Richard P. TI The Unit Commitment Problem With AC Optimal Power Flow Constraints SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE AC optimal power flow (ACOPF); local solution method; mixed-integer nonlinear program (MINLP); outer approximation (OA); unit commitment (UC) ID INTEGER NONLINEAR PROGRAMS; MIXED-INTEGER; OUTER-APPROXIMATION; SECURITY; ALGORITHM AB We propose a mathematical programming-based approach to optimize the unit commitment problem with alternating current optimal power flow (ACOPF) network constraints. This problem is a nonconvex mixed-integer nonlinear program (MINLP) that we solve through a solution technique based on the outer approximation method. Our solution technique cooptimizes real and reactive power scheduling and dispatch subject to both unit commitment constraints and ACOPF constraints. The proposed approach is a local solution method that leverages powerful linear and mixed-integer commercial solvers. We demonstrate the relative economic and operational impact of more accurate ACOPF constraint modeling on the unit commitment problem, when compared with copperplate and DCOPF constraint modeling approaches; we use a six-bus, the IEEE RTS-79, and the IEEE-118 test systems for this analysis. Our approach can be extended to solve larger scale power systems as well as include security constraints or uncertainty through decomposition techniques. C1 [Castillo, Anya] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Castillo, Anya; O'Neill, Richard P.] FERC, Washington, DC 20426 USA. [Laird, Carl] Purdue Univ, W Lafayette, IN 47907 USA. [Silva-Monroy, Cesar A.; Watson, Jean-Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Castillo, A (reprint author), Johns Hopkins Univ, Baltimore, MD 21218 USA.; Castillo, A (reprint author), FERC, Washington, DC 20426 USA. EM anya.castillo@gmail.com; carllaird@purdue.edu; casilv@sandia.gov; jwatson@sandia.gov; richard.oneill@ferc.gov FU U.S. Department of Energy's Office of Science through Advanced Scientific Computing Research program [KJ0401000]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX This work was supported by the U.S. Department of Energy's Office of Science through the Advanced Scientific Computing Research program under Contract KJ0401000, project title "Multifaceted Mathematics for Complex Energy System." Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Paper no. TPWRS-01022-2015. NR 44 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2016 VL 31 IS 6 BP 4853 EP 4866 DI 10.1109/TPWRS.2015.2511010 PG 14 WC Engineering, Electrical & Electronic SC Engineering GA EH2ES UT WOS:000391580900064 ER PT J AU Dai, CX Wu, L Wu, HY AF Dai, Chenxi Wu, Lei Wu, Hongyu TI A Multi-Band Uncertainty Set Based Robust SCUC With Spatial and Temporal Budget Constraints SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Multi-band uncertainty set; SCUC; robust optimization ID UNIT COMMITMENT PROBLEM; STOCHASTIC SECURITY; OPTIMIZATION; WIND AB The dramatic increase of renewable energy resources in recent years, together with the long-existing load forecast errors and increasingly involved price sensitive demands, has introduced significant uncertainties into power systems operation. In order to guarantee the operational security of power systems with such uncertainties, robust optimization has been extensively studied in security-constrained unit commitment (SCUC) problems, for immunizing the system against worst uncertainty realizations. However, traditional robust SCUC models with single-band uncertainty sets may yield over-conservative solutions in most cases. This paper proposes a multi-band robust model to accurately formulate various uncertainties with higher resolution. By properly tuning band intervals and weight coefficients of individual bands, the proposed multi-band robust model can rigorously and realistically reflect spatial/temporal relationships and asymmetric characteristics of various uncertainties, and in turn could effectively leverage the tradeoff between robustness and economics of robust SCUC solutions. The proposed multi-band robust SCUC model is solved by Benders decomposition (BD) and outer approximation (OA), while taking the advantage of integral property of the proposed multi-band uncertainty set. In addition, several accelerating techniques are developed for enhancing the computational performance and the convergence speed. Numerical studies on a 6-bus system and the modified IEEE 118-bus system verify the effectiveness of the proposed robust SCUC approach for enhancing uncertainty modeling capabilities and mitigating conservativeness of the robust SCUC solution. C1 [Dai, Chenxi; Wu, Lei] Clarkson Univ, Elect & Comp Engn Dept, Potsdam, NY 13699 USA. [Wu, Hongyu] NREL, Golden, CO 80401 USA. RP Dai, CX (reprint author), Clarkson Univ, Elect & Comp Engn Dept, Potsdam, NY 13699 USA. EM daic@clarkson.edu; lwu@clarkson.edu; Hongyu.Wu@nrel.gov OI Wu, Hongyu/0000-0002-5223-6635 FU U.S. National Science Foundation [ECCS-1254310] FX This work was supported in part by the U.S. National Science Foundation grant ECCS-1254310. Paper no. TPWRS-01245-2015. NR 31 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2016 VL 31 IS 6 BP 4988 EP 5000 DI 10.1109/TPWRS.2016.2525009 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA EH2ES UT WOS:000391580900076 ER PT J AU Wei, W Li, N Wang, JH Mei, SW AF Wei, Wei Li, Na Wang, Jianhui Mei, Shengwei TI Estimating the Probability of Infeasible Real-Time Dispatch Without Exact Distributions of Stochastic Wind Generations SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Convex optimization; power system operation; uncertainty quantification; wind generation ID CONSTRAINED UNIT COMMITMENT; ROBUST OPTIMIZATION APPROACH; POWER-GENERATION; RESERVE DISPATCH; SYSTEMS; ENERGY; UNCERTAINTY; CAPACITY AB This paper proposes a data-driven and convex optimization based method to quantify the probability of infeasible real-time dispatch (RTD) of power systems with volatile wind energy integrations. The required information about wind power is a finite sequence of moments, instead of the exact probability distribution function (PDF). The candidate PDFs are restricted in a functional set subject to moment constraints. By assuming the dispatchable region of nodal wind power injection is available, we propose a semi-definite programming (SDP) based method and a linear programming (LP) based method to estimate the probability of infeasibility in the worst wind power distribution. We also suggest two alternative methods based on the emerging generalized Chebyshev inequality (GCI) and generalized Gauss inequality (GGI), which only utilize the first and second order moments, and boil down to solving SDPs. We compare the performances of all the discussed methods on the moderately sized IEEE 118-bus system. Experimental results demonstrate that our method can offer monotonically better estimation when higher order moments are provided and is competitive with GCI and GGI. C1 [Wei, Wei; Mei, Shengwei] Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China. [Li, Na] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA. RP Wei, W (reprint author), Tsinghua Univ, State Key Lab Power Syst, Dept Elect Engn, Beijing 100084, Peoples R China. EM wei-wei04@mails.tsinghua.edu.cn; nali@seas.harvard.edu; jianhui.wang@anl.gov; meishengwei@mail.tsinghua.edu.cn FU National Natural Science Foundation of China [51577163, 51577097]; Foundation for Innovative Research Groups of the National Natural Science Foundation of China [51321005]; State Grid Corporation of China [SGSXDKYDWKJ2015-001] FX The work of W. Wei and S. Mei was supported in part by the National Natural Science Foundation of China (51577163), in part by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51321005), and in part by the special grand from State Grid Corporation of China (SGSXDKYDWKJ2015-001). The work of N. Li was supported by the National Natural Science Foundation of China (51577097). Paper no. TPWRS-01273-2015. (Corresponding author: Wei Wei.) NR 44 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2016 VL 31 IS 6 BP 5022 EP 5032 DI 10.1109/TPWRS.2015.2513047 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA EH2ES UT WOS:000391580900079 ER PT J AU Wei, W Wang, JH Mei, SW AF Wei, Wei Wang, Jianhui Mei, Shengwei TI Convexification of the Nash Bargaining Based Environmental-Economic Dispatch SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Convex optimization; environmental-economic dispatch; multi-objective optimization; bargaining theory AB The environmental-economic dispatch (EED) is a bi-objective optimization problem. The Nash bargaining theory provides one way to determine a compromising solution without a clear carbon tax or carbon cap, or any subjective attitudes on both objectives, which yields a non-convex program. This letter proposes a convex formulation for Nash bargaining based EED and a linear programming (LP) based algorithm. Case studies show its scalability on real-world large-scale power systems. C1 [Wei, Wei; Mei, Shengwei] Tsinghua Univ, Dept Elect Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA. RP Wei, W (reprint author), Tsinghua Univ, Dept Elect Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China. EM wei-wei04@mails.tsinghua.edu.cn; jianhui.wang@anl.gov; meishengwei@mail.tsinghua.edu.cn FU National Natural Science Foundation of China [51321005]; special grant from State Grid Corporation of China [SGSXDKY-DWKJ2015-001] FX This work was supported in part by the National Natural Science Foundation of China (51321005), and in part by the special grant from State Grid Corporation of China (SGSXDKY-DWKJ2015-001). Paper no. PESL-00147-2015. (Corresponding author: Wei Wei.) NR 4 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2016 VL 31 IS 6 BP 5208 EP 5209 DI 10.1109/TPWRS.2016.2521322 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA EH2ES UT WOS:000391580900101 ER PT J AU Ma, WJ Wang, JH Lu, XN Gupta, V AF Ma, Wann-Jiun Wang, Jianhui Lu, Xiaonan Gupta, Vijay TI Optimal Operation Mode Selection for a DC Microgrid SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE DC; microgrids; switched system; optimal control ID SYSTEMS; GENERATION; STABILITY AB This paper considers an optimal control problem to improve dc microgrid stability while minimizing its operation cost. A dc microgrid consists of various components, such as renewable energy sources, loads, and power lines. Every component may change its role during operation by switching to a different mode in real time. A switched system approach is employed to ensure the stability of a dc microgrid with a rich array of operation modes. Meanwhile, an optimal control algorithm is designed to improve the system performance by appropriately selecting the operation modes. A typical dc microgrid with three source buses and one load bus is implemented. The effectiveness of the algorithms is verified by MATLAB/Simulink time-domain tests and numerical studies. C1 [Ma, Wann-Jiun] Duke Univ, Dept Mech & Mat Sci, Durham, NC 27708 USA. [Wang, Jianhui; Lu, Xiaonan] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. [Gupta, Vijay] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. RP Ma, WJ (reprint author), Duke Univ, Dept Mech & Mat Sci, Durham, NC 27708 USA. EM wann.jiun.ma@duke.edu; jianhui.wang@anl.gov; xiaonan.lu@anl.gov; vgupta2@nd.edu RI Gupta, Vijay/C-7420-2009 OI Gupta, Vijay/0000-0001-7060-3956 FU National Science Foundation [1239224]; Office of Electricity of the U.S. Department of Energy FX The work of W.-J. Ma and V. Gupta was supported by the National Science Foundation under Grant 1239224. The work of J. Wang and X. Lu was supported by the Office of Electricity of the U.S. Department of Energy. NR 19 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD NOV PY 2016 VL 7 IS 6 BP 2624 EP 2632 DI 10.1109/TSG.2016.2516566 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EH4EH UT WOS:000391723600006 ER PT J AU Khodaei, A Wu, L Aminifar, F Bahramirad, S Parvania, M Qiu, F Aguero, JR Kwasinski, A AF Khodaei, Amin Wu, Lei Aminifar, Farrokh Bahramirad, Shay Parvania, Masood Qiu, Feng Aguero, Julio Romero Kwasinski, Alexis TI Guest Editorial Power Grid Resilience SO IEEE TRANSACTIONS ON SMART GRID LA English DT Editorial Material C1 [Khodaei, Amin] Univ Denver, Dept Elect & Comp Engn, Denver, CO 80209 USA. [Wu, Lei] Clarkson Univ, Potsdam, NY USA. [Aminifar, Farrokh] Univ Tehran, Tehran, Iran. [Bahramirad, Shay] ComEd, Chicago, IL USA. [Parvania, Masood] Univ Utah, Salt Lake City, UT USA. [Qiu, Feng] Argonne Natl Lab, Lemont, IL USA. [Aguero, Julio Romero] Quanta Technol, Raleigh, NC USA. [Kwasinski, Alexis] Univ Pittsburg, Pittsburgh, PA USA. RP Khodaei, A (reprint author), Univ Denver, Dept Elect & Comp Engn, Denver, CO 80209 USA. EM amin.khodaei@du.edu OI Aminifar, Farrokh/0000-0003-2331-2798 NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD NOV PY 2016 VL 7 IS 6 BP 2805 EP 2806 DI 10.1109/TSG.2016.2612498 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA EH4EH UT WOS:000391723600022 ER PT J AU Yuan, W Wang, JH Qiu, F Chen, C Kang, CQ Zeng, B AF Yuan, Wei Wang, Jianhui Qiu, Feng Chen, Chen Kang, Chongqing Zeng, Bo TI Robust Optimization-Based Resilient Distribution Network Planning Against Natural Disasters SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Natural disaster; microgrid; robust optimization; distribution network planning; resilience; distributed generation ID LARGE-SCALE; POWER; SYSTEM; MODEL; RECONFIGURATION; RESTORATION; PLACEMENT; DEFENSE AB Natural disasters such as Hurricane Sandy can seriously disrupt the power grids. To increase the resilience of an electric distribution system against natural disasters, this paper proposes a resilient distribution network planning problem (RDNP) to coordinate the hardening and distributed generation resource allocation with the objective of minimizing the system damage. The problem is formulated as a two-stage robust optimization model. Hardening and distributed generation resource placement are considered in the distribution network planning. A multi-stage and multi-zone based uncertainty set is designed to capture the spatial and temporal dynamics of an uncertain natural disaster as an extension to the traditional N-K contingency approach. The optimal solution of the RDNP yields a resilient distribution system against natural disasters. Our computational studies on the IEEE distribution test systems validate the effectiveness of the proposed model and reveal that distributed generation is critical in increasing the resilience of a distribution system against natural disasters in the form of microgrids. C1 [Yuan, Wei] Univ S Florida, Dept Ind & Management Syst Engn, Tampa, FL 33620 USA. [Wang, Jianhui; Qiu, Feng; Chen, Chen] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. [Kang, Chongqing] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China. [Zeng, Bo] Univ Pittsburgh, Dept Ind Engn, Pittsburgh, PA 15261 USA. RP Yuan, W (reprint author), Univ S Florida, Dept Ind & Management Syst Engn, Tampa, FL 33620 USA. EM weiyuan@mail.usf.edu; jianhui.wang@anl.gov; fqiu@anl.gov; morningchen@anl.gov; cqkang@tsinghua.edu.cn; bzeng@pitt.edu FU U.S. Department of Energy Office of Electricity Delivery and Energy Reliability; Open Project Program of State Key Laboratory of Power System, Tsinghua University [SKLD14KZ04] FX This work was supported in part by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability, and in part by the Open Project Program of State Key Laboratory of Power System, Tsinghua University, under Grant SKLD14KZ04. NR 33 TC 0 Z9 0 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD NOV PY 2016 VL 7 IS 6 BP 2817 EP 2826 DI 10.1109/TSG.2015.2513048 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA EH4EH UT WOS:000391723600024 ER PT J AU Chanda, S Srivastava, AK AF Chanda, Sayonsom Srivastava, Anurag K. TI Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Microgrids; power distribution system; power system reconfiguration; resilience ID POWER; RESTORATION; NETWORKS AB This paper presents a method for quantifying and enabling the resiliency of a power distribution system using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, and develop proactive control actions to avert power system outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids. C1 [Chanda, Sayonsom] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Srivastava, Anurag K.] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99163 USA. RP Chanda, S (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM sayon@ieee.org; asrivast@eecs.wsu.edu OI Srivastava, Anurag/0000-0003-3518-8018 NR 43 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD NOV PY 2016 VL 7 IS 6 BP 2859 EP 2868 DI 10.1109/TSG.2016.2561303 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA EH4EH UT WOS:000391723600028 ER PT J AU Kang, M Muljadi, E Hur, K Kang, YC AF Kang, Moses Muljadi, Eduard Hur, Kyeon Kang, Yong Cheol TI Stable Adaptive Inertial Control of a Doubly-Fed Induction Generator SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Inertial control; over-deceleration (OD); power reference; second frequency dip (SFD); frequency nadir (FN) ID SPEED WIND TURBINES; PRIMARY FREQUENCY CONTROL; POWER PENETRATION; SYSTEMS; ENERGY; SUPPORT AB This paper proposes a stable adaptive inertial control scheme of a doubly-fed induction generator. The proposed power reference is defined in two sections: 1) the deceleration period and 2) the acceleration period. The power reference in the deceleration period consists of a constant and the reference for maximum power point tracking (MPPT) operation. The latter contributes to preventing a second frequency dip (SFD) in this period because its reduction rate is large at the early stage of an event but quickly decreases with time. To improve the frequency nadir (FN), the constant value is set to be proportional to the rotor speed prior to an event. The reference ensures that the rotor speed converges to a stable operating region. To accelerate the rotor speed while causing a small SFD, when the rotor speed converges, the power reference is reduced by a small amount and maintained until it meets the MPPT reference. The results show that the scheme causes a small SFD while improving the FN and the rate of change of frequency in any wind conditions, even in a grid that has a high penetration of wind power. C1 [Kang, Moses] Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Hur, Kyeon] Yonsei Univ, Dept Elect & Elect Engn, Seoul 120749, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea. RP Kang, YC (reprint author), Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea.; Kang, YC (reprint author), Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea. EM bass0680@jbnu.ac.kr; eduard.muljadi@nrel.gov; khur@yonsei.ac.kr; yckang@jbnu.ac.kr FU National Research Foundation of Korea by the Korea Government [2010-0028509]; U.S. Department of Energy through NREL [DE-AC36-08-GO28308] FX This work was supported in part by the National Research Foundation of Korea by the Korea Government under Grant 2010-0028509, and in part by the U.S. Department of Energy through NREL under Contract DE-AC36-08-GO28308. NR 23 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD NOV PY 2016 VL 7 IS 6 BP 2971 EP 2979 DI 10.1109/TSG.2016.2559506 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EH4EH UT WOS:000391723600039 ER PT J AU Kim, J Muljadi, E Park, JW Kang, YC AF Kim, Jinho Muljadi, Eduard Park, Jung-Wook Kang, Yong Cheol TI Adaptive Hierarchical Voltage Control of a DFIG-Based Wind Power Plant for a Grid Fault SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Hierarchical WPP voltage control; adaptive Q-V characteristic; available reactive power; voltage support; grid resilience ID FED INDUCTION GENERATOR; DESIGN; TURBINES AB This paper proposes an adaptive hierarchical voltage control scheme of a doubly-fed induction generator (DFIG)-based wind power plant (WPP) that can secure more reserve of reactive power (Q) in the WPP against a grid fault. To achieve this, each DFIG controller employs an adaptive reactive power to voltage (Q-V) characteristic. The proposed adaptive Q-V characteristic is temporally modified depending on the available Q capability of a DFIG; it is dependent on the distance from a DFIG to the point of common coupling (PCC). The proposed characteristic secures more Q reserve in the WPP than the fixed one. Furthermore, it allows DFIGs to promptly inject up to the Q limit, thereby improving the PCC voltage support. To avert an overvoltage after the fault clearance, washout filters are implemented in the WPP and DFIG controllers; they can prevent a surplus Q injection after the fault clearance by eliminating the accumulated values in the proportional-integral controllers of both controllers during the fault. Test results demonstrate that the scheme can improve the voltage support capability during the fault and suppress transient overvoltage after the fault clearance under scenarios of various system and fault conditions; therefore, it helps ensure grid resilience by supporting the voltage stability. C1 [Kim, Jinho] Chonbuk Natl Univ, Dept Elect Engn, Jeonju 561756, South Korea. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Park, Jung-Wook] Yonsei Univ, Sch Elect & Elect Engn, Seoul 120149, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea. RP Kang, YC (reprint author), Chonbuk Natl Univ, Dept Elect Engn, WeGAT Res Ctr, Jeonju 561756, South Korea.; Kang, YC (reprint author), Chonbuk Natl Univ, Smart Grid Res Ctr, Jeonju 561756, South Korea. EM jkim@jbnu.ac.kr; eduard.muljadi@nrel.gov; jungpark@yonsei.ac.kr; yckang@jbnu.ac.kr FU National Research Foundation of Korea through the Korea Government (MSIP) [2010-0028509, 2011-0028065]; U.S. Department of Energy through NREL [DE-AC36-08-GO28308] FX This work was supported in part by the National Research Foundation of Korea through the Korea Government (MSIP) under Grant 2010-0028509 and Grant 2011-0028065, and in part by the U.S. Department of Energy through NREL under Contract DE-AC36-08-GO28308. NR 29 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD NOV PY 2016 VL 7 IS 6 BP 2980 EP 2990 DI 10.1109/TSG.2016.2562111 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA EH4EH UT WOS:000391723600040 ER PT J AU Gorelenkov, NN Heidbrink, WW Kramer, GJ Lestz, JB Podesta, M Van Zeeland, MA White, RB AF Gorelenkov, N. N. Heidbrink, W. W. Kramer, G. J. Lestz, J. B. Podesta, M. Van Zeeland, M. A. White, R. B. TI Validating predictive models for fast ion profile relaxation in burning plasmas SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems CY 2015 CL Vienna, AUSTRIA SP IAEA DE alpha particles; Alfvenic modes; magnetic fusion; reduced quasi-linear model ID ALFVEN EIGENMODES; TOROIDAL PLASMAS; STABILITY; TOKAMAKS; EXCITATION AB The redistribution and potential loss of energetic particles due to MHD modes can limit the performance of fusion plasmas by reducing the plasma heating rate. In this work, we present validation studies of the 1.5D critical gradient model (CGM) for Alfven eigenmode (AE) induced EP transport in NSTX and DIII-D neutral beam heated plasmas. In previous comparisons with a single DIII-D L-mode case, the CGM model was found to be responsible for 75% of measured AE induced neutron deficit [1]. A fully kinetic HINST is used to compute mode stability for the non-perturbative version of CGM (or nCGM). We have found that AEs show strong local instability drive up to gamma/omega similar to 20% violating assumptions of perturbative approaches used in NOVA-K code. We demonstrate that both models agree with each other and both underestimate the neutron deficit measured in DIII-D shot by approximately a factor of 2. On the other hand in NSTX the application of CGM shows good agreement for the measured flux deficit predictions. We attempt to understand these results with the help of the so-called kick model which is based on the guiding center code ORBIT. The kick model comparison gives important insight into the underlying velocity space dependence of the AE induced EP transport as well as it allows the estimate of the neutron deficit in the presence of the low frequency Alfvenic modes. Within the limitations of used models we infer that there are missing modes in the analysis which could improve the agreement with the experiments. C1 [Gorelenkov, N. N.; Kramer, G. J.; Lestz, J. B.; Podesta, M.; White, R. B.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA USA. [Van Zeeland, M. A.] Gen Atom, San Diego, CA USA. RP Gorelenkov, NN (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ngorelen@pppl.gov NR 35 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2016 VL 56 IS 11 SI SI AR 112015 DI 10.1088/0029-5515/56/11/112015 PG 10 WC Physics, Fluids & Plasmas SC Physics GA EG9QI UT WOS:000391393900015 ER PT J AU Pfefferle, D Cooper, WA Fasoli, A Graves, JP AF Pfefferle, D. Cooper, W. A. Fasoli, A. Graves, J. P. TI Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems CY 2015 CL Vienna, AUSTRIA SP IAEA DE alpha particle confinement; 3D MHD equilibrium; stochastic ripple diffusion; ripple well trapping; neoclassical transport; energetic particle loss ID TOROIDAL PLASMA; TOKAMAKS; FIELD; TRANSPORT; SIMULATIONS; DIFFUSION; IONS AB An assessment of alpha particle confinement is performed in the European DEMO reference design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with two ripple models: (1) using the 3D equilibrium and (2) algebraically adding the non-axisymmetric ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant nature, both models quantitatively agree. Differences are however noted in the toroidal location of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be the dominant loss mechanism, the strongest effect on alphas being between 100-200 KeV. Above this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation threshold is observed numerically to be higher than analytic estimates. The level of ripple in the current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha confinement. C1 [Pfefferle, D.; Cooper, W. A.; Fasoli, A.; Graves, J. P.] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland. [Pfefferle, D.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Pfefferle, D (reprint author), Ecole Polytech Fed Lausanne, Swiss Plasma Ctr, CH-1015 Lausanne, Switzerland.; Pfefferle, D (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM david.pfefferle@princeton.edu NR 35 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2016 VL 56 IS 11 SI SI AR 112002 DI 10.1088/0029-5515/56/11/112002 PG 14 WC Physics, Fluids & Plasmas SC Physics GA EG9QI UT WOS:000391393900002 ER PT J AU Podesta, M Gorelenkova, M Fredrickson, ED Gorelenkov, NN White, RB AF Podesta, M. Gorelenkova, M. Fredrickson, E. D. Gorelenkov, N. N. White, R. B. TI Effects of energetic particle phase space modifications by instabilities on integrated modeling SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems CY 2015 CL Vienna, AUSTRIA SP IAEA DE NB current drive; fast ion transport modeling; integrated tokamak simulations; TRANSP code ID INDUCED ALFVEN EIGENMODE; DIII-D TOKAMAK; PLASMAS; PHYSICS; NSTX; TRANSPORT AB Tokamak plasmas can feature a large population of energetic particles (EP) from neutral beam injection or fusion reactions. In turn, energetic particles can drive instabilities, which affect the driving EP population leading to a distortion of the original EP distribution function and of quantities that depend on it. The latter include, for example, neutral beam (NB) current drive and plasma heating through EP thermalization. Those effects must be taken into account to enable reliable and quantitative simulations of discharges for present devices as well as predictions for future burning plasmas. Reduced models for EP transport are emerging as an effective tool for long time-scale integrated simulations of tokamak plasmas, possibly including the effects of instabilities on EP dynamics. Available models differ in how EP distribution properties are modified by instabilities, e.g. in terms of gradients in real or phase space. It is therefore crucial to assess to what extent different assumptions in the transport models affect predicted quantities such as EP profile, energy distribution, NB driven current and energy/momentum transfer to the thermal populations. A newly developed kick model, which includes modifications of the EP distribution by instabilities in both real and velocity space, is used in this work to investigate these issues. Coupled to TRANSP simulations, the kick model is used to analyze NB-heated NSTX and DIII-D discharges featuring unstable Alfven eigenmodes (AEs). Results show that instabilities can strongly affect the EP distribution function, and modifications propagate to macroscopic quantities such as NB-driven current profile and NB power transferred to the thermal plasma species. Those important aspects are only qualitatively captured by simpler fast ion transport models that are based on radial diffusion of energetic ions only. C1 [Podesta, M.; Gorelenkova, M.; Fredrickson, E. D.; Gorelenkov, N. N.; White, R. B.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Podesta, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mpodesta@pppl.gov NR 31 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2016 VL 56 IS 11 SI SI AR 112005 DI 10.1088/0029-5515/56/11/112005 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EG9QI UT WOS:000391393900005 ER PT J AU Van Zeeland, MA Heidbrink, WW Sharapov, SE Spong, D Cappa, A Chen, X Collins, C Garcia-Munoz, M Gorelenkov, NN Kramer, GJ Lauber, P Lin, Z Petty, C AF Van Zeeland, M. A. Heidbrink, W. W. Sharapov, S. E. Spong, D. Cappa, A. Chen, Xi Collins, C. Garcia-Munoz, M. Gorelenkov, N. N. Kramer, G. J. Lauber, P. Lin, Z. Petty, C. TI Electron cyclotron heating can drastically alter reversed shear Alfven eigenmode activity in DIII-D through finite pressure effects SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT 14th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems CY 2015 CL Vienna, AUSTRIA SP IAEA DE magnetohydrodynamic waves; tokamaks; fusion products effects; plasma heating by microwaves; plasma heating by particle beams ID AXISYMMETRICAL TOROIDAL PLASMAS; WAVE CASCADES; D TOKAMAK; MODES; GRADIENT; DRIVEN; JT-60U AB A recent DIII-D experiment investigating the impact of electron cyclotron heating (ECH) on neutral beam driven reversed shear Alfven eigenmode (RSAE) activity is presented. The experiment includes variations of ECH injection location and timing, current ramp rate, beam injection geometry (on/off-axis), and neutral beam power. Essentially all variations carried out in this experiment were observed to change the impact of ECH on AE activity significantly. In some cases, RSAEs were observed to be enhanced with ECH near the off-axis minimum in magnetic safety factor (q(min)), in contrast to the original DIII-D experiments where the modes were absent when ECH was deposited near q(min). It is found that during intervals when the geodesic acoustic mode (GAM) frequency at q(min) is elevated and the calculated RSAE minimum frequency, including contributions from thermal plasma gradients, is very near or above the nominal TAE frequency (f(TAE)), RSAE activity is not observed or RSAEs with a much reduced frequency sweep range are found. This condition is primarily brought about by ECH modification of the local electron temperature (T-e) which can raise both the local T-e at q(min) as well as its gradient. A q-evolution model that incorporates this reduction in RSAE frequency sweep range is in agreement with the observed spectra and appears to capture the relative balance of TAE or RSAE-like modes throughout the current ramp phase of over 38 DIII-D discharges. Detailed ideal MHD calculations using the NOVA code show both modification of plasma pressure and pressure gradient at q(min) play an important role in modifying the RSAE activity. Analysis of the ECH injection near the q(min) case where no frequency sweeping RSAEs are observed shows the typical RSAE is no longer an eigenmode of the system. What remains is an eigenmode with poloidal harmonic content reminiscent of the standard RSAE, but absent of the typical frequency sweeping behavior. The remaining eigenmode is also often strongly coupled to gap TAEs. Analysis with the non-perturbative gyro fluid code TAEFL confirms this change in RSAE activity and also shows a large drop in the resultant mode growth rates. C1 [Van Zeeland, M. A.; Chen, Xi; Petty, C.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Heidbrink, W. W.; Collins, C.; Lin, Z.] Univ Calif Irvine, Irvine, CA 92697 USA. [Sharapov, S. E.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. [Spong, D.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Cappa, A.] CIEMAT, Lab Nacl Fus, E-28040 Madrid, Spain. [Garcia-Munoz, M.; Lauber, P.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. [Gorelenkov, N. N.; Kramer, G. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Van Zeeland, MA (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM vanzeeland@fusion.gat.com RI Cappa, Alvaro/C-5614-2017 OI Cappa, Alvaro/0000-0002-2250-9209 NR 66 TC 1 Z9 1 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2016 VL 56 IS 11 SI SI AR 112007 DI 10.1088/0029-5515/56/11/112007 PG 15 WC Physics, Fluids & Plasmas SC Physics GA EG9QI UT WOS:000391393900007 ER PT J AU Mo, JK Kang, ZY Retterer, ST Cullen, DA Toops, TJ Green, JB Mench, MM Zhang, FY AF Mo, Jingke Kang, Zhenye Retterer, Scott T. Cullen, David A. Toops, Todd J. Green, Johney B., Jr. Mench, Matthew M. Zhang, Feng-Yuan TI Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting SO SCIENCE ADVANCES LA English DT Article ID MEMBRANE ELECTROLYZER CELL; TRANSITION-METAL CARBIDES; HYDROGEN-PRODUCTION; FUEL-CELLS; PEM ELECTROLYSIS; OXYGEN EVOLUTION; LOW-COST; ENERGY; PERFORMANCE; FUTURE AB Better understanding of true electrochemical reaction behaviors in electrochemical energy devices has long been desired. It has been assumed so far that the reactions occur across the entire catalyst layer (CL), which is designed and fabricated uniformly with catalysts, conductors of protons and electrons, and pathways for reactants and products. By introducing a state-of-the-art characterization system, a thin, highly tunable liquid/gas diffusion layer (LGDL), and an innovative design of electrochemical proton exchange membrane electrolyzer cells (PEMECs), the electrochemical reactions on both microspatial and microtemporal scales are revealed for the first time. Surprisingly, reactions occur only on the CL adjacent to good electrical conductors. On the basis of these findings, new CL fabrications on the novel LGDLs exhibitmore than 50 times higher mass activity than conventional catalyst-coated membranes in PEMECs. This discovery presents an opportunity to enhance the multiphase interfacial effects, maximizing the use of the catalysts and significantly reducing the cost of these devices. C1 [Mo, Jingke; Kang, Zhenye; Zhang, Feng-Yuan] Univ Tennessee, Inst Space, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37388 USA. [Retterer, Scott T.; Cullen, David A.; Toops, Todd J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Green, Johney B., Jr.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mench, Matthew M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. RP Zhang, FY (reprint author), Univ Tennessee, Inst Space, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37388 USA. EM fzhang@utk.edu OI Green, Johney/0000-0003-2383-7260; Cullen, David/0000-0002-2593-7866 FU U.S. Department of Energy's (DOE) National Energy Technology Laboratory [DE-FE0011585]; DOE Office of Basic Energy Sciences FX Financial support for this study was provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory under award DE-FE0011585. The research was partially performed at ORNL's Center for Nanophase Materials Sciences, which is sponsored by the DOE Office of Basic Energy Sciences. NR 47 TC 2 Z9 2 U1 13 U2 13 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD NOV PY 2016 VL 2 IS 11 AR e1600690 DI 10.1126/sciadv.1600690 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG7WS UT WOS:000391267800009 PM 28138516 ER PT J AU Sun, WH Dacek, ST Ong, SP Hautier, G Jain, A Richards, WD Gamst, AC Persson, KA Ceder, G AF Sun, Wenhao Dacek, Stephen T. Ong, Shyue Ping Hautier, Geoffroy Jain, Anubhav Richards, William D. Gamst, Anthony C. Persson, Kristin A. Ceder, Gerbrand TI The thermodynamic scale of inorganic crystalline metastability SO SCIENCE ADVANCES LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NITRIDE CHEMISTRY; PRINCIPLES; STABILITY; DESIGN; PHASE; POLYMORPHS; NUCLEATION; PREDICTION AB The space of metastable materials offers promising new design opportunities for next-generation technological materials such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory-calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of 'remnant metastability'-that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. C1 [Sun, Wenhao; Dacek, Stephen T.; Richards, William D.; Ceder, Gerbrand] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Sun, Wenhao; Ceder, Gerbrand] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ong, Shyue Ping] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Hautier, Geoffroy] Catholic Univ Louvain, Inst Condensed Matter & Nanosci, B-1348 Louvain La Neuve, Belgium. [Jain, Anubhav; Persson, Kristin A.] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA. [Gamst, Anthony C.] Univ Calif San Diego, Dept Math, Computat & Appl Stat Lab, La Jolla, CA 92093 USA. [Persson, Kristin A.; Ceder, Gerbrand] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ceder, G (reprint author), MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.; Ceder, G (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Ceder, G (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM gceder@berkeley.edu FU Department of Energy (DOE) Basic Energy Sciences program [DE-AC02-05CH11231, EDCBEE]; U.S. DOE, Office of Science, Basic Energy Sciences as part of the DOE Energy Frontier Research Center "Center for Next Generation of Materials by Design: Incorporating Metastability" [UGA-0-41029-16/ER392000]; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. DOE Office of Science Facility at Brookhaven National Laboratory [DE-SC0012704] FX The data-mining portion of this work was intellectually led by the Materials Project, which was supported by the Department of Energy (DOE) Basic Energy Sciences program under grant no. EDCBEE, DOE contract DE-AC02-05CH11231. The analysis of different forms of metastability was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, under contract no. UGA-0-41029-16/ER392000 as part of the DOE Energy Frontier Research Center "Center for Next Generation of Materials by Design: Incorporating Metastability." We used computing resources at the Argonne National Laboratory Center for Nanoscale Materials, an Office of Science User Facility, which was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This research also used computational resources from the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility at Brookhaven National Laboratory, under contract no. DE-SC0012704. NR 64 TC 1 Z9 1 U1 11 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD NOV PY 2016 VL 2 IS 11 AR e1600225 DI 10.1126/sciadv.1600225 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG7WS UT WOS:000391267800004 PM 28138514 ER PT J AU La Tessa, C Sivertz, M Chiang, IH Lowenstein, D Rusek, A AF La Tessa, Chiara Sivertz, Michael Chiang, I-Hung Lowenstein, Derek Rusek, Adam TI Overview of the NASA space radiation laboratory SO LIFE SCIENCES IN SPACE RESEARCH LA English DT Article DE Space radiation research; NASA ID SIMULATION AB The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. This work contains a general overview of NSRL structure, capabilities and operation. (C) 2016 The Committee on Space Research(COSPAR). Published by Elsevier Ltd. All rights reserved. C1 [La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; Lowenstein, Derek; Rusek, Adam] Brookhaven Natl Lab, Upton, NY 11973 USA. RP La Tessa, C (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM clatessa@bnl.gov FU NASA [T570X]; United State Department of Energy [DE-AC02-98CH10886] FX The work at NSRL is supported by NASA (Contract No. T570X) and performed under the United State Department of Energy (Contract No. DE-AC02-98CH10886). The authors would like to thank the Collider Accelerator Department main control room staffand the operations support technicians without whom the facility could not run smoothly. We wish to acknowledge the Ion Source EBIS personnel for the tremendous effort and extremely efficient work. A special thanks goes to NSLR chief engineer Charlie Pearson who endeavors to improve the facility every day. NR 11 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2214-5524 EI 2214-5532 J9 LIFE SCI SPACE RES JI Life Sci. Space Res. PD NOV PY 2016 VL 11 BP 18 EP 23 DI 10.1016/j.lssr.2016.10.002 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EG6SA UT WOS:000391175100003 PM 27993189 ER PT J AU Mahadevan, R Adhikari, S Shakya, R Wang, KG Dayton, DC Li, M Pu, YQ Ragauskas, AJ AF Mahadevan, Ravishankar Adhikari, Sushil Shakya, Rajdeep Wang, Kaige Dayton, David C. Li, Mi Pu, Yunqiao Ragauskas, Arthur J. TI Effect of torrefaction temperature on lignin macromolecule and product distribution from HZSM-5 catalytic pyrolysis SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article DE Biomass; Catalytic fast pyrolysis (CFP); HZSM-5; Torrefaction; Lignin ID SWITCHGRASS; BIOMASS; WOOD AB Torrefaction is a low-temperature process considered as an effective pretreatment technique to improve the grindability of biomass as well as enhance the production of aromatic hydrocarbons from Catalytic Fast Pyrolysis (CFP). This study was performed to understand the effect of torrefaction temperature on structural changes in the lignin macromolecule and its subsequent influence on in-situ CFP process. Lignin extracted from southern pine and switchgrass (via organosolv treatment) was torrefied at four different temperatures (150, 175, 200 and 225 degrees C) in a tubular reactor. Between the two biomass types studied, lignin from pine appeared to have greater thermal stability during torrefaction when compared with switchgrass lignin. The structural changes in lignin as a result of torrefaction were followed by using FTIR spectroscopy, solid state CP/MAS C-13 NMR, P-31 NMR spectroscopy and it was found that higher torrefaction temperature (200 and 225 degrees C) caused polycondensation and de-methoxylation of the aromatic units of lignin. Gel permeation chromatography analysis revealed that polycondensation during torrefaction resulted in an increase in the molecular weight and polydispersity of lignin. The torrefied lignin was subsequently used in CFP experiments using H(+)ZSM-5 catalyst in a micro-reactor (Py-GC/MS) to understand the effect of torrefaction on the product distribution from pyrolysis. It was observed that although the selectivity of benzene-toluene-xylene compounds from CFP of pine improved from 58.3% (torrefaction temp at 150 degrees C) to 69.0% (torrefaction temp at 225 degrees C), the severity of torrefaction resulted in a loss of overall aromatic hydrocarbon yield from 11.6% to 4.9% under same conditions. Torrefaction at higher temperatures also increased the yield of carbonaceous residues from 63.9% to 72.8%. Overall, torrefying lignin caused structural transformations in both type of lignins (switchgrass and pine), which is ultimately detrimental to achieving a higher aromatic hydrocarbon yield from CFP. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mahadevan, Ravishankar; Adhikari, Sushil; Shakya, Rajdeep] Auburn Univ, Dept Biosyst Engn, Auburn, AL 36849 USA. [Wang, Kaige; Dayton, David C.] RTI Int, Div Energy Technol, 3040 East Cornwallis Rd, Res Triangle Pk, NC 27709 USA. [Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, POB 2008, Oak Ridge, TN 37831 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. RP Adhikari, S (reprint author), Auburn Univ, Dept Biosyst Engn, Auburn, AL 36849 USA. EM sushil.adhikari@auburn.edu FU US Department of Agriculture-National Institute of Food and Agriculture [USDA-NIFA-2015-67021-22842]; National Science Foundation [NSF-CBET-1333372] FX The authors would like to acknowledge US Department of Agriculture-National Institute of Food and Agriculture (USDA-NIFA-2015-67021-22842) and National Science Foundation (NSF-CBET-1333372) for funding this study. This work is part of the first author's requirements for the degree of Ph.D. at Auburn University, and most of the work was carried out at RTI International. However, only the authors are responsible for any remaining errors in this manuscript. NR 30 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 EI 1873-250X J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD NOV PY 2016 VL 122 BP 95 EP 105 DI 10.1016/j.jaap.2016.10.011 PG 11 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA EF7FU UT WOS:000390496300011 ER PT J AU Nawn, CD Souhan, BE Carter, R Kneapler, C Fell, N Ye, JY AF Nawn, Corinne D. Souhan, Brian E. Carter, Robert, III Kneapler, Caitlin Fell, Nicholas Ye, Jing Yong TI Distinguishing tracheal and esophageal tissues with hyperspectral imaging and fiber-optic sensing SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE trachea; esophagus; intubation; fiber optic; hyperspectral camera; spectral characterization ID EMERGENCY-DEPARTMENTS; AIRWAY MANAGEMENT; DIFFICULT AIRWAY; INTENSIVE-CARE; INTUBATION; GUIDELINES AB During emergency medical situations, where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. Complications during ETI, such as repeated attempts, failed intubation, or accidental intubation of the esophagus, can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. Our study examined the spectral reflectance properties of the tracheal and esophageal tissue to determine whether a unique spectral profile exists for either tissue for the purpose of detection. The study began by using a hyperspectral camera to image excised pig tissue samples exposed to white and UV light in order to capture the spectral reflectance properties with high fidelity. After identifying a unique spectral characteristic of the trachea that significantly differed from esophageal tissue, a follow-up investigation used a fiber optic probe to confirm the detectability and consistency of the different reflectance characteristics in a pig model. Our results characterize the unique and consistent spectral reflectance characteristic of tracheal tissue, thereby providing foundational support for exploiting spectral properties to detect the trachea during medical procedures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication. C1 [Nawn, Corinne D.; Carter, Robert, III] United States Army Inst Surg Res, 3698 Chambers Pass, Ft Sam Houston, TX 78234 USA. [Nawn, Corinne D.] Oak Ridge Inst Sci & Educ, 4692 Millennium Dr,Suite 101, Belcamp, MD 21017 USA. [Nawn, Corinne D.; Ye, Jing Yong] Univ Texas San Antonio, One UTSA Circle, San Antonio, TX 78249 USA. [Nawn, Corinne D.; Carter, Robert, III; Ye, Jing Yong] Univ Texas Hlth Sci Ctr San Antonio, 7703 Floyd Curl Dr,Mail Code 7736, San Antonio, TX 78229 USA. [Souhan, Brian E.; Kneapler, Caitlin; Fell, Nicholas] US Mil Acad, 606 Thayer Rd, West Point, NY 10996 USA. RP Nawn, CD (reprint author), United States Army Inst Surg Res, 3698 Chambers Pass, Ft Sam Houston, TX 78234 USA.; Nawn, CD (reprint author), Oak Ridge Inst Sci & Educ, 4692 Millennium Dr,Suite 101, Belcamp, MD 21017 USA.; Nawn, CD (reprint author), Univ Texas San Antonio, One UTSA Circle, San Antonio, TX 78249 USA.; Nawn, CD (reprint author), Univ Texas Hlth Sci Ctr San Antonio, 7703 Floyd Curl Dr,Mail Code 7736, San Antonio, TX 78229 USA. EM nawn.cori@gmail.com FU Army Research Office of the United States Army Research Laboratory; Defense Advanced Research Project Agency; Oak Ridge Institute for Science and Education FX Support of this work by the Army Research Office of the United States Army Research Laboratory, the Defense Advanced Research Project Agency, and the Oak Ridge Institute for Science and Education is acknowledged. The authors have no conflicts of interest to report pertaining to the present study. Animal statement: This study has been conducted in compliance with the Animal Welfare Act, the implementing Animal Welfare Regulations, and the principles of the Guide for the Care and User of Laboratory Animals. DoD disclaimer: The opinions or assertions contained herein are the private views of the author and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. NR 13 TC 0 Z9 0 U1 0 U2 0 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 EI 1560-2281 J9 J BIOMED OPT JI J. Biomed. Opt. PD NOV PY 2016 VL 21 IS 11 AR 117004 DI 10.1117/1.JBO.21.11.117004 PG 10 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA EF9RT UT WOS:000390668200022 PM 27893090 ER PT J AU Pacheco, JM Stenfeldt, C Rodriguez, LL Arzt, J AF Pacheco, J. M. Stenfeldt, C. Rodriguez, L. L. Arzt, J. TI Infection Dynamics of Foot-and-Mouth Disease Virus in Cattle Following Intranasopharyngeal Inoculation or Contact Exposure SO JOURNAL OF COMPARATIVE PATHOLOGY LA English DT Article DE animal models; cattle; foot-and-mouth disease virus; pathogenesis ID SIMULATED-NATURAL INOCULATION; PARTIAL PROTECTION; EARLY PATHOGENESIS; SEROTYPE O; RT-PCR; TRANSMISSION; VACCINATION; PIGS; RESPONSES; CYTOKINE AB For the purpose of developing an improved experimental model for studies of foot-and-mouth disease virus (FMDV) infection in cattle, three different experimental systems based on natural or simulated natural virus exposure were compared under standardized experimental conditions. Ante-mortem infection dynamics were characterized in cattle exposed to FMDV through a novel, simulated natural intranasopharyngeal (INP) inoculation system or through standardized and controlled systems of within- or between-species direct contact exposure (cattle-to-cattle or pig-to-cattle). All three systems were efficient in causing synchronous, generalized foot-and-mouth disease in cattle exposed to one of three different strains of FMDV representing serotypes O, A and Asial. There was more within-group variation in the timing of clinical infection following natural and simulated natural virus exposure systems when compared with the conventionally used system of needle inoculation (intraepithelial lingual inoculation). However, the three optimized exposure systems described herein have the advantage of closely simulating field conditions by utilizing natural routes of primary infection, thereby facilitating engagement of mucosal host defence mechanisms. Overall, it is concluded that INP inoculation and standardized systems of direct contact exposure provide effective alternatives to conventional (needle) inoculation systems for studies in which it is desirable to simulate the natural biology of FMDV infection. Published by Elsevier Ltd. C1 [Pacheco, J. M.; Stenfeldt, C.; Rodriguez, L. L.; Arzt, J.] ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA. [Stenfeldt, C.] Oak Ridge Inst Sci & Educ, PIADC Res Participat Program, Oak Ridge, TN USA. RP Arzt, J (reprint author), ARS, Plum Isl Anim Dis Ctr, Foreign Anim Dis Res Unit, USDA, Greenport, NY 11944 USA. EM Jonathan.Arzt@ars.usda.gov OI Arzt, Jonathan/0000-0002-7517-7893 FU CRIS [1940-32000-057-00D]; Science and Technology Directorate of the US Department of Homeland Security [HSHQDC-11-X-00189]; PIADC Research Participation Program fellowships FX This work was funded in part by CRIS project 1940-32000-057-00D (USDA, Agricultural Research Service), as well as through an interagency agreement with the Science and Technology Directorate of the US Department of Homeland Security under Award Number HSHQDC-11-X-00189. CS was recipient of PIADC Research Participation Program fellowships, administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement with the US Department of Energy. The sponsors had no involvement in the study design, in the collection, analysis and interpretation of data, in the writing of the manuscript, or in the decision to submit the manuscript for publication. The authors acknowledge and appreciate expert laboratory support provided by G. R. Smoliga, E. J. Hartwig, S. J. Pauszek and E. Bishop. The first two authors contributed equally to this work. NR 53 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-9975 EI 1532-3129 J9 J COMP PATHOL JI J. Comp. Pathol. PD NOV PY 2016 VL 155 IS 4 BP 314 EP 325 DI 10.1016/j.jcpa.2016.08.005 PG 12 WC Pathology; Veterinary Sciences SC Pathology; Veterinary Sciences GA EF9AW UT WOS:000390624100006 PM 27697284 ER PT J AU Ba, Y Kang, QJ Liu, HH Sun, JJ Wang, C AF Ba, Yan Kang, Qinjun Liu, Haihu Sun, Jinju Wang, Chao TI Three-dimensional lattice Boltzmann simulations of microdroplets including contact angle hysteresis on topologically structured surfaces SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article; Proceedings Paper CT 24th International Conference on Discrete Simulation of Fluid Dynamics (DSFD) CY JUL 13-17, 2015 CL Royal Soc Edinburgh, Edinburgh, SCOTLAND HO Royal Soc Edinburgh DE Contact angle hysteresis; Cassie state; Wenzel state; Structured surfaces; Lattice Boltzmann method ID GAS-DIFFUSION LAYER; MEMBRANE FUEL-CELL; SUPERHYDROPHOBIC SURFACES; HYDROPHOBIC SURFACE; IMMISCIBLE DROPLET; ROUGH SURFACES; CASSIE-BAXTER; 2-PHASE FLOWS; WENZEL STATE; MODEL AB In this study, the dynamical behavior of a droplet on topologically structured surface is investigated by using a three-dimensional color-gradient lattice Boltzmann model. A wetting boundary condition is proposed to model fluid-surface interactions, which is advantageous to improve the accuracy of the simulation and suppress spurious velocities at the contact line. The model is validated by the droplet partial wetting test and reproduction of the Cassie and Wenzel states. A series of simulations are conducted to investigate the behavior of a droplet when subjected to a shear flow. It is found that in Cassie state, the droplet undergoes a transition from stationary, to slipping and finally to detachment states as the capillary number increases, while in Wenzel state, the last state changes to the breakup state. The critical capillary number, above which the droplet slipping occurs, is small for the Cassie droplet, but is significantly enhanced for the Wenzel droplet due to the increased contact angle hysteresis. In Cassie state, the receding contact angle nearly equals the prediction by the Cassie relation, and the advancing contact angle is close to 180, leading to a small contact angle hysteresis. In Wenzel state, however, the contact angle hysteresis is extremely large (around 100). Finally, high droplet mobility can be easily achieved for Cassie droplets, whereas in Wenzel state, extremely low droplet mobility is identified. (C) 2016 Elsevier B.V. All rights reserved. C1 [Ba, Yan; Liu, Haihu; Sun, Jinju; Wang, Chao] Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 West Xianning Rd, Xian 710049, Peoples R China. [Ba, Yan; Kang, Qinjun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sun, Jinju] CICAAE, Beijing, Peoples R China. RP Sun, JJ (reprint author), Xi An Jiao Tong Univ, Sch Energy & Power Engn, 28 West Xianning Rd, Xian 710049, Peoples R China. EM jjsun@mail.xjtu.edu.cn RI Liu, Haihu/B-2097-2013 OI Liu, Haihu/0000-0002-0295-1251 NR 58 TC 1 Z9 1 U1 12 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD NOV PY 2016 VL 17 SI SI BP 418 EP 430 DI 10.1016/j.jocs.2016.03.015 PN 2 PG 13 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA EF9BN UT WOS:000390625800013 ER PT J AU Burnett, JL Milbrath, BD AF Burnett, Jonathan L. Milbrath, Brian D. TI Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962 SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Underground nuclear explosion; OSI; CTBT; Platte ID GAMMA-SPECTROMETRY; RADIOIODINE; RATIOS AB Past nuclear weapon explosive tests provide invaluable information for understanding the radionuclide observables expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte underground nuclear explosive test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to calculate the maximum time available for detection of the OSI-relevant radionuclides. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site now known as the Nevada National Security Site (NNSS). It has been estimated that 036% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 x 10(-11) to 1 x 10(-9) of the atmospheric release (per m(2)), and has been used in this paper to evaluate an OSI and the OSI-relevant radionuclides at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the OSI-relevant radionuclides by 99.7% within 2 years of detonation, such that detection throughout the hypothesized inspection is only achievable close to the explosion where deposition was highest. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Burnett, Jonathan L.; Milbrath, Brian D.] Pacific Northwest Natl Lab, POB 999, Richland, WA 99354 USA. RP Burnett, JL (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99354 USA. EM jonathan.burnett@pnnl.gov FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX The authors thank the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and Real-time Environmental Applications and Display sYstem (READY) website (http://www.ready.noaa.gov) used in this research. The views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, or the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 31 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD NOV PY 2016 VL 164 BP 232 EP 238 DI 10.1016/j.jenvrad.2016.08.002 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA EF7KF UT WOS:000390507800027 PM 27521903 ER PT J AU Yuan, B Bedrikovetsky, P Huang, TP Moghanloo, RG Dai, CL Venkatraman, A Sun, BJ Thomas, D Wang, L Wood, D AF Yuan, Bin Bedrikovetsky, Pavel Huang, Tianping (Tim) Moghanloo, Rouzbeh Ghanbarnezhad Dai, Caili Venkatraman, Ashwin Sun, Baojiang Thomas, Dewers Wang, Lei Wood, David TI Special issue: Formation damage during enhanced gas and liquid recovery SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Editorial Material ID FINES MIGRATION; POROUS-MEDIA; WATER; RESERVOIRS; PARTICLES C1 [Yuan, Bin; Moghanloo, Rouzbeh Ghanbarnezhad] Univ Oklahoma, Norman, OK 73019 USA. [Bedrikovetsky, Pavel] Univ Adelaide, Adelaide, SA, Australia. [Huang, Tianping (Tim)] Bake Hughes, Houston, TX USA. [Dai, Caili; Sun, Baojiang] China Univ Petr, Qingdao, Peoples R China. [Venkatraman, Ashwin] Shell E&P Co, Houston, TX USA. [Thomas, Dewers] Sandia Natl Labs, Geomech Lab, Livermore, CA 94550 USA. [Wang, Lei] Colorado Sch Mines, Golden, CO 80401 USA. [Wood, David] DWA Energy Ltd, Lincoln, England. RP Yuan, B (reprint author), Univ Oklahoma, Norman, OK 73019 USA.; Wood, D (reprint author), DWA Energy Ltd, Lincoln, England. EM biny@ou.edu; pavel@asp.adelaide.edu.au; Tim.Huang@bakerhughes.com; rouzbeh.gm@ou.edu; daicl306@163.com; Ashwin.Venkatraman2@shell.com; sunbj1128@vip.126.com; tdewers@sandia.gov; lwang@mines.edu; dw@dwasolutions.com NR 17 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD NOV PY 2016 VL 36 BP 1051 EP 1054 DI 10.1016/j.jngse.2016.11.019 PN A PG 4 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EG0PN UT WOS:000390734800089 ER PT J AU Tumeo, A Feo, J Villa, O AF Tumeo, Antonino Feo, John Villa, Oreste TI Special Issue on Theory and Practice of Irregular Applications (TaPIA) SO PARALLEL COMPUTING LA English DT Editorial Material C1 [Tumeo, Antonino] PNNL, High Performance Comp Grp, Richland, WA 99354 USA. [Tumeo, Antonino; Feo, John; Villa, Oreste] PNNL, Richland, WA USA. [Tumeo, Antonino] Politecn Milan, Milan, Italy. [Feo, John] Northwest Inst Adv Comp, Seattle, WA USA. [Feo, John] PNNL, Ctr Adapt Supercomp Software, Richland, WA USA. [Feo, John] Lawrence Livermore Natl Lab, Comp Sci Grp, Lawrence, KS USA. [Feo, John] Lawrence Livermore Natl Lab, Sisal Language Project, Lawrence, KS USA. [Feo, John] Cray Inc, Seattle, WA USA. [Feo, John] Microsoft, Redmond, WA USA. [Feo, John] Univ Calif Davis, Davis, CA USA. [Feo, John] Washington State Univ, Pullman, WA 99164 USA. [Villa, Oreste] NVIDIA Res, Pullman, WA USA. RP Tumeo, A (reprint author), PNNL, High Performance Comp Grp, Richland, WA 99354 USA. EM ntonino.tumeo@pnnl.gov; john.feo@pnnl.gov; ovilla@nvidia.com NR 0 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD NOV PY 2016 VL 59 SI SI BP 21 EP 23 DI 10.1016/j.parco.2016.10.005 PG 3 WC Computer Science, Theory & Methods SC Computer Science GA EF9GI UT WOS:000390638300002 ER PT J AU Hirsch, CN Hirsch, CD Brohammer, AB Bowman, MJ Soifer, I Barad, O Shem-Tov, D Baruch, K Lu, F Hernandez, AG Fields, CJ Wright, CL Koehler, K Springer, NM Buckler, E Buell, CR de Leon, N Kaeppler, SM Childs, KL Mikel, MA AF Hirsch, Candice N. Hirsch, Cory D. Brohammer, Alex B. Bowman, Megan J. Soifer, Ilya Barad, Omer Shem-Tov, Doron Baruch, Kobi Lu, Fei Hernandez, Alvaro G. Fields, Christopher J. Wright, Chris L. Koehler, Klaus Springer, Nathan M. Buckler, Edward Buell, C. Robin de Leon, Natalia Kaeppler, Shawn M. Childs, Kevin L. Mikel, Mark A. TI Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize SO PLANT CELL LA English DT Article ID COPY NUMBER VARIATION; ARABIDOPSIS-THALIANA; EUKARYOTIC GENOMES; QUALITY-CONTROL; READ ALIGNMENT; PLANT GENOMICS; OPEN SOFTWARE; ORYZA-SATIVA; PAN-GENOME; MAKER-P AB Intense artificial selection over the last 100 years has produced elite maize ( Zea mays) inbred lines that combine to produce high-yielding hybrids. To further our understanding of how genome and transcriptome variation contribute to the production of high-yielding hybrids, we generated a draft genome assembly of the inbred line PH207 to complement and compare with the existing B73 reference sequence. B73 is a founder of the Stiff Stalk germplasm pool, while PH207 is a founder of iodent germplasm, both of which have contributed substantially to the production of temperate commercial maize and are combined to make heterotic hybrids. Comparison of these two assemblies revealed over 2500 genes present in only one of the two genotypes and 136 gene families that have undergone extensive expansion or contraction. Transcriptome profiling revealed extensive expression variation, with as many as 10,564 differentially expressed transcripts and 7128 transcripts expressed in only one of the two genotypes in a single tissue. Genotype-specific genes were more likely to have tissue/condition-specific expression and lower transcript abundance. The availability of a high-quality genome assembly for the elite maize inbred PH207 expands our knowledge of the breadth of natural genome and transcriptome variation in elite maize inbred lines across heterotic pools. C1 [Hirsch, Candice N.; Brohammer, Alex B.] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA. [Hirsch, Cory D.] Univ Minnesota, Dept Plant Pathol, St Paul, MN 55108 USA. [Bowman, Megan J.; Buell, C. Robin; Childs, Kevin L.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Soifer, Ilya] Calico Labs, San Francisco, CA 94080 USA. [Barad, Omer; Shem-Tov, Doron; Baruch, Kobi] NRGENE Ltd, IL-7403648 Ness Ziona, Israel. [Lu, Fei; Buckler, Edward] Cornell Univ, Inst Genome Divers, Ithaca, NY 14850 USA. [Hernandez, Alvaro G.; Fields, Christopher J.; Wright, Chris L.; Mikel, Mark A.] Univ Illinois, Roy J Carver Biotechnol Ctr, Urbana, IL 61801 USA. [Koehler, Klaus] Dow AgroSci, Indianapolis, IN 46268 USA. [Springer, Nathan M.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA. [Buckler, Edward] ARS, USDA, Ithaca, NY 14850 USA. [Buell, C. Robin] DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [de Leon, Natalia; Kaeppler, Shawn M.] Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. [de Leon, Natalia; Kaeppler, Shawn M.] DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Childs, Kevin L.] Michigan State Univ, Ctr Genom Enabled Plant Sci, E Lansing, MI 48824 USA. [Mikel, Mark A.] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA. RP Hirsch, CN (reprint author), Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA. EM cnhirsch@umn.edu OI Bowman, Megan/0000-0001-5742-1779; Hirsch, Cory/0000-0002-3409-758X FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; Dow AgroSciences; National Science Foundation [IOS-1126998]; National Science Foundation National Plant Genome Initiative Postdoctoral Fellowship in Biology Fellowship [1202724]; DuPont Pioneer Bill Kuhn Honorary Fellowship FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494), by Dow AgroSciences, and by the National Science Foundation (Grant IOS-1126998 to K.L.C.). The Minnesota Supercomputing Institute at the University of Minnesota provided computational resources that contributed to the research results reported in this article. C.D.H. was supported by a National Science Foundation National Plant Genome Initiative Postdoctoral Fellowship in Biology Fellowship (Grant 1202724). A.B.B. was supported by the DuPont Pioneer Bill Kuhn Honorary Fellowship. NR 89 TC 1 Z9 1 U1 3 U2 3 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD NOV PY 2016 VL 28 IS 11 BP 2700 EP 2714 DI 10.1105/tpc.16.00353 PG 15 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA EG1NR UT WOS:000390800000003 PM 27803309 ER PT J AU Pointer, WD Sun, XD AF Pointer, W. David Sun, Xiaodong TI Special issue on the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics Foreword SO NUCLEAR TECHNOLOGY LA English DT Editorial Material C1 [Pointer, W. David] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sun, Xiaodong] Ohio State Univ, Columbus, OH 43210 USA. RP Pointer, WD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP V EP VI PG 2 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400001 ER PT J AU Zhou, H An, K Allu, S Pannala, S Li, JL Bilheux, HZ Martha, SK Nanda, J AF Zhou, Hui An, Ke Allu, Srikanth Pannala, Sreekanth Li, Jianlin Bilheux, Hassina Z. Martha, Surendra K. Nanda, Jagjit TI Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch Cell Using In Situ Neutron Methods SO ACS ENERGY LETTERS LA English DT Article ID X-RAY-DIFFRACTION; GAS EVOLUTION; BATTERIES; GRAPHITE; ELECTRODES; OPERANDO; INTERCALATION; DYNAMICS; CHARGE; SCATTERING AB We demonstrate the lithiation process in graphitic anodes using in situ neutron radiography and diffraction in a single-layer pouch cell. The variation in neutron absorption contrast in graphite shows a direct correlation between the degree of lithiation and the discharge potential. The experimental neutron attenuation line profiles across the graphite electrode at various discharge times (potentials) were compared with lithium concentration profiles computed using a 3D electrochemical transport model. In conjunction with imaging/radiography, in situ neutron diffraction was carried out to obtain information about the local structural changes during various stages of lithiation in carbon. Combined in situ radiography and diffraction supported by 3D multiscale electrochemical modeling opens up a powerful nondestructive tool that can be utilized to understand the multiscale nature of lithium transport as well as observe various inhomogeneities at a cell level. C1 [Zhou, Hui; An, Ke; Allu, Srikanth; Pannala, Sreekanth; Li, Jianlin; Bilheux, Hassina Z.; Martha, Surendra K.; Nanda, Jagjit] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zhou, Hui] SUNY Binghamton, NECCES, Binghamton, NY 13902 USA. [Pannala, Sreekanth] SABIC, Houston, TX 77042 USA. [Martha, Surendra K.] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502285, Telangana, India. RP Nanda, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM nandaj@ornl.gov RI An, Ke/G-5226-2011 OI An, Ke/0000-0002-6093-429X FU Office of Vehicle Technology, EERE, DOE FX This research used resources at the High Flux Isotope Reactor and Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. J.N., H.Z., S.A., S.P., and S.M. acknowledge support from the Office of Vehicle Technology, EERE, DOE. The authors thank Drs. Andrew Payzant and Thomas Proffen for critical reading of the manuscript and valuable comments. NR 39 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD NOV PY 2016 VL 1 IS 5 BP 981 EP 986 DI 10.1021/acsenergylett.6b00353 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EF1LG UT WOS:000390085700014 ER PT J AU Manser, JS Rollin, JA Brown, KE Rohlfing, EA AF Manser, Joseph S. Rollin, Joseph A. Brown, Kristen E. Rohlfing, Eric A. TI ARPA-E: Accelerating US Energy Innovation SO ACS ENERGY LETTERS LA English DT Editorial Material C1 [Manser, Joseph S.; Rollin, Joseph A.; Brown, Kristen E.; Rohlfing, Eric A.] US DOE, Adv Res Projects Agcy Energy, 1000 Independence Ave Southwest, Washington, DC 20585 USA. RP Rohlfing, EA (reprint author), US DOE, Adv Res Projects Agcy Energy, 1000 Independence Ave Southwest, Washington, DC 20585 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD NOV PY 2016 VL 1 IS 5 BP 987 EP 990 DI 10.1021/acsenergylett.6b00494 PG 4 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EF1LG UT WOS:000390085700015 ER PT J AU Schelhas, LT Christians, JA Berry, JJ Toney, MF Tassone, CJ Luther, JM Stone, KH AF Schelhas, Laura T. Christians, Jeffrey A. Berry, Joseph J. Toney, Michael F. Tassone, Christopher J. Luther, Joseph M. Stone, Kevin H. TI Monitoring a Silent Phase Transition in CH3NH3PbI3 Solar Cells via Operando X-ray Diffraction SO ACS ENERGY LETTERS LA English DT Article ID METHYLAMMONIUM LEAD IODIDE; PEROVSKITE; EFFICIENCY; PERFORMANCE; RECOMBINATION; STATE AB The relatively modest temperature of the tetragonal-to-cubic phase transition in CH3NH3PbI3 perovskite is likely to occur during real world operation of CH3NH3PI3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to the structural phase transition. This decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH3NH3PbI3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally. C1 [Schelhas, Laura T.; Toney, Michael F.; Tassone, Christopher J.; Stone, Kevin H.] SLAG Natl Accelerator Lab, SSRL Mat Sci Div, Menlo Pk, CA 94025 USA. [Christians, Jeffrey A.; Berry, Joseph J.; Luther, Joseph M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Stone, KH (reprint author), SLAG Natl Accelerator Lab, SSRL Mat Sci Div, Menlo Pk, CA 94025 USA.; Luther, JM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM joey.luther@nrel.gov; khstone@slac.stanford.edu FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515]; U.S. Department of Energy Office of Energy Efficiency under the NREL Laboratory Director's Research and Development program [DE-AC36-08- GO28308]; Hybrid Perovskite Solar Cell program of the National Center for Photovoltaics - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office FX The authors wish to thank Tim Dunn, Valery Borzenets, Samuil Belopolskiy, and Doug Van Campen for help with the chamber design and operation. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Work at the National Renewable Energy Lab (NREL) was supported by U.S. Department of Energy Office of Energy Efficiency under contract No. DE-AC36-08- GO28308 under the NREL Laboratory Director's Research and Development program (JJ.B. and J.M.L.) as well as the Hybrid Perovskite Solar Cell program of the National Center for Photovoltaics funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office (JAC. and L.T.S.). NR 34 TC 1 Z9 1 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD NOV PY 2016 VL 1 IS 5 BP 1007 EP 1012 DI 10.1021/acsenergylett.6b00441 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EF1LG UT WOS:000390085700018 ER PT J AU Zheng, XJ Wu, CC Jha, SK Li, Z Zhu, K Priya, S AF Zheng, Xiaojia Wu, Congcong Jha, Shikhar K. Li, Zhen Zhu, Kai Priya, Shashank TI Improved Phase Stability of Formamidinium Lead Triiodide Perovskite by Strain Relaxation SO ACS ENERGY LETTERS LA English DT Article ID HYBRID SOLAR-CELLS; IODIDE; CH3NH3PBI3; CRYSTALS; CONDUCTIVITY; TRIHALIDE; DIFFUSION; DYNAMICS; PLANAR AB Though formamidinium lead triiodide (FAPbI(3)) possesses a suitable band gap and good thermal stability, the phase transition from the pure black perovskite phase (alpha-phase) to the undesirable yellow nonperovskite polymorph (delta-phase) at room temperature, especially under humid air, hinders its practical application. Here, we investigate the intrinsic instability mechanism of the alpha-phase at ambient temperature and demonstrate the existence of an anisotropic strained lattice in the (111) plane that drives phase transformation into the delta-phase. Methylammonium bromide (MABr) alloying (or FAPbI(3)-MABr) was found to cause lattice contraction, thereby balancing the lattice strain. This led to dramatic improvement in the stability of alpha-FAPbI3. Solar cells fabricated using FAPbI(3)-MABr demonstrated significantly enhanced stability under the humid air. C1 [Zheng, Xiaojia; Wu, Congcong; Jha, Shikhar K.; Priya, Shashank] Virginia Tech, Ctr Energy Harvesting Mat & Syst, Blacksburg, VA 24061 USA. [Li, Zhen; Zhu, Kai] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. RP Zheng, XJ; Priya, S (reprint author), Virginia Tech, Ctr Energy Harvesting Mat & Syst, Blacksburg, VA 24061 USA.; Zhu, K (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM xiaojia@vt.edu; kai.zhu@nrel.gov OI Li, Zhen/0000-0003-1177-2818 FU Institute of Critical Technology and Applied Science (ICTAS); Office of Naval Research through the MURI program; Office of Naval Research participation in NSF I/UCRC: Center for Energy Harvesting Materials and Systems (CEHMS); U.S. Department of Energy [DE-AC36-08-GO28308]; hybrid perovskite solar cell program of the National Center for Photovoltaics - U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office FX The authors acknowledge financial support from the Institute of Critical Technology and Applied Science (ICTAS). S.P. and X.Z. would also like to acknowledge financial support from the Office of Naval Research through the MURI program. S.K.J was supported through the Office of Naval Research participation in NSF I/UCRC: Center for Energy Harvesting Materials and Systems (CEHMS). The work at the National Renewable Energy Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308. K.Z. and Z.L. acknowledge support by the hybrid perovskite solar cell program of the National Center for Photovoltaics funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office. NR 29 TC 1 Z9 1 U1 19 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD NOV PY 2016 VL 1 IS 5 BP 1014 EP 1020 DI 10.1021/acsenergylett.6b00457 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EF1LG UT WOS:000390085700020 ER PT J AU Balasubramanian, B Das, B Nguyen, MC Xu, XS Zhang, J Zhang, XZ Liu, YH Huq, A Valloppilly, SR Jin, YL Wang, CZ Ho, KM Sellmyer, DJ AF Balasubramanian, Balamurugan Das, Bhaskar Manh Cuong Nguyen Xu, Xiaoshan Zhang, Jie Zhang, Xiaozhe Liu, Yaohua Huq, Ashfia Valloppilly, Shah R. Jin, Yunlong Wang, Cai-Zhuang Ho, Kai-Ming Sellmyer, David J. TI Structure and magnetism of new rare-earth-free intermetallic compounds: Fe3+xCo3-xTi2 (0 <= x <= 3) SO APL MATERIALS LA English DT Article ID AUGMENTED-WAVE METHOD; PERMANENT-MAGNETS AB We report the fabrication of a set of new rare-earth-free magnetic compounds, which form the Fe3Co3Ti2-type hexagonal structure with P-6m2 symmetry. Neutron powder diffraction shows a significant Fe/Co anti-site mixing in the Fe3Co3Ti2 structure, which has a strong effect on the magnetocrystalline anisotropy as revealed by first-principle calculations. Increasing substitution of Fe atoms for Coin the Fe3Co3Ti2 lattice leads to the formation of Fe4Co2Ti2, Fe5CoTi, and Fe6Ti2 with significantly improved permanent-magnet properties. A high magnetic anisotropy (13.0 Mergs/cm(3)) and saturation magnetic polarization (11.4 kG) are achieved at 10 K by altering the atomic arrangements and decreasing Fe/Co occupancy disorder. (C) 2016 Author(s). C1 [Balasubramanian, Balamurugan; Das, Bhaskar; Xu, Xiaoshan; Zhang, Xiaozhe; Valloppilly, Shah R.; Jin, Yunlong; Sellmyer, David J.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Balasubramanian, Balamurugan; Das, Bhaskar; Xu, Xiaoshan; Zhang, Xiaozhe; Jin, Yunlong; Sellmyer, David J.] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Manh Cuong Nguyen; Wang, Cai-Zhuang; Ho, Kai-Ming] US DOE, Ames Lab, Ames, IA 50011 USA. [Manh Cuong Nguyen; Zhang, Jie; Wang, Cai-Zhuang; Ho, Kai-Ming] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Zhang, Jie] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, Hefei 230031, Peoples R China. [Liu, Yaohua] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Huq, Ashfia] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Balasubramanian, B (reprint author), Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA.; Balasubramanian, B (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. EM bbalasubramanian2@unl.edu; dsellmyer@unl.edu RI Liu, Yaohua/B-2529-2009; Xu, Xiaoshan/B-1255-2009; Huq, Ashfia/J-8772-2013; OI Liu, Yaohua/0000-0002-5867-5065; Xu, Xiaoshan/0000-0002-4363-392X; Huq, Ashfia/0000-0002-8445-9649; Das, Bhaskar/0000-0001-7444-0701; Nguyen, Manh Cuong/0000-0001-8027-9029 FU National Science Foundation (NSF), Division of Materials Research (DMR) [DMREF: SusChEM 1436385]; NSF, DMR [DMREF: SusChEM 1436386]; NSF [NNCI: 1542182]; Nebraska Research Initiative (NRI) FX Experimental work by B.B., B.D., X.X., S.R.V., and D.J.S. was supported by the National Science Foundation (NSF), Division of Materials Research (DMR), under Award DMREF: SusChEM 1436385. Theoretical research by C.Z.W. and K.M.H. was supported by NSF, DMR, under Award DMREF: SusChEM 1436386. Research at Nebraska was performed in part in the Nebraska Nanoscale Facility, Nebraska Center for Materials and Nanoscience, which is supported by the NSF underAward NNCI: 1542182, and the Nebraska Research Initiative (NRI). Resources at Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory, were also used for this research. NR 29 TC 0 Z9 0 U1 10 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD NOV PY 2016 VL 4 IS 11 AR 116109 DI 10.1063/1.4968517 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EF3MK UT WOS:000390228300011 ER PT J AU Burst, JM Farrell, SB Albin, DS Colegrove, E Reese, MO Duenow, JN Kuciauskas, D Metzger, WK AF Burst, James M. Farrell, Stuart B. Albin, David S. Colegrove, Eric Reese, Matthew O. Duenow, Joel N. Kuciauskas, Darius Metzger, Wyatt K. TI Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe SO APL MATERIALS LA English DT Article ID CDS/CDTE SOLAR-CELLS; CADMIUM TELLURIDE; DOPED CDTE; EXCITED-STATES; CU; PHOTOLUMINESCENCE; RECOMBINATION; ACCEPTORS; COPPER; STABILITY AB CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 10(16) cm(-3), but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 10(16) cm(-3) hole density are achieved in singlecrystal and polycrystalline CdTe without CdCl2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. This combination of long lifetime, high carrier concentration, and improved stability can help overcome historic barriers for CdTe solar cell development. (C) 2016 Author(s). C1 [Burst, James M.; Farrell, Stuart B.; Albin, David S.; Colegrove, Eric; Reese, Matthew O.; Duenow, Joel N.; Kuciauskas, Darius; Metzger, Wyatt K.] NREL, Golden, CO 80401 USA. RP Burst, JM (reprint author), NREL, Golden, CO 80401 USA. OI Kuciauskas, Darius/0000-0001-8091-5718 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 55 TC 0 Z9 0 U1 9 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD NOV PY 2016 VL 4 IS 11 AR 116102 DI 10.1063/1.4966209 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EF3MK UT WOS:000390228300004 ER PT J AU Liu, K Zhang, RF Beyerlein, IJ Chen, XY Yang, H Germann, TC AF Liu, K. Zhang, R. F. Beyerlein, I. J. Chen, X. Y. Yang, H. Germann, T. C. TI Cooperative dissociations of misfit dislocations at bimetal interfaces SO APL MATERIALS LA English DT Article ID CU-NI; DEFORMATION MECHANISMS; COMPOSITES; NUCLEATION; STRENGTH; AG/NI; MULTILAYERS; BOUNDARIES; BEHAVIOR; ENERGY AB Using atomistic simulations, several semi-coherent cube-on-cube bimetal interfaces are comparatively investigated to unravel the combined effect of the character of misfit dislocations, the stacking fault energy difference between bimetal pairs, and their lattice mismatch on the dissociation of interfacial misfit dislocations. Different dissociation paths and features under loadings provide several unique deformation mechanisms that are critical for understanding interface strengthening. In particular, applied strains can cause either the formation of global interface coherency by the migration of misfit dislocations from an interface to an adjoining crystal interior or to an alternate packing of stacking faults connected by stair-rod dislocations. (C) 2016 Author(s). C1 [Liu, K.; Zhang, R. F.; Chen, X. Y.; Yang, H.] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. [Liu, K.; Zhang, R. F.; Chen, X. Y.; Yang, H.] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China. [Beyerlein, I. J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Germann, T. C.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhang, RF (reprint author), Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.; Zhang, RF (reprint author), Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China. EM zrf@buaa.edu.cn OI Germann, Timothy/0000-0002-6813-238X FU Fundamental Research Funds for the Central Universities; National Natural Science Foundation of China [51471018, 51672015]; National Thousand Young Talents Program of China FX This work is supported by the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China (Grant Nos. 51471018 and 51672015), and National Thousand Young Talents Program of China. NR 38 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD NOV PY 2016 VL 4 IS 11 AR 111101 DI 10.1063/1.4967207 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA EF3MK UT WOS:000390228300001 ER PT J AU Liu, Y Tanatar, MA Timmons, E Lograsso, TA AF Liu, Yong Tanatar, Makariy A. Timmons, Erik Lograsso, Thomas A. TI Polarized Light Microscopy Study on the Reentrant Phase Transition in a (Ba1-xKx) Fe2As2 Single Crystal with x=0.24 SO CRYSTALS LA English DT Article DE reentrant phase transition; polarized optical images; structural domains ID IRON PNICTIDES; SUPERCONDUCTIVITY AB A sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba1-xKx) Fe2As2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba1-xKx) Fe2As2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T-N similar to 80 K. The structural domains vanish below similar to 30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T-N similar to 80 K, LTO1 to low temperature tetragonal (LTT) structure at T-c similar to 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T similar to 15 K. C1 [Liu, Yong; Tanatar, Makariy A.; Timmons, Erik; Lograsso, Thomas A.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Tanatar, Makariy A.; Timmons, Erik] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lograsso, Thomas A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Liu, Y (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. EM yliu@ameslab.gov; tanatar@iastate.edu; erikt@iastate.edu; lograsso@ameslab.gov OI Lograsso, Thomas/0000-0002-8441-5320 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE by Iowa State University [DE-AC02-07CH11358] FX We thank Warren E. Straszheim for WDS measurement and Ruslan Prozorov for support of this study. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE-AC02-07CH11358. NR 28 TC 0 Z9 0 U1 9 U2 9 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4352 J9 CRYSTALS JI Crystals PD NOV PY 2016 VL 6 IS 11 AR 142 DI 10.3390/cryst6110142 PG 7 WC Crystallography; Materials Science, Multidisciplinary SC Crystallography; Materials Science GA EF1SP UT WOS:000390105400006 ER PT J AU Ganesh, VK Liang, XW Geoghegan, JA Cohen, ALV Venugopalan, N Foster, TJ Hook, M AF Ganesh, Vannakambadi K. Liang, Xiaowen Geoghegan, Joan A. Cohen, Ana Luisa V. Venugopalan, Nagarajan Foster, Timothy J. Hook, Magnus TI Lessons from the Crystal Structure of the S. aureus Surface Protein Clumping Factor A in Complex With Tefibazumab, an Inhibiting Monoclonal Antibody SO EBIOMEDICINE LA English DT Article DE Staphylococcal infections; Clumping factor A; Fibrinogen; Tefibazumab; Aurexis; Therapeutic mAb ID FIBRINOGEN-BINDING MSCRAMM; STAPHYLOCOCCUS-AUREUS; FACTOR-A; INFECTIVE ENDOCARDITIS; PLATELET ACTIVATION; FACTOR CLFA; FACTOR-I; VIRULENCE; MODEL; CLFA(221-550) AB The Staphylococcus aureus fibrinogen binding MSCRAMM(Microbial Surface Components Recognizing Adhesive Matrix Molecules), ClfA (clumping factor A) is an important virulence factor in staphylococcal infections and a component of several vaccines currently under clinical evaluation. The mouse monoclonal antibody aurexis (also called 12-9), and the humanized version tefibazumab are therapeutic monoclonal antibodies targeting ClfA that in combination with conventional antibiotics were effective in animal models but showed less impressive efficacy in a limited Phase II clinical trial. We here report the crystal structure and a biochemical characterization of the ClfA/tefibazumab (Fab) complex. The epitope for tefibazumab is located to the "top" of the N3 subdomain of ClfA and partially overlaps with a previously unidentified second binding site for fibrinogen. A high-affinity binding of ClfA to fibrinogen involves both an interaction at the N3 site and the previously identified docking of the C-terminal segment of the fibrinogen gamma-chain in the N2N3 trench. Although tefibazumab binds ClfA with high affinity we observe a modest IC50 value for the inhibition of fibrinogen binding to the MSCRAMM. This observation, paired with a common natural occurring variant of ClfA that is not effectively recognized by the mAb, may partly explain the modest effect tefibazumab showed in the initial clinic trail. This information will provide guidance for the design of the next generation of therapeutic anti-staphylococcal mAbs targeting ClfA. (C) 2016 Published by Elsevier B.V. C1 [Ganesh, Vannakambadi K.; Liang, Xiaowen; Cohen, Ana Luisa V.; Hook, Magnus] Texas A&M Univ, Hlth Sci Ctr, Inst Biosci & Technol, Ctr Infect & Inflammatory Dis, 2121 W Holcombe Blvd, Houston, TX 77030 USA. [Geoghegan, Joan A.; Foster, Timothy J.] Trinity Coll Dublin, Sch Genet & Microbiol, Moyne Inst Prevent Med, Dept Microbiol, Dublin 2, Ireland. [Venugopalan, Nagarajan] Argonne Natl Lab, GM CA APS, 9700 South Cass Ave, Lemont, IL 60439 USA. RP Hook, M (reprint author), Texas A&M Univ, Hlth Sci Ctr, Inst Biosci & Technol, Ctr Infect & Inflammatory Dis, 2121 W Holcombe Blvd, Houston, TX 77030 USA. EM mhook@ibt.tamhsc.edu FU NHLBI NIH HHS [R01 HL119648]; NIAID NIH HHS [R01 AI020624, R56 AI020624] NR 41 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-3964 J9 EBIOMEDICINE JI EBioMedicine PD NOV PY 2016 VL 13 BP 328 EP 338 DI 10.1016/j.ebiom.2016.09.027 PG 11 WC Medicine, General & Internal SC General & Internal Medicine GA EG0EU UT WOS:000390704800047 PM 27789272 ER PT J AU Larsen, PH AF Larsen, Peter H. TI A method to estimate the costs and benefits of undergrounding electricity transmission and distribution lines SO ENERGY ECONOMICS LA English DT Article DE Electric system reliability; Grid resilience; Power outages; Undergrounding; Cost-benefit analysis AB There has been a general shortfall of peer-reviewed literature identifying methods to estimate the costs and benefits of strategies employed by electric utilities to improve grid resilience. This paper introduces for the first time a comprehensive analysis framework to estimate the societal costs and benefits of implementing one strategy to improve power system reliability: undergrounding power transmission and distribution lines. It is shown that undergrounding transmission and distribution lines can be a cost-effective strategy to improve reliability, but only if certain criteria are met before the decision to underground is made. (C) 2016 Elsevier B.V. All rights reserved. C1 [Larsen, Peter H.] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA. [Larsen, Peter H.] Stanford Univ, Management Sci & Engn Dept, Stanford, CA 94305 USA. [Larsen, Peter H.] 1 Cyclotron Rd,90-4000, Berkeley, CA 94720 USA. RP Larsen, PH (reprint author), Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, Berkeley, CA 94720 USA.; Larsen, PH (reprint author), Stanford Univ, Management Sci & Engn Dept, Stanford, CA 94305 USA.; Larsen, PH (reprint author), 1 Cyclotron Rd,90-4000, Berkeley, CA 94720 USA. EM PHLarsen@lbl.gov NR 45 TC 0 Z9 0 U1 5 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD NOV PY 2016 VL 60 BP 47 EP 61 DI 10.1016/j.eneco.2016.09.011 PG 15 WC Economics SC Business & Economics GA EF7FR UT WOS:000390496000006 ER PT J AU Hanson, D Schmalzer, D Nichols, C Balash, P AF Hanson, Donald Schmalzer, David Nichols, Christopher Balash, Peter TI The impacts of meeting a tight CO2 performance standard on the electric power sector SO ENERGY ECONOMICS LA English DT Article DE Electricity analysis; Energy modeling; Gas demand; Intermittent renewables; Power plant dispatch; Power plant retirements AB This paper presents innovative modeling of complex interactions among gas-fired generators, coal-fired power plants, and renewables (wind and solar) when pushed hard to reduce CO2 emissions. A hypothetical CO2 technology performance standard, giving rise to a shadow price on CO2 emissions, was specified as part of the study design. In this work we see gas generation rapidly replacing coal generation. To understand the fate of coal based generation, it is important to examine trends at a granular level. An important feature of our model, the Electricity Supply and Investment Model (ESIM) is that it contains a unit inventory with unit characteristics and a memory of how each unit is operated over time. Cycling damages that individual coal units incur are a function of cumulative wear and tear over time. The expected remaining life of a cycled coal unit will depend on the severity of the cycling and for how many years. Deteriorating operating characteristics of a cycled unit over time results in higher operating costs, slipping down the dispatch loading order, and hence an acceleration of cycling damage, that is, a viscous circle of decline. The rate of CFPP retirements will increase for lower gas prices, higher price on CO2 emissions, and greater penetration of variable and intermittent renewables. Published by Elsevier B.V. C1 [Hanson, Donald; Schmalzer, David] Argonne Natl Lab, GSS-221,9700 S Cass Ave, Lemont, IL 60439 USA. [Hanson, Donald] Depaul Univ, 1 E Jackson Blvd, Chicago, IL 60604 USA. [Nichols, Christopher] Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. [Balash, Peter] Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. RP Hanson, D (reprint author), Argonne Natl Lab, GSS-221,9700 S Cass Ave, Lemont, IL 60439 USA. EM dhanson@anl.gov FU National Energy Technology Laboratory; U.S. Department of Energy, Office of Fossil Energy [DE-AC0-206CH11357] FX Donald Hanson and David Schmalzer appreciate the support from the National Energy Technology Laboratory. The work described here does not necessarily reflect the views of Argonne National Laboratory, the University of Chicago, the National Energy Technology Laboratory, or the U.S. Department of Energy.; Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Fossil Energy under contract DE-AC0-206CH11357. NR 13 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD NOV PY 2016 VL 60 BP 476 EP 485 DI 10.1016/j.eneco.2016.08.018 PG 10 WC Economics SC Business & Economics GA EF7FR UT WOS:000390496000045 ER PT J AU Cole, WJ Medlock, KB Jani, A AF Cole, Wesley J. Medlock, Kenneth B., III Jani, Aditya TI A view to the future of natural gas and electricity: An integrated modeling approach SO ENERGY ECONOMICS LA English DT Article DE Natural gas markets; Electricity markets; Market integration; Capacity expansion modeling AB This paper demonstrates the value of integrating two highly spatially resolved models: the Rice World Gas Trade Model (RWGTM) of the natural gas sector and the Regional Energy Deployment System (ReEDS) model of the U.S. electricity sector. The RWGTM passes electricity-sector natural gas prices to the ReEDS model, while the ReEDS model returns electricity-sector natural gas demand to the RWGTM. The two models successfully converge to a solution under reference scenario conditions. We present electricity-sector and natural gas sector evolution using the integrated models for this reference scenario. This paper demonstrates that the integrated models produced similar national-level results as when running in a stand-alone form, but that regional and state-level results can vary considerably. As we highlight, these regional differences have potentially significant implications for electric sector planners especially in the wake of substantive policy changes for the sector (e.g., the Clean Power Plan). (C) 2016 Elsevier B.V. All rights reserved. C1 [Cole, Wesley J.] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Medlock, Kenneth B., III] Rice Univ, Ctr Energy Studies, Baker Inst Publ Policy, Houston, TX 77005 USA. [Medlock, Kenneth B., III] Rice Univ, Dept Econ, 6100 Main St,MS40, Houston, TX USA. [Jani, Aditya] Rice Univ, Dept Civil & Environm Engn, Baker Inst Publ Policy, 6100 Main St,MS519, Houston, TX 77005 USA. [Jani, Aditya] Rice Univ, Ctr Energy Studies, Baker Inst Publ Policy, 6100 Main St,MS519, Houston, TX 77005 USA. RP Cole, WJ (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM wesley.cole@nrel.gov FU Department of Energy Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308] FX The ReEDS portion of this work was funded by the Department of Energy Office of Energy Efficiency and Renewable Energy under contract number DE-AC36-08GO28308. Any errors or omissions are the sole responsibility of the authors. NR 34 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD NOV PY 2016 VL 60 BP 486 EP 496 DI 10.1016/j.eneco.2016.03.005 PG 11 WC Economics SC Business & Economics GA EF7FR UT WOS:000390496000046 ER PT J AU Yeh, S Yang, C Gibbs, M Roland-Holst, D Greenblatt, J Mahone, A Wei, D Brinkman, G Cunningham, J Eggert, A Haley, B Hart, E Williams, J AF Yeh, Sonia Yang, Christopher Gibbs, Michael Roland-Holst, David Greenblatt, Jeffery Mahone, Amber Wei, Dan Brinkman, Gregory Cunningham, Joshua Eggert, Anthony Haley, Ben Hart, Elaine Williams, Jim TI A modeling comparison of deep greenhouse gas emissions reduction scenarios by 2030 in California SO ENERGY STRATEGY REVIEWS LA English DT Article DE Modeling comparison; GHG abatement; Non-energy GHG; Emissions reduction scenarios; Climate policies ID TECHNOLOGICAL-CHANGE; COMPARISON PROJECT; TECHNICAL CHANGE; POLICY; IMPACTS; ECONOMY; ENERGY AB California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low-or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs), demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. This paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Yeh, Sonia; Yang, Christopher] Univ Calif Davis, Inst Transportat Studies, 1605 Tilia,Suite 100, Davis, CA 95616 USA. [Yeh, Sonia] Chalmers, Environm & Energy Dept, SE-41296 Gothenburg, Sweden. [Gibbs, Michael; Cunningham, Joshua] Calif Air Resources Board, Sacramento, CA 95814 USA. [Roland-Holst, David] Univ Calif Berkeley, Dept Agr & Resource Econ, 207 Giannini Hall, Berkeley, CA 94720 USA. [Greenblatt, Jeffery] Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Div, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA. [Greenblatt, Jeffery] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, 1 Cyclotron Rd,MS 90-2002, Berkeley, CA 94720 USA. [Mahone, Amber; Haley, Ben; Hart, Elaine; Williams, Jim] E3, 101 Montgomery St,Suite 1600, San Francisco, CA 94104 USA. [Wei, Dan] Univ Southern Calif, Sol Price Sch Publ Policy, Los Angeles, CA 90089 USA. [Brinkman, Gregory] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Eggert, Anthony] ClimateWorks Fdn, 235 Montgomery St,Suite 1300, San Francisco, CA 94104 USA. RP Yeh, S (reprint author), Chalmers, Energy & Environm, SE-41296 Gothenburg, Sweden. EM sonia.yeh@chalmers.se OI Yeh, Sonia/0000-0003-4936-6057; Yeh, Sonia/0000-0002-4852-1177 FU California Air Resources Board [14-8008, 09-346, 12-329]; California Air Resources Board; California Energy Commission; California Public Utilities Commission; California Independent System Operator; Energy Foundation; Sustainable Transportation Energy Pathways (STEPS) program; Next10 FX This research and the workshop is partly supported by the California Air Resources Board (award # 14-8008). Co. Funding for the PATHWAYS model was provided by the California Air Resources Board, the California Energy Commission, California Public Utilities Commission, the California Independent System Operator, and the Energy Foundation. Yeh and Yang acknowledge funding support from the Sustainable Transportation Energy Pathways (STEPS) program and California Air Resources Board (award # 09-346) for the development of CA-TIMES model. Roland-Holst acknowledges funding support from Next10 for the latest model revision. Greenblatt acknowledges funding support from California Air Resources Board for the CALGAPS model (award # 12-329). We appreciate the comments and feedback provided by Brad Neff, Sonika Choudhary and Xantha Bruso. We also thank two anonymous reviewers whose comments have significantly improved the quality of this paper. Any errors and omissions are the responsibility of the authors alone. NR 47 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-467X EI 2211-4688 J9 ENERGY STRATEG REV JI Energy Strateg. Rev. PD NOV PY 2016 VL 13-14 BP 169 EP 180 DI 10.1016/j.esr.2016.10.001 PG 12 WC Energy & Fuels SC Energy & Fuels GA EF4RB UT WOS:000390318600015 ER PT J AU Zhou, X Obadia, MM Venna, SR Roth, EA Serghei, A Luebke, DR Myers, C Chang, ZM Enick, R Drockenmuller, E Nulwala, HB AF Zhou, Xu Obadia, Mona M. Venna, Surendar R. Roth, Elliot A. Serghei, Anatoli Luebke, David R. Myers, Christina Chang, Zhengmian Enick, Robert Drockenmuller, Eric Nulwala, Hunaid B. TI Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties SO EUROPEAN POLYMER JOURNAL LA English DT Article DE Poly(ionic liquid); 1,2,3-Triazolium; Network; Ionic conductivity; Polyether; CO2 separation membrane ID CLICK CHEMISTRY POLYADDITION; TRANSPORT PROPERTIES; PERMEATION PROPERTIES; POLY(ETHYLENE OXIDE); POLYMER MEMBRANES; POLY(IONIC LIQUID)S; CO2 SEPARATION; COPOLYMERS; POLY(1,2,3-TRIAZOLIUM)S; FUNCTIONALIZATION AB A series of cross-linked polyether-based 1,2,3-triazolium ion conducting membranes are prepared via the combination of thermally promoted Huisgen 1,3-dipolar cycloaddition of a dialkyne and a diazide poly(trimethylene ether glycol) monomers with in-situ N-alkylation of the resulting poly(1,2,3-triazole)s with varying contents of 1,10-diiododecane as cross-linking agent. The resulting free-standing membranes have T(g)s below -60 degrees C, T(d)s up to 230 degrees C, and Young's modulus up to 4.2 MPa. The overall combined reaction kinetics were studied by DSC yielding an activation energy of 76 kJ/mol by the Kissinger method. These ion conducting membranes have conductivities up to 10(-6) S/cm at 30 degrees C under anhydrous conditions. They have potential to be used in CO2 separation applications as they exhibit CO2 permeability of 59-110 Barrer and CO2/N-2 selectivity of 25-48. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zhou, Xu; Venna, Surendar R.; Roth, Elliot A.; Luebke, David R.; Myers, Christina; Nulwala, Hunaid B.] US DOE, Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. [Obadia, Mona M.; Serghei, Anatoli; Drockenmuller, Eric] Univ Lyon 1, Univ Lyon, CNRS, Ingn Mat Polymeres,UMR 5223, F-69003 Lyon, France. [Enick, Robert] Univ Pittsburgh, Chem & Petr Engn Dept, Pittsburgh, PA 15213 USA. [Nulwala, Hunaid B.] Carnegie Mellon Univ, Dept Chem, 4400 Forbes Ave, Pittsburgh, PA 15213 USA. [Zhou, Xu; Luebke, David R.; Nulwala, Hunaid B.] Liquid Ion Solut LLC, 1817 Pkwy View Dr, Pittsburgh, PA 15205 USA. [Chang, Zhengmian] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA. RP Drockenmuller, E (reprint author), Univ Lyon 1, Univ Lyon, CNRS, Ingn Mat Polymeres,UMR 5223, F-69003 Lyon, France.; Zhou, X; Nulwala, HB (reprint author), Liquid Ion Solut LLC, 1817 Pkwy View Dr, Pittsburgh, PA 15205 USA. EM zhou@liq-ion.com; eric.drockenmuller@univ-lyon1.fr; hnulwala@andrew.cmu.edu RI Chang, Zhengmian/B-8010-2017; OI Nulwala, Hunaid/0000-0001-7481-3723 FU U.S. Department of Energy's National Energy Technology Laboratory [DE-FE0004000]; U.S. Department of Energy; Institut Universitaire de France; Region Rhone-Alpes; Fulbright scholar program FX This work was performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's ongoing research on CO2 capture under the contract DE-FE0004000. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. E.D. and M.M.O. gratefully acknowledge the financial support from the "Institut Universitaire de France", the "Region Rhone-Alpes" and the Fulbright scholar program. PTMEG was kindly provided as a gift by DuPont via a Materials Transfer Agreement with the University of Pittsburgh. The authors acknowledge Dr. David Hopkinson at the National Energy Technology Laboratory for the water contact angle measurements. NR 62 TC 1 Z9 1 U1 13 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0014-3057 EI 1873-1945 J9 EUR POLYM J JI Eur. Polym. J. PD NOV PY 2016 VL 84 BP 65 EP 76 DI 10.1016/j.eurpolymj.2016.09.001 PG 12 WC Polymer Science SC Polymer Science GA EF2UT UT WOS:000390181800006 ER PT J AU Qin, ZC Dunn, JB Kwon, H Mueller, S Wander, MM AF Qin, Zhangcai Dunn, Jennifer B. Kwon, Hoyoung Mueller, Steffen Wander, Michelle M. TI Influence of spatially dependent, modeled soil carbon emission factors on life-cycle greenhouse gas emissions of corn and cellulosic ethanol SO GLOBAL CHANGE BIOLOGY BIOENERGY LA English DT Article DE GREET model; land use change; life cycle analysis; Miscanthus; poplar; surrogate CENTURY model; switchgrass; willow ID LAND-USE CHANGE; UNITED-STATES; ORGANIC-CARBON; CROP RESIDUE; US CROPLANDS; BIOFUELS; IMPACT; BIOENERGY; SEQUESTRATION; METAANALYSIS AB Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life-cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life-cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life-cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO(2)eq MJ(-1)) were 2.1-9.3 for corn-, -0.7 for corn stover-, -3.4 to 12.9 for switchgrass-, and -20.1 to -6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life-cycle GHG emissions (g CO(2)eq MJ(-1), 100 cm) were estimated to be 59-66 for corn ethanol, 14 for stover ethanol, 18-26 for switchgrass ethanol, and -7 to -0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar-and willow-derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield. C1 [Qin, Zhangcai; Dunn, Jennifer B.] Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave, Argonne, IL 60439 USA. [Kwon, Hoyoung] Int Food Policy Res Inst, Environm & Prod Technol Div, 2033 K St NW, Washington, DC 20006 USA. [Mueller, Steffen] Univ Illinois, Energy Resources Ctr, 1309 South Halsted St, Chicago, IL 60607 USA. [Wander, Michelle M.] Univ Illinois, Dept Nat Resources & Environm Sci, 1102 South Goodwin Ave, Urbana, IL 61801 USA. RP Qin, ZC; Dunn, JB (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave, Argonne, IL 60439 USA. EM zqin@anl.gov; jdunn@anl.gov FU Bioenergy Technologies Office (BETO) of the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy [DE-AC02-06CH11357] FX The authors are very grateful to Hao Cai, Christina Canter, Laurence Eaton, Julie Jastrow, Paul Van Deusen, and Michael Wang for helpful communication and discussions. We thank the anonymous reviewers for insightful comments. This work was supported by the Bioenergy Technologies Office (BETO) of the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy, under contract DE-AC02-06CH11357. We thank Kristen Johnson, Alicia Lindauer, and Zia Haq of BETO for support and guidance. The GREET model and its CCLUB module that includes SOC/EF data can be accessed free of charge at https://greet.es.anl.gov/. NR 48 TC 1 Z9 1 U1 10 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1757-1693 EI 1757-1707 J9 GCB BIOENERGY JI GCB Bioenergy PD NOV PY 2016 VL 8 IS 6 BP 1136 EP 1149 DI 10.1111/gcbb.12333 PG 14 WC Agronomy; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA EF0TL UT WOS:000390038800009 ER PT J AU Chen, M Guo, ZL Zheng, J Jing, FL Chu, W AF Chen, Min Guo, Zhanglong Zheng, Jian Jing, Fangli Chu, Wei TI CO2 selective hydrogenation to synthetic natural gas (SNG) over four nano-sized Ni/ZrO2 samples: ZrO2 crystalline phase & treatment impact SO JOURNAL OF ENERGY CHEMISTRY LA English DT Article DE Monoclinic zirconia support; Nano-sized nickel catalyst; CO2-TPD-MS; TPSR-CH4; CO2 selective hydrogenation ID CARBON-DIOXIDE; CATALYTIC-ACTIVITY; LOW-TEMPERATURE; ZIRCONIA MORPHOLOGY; NI NANOPARTICLES; METHANATION; ADSORPTION; STABILITY; METHANOL; SURFACE AB Two type zirconia (monoclinic and tetragonal phase ZrO2) carriers were synthesized via hydrothermal route, and nano-sized zirconia supported nickel catalysts were prepared by incipient impregnation then followed thermal treatment at 30 0 degrees C to 50 0 degrees C, for the CO2 selective hydrogenation to synthetic natural gas (SNG). The catalysts were characterized by XRD, CO2-TPD-MS, XPS, TPSR (CH 4, CO2) techniques. For comparison, the catalyst NZ-W-400 (monoclinic) synthesized in water solvent exhibited a better catalytic activity than the catalyst NZ-M-400 (tetragonal) prepared in methanol solvent. The catalyst NZ-W-400 displayed more H-2 absorbed sites, more basic sites and a lower temperature of initial CO2 activation. Then, the thermal treatment of monoclinic ZrO 2 supported nickel precursor was manufactured at three temperature of 350, 40 0, 50 0 degrees C. The TPSR experiments displayed that there were the lower temperature for CO2 activation and initial conversion (185 degrees C) as well as the lower peak temperature of CH 4 generation (318 degrees C), for the catalyst calcined at 500 degrees C. This sample contained the more basic sites and the higher catalytic activity, evidenced byCO(2)-TPD-MS and performance measurement. As for the NZ-W-350 sample, which exhibited the less basic sites and the lower catalytic activity, its initial temperature for CO2 activation and conversion was higher (214 degrees C) as well as the higher peak temperature of CH4 formation (382 degrees C). (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. C1 [Chen, Min; Guo, Zhanglong; Jing, Fangli; Chu, Wei] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China. [Chen, Min; Jing, Fangli; Chu, Wei] Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610225, Sichuan, Peoples R China. [Zheng, Jian] Pacific Northwest Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. RP Chu, W (reprint author), Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China. EM chuwei1965@scu.edu.cn FU National Natural Science Foundation of China [21476145] FX This work was supported by National Natural Science Foundation of China (21476145). We acknowledge J. Q. Hu, Z. Peng and X. P. Gao for their useful discussion and helps. The donation of XPS techniques by Analytical & Testing Center of Sichuan University is gratefully acknowledged. We also thank J. Zhen for his assistances on Raman measurement. NR 64 TC 0 Z9 0 U1 25 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2095-4956 J9 J ENERGY CHEM JI J. Energy Chem. PD NOV PY 2016 VL 25 IS 6 BP 1070 EP 1077 DI 10.1016/j.jechem.2016.11.008 PG 8 WC Chemistry, Applied; Chemistry, Physical; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA EF2CN UT WOS:000390132200022 ER PT J AU Damiano, PA Johnson, JR Chaston, CC AF Damiano, P. A. Johnson, J. R. Chaston, C. C. TI Ion gyroradius effects on particle trapping in kinetic Alfven waves along auroral field lines SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PLASMA SHEET; ELECTRON ACCELERATION; R-E; ENERGIZATION; MAGNETOPAUSE; DISPERSION; REGION; POLAR; MODEL AB In this study, a 2-D self-consistent hybrid gyrofluid-kinetic electron model is used to investigate Alfven wave propagation along dipolar magnetic field lines for a range of ion to electron temperature ratios. The focus of the investigation is on understanding the role of these effects on electron trapping in kinetic Alfven waves sourced in the plasma sheet and the role of this trapping in contributing to the overall electron energization at the ionosphere. This work also builds on our previous effort by considering a similar system in the limit of fixed initial parallel current, rather than fixed initial perpendicular electric field. It is found that the effects of particle trapping are strongest in the cold ion limit and the kinetic Alfven wave is able to carry trapped electrons a large distance along the field line yielding a relatively large net energization of the trapped electron population as the phase speed of the wave is increased. However, as the ion temperature is increased, the ability of the kinetic Alfven wave to carry and energize trapped electrons is reduced by more significant wave energy dispersion perpendicular to the ambient magnetic field which reduces the amplitude of the wave. This reduction of wave amplitude in turn reduces both the parallel current and the extent of the high-energy tails evident in the energized electron populations at the ionospheric boundary (which may serve to explain the limited extent of the broadband electron energization seen in observations). Even in the cold ion limit, trapping effects in kinetic Alfven waves lead to only modest electron energization for the parameters considered (on the order of tens of eV) and the primary energization of electrons to keV levels coincides with the arrival of the wave at the ionospheric boundary. C1 [Damiano, P. A.; Johnson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton Ctr Heliophys, POB 451, Princeton, NJ 08543 USA. [Johnson, J. R.] Andrews Univ, Dept Engn & Comp Sci, Berrien Springs, MI 49104 USA. [Chaston, C. C.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chaston, C. C.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. RP Damiano, PA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton Ctr Heliophys, POB 451, Princeton, NJ 08543 USA. EM pdamiano@pppl.gov FU NSF [AGS1203299]; NASA [NNH16AC43, NNH15AZ95I, NNH14AY11I, NNH14AY20I, NNX15AJ01G, NNX13AE12G, NNX16AR10G, NNX16AQ87G]; Australian Research Council [FT110100316]; National Center for Atmospheric Research (under CISL project) [UPR10002]; U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences; U.S. Department of Energy [DE-AC02-09CH11466] FX P.A.D. acknowledges useful discussions with W. Fox and S. Wing. The authors acknowledge support from NSF grant (AGS1203299) and NASA grant (NNH16AC43). The work at PPPL and Andrews University was also supported by NASA grants (NNH15AZ95I, NNH14AY11I, NNH14AY20I, NNX15AJ01G, NNX13AE12G, NNX16AR10G and NNX16AQ87G). C. Chaston also acknowledges support from Australian Research Council grant FT110100316. This work was facilitated by the Max-Planck/Princeton Center for Plasma Physics. The numerical data used in the figures may be obtained by contacting the corresponding author (pdamiano@pppl.gov). Computing resources were provided by the Princeton Plasma Physics Laboratory and the National Center for Atmospheric Research (under CISL project UPR10002). This manuscript is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, and has been authored by Princeton University under contract DE-AC02-09CH11466 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable worldwide license to publish or reproduce the published form of this manuscript, or allows others to do so, for United States Government purposes. NR 34 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2016 VL 121 IS 11 BP 10831 EP 10844 DI 10.1002/2016JA022566 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5XO UT WOS:000390403400013 ER PT J AU Fu, XG Cowee, MM Jordanova, VK Gary, SP Reeves, GD Winske, D AF Fu, Xiangrong Cowee, Misa M. Jordanova, Vania K. Gary, S. Peter Reeves, Geoffrey D. Winske, Dan TI Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID VAN ALLEN PROBES; 1-2 MAGNETIC PULSATIONS; EMIC WAVES; EQUATORIAL MAGNETOSPHERE; DEPENDENCE; ANISOTROPY; STORM; INSTABILITIES; PRECIPITATION; DISTRIBUTIONS AB Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this paper, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Such scaling can be used in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models. C1 [Fu, Xiangrong; Reeves, Geoffrey D.] New Mexico Consortium, Los Alamos, NM 87544 USA. [Cowee, Misa M.; Jordanova, Vania K.; Reeves, Geoffrey D.; Winske, Dan] Los Alamos Natl Lab, Los Alamos, NM USA. [Gary, S. Peter] Space Sci Inst, Boulder, CO USA. RP Fu, XG (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA. EM xrfu@utexas.edu OI Jordanova, Vania/0000-0003-0475-8743; Reeves, Geoffrey/0000-0002-7985-8098; Gary, S. Peter/0000-0002-4655-2316 FU U.S. Department of Energy; NASA [NNH13AW83I, NNH14AX90I, NNG13PJ05I]; NSF-GEM project [1303300] FX The Los Alamos portion of this research was performed under the auspices of the U.S. Department of Energy, with partial support from NASA grants NNH13AW83I, NNH14AX90I and NNG13PJ05I. The research effort of S.P.G. was supported by the NSF-GEM project 1303300. The data produced by our simulations will be made available to the public upon request. NR 47 TC 1 Z9 1 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2016 VL 121 IS 11 BP 10954 EP 10965 DI 10.1002/2016JA023303 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5XO UT WOS:000390403400021 ER PT J AU Li, LY Yu, J Cao, JB Wang, ZQ Yu, YQ Reeves, GD Li, X AF Li, L. Y. Yu, J. Cao, J. B. Wang, Z. Q. Yu, Y. Q. Reeves, G. D. Li, X. TI Effects of ULF waves on local and global energetic particles: Particle energy and species dependences SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID OUTER RADIATION BELT; INTERPLANETARY MAGNETIC-FIELD; RELATIVISTIC ELECTRONS; GEOMAGNETIC-PULSATIONS; RESONANT INTERACTION; FLUX MODULATIONS; DIFFUSION; ACCELERATION; LOSSES; STORMS AB After 06: 13 UT on 24 August 2005, an interplanetary shock triggers large-amplitude ultralow-frequency (ULF) waves (vertical bar delta vertical bar >= 15 nT) in the Pc4-Pc5 wave band (1.6-9 mHz) near the noon geosynchronous orbit (6.6 R-E). The local and global effects of ULF waves on energetic particles are observed by five Los Alamos National Laboratory satellites at different magnetic local times. The large-amplitude ULF waves cause the synchronous oscillations of energetic electrons and protons (>= 75 keV) at the noon geosynchronous orbit. When the energetic particles have a negative phase space density radial gradient, they undergo rapid outward radial diffusion and loss in the wave activity region. In the particle drift paths without strong ULF waves, only the rapidly drifting energetic electrons (>= 225 keV) display energy-dispersive oscillations and flux decays, whereas the slowly drifting electrons (< 225 keV) and protons (75-400 keV) have no ULF oscillation and loss feature. When the dayside magnetopause is compressed to the geosynchronous orbit, most of energetic electrons and protons are rapidly lost because of open drift trajectories. The global and multicomposition particle measurements demonstrate that the effect of ULF waves on nonlocal particle flux depends on the particle energy and species, whereas magnetopause shadowing effect is independent of the energetic particle species. For the rapidly drifting outer radiation belt particles (>= 225 keV), nonlocal particle loss/acceleration processes could also change their fluxes in the entire drift trajectory in the absence of "Dst effect" and substorm injection. C1 [Li, L. Y.; Yu, J.; Cao, J. B.; Yu, Y. Q.] Beihang Univ, Sch Space & Environm, Beijing, Peoples R China. [Wang, Z. Q.] Nanjing Univ Aeronaut & Astronaut, Dept Space Sci & Applicat, Coll Astronaut, Nanjing, Jiangsu, Peoples R China. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Li, X.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Li, X.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. RP Li, LY (reprint author), Beihang Univ, Sch Space & Environm, Beijing, Peoples R China. EM lyli_ssri@buaa.edu.cn RI Yu, Yiqun/E-2710-2012; OI Yu, Yiqun/0000-0002-1013-6505; Reeves, Geoffrey/0000-0002-7985-8098; LI, XINLIN/0000-0002-1683-3192 FU NSFC [41374165, 41431071, 41074119, 41174141] FX This work is supported by the NSFC (41374165, 41431071, 41074119, and 41174141). LANL data (L01A, L02A, L97A, L084, and L095) are provided by G.D. Reeves (E-mail: reeves@lanl.gov). The Pd, IMF, and HSYM data are available at the Web http://cdaweb.gsfc.nasa.gov/sp_phys. Geomagnetic data at the KIL, FCC, and DAWS stations are available at the Web http://spears.lancs.ac.uk/samnet/ and from magnetometer networks (SAMNET, CANMOS, and CARISMA). Geomagnetic data at the TIX and CHD stations are provided by A. Moiseyev and S.I. Solovyev. Liuyuan Li thanks all the staffs working for these data. NR 47 TC 0 Z9 0 U1 5 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD NOV PY 2016 VL 121 IS 11 BP 11007 EP 11020 DI 10.1002/2016JA023149 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EF5XO UT WOS:000390403400025 ER PT J AU Reese, D Weber, C AF Reese, Daniel Weber, Christopher TI Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer SO PHYSICS OF FLUIDS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITY; RAYLEIGH-TAYLOR INSTABILITY; SINGLE-MODE; SIMULATIONS AB A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D. Published by AIP Publishing. C1 [Reese, Daniel] Univ Wisconsin, Madison, WI 53706 USA. [Reese, Daniel; Weber, Christopher] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Reese, D (reprint author), Univ Wisconsin, Madison, WI 53706 USA.; Reese, D (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM dtreese@wisc.edu FU U.S. Department of Energy [DE-AC52-07NA27344]; DOE [DE-NA0001980]; WCI HEDP summer program at LLNL FX Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. A portion of this research was supported by DOE Grant No. DE-NA0001980. The authors are grateful for the support of the WCI HEDP summer program at LLNL and the assistance of A. Cook and W. Cabot. NR 22 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2016 VL 28 IS 11 AR 114102 DI 10.1063/1.4966683 PG 9 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA EF3PS UT WOS:000390237300016 ER PT J AU Anastassopoulos, V Andrianov, S Baartman, R Baessler, S Bai, M Benante, J Berz, M Blaskiewicz, M Bowcock, T Brown, K Casey, B Conte, M Crnkovic, JD D'Imperio, N Fanourakis, G Fedotov, A Fierlinger, P Fischer, W Gaisser, MO Giomataris, Y Grosse-Perdekamp, M Guidoboni, G Haciomeroglu, S Hoffstaetter, G Huang, H Incagli, M Ivanov, A Kawall, D Kim, YI King, B Koop, IA Lazarus, DM Lebedev, V Lee, MJ Lee, S Lee, YH Lehrach, A Lenisa, P Sandri, PL Luccio, AU Lyapin, A MacKay, W Maier, R Makino, K Malitsky, N Marciano, WJ Meng, W Meot, F Metodiev, EM Miceli, L Moricciani, D Morse, WM Nagaitsev, S Nayak, SK Orlov, YF Ozben, CS Park, ST Pesce, A Petrakou, E Pile, P Podobedov, B Polychronakos, V Pretz, J Ptitsyn, V Ramberg, E Raparia, D Rathmann, F Rescia, S Roser, T Sayed, HK Semertzidis, YK Senichev, Y Sidorin, A Silenko, A Simos, N Stahl, A Stephenson, EJ Stroher, H Syphers, MJ Talman, J Talman, RM Tishchenko, V Touramanis, C Tsoupas, N Venanzoni, G Vetter, K Vlassis, S Won, E Zavattini, G Zelenski, A Zioutas, K AF Anastassopoulos, V. Andrianov, S. Baartman, R. Baessler, S. Bai, M. Benante, J. Berz, M. Blaskiewicz, M. Bowcock, T. Brown, K. Casey, B. Conte, M. Crnkovic, J. D. D'Imperio, N. Fanourakis, G. Fedotov, A. Fierlinger, P. Fischer, W. Gaisser, M. O. Giomataris, Y. Grosse-Perdekamp, M. Guidoboni, G. Haciomeroglu, S. Hoffstaetter, G. Huang, H. Incagli, M. Ivanov, A. Kawall, D. Kim, Y. I. King, B. Koop, I. A. Lazarus, D. M. Lebedev, V. Lee, M. J. Lee, S. Lee, Y. H. Lehrach, A. Lenisa, P. Sandri, P. Levi Luccio, A. U. Lyapin, A. MacKay, W. Maier, R. Makino, K. Malitsky, N. Marciano, W. J. Meng, W. Meot, F. Metodiev, E. M. Miceli, L. Moricciani, D. Morse, W. M. Nagaitsev, S. Nayak, S. K. Orlov, Y. F. Ozben, C. S. Park, S. T. Pesce, A. Petrakou, E. Pile, P. Podobedov, B. Polychronakos, V. Pretz, J. Ptitsyn, V. Ramberg, E. Raparia, D. Rathmann, F. Rescia, S. Roser, T. Sayed, H. Kamal Semertzidis, Y. K. Senichev, Y. Sidorin, A. Silenko, A. Simos, N. Stahl, A. Stephenson, E. J. Stroeher, H. Syphers, M. J. Talman, J. Talman, R. M. Tishchenko, V. Touramanis, C. Tsoupas, N. Venanzoni, G. Vetter, K. Vlassis, S. Won, E. Zavattini, G. Zelenski, A. Zioutas, K. TI A storage ring experiment to detect a proton electric dipole moment SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID PRECISION PARTICLE SIMULATIONS; RUNGE-KUTTA INTEGRATION; POLARIZATION; SEARCH; FIELDS; MODEL; MUON AB A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of 10(-29) e . cm by using polarized "magic" momentum 0.7 GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the standard model at the scale of 3000 TeV. (C) 2016 Author(s). C1 [Anastassopoulos, V.; Vlassis, S.; Zioutas, K.] Univ Patras, Dept Phys, Rion 26500, Greece. [Andrianov, S.; Ivanov, A.] St Petersburg State Univ, Fac Appl Math & Control Proc, St Petersburg, Russia. [Baartman, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Baessler, S.] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA. [Bai, M.; Lehrach, A.; Maier, R.; Rathmann, F.; Senichev, Y.; Stroeher, H.] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Bai, M.; Lehrach, A.; Maier, R.; Rathmann, F.; Senichev, Y.; Stroeher, H.] Forschungszentrum Julich, JARA Fame, D-52425 Julich, Germany. [Benante, J.; Blaskiewicz, M.; Brown, K.; Crnkovic, J. D.; D'Imperio, N.; Fedotov, A.; Fischer, W.; Huang, H.; Lazarus, D. M.; Luccio, A. U.; MacKay, W.; Malitsky, N.; Marciano, W. J.; Meng, W.; Meot, F.; Morse, W. M.; Nayak, S. K.; Pile, P.; Podobedov, B.; Polychronakos, V.; Ptitsyn, V.; Raparia, D.; Rescia, S.; Roser, T.; Sayed, H. Kamal; Simos, N.; Talman, J.; Tishchenko, V.; Tsoupas, N.; Zelenski, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Berz, M.; Makino, K.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Bowcock, T.; King, B.; Touramanis, C.] Univ Liverpool, Dept Phys, Liverpool, Merseyside, England. [Casey, B.; Lebedev, V.; Nagaitsev, S.; Ramberg, E.; Syphers, M. J.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Conte, M.] Dept Phys, I-16146 Genoa, Italy. [Conte, M.] INFN Sect Genoa, I-16146 Genoa, Italy. [Fanourakis, G.] Inst Nucl & Particle Phys NCSR Demokritos, GR-15310 Aghia Paraskevi Athens, Greece. [Fierlinger, P.] Tech Univ Munich, Phys Dept & Excellence Cluster Universe, Garching, Germany. [Gaisser, M. O.; Haciomeroglu, S.; Kim, Y. I.; Lee, M. J.; Lee, S.; Metodiev, E. M.; Miceli, L.; Park, S. T.; Petrakou, E.; Semertzidis, Y. K.; Won, E.] Inst for Basic Sci Korea, Ctr Axion & Precis Phys Res, Daejeon 34141, South Korea. [Giomataris, Y.] CEA Saclay, DAPNIA, F-91191 Gif Sur Yvette, France. [Grosse-Perdekamp, M.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Guidoboni, G.; Lenisa, P.; Pesce, A.; Zavattini, G.] Univ Ferrara, INFN Ferrara, Ferrara, Italy. [Hoffstaetter, G.; Orlov, Y. F.; Talman, R. M.] Cornell Univ, Lab Elementary Particle Phys, Ithaca, NY 14853 USA. [Incagli, M.] Univ Pisa, Dept Phys, Pisa, Italy. [Incagli, M.] INFN Pisa, Pisa, Italy. [Kawall, D.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Koop, I. A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Lee, Y. H.] Korea Res Inst Stand & Sci, Daejeon 34141, South Korea. [Lehrach, A.; Pretz, J.; Stahl, A.] Rhein Westfal TH Aachen, D-52056 Aachen, Germany. [Lehrach, A.; Pretz, J.; Stahl, A.] Phys Zentrum, Phys Inst B 3, JARA Fame, D-52056 Aachen, Germany. [Sandri, P. Levi; Venanzoni, G.] INFN, Lab Nazl Frascati, I-00044 Rome, Italy. [Lyapin, A.] Royal Holloway Univ London, Egham, Surrey, England. [Metodiev, E. M.] Harvard Univ, Harvard Coll, Cambridge, MA 02138 USA. [Moricciani, D.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Moricciani, D.] INFN, Sez Roma Tor Vergata, Rome, Italy. [Ozben, C. S.] Istanbul Tech Univ, TR-34469 Istanbul, Turkey. [Semertzidis, Y. K.] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea. [Sidorin, A.; Silenko, A.] Joint Inst Nucl Res, Dubna, Moscow Region, Russia. [Silenko, A.] Belarusian State Univ, Res Inst Nucl Problems, Minsk, Byelarus. [Stephenson, E. J.] Indiana Univ, Ctr Spacetime Symmetries, Bloomington, IN 47405 USA. [Syphers, M. J.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Vetter, K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Won, E.] Korea Univ, Dept Phys, Seoul 02841, South Korea. RP Semertzidis, YK (reprint author), Inst for Basic Sci Korea, Ctr Axion & Precis Phys Res, Daejeon 34141, South Korea.; Semertzidis, YK (reprint author), Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea. EM yannis@kaist.ac.kr NR 44 TC 0 Z9 0 U1 11 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 115116 DI 10.1063/1.4967465 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300392 PM 27910557 ER PT J AU Bachmann, B Hilsabeck, T Field, J Masters, N Reed, C Pardini, T Rygg, JR Alexander, N Benedetti, LR Doppner, T Forsman, A Izumi, N LePape, S Ma, T MacPhee, AG Nagel, S Patel, P Spears, B Landen, OL AF Bachmann, B. Hilsabeck, T. Field, J. Masters, N. Reed, C. Pardini, T. Rygg, J. R. Alexander, N. Benedetti, L. R. Doppner, T. Forsman, A. Izumi, N. LePape, S. Ma, T. MacPhee, A. G. Nagel, S. Patel, P. Spears, B. Landen, O. L. TI Resolving hot spot microstructure using x-ray penumbral imaging (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID FUSION-TARGETS; PLASMAS AB We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 mu m resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 mu m to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved. Published by AIP Publishing. C1 [Bachmann, B.; Field, J.; Masters, N.; Pardini, T.; Rygg, J. R.; Benedetti, L. R.; Doppner, T.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hilsabeck, T.; Reed, C.; Alexander, N.; Forsman, A.] Gen Atom, San Diego, CA 92186 USA. RP Bachmann, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM bachmann2@llnl.gov RI Patel, Pravesh/E-1400-2011 NR 41 TC 1 Z9 1 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E201 DI 10.1063/1.4959161 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300165 PM 27910489 ER PT J AU Bedoya, F Allain, JP Kaita, R Skinner, CH Buzi, L Koel, BE AF Bedoya, F. Allain, J. P. Kaita, R. Skinner, C. H. Buzi, L. Koel, B. E. TI Unraveling wall conditioning effects on plasma facing components in NSTX-U with the Materials Analysis Particle Probe (MAPP) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID PERFORMANCE AB A novel Plasma Facing Components (PFCs) diagnostic, the Materials Analysis Particle Probe (MAPP), has been recently commissioned in the National Spherical Torus Experiment Upgrade (NSTX-U). MAPP is currently monitoring the chemical evolution of the PFCs in the NSTX-U lower divertor at 107 cm from the tokamak axis on a day-to-day basis. In this work, we summarize the methodology that was adopted to obtain qualitative and quantitative descriptions of the samples chemistry. Using this methodology, we were able to describe all the features in all our spectra to within a standard deviation of +/- 0.22 eV in position and +/- 248 s(-1) eV in area. Additionally, we provide an example of this methodology with data of boronized ATJ graphite exposed to NSTX-U plasmas. Published by AIP Publishing. C1 [Bedoya, F.; Allain, J. P.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Kaita, R.; Skinner, C. H.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Buzi, L.; Koel, B. E.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08540 USA. RP Allain, JP (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. EM allain@illinois.edu OI Koel, Bruce/0000-0002-0032-4991; Allain, Jean Paul/0000-0003-1348-262X NR 16 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D403 DI 10.1063/1.4955276 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300008 PM 27910555 ER PT J AU Beiersdorfer, P Magee, EW Hell, N Brown, GV AF Beiersdorfer, P. Magee, E. W. Hell, N. Brown, G. V. TI Imaging crystal spectrometer for high-resolution x-ray measurements on electron beam ion traps and tokamaks SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID SENSITIVE PROPORTIONAL COUNTER; CHARGED IONS; EXTREME-ULTRAVIOLET; LINE EMISSION; SPECTROSCOPY; POLARIZATION; TRANSITIONS; TEMPERATURE; POSITION; SPECTRA AB We describe a crystal spectrometer implemented on the Livermore electron beam ion traps that employ two spherically bent quartz crystals and a cryogenically cooled back-illuminated charge-coupled device detector to measure x rays with a nominal resolving power of lambda/Delta lambda >= 10 000. Its focusing properties allow us to record x rays either with the plane of dispersion perpendicular or parallel to the electron beam and, thus, to preferentially select one of the two linear x-ray polarization components. Moreover, by choice of dispersion plane and focussing conditions, we use the instrument either to image the distribution of the ions within the 2 cm long trap region, or to concentrate x rays of a given energy to a point on the detector, which optimizes the signal-to-noise ratio. We demonstrate the operation and utility of the new instrument by presenting spectra of Mo34+, which prepares the instrument for use as a core impurity diagnostic on the NSTX-U spherical torus and other magnetic fusion devices that employ molybdenum as plasma facing components. Published by AIP Publishing. C1 [Beiersdorfer, P.; Magee, E. W.; Hell, N.; Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hell, N.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. RP Beiersdorfer, P (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 42 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E339 DI 10.1063/1.4962049 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300207 PM 27910570 ER PT J AU Benedetti, LR Trosseille, C Holder, JP Piston, K Hargrove, D Bradley, DK Bell, P Raimbourg, J Prat, M Pickworth, LA Khan, SF AF Benedetti, L. R. Trosseille, C. Holder, J. P. Piston, K. Hargrove, D. Bradley, D. K. Bell, P. Raimbourg, J. Prat, M. Pickworth, L. A. Khan, S. F. TI A comparison of "flat fielding" techniques for x-ray framing cameras SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Gain can vary across the active area of an x-ray framing camera by a factor of 4 (or more!) due to the voltage loss and dispersion associated with pulse transmission in a microstripline-coated microchannel plate. In order to make quantitative measurements, it is consequently important to measure the gain variation ("flat field"). Moreover, because of electromagnetic cross talk, gain variation depends on specific operational parameters, and ideally a flat field would be obtained at all operating conditions. As part of a collaboration between Lawrence Livermore National Laboratory's National Ignition Facility and the Commissariat a l'Energie Atomique, we have been able to evaluate the consistency of three different methods of measuring x-ray flat fields. By applying all three methods to a single camera, we are able to isolate performance from method. Here we report the consistency of the methods and discuss systematic issues with the implementation and analysis of each. Published by AIP Publishing. C1 [Benedetti, L. R.; Holder, J. P.; Piston, K.; Hargrove, D.; Bradley, D. K.; Bell, P.; Pickworth, L. A.; Khan, S. F.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Trosseille, C.; Raimbourg, J.; Prat, M.] CEA DAM, F-91297 Bruyeres Le Chatel, Arpajon, France. RP Benedetti, LR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM benedetti3@llnl.gov NR 10 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D622 DI 10.1063/1.4963201 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300079 PM 27910442 ER PT J AU Biewer, TM Meitner, S Rapp, J Ray, H Shaw, G AF Biewer, T. M. Meitner, S. Rapp, J. Ray, H. Shaw, G. TI First results from the Thomson scattering diagnostic on proto-MPEX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (T-e) and electron density (n(e)) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating T-e similar to 2 eV and n(e) similar to 1 x 10(19) m(-3). The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given. Published by AIP Publishing. C1 [Biewer, T. M.; Meitner, S.; Rapp, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ray, H.; Shaw, G.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. RP Biewer, TM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM biewertm@ornl.gov NR 10 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E518 DI 10.1063/1.4959163 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300233 PM 27910678 ER PT J AU Bitter, M Hill, KW Gao, L Efthimion, PC Delgado-Apariccio, L Lazerson, S Pablant, N AF Bitter, M. Hill, K. W. Gao, Lan Efthimion, P. C. Delgado-Apariccio, L. Lazerson, S. Pablant, N. TI A multi-cone x-ray imaging Bragg crystal spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID SPECTROGRAPH AB This article describes a new x-ray imaging Bragg crystal spectrometer, which-in combination with a streak camera or a gated strip detector-can be used for time-resolved measurements of x-ray line spectra at the National Ignition Facility and other high power laser facilities. The main advantage of this instrument is that it produces perfect images of a point source for each wavelength in a selectable spectral range and that the detector plane can be perpendicular to the crystal surface or inclined by an arbitrary angle with respect to the crystal surface. These unique imaging properties are obtained by bending the x-ray diffracting crystal into a certain shape, which is generated by arranging multiple cones with different aperture angles on a common nodal line. Published by AIP Publishing. C1 [Bitter, M.; Hill, K. W.; Gao, Lan; Efthimion, P. C.; Delgado-Apariccio, L.; Lazerson, S.; Pablant, N.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Bitter, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bitter@pppl.gov OI Lazerson, Samuel/0000-0001-8002-0121 NR 3 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E333 DI 10.1063/1.4960537 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300201 PM 27910415 ER PT J AU Brookman, MW Austin, ME McLean, AG Carlstrom, TN Hyatt, AW Lohr, J AF Brookman, M. W. Austin, M. E. McLean, A. G. Carlstrom, T. N. Hyatt, A. W. Lohr, J. TI Improved cross-calibration of Thomson scattering and electron cyclotron emission with ECH on DIII-D SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Thomson scattering produces n(e) profiles from measurement of scattered laser beam intensity. Rayleigh scattering provides a first calibration of the relation n(e) proportional to I-TS, which depends on many factors (e.g., laser alignment and power, optics, and measurement systems). On DIII-D, the n(e) calibration is adjusted against an absolute n(e) from the density-driven cutoff of the 48 channel 2nd harmonic X-mode electron cyclotron emission system. This method has been used to calibrate Thomson n(e) from the edge to near the core (r/a > 0.15). Application of core electron cyclotron heating improves the quality of cutoff and depth of its penetration into the core, and also changes underlying MHD activity, minimizing crashes which confound calibration. Less fueling is needed as "ECH pump-out" generates a plasma ready to take up gas. On removal of gyrotron power, cutoff penetrates into the core as channels fall successively and smoothly into cutoff. Published by AIP Publishing. C1 [Brookman, M. W.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Austin, M. E.; McLean, A. G.] Lawrence Livermore Natl Lab, Livermore, CA 94500 USA. [Carlstrom, T. N.; Hyatt, A. W.; Lohr, J.] Gen Atom Co, San Diego, CA 92122 USA. RP Brookman, MW (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. EM brookmanmw@fusion.gat.com NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E517 DI 10.1063/1.4959916 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300232 PM 27910589 ER PT J AU Brown, GV Beiersdorfer, P Hell, N Magee, E AF Brown, G. V. Beiersdorfer, P. Hell, N. Magee, E. TI Experimentally determining the relative efficiency of spherically bent germanium and quartz crystals SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID HIGHLY-CHARGED IONS; SPECTROSCOPY; SPECTROMETERS; RESOLUTION; SPECTRA; TRAP AB We have used the EBIT-I electron beam ion trap at the Lawrence Livermore National Laboratory and a duplicate Orion High Resolution X-ray Spectrometer (OHREX) to measure the relative efficiency of a spherically bent quartz (1011) crystal (2d = 6.687 angstrom) and a spherically bent germanium (111) crystal (2d = 6.532 angstrom). L-shell X-ray photons from highly charged molybdenum ions generated in EBIT-I were simultaneously focussed and Bragg reflected by each crystal, both housed in a single spectrometer, onto a single CCD X-ray detector. The flux from each crystal was then directly compared. Our results show that the germanium crystal has a reflection efficiency significantly better than the quartz crystal, however, the energy resolution is significantly worse. Moreover, we find that the spatial focussing properties of the germanium crystal are worse than those of the quartz crystal. Details of the experiment are presented, and we discuss the advantages of using either crystal on a streak-camera equipped OHREX spectrometer. Published by AIP Publishing. C1 [Brown, G. V.; Beiersdorfer, P.; Hell, N.; Magee, E.] Lawrence Livermore Natl Lab, Div Phys, 7000 East Ave, Livermore, CA 94550 USA. [Hell, N.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, D-96049 Bamberg, Germany. [Hell, N.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. RP Brown, GV (reprint author), Lawrence Livermore Natl Lab, Div Phys, 7000 East Ave, Livermore, CA 94550 USA. EM brown86@llnl.gov NR 15 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D620 DI 10.1063/1.4962037 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300077 PM 27910582 ER PT J AU Brunner, KJ Chorley, JC Dipper, NA Naylor, G Sharples, RM Taylor, G Thomas, DA Vann, RGL AF Brunner, K. J. Chorley, J. C. Dipper, N. A. Naylor, G. Sharples, R. M. Taylor, G. Thomas, D. A. Vann, R. G. L. TI Modifications to the synthetic aperture microwave imaging diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The synthetic aperture microwave imaging diagnostic has been operating on the MAST experiment since 2011. It has provided the first 2D images of B-X-O mode conversion windows and showed the feasibility of conducting 2D Doppler back-scattering experiments. The diagnostic heavily relies on field programmable gate arrays to conduct its work. Recent successes and newly gained experience with the diagnostic have led us to modify it. The enhancements will enable pitch angle profile measurements, O and X mode separation, and the continuous acquisition of 2D DBS data. The diagnostic has also been installed on the NSTX-U and is acquiring data since May 2016. Published by AIP Publishing. C1 [Brunner, K. J.; Chorley, J. C.; Dipper, N. A.; Sharples, R. M.] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. [Naylor, G.; Thomas, D. A.] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England. [Taylor, G.] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA. [Thomas, D. A.; Vann, R. G. L.] Univ York, York Plasma Inst, York YO10 5DQ, N Yorkshire, England. RP Brunner, KJ (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. EM k.j.brunner@durham.ac.uk OI Brunner, Kai/0000-0002-0974-0457; Sharples, Ray/0000-0003-3449-8583 NR 13 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E129 DI 10.1063/1.4961283 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300158 PM 27910342 ER PT J AU Campbell, MF Bohlin, GA Schrader, PE Bambha, RP Kliewer, CJ Johansson, KO Michelsen, HA AF Campbell, M. F. Bohlin, G. A. Schrader, P. E. Bambha, R. P. Kliewer, C. J. Johansson, K. O. Michelsen, H. A. TI Design and characterization of a linear Hencken-type burner SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID LASER-INDUCED INCANDESCENCE; AIR DIFFUSION FLAME; ATOMIC-ABSORPTION-SPECTROMETRY; INTERNAL-COMBUSTION ENGINES; TUNABLE DIODE-LASER; SOOT FORMATION; SLOT BURNER; TURBULENT COMBUSTION; RAMAN-SCATTERING; PREMIXED FLAMES AB We have designed and constructed a Hencken-type burner that produces a 38-mm-long linear laminar partially premixed co-flow diffusion flame. This burner was designed to produce a linear flame for studies of soot chemistry, combining the benefit of the conventional Hencken burner's laminar flames with the advantage of the slot burner's geometry for optical measurements requiring a long interaction distance. It is suitable for measurements using optical imaging diagnostics, line-of-sight optical techniques, or off-axis optical-scattering methods requiring either a long or short path length through the flame. This paper presents details of the design and operation of this new burner. We also provide characterization information for flames produced by this burner, including relative flow-field velocities obtained using hot-wire anemometry, temperatures along the centerline extracted using direct one-dimensional coherent Raman imaging, soot volume fractions along the centerline obtained using laser-induced incandescence and laser extinction, and transmission electron microscopy images of soot thermophoretically sampled from the flame. Published by AIP Publishing. C1 [Campbell, M. F.; Bohlin, G. A.; Schrader, P. E.; Bambha, R. P.; Kliewer, C. J.; Johansson, K. O.; Michelsen, H. A.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. RP Michelsen, HA (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. EM hamiche@sandia.gov RI Bohlin, Alexis/L-8973-2015 OI Bohlin, Alexis/0000-0003-4383-8332 NR 88 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 115114 DI 10.1063/1.4967491 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300390 PM 27910522 ER PT J AU Casey, DT Volegov, PL Merrill, FE Munro, DH Grim, GP Landen, OL Spears, BK Fittinghoff, DN Field, JE Smalyuk, VA AF Casey, D. T. Volegov, P. L. Merrill, F. E. Munro, D. H. Grim, G. P. Landen, O. L. Spears, B. K. Fittinghoff, D. N. Field, J. E. Smalyuk, V. A. TI Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The Neutron Imaging System at the National Ignition Facility is used to observe the primary similar to 14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models. Published by AIP Publishing. C1 [Casey, D. T.; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Volegov, P. L.; Merrill, F. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Casey, DT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM casey21@llnl.gov NR 15 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E715 DI 10.1063/1.4960065 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300293 PM 27910388 ER PT J AU Chen, H Palmer, N Dayton, M Carpenter, A Schneider, MB Bell, PM Bradley, DK Claus, LD Fang, L Hilsabeck, T Hohenberger, M Jones, OS Kilkenny, JD Kimmel, MW Robertson, G Rochau, G Sanchez, MO Stahoviak, JW Trotter, DC Porter, JL AF Chen, Hui Palmer, N. Dayton, M. Carpenter, A. Schneider, M. B. Bell, P. M. Bradley, D. K. Claus, L. D. Fang, L. Hilsabeck, T. Hohenberger, M. Jones, O. S. Kilkenny, J. D. Kimmel, M. W. Robertson, G. Rochau, G. Sanchez, M. O. Stahoviak, J. W. Trotter, D. C. Porter, J. L. TI A high-speed two-frame, 1-2 ns gated X-ray CMOS imager used as a hohlraum diagnostic on the National Ignition Facility (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 x 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall. Published by AIP Publishing. C1 [Chen, Hui; Palmer, N.; Dayton, M.; Carpenter, A.; Schneider, M. B.; Bell, P. M.; Bradley, D. K.; Jones, O. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Claus, L. D.; Fang, L.; Kimmel, M. W.; Robertson, G.; Rochau, G.; Sanchez, M. O.; Stahoviak, J. W.; Trotter, D. C.; Porter, J. L.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Hilsabeck, T.; Kilkenny, J. D.] Gen Atom, San Diego, CA 92186 USA. [Hohenberger, M.] Laser Energet Lab, Rochester, NY 14623 USA. RP Chen, H (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM chen33@llnl.gov NR 20 TC 1 Z9 1 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E203 DI 10.1063/1.4962252 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300167 PM 27910306 ER PT J AU Chrystal, C Burrell, KH Grierson, BA Haskey, SR Groebner, RJ Kaplan, DH Briesemeister, A AF Chrystal, C. Burrell, K. H. Grierson, B. A. Haskey, S. R. Groebner, R. J. Kaplan, D. H. Briesemeister, A. TI Improved edge charge exchange recombination spectroscopy in DIII-D SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID COUPLED-DEVICE DETECTORS; D TOKAMAK; SYSTEM AB The charge exchange recombination spectroscopy diagnostic on the DIII-D tokamak has been upgraded with the addition of more high radial resolution view chords near the edge of the plasma (r/a > 0.8). The additional views are diagnosed with the same number of spectrometers by placing fiber optics side-by-side at the spectrometer entrance with a precise separation that avoids wavelength shifted crosstalk without the use of bandpass filters. The new views improve measurement of edge impurity parameters in steep gradient, H-mode plasmas with many different shapes. The number of edge view chords with 8 mm radial separation has increased from 16 to 38. New fused silica fibers have improved light throughput and clarify the observation of non-Gaussian spectra that suggest the ion distribution function can be non-Maxwellian in low collisionality plasmas. Published by AIP Publishing. C1 [Chrystal, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Grierson, B. A.; Haskey, S. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Briesemeister, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chrystal, C (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. EM chrystal@fusion.gat.com OI Briesemeister, Alexis/0000-0003-3703-0978; Haskey, Shaun/0000-0002-9978-6597 NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E512 DI 10.1063/1.4958915 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300227 PM 27910369 ER PT J AU Clary, R Roquemore, A Douglass, J Jaramillo, D Korepanov, S Magee, R Medley, S Smirnov, A AF Clary, R. Roquemore, A. Douglass, J. Jaramillo, D. Korepanov, S. Magee, R. Medley, S. Smirnov, A. TI A mass resolved, high resolution neutral particle analyzer for C-2U SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID TOKAMAK AB C-2U is a high-confinement, advanced beam driven field-reversed configuration plasma experiment which sustains the configuration for >5 ms, in excess of typical MHD and fast particle instability times, as well as fast particle slowing down times. Fast particle dynamics are critical to C-2U performance and several diagnostics have been deployed to characterize the fast particle population, including neutron and proton detectors. To increase our understanding of fast particle behavior and supplement existing diagnostics, an E parallel to B neutral particle analyzer was installed, which simultaneously measures H-0 and D-0 flux with large dynamic range and high energy resolution. Here we report the commissioning of the E parallel to B analyzer, confirm the instrument has energy resolution Delta epsilon/epsilon less than or similar to 0.1 and a dynamic range epsilon(max)/epsilon(min) similar to 30, and present measurements of initial testing on C-2U. Published by AIP Publishing. C1 [Clary, R.; Douglass, J.; Jaramillo, D.; Korepanov, S.; Magee, R.; Smirnov, A.] Tri Alpha Energy Inc, Rancho Santa Margarita, CA 92688 USA. [Roquemore, A.; Medley, S.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Clary, R (reprint author), Tri Alpha Energy Inc, Rancho Santa Margarita, CA 92688 USA. EM rclary@trialphaenergy.com NR 11 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E703 DI 10.1063/1.4958911 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300281 PM 27910391 ER PT J AU Cooper, CM Pace, DC Paz-Soldan, C Commaux, N Eidietis, NW Hollmann, EM Shiraki, D AF Cooper, C. M. Pace, D. C. Paz-Soldan, C. Commaux, N. Eidietis, N. W. Hollmann, E. M. Shiraki, D. TI Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID GENERATION; DISRUPTIONS AB A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function. Published by AIP Publishing. C1 [Cooper, C. M.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Commaux, N.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Hollmann, E. M.] Univ Calif San Diego, San Diego, CA 92093 USA. RP Cooper, CM (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. EM coopercm@fusion.gat.com NR 25 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E602 DI 10.1063/1.4961288 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300278 PM 27910457 ER PT J AU Danly, CR Christensen, K Fatherley, VE Fittinghoff, DN Grim, GP Hibbard, R Izumi, N Jedlovec, D Merrill, FE Schmidt, DW Simpson, RA Skulina, K Volegov, PL Wilde, CH AF Danly, C. R. Christensen, K. Fatherley, V. E. Fittinghoff, D. N. Grim, G. P. Hibbard, R. Izumi, N. Jedlovec, D. Merrill, F. E. Schmidt, D. W. Simpson, R. A. Skulina, K. Volegov, P. L. Wilde, C. H. TI Combined neutron and x-ray imaging at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB X-ray and neutrons are commonly used to image inertial confinement fusion implosions, providing key diagnostic information on the fuel assembly of burning deuterium-tritium (DT) fuel. The x-ray and neutron data provided are complementary as the production of neutrons and x-rays occurs from different physical processes, but typically these two images are collected from different views with no opportunity for co-registration of the two images. Neutrons are produced where the DT fusion fuel is burning; X-rays are produced in regions corresponding to high temperatures. Processes such as mix of ablator material into the hotspot can result in increased x-ray production and decreased neutron production but can only be confidently observed if the two images are collected along the same line of sight and co-registered. To allow direct comparison of x-ray and neutron data, a combined neutron x-ray imaging system has been tested at Omega and installed at the National Ignition Facility to collect an x-ray image along the currently installed neutron imaging line of sight. This system is described, and initial results are presented along with prospects for definitive coregistration of the images. Published by AIP Publishing. C1 [Danly, C. R.; Fatherley, V. E.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Christensen, K.; Fittinghoff, D. N.; Grim, G. P.; Hibbard, R.; Izumi, N.; Jedlovec, D.; Skulina, K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Danly, CR (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM cdanly@lanl.gov NR 14 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D703 DI 10.1063/1.4962194 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300084 PM 27910487 ER PT J AU Datte, PS Eckart, M Moore, AS Thompson, W de Dios, GV AF Datte, P. S. Eckart, M. Moore, A. S. Thompson, W. de Dios, G. Vergel TI Impulse responses of visible phototubes used in National Ignition Facility neutron time of flight diagnostics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Neutron-induced visible scintillation in neutron time of flight (NToF) diagnostics at the National Ignition Facility (NIF) is measured with 40 mm single stage micro-channel plate photomultipliers and a 40 mm vacuum photodiode, outside the neutron line of sight. In NIF experiments with 14 MeV neutron yields above Y > 10 x 10(15) these tubes are configured to deliver of order 1 nC of charge in the nominally 5 ns NToF into a 50 Omega load. We have examined a number of 40 mm tubes manufactured by Photek Ltd. of St. Leonards on Sea, UK, to determine possible changes in the instrument impulse response as a function of signal charge delivered in 1 ns. Precision NToF measurements at approximately 20 m require that we characterize changes in the impulse response moments to <40 ps for the first central moment and similar to 2% rms for the square root of the second central moment with similar to 500 ps value. Detailed results are presented for three different diode configurations. Published by AIP Publishing. C1 [Datte, P. S.; Eckart, M.; Moore, A. S.; Thompson, W.; de Dios, G. Vergel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Datte, PS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM datte1@llnl.gov NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D837 DI 10.1063/1.4962039 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300121 PM 27910365 ER PT J AU Datte, PS Ross, JS Froula, DH Daub, KD Galbraith, J Glenzer, S Hatch, B Katz, J Kilkenny, J Landen, O Manha, D Manuel, AM Molander, W Montgomery, D Moody, J Swadling, GF Weaver, J AF Datte, P. S. Ross, J. S. Froula, D. H. Daub, K. D. Galbraith, J. Glenzer, S. Hatch, B. Katz, J. Kilkenny, J. Landen, O. Manha, D. Manuel, A. M. Molander, W. Montgomery, D. Moody, J. Swadling, G. F. Weaver, J. TI The design of the optical Thomson scattering diagnostic for the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (lambda(0)-210 nm) will be used to optimize the scattered signal for plasma densities of 5 x 10(20) electrons/cm(3) while a 3 omega probe will be used for experiments investigating lower density plasmas of 1 x 10(19) electrons/cm(3). We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser. Published by AIP Publishing. C1 [Datte, P. S.; Ross, J. S.; Daub, K. D.; Galbraith, J.; Hatch, B.; Kilkenny, J.; Landen, O.; Manha, D.; Manuel, A. M.; Molander, W.; Moody, J.; Swadling, G. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Froula, D. H.; Katz, J.] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA. [Glenzer, S.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Montgomery, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Weaver, J.] Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA. RP Datte, PS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM datte1@llnl.gov NR 8 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E549 DI 10.1063/1.4962043 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300264 PM 27910656 ER PT J AU Delgado-Aparicio, LF Maddox, J Pablant, N Hill, K Bitter, M Rice, JE Granetz, R Hubbard, A Irby, J Greenwald, M Marmar, E Tritz, K Stutman, D Stratton, B Efthimion, P AF Delgado-Aparicio, L. F. Maddox, J. Pablant, N. Hill, K. Bitter, M. Rice, J. E. Granetz, R. Hubbard, A. Irby, J. Greenwald, M. Marmar, E. Tritz, K. Stutman, D. Stratton, B. Efthimion, P. TI Multi-energy SXR cameras for magnetically confined fusion plasmas (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID X-RAY PHA; PULSE-HEIGHT ANALYZER; ELECTRON-TEMPERATURE; HT-7 TOKAMAK AB A compact multi-energy soft x-ray camera has been developed for time, energy and space-resolved measurements of the soft-x-ray emissivity in magnetically confined fusion plasmas. Multi-energy soft x-ray imaging provides a unique opportunity for measuring, simultaneously, a variety of important plasma properties (T-e, n(Z), Delta Z(eff), and n(e,fast)). The electron temperature can be obtained by modeling the slope of the continuum radiation from ratios of the available brightness and inverted radial emissivity profiles over multiple energy ranges. Impurity density measurements are also possible using the line-emission from medium-to high-Z impurities to separate the background as well as transient levels of metal contributions. This technique should be explored also as a burning plasma diagnostic in-view of its simplicity and robustness. Published by AIP Publishing. C1 [Delgado-Aparicio, L. F.; Maddox, J.; Pablant, N.; Hill, K.; Bitter, M.; Stratton, B.; Efthimion, P.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Rice, J. E.; Granetz, R.; Hubbard, A.; Irby, J.; Greenwald, M.; Marmar, E.] MIT, Cambridge, MA 02141 USA. [Tritz, K.; Stutman, D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. RP Delgado-Aparicio, LF (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. EM ldelgado@pppl.gov OI Greenwald, Martin/0000-0002-4438-729X NR 36 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E204 DI 10.1063/1.4964807 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300168 PM 27910663 ER PT J AU Doppner, T Kraus, D Neumayer, P Bachmann, B Emig, J Falcone, RW Fletcher, LB Hardy, M Kalantar, DH Kritcher, AL Landen, OL Ma, T Saunders, AM Wood, RD AF Doppner, T. Kraus, D. Neumayer, P. Bachmann, B. Emig, J. Falcone, R. W. Fletcher, L. B. Hardy, M. Kalantar, D. H. Kritcher, A. L. Landen, O. L. Ma, T. Saunders, A. M. Wood, R. D. TI Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5-10 keV [T. Doppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements. Published by AIP Publishing. C1 [Doppner, T.; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D.] Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. [Kraus, D.; Falcone, R. W.; Saunders, A. M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Neumayer, P.] Gesell Schwerionenphys, Darmstadt, Germany. [Falcone, R. W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Fletcher, L. B.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94720 USA. RP Doppner, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. EM doeppner1@llnl.gov NR 12 TC 0 Z9 0 U1 4 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E515 DI 10.1063/1.4959874 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300230 PM 27910303 ER PT J AU Dunham, G Harding, EC Loisel, GP Lake, PW Nielsen-Weber, LB AF Dunham, G. Harding, E. C. Loisel, G. P. Lake, P. W. Nielsen-Weber, L. B. TI Cross-calibration of Fuji TR image plate and RAR 2492 x-ray film to determine the response of a DITABIS Super Micron image plate scanner SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Fuji TR image plate is frequently used as a replacement detector medium for x-ray imaging and spectroscopy diagnostics at NIF, Omega, and Z facilities. However, the familiar Fuji BAS line of image plate scanners is no longer supported by the industry, and so a replacement scanning system is needed. While the General Electric Typhoon line of scanners could replace the Fuji systems, the shift away from photo stimulated luminescence units to 16-bit grayscale Tag Image File Format (TIFF) leaves a discontinuity when comparing data collected from both systems. For the purposes of quantitative spectroscopy, a known unit of intensity applied to the grayscale values of the TIFF is needed. The DITABIS Super Micron image plate scanning system was tested and shown to potentially rival the resolution and dynamic range of Kodak RAR 2492 x-ray film. However, the absolute sensitivity of the scanner is unknown. In this work, a methodology to cross calibrate Fuji TR image plate and the absolutely calibrated Kodak RAR 2492 x-ray film is presented. Details of the experimental configurations used are included. An energy dependent scale factor to convert Fuji TR IP scanned on a DITABIS Super Micron scanner from 16-bit grayscale TIFF to intensity units (i.e., photons per square micron) is discussed. Published by AIP Publishing. C1 [Dunham, G.; Harding, E. C.; Loisel, G. P.; Lake, P. W.; Nielsen-Weber, L. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dunham, G (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM gsdunha@sandia.gov NR 5 TC 1 Z9 1 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E301 DI 10.1063/1.4955482 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300169 PM 27910495 ER PT J AU Dvorak, J Jarrige, I Bisogni, V Coburn, S Leonhardt, W AF Dvorak, Joseph Jarrige, Ignace Bisogni, Valentina Coburn, Scott Leonhardt, William TI Towards 10 meV resolution: The design of an ultrahigh resolution soft X-ray RIXS spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID INELASTIC-SCATTERING; LIGHT-SOURCE; MONOCHROMATOR; EXCITATIONS; SPECTROSCOPY; BEAMLINE; GRATINGS; EDGE AB We present the optical design of the Centurion soft X-ray resonant inelastic X-ray scattering (RIXS) spectrometer to be located on the SIX beamline at NSLS-II. The spectrometer is designed to reach a resolving power of 100 000 at 1000 eV at its best resolution. It is also designed to have continuously variable 2 theta motion over a range of 112. using a custom triple rotating flange. We have analyzed several possible spectrometer designs capable of reaching the target resolution. After careful analysis, we have adopted a Hettrick-Underwood spectrometer design, with an additional plane mirror to maintain a fixed direction for the outgoing beam. The spectrometer can cancel defocus and coma aberrations at all energies, has an erect focal plane, and minimizes mechanical motions of the detector. When the beamline resolution is accounted for, the net spectral resolution will be 14 meV at 1000 eV. This will open up many low energy excitations to study and will expand greatly the power of soft X-ray RIXS. Published by AIP Publishing. C1 [Dvorak, Joseph; Jarrige, Ignace; Bisogni, Valentina; Coburn, Scott; Leonhardt, William] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Dvorak, J (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM jdvorak@bnl.gov NR 31 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 115109 DI 10.1063/1.4964847 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300385 PM 27910402 ER PT J AU Eckart, ME Boyce, KR Brown, GV Chiao, MP Fujimoto, R Haas, D den Herder, JW Ishisaki, Y Kelley, RL Kilbourne, CA Leutenegger, MA McCammon, D Mitsuda, K Porter, FS Sawada, M Sneiderman, GA Szymkowiak, AE Takei, Y Tashiro, M Tsujimoto, M de Vries, CP Watanabe, T Yamada, S Yamasaki, NY AF Eckart, M. E. Boyce, K. R. Brown, G. V. Chiao, M. P. Fujimoto, R. Haas, D. den Herder, J. -W. Ishisaki, Y. Kelley, R. L. Kilbourne, C. A. Leutenegger, M. A. McCammon, D. Mitsuda, K. Porter, F. S. Sawada, M. Sneiderman, G. A. Szymkowiak, A. E. Takei, Y. Tashiro, M. Tsujimoto, M. de Vries, C. P. Watanabe, T. Yamada, S. Yamasaki, N. Y. TI Calibration of the microcalorimeter spectrometer on-board the Hitomi (Astro-H) observatory SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters. Published by AIP Publishing. C1 [Eckart, M. E.; Chiao, M. P.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.; Watanabe, T.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Boyce, K. R.; Sneiderman, G. A.] NASA, Goddard Space Flight Ctr, Code 592, Greenbelt, MD 20771 USA. [Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chiao, M. P.; Leutenegger, M. A.] Univ Maryland Baltimore Cty, CRESST, Baltimore, MD 21250 USA. [Fujimoto, R.] Kanazawa Univ, Kanazawa, Ishikawa 9201192, Japan. [Haas, D.; den Herder, J. -W.; de Vries, C. P.] SRON, Netherlands Inst Space Res, Utrecht, Netherlands. [Ishisaki, Y.; Yamada, S.] Tokyo Metropolitan Univ, Hachioji, Tokyo 1920397, Japan. [McCammon, D.] Univ Wisconsin Madison, Madison, WI 53706 USA. [Mitsuda, K.; Takei, Y.; Tsujimoto, M.; Yamasaki, N. Y.] JAXA, Inst Space & Astronaut Sci, Sagamihara, Kanagawa 2525210, Japan. [Sawada, M.] Aoyama Gakuin Univ, Sagamihara, Kanagawa 2525258, Japan. [Szymkowiak, A. E.] Yale Univ, New Haven, CT 06520 USA. [Tashiro, M.] Saitama Univ, Sakura Ku, Saitama 3388570, Japan. [Watanabe, T.] Univ Maryland, CRESST, College Pk, MD 20742 USA. RP Eckart, ME (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. EM Megan.E.Eckart@nasa.gov RI Yamasaki, Noriko/C-2252-2008; Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D503 DI 10.1063/1.4961075 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300055 PM 27910640 ER PT J AU Edwards, ER Cassata, WS Velsko, CA Yeamans, CB Shaughnessy, DA AF Edwards, E. R. Cassata, W. S. Velsko, C. A. Yeamans, C. B. Shaughnessy, D. A. TI Determination of relative krypton fission product yields from 14 MeV neutron induced fission of U-238 at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Precisely-known fission yield distributions are needed to determine a fissioning isotope and the incident neutron energy in nuclear security applications. 14 MeV neutrons from DT fusion at the National Ignition Facility induce fission in depleted uranium contained in the target assembly hohlraum. The fission yields of Kr isotopes (85m, 87, 88, and 89) are measured relative to the cumulative yield of Kr-88 and compared to previously tabulated values. The results from this experiment and England and Rider are in agreement, except for the (85)mKr/Kr-88 ratio, which may be the result of incorrect nuclear data. Published by AIP Publishing. C1 [Edwards, E. R.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.; Shaughnessy, D. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Edwards, ER (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM edwards76@llnl.gov NR 5 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D838 DI 10.1063/1.4963155 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300122 PM 27910394 ER PT J AU Fatherley, VE Bingham, DA Cartelli, MD DiDomizio, RA Griego, JR Herrmann, HW Lopez, FE Oertel, JA Pollack, MJ AF Fatherley, V. E. Bingham, D. A. Cartelli, M. D. DiDomizio, R. A. Griego, J. R. Herrmann, H. W. Lopez, F. E. Oertel, J. A. Pollack, M. J. TI Design and fabrication of a window for the gas Cherenkov detector 3 SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The gas Cherenkov detector 3 was designed at Los Alamos National Laboratory for use in inertial confinement fusion experiments at both the Omega Laser Facility and the National Ignition Facility. This instrument uses a low-Z gamma-to-electron convertor plate and high pressure gas to convert MeV gammas into UV/visible Cherenkov photons for fast optical detection. This is a follow-on diagnostic from previous versions, with two notable differences: the pressure of the gas is four times higher, and it allows the use of fluorinated gas, requiring metal seals. These changes force significant changes in the window component, having a unique set of requirements and footprint limitations. The selected solution for this component, a sapphire window brazed into a stainless steel flange housing, is described. Published by AIP Publishing. C1 [Fatherley, V. E.; Bingham, D. A.; Cartelli, M. D.; Griego, J. R.; Herrmann, H. W.; Lopez, F. E.; Oertel, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [DiDomizio, R. A.; Pollack, M. J.] EnvirOptics Inc, Colmar, PA 18915 USA. RP Fatherley, VE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM vef@lanl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E718 DI 10.1063/1.4961156 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300296 PM 27910419 ER PT J AU Fatherley, VE Barker, DA Fittinghoff, DN Hibbard, RL Martinez, JI Merrill, FE Oertel, JA Schmidt, DW Volegov, PL Wilde, CH AF Fatherley, V. E. Barker, D. A. Fittinghoff, D. N. Hibbard, R. L. Martinez, J. I. Merrill, F. E. Oertel, J. A. Schmidt, D. W. Volegov, P. L. Wilde, C. H. TI Design of the polar neutron-imaging aperture for use at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The installation of a neutron imaging diagnostic with a polar view at the National Ignition Facility (NIF) required design of a new aperture, an extended pinhole array (PHA). This PHA is different from the pinhole array for the existing equatorial system due to significant changes in the alignment and recording systems. The complex set of component requirements, as well as significant space constraints in its intended location, makes the design of this aperture challenging. In addition, lessons learned from development of prior apertures mandate careful aperture metrology prior to first use. This paper discusses the PHA requirements, constraints, and the final design. The PHA design is complex due to size constraints, machining precision, assembly tolerances, and design requirements. When fully assembled, the aperture is a 15 mm x 15 mm x 200 mm tungsten and gold assembly. The PHA body is made from 2 layers of tungsten and 11 layers of gold. The gold layers include 4 layers containing penumbral openings, 4 layers containing pinholes and 3 spacer layers. In total, there are 64 individual, triangular pinholes with a field of view (FOV) of 200 mu m and 6 penumbral apertures. Each pinhole is pointed to a slightly different location in the target plane, making the effective FOV of this PHA a 700 mu m square in the target plane. The large FOV of the PHA reduces the alignment requirements both for the PHA and the target, allowing for alignment with a laser tracking system at NIF. Published by AIP Publishing. C1 [Fatherley, V. E.; Martinez, J. I.; Merrill, F. E.; Oertel, J. A.; Schmidt, D. W.; Volegov, P. L.; Wilde, C. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Barker, D. A.; Fittinghoff, D. N.; Hibbard, R. L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Fatherley, VE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM vef@lanl.gov NR 4 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D821 DI 10.1063/1.4960314 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300105 PM 27910447 ER PT J AU Flesch, K Kremeyer, T Schmitz, O Soukhanovskii, V Wenzel, U AF Flesch, K. Kremeyer, T. Schmitz, O. Soukhanovskii, V. Wenzel, U. TI Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID DIVERTOR; TOKAMAK AB Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D-2 molecules and the He ash which will be produced by deuterium-tritium fusion. To study He exhaust, an in situ Penning gauge system is being developed at UW-Madison that is optimized for good pressure and high spectroscopic sensitivity. Three different anode geometries have been studied regarding their vacuum electrostatic fields, light output, and ion current. The light output of the two new anode configurations are at least one order of magnitude above the currently available designs, hence improving the spectroscopic sensitivity at similar total neutral pressure resolution. Published by AIP Publishing. C1 [Flesch, K.; Kremeyer, T.; Schmitz, O.] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wenzel, U.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. RP Flesch, K (reprint author), Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA. EM kbflesch@wisc.edu NR 9 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E529 DI 10.1063/1.4960815 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300244 PM 27910409 ER PT J AU Fletcher, LB Zastrau, U Galtier, E Gamboa, EJ Goede, S Schumaker, W Ravasio, A Gauthier, M MacDonald, MJ Chen, Z Granados, E Lee, HJ Fry, A Kim, JB Roedel, C Mishra, R Pelka, A Kraus, D Barbrel, B Doppner, T Glenzer, SH AF Fletcher, L. B. Zastrau, U. Galtier, E. Gamboa, E. J. Goede, S. Schumaker, W. Ravasio, A. Gauthier, M. MacDonald, M. J. Chen, Z. Granados, E. Lee, H. J. Fry, A. Kim, J. B. Roedel, C. Mishra, R. Pelka, A. Kraus, D. Barbrel, B. Doppner, T. Glenzer, S. H. TI High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID ELECTRONS; PLASMAS; PHYSICS AB We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)]. Published by AIP Publishing. C1 [Fletcher, L. B.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Glenzer, S. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Zastrau, U.; Goede, S.] European XFEL, Schenefeld, Germany. [Ravasio, A.] Lab Utilisat Lasers Intenses, Palaiseau, France. [MacDonald, M. J.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chen, Z.] Univ Alberta, Edmonton, AB T6G 2R3, Canada. [Pelka, A.; Kraus, D.] Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany. [Kraus, D.; Barbrel, B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Doppner, T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Fletcher, LB (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM lbfletch@slac.stanford.edu RI gauthier, Maxence/K-2578-2014; OI gauthier, Maxence/0000-0001-6608-9325; MacDonald, Michael/0000-0002-6295-6978 NR 13 TC 0 Z9 0 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E524 DI 10.1063/1.4959792 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300239 PM 27910564 ER PT J AU Fournier, KB Brown, CG Yeoman, MF Fisher, JH Seiler, SW Hinshelwood, D Compton, S Holdener, FR Kemp, GE Newlander, CD Gilliam, RP Froula, N Lilly, M Davis, JF Lerch, MA Blue, BE AF Fournier, K. B. Brown, C. G., Jr. Yeoman, M. F. Fisher, J. H. Seiler, S. W. Hinshelwood, D. Compton, S. Holdener, F. R. Kemp, G. E. Newlander, C. D. Gilliam, R. P. Froula, N. Lilly, M. Davis, J. F. Lerch, Maj. A. Blue, B. E. TI X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility's diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within +/- 1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed. Published by AIP Publishing. C1 [Fournier, K. B.; Brown, C. G., Jr.; Yeoman, M. F.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Blue, B. E.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. [Fisher, J. H.; Newlander, C. D.; Gilliam, R. P.; Froula, N.] Fifth Gait Technol Inc, 14040 Camden Circle, Huntsville, AL 35803 USA. [Seiler, S. W.; Davis, J. F.; Lerch, Maj. A.] Def Threat Reduct Agcy, 8725 John J Kingman Rd, Ft Belvoir, VA 22060 USA. [Hinshelwood, D.] Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA. [Lilly, M.] Dynasen Inc, 20 Arnold Pl, Goleta, CA 93117 USA. RP Fournier, KB (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM fournier2@llnl.gov OI Fournier, Kevin/0000-0002-1123-3788 NR 14 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D421 DI 10.1063/1.4960501 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300026 PM 27910608 ER PT J AU Frenje, JA Hilsabeck, TJ Wink, CW Bell, P Bionta, R Cerjan, C Johnson, MG Kilkenny, JD Li, CK Seguin, FH Petrasso, RD AF Frenje, J. A. Hilsabeck, T. J. Wink, C. W. Bell, P. Bionta, R. Cerjan, C. Johnson, M. Gatu Kilkenny, J. D. Li, C. K. Seguin, F. H. Petrasso, R. D. TI The magnetic recoil spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (rho R), apparent ion temperature (T-i), yield (Y-n), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of similar to 20 ps and energy resolution of similar to 100 keV for total neutron yields above similar to 10(16). At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of similar to 20 ps. Published by AIP Publishing. C1 [Frenje, J. A.; Wink, C. W.; Johnson, M. Gatu; Li, C. K.; Seguin, F. H.; Petrasso, R. D.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Hilsabeck, T. J.; Kilkenny, J. D.] Gen Atom, San Diego, CA 92186 USA. [Bell, P.; Bionta, R.; Cerjan, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Frenje, JA (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM jfrenje@psfc.mit.edu OI Cerjan, Charles/0000-0002-5168-6845 NR 13 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D806 DI 10.1063/1.4959164 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300090 PM 27910467 ER PT J AU Frerichs, H Effenberg, F Schmitz, O Biedermann, C Feng, Y Jakubowski, M Konig, R Krychowiak, M Lore, J Niemann, H Pedersen, TS Stephey, L Wurden, GA AF Frerichs, H. Effenberg, F. Schmitz, O. Biedermann, C. Feng, Y. Jakubowski, M. Koenig, R. Krychowiak, M. Lore, J. Niemann, H. Pedersen, T. S. Stephey, L. Wurden, G. A. TI Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Interpretation of spectroscopic measurements in the edge region of high-temperature plasmas can be a challenge since line of sight integration effects make direct interpretation in terms of quantitative, local emission strengths often impossible. The EMC3-EIRENE code-a 3D fluid edge plasma and kinetic neutral gas transport code-is a suitable tool for full 3D reconstruction of such signals. A versatile synthetic diagnostic module has been developed recently which allows the realistic 3D setup of various plasma edge diagnostics to be captured. We highlight these capabilities with two examples for Wendelstein 7-X (W7-X): a visible camera for the analysis of recycling, and a coherent-imaging system for velocity measurements. C1 [Frerichs, H.; Effenberg, F.; Schmitz, O.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Biedermann, C.; Feng, Y.; Jakubowski, M.; Koenig, R.; Krychowiak, M.; Niemann, H.; Pedersen, T. S.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Lore, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Stephey, L.] Univ Wisconsin, HSX Plasma Lab, Madison, WI 53706 USA. [Wurden, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Frerichs, H (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM hfrerichs@wisc.edu OI Jakubowski, Marcin/0000-0002-6557-3497; Wurden, Glen/0000-0003-2991-1484 NR 6 TC 2 Z9 2 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D441 DI 10.1063/1.4959910 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300046 PM 27910599 ER PT J AU Gao, L Hill, KW Bitter, M Efthimion, PC Delgado-Aparicio, L Pablant, NA Baronova, EO Pereira, NR AF Gao, Lan Hill, K. W. Bitter, M. Efthimion, P. C. Delgado-Aparicio, L. Pablant, N. A. Baronova, E. O. Pereira, N. R. TI Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A high spatial resolution of a few mu m is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten L beta(2) rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-mu m pixel size. The source-to-crystal (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution. Published by AIP Publishing. C1 [Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Delgado-Aparicio, L.; Pablant, N. A.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Baronova, E. O.] NRC Kurchatov Inst, Moscow, Russia. [Pereira, N. R.] Ecopulse Inc, 7844 Vervain Ct, Springfield, VA 22152 USA. RP Gao, L (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM lgao@pppl.gov NR 10 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D611 DI 10.1063/1.4960066 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300068 PM 27910513 ER PT J AU Gauthier, M Kim, JB Curry, CB Aurand, B Gamboa, EJ Gode, S Goyon, C Hazi, A Kerr, S Pak, A Propp, A Ramakrishna, B Ruby, J Willi, O Williams, GJ Rodel, C Glenzer, SH AF Gauthier, M. Kim, J. B. Curry, C. B. Aurand, B. Gamboa, E. J. Gode, S. Goyon, C. Hazi, A. Kerr, S. Pak, A. Propp, A. Ramakrishna, B. Ruby, J. Willi, O. Williams, G. J. Roedel, C. Glenzer, S. H. TI High-intensity laser-accelerated ion beam produced from cryogenic micro-jet target SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID PROTON-BEAMS AB We report on the successful operation of a newly developed cryogenic jet target at high intensity laser-irradiation. Using the frequency-doubled Titan short pulse laser system at Jupiter Laser Facility, Lawrence Livermore National Laboratory, we demonstrate the generation of a pure proton beam a with maximum energy of 2 MeV. Furthermore, we record a quasi-monoenergetic peak at 1.1 MeV in the proton spectrum emitted in the laser forward direction suggesting an alternative acceleration mechanism. Using a solid-density mixed hydrogen-deuterium target, we are also able to produce pure proton-deuteron ion beams. With its high purity, limited size, near-critical density, and high-repetition rate capability, this target is promising for future applications. Published by AIP Publishing. C1 [Gauthier, M.; Kim, J. B.; Curry, C. B.; Gamboa, E. J.; Gode, S.; Propp, A.; Roedel, C.; Glenzer, S. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Aurand, B.; Willi, O.] Heinrich Heine Univ Dusseldorf, Dusseldorf, Germany. [Goyon, C.; Hazi, A.; Pak, A.; Ruby, J.; Williams, G. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kerr, S.] Univ Alberta, Edmonton, AB T6G 1R1, Canada. [Ramakrishna, B.] Indian Inst Technol, Hyderabad, Andhra Pradesh, India. [Roedel, C.] Friedrich Schiller Univ Jena, Jena, Germany. RP Gauthier, M (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM maxence.gauthier@stanford.edu OI Kerr, Shaun/0000-0003-4822-564X NR 18 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D827 DI 10.1063/1.4961270 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300111 PM 27910336 ER PT J AU Gharibyan, N Shaughnessy, DA Moody, KJ Grant, PM Despotopulos, JD Faye, SA Jedlovec, DR Yeamans, CB AF Gharibyan, N. Shaughnessy, D. A. Moody, K. J. Grant, P. M. Despotopulos, J. D. Faye, S. A. Jedlovec, D. R. Yeamans, C. B. TI Recent advances and results from the solid radiochemistry nuclear diagnostic at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation. Published by AIP Publishing. C1 [Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; Grant, P. M.; Despotopulos, J. D.; Faye, S. A.; Jedlovec, D. R.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Gharibyan, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM gharibyan1@llnl.gov NR 11 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D813 DI 10.1063/1.4960316 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300097 PM 27910632 ER PT J AU Glass, F Carlstrom, TN Du, D McLean, AG Taussig, DA Boivin, RL AF Glass, F. Carlstrom, T. N. Du, D. McLean, A. G. Taussig, D. A. Boivin, R. L. TI Upgraded divertor Thomson scattering system on DIII-D SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID TOKAMAK AB A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard - beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror - and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T-e in the range of 0.5 eV-2 keV, n(e) in the range of 5 x 10(18)-1 x 10(21) m(3)) for both low T-e in detachment and high T-e measurement up beyond the separatrix. Published by AIP Publishing. C1 [Glass, F.; Carlstrom, T. N.; Du, D.; Taussig, D. A.; Boivin, R. L.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [McLean, A. G.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. RP Glass, F (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. EM glassf@fusion.gat.com NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E508 DI 10.1063/1.4955281 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300223 PM 27910482 ER PT J AU Gregor, MC Boni, R Sorce, A Kendrick, J Mccoy, CA Polsin, DN Boehly, TR Celliers, PM Collins, GW Fratanduono, DE Eggert, JH Millot, M AF Gregor, M. C. Boni, R. Sorce, A. Kendrick, J. Mccoy, C. A. Polsin, D. N. Boehly, T. R. Celliers, P. M. Collins, G. W. Fratanduono, D. E. Eggert, J. H. Millot, M. TI Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology-traceable tungsten-filament lamp through various narrowband (40-nm-wide) filters. The integrated signal over the SOP's similar to 250-nm operating range is then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. Error estimates indicate that brightness temperature can be inferred to a precision of < 5%. Published by AIP Publishing. C1 [Gregor, M. C.; Boni, R.; Sorce, A.; Kendrick, J.; Mccoy, C. A.; Polsin, D. N.; Boehly, T. R.] Univ Rochester, Lab Laser Energet, 250 East River Rd, Rochester, NY 14623 USA. [Gregor, M. C.; Polsin, D. N.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. [Mccoy, C. A.] Univ Rochester, Dept Mech Engn, Rochester, NY 14620 USA. [Celliers, P. M.; Collins, G. W.; Fratanduono, D. E.; Eggert, J. H.; Millot, M.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Gregor, MC (reprint author), Univ Rochester, Lab Laser Energet, 250 East River Rd, Rochester, NY 14623 USA.; Gregor, MC (reprint author), Univ Rochester, Dept Phys & Astron, Rochester, NY 14620 USA. NR 20 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 114903 DI 10.1063/1.4968023 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300372 PM 27910410 ER PT J AU Grierson, BA Burrell, KH Chrystal, C Groebner, RJ Haskey, SR Kaplan, DH AF Grierson, B. A. Burrell, K. H. Chrystal, C. Groebner, R. J. Haskey, S. R. Kaplan, D. H. TI High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID TOKAMAKS AB A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals. Published by AIP Publishing. C1 [Grierson, B. A.; Haskey, S. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Groebner, R. J.; Kaplan, D. H.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Chrystal, C.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Grierson, BA (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM bgriers@pppl.gov OI Haskey, Shaun/0000-0002-9978-6597 NR 15 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E545 DI 10.1063/1.4960604 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300260 PM 27910689 ER PT J AU Hall, GN Izumi, N Landen, OL Tommasini, R Holder, JP Hargrove, D Bradley, DK Lumbard, A Cruz, JG Piston, K Lee, JJ Romano, E Bell, PM Carpenter, AC Palmer, NE Felker, B Rekow, V Allen, FV AF Hall, G. N. Izumi, N. Landen, O. L. Tommasini, R. Holder, J. P. Hargrove, D. Bradley, D. K. Lumbard, A. Cruz, J. G. Piston, K. Lee, J. J. Romano, E. Bell, P. M. Carpenter, A. C. Palmer, N. E. Felker, B. Rekow, V. Allen, F. V. TI Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Compton radiography provides a means to measure the integrity, rho R and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (microchannel plate) to provide gating and high DQE at the 40-200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic. Published by AIP Publishing. C1 [Hall, G. N.; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Lee, J. J.; Romano, E.] Natl Secur Technol LLC, 161 S Vasco Rd, Livermore, CA 94551 USA. RP Hall, GN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM hall98@llnl.gov RI Tommasini, Riccardo/A-8214-2009 OI Tommasini, Riccardo/0000-0002-1070-3565 NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E310 DI 10.1063/1.4959948 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300178 PM 27910309 ER PT J AU Harthcock, C Jahanbekam, A Eskelsen, JR Lee, DY AF Harthcock, Colin Jahanbekam, Abdolreza Eskelsen, Jeremy R. Lee, David Y. TI Orientation-free and differentially pumped addition of a low-flux reactive gas beam to a surface analysis system SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID SCANNING-TUNNELING-MICROSCOPY; ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; SELF-ASSEMBLED MONOLAYER; ATOMIC OXYGEN; THIN-FILMS; CHEMICAL-PROPERTIES; VACUUM CONDITIONS; HYDROGEN; EVAPORATION; OXIDATION AB We describe an example of a piecewise gas chamber that can be customized to incorporate a low flux of gas-phase radicals with an existing surface analysis chamber for in situ and stepwise gas-surface interaction experiments without any constraint in orientation. The piecewise nature of this gas chamber provides complete angular freedom and easy alignment and does not require any modification of the existing surface analysis chamber. In addition, the entire gas-surface system is readily differentially pumped with the surface chamber kept under ultra-high-vacuum during the gas-surface measurements. This new design also allows not only straightforward reconstruction to accommodate the orientation of different surface chambers but also for the addition of other desired features, such as an additional pump to the current configuration. Stepwise interaction between atomic oxygen and a highly ordered pyrolytic graphite surface was chosen to test the effectiveness of this design, and the site-dependent O-atom chemisorption and clustering on the graphite surface were resolved by a scanning tunneling microscope in the nm-scale. X-ray photoelectron spectroscopy was used to further confirm the identity of the chemisorbed species on the graphite surface as oxygen. Published by AIP Publishing. C1 [Harthcock, Colin; Jahanbekam, Abdolreza; Lee, David Y.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Harthcock, Colin; Jahanbekam, Abdolreza; Lee, David Y.] Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA. [Eskelsen, Jeremy R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lee, DY (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA.; Lee, DY (reprint author), Washington State Univ, Mat Sci & Engn Program, Pullman, WA 99164 USA. EM d.y.lee@wsu.edu OI Eskelsen, Jeremy/0000-0003-2828-9099 NR 49 TC 1 Z9 1 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 113102 DI 10.1063/1.4966116 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300320 PM 27910561 ER PT J AU Hartouni, EP Beeman, B Caggiano, JA Cerjan, C Eckart, MJ Grim, GP Hatarik, R Moore, AS Munro, DH Phillips, T Sayre, DB AF Hartouni, E. P. Beeman, B. Caggiano, J. A. Cerjan, C. Eckart, M. J. Grim, G. P. Hatarik, R. Moore, A. S. Munro, D. H. Phillips, T. Sayre, D. B. TI Uncertainty analysis of signal deconvolution using a measured instrument response function SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). In the case investigated here, the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to determine the uncertainty estimate of the physical model's parameters. We apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimum physical parameters. Published by AIP Publishing. C1 [Hartouni, E. P.; Beeman, B.; Caggiano, J. A.; Cerjan, C.; Eckart, M. J.; Grim, G. P.; Hatarik, R.; Moore, A. S.; Munro, D. H.; Phillips, T.; Sayre, D. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hartouni, EP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM hartouni1@llnl.gov OI Phillips, Thomas W./0000-0001-5974-9065; Cerjan, Charles/0000-0002-5168-6845; Hartouni, Edward/0000-0001-9869-4351 NR 11 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D841 DI 10.1063/1.4963867 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300125 PM 27910423 ER PT J AU Haskey, SR Grierson, BA Burrell, KH Chrystal, C Groebner, RJ Kaplan, DH Pablant, NA Stagner, L AF Haskey, S. R. Grierson, B. A. Burrell, K. H. Chrystal, C. Groebner, R. J. Kaplan, D. H. Pablant, N. A. Stagner, L. TI Measurement of deuterium density profiles in the H-mode steep gradient region using charge exchange recombination spectroscopy on DIII-D SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in Hmode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing. C1 [Haskey, S. R.; Grierson, B. A.; Pablant, N. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Stagner, L.] Univ Calif Irvine, Irvine, CA 92697 USA. RP Haskey, SR (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM shaskey@pppl.gov OI Grierson, Brian/0000-0001-5918-6506; Stagner, Luke/0000-0001-5516-3729; Haskey, Shaun/0000-0002-9978-6597 NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E553 DI 10.1063/1.4963148 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300268 PM 27910328 ER PT J AU Haugh, MJ Jacoby, KD Barrios, MA Thorn, D Emig, JA Schneider, MB AF Haugh, M. J. Jacoby, K. D. Barrios, M. A. Thorn, D. Emig, J. A. Schneider, M. B. TI A technique for measuring the quality of an elliptically bent pentaerythritol [PET(002)] crystal SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB We present a technique for determining the X-ray spectral quality from each region of an elliptically curved PET(002) crystal. The investigative technique utilizes the shape of the crystal rocking curve which changes significantly as the radius of curvature changes. This unique quality information enables the spectroscopist to verify where in the spectral range that the spectrometer performance is satisfactory and where there are regions that would show spectral distortion. A collection of rocking curve measurements for elliptically curved PET(002) has been built up in our X-ray laboratory. The multi-lamellar model from the XOP software has been used as a guide and corrections were applied to the model based upon measurements. But, the measurement of RI at small radius of curvature shows an anomalous behavior; the multi-lamellar model fails to show this behavior. The effect of this anomalous RI behavior on an X-ray spectrometer calibration is calculated. It is compared to the multi-lamellar model calculation which is completely inadequate for predicting R-I for this range of curvature and spectral energies. Published by AIP Publishing. C1 [Haugh, M. J.; Jacoby, K. D.] Natl Secur Technol LLC, Livermore, CA 94550 USA. [Barrios, M. A.; Thorn, D.; Emig, J. A.; Schneider, M. B.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Haugh, MJ (reprint author), Natl Secur Technol LLC, Livermore, CA 94550 USA. EM haughmj@nv.doe.gov OI Haugh, Michael/0000-0002-9613-9220 NR 7 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D612 DI 10.1063/1.4961277 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300069 PM 27910647 ER PT J AU He, X Gozar, A Sundling, R Bozovic, I AF He, X. Gozar, A. Sundling, R. Bozovic, I. TI High-precision measurement of magnetic penetration depth in superconducting films SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID T-C SUPERCONDUCTORS; MUON-SPIN-ROTATION; THIN-FILMS; CRITICAL-TEMPERATURE; MUTUAL INDUCTANCE; FIELD PENETRATION; 2-COIL APPARATUS; ABSOLUTE VALUE; COPPER OXIDES; DENSITY AB The magnetic penetration depth (lambda) in thin superconducting films is usually measured by the mutual inductance technique. The accuracy of this method has been limited by uncertainties in the geometry of the solenoids and in the film position and thickness, by parasitic coupling between the coils, etc. Here, we present several improvements in the apparatus and the method. To ensure the precise thickness of the superconducting layer, we engineer the films at atomic level using atomic-layer-by-layer molecular beam epitaxy. In this way, we also eliminate secondary-phase precipitates, grain boundaries, and pinholes that are common with other deposition methods and that artificially increase the field transmission and thus the apparent lambda. For better reproducibility, the thermal stability of our closed-cycle cryocooler used to control the temperature of the mutual inductance measurement has been significantly improved by inserting a custom-built thermal conductivity damper. Next, to minimize the uncertainties in the geometry, we fused a pair of small yet precisely wound coils into a single sapphire block machined to a high precision. The sample is spring-loaded to exactly the same position with respect to the solenoids. Altogether, we can measure the absolute value of lambda with the accuracy better than +/- 1%. Published by AIP Publishing. C1 [He, X.; Gozar, A.; Bozovic, I.] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. [Sundling, R.] Zensoft Inc, Madison, WI 53705 USA. [Bozovic, I.] Brookhaven Natl Lab, New York, NY 11973 USA. RP He, X (reprint author), Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. NR 47 TC 0 Z9 0 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 113903 DI 10.1063/1.4967004 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300348 PM 27910375 ER PT J AU Hell, N Beiersdorfer, P Magee, EW Brown, GV AF Hell, N. Beiersdorfer, P. Magee, E. W. Brown, G. V. TI Calibration of the OHREX high-resolution imaging crystal spectrometer at the Livermore electron beam ion traps SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID CHARGED IONS; TEMPERATURE; SPECTRA; EMISSION; SHELL; ATOMS AB We report the calibration of the Orion High-Resolution X-ray (OHREX) imaging crystal spectrometer at the EBIT-I electron beam ion trap at Livermore. Two such instruments, dubbed OHREX-1 and OHREX-2, are fielded for plasma diagnostics at the Orion laser facility in the United Kingdom. The OHREX spectrometer can simultaneously house two spherically bent crystals with a radius of curvature of r = 67.2 cm. The focusing properties of the spectrometer allow both for larger distance to the source due to the increase in collected light and for observation of extended sources. OHREX is designed to cover a 2.5 degrees-3 degrees spectral range at Bragg angles around 51.3 degrees. The typically high resolving powers at these large Bragg angles are ideally suited for line shape diagnostics. For instance, the nominal resolving power of the instrument (> 10 000) is much higher than the effective resolving power associated with the Doppler broadening due to the temperature of the trapped ions in EBIT-I. The effective resolving power is only around 3000 at typical EBIT-I conditions, which nevertheless is sufficient to set up and test the instrument's spectral characteristics. We have calibrated the spectral range for a number of crystals using well known reference lines in the first and second order and derived the ion temperatures from these lines. We have also made use of the 50 mu m size of the EBIT-I source width to characterize the spatial focusing of the spectrometer. Published by AIP Publishing. C1 [Hell, N.; Beiersdorfer, P.; Magee, E. W.; Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hell, N.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. RP Hell, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Hell, N (reprint author), Univ Erlangen Nurnberg, Dr Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. NR 28 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D604 DI 10.1063/1.4959947 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300061 PM 27910351 ER PT J AU Herrmann, HW Kim, YH McEvoy, AM Zylstra, AB Young, CS Lopez, FE Griego, JR Fatherley, VE Oertel, JA Stoeffl, W Khater, H Hernandez, JE Carpenter, A Rubery, MS Horsfield, CJ Gales, S Leatherland, A Hilsabeck, T Kilkenny, JD Malone, RM Hares, JD Milnes, J Shmayda, WT Stoeckl, C Batha, SH AF Herrmann, H. W. Kim, Y. H. McEvoy, A. M. Zylstra, A. B. Young, C. S. Lopez, F. E. Griego, J. R. Fatherley, V. E. Oertel, J. A. Stoeffl, W. Khater, H. Hernandez, J. E. Carpenter, A. Rubery, M. S. Horsfield, C. J. Gales, S. Leatherland, A. Hilsabeck, T. Kilkenny, J. D. Malone, R. M. Hares, J. D. Milnes, J. Shmayda, W. T. Stoeckl, C. Batha, S. H. TI Next generation gamma-ray Cherenkov detectors for the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The newest generation of Gas Cherenkov Detector (GCD-3) employed in Inertial Confinement Fusion experiments at the Omega Laser Facility has provided improved performance over previous generations. Comparison of reaction histories measured using two different deuterium-tritium fusion products, namely gamma rays using GCD and neutrons using Neutron Temporal Diagnostic (NTD), have provided added credibility to both techniques. GCD-3 is now being brought to the National Ignition Facility (NIF) to supplement the existing Gamma Reaction History (GRH-6m) located 6 m from target chamber center (TCC). Initially it will be located in a reentrant well located 3.9 m from TCC. Data from GCD-3 will inform the design of a heavily-shielded "Super" GCD to be located as close as 20 cm from TCC. It will also provide a test-bed for faster optical detectors, potentially lowering the temporal resolution from the current similar to 100 ps state-of-the-art photomultiplier tubes (PMT) to similar to 10 ps Pulse Dilation PMT technology currently under development. Published by AIP Publishing. C1 [Herrmann, H. W.; Kim, Y. H.; McEvoy, A. M.; Zylstra, A. B.; Young, C. S.; Lopez, F. E.; Griego, J. R.; Fatherley, V. E.; Oertel, J. A.; Batha, S. H.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stoeffl, W.; Khater, H.; Hernandez, J. E.; Carpenter, A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Rubery, M. S.; Horsfield, C. J.; Gales, S.; Leatherland, A.] Atom Weap Estab, Aldermaston RG7 4PR, Berks, England. [Hilsabeck, T.; Kilkenny, J. D.] Gen Atom, San Diego, CA 92186 USA. [Malone, R. M.] Natl Secur Technol LLC, Los Alamos, NM 87544 USA. [Hares, J. D.] Kentech Instruments LTD, Wallingford, Oxon, England. [Milnes, J.] Photeck LTD, St Leonards On Sea, England. [Shmayda, W. T.; Stoeckl, C.] Laser Energet Lab, Rochester, NY 14623 USA. RP Herrmann, HW (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM herrmann@lanl.gov NR 9 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E732 DI 10.1063/1.4962059 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300310 PM 27910331 ER PT J AU Hill, KW Bitter, M Delgado-Aparicio, L Efthimion, PC Ellis, R Gao, L Maddox, J Pablant, NA Schneider, MB Chen, H Ayers, S Kauffman, RL MacPhee, AG Beiersdorfer, P Bettencourt, R Ma, T Nora, RC Scott, HA Thorn, DB Kilkenny, JD Nelson, D Shoup, M Maron, Y AF Hill, K. W. Bitter, M. Delgado-Aparicio, L. Efthimion, P. C. Ellis, R. Gao, L. Maddox, J. Pablant, N. A. Schneider, M. B. Chen, H. Ayers, S. Kauffman, R. L. MacPhee, A. G. Beiersdorfer, P. Bettencourt, R. Ma, T. Nora, R. C. Scott, H. A. Thorn, D. B. Kilkenny, J. D. Nelson, D. Shoup, M., III Maron, Y. TI Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A high resolution (E/Delta E = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-beta (1s(2)-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr He beta complex and (2) the He alpha (1s(2)-1s2p) and Ly alpha (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full He alpha to He beta spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented. Published by AIP Publishing. C1 [Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; MacPhee, A. G.; Beiersdorfer, P.; Bettencourt, R.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kilkenny, J. D.] Gen Atom Co, San Diego, CA 92121 USA. [Nelson, D.; Shoup, M., III] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Maron, Y.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. RP Hill, KW (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM khill@pppl.gov NR 9 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E344 DI 10.1063/1.4962053 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300212 PM 27910374 ER PT J AU Holder, JP Benedetti, LR Bradley, DK AF Holder, J. P. Benedetti, L. R. Bradley, D. K. TI Characterization of x-ray framing cameras for the National Ignition Facility using single photon pulse height analysis SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Single hit pulse height analysis is applied to National Ignition Facility x-ray framing cameras to quantify gain and gain variation in a single micro-channel plate-based instrument. This method allows the separation of gain from detectability in these photon-detecting devices. While pulse heights measured by standard-DC calibration methods follow the expected exponential distribution at the limit of a compound-Poisson process, gain-gated pulse heights follow a more complex distribution that may be approximated as a weighted sum of a few exponentials. We can reproduce this behavior with a simple statistical-sampling model. Published by AIP Publishing. C1 [Holder, J. P.; Benedetti, L. R.; Bradley, D. K.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Holder, JP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM holder4@llnl.gov NR 12 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D618 DI 10.1063/1.4962056 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300075 PM 27910503 ER PT J AU Izumi, N Meezan, NB Divol, L Hall, GN Barrios, MA Jones, O Landen, OL Kroll, JJ Vonhof, SA Nikroo, A Jaquez, J Bailey, CG Hardy, CM Ehrlich, RB Town, RPJ Bradley, DK Hinkel, DE Moody, JD AF Izumi, N. Meezan, N. B. Divol, L. Hall, G. N. Barrios, M. A. Jones, O. Landen, O. L. Kroll, J. J. Vonhof, S. A. Nikroo, A. Jaquez, J. Bailey, C. G. Hardy, C. M. Ehrlich, R. B. Town, R. P. J. Bradley, D. K. Hinkel, D. E. Moody, J. D. TI Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed. Published by AIP Publishing. C1 [Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Jaquez, J.] Gen Atom, San Diego, CA USA. RP Izumi, N (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM izumi2@llnl.gov NR 9 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E321 DI 10.1063/1.4960758 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300189 PM 27910418 ER PT J AU Jarrott, LC Benedetti, LR Chen, H Izumi, N Khan, SF Ma, T Nagel, SR Landen, OL Pak, A Patel, PK Schneider, M Scott, HA AF Jarrott, L. C. Benedetti, L. R. Chen, H. Izumi, N. Khan, S. F. Ma, T. Nagel, S. R. Landen, O. L. Pak, A. Patel, P. K. Schneider, M. Scott, H. A. TI Hotspot electron temperature from x-ray continuum measurements on the NIF SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature. Published by AIP Publishing. C1 [Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Jarrott, LC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM jarrott1@llnl.gov NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E534 DI 10.1063/1.4961074 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300249 PM 27910566 ER PT J AU Johns, HM Lanier, NE Kline, JL Fontes, CJ Perry, TS Fryer, CL Brown, CRD Morton, JW Hager, JD Sherrill, ME AF Johns, H. M. Lanier, N. E. Kline, J. L. Fontes, C. J. Perry, T. S. Fryer, C. L. Brown, C. R. D. Morton, J. W. Hager, J. D. Sherrill, M. E. TI Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID LOW-DENSITY; IONIZATION FRONTS; TARGETS AB We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi6O12 at 75 mg/cm(3) density). We have determined that in the 50-200 eV T-e range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T-e = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to T-e changes of similar to 3 eV. Published by AIP Publishing. C1 [Johns, H. M.; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Hager, J. D.; Sherrill, M. E.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. [Brown, C. R. D.; Morton, J. W.] AWE Aldermaston, Reading RG7 4PR, Berks, England. [Hager, J. D.] Lockheed Martin, 497 Elect Pkwy, Syracuse, NY 13221 USA. RP Johns, HM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM hjohns@lanl.gov RI Perry, Theodore/K-3333-2014; OI Perry, Theodore/0000-0002-8832-2033; Johns, Heather/0000-0001-7252-3343; Kline, John/0000-0002-2271-9919 NR 20 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E337 DI 10.1063/1.4962195 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300205 PM 27910339 ER PT J AU Johnson, MG Frenje, JA Bionta, RM Casey, DT Eckart, MJ Farrell, MP Grim, GP Hartouni, EP Hatarik, R Hoppe, M Kilkenny, JD Li, CK Petrasso, RD Reynolds, HG Sayre, DB Schoff, ME Seguin, FH Skulina, K Yeamans, CB AF Johnson, M. Gatu Frenje, J. A. Bionta, R. M. Casey, D. T. Eckart, M. J. Farrell, M. P. Grim, G. P. Hartouni, E. P. Hatarik, R. Hoppe, M. Kilkenny, J. D. Li, C. K. Petrasso, R. D. Reynolds, H. G. Sayre, D. B. Schoff, M. E. Seguin, F. H. Skulina, K. Yeamans, C. B. TI High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to similar to 200 keV FWHM. Published by AIP Publishing. C1 [Johnson, M. Gatu; Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Seguin, F. H.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E.] Gen Atom, San Diego, CA 92186 USA. RP Johnson, MG (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM gatu@psfc.mit.edu OI Hartouni, Edward/0000-0001-9869-4351 NR 21 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D816 DI 10.1063/1.4959946 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300100 PM 27910455 ER PT J AU Kabadi, NV Sio, H Glebov, V Johnson, MG MacPhee, A Frenje, JA Li, CK Seguin, F Petrasso, R Forrest, C Knauer, J Rinderknecht, HG AF Kabadi, N. V. Sio, H. Glebov, V. Johnson, M. Gatu MacPhee, A. Frenje, J. A. Li, C. K. Seguin, F. Petrasso, R. Forrest, C. Knauer, J. Rinderknecht, H. G. TI Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (rho R) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out. Published by AIP Publishing. C1 [Kabadi, N. V.; Sio, H.; Johnson, M. Gatu; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Glebov, V.; Forrest, C.; Knauer, J.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [MacPhee, A.; Rinderknecht, H. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kabadi, NV (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D817 DI 10.1063/1.4960071 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300101 PM 27910431 ER PT J AU Khan, SF Izumi, N Glenn, S Tommasini, R Benedetti, LR Ma, T Pak, A Kyrala, GA Springer, P Bradley, DK Town, RPJ AF Khan, S. F. Izumi, N. Glenn, S. Tommasini, R. Benedetti, L. R. Ma, T. Pak, A. Kyrala, G. A. Springer, P. Bradley, D. K. Town, R. P. J. TI Automated analysis of hot spot X-ray images at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above similar to 4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot. Published by AIP Publishing. C1 [Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Springer, P.; Bradley, D. K.; Town, R. P. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kyrala, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Khan, SF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM khan9@llnl.gov RI Tommasini, Riccardo/A-8214-2009 OI Tommasini, Riccardo/0000-0002-1070-3565 NR 14 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E334 DI 10.1063/1.4962184 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300202 PM 27910429 ER PT J AU Kim, Y Herrmann, HW McEvoy, AM Young, CS Hamilton, C Schwellenbach, DD Malone, RM Kaufman, MI Smith, AS AF Kim, Y. Herrmann, H. W. McEvoy, A. M. Young, C. S. Hamilton, C. Schwellenbach, D. D. Malone, R. M. Kaufman, M. I. Smith, A. S. TI Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID RADIATION AB An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus-intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO2 clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1-3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold. Published by AIP Publishing. C1 [Kim, Y.; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.] Natl Secur Technol LLC, Los Alamos, NM 87544 USA. RP Kim, Y (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM yhkim@lanl.gov OI Hamilton, Christopher/0000-0002-1605-5992 NR 7 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E723 DI 10.1063/1.4960541 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300301 PM 27910518 ER PT J AU Klepper, CC Biewer, TM Kruezi, U Vartanian, S Douai, D Hillis, DL Marcus, C AF Klepper, C. C. Biewer, T. M. Kruezi, U. Vartanian, S. Douai, D. Hillis, D. L. Marcus, C. CA JET Contributors TI Extending helium partial pressure measurement technology to JET DTE2 and ITER SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID DIVERTOR; IONIZATION AB The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER. Published by AIP Publishing. C1 [Klepper, C. C.; Biewer, T. M.; Kruezi, U.; Vartanian, S.; Douai, D.; Hillis, D. L.; Marcus, C.; JET Contributors] Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England. [Klepper, C. C.; Biewer, T. M.; Hillis, D. L.; Marcus, C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kruezi, U.] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England. [Vartanian, S.; Douai, D.] CEA Cadarache, IRFM, F-13108 St Paul Les Durance, France. RP Klepper, CC (reprint author), Culham Sci Ctr, JET, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England.; Klepper, CC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM kleppercc@ornl.gov NR 14 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D442 DI 10.1063/1.4963713 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300047 PM 27910543 ER PT J AU Krychowiak, M Adnan, A Alonso, A Andreeva, T Baldzuhn, J Barbui, T Beurskens, M Biel, W Biedermann, C Blackwell, BD Bosch, HS Bozhenkov, S Brakel, R Brauer, T de Carvalho, BB Burhenn, R Buttenschon, B Cappa, A Cseh, G Czarnecka, A Dinklage, A Drews, P Dzikowicka, A Effenberg, F Endler, M Erckmann, V Estrada, T Ford, O Fornal, T Frerichs, H Fuchert, G Geiger, J Grulke, O Harris, JH Hartfuss, HJ Hartmann, D Hathiramani, D Hirsch, M Hofel, U Jablonski, S Jakubowski, MW Kaczmarczyk, J Klinger, T Klose, S Knauer, J Kocsis, G Konig, R Kornejew, P Kramer-Flecken, A Krawczyk, N Kremeyer, T Ksiazek, I Kubkowska, M Langenberg, A Laqua, HP Laux, M Lazerson, S Liang, Y Liu, SC Lorenz, A Marchuk, AO Marsen, S Moncada, V Naujoks, D Neilson, H Neubauer, O Neuner, U Niemann, H Oosterbeek, JW Otte, M Pablant, N Pasch, E Pedersen, TS Pisano, F Rahbarnia, K Ryc, L Schmitz, O Schmuck, S Schneider, W Schroder, T Schuhmacher, H Schweer, B Standley, B Stange, T Stephey, L Svensson, J Szabolics, T Szepesi, T Thomsen, H Travere, JM Mora, HT Tsuchiya, H Weir, GM Wenzel, U Werner, A Wiegel, B Windisch, T Wolf, R Wurden, GA Zhang, D Zimbal, A Zoletnik, S AF Krychowiak, M. Adnan, A. Alonso, A. Andreeva, T. Baldzuhn, J. Barbui, T. Beurskens, M. Biel, W. Biedermann, C. Blackwell, B. D. Bosch, H. S. Bozhenkov, S. Brakel, R. Braeuer, T. de Carvalho, B. Brotas Burhenn, R. Buttenschoen, B. Cappa, A. Cseh, G. Czarnecka, A. Dinklage, A. Drews, P. Dzikowicka, A. Effenberg, F. Endler, M. Erckmann, V. Estrada, T. Ford, O. Fornal, T. Frerichs, H. Fuchert, G. Geiger, J. Grulke, O. Harris, J. H. Hartfuss, H. J. Hartmann, D. Hathiramani, D. Hirsch, M. Hoefel, U. Jablonski, S. Jakubowski, M. W. Kaczmarczyk, J. Klinger, T. Klose, S. Knauer, J. Kocsis, G. Koenig, R. Kornejew, P. Kraemer-Flecken, A. Krawczyk, N. Kremeyer, T. Ksiazek, I. Kubkowska, M. Langenberg, A. Laqua, H. P. Laux, M. Lazerson, S. Liang, Y. Liu, S. C. Lorenz, A. Marchuk, A. O. Marsen, S. Moncada, V. Naujoks, D. Neilson, H. Neubauer, O. Neuner, U. Niemann, H. Oosterbeek, J. W. Otte, M. Pablant, N. Pasch, E. Pedersen, T. Sunn Pisano, F. Rahbarnia, K. Ryc, L. Schmitz, O. Schmuck, S. Schneider, W. Schroeder, T. Schuhmacher, H. Schweer, B. Standley, B. Stange, T. Stephey, L. Svensson, J. Szabolics, T. Szepesi, T. Thomsen, H. Travere, J. -M. Mora, H. Trimino Tsuchiya, H. Weir, G. M. Wenzel, U. Werner, A. Wiegel, B. Windisch, T. Wolf, R. Wurden, G. A. Zhang, D. Zimbal, A. Zoletnik, S. CA W7-X Team TI Overview of diagnostic performance and results for the first operation phase in Wendelstein 7-X (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID SPECTROMETER; STELLARATOR; FRAMEWORK; DESIGN AB Wendelstein 7-X, a superconducting optimized stellarator built in Greifswald/Germany, started its first plasmas with the last closed flux surface (LCFS) defined by 5 uncooled graphite limiters in December 2015. At the end of the 10 weeks long experimental campaign (OP1.1) more than 20 independent diagnostic systems were in operation, allowing detailed studies of many interesting plasma phenomena. For example, fast neutral gas manometers supported by video cameras (including one fast-frame camera with frame rates of tens of kHz) as well as visible cameras with different interference filters, with field of views covering all ten half-modules of the stellarator, discovered a MARFE-like radiation zone on the inboard side of machine module 4. This structure is presumably triggered by an inadvertent plasma-wall interaction in module 4 resulting in a high impurity influx that terminates some discharges by radiation cooling. The main plasma parameters achieved in OP1.1 exceeded predicted values in discharges of a length reaching 6 s. Although OP1.1 is characterized by short pulses, many of the diagnostics are already designed for quasi-steady state operation of 30 min discharges heated at 10 MW of ECRH. An overview of diagnostic performance for OP1.1 is given, including some highlights from the physics campaigns. C1 [Krychowiak, M.; Adnan, A.; Andreeva, T.; Baldzuhn, J.; Beurskens, M.; Biedermann, C.; Bosch, H. S.; Bozhenkov, S.; Brakel, R.; Braeuer, T.; Burhenn, R.; Buttenschoen, B.; Dinklage, A.; Endler, M.; Erckmann, V.; Ford, O.; Fuchert, G.; Geiger, J.; Grulke, O.; Hartfuss, H. J.; Hartmann, D.; Hathiramani, D.; Hirsch, M.; Hoefel, U.; Jakubowski, M. W.; Klinger, T.; Klose, S.; Knauer, J.; Koenig, R.; Kornejew, P.; Langenberg, A.; Laqua, H. P.; Laux, M.; Lorenz, A.; Marsen, S.; Naujoks, D.; Neuner, U.; Niemann, H.; Otte, M.; Pasch, E.; Pedersen, T. Sunn; Rahbarnia, K.; Schneider, W.; Schroeder, T.; Standley, B.; Stange, T.; Svensson, J.; Thomsen, H.; Mora, H. Trimino; Weir, G. M.; Wenzel, U.; Werner, A.; Windisch, T.; Wolf, R.; Zhang, D.; W7-X Team] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Alonso, A.; Cappa, A.; Estrada, T.] CIEMAT, Lab Nacl Fus, Ave Complutense, Madrid, Spain. [Barbui, T.; Effenberg, F.; Frerichs, H.; Kremeyer, T.; Schmitz, O.; Stephey, L.] Univ Wisconsin, Engn Dr, Madison, WI 53706 USA. [Biel, W.; Drews, P.; Liang, Y.; Liu, S. C.; Marchuk, A. O.; Neubauer, O.] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, Partner Trilateral Euregio Cluster TEC, D-52425 Julich, Germany. [Blackwell, B. D.] Australian Natl Univ, Canberra, ACT 2601, Australia. [de Carvalho, B. Brotas] Inst Plasmas & Fusao Nucl, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal. [Cseh, G.; Kocsis, G.; Szabolics, T.; Szepesi, T.; Zoletnik, S.] Wigner Res Ctr Phys, Konkoly Thege 29-33, H-1121 Budapest, Hungary. [Czarnecka, A.; Fornal, T.; Jablonski, S.; Kaczmarczyk, J.; Krawczyk, N.; Kubkowska, M.; Ryc, L.] Inst Plasma Phys & Laser Microfus, Hery St 23, PL-01497 Warsaw, Poland. [Dzikowicka, A.] Univ Szczecin, Al Papieza Jana Pawla 2 22A, Szczecin, Poland. [Harris, J. H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ksiazek, I.] Opole Univ, Pl Kopernika 11a, PL-45040 Opole, Poland. [Lazerson, S.; Neilson, H.; Pablant, N.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Moncada, V.; Travere, J. -M.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Oosterbeek, J. W.] Eindhoven Univ Technol, POB 513, NL-5600 MB Eindhoven, Netherlands. [Pisano, F.] Univ Cagliari, Via Univ 40, I-09124 Cagliari, Italy. [Schmuck, S.] Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Schuhmacher, H.; Wiegel, B.; Zimbal, A.] Phys Tech Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany. [Tsuchiya, H.] Natl Inst Fus Sci, 322-6 Oroshi Cho, Toki, Gifu 5095292, Japan. [Wurden, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Krychowiak, M (reprint author), Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. EM cak@ipp.mpg.de RI Cappa, Alvaro/C-5614-2017; Biel, Wioletta/G-7479-2016; OI Cappa, Alvaro/0000-0002-2250-9209; Biel, Wioletta/0000-0002-3385-6281; Wurden, Glen/0000-0003-2991-1484; Estrada, Teresa/0000-0001-6205-2656 NR 48 TC 1 Z9 1 U1 16 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D304 DI 10.1063/1.4964376 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300005 PM 27910389 ER PT J AU Lahmann, B Milanese, LM Han, W Johnson, MG Seguin, FH Frenje, JA Petrasso, RD Hahn, KD Jones, B AF Lahmann, B. Milanese, L. M. Han, W. Johnson, M. Gatu Seguin, F. H. Frenje, J. A. Petrasso, R. D. Hahn, K. D. Jones, B. TI Application of the coincidence counting technique to DD neutron spectrometry data at the NIF, OMEGA, and Z SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID FACILITY AB A compact neutron spectrometer, based on a CH foil for the production of recoil protons and CR-39 detection, is being developed for the measurements of the DD-neutron spectrum at the NIF, OMEGA, and Z facilities. As a CR-39 detector will be used in the spectrometer, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). To reject the background to the required level for measurements of the down-scattered and primary DD-neutron components in the spectrum, the Coincidence Counting Technique (CCT) must be applied to the data. Using a piece of CR-39 exposed to 2.5-MeV protons at the MIT HEDP accelerator facility and DD-neutrons at Z, a significant improvement of a DD-neutron signal-to-background level has been demonstrated for the first time using the CCT. These results are in excellent agreement with previous work applied to DT neutrons. Published by AIP Publishing. C1 [Lahmann, B.; Milanese, L. M.; Han, W.; Johnson, M. Gatu; Seguin, F. H.; Frenje, J. A.; Petrasso, R. D.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Hahn, K. D.; Jones, B.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Lahmann, B (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM lahmann@mit.edu NR 10 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D801 DI 10.1063/1.4958910 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300085 PM 27910525 ER PT J AU Lanier, NE Kline, JL Morton, J AF Lanier, N. E. Kline, J. L. Morton, J. TI Using VISAR to assess the M-band isotropy in hohlraums SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID NATIONAL-IGNITION-FACILITY AB In laser based radiation flow experiments, drive variability can often overwhelm the physics sensitivity that one seeks to quantify. Hohlraums can help by providing a more symmetrized, Planckian-like source. However, at higher temperatures, the hohlraum's actual emission can deviate significantly from a truly blackbody, Lambertian source. At the National Ignition Facility (NIF), Dante provides the best quantification of hohlraum output. Unfortunately, limited diagnostic access coupled with NIF's natural symmetry does not allow for Dante measurements at more than two angles. As part of the CEPHEUS campaign on NIF, proof-of-principle experiments to better quantify the gold M-band isotropy were conducted. These experiments positioned beryllium/aluminum mirrors at differing angles, offset from the hohlraum. Filtering removes the thermal emission of the hohlraum and the remaining M-band radiation is preferentially absorbed in the aluminum layer. The subsequent hydrodynamic motion is measured via VISAR. Although indirect, this M-band measurement can be made at any angle. Published by AIP Publishing. C1 [Lanier, N. E.; Kline, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Morton, J.] AWE Plc, Reading RG7 4PR, Berks, England. RP Lanier, NE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM nlanier@lanl.gov NR 13 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D621 DI 10.1063/1.4962869 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300078 PM 27910498 ER PT J AU Lasnier, CJ McLean, AG Gattuso, A O'Neill, R Smiley, M Vasquez, J Feder, R Smith, M Stratton, B Johnson, D Verlaan, AL Heijmans, JAC AF Lasnier, C. J. McLean, A. G. Gattuso, A. O'Neill, R. Smiley, M. Vasquez, J. Feder, R. Smith, M. Stratton, B. Johnson, D. Verlaan, A. L. Heijmans, J. A. C. TI Upper wide-angle viewing system for ITER SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The Upper Wide Angle Viewing System (UWAVS) will be installed on five upper ports of ITER. This paper shows major requirements, gives an overview of the preliminary design with reasons for some design choices, examines self-emitted IR light from UWAVS optics and its effect on accuracy, and shows calculations of signal-to-noise ratios for the two-color temperature output as a function of integration time and divertor temperature. Accurate temperature output requires correction for vacuum window absorption vs. wavelength and for self-emitted IR, which requires good measurement of the temperature of the optical components. The anticipated signal-to-noise ratio using presently available IR cameras is adequate for the required 500 Hz frame rate. Published by AIP Publishing. C1 [Lasnier, C. J.; McLean, A. G.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Gattuso, A.; O'Neill, R.; Smiley, M.; Vasquez, J.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Feder, R.; Smith, M.; Stratton, B.; Johnson, D.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Verlaan, A. L.; Heijmans, J. A. C.] TNO, POB 155, NL-2600 AD Delft, Netherlands. RP Lasnier, CJ (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM Lasnier@llnl.gov OI Johnson, David/0000-0002-2716-8001 NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D426 DI 10.1063/1.4960489 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300031 PM 27910636 ER PT J AU Lee, W Leem, J Yun, GS Park, HK Ko, SH Wang, WX Budny, RV Luhmann, NC Kim, KW AF Lee, W. Leem, J. Yun, G. S. Park, H. K. Ko, S. H. Wang, W. X. Budny, R. V. Luhmann, N. C., Jr. Kim, K. W. TI Ion gyroscale fluctuation measurement with microwave imaging reflectometer on KSTAR SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID PLASMAS AB Ion gyroscale turbulent fluctuations with the poloidal wavenumber k(theta) similar to 3 cm(-1) have been measured in the core region of the neutral beam (NB) injected low confinement (L-mode) plasmas on Korea superconducting tokamak advanced research. The turbulence poloidal wavenumbers are deduced from the frequencies and poloidal rotation velocities in the laboratory frame, measured by the multi-channel microwave imaging reflectometer. Linear and nonlinear gyrokinetic simulations also predict the unstable modes with the normalized wavenumber k(theta)rho(s) similar to 0.4, consistent with the measurement. Comparison of the measured frequencies with the intrinsic mode frequencies from the linear simulations indicates that the measured ones are primarily due to the E x B flow velocity in the NB-injected fast rotating plasmas. Published by AIP Publishing. C1 [Lee, W.; Park, H. K.; Ko, S. H.] Natl Fus Res Inst, Daejeon 34133, South Korea. [Lee, W.; Park, H. K.] Ulsan Natl Inst Sci & Technol, Ulsan 44919, South Korea. [Leem, J.; Yun, G. S.] Pohang Univ Sci & Technol, Pohang 37673, Gyeongbuk, South Korea. [Wang, W. X.; Budny, R. V.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Luhmann, N. C., Jr.] Univ Calif Davis, Davis, CA 95616 USA. [Kim, K. W.] Kyungpook Natl Univ, Daegu 41566, South Korea. RP Lee, W (reprint author), Natl Fus Res Inst, Daejeon 34133, South Korea.; Lee, W (reprint author), Ulsan Natl Inst Sci & Technol, Ulsan 44919, South Korea. EM wclee@nfri.re.kr OI Ko, Sehoon/0000-0003-2031-3146 NR 21 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E134 DI 10.1063/1.4963152 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300163 PM 27910475 ER PT J AU Lepson, JK Beiersdorfer, P Kaita, R Majeski, R Boyle, D AF Lepson, J. K. Beiersdorfer, P. Kaita, R. Majeski, R. Boyle, D. TI Responsivity calibration of the LoWEUS spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID EMISSION-LINE SPECTRA; EXTREME-ULTRAVIOLET; ATOMIC DATABASE; ANGSTROM; CHIANTI; REGION AB We performed an in situ calibration of the relative responsivity function of the Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS), while operating on the Lithium Tokamak Experiment (LTX) at Princeton Plasma Physics Laboratory. The calibration was accomplished by measuring oxygen lines, which are typically present in LTX plasmas. The measured spectral line intensities of each oxygen charge state were then compared to the calculated emission strengths given in the CHIANTI atomic database. Normalizing the strongest line in each charge state to the CHIANTI predictions, we obtained the differences between the measured and predicted values for the relative strengths of the other lines of a given charge state. We find that a 3rd degree polynomial function provides a good fit to the data points. Our measurements show that the responsivity between about 120 and 300 angstrom varies by factor of similar to 30. Published by AIP Publishing. C1 [Lepson, J. K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Beiersdorfer, P.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94550 USA. [Kaita, R.; Majeski, R.; Boyle, D.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Lepson, JK (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM lepson@ssl.berkeley.edu OI Boyle, Dennis/0000-0001-8091-8169 NR 11 TC 0 Z9 0 U1 0 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D614 DI 10.1063/1.4960729 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300071 PM 27910593 ER PT J AU Leutenegger, MA Beiersdorfer, P Betancourt-Martinez, GL Brown, GV Hell, N Kelley, RL Kilbourne, A Magee, EW Porter, FS AF Leutenegger, M. A. Beiersdorfer, P. Betancourt-Martinez, G. L. Brown, G. V. Hell, N. Kelley, R. L. Kilbourne, A. Magee, E. W. Porter, F. S. TI Characterization of an atomic hydrogen source for charge exchange experiments SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID BEAM ION-TRAP AB We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species. Published by AIP Publishing. C1 [Leutenegger, M. A.; Betancourt-Martinez, G. L.; Kelley, R. L.; Kilbourne, A.; Porter, F. S.] NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA. [Leutenegger, M. A.] Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA. [Beiersdorfer, P.; Brown, G. V.; Hell, N.; Magee, E. W.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Betancourt-Martinez, G. L.] Univ Maryland, College Pk, MD 20742 USA. [Hell, N.] FAU Erlangen Nurnberg, Dr Karl Remeis Sternwarte, Sternwartstr 7, D-96049 Bamberg, Germany. [Hell, N.] FAU Erlangen Nurnberg, ECAP, Sternwartstr 7, D-96049 Bamberg, Germany. RP Leutenegger, MA (reprint author), NASA, Goddard Space Flight Ctr, Code 662, Greenbelt, MD 20771 USA.; Leutenegger, MA (reprint author), Univ Maryland Baltimore Cty, CRESST, 1000 Hilltop Circle, Baltimore, MD 21250 USA. RI Porter, Frederick/D-3501-2012 OI Porter, Frederick/0000-0002-6374-1119 NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E516 DI 10.1063/1.4959919 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300231 PM 27910505 ER PT J AU Liu, D Heidbrink, WW Tritz, K Fredrickson, ED Hao, GZ Zhu, YB AF Liu, D. Heidbrink, W. W. Tritz, K. Fredrickson, E. D. Hao, G. Z. Zhu, Y. B. TI Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID IONS AB A compact and multi-view solid state neutral particle analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade. The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from the charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially, and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPA and r-SSNPA are mainly sensitive to passing and trapped particles, respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thicknesses to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10, and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics instabilities. Published by AIP Publishing. C1 [Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Zhu, Y. B.] Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA. [Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Zhu, Y. B.] Univ Calif Irvine, Dept Astron, Irvine, CA 92697 USA. [Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Tritz, K.] Johns Hopkins Univ, Dept Astron, Baltimore, MD 21218 USA. [Fredrickson, E. D.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Liu, D (reprint author), Univ Calif Irvine, Dept Phys, Irvine, CA 92697 USA.; Liu, D (reprint author), Univ Calif Irvine, Dept Astron, Irvine, CA 92697 USA. EM deyongl@uci.edu NR 12 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D803 DI 10.1063/1.4959798 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300087 PM 27910528 ER PT J AU Loisel, G Lake, P Gard, P Dunham, G Nielsen-Weber, L Wu, M Norris, E AF Loisel, G. Lake, P. Gard, P. Dunham, G. Nielsen-Weber, L. Wu, M. Norris, E. TI X-ray intensity and source size characterizations for the 25 kV upgraded Manson source at Sandia National Laboratories SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB At Sandia National Laboratories, the x-ray generator Manson source model 5 was upgraded from 10 to 25 kV. The purpose of the upgrade is to drive higher characteristics photon energies with higher throughput. In this work we present characterization studies for the source size and the x-ray intensity when varying the source voltage for a series of K-, L-, and M-shell lines emitted from Al, Y, and Au elements composing the anode. We used a 2-pinhole camera to measure the source size and an energy dispersive detector to monitor the spectral content and intensity of the x-ray source. As the voltage increases, the source size is significantly reduced and line intensity is increased for the three materials. We can take advantage of the smaller source size and higher source throughput to effectively calibrate the suite of Z Pulsed Power Facility crystal spectrometers. Published by AIP Publishing. C1 [Loisel, G.; Lake, P.; Gard, P.; Dunham, G.; Nielsen-Weber, L.; Wu, M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Norris, E.] Missouri Univ Sci & Technol, Rolla, MO 65409 USA. RP Loisel, G (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gploise@sandia.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D613 DI 10.1063/1.4960064 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300070 PM 27910443 ER PT J AU Loisel, GP Wu, M Stolte, W Kruschwitz, C Lake, P Dunham, GS Bailey, JE Rochau, GA AF Loisel, G. P. Wu, M. Stolte, W. Kruschwitz, C. Lake, P. Dunham, G. S. Bailey, J. E. Rochau, G. A. TI Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (XOP) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration data confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction. Published by AIP Publishing. C1 [Loisel, G. P.; Wu, M.; Lake, P.; Dunham, G. S.; Bailey, J. E.; Rochau, G. A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Stolte, W.] Natl Secur Technol LLC, Livermore, CA 94551 USA. [Kruschwitz, C.] Natl Secur Technol LLC, Los Alamos, NM 87544 USA. RP Loisel, GP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gploise@sandia.gov NR 19 TC 2 Z9 2 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D502 DI 10.1063/1.4960149 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300054 PM 27910652 ER PT J AU Lu, J Deng, ZD Li, H Myjak, MJ Martinez, JJ Xiao, J Brown, RS Cartmell, SS AF Lu, J. Deng, Z. D. Li, H. Myjak, M. J. Martinez, J. J. Xiao, J. Brown, R. S. Cartmell, S. S. TI A small long-life acoustic transmitter for studying the behavior of aquatic animals SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID JUVENILE SALMON; TELEMETRY SYSTEM; ENVIRONMENTAL-FACTORS; TRACKING; FISH; MOVEMENT; DESIGN AB Acoustic telemetry is an important tool for studying the behavior of aquatic animals and assessing the environmental impact of structures such as hydropower facilities. However, the physical size, signal intensity, and service life of off-the-shelf transmitters are presently insufficient for monitoring certain species. In this study, we developed a small, long-life acoustic transmitter with an approximate length of 24.2 mm, diameter of 5.0 mm, and dry weight of 0.72 g. The transmitter generates a coded acoustic signal at 416.7 kHz with a selectable source level between 159 and 163 dB relative to 1 mu Pa at 1 m, allowing a theoretical detection range of up to 500 m. The expected operational lifetime is 1 yr at a pulse rate interval of 15 s. The new technology makes long-term acoustic telemetry studies of small fish possible, and is being deployed for a long-term tracking of juvenile sturgeon. (C) 2016 Author(s). C1 [Lu, J.; Deng, Z. D.; Li, H.; Myjak, M. J.; Martinez, J. J.; Xiao, J.; Brown, R. S.; Cartmell, S. S.] Pacific Northwest Natl Lab, POB 999, Richland, WA 99332 USA. RP Lu, J (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99332 USA. RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 NR 19 TC 1 Z9 1 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 114902 DI 10.1063/1.4967941 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300371 PM 27910363 ER PT J AU Lyu, B Chen, J Hu, RJ Wang, FD Li, YY Fu, J Shen, YC Bitter, M Hill, KW Delgado-Aparicio, LF Pablant, N Lee, SG Ye, MY Shi, YJ Wan, BN AF Lyu, B. Chen, J. Hu, R. J. Wang, F. D. Li, Y. Y. Fu, J. Shen, Y. C. Bitter, M. Hill, K. W. Delgado-Aparicio, L. F. Pablant, N. Lee, S. G. Ye, M. Y. Shi, Y. J. Wan, B. N. TI Measurement of helium-like and hydrogen-like argon spectra using double-crystal X-ray spectrometers on EAST SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID TOKAMAK AB A two-crystal assembly was deployed on the tangential X-ray crystal spectrometer to measure both helium-like and hydrogen-like spectra on EAST. High-quality helium-like and hydrogen-like spectra were observed simultaneously for the first time on one detector for a wide range of plasma parameters. Profiles of line-integrated core ion temperatures inferred from two spectra were consistent. Since tungsten was adopted as the upper divertor material, one tungsten line (W XLIV at 4.017 angstrom) on the short-wavelength side of the Lyman-alpha line (L alpha 1) was identified for typical USN discharges, which was diffracted by a He-like crystal (2d = 4.913 angstrom). Another possible Fe XXV line (1.85 angstrom) was observed to be located on the long-wavelength side of resonance line (w), which was diffracted from a H-like crystal (2d = 4.5622 angstrom) on the second order. Be-like argon lines were also observable that fill the detector space between the He-like and H-like spectra. Published by AIP Publishing. C1 [Lyu, B.; Chen, J.; Hu, R. J.; Wang, F. D.; Li, Y. Y.; Fu, J.; Shen, Y. C.; Wan, B. N.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Lyu, B.; Shi, Y. J.] Chinese Acad Sci, Hefei Sci Ctr, Hefei 230031, Peoples R China. [Chen, J.; Hu, R. J.; Ye, M. Y.] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China. [Shen, Y. C.] Anqing Normal Univ, Sch Phys & Elect Engn, Anqing 246011, Peoples R China. [Bitter, M.; Hill, K. W.; Delgado-Aparicio, L. F.; Pablant, N.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Lee, S. G.] Natl Fus Res Inst, Daejeon 305333, South Korea. [Shi, Y. J.] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea. RP Lyu, B (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China.; Lyu, B (reprint author), Chinese Acad Sci, Hefei Sci Ctr, Hefei 230031, Peoples R China. EM blu@ipp.ac.cn OI 李, 颖颖/0000-0002-2978-908X NR 7 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E326 DI 10.1063/1.4960504 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300194 PM 27910526 ER PT J AU Ma, T Chen, H Patel, PK Schneider, MB Barrios, MA Casey, DT Chung, HK Hammel, BA Hopkins, LFB Jarrott, LC Khan, SF Lahmann, B Nora, R Rosenberg, MJ Pak, A Regan, SP Scott, HA Sio, H Spears, BK Weber, CR AF Ma, T. Chen, H. Patel, P. K. Schneider, M. B. Barrios, M. A. Casey, D. T. Chung, H. -K. Hammel, B. A. Hopkins, L. F. Berzak Jarrott, L. C. Khan, S. F. Lahmann, B. Nora, R. Rosenberg, M. J. Pak, A. Regan, S. P. Scott, H. A. Sio, H. Spears, B. K. Weber, C. R. TI Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID NATIONAL-IGNITION-FACILITY; HIGH-DENSITIES; STREAK CAMERA; PLASMAS AB The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission. Published by AIP Publishing. C1 [Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Hammel, B. A.; Hopkins, L. F. Berzak; Jarrott, L. C.; Khan, S. F.; Nora, R.; Pak, A.; Scott, H. A.; Spears, B. K.; Weber, C. R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chung, H. -K.] IAEA, Vienna, Austria. [Lahmann, B.; Sio, H.] MIT, Plasma Fus & Sci Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Rosenberg, M. J.; Regan, S. P.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. RP Ma, T (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ma8@llnl.gov RI Patel, Pravesh/E-1400-2011 NR 30 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E327 DI 10.1063/1.4960753 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300195 PM 27910341 ER PT J AU MacDonald, MJ Gorkhover, T Bachmann, B Bucher, M Carron, S Coffee, RN Drake, RP Ferguson, KR Fletcher, LB Gamboa, EJ Glenzer, SH Gode, S Hau-Riege, SP Kraus, D Krzywinski, J Levitan, AL Meiwes-Broer, KH O'Grady, CP Osipov, T Pardini, T Peltz, C Skruszewicz, S Swiggers, M Bostedt, C Fennel, T Doppner, T AF MacDonald, M. J. Gorkhover, T. Bachmann, B. Bucher, M. Carron, S. Coffee, R. N. Drake, R. P. Ferguson, K. R. Fletcher, L. B. Gamboa, E. J. Glenzer, S. H. Gode, S. Hau-Riege, S. P. Kraus, D. Krzywinski, J. Levitan, A. L. Meiwes-Broer, K. -H. O'Grady, C. P. Osipov, T. Pardini, T. Peltz, C. Skruszewicz, S. Swiggers, M. Bostedt, C. Fennel, T. Doppner, T. TI Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID LASER AB Atomic clusters can serve as ideal model systems for exploring ultrafast (similar to 100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control. Published by AIP Publishing. C1 [MacDonald, M. J.; Drake, R. P.] Univ Michigan, Ann Arbor, MI 48109 USA. [MacDonald, M. J.; Gorkhover, T.; Bucher, M.; Coffee, R. N.; Ferguson, K. R.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Gode, S.; Krzywinski, J.; O'Grady, C. P.; Osipov, T.; Swiggers, M.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Gorkhover, T.] Tech Univ, D-10623 Berlin, Germany. [Bachmann, B.; Hau-Riege, S. P.; Pardini, T.; Doppner, T.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Bucher, M.; Bostedt, C.] Argonne Natl Lab, Lemont, IL 60439 USA. [Carron, S.] Calif Lutheran Univ, Thousand Oaks, CA 91360 USA. [Ferguson, K. R.] Stanford Univ, Stanford, CA 94305 USA. [Kraus, D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Levitan, A. L.] Franklin W Olin Coll Engn, Needham, MA 02492 USA. [Meiwes-Broer, K. -H.; Peltz, C.; Skruszewicz, S.; Fennel, T.] Univ Rostock, D-18051 Rostock, Germany. RP MacDonald, MJ (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA.; MacDonald, MJ (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM macdonm@umich.edu RI Bucher, Maximilian/K-2298-2012; OI Bucher, Maximilian/0000-0001-7896-473X; MacDonald, Michael/0000-0002-6295-6978 NR 14 TC 0 Z9 0 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E709 DI 10.1063/1.4960502 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300287 PM 27910491 ER PT J AU MacPhee, AG Dymoke-Bradshaw, AKL Hares, JD Hassett, J Hatch, BW Meadowcroft, AL Bell, PM Bradley, DK Datte, PS Landen, OL Palmer, NE Piston, KW Rekow, VV Hilsabeck, TJ Kilkenny, JD AF MacPhee, A. G. Dymoke-Bradshaw, A. K. L. Hares, J. D. Hassett, J. Hatch, B. W. Meadowcroft, A. L. Bell, P. M. Bradley, D. K. Datte, P. S. Landen, O. L. Palmer, N. E. Piston, K. W. Rekow, V. V. Hilsabeck, T. J. Kilkenny, J. D. TI Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record. Published by AIP Publishing. C1 [MacPhee, A. G.; Hassett, J.; Hatch, B. W.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Dymoke-Bradshaw, A. K. L.; Hares, J. D.] Kentech Instruments Ltd, Isis Bldg,Howbery Pk, Wallingford OX10 8BD, Oxon, England. [Hassett, J.] Univ Rochester, Dept Elect & Comp Engn, Rochester, NY 14627 USA. [Meadowcroft, A. L.] AWE Aldermaston, Reading RG7 4PR, Berks, England. [Hilsabeck, T. J.; Kilkenny, J. D.] Gen Atom, POB 85608, San Diego, CA 92186 USA. RP MacPhee, AG (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM macphee2@llnl.gov NR 13 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E202 DI 10.1063/1.4960376 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300166 PM 27910532 ER PT J AU Maddox, J Pablant, N Efthimion, P Delgado-Aparicio, L Hill, KW Bitter, M Reinke, ML Rissi, M Donath, T Luethi, B Stratton, B AF Maddox, J. Pablant, N. Efthimion, P. Delgado-Aparicio, L. Hill, K. W. Bitter, M. Reinke, M. L. Rissi, M. Donath, T. Luethi, B. Stratton, B. TI Multi-energy x-ray detector calibration for T-e and impurity density (n(Z)) measurements of MCF plasmas (vol 87, 11E320, 2016) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Stratton, B.] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA. [Reinke, M. L.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Rissi, M.; Donath, T.; Luethi, B.] DECTRIS Ltd, Taefernweg 1, CH-5405 Baden, Switzerland. RP Maddox, J (reprint author), Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA. EM jmaddox@pppl.gov NR 1 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11F907 DI 10.1063/1.4964607 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300317 PM 27910680 ER PT J AU Maddox, J Pablant, N Efthimion, P Delgado-Aparicio, L Hill, KW Bitter, M Reinke, ML Rissi, M Donath, T Luethi, B Stratton, B AF Maddox, J. Pablant, N. Efthimion, P. Delgado-Aparicio, L. Hill, K. W. Bitter, M. Reinke, M. L. Rissi, M. Donath, T. Luethi, B. Stratton, B. TI Multi-energy x-ray detector calibration for T-e and impurity density (n(Z)) measurements of MCF plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, n(e)(2)Z(eff) products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-L alpha to Ag-K alpha between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively. Published by AIP Publishing. C1 [Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Stratton, B.] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA. [Reinke, M. L.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Rissi, M.; Donath, T.; Luethi, B.] DECTRIS Ltd, Taefernweg 1, CH-5405 Baden, Switzerland. RP Maddox, J (reprint author), Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA. EM jmaddox@pppl.gov NR 10 TC 2 Z9 2 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E320 DI 10.1063/1.4960602 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300188 PM 27910559 ER PT J AU Martin, EH Zafar, A Caughman, JBO Isler, RC Bell, GL AF Martin, E. H. Zafar, A. Caughman, J. B. O. Isler, R. C. Bell, G. L. TI Applications of Doppler-free saturation spectroscopy for edge physics studies SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H-delta spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements. Published by AIP Publishing. C1 [Martin, E. H.; Caughman, J. B. O.; Isler, R. C.; Bell, G. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Zafar, A.] North Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP Martin, EH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM martineh@ornl.gov NR 4 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E402 DI 10.1063/1.4961287 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300214 PM 27910367 ER PT J AU Meyer, O Jones, OM Giacalone, JC Pascal, JY Raulin, D Xu, H Aumeunier, MH Baude, R Escarguel, A Gil, C Harris, JH Hatchressian, JC Klepper, CC Larroque, S Lotte, P Moreau, P Pegourie, B Vartanian, S AF Meyer, O. Jones, O. M. Giacalone, J. C. Pascal, J. Y. Raulin, D. Xu, H. Aumeunier, M. H. Baude, R. Escarguel, A. Gil, C. Harris, J. H. Hatchressian, J. -C. Klepper, C. C. Larroque, S. Lotte, Ph. Moreau, Ph. Pegourie, B. Vartanian, S. TI Development of visible spectroscopy diagnostics for W sources assessment in WEST SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID ASDEX UPGRADE AB The present work concerns the development of a W sources assessment system in the framework of the tungsten-W environment in steady state tokamak project that aims at equipping the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFCs) in view of preparing ITER operation. The goal is to assess W sources and D recycling with spectral, spatial, and temporal resolution adapted to the PFCs observed. The originality of the system is that all optical elements are installed in the vacuum vessel and compatible with steady state operation. Our system is optimized to measure radiance as low as 10(16) Ph/(m(2) s sr). A total of 240 optical fibers will be deployed to the detection systems such as the "Filterscope," developed by Oak Ridge National Laboratory (USA) and consisting of photomultiplier tubes and filters, or imaging spectrometers dedicated to Multiview analysis. Published by AIP Publishing. C1 [Meyer, O.; Giacalone, J. C.; Pascal, J. Y.; Raulin, D.; Aumeunier, M. H.; Gil, C.; Hatchressian, J. -C.; Larroque, S.; Lotte, Ph.; Moreau, Ph.; Pegourie, B.; Vartanian, S.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Jones, O. M.; Baude, R.; Escarguel, A.] PIIM, Ave Escadrille Normandie Niemen, F-13397 Marseille 20, France. [Xu, H.] ASIPP, 350 Shushanhu Rd, Hefei 230031, Anhui, Peoples R China. [Harris, J. H.; Klepper, C. C.] ORNL, Oak Ridge, TN 37831 USA. RP Meyer, O (reprint author), CEA, IRFM, F-13108 St Paul Les Durance, France. EM olivier.meyer@cea.fr NR 4 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E309 DI 10.1063/1.4959780 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300177 PM 27910500 ER PT J AU Moore, AS Benstead, J Ahmed, MF Morton, J Guymer, TM Soufli, R Pardini, T Hibbard, RL Bailey, CG Bell, PM Hau-Riege, S Bedzyk, M Shoup, MJ Regan, SP Agliata, T Jungquist, R Schmidt, DW Kot, LB Garbett, WJ Rubery, MS Skidmore, JW Gullikson, E Salmassi, F AF Moore, A. S. Benstead, J. Ahmed, M. F. Morton, J. Guymer, T. M. Soufli, R. Pardini, T. Hibbard, R. L. Bailey, C. G. Bell, P. M. Hau-Riege, S. Bedzyk, M. Shoup, M. J., III Regan, S. P. Agliata, T. Jungquist, R. Schmidt, D. W. Kot, L. B. Garbett, W. J. Rubery, M. S. Skidmore, J. W. Gullikson, E. Salmassi, F. TI Two-color spatial and temporal temperature measurements using a streaked soft x-ray imager SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features in the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV. Published by AIP Publishing. C1 [Moore, A. S.; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Benstead, J.; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W.] AWE Aldermaston, Directorate Sci & Technol, Reading RG7 4PR, Berks, England. [Bedzyk, M.; Shoup, M. J., III; Regan, S. P.; Agliata, T.; Jungquist, R.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Schmidt, D. W.; Kot, L. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gullikson, E.; Salmassi, F.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Moore, AS (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM alastair.moore@physics.org NR 10 TC 0 Z9 0 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E313 DI 10.1063/1.4960160 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300181 PM 27910456 ER PT J AU Mumgaard, RT Scott, SD Khoury, M AF Mumgaard, R. T. Scott, S. D. Khoury, M. TI The multi-spectral line-polarization MSE system on Alcator C-Mod SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID SCATTERING; COMPACT AB A multi-spectral line-polarization motional Stark effect (MSE-MSLP) diagnostic has been developed for the Alcator C-Mod tokamak wherein the Stokes vector is measured in multiple wavelength bands simultaneously on the same sightline to enable better polarized background subtraction. A ten-sightline, four wavelength MSE-MSLP detector system was designed, constructed, and qualified. This system consists of a high-throughput polychromator for each sightline designed to provide large tendue and precise spectral filtering in a cost-effective manner. Each polychromator utilizes four narrow bandpass interference filters and four custom large diameter avalanche photodiode detectors. Two filters collect light to the red and blue of the MSE emission spectrum while the remaining two filters collect the beam pi and sigma emission generated at the same viewing volume. The filter wavelengths are temperature tuned using custom ovens in an automated manner. All system functions are remote controllable and the system can be easily retrofitted to existing single-wavelength line-polarization MSE systems. Published by AIP Publishing. C1 [Mumgaard, R. T.; Khoury, M.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Scott, S. D.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Mumgaard, RT (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM mumgaard@psfc.mit.edu NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E527 DI 10.1063/1.4959793 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300242 PM 27910659 ER PT J AU Nagel, SR Benedetti, LR Bradley, DK Hilsabeck, TJ Izumi, N Khan, S Kyrala, GA Ma, T Pak, A AF Nagel, S. R. Benedetti, L. R. Bradley, D. K. Hilsabeck, T. J. Izumi, N. Khan, S. Kyrala, G. A. Ma, T. Pak, A. TI Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The dilation x-ray imager (DIXI) [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010); S. R. Nagel et al., ibid. 83, 10E116 (2012); S. R. Nagel et al., ibid. 85, 11E504 (2014)] is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10x improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method [J. Salmon et al., J. Math. Imaging Vision 48, 279294 (2014)] to improve the robustness of the DIXI data analysis. Here we present results on ignition-relevant experiments at the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P-0, P-2, and P-4 Legendre modes, and their temporal evolution/swings). Published by AIP Publishing. C1 [Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.; Izumi, N.; Khan, S.; Ma, T.; Pak, A.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Hilsabeck, T. J.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Kyrala, G. A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87507 USA. RP Nagel, SR (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM nagel7@llnl.gov NR 19 TC 0 Z9 0 U1 4 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E311 DI 10.1063/1.4959917 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300179 PM 27910406 ER PT J AU Netepenko, A Boeglin, WU Darrow, DS Ellis, R Sibilia, JM AF Netepenko, A. Boeglin, W. U. Darrow, D. S. Ellis, R. Sibilia, M. J. TI Plasma diagnostics in spherical tokamaks with silicon charged-particle detectors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Detection of charged fusion products, such as protons and tritons resulting from D(d, p)t reactions, can be used to determine the position and time dependent fusion reaction rate profile in spherical tokamak plasmas with neutral beam heating. We have developed a prototype instrument consisting of 6 ion-implanted-silicon surface barrier detectors combined with collimators in such a way that each detector can accept 3 MeV protons and 1 MeV tritons and thus provides a curved view across the plasma cross section. The combination of the results from all six detectors will provide information on the spatial distribution of the fusion reaction rate. The expected time resolution of about 1 ms makes it possible to study changes in the reaction rate due to slow variations in the neutral beam density profile, as well as rapid changes resulting from MHD instabilities. Details of the new instrument, its data acquisition system, simulation results, and electrical noise testing results are discussed in this paper. First experimental data are expected to be taken during the current experimental campaign at NSTX-U. Published by AIP Publishing. C1 [Netepenko, A.; Boeglin, W. U.] Florida Int Univ, Dept Phys, Miami, FL 33199 USA. [Darrow, D. S.; Ellis, R.; Sibilia, M. J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Netepenko, A (reprint author), Florida Int Univ, Dept Phys, Miami, FL 33199 USA. EM anete001@fiu.edu NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D805 DI 10.1063/1.4955485 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300089 PM 27910355 ER PT J AU Nilson, PM Ehrne, F Mileham, C Mastrosimone, D Jungquist, RK Taylor, C Stillman, CR Ivancic, ST Boni, R Hassett, J Lonobile, DJ Kidder, RW Shoup, MJ Solodov, AA Stoeckl, C Theobald, W Froula, DH Hill, KW Gao, L Bitter, M Efthimion, P Meyerhofer, DD AF Nilson, P. M. Ehrne, F. Mileham, C. Mastrosimone, D. Jungquist, R. K. Taylor, C. Stillman, C. R. Ivancic, S. T. Boni, R. Hassett, J. Lonobile, D. J. Kidder, R. W. Shoup, M. J., III Solodov, A. A. Stoeckl, C. Theobald, W. Froula, D. H. Hill, K. W. Gao, L. Bitter, M. Efthimion, P. Meyerhofer, D. D. TI A high-resolving-power x-ray spectrometer for the OMEGA EP Laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID PLASMA INTERACTIONS; ELECTRON-TRANSPORT; HOT-ELECTRONS; PULSES; ABSORPTION; TARGETS; OPACITY AB A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu K-alpha 1 line. To demonstrate the performance of the spectrometer under high-power conditions, K-alpha 1,K-2 emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 10(18) W/cm(2). The ultimate goal is to couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed. Published by AIP Publishing. C1 [Nilson, P. M.; Ehrne, F.; Mileham, C.; Mastrosimone, D.; Jungquist, R. K.; Taylor, C.; Stillman, C. R.; Ivancic, S. T.; Boni, R.; Hassett, J.; Lonobile, D. J.; Kidder, R. W.; Shoup, M. J., III; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Froula, D. H.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Froula, D. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Hill, K. W.; Gao, L.; Bitter, M.; Efthimion, P.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Meyerhofer, D. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Nilson, PM (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM pnil@lle.rochester.edu NR 39 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D504 DI 10.1063/1.4961076 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300056 PM 27910626 ER PT J AU Opachich, YP Bell, PM Bradley, DK Chen, N Feng, J Gopal, A Hatch, B Hilsabeck, TJ Huffman, E Koch, JA Landen, OL MacPhee, AG Nagel, SR Udin, S AF Opachich, Y. P. Bell, P. M. Bradley, D. K. Chen, N. Feng, J. Gopal, A. Hatch, B. Hilsabeck, T. J. Huffman, E. Koch, J. A. Landen, O. L. MacPhee, A. G. Nagel, S. R. Udin, S. TI Structured photocathodes for improved high-energy x-ray efficiency in streak cameras (vol 87, 11E331, 2016) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Correction C1 [Opachich, Y. P.; Huffman, E.; Koch, J. A.] Natl Secur Technol LLC, Livermore, CA 94551 USA. [Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Chen, N.; Gopal, A.; Udin, S.] Nanoshift LLC, Emeryville, CA 94608 USA. [Feng, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hilsabeck, T. J.] Gen Atom Co, San Diego, CA 92121 USA. RP Opachich, YP (reprint author), Natl Secur Technol LLC, Livermore, CA 94551 USA. EM opachiyp@nv.doe.gov NR 1 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11F904 DI 10.1063/1.4962988 PG 1 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300314 PM 27910520 ER PT J AU Opachich, YP Bell, PM Bradley, DK Chen, N Feng, J Gopal, A Hatch, B Hilsabeck, TJ Huffman, E Koch, JA Landen, OL MacPhee, AG Nagel, SR Udin, S AF Opachich, Y. P. Bell, P. M. Bradley, D. K. Chen, N. Feng, J. Gopal, A. Hatch, B. Hilsabeck, T. J. Huffman, E. Koch, J. A. Landen, O. L. MacPhee, A. G. Nagel, S. R. Udin, S. TI Structured photocathodes for improved high-energy x-ray efficiency in streak cameras SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID CSI AB We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1-12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3x. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design. Published by AIP Publishing. C1 [Opachich, Y. P.; Huffman, E.; Koch, J. A.] Natl Secur Technol LLC, Livermore, CA 94551 USA. [Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Chen, N.; Gopal, A.; Udin, S.] Nanoshift LLC, Emeryville, CA 94608 USA. [Feng, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hilsabeck, T. J.] Gen Atom, San Diego, CA 92121 USA. RP Opachich, YP (reprint author), Natl Secur Technol LLC, Livermore, CA 94551 USA. EM opachiyp@nv.doe.gov NR 9 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E331 DI 10.1063/1.4961302 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300199 PM 27910592 ER PT J AU Peterson, BJ Sano, R Reinke, ML Canik, JM Delgado-Aparicio, LF Lore, JD Mukai, K Gray, TK van Eden, GG Jaworski, MA AF Peterson, B. J. Sano, R. Reinke, M. L. Canik, J. M. Delgado-Aparicio, L. F. Lore, J. D. Mukai, K. Gray, T. K. van Eden, G. G. Jaworski, M. A. TI Preliminary design of a tangentially viewing imaging bolometer for NSTX-U SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 x 480 (1280 x 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm x 9 cm x 2 mu m Pt foil. The foil is divided into 40 x 40 (64 x 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) mu W/cm(2) for a time resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from similar to 0.8 to similar to 80 (similar to 0.36 to similar to 26) mW/cm(2). Published by AIP Publishing. C1 [Peterson, B. J.; Mukai, K.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Peterson, B. J.; Mukai, K.] SOKENDAI, Toki, Gifu 5095292, Japan. [Sano, R.] Natl Inst Quantum & Radiol Sci, Naka, Ibaraki 3110193, Japan. [Sano, R.] Natl Inst Technol, Naka, Ibaraki 3110193, Japan. [Reinke, M. L.; Canik, J. M.; Lore, J. D.; Gray, T. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Delgado-Aparicio, L. F.; Jaworski, M. A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [van Eden, G. G.] FOM Inst DIFFER, NL-5612 AJ Eindhoven, Netherlands. RP Peterson, BJ (reprint author), Natl Inst Fus Sci, Toki, Gifu 5095292, Japan.; Peterson, BJ (reprint author), SOKENDAI, Toki, Gifu 5095292, Japan. EM peterson@LHD.nifs.ac.jp NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D410 DI 10.1063/1.4955278 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300015 PM 27910451 ER PT J AU Petkov, EE Safronova, AS Kantsyrev, VL Shlyaptseva, VV Rawat, RS Tan, KS Beiersdorfer, P Hell, N Brown, GV AF Petkov, E. E. Safronova, A. S. Kantsyrev, V. L. Shlyaptseva, V. V. Rawat, R. S. Tan, K. S. Beiersdorfer, P. Hell, N. Brown, G. V. TI L-shell spectroscopic diagnostics of radiation from krypton HED plasma sources SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID X-RAYS EMISSION; BEAM ION-TRAP; THERMAL DETECTORS; FOCUS DEVICE; OPTIMIZATION; FUSION AB X-ray spectroscopy is a useful tool for diagnosing plasma sources due to its non-invasive nature. One such source is the dense plasma focus (DPF). Recent interest has developed to demonstrate its potential application as a soft x-ray source. We present the first spectroscopic studies of krypton high energy density plasmas produced on a 3 kJ DPF device in Singapore. In order to diagnose spectral features, and to obtain a more comprehensive understanding of plasma parameters, a new non-local thermodynamic equilibrium L-shell kinetic model for krypton was developed. It has the capability of incorporating hot electrons, with different electron distribution functions, in order to examine the effects that they have on emission spectra. To further substantiate the validity of this model, it is also benchmarked with data gathered from experiments on the electron beam ion trap (EBIT) at Lawrence Livermore National Laboratory, where data were collected using the high resolution EBIT calorimeter spectrometer. Published by AIP Publishing. C1 [Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.] Univ Nevada, Reno, NV 89557 USA. [Rawat, R. S.; Tan, K. S.] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore. [Beiersdorfer, P.; Hell, N.; Brown, G. V.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hell, N.] Univ Erlangen Nurnberg, Dr Remeis Sternwarte, D-96049 Bamberg, Germany. [Hell, N.] Univ Erlangen Nurnberg, ECAP, D-96049 Bamberg, Germany. RP Petkov, EE (reprint author), Univ Nevada, Reno, NV 89557 USA. EM emilp@unr.edu NR 15 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E315 DI 10.1063/1.4960534 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300183 PM 27910569 ER PT J AU Pickworth, LA Ayers, J Bell, P Brejnholt, NF Buscho, JG Bradley, D Decker, T Hau-Riege, S Kilkenny, J McCarville, T Pardini, T Vogel, J Walton, C AF Pickworth, L. A. Ayers, J. Bell, P. Brejnholt, N. F. Buscho, J. G. Bradley, D. Decker, T. Hau-Riege, S. Kilkenny, J. McCarville, T. Pardini, T. Vogel, J. Walton, C. TI The National Ignition Facility modular Kirkpatrick-Baez microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with similar to 10-25 mu m pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of similar to 5 mu m, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766-774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has similar to 12x magnification, <8 mu m resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a "narrow band" energy response at 10.2 keV with Delta E similar to 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout. Published by AIP Publishing. C1 [Pickworth, L. A.; Ayers, J.; Bell, P.; Brejnholt, N. F.; Buscho, J. G.; Bradley, D.; Decker, T.; Hau-Riege, S.; McCarville, T.; Pardini, T.; Vogel, J.; Walton, C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kilkenny, J.] Gen Atom, San Diego, CA 92121 USA. RP Pickworth, LA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM pickworth1@llnl.gov NR 20 TC 1 Z9 1 U1 9 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E316 DI 10.1063/1.4960417 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300184 PM 27910471 ER PT J AU Pikin, A Alessi, JG Beebe, EN Raparia, D Ritter, J AF Pikin, Alexander Alessi, James G. Beebe, Edward N. Raparia, Deepak Ritter, John TI Analysis of magnetically immersed electron guns with non-adiabatic fields SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID COLLECTION; BEAM AB Electron diode guns, which have strongly varying magnetic or electric fields in a cathode-anode gap, were investigated in order to generate laminar electron beams with high current density using magnetically immersed guns. By creating a strongly varying radial electric field in a cathode-anode gap of the electron gun, it was demonstrated that the optical properties of the gun can be significantly altered, which allows the generation of a laminar, high-current electron beam with relatively low magnetic field on the cathode. The relatively high magnetic compression of the electron beam achieved by this method is important for producing electron beams with high current density. A similar result can be obtained by inducing a strong variation of the magnetic field in a cathode-anode gap. It was observed that creating a dip in the axial magnetic field in the cathode-anode gap of an adiabatic electron gun has an optical effect similar to guns with strong variation of radial electric field. By analyzing the electron trajectories angles and presenting the results in a gun performance map, different geometries of magnetically immersed electron guns with non-adiabatic fields are compared with each other and with a more traditional adiabatic electron gun. Some advantages and limitations of guns with non-adiabatic fields are outlined. The tests' results of a non-adiabatic electron gun with modified magnetic field are presented. Published by AIP Publishing. C1 [Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Raparia, Deepak; Ritter, John] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Pikin, A (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 113303 DI 10.1063/1.4966681 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300331 PM 27910580 ER PT J AU Plaud-Ramos, KO Freeman, MS Wei, W Guardincerri, E Bacon, JD Cowan, J Durham, JM Huang, D Gao, J Hoffbauer, MA Morley, DJ Morris, CL Poulson, DC Wang, ZH AF Plaud-Ramos, K. O. Freeman, M. S. Wei, W. Guardincerri, E. Bacon, J. D. Cowan, J. Durham, J. M. Huang, D. Gao, J. Hoffbauer, M. A. Morley, D. J. Morris, C. L. Poulson, D. C. Wang, Zhehui TI A study of CR-39 plastic charged-particle detector replacement by consumer imaging sensors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Consumer imaging sensors (CIS) are examined for real-time charged-particle detection and CR-39 plastic detector replacement. Removing cover glass from CIS is hard if not impossible, in particular for the latest inexpensive webcam models. We show that $10-class CIS are sensitive to MeV and higher energy protons and a-particles by using a Sr-90 beta-source with its cover glass in place. Indirect, real-time, high-resolution detection is also feasible when combining CIS with a ZnS:Ag phosphor screen and optics. Noise reduction in CIS is nevertheless important for the indirect approach. Published by AIP Publishing. C1 [Plaud-Ramos, K. O.; Freeman, M. S.; Wei, W.; Guardincerri, E.; Bacon, J. D.; Cowan, J.; Durham, J. M.; Huang, D.; Gao, J.; Hoffbauer, M. A.; Morley, D. J.; Morris, C. L.; Poulson, D. C.; Wang, Zhehui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM zwang@lanl.gov OI Morris, Christopher/0000-0003-2141-0255 NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E706 DI 10.1063/1.4960168 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300284 PM 27910424 ER PT J AU Rasmus, AM Hazi, AU Manuel, MJE Kuranz, CC Klein, SR Belancourt, PX Fein, JR MacDonald, MJ Drake, RP Pollock, BB Park, J Williams, GJ Chen, H AF Rasmus, A. M. Hazi, A. U. Manuel, M. J. -E. Kuranz, C. C. Klein, S. R. Belancourt, P. X. Fein, J. R. MacDonald, M. J. Drake, R. P. Pollock, B. B. Park, J. Williams, G. J. Chen, H. TI Detailed characterization of the LLNL imaging proton spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Ultra-intense short pulse lasers incident on solid targets (e.g., thin Au foils) produce well collimated, broad-spectrum proton beams. These proton beams can be used to characterize magnetic fields, electric fields, and density gradients in high energy-density systems. The LLNL-Imaging Proton Spectrometer (L-IPS) was designed and built [H. Chen et al., Rev. Sci. Instrum. 81, 10D314 (2010)] for use with such laser produced proton beams. The L-IPS has an energy range of 50 keV-40 MeV with a resolving power (E/dE) of about 275 at 1 MeV and 21 at 20 MeV, as well as a single spatial imaging axis. In order to better characterize the dispersion and imaging capability of this diagnostic, a 3D finite element analysis solver is used to calculate the magnetic field of the L-IPS. Particle trajectories are then obtained via numerical integration to determine the dispersion relation of the L-IPS in both energy and angular space. Published by AIP Publishing. C1 [Rasmus, A. M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Rasmus, A. M.; Manuel, M. J. -E.; Kuranz, C. C.; Klein, S. R.; Belancourt, P. X.; Fein, J. R.; MacDonald, M. J.; Drake, R. P.] Univ Michigan, Ann Arbor, MI 48109 USA. [Hazi, A. U.; Pollock, B. B.; Park, J.; Williams, G. J.; Chen, H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [MacDonald, M. J.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Rasmus, AM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.; Rasmus, AM (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM rasmus@lanl.gov OI MacDonald, Michael/0000-0002-6295-6978 NR 16 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D831 DI 10.1063/1.4962045 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300115 PM 27910335 ER PT J AU Ratkiewicz, A Hopkins, LB Bleuel, DL Bernstein, LA van Bibber, K Cassata, WS Goldblum, BL Siem, S Velsko, CA Wiedeking, M Yeamans, CB AF Ratkiewicz, A. Hopkins, L. Berzak Bleuel, D. L. Bernstein, L. A. van Bibber, K. Cassata, W. S. Goldblum, B. L. Siem, S. Velsko, C. A. Wiedeking, M. Yeamans, C. B. TI A recoverable gas-cell diagnostic for the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of natXe and discuss future work to study the strength of interactions between plasma and nuclei. Published by AIP Publishing. C1 [Ratkiewicz, A.; Hopkins, L. Berzak; Bleuel, D. L.; Cassata, W. S.; Velsko, C. A.; Yeamans, C. B.] Lawrence Livermore Natl Lab, Livermore, CA 95440 USA. [Bernstein, L. A.; van Bibber, K.; Goldblum, B. L.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Siem, S.] Univ Oslo, N-0316 Oslo, Norway. [Wiedeking, M.] iThemba LABS, ZA-7129 Somerset West, South Africa. RP Ratkiewicz, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 95440 USA. EM ratkiewicz1@llnl.gov NR 11 TC 1 Z9 1 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D825 DI 10.1063/1.4961278 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300109 PM 27910358 ER PT J AU Ray, HB Biewer, TM Fehling, DT Isler, RC Unterberg, EA AF Ray, H. B. Biewer, T. M. Fehling, D. T. Isler, R. C. Unterberg, E. A. TI Spectral survey of helium lines in a linear plasma device for use in HELIOS imaging SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory's Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine Te and ne. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent Te and ne localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional "images" of Te and ne in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique. Published by AIP Publishing. C1 [Ray, H. B.] Univ Tennessee, Knoxville, TN 37996 USA. [Ray, H. B.; Biewer, T. M.; Fehling, D. T.; Isler, R. C.; Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ray, HB (reprint author), Univ Tennessee, Knoxville, TN 37996 USA.; Ray, HB (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM rayhb@ornl.gov NR 5 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E711 DI 10.1063/1.4959796 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300289 PM 27910581 ER PT J AU Reinke, ML Han, M Liu, G van Eden, GG Evenblij, R Haverdings, M Stratton, BC AF Reinke, M. L. Han, M. Liu, G. van Eden, G. G. Evenblij, R. Haverdings, M. Stratton, B. C. TI Development of plasma bolometers using fiber-optic temperature sensors SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 mu m diameter, 200 mu m long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Perot cavity when broadband light, lambda(o) similar to 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of similar to 150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m(2) when compared to those of the resistive bolometer which can achieve <0.5 W/m(2) in the laboratory, but this can degrade to 1-2 W/m(2) or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator. Published by AIP Publishing. C1 [Reinke, M. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Han, M.; Liu, G.] Univ Nebraska, Lincoln, NE 68588 USA. [van Eden, G. G.] Dutch Inst Fundamental Energy Res, Zaale 20, NL-5612 AJ Eindhoven, Netherlands. [Evenblij, R.; Haverdings, M.] Technobis, Pyrietstr 2, NL-1812 SC Alkmaar, Netherlands. [Stratton, B. C.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Reinke, ML (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM reinkeml@ornl.gov OI Reinke, Matthew/0000-0003-4413-9613 NR 9 TC 1 Z9 1 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E708 DI 10.1063/1.4960421 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300286 PM 27910644 ER PT J AU Ross, JS Datte, P Divol, L Galbraith, J Froula, DH Glenzer, SH Hatch, B Katz, J Kilkenny, J Landen, O Manuel, AM Molander, W Montgomery, DS Moody, JD Swadling, G Weaver, J AF Ross, J. S. Datte, P. Divol, L. Galbraith, J. Froula, D. H. Glenzer, S. H. Hatch, B. Katz, J. Kilkenny, J. Landen, O. Manuel, A. M. Molander, W. Montgomery, D. S. Moody, J. D. Swadling, G. Weaver, J. TI Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID PLASMAS AB An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 x 50 x 200 mu m volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (lambda(0) = 210 nm) will be used to Thomson scatter from electron plasma densities of similar to 5 x 10(20) cm(-3) while a 3 omega probe will be used for plasma densities of similar to 1 x 10(19) cm(-3). The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil). Published by AIP Publishing. C1 [Ross, J. S.; Datte, P.; Divol, L.; Galbraith, J.; Hatch, B.; Landen, O.; Manuel, A. M.; Molander, W.; Moody, J. D.; Swadling, G.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Froula, D. H.; Katz, J.] Univ Rochester, Lab Laser Energet, Rochester, NY 14623 USA. [Glenzer, S. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Kilkenny, J.] Gen Atom, San Diego, CA 92186 USA. [Montgomery, D. S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Weaver, J.] Naval Res Lab, Plasma Phys Div, Washington, DC 20375 USA. RP Ross, JS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM ross36@llnl.gov OI Swadling, George/0000-0001-8370-8837 NR 9 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E510 DI 10.1063/1.4959568 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300225 PM 27910648 ER PT J AU Ross, PW Heeter, RF Ahmed, MF Dodd, E Huffman, EJ Liedahl, DA King, JA Opachich, YP Schneider, MB Perry, TS AF Ross, P. W. Heeter, R. F. Ahmed, M. F. Dodd, E. Huffman, E. J. Liedahl, D. A. King, J. A. Opachich, Y. P. Schneider, M. B. Perry, T. S. TI Design of the opacity spectrometer for opacity measurements at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Recent experiments at the Sandia National Laboratory Z facility have called into question models used in calculating opacity, of importance for modeling stellar interiors. An effort is being made to reproduce these results at the National Ignition Facility (NIF). These experiments require a new X-ray opacity spectrometer (OpSpec) spanning 540 eV-2100 eV with a resolving power E/Delta E > 700. The design of the OpSpec is presented. Photometric calculations based on expected opacity data are also presented. First use on NIF is expected in September 2016. Published by AIP Publishing. C1 [Ross, P. W.; Huffman, E. J.; King, J. A.; Opachich, Y. P.] Natl Secur Technol LLC, 161 S Vasco Rd, Livermore, CA 94550 USA. [Heeter, R. F.; Ahmed, M. F.; Liedahl, D. A.; Schneider, M. B.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. [Dodd, E.; Perry, T. S.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Heeter, RF (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. EM heeter1@llnl.gov NR 16 TC 1 Z9 1 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D623 DI 10.1063/1.4962819 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300080 PM 27910379 ER PT J AU Rowan, WL Houshmandyar, S Phillips, PE Austin, ME Beno, JH Hubbard, AE Khodak, A Ouroua, A Taylor, G AF Rowan, W. L. Houshmandyar, S. Phillips, P. E. Austin, M. E. Beno, J. H. Hubbard, A. E. Khodak, A. Ouroua, A. Taylor, G. TI Physics design of the in-vessel collection optics for the ITER electron cyclotron emission diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Measurement of the electron cyclotron emission (ECE) is one of the primary diagnostics for electron temperature in ITER. In-vessel, in-vacuum, and quasi-optical antennas capture sufficient ECE to achieve large signal to noise with microsecond temporal resolution and high spatial resolution while maintaining polarization fidelity. Two similar systems are required. One views the plasma radially. The other is an oblique view. Both views can be used to measure the electron temperature, while the oblique is also sensitive to non-thermal distortion in the bulk electron distribution. The in-vacuum optics for both systems are subject to degradation as they have a direct view of the ITER plasma and will not be accessible for cleaning or replacement for extended periods. Blackbody radiation sources are provided for in situ calibration. Published by AIP Publishing. C1 [Rowan, W. L.; Houshmandyar, S.; Phillips, P. E.; Austin, M. E.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Beno, J. H.; Ouroua, A.] Univ Texas Austin, Ctr Electromech, Austin, TX 78712 USA. [Hubbard, A. E.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Khodak, A.; Taylor, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Rowan, WL (reprint author), Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. EM w.l.rowan@austin.utexas.edu NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E132 DI 10.1063/1.4960420 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300161 PM 27910318 ER PT J AU Saunders, AM Jenei, A Doppner, T Falcone, RW Kraus, D Kritcher, A Landen, OL Nilsen, J Swift, D AF Saunders, A. M. Jenei, A. Doppner, T. Falcone, R. W. Kraus, D. Kritcher, A. Landen, O. L. Nilsen, J. Swift, D. TI X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID NIF AB X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH2 targets on the OMEGA laser facility at the Laboratory for Laser Energetics in Rochester, NY. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Knowledge gained in this experiment shows a promising future for further XRTS measurements on indirectly driven OMEGA targets. Published by AIP Publishing. C1 [Saunders, A. M.; Falcone, R. W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Jenei, A.; Doppner, T.; Kritcher, A.; Landen, O. L.; Nilsen, J.; Swift, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Kraus, D.] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany. RP Saunders, AM (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM saunders@berkeley.edu NR 13 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E724 DI 10.1063/1.4962044 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300302 PM 27910609 ER PT J AU Sayre, DB Barbosa, F Caggiano, JA DiPuccio, VN Eckart, MJ Grim, GP Hartouni, EP Hatarik, R Weber, FA AF Sayre, D. B. Barbosa, F. Caggiano, J. A. DiPuccio, V. N. Eckart, M. J. Grim, G. P. Hartouni, E. P. Hatarik, R. Weber, F. A. TI Calibration of scintillation-light filters for neutron time-of-flight spectrometers at the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Sixty-four neutral density filters constructed of metal plates with 88 apertures of varying diameter have been radiographed with a soft x-ray source and CCD camera at National Security Technologies, Livermore. An analysis of the radiographs fits the radial dependence of the apertures' image intensities to sigmoid functions, which can describe the rapidly decreasing intensity towards the apertures' edges. The fitted image intensities determine the relative attenuation value of each filter. Absolute attenuation values of several imaged filters, measured in situ during calibration experiments, normalize the relative quantities which are now used in analyses of neutron spectrometer data at the National Ignition Facility. Published by AIP Publishing. C1 [Sayre, D. B.; Barbosa, F.; Caggiano, J. A.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [DiPuccio, V. N.; Weber, F. A.] Natl Secur Technol, Livermore, CA 94551 USA. RP Sayre, DB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM sayre4@llnl.gov OI Hartouni, Edward/0000-0001-9869-4351 NR 12 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D802 DI 10.1063/1.4959276 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300086 PM 27910485 ER PT J AU Scott, ER Barchfeld, R Riemenschneider, P Domier, CW Muscatello, CM Sohrabi, M Kaita, R Ren, Y Luhmann, NC AF Scott, E. R. Barchfeld, R. Riemenschneider, P. Domier, C. W. Muscatello, C. M. Sohrabi, M. Kaita, R. Ren, Y. Luhmann, N. C., Jr. TI Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID POLARIMETRY AB The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment-Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array. Published by AIP Publishing. C1 [Scott, E. R.] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. [Barchfeld, R.] Univ Calif Davis, Dept Appl Sci, Davis, CA 95616 USA. [Riemenschneider, P.; Domier, C. W.; Sohrabi, M.; Luhmann, N. C., Jr.] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA. [Domier, C. W.] Gen Atom, San Diego, CA 92121 USA. [Kaita, R.; Ren, Y.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Scott, ER (reprint author), Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. EM evrscott@ucdavis.edu NR 5 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E114 DI 10.1063/1.4960415 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300143 PM 27910494 ER PT J AU Scott, SD Mumgaard, RT AF Scott, S. D. Mumgaard, R. T. TI Tokamak-independent software analysis suite for multi-spectral line-polarization MSE diagnostics SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A tokamak-independent analysis suite has been developed to process data from Motional Stark Effect (MSE) diagnostics. The software supports multi-spectral line-polarization MSE diagnostics which simultaneously measure emission at the sigma and pi lines as well as at two "background" wavelengths that are displaced from the MSE spectrum by a few nanometers. This analysis accurately estimates the amplitude of partially polarized background light at the sigma and pi wavelengths even in situations where the background light changes rapidly in time and space, a distinct improvement over traditional "time-interpolation" background estimation. The signal amplitude at many frequencies is computed using a numerical-beat algorithm which allows the retardance of the MSE photo-elastic modulators (PEM' s) to be monitored during routine operation. It also allows the use of summed intensities at multiple frequencies in the calculation of polarization direction, which increases the effective signal strength and reduces sensitivity to PEM retardance drift. The software allows the polarization angles to be corrected for calibration drift using a system that illuminates the MSE diagnostic with polarized light at four known polarization angles within ten seconds of a plasma discharge. The software suite is modular, parallelized, and portable to other facilities. Published by AIP Publishing. C1 [Scott, S. D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Mumgaard, R. T.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Scott, SD (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM sscott@pppl.gov NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D405 DI 10.1063/1.4958914 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300010 PM 27910681 ER PT J AU Scotti, F Soukhanovskii, VA Weller, ME AF Scotti, F. Soukhanovskii, V. A. Weller, M. E. TI Diagnostics for molybdenum and tungsten erosion and transport in NSTX-U SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A comprehensive set of spectroscopic diagnostics is planned in the National Spherical Torus Experiment Upgrade to connect measurements of molybdenum and tungsten divertor sources to scrape-off layer (SOL) and core impurity transport, supporting the installation of high-Z plasma facing components which is scheduled to begin with a row of molybdenum tiles. Imaging with narrow-bandpass interference filters and high-resolution spectroscopy will be coupled to estimate divertor impurity influxes. Vacuum ultraviolet and extreme ultraviolet spectrometers will allow connecting high-Z sources to SOL transport and core impurity content. The high-Z diagnostics suite complements the existing measurements for low-Z impurities (carbon and lithium), critical for the characterization of sputtering of high-Z materials. Published by AIP Publishing. C1 [Scotti, F.; Soukhanovskii, V. A.; Weller, M. E.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Scotti, F (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 15 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D445 DI 10.1063/1.4963146 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300050 PM 27910357 ER PT J AU Shi, L Valeo, EJ Tobias, BJ Kramer, GJ Hausammann, L Tang, WM Chen, M AF Shi, L. Valeo, E. J. Tobias, B. J. Kramer, G. J. Hausammann, L. Tang, W. M. Chen, M. TI Synthetic diagnostics platform for fusion plasmas (invited) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID ELECTRON-CYCLOTRON EMISSION; CORRELATION REFLECTOMETRY; TOKAMAK PLASMAS; SYSTEM AB A Synthetic Diagnostics Platform (SDP) for fusion plasmas has been developed which provides state of the art synthetic reflectometry, beam emission spectroscopy, and Electron Cyclotron Emission (ECE) diagnostics. Interfaces to the plasma simulation codes GTC, XGC-1, GTS, and M3D-C-1 are provided, enabling detailed validation of these codes. In this paper, we give an overview of SDP's capabilities, and introduce the synthetic diagnostic modules. A recently developed synthetic ECE Imaging module which self-consistently includes refraction, diffraction, emission, and absorption effects is discussed in detail. Its capabilities are demonstrated on two model plasmas. The importance of synthetic diagnostics in validation is shown by applying the SDP to M3D-C-1 output and comparing it with measurements from an edge harmonic oscillation mode on DIII-D. Published by AIP Publishing. C1 [Shi, L.; Valeo, E. J.; Tobias, B. J.; Kramer, G. J.; Hausammann, L.; Tang, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Chen, M.] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA. RP Shi, L (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. EM lshi@pppl.gov NR 27 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D303 DI 10.1063/1.4961553 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300004 PM 27910444 ER PT J AU Showers, M Biewer, TM Caughman, JBO Donovan, DC Goulding, RH Rapp, J AF Showers, M. Biewer, T. M. Caughman, J. B. O. Donovan, D. C. Goulding, R. H. Rapp, J. TI Heat flux estimates of power balance on Proto-MPEX with IR imaging SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX's performance may be identified, increasing its PMI research capabilities. Published by AIP Publishing. C1 [Showers, M.; Donovan, D. C.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Showers, M.; Biewer, T. M.; Caughman, J. B. O.; Goulding, R. H.; Rapp, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Showers, M (reprint author), Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA.; Showers, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM mshower1@vols.utk.edu NR 7 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D412 DI 10.1063/1.4959953 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300017 PM 27910345 ER PT J AU Simpson, R Cutler, TE Danly, CR Espy, MA Goglio, JH Hunter, JF Madden, AC Mayo, DR Merrill, FE Nelson, RO Swift, AL Wilde, CH Zocco, TG AF Simpson, R. Cutler, T. E. Danly, C. R. Espy, M. A. Goglio, J. H. Hunter, J. F. Madden, A. C. Mayo, D. R. Merrill, F. E. Nelson, R. O. Swift, A. L. Wilde, C. H. Zocco, T. G. TI Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems. Published by AIP Publishing. C1 [Simpson, R.; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Simpson, R (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM raspberry@lanl.gov NR 6 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D830 DI 10.1063/1.4962040 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300114 PM 27910305 ER PT J AU Sio, H Frenje, JA Katz, J Stoeckl, C Weiner, D Bedzyk, M Glebov, V Sorce, C Johnson, MG Rinderknecht, HG Zylstra, AB Sangster, TC Regan, SP Kwan, T Le, A Simakov, AN Taitano, WT Chacon, L Keenan, B Shah, R Sutcliffe, G Petrasso, RD AF Sio, H. Frenje, J. A. Katz, J. Stoeckl, C. Weiner, D. Bedzyk, M. Glebov, V. Sorce, C. Johnson, M. Gatu Rinderknecht, H. G. Zylstra, A. B. Sangster, T. C. Regan, S. P. Kwan, T. Le, A. Simakov, A. N. Taitano, W. T. Chacon, L. Keenan, B. Shah, R. Sutcliffe, G. Petrasso, R. D. TI A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID IMPLOSIONS AB A Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, (DHe)-He-3, and (THe)-He-3 reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within +/- 10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of T-i(t) and T-e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made. Published by AIP Publishing. C1 [Sio, H.; Frenje, J. A.; Johnson, M. Gatu; Sutcliffe, G.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Katz, J.; Stoeckl, C.; Weiner, D.; Bedzyk, M.; Glebov, V.; Sorce, C.; Sangster, T. C.; Regan, S. P.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Rinderknecht, H. G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zylstra, A. B.; Kwan, T.; Le, A.; Simakov, A. N.; Taitano, W. T.; Chacon, L.; Keenan, B.; Shah, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sio, H (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM hsio@mit.edu OI Simakov, Andrei/0000-0001-7064-9153; /0000-0003-4969-5571 NR 14 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D701 DI 10.1063/1.4961552 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300082 PM 27910508 ER PT J AU Smith, RJ Weber, TE AF Smith, R. J. Weber, T. E. TI A streak camera based fiber optic pulsed polarimetry technique for magnetic sensing to sub-mm resolution SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID TIME-DOMAIN REFLECTOMETRY AB The technique of fiber optic pulsed polarimetry, which provides a distributed (local) measurement of the magnetic field along an optical fiber, has been improved to the point where, for the first time, photocathode based optical detection of backscatter is possible with sub-mm spatial resolutions. This has been realized through the writing of an array of deterministic fiber Bragg gratings along the fiber, a so-called backscatter-tailored optical fiber, producing a 34 000-fold increase in backscatter levels over Rayleigh. With such high backscatter levels, high repetition rate lasers are now sufficiently bright to allow near continuous field sensing in both space and time with field resolutions as low as 0.005 T and as high as 170 T over a similar to mm interval given available fiber materials. Published by AIP Publishing. C1 [Smith, R. J.] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Weber, T. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Smith, RJ (reprint author), Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. EM smith@aa.washington.edu NR 9 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E725 DI 10.1063/1.4962246 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300303 PM 27910338 ER PT J AU Soukhanovskii, VA Kaita, R Stratton, B AF Soukhanovskii, V. A. Kaita, R. Stratton, B. TI Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID PARTICLE CONTROL; DIII-D; PLASMA; DETACHMENT; JT-60U; POWER AB A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T-e estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Delta n = 0,1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300-1600 angstrom. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T-e-dependent signal within a characteristic divertor detachment equilibration time of similar to 10-15 ms is expected. Published by AIP Publishing. C1 [Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Kaita, R.; Stratton, B.] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08543 USA. RP Soukhanovskii, VA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM vlad@llnl.gov NR 27 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D605 DI 10.1063/1.4960058 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300062 PM 27910392 ER PT J AU Stephey, L Wurden, GA Schmitz, O Frerichs, H Effenberg, F Biedermann, C Harris, J Konig, R Kornejew, P Krychowiak, M Unterberg, EA AF Stephey, L. Wurden, G. A. Schmitz, O. Frerichs, H. Effenberg, F. Biedermann, C. Harris, J. Koenig, R. Kornejew, P. Krychowiak, M. Unterberg, E. A. CA W7-X Team TI Spectroscopic imaging of limiter heat and particle fluxes and the resulting impurity sources during Wendelstein 7-X startup plasmas SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A combined IR and visible camera system [G. A. Wurden et al., "A high resolution IR/visible imaging system for the W7-X limiter," Rev. Sci. Instrum. (these proceedings)] and a filterscope system [R. J. Colchin et al., Rev. Sci. Instrum. 74, 2068 (2003)] were implemented together to obtain spectroscopic data of limiter and first wall recycling and impurity sources during Wendelstein 7-X startup plasmas. Both systems together provided excellent temporal and spatial spectroscopic resolution of limiter 3. Narrowband interference filters in front of the camera yielded C-III and H-alpha photon flux, and the filterscope system provided H-alpha, H-beta, He-I, He-II, C-II, and visible bremsstrahlung data. The filterscopes made additional measurements of several points on the W7-X vacuum vessel to yield wall recycling fluxes. The resulting photon flux from both the visible camera and filterscopes can then be compared to an EMC3-EIRENE synthetic diagnostic [H. Frerichs et al., " Synthetic plasma edge diagnostics for EMC3-EIRENE, highlighted for Wendelstein 7-X," Rev. Sci. Instrum. (these proceedings)] to infer both a limiter particle flux and wall particle flux, both of which will ultimately be used to infer the complete particle balance and particle confinement time tau(P). Published by AIP Publishing. C1 [Stephey, L.; Schmitz, O.; Frerichs, H.; Effenberg, F.] Univ Wisconsin Madison, Madison, WI 53706 USA. [Wurden, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Biedermann, C.; Koenig, R.; Kornejew, P.; Krychowiak, M.; W7-X Team] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. [Harris, J.; Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Stephey, L (reprint author), Univ Wisconsin Madison, Madison, WI 53706 USA. EM stephey@wisc.edu OI Wurden, Glen/0000-0003-2991-1484 NR 4 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D606 DI 10.1063/1.4959274 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300063 PM 27910364 ER PT J AU Strait, EJ King, JD Hanson, JM Logan, NC AF Strait, E. J. King, J. D. Hanson, J. M. Logan, N. C. TI Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID TOKAMAK AB An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes similar to 10(-3) to 10(-5) of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models. Published by AIP Publishing. C1 [Strait, E. J.; King, J. D.] Gen Atom, POB 85608, San Diego, CA 92186 USA. [Hanson, J. M.] Columbia Univ, New York, NY 10027 USA. [Logan, N. C.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [King, J. D.] US DOE, Off Fus Energy Sci, Germantown, MD 20874 USA. RP Strait, EJ (reprint author), Gen Atom, POB 85608, San Diego, CA 92186 USA. EM strait@fusion.gat.com NR 14 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D423 DI 10.1063/1.4960419 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300028 PM 27910386 ER PT J AU Sutcliffe, GD Milanese, LM Orozco, D Lahmann, B Johnson, MG Seguin, FH Sio, H Frenje, JA Li, CK Petrasso, RD Park, HS Rygg, JR Casey, DT Bionta, R Turnbull, DP Huntington, CM Ross, JS Zylstra, AB Rosenberg, MJ Glebov, VY AF Sutcliffe, G. D. Milanese, L. M. Orozco, D. Lahmann, B. Johnson, M. Gatu Seguin, F. H. Sio, H. Frenje, J. A. Li, C. K. Petrasso, R. D. Park, H. -S. Rygg, J. R. Casey, D. T. Bionta, R. Turnbull, D. P. Huntington, C. M. Ross, J. S. Zylstra, A. B. Rosenberg, M. J. Glebov, V. Yu. TI A novel method to recover DD fusion proton CR-39 data corrupted by fast ablator ions at OMEGA and the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID HOT-ELECTRONS; PLASMA AB CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 mu m deeper than the necessary bulk material removal. Published by AIP Publishing. C1 [Sutcliffe, G. D.; Milanese, L. M.; Orozco, D.; Lahmann, B.; Johnson, M. Gatu; Seguin, F. H.; Sio, H.; Frenje, J. A.; Li, C. K.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Park, H. -S.; Rygg, J. R.; Casey, D. T.; Bionta, R.; Turnbull, D. P.; Huntington, C. M.; Ross, J. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zylstra, A. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rosenberg, M. J.; Glebov, V. Yu.] Laser Energet Lab, Rochester, NY 14623 USA. RP Sutcliffe, GD (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM gdsut@mit.edu NR 18 TC 0 Z9 0 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D812 DI 10.1063/1.4960072 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300096 PM 27910586 ER PT J AU Swadling, GF Ross, JS Datte, P Moody, J Divol, L Jones, O Landen, O AF Swadling, G. F. Ross, J. S. Datte, P. Moody, J. Divol, L. Jones, O. Landen, O. TI Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be similar to 8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented. Published by AIP Publishing. C1 [Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Swadling, GF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. OI Swadling, George/0000-0001-8370-8837 NR 12 TC 2 Z9 2 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D603 DI 10.1063/1.4958913 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300060 PM 27910437 ER PT J AU Tamura, N McCarthy, KJ Hayashi, H Combs, SK Foust, C Garcia, R Panadero, N Pawelec, E Sanchez, JH Navarro, M Soleto, A AF Tamura, N. McCarthy, K. J. Hayashi, H. Combs, S. K. Foust, C. Garcia, R. Panadero, N. Pawelec, E. Hernandez Sanchez, J. Navarro, M. Soleto, A. TI Tracer-Encapsulated Solid Pellet (TESPEL) injection system for the TJ-II stellarator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A tracer-encapsulated solid pellet (TESPEL) injection system for the TJ-II stellarator was recently developed. In order to reduce the time and cost for the development, we combined a TESPEL injector provided by National Institute for Fusion Science with an existing TJ-II cryogenic pellet injection system. Consequently, the TESPEL injection into the TJ-II plasma was successfully achieved, which was confirmed by several pellet diagnostics including a normal-incidence spectrometer for monitoring a tracer impurity behavior. C1 [Tamura, N.; Hayashi, H.] Natl Inst Fus Sci, 322-6 Oroshi Cho, Toki, Gifu 5095292, Japan. [McCarthy, K. J.; Garcia, R.; Panadero, N.; Hernandez Sanchez, J.; Navarro, M.; Soleto, A.] CIEMAT, Lab Nacl Fus, Av Complutense 40, E-28040 Madrid, Spain. [Combs, S. K.; Foust, C.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Pawelec, E.] Opole Univ, Inst Phys, Ul Oleska 48, PL-45052 Opole, Poland. RP Tamura, N (reprint author), Natl Inst Fus Sci, 322-6 Oroshi Cho, Toki, Gifu 5095292, Japan. EM ntamura@LHD.nifs.ac.jp RI Tamura, Naoki/E-7606-2013; OI Tamura, Naoki/0000-0003-1682-1519; Combs, Stephen/0000-0001-9298-2221 NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D619 DI 10.1063/1.4962303 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300076 PM 27910332 ER PT J AU Thomas, CE Biewer, TM Baylor, LR Combs, SK Meitner, SJ Rapp, J Hillis, DL Granstedt, EM Majeski, R Kaita, R AF Thomas, C. E. (Tommy), Jr. Biewer, T. M. Baylor, L. R. Combs, S. K. Meitner, S. J. Rapp, J. Hillis, D. L. Granstedt, E. M. Majeski, R. Kaita, R. TI Design of a digital holography system for PFC erosion measurements on Proto-MPEX SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component erosion measurements on prototype material plasma exposure experiment. Such a system will allow in situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development, a second CO2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength. Published by AIP Publishing. C1 [Thomas, C. E. (Tommy), Jr.] Third Dimens Technol LLC, Knoxville, TN 37931 USA. [Biewer, T. M.; Baylor, L. R.; Combs, S. K.; Meitner, S. J.; Rapp, J.; Hillis, D. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Granstedt, E. M.] Trialpha Energy, Rancho Santa Margarita, CA 92688 USA. [Majeski, R.; Kaita, R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Thomas, CE (reprint author), Third Dimens Technol LLC, Knoxville, TN 37931 USA. EM thomasce1@seetrue3d.com OI Rapp, Juergen/0000-0003-2785-9280; Thomas, C. E./0000-0001-5706-3940; Combs, Stephen/0000-0001-9298-2221 NR 11 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D624 DI 10.1063/1.4960488 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300081 PM 27910428 ER PT J AU Tobias, B Domier, CW Luhmann, NC Luo, C Mamidanna, M Phan, T Pham, AV Wang, Y AF Tobias, B. Domier, C. W. Luhmann, N. C., Jr. Luo, C. Mamidanna, M. Phan, T. Pham, A. -V. Wang, Y. TI Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID FLUCTUATIONS; DIAGNOSTICS; TOKAMAKS; ECE AB The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal. Published by AIP Publishing. C1 [Tobias, B.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Domier, C. W.; Luhmann, N. C., Jr.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A. -V.; Wang, Y.] Univ Calif Davis, Davis, CA 95616 USA. RP Tobias, B (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM bjtobias@pppl.gov NR 16 TC 0 Z9 0 U1 5 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E103 DI 10.1063/1.4959273 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300132 PM 27910660 ER PT J AU van Eden, GG Reinke, ML Peterson, BJ Gray, TK Delgado-Aparicio, LF Jaworski, MA Lore, J Mukai, K Sano, R Pandya, SN Morgan, TW AF van Eden, G. G. Reinke, M. L. Peterson, B. J. Gray, T. K. Delgado-Aparicio, L. F. Jaworski, M. A. Lore, J. Mukai, K. Sano, R. Pandya, S. N. Morgan, T. W. TI Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 mu m thick, 9 x 7 cm(2) Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D + time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs. Published by AIP Publishing. C1 [van Eden, G. G.; Morgan, T. W.] Dutch Inst Fundamental Energy Res, NL-5612 AJ Eindhoven, Netherlands. [Reinke, M. L.; Gray, T. K.; Lore, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Peterson, B. J.; Mukai, K.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Delgado-Aparicio, L. F.; Jaworski, M. A.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Sano, R.] Natl Inst Quantum & Radiol Sci & Technol, Naka, Ibaraki 3110193, Japan. [Pandya, S. N.] Inst Plasma Res, Gandhinagar 382428, Gujarat, India. RP van Eden, GG (reprint author), Dutch Inst Fundamental Energy Res, NL-5612 AJ Eindhoven, Netherlands. RI Morgan, Thomas/B-3789-2017 OI Morgan, Thomas/0000-0002-5066-015X NR 9 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D402 DI 10.1063/1.4955487 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300007 PM 27910411 ER PT J AU Vann, RGL Brunner, KJ Ellis, R Taylor, G Thomas, DA AF Vann, R. G. L. Brunner, K. J. Ellis, R. Taylor, G. Thomas, D. A. TI Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements. (C) 2016 Author(s). C1 [Vann, R. G. L.; Thomas, D. A.] Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England. [Brunner, K. J.] Univ Durham, Dept Phys, Ctr Adv Instrumentat, Durham DH1 3LE, England. [Ellis, R.; Taylor, G.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Thomas, D. A.] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England. RP Vann, RGL (reprint author), Univ York, York Plasma Inst, Dept Phys, York YO10 5DD, N Yorkshire, England. EM roddy.vann@york.ac.uk OI Brunner, Kai/0000-0002-0974-0457 NR 20 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D902 DI 10.1063/1.4962253 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300128 PM 27910558 ER PT J AU Victor, BS Holcomb, CT Allen, SL Meyer, WH Makowski, MA Thorman, A AF Victor, B. S. Holcomb, C. T. Allen, S. L. Meyer, W. H. Makowski, M. A. Thorman, A. TI Asymmetries in the motional Stark effect emission on the DIII-D tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID POLARIMETRY; FIELD AB Spectrometer measurements and filter upgrades to a motional Stark effect polarimeter measuring the outer half-radius of the DIII-D tokamak helped to identify asymmetries in the polarization angle of Stark-split emission. The measured polarization angle of the pi components differs and is not orthogonal to the sigma component. These differences persist over a range of densities and with low levels of background light. It is suggested that the difference in the polarization angle between components is from a change in the ellipticity of the emitted light across the Stark components coupled with imperfect polarization preservation from an in-vessel mirror. Published by AIP Publishing. C1 [Victor, B. S.; Holcomb, C. T.; Allen, S. L.; Meyer, W. H.; Makowski, M. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Thorman, A.] Australia Natl Univ, Plasma Res Lab, Canberra, ACT 0200, Australia. RP Victor, BS (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM victorb@fusion.gat.com NR 10 TC 1 Z9 1 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E126 DI 10.1063/1.4961560 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300155 PM 27910343 ER PT J AU Wang, FD Chen, J Hu, RJ Lyu, B Colledani, G Fu, J Li, YY Bitter, M Hill, K Lee, S Ye, MY Shi, Y Wan, BN AF Wang, Fudi Chen, Jun Hu, Ruiji Lyu, Bo Colledani, Gilles Fu, Jia Li, Yingying Bitter, Manfred Hill, Kenneth Lee, Sangon Ye, Minyou Shi, Yuejiang Wan, Baonian TI Upgrades of poloidal and tangential x-ray imaging crystal spectrometers for temperature and rotation measurements on EAST SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB During the past two years, key parts of poloidal and tangential x-ray imaging crystal spectrometers (PXCSs and TXCSs) have been upgraded. For poloidal XCSs, double-crystals of ArXVII and FeXXV were deployed. For fulfilling in situ alignment of a poloidal XCS, the beryllium window must be flexibly removed. By utilizing a design, where the beryllium window was installed in the vacuum chamber of the double-crystal, and between the double-crystal and wall of this chamber, an in situ alignment for the two spectrometers was fulfilled. Also, a new holder for the double-crystal was installed to allow for precise adjustments of azimuth angle and vertical height of the double-crystal. In order to facilitate these adjustments of double-crystal and installation of beryllium window, the chamber of the double-crystal for PXCS was upgraded from a cylinder to a cuboid. The distance between double-crystal and magnetic axis was extended from 8936 mm to 9850 mm in order to improve spatial resolution for PXCS, which is currently in the range from 1.237 mm to 4.80 mm at magnetic axis. Furthermore, a new pixelated detector (PILATUS 900K), which has a large sensitive area of 83.8 x 325.3 mm(2) and which is vacuum compatible, is being implemented on the PXCS. This detector is mounted on a rail, so that its position can be changed by 50 mm to effectively record spectra of He-like argon and He-like iron (ArXVII and FeXXV). Similarly, a rail, which allows detector movement by 50 mm, was also installed in TXCS to alternatively record spectra of ArXVII and ArXVIII. Presently, the operation duration of PXCS and TXCS has been upgraded to hundreds of seconds in one shot. T-i- and u(phi)-profiles measured by TXCS and charge exchange recombination spectroscopy (CXRS) were compared and found to be in good agreement. Published by AIP Publishing. C1 [Wang, Fudi; Chen, Jun; Hu, Ruiji; Lyu, Bo; Fu, Jia; Li, Yingying; Wan, Baonian] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Chen, Jun; Hu, Ruiji; Ye, Minyou; Shi, Yuejiang] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Peoples R China. [Colledani, Gilles] CEA, IRFM, F-13108 St Paul Les Durance, France. [Bitter, Manfred; Hill, Kenneth] Princeton Plasma Phys Lab, MS37-B332, Princeton, NJ 08543 USA. [Lee, Sangon] Natl Fus Res Inst, 52 Eoeun Dong, Daejeon 305333, South Korea. [Shi, Yuejiang] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea. RP Wang, FD (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM fdwang@ipp.ac.cn OI 李, 颖颖/0000-0002-2978-908X NR 12 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E342 DI 10.1063/1.4963150 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300210 PM 27910459 ER PT J AU Wang, ZH Liu, Q Waganaar, W Fontanese, J James, D Munsat, T AF Wang, Zhehui Liu, Q. Waganaar, W. Fontanese, J. James, D. Munsat, T. TI Four-dimensional (4D) tracking of high-temperature microparticles SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation. Published by AIP Publishing. C1 [Wang, Zhehui; Liu, Q.; Waganaar, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fontanese, J.; James, D.; Munsat, T.] Univ Colorado, Boulder, CO 80309 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM zwang@lanl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D601 DI 10.1063/1.4955280 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300058 PM 27910396 ER PT J AU Weller, ME Beiersdorfer, P Soukhanovskii, VA Magee, EW Scotti, F AF Weller, M. E. Beiersdorfer, P. Soukhanovskii, V. A. Magee, E. W. Scotti, F. TI Three new extreme ultraviolet spectrometers on NSTX-U for impurity monitoring SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment-Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (XEUS, 8-70 angstrom), Long-Wavelength Extreme Ultraviolet Spectrometer (LoWEUS, 190-440 angstrom), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50-220 angstrom). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low-to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off system for NSTX-U, which will be used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes. Published by AIP Publishing. C1 [Weller, M. E.; Beiersdorfer, P.; Soukhanovskii, V. A.; Magee, E. W.; Scotti, F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Weller, ME (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM weller4@llnl.gov NR 9 TC 1 Z9 1 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E324 DI 10.1063/1.4960755 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300192 PM 27910323 ER PT J AU Wink, CW Frenje, JA Hilsabeck, TJ Bionta, R Khater, HY Johnson, MG Kilkenny, JD Li, CK Seguin, FH Petrasso, RD AF Wink, C. W. Frenje, J. A. Hilsabeck, T. J. Bionta, R. Khater, H. Y. Johnson, M. Gatu Kilkenny, J. D. Li, C. K. Seguin, F. H. Petrasso, R. D. TI Signal and background considerations for the MRSt on the National Ignition Facility (NIF) SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID MICROCHANNEL PLATE; ALKALI-HALIDES; NEUTRONS AB A Magnetic Recoil Spectrometer (MRSt) has been conceptually designed for time-resolved measurements of the neutron spectrum at the National Ignition Facility. Using the MRSt, the goals are to measure the time-evolution of the spectrum with a time resolution of similar to 20-ps and absolute accuracy better than 5%. To meet these goals, a detailed understanding and optimization of the signal and background characteristics are required. Through ion-optics, MCNP simulations, and detector-response calculations, it is demonstrated that the goals and a signal-to background >5-10 for the down-scattered neutron measurement are met if the background, consisting of ambient neutrons and gammas, at the MRSt is reduced 50-100 times. Published by AIP Publishing. C1 [Wink, C. W.; Frenje, J. A.; Johnson, M. Gatu; Li, C. K.; Seguin, F. H.; Petrasso, R. D.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Hilsabeck, T. J.; Kilkenny, J. D.] Gen Atom, San Diego, CA 92186 USA. [Bionta, R.; Khater, H. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Wink, CW (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM cwink@mit.edu NR 20 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D808 DI 10.1063/1.4958938 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300092 PM 27910587 ER PT J AU Wurden, GA Stephey, LA Biedermann, C Jakubowski, MW Dunn, JP Gamradt, M AF Wurden, G. A. Stephey, L. A. Biedermann, C. Jakubowski, M. W. Dunn, J. P. Gamradt, M. CA W7-X Team TI A high resolution IR/visible imaging system for the W7-X limiter SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 x 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 x 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 degrees C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (similar to 1-4.5 MW/m(2)), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO's can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light. (C) 2016 Author(s). C1 [Wurden, G. A.; Dunn, J. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stephey, L. A.] Univ Wisconsin, Madison, WI 53706 USA. [Biedermann, C.; Jakubowski, M. W.; Gamradt, M.; W7-X Team] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany. RP Wurden, GA (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM wurden@lanl.gov OI Jakubowski, Marcin/0000-0002-6557-3497; Wurden, Glen/0000-0003-2991-1484 NR 6 TC 2 Z9 2 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D607 DI 10.1063/1.4960596 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300064 PM 27910567 ER PT J AU Yamamoto, S Ogawa, K Isobe, M Darrow, DS Kobayashi, S Nagasaki, K Okada, H Minami, T Kado, S Ohshima, S Weir, GM Nakamura, Y Konoshima, S Kemmochi, N Ohtani, Y Mizuuchi, T AF Yamamoto, S. Ogawa, K. Isobe, M. Darrow, D. S. Kobayashi, S. Nagasaki, K. Okada, H. Minami, T. Kado, S. Ohshima, S. Weir, G. M. Nakamura, Y. Konoshima, S. Kemmochi, N. Ohtani, Y. Mizuuchi, T. TI Faraday-cup-type lost fast ion detector on Heliotron J SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID FUSION PRODUCTS; TFTR; PLASMAS AB A Faraday-cup type lost-fast ion probe (FLIP) has been designed and installed in Heliotron J for the purpose of the studies of interaction between fast ions and MHD instabilities. The FLIP can measure the co-going fast ions whose energy is in the range of 1.7-42.5 keV (proton) and pitch angle of 90 degrees-140 degrees, especially for fast ions having the injection energy of neutral beam injection (NBI). The FLIP successfully measured the re-entering passing ions and trapped lost-fast ions caused by fast-ion-driven energetic particle modes in NBI heated plasmas. Published by AIP Publishing. C1 [Yamamoto, S.; Kobayashi, S.; Nagasaki, K.; Okada, H.; Minami, T.; Kado, S.; Ohshima, S.; Weir, G. M.; Konoshima, S.; Mizuuchi, T.] Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. [Ogawa, K.; Isobe, M.; Kemmochi, N.] Natl Inst Nat Sci, Natl Inst Fus Sci, 322-6 Oroshi, Toki, Gifu 5095292, Japan. [Ogawa, K.; Isobe, M.] Grad Univ Adv Studies, SOKENDAI, 322-6 Oroshi, Toki, Gifu 5095292, Japan. [Darrow, D. S.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Nakamura, Y.; Ohtani, Y.] Kyoto Univ, Grad Sch Energy Sci, Uji, Kyoto 6110011, Japan. RP Yamamoto, S (reprint author), Kyoto Univ, Inst Adv Energy, Uji, Kyoto 6110011, Japan. EM yamamoto.satoshi.6n@kyoto-u.ac.jp OI /0000-0003-4555-1837 NR 20 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D818 DI 10.1063/1.4960310 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300102 PM 27910618 ER PT J AU Yeamans, CB Gharibyan, N AF Yeamans, C. B. Gharibyan, N. TI A neutron activation spectrometer and neutronic experimental platform for the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID YIELD AB At the National Ignition Facility, the diagnostic instrument manipulator-based neutron activation spectrometer is used as a diagnostic of implosion performance for inertial confinement fusion experiments. Additionally, it serves as a platform for independent neutronic experiments and may be connected to fast recording systems for neutron effect tests on active electronics. As an implosion diagnostic, the neutron activation spectrometers are used to quantify fluence of primary DT neutrons, downscattered neutrons, and neutrons above the primary DT neutron energy created by reactions of upscattered D and T in flight. At a primary neutron yield of 1015 and a downscattered fraction of neutrons in the 10-12 MeV energy range of 0.04, the downscattered neutron fraction can be measured to a relative uncertainty of 8%. Significant asymmetries in downscattered neutrons have been observed. Spectrometers have been designed and fielded to measure the tritium-tritium and deuterium-tritium neutron outputs simultaneously in experiments using DT/TT fusion ratio as a direct measure of mix of ablator into the gas. Published by AIP Publishing. C1 [Yeamans, C. B.; Gharibyan, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Yeamans, CB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM yeamans1@llnl.gov NR 30 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D702 DI 10.1063/1.4962871 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300083 PM 27910563 ER PT J AU Zafar, A Martin, EH Shannon, SC Isler, RC Caughman, JBO AF Zafar, A. Martin, E. H. Shannon, S. C. Isler, R. C. Caughman, J. B. O. TI A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI AB An electron density diagnostic (>= 10(10) cm(-3)) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6-2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-delta spectra for electron densities of 10(10)-10(13) cm(-3). The profile shows complex behavior due to the interaction between the magnetic substates of the atom. Published by AIP Publishing. C1 [Zafar, A.; Shannon, S. C.] North Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Zafar, A.; Martin, E. H.; Isler, R. C.; Caughman, J. B. O.] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Zafar, A (reprint author), North Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA.; Zafar, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM zafara@ornl.gov NR 7 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E505 DI 10.1063/1.4955484 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300220 PM 27910427 ER PT J AU Zeng, L Doyle, EJ Rhodes, TL Wang, G Sung, C Peebles, WA Bobrek, M AF Zeng, L. Doyle, E. J. Rhodes, T. L. Wang, G. Sung, C. Peebles, W. A. Bobrek, M. TI A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID DIII-D AB A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions. Published by AIP Publishing. C1 [Zeng, L.; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Bobrek, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Zeng, L (reprint author), Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. EM zeng@fusion.gat.com NR 10 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E719 DI 10.1063/1.4961289 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300297 PM 27910620 ER PT J AU Zhu, YL Xie, JL Yu, CX Zhao, ZL Gao, BX Chen, DX Liu, WD Liao, W Qu, CM Luo, C Hu, X Spear, AG Luhmann, NC Domier, CW Chen, M Ren, X Tobias, BJ AF Zhu, Y. L. Xie, J. L. Yu, C. X. Zhao, Z. L. Gao, B. X. Chen, D. X. Liu, W. D. Liao, W. Qu, C. M. Luo, C. Hu, X. Spear, A. G. Luhmann, N. C., Jr. Domier, C. W. Chen, M. Ren, X. Tobias, B. J. TI Millimeter-wave imaging diagnostics systems on the EAST tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID REFLECTOMETRY; PLASMAS AB Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal x 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 mu s. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel. Published by AIP Publishing. C1 [Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.] Univ Sci & Technol China, Sch Phys, Hefei 230026, Anhui, Peoples R China. [Hu, X.; Spear, A. G.; Luhmann, N. C., Jr.; Domier, C. W.; Chen, M.; Ren, X.] Univ Calif Davis, Davis, CA 95616 USA. [Tobias, B. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Xie, JL (reprint author), Univ Sci & Technol China, Sch Phys, Hefei 230026, Anhui, Peoples R China. EM jlxie@ustc.edu.cn NR 16 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11D901 DI 10.1063/1.4959162 PG 5 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300127 PM 27910310 ER PT J AU Zylstra, AB Park, HS Ross, JS Fiuza, F Frenje, JA Higginson, DP Huntington, C Li, CK Petrasso, RD Pollock, B Remington, B Rinderknecht, HG Ryutov, D Seguin, FH Turnbull, D Wilks, SC AF Zylstra, A. B. Park, H. -S. Ross, J. S. Fiuza, F. Frenje, J. A. Higginson, D. P. Huntington, C. Li, C. K. Petrasso, R. D. Pollock, B. Remington, B. Rinderknecht, H. G. Ryutov, D. Seguin, F. H. Turnbull, D. Wilks, S. C. TI Proton pinhole imaging on the National Ignition Facility SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article; Proceedings Paper CT 21st Topical Conference on High-Temperature Plasma Diagnostics CY JUN 05-09, 2016 CL Madison, WI ID FUSION EXPERIMENTS AB Pinhole imaging of large (mm scale) carbon-deuterium (CD) plasmas by proton self-emission has been used for the first time to study the microphysics of shock formation, which is of astrophysical relevance. The 3 MeV deuterium-deuterium (DD) fusion proton self-emission from these plasmas is imaged using a novel pinhole imaging system, with up to five different 1 mm diameter pinholes positioned 25 cm from target-chamber center. CR39 is used as the detector medium, positioned at 100 cm distance from the pinhole for a magnification of 4x. A Wiener deconvolution algorithm is numerically demonstrated and used to interpret the images. When the spatial morphology is known, this algorithm accurately reproduces the size of features larger than about half the pinhole diameter. For these astrophysical plasma experiments on the National Ignition Facility, this provides a strong constraint on simulation modeling of the experiment. Published by AIP Publishing. C1 [Zylstra, A. B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Park, H. -S.; Ross, J. S.; Higginson, D. P.; Huntington, C.; Pollock, B.; Remington, B.; Rinderknecht, H. G.; Ryutov, D.; Turnbull, D.; Wilks, S. C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fiuza, F.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Seguin, F. H.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Zylstra, AB (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM zylstra@lanl.gov NR 20 TC 0 Z9 0 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2016 VL 87 IS 11 AR 11E704 DI 10.1063/1.4959782 PG 3 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA EF3RO UT WOS:000390242300282 PM 27910515 ER PT J AU Briggs, SA Sridharan, K Field, KG AF Briggs, Samuel A. Sridharan, Kumar Field, Kevin G. TI CORRELATIVE MICROSCOPY OF NEUTRON-IRRADIATED MATERIALS SO ADVANCED MATERIALS & PROCESSES LA English DT Article ID ALLOYS C1 [Briggs, Samuel A.; Sridharan, Kumar] Univ Wisconsin, FASM, Madison, WI 53706 USA. [Field, Kevin G.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Briggs, SA (reprint author), Univ Wisconsin, FASM, Madison, WI 53706 USA. EM sabriggs2@wisc.edu OI Briggs, Samuel/0000-0002-2490-4720 FU DOE's Office of Nuclear Energy, Advanced Fuels Campaign of the Fuel Cycle RD Program; Scientific User Facilities Division, Office of Basic Energy Sciences, DOE; DOE Office of Nuclear Energy under DOE Idaho Operations Office as part of a NSUF experiment [DE-AC07-051D14517]; DOE Office of Nuclear Energy's Nuclear Energy University Programs FX Primary research funding was sponsored by DOE's Office of Nuclear Energy, Advanced Fuels Campaign of the Fuel Cycle R&D Program. Neutron irradiation of Fe-Cr-Al alloys at ORNL's HFIR user facility was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. APT was conducted at the CNMS, which is a DOE Office of Science User Facility and the MaCS Laboratory at the CAES at INL. A portion of this work was supported by the DOE Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517 as part of a NSUF experiment. The FEI Talos F200X TEM is provided by the DOE, Office of Nuclear Energy, Fuel Cycle R&D Program and the NSUF. A portion of funding for SAB was provided by the DOE Office of Nuclear Energy's Nuclear Energy University Programs. NR 10 TC 0 Z9 0 U1 0 U2 0 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 EI 2161-9425 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD NOV-DEC PY 2016 VL 174 IS 10 BP 16 EP 21 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA ED0SP UT WOS:000388552500006 ER PT J AU Sarobol, P Vackel, A Adamczyk, J Holmes, T Rodriguez, M Griego, J Blea, M Brown-Shaklee, H AF Sarobol, Pylin Vackel, Andrew Adamczyk, Jesse Holmes, Thomas Rodriguez, Mark Griego, James Blea, Mia Brown-Shaklee, Harlan TI AEROSOL METHOD FOR ROOM TEMPERATURE THICK-FILM DEPOSITION Aerosol deposition offers an alternative to conventional thin film processes when mesoscale coatings are needed SO ADVANCED MATERIALS & PROCESSES LA English DT Article C1 [Sarobol, Pylin; Vackel, Andrew; Adamczyk, Jesse; Holmes, Thomas; Rodriguez, Mark; Griego, James; Blea, Mia; Brown-Shaklee, Harlan] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Adamczyk, Jesse] ASM Int, Materials Pk, OH 44073 USA. RP Sarobol, P (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Sarobol, P (reprint author), ASM Int, Materials Pk, OH 44073 USA. EM psarobo@sandia.gov NR 0 TC 0 Z9 0 U1 3 U2 3 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 EI 2161-9425 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD NOV-DEC PY 2016 VL 174 IS 10 BP 40 EP 43 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA ED0SP UT WOS:000388552500012 ER PT J AU Lechner, A Brunk, E Keasling, JD AF Lechner, Anna Brunk, Elizabeth Keasling, Jay D. TI The Need for Integrated Approaches in Metabolic Engineering SO COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY LA English DT Article ID GAMMA-HUMULENE SYNTHASE; DELTA-SELINENE SYNTHASE; RATIONAL PROTEIN DESIGN; CONSTRAINT-BASED MODELS; DE-NOVO DESIGN; ESCHERICHIA-COLI; DIRECTED EVOLUTION; GENE-EXPRESSION; CODON USAGE; SACCHAROMYCES-CEREVISIAE AB This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must be considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes. C1 [Lechner, Anna; Keasling, Jay D.] Joint Bioenergy Inst JBEI, Emeryville, CA 94608 USA. [Lechner, Anna; Keasling, Jay D.] Univ Calif Berkeley, Dept Biomol & Chem Engn, Dept Bioengn, Berkeley, CA 94720 USA. [Brunk, Elizabeth] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92093 USA. [Keasling, Jay D.] Lawrence Berkeley Natl Lab, Div Phys Sci, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint Bioenergy Inst JBEI, Emeryville, CA 94608 USA.; Keasling, JD (reprint author), Univ Calif Berkeley, Dept Biomol & Chem Engn, Dept Bioengn, Berkeley, CA 94720 USA.; Keasling, JD (reprint author), Lawrence Berkeley Natl Lab, Div Phys Sci, Berkeley, CA 94720 USA. EM jdkeasling@lbl.gov FU Department of Energy Joint BioEnergy Institute - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Synthetic Biology Engineering Research Center (SynBERC) through National Science Foundation [NSF EEC 0540879]; Swiss National Science Foundation [p2elp2_148961] FX We are grateful to Dr. Daniel Liu, Dr. Sarah Richardson, Dr. Nathan Hillson, and Dr. Christopher Petzold for valuable comments and discussion on this review. The authors also thank Prof. Vassily Hatzimankatis and Prof. Ursula Rothlisberger for the many useful discussions on computational design strategies over the years. This work is funded by the Department of Energy Joint BioEnergy Institute (jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy and by the Synthetic Biology Engineering Research Center (SynBERC) through National Science Foundation Grant NSF EEC 0540879. The authors acknowledge support from the Swiss National Science Foundation (Grant p2elp2_148961 to E.B.). NR 122 TC 1 Z9 1 U1 3 U2 3 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1943-0264 J9 CSH PERSPECT BIOL JI Cold Spring Harbor Perspect. Biol. PD NOV PY 2016 VL 8 IS 11 AR a023903 DI 10.1101/cshperspect.a023903 PG 17 WC Cell Biology SC Cell Biology GA EE7YL UT WOS:000389841300006 ER PT J AU Li, TT Kirchhoff, H Gargouri, M Feng, J Cousins, AB Pienkos, PT Gang, DR Chen, SL AF Li, Tingting Kirchhoff, Helmut Gargouri, Mahmoud Feng, Jie Cousins, Asaph B. Pienkos, Philip T. Gang, David R. Chen, Shulin TI Assessment of photosynthesis regulation in mixotrophically cultured microalga Chlorella sorokiniana SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae; Chlorella sorokiniana; Mixotrophic; Photosynthesis ID CHLAMYDOMONAS-REINHARDTII; CARBON METABOLISM; PHOTOSYSTEM-II; CHLOROPHYLL FLUORESCENCE; CARBOXYLASE OXYGENASE; ALGAL PHOTOSYNTHESIS; LIGHT; GROWTH; ACETATE; CULTIVATION AB Mixotrophic growth of microalgae offers great potential as an efficient strategy for biofuel production. In this study, photosynthetic regulation of mixotrophically cultured Chlorella sorokiniana cells was systematically evaluated. Mixotrophic cells in the exponential growth phase showed the highest photosynthetic activity, where maximum photosynthetic O-2 evolution was approximately 3- and 4-fold higher than cells in the same phase grown photoautotrophically in 1% CO2 (in air) and air, respectively. Additionally, characteristic chlorophyll fluorescence parameters demonstrated that no limitation in electron transport downstream of PSII was detected in mixotrophic cells. Up-regulation of photosynthetic activity was associated with high total ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylase activity and expression level of phosphoribulokinase (PRK). After 3 days, photosynthetic O-2 evolution of mixotrophic cells that went to the stationary phase, was strongly reduced, with reduced photochemical efficiency and reorganization of the PSII complex. Simultaneously, enzymatic activity for Rubisco carboxylase and mRNA levels of Rubisco and PRK diminished. Importantly, there was almost no non-photochemical quenching for mixotrophic cells, whether grown in log or stationary phase. A decline in the quantum efficiency of PSII and an oxidized plastoquinone pool (PQ pool) was observed under N-depleted conditions during mixotrophic growth. These results demonstrate that photosynthesis is regulated differently in mixotrophically cultured C. sorokiniana cells than in cells grown under photoautotrophic conditions, with a particularly strong impact by nitrogen levels in the cells. (C) 2016 Published by Elsevier B.V. C1 [Li, Tingting; Chen, Shulin] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. [Kirchhoff, Helmut; Gargouri, Mahmoud; Gang, David R.] Washington State Univ, Inst Biol Chem, Pullman, WA 99164 USA. [Feng, Jie] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Mol Microbiol & Immunol, Baltimore, MD 21205 USA. [Cousins, Asaph B.] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA. [Pienkos, Philip T.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Chen, SL (reprint author), Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. EM chens@wsu.edu FU U.S. Department of Energy [EE0003112] FX The authors would like to sincerely thank Dr. Zugen Chen and Dr. PingWang (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences) for proving genome information of C. sorokiniana. This research was financially supported by the U.S. Department of Energy (EE0003112). NR 43 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD NOV PY 2016 VL 19 BP 30 EP 38 DI 10.1016/j.algal.2016.07.012 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EF0FP UT WOS:000390001400004 ER PT J AU Wu, WH Tran-Gyamfi, MB Jaryenneh, JD Davis, RW AF Wu, Weihua Tran-Gyamfi, Mary Bao Jaryenneh, James Dekontee Davis, Ryan W. TI Cofactor engineering of ketol-acid reductoisomerase (IlvC) and alcohol dehydrogenase (YqhD) improves the fusel alcohol yield in algal protein anaerobic fermentation SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Directed evolution; Isobutanol; 2/3-Methyl butanol; Algae protein bioconversion; Cofactor engineering; Algal biofuel ID MICROALGAE SCENEDESMUS-SP.; ADVANCED BIOFUELS; ESCHERICHIA-COLI; FLASH HYDROLYSIS; ISOBUTANOL; EXTRACTION; BIOMASS AB The feasibility of converting algal protein to mixed alcohols has recently been demonstrated with an engineered E. coli strain, enabling comprehensive utilization of the biomass for biofuel applications. However, the yield and titers of mixed alcohol production must be improved for market adoption. A major limiting factor for achieving the necessary yield and titer improvements is cofactor imbalance during the fermentation of algal protein. To resolve this problem, a directed evolution approach was applied to modify the cofactor specificity of two key enzymes (IlvC and YqhD) from NADPH to NADH in the mixed alcohol metabolic pathway. Using high throughput screening, more than 20 YqhD mutants were identified to show activity on NADH as a cofactor. Of these 20 mutants, the four highest activity YqhD mutants were selected for combination with two IlvC mutants, both accepting NADH as a redox cofactor, for modification of the protein conversion strain. The combination of the IlvC and YqhD mutants yielded a refined E. coli strain, subtype AY3, with increased fusel alcohol yield of similar to 60% compared to wild type under anaerobic fermentation on amino acid mixtures. When applied to real algal protein hydrolysates, the strain AY3 produced 100% and 38% more total mixed alcohols than the wild type strain on two different algal hydrolysates, respectively. The results indicate that cofactor engineering is a promising approach to improve the feasibility of bioconversion of algal protein into mixed alcohols as advanced biofuels. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wu, Weihua; Tran-Gyamfi, Mary Bao; Davis, Ryan W.] Sandia Natl Labs, Dept Biomass Sci & Convers Technol, 7011 East Ave, Livermore, CA 94550 USA. [Jaryenneh, James Dekontee] Sandia Natl Labs, Dept Syst Biol, Livermore, CA USA. RP Wu, WH; Davis, RW (reprint author), Sandia Natl Labs, Dept Biomass Sci & Convers Technol, 7011 East Ave, Livermore, CA 94550 USA. EM wwu@sandia.gov; rwdavis@sandia.gov FU United States Department of Energy [DE-ACO4-94AL85000]; DOE-EERE BioEnergy Technologies Office (BETO) [26336] FX The authors would like to thank Thomas Dempster and John McGowan at AzCATI for providing the algae biomass samples used for this effort. We would also like to thank Prof. Sandeep Kumar at Old Dominion University for performing flash hydrolysis pretreatment of the AzCATI biomass samples, and Prof. James Liao, Chair of the Department of Chemical and Biomolecular Engineering at UCLA for providing the E. coli YH83 strain and associated plasmids. Sandia is amulti-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-ACO4-94AL85000. Support is acknowledged from DOE-EERE BioEnergy Technologies Office (BETO) under agreement number 26336. NR 25 TC 1 Z9 1 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD NOV PY 2016 VL 19 BP 162 EP 167 DI 10.1016/j.algal.2016.08.013 PG 6 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EF0FP UT WOS:000390001400020 ER PT J AU Newby, DT Mathews, TJ Pate, RC Huesemann, MH Lane, TW Wahlen, BD Mandal, S Engler, RK Feris, KP Shurin, JB AF Newby, Deborah T. Mathews, Teresa J. Pate, Ron C. Huesemann, Michael H. Lane, Todd W. Wahlen, Bradley D. Mandal, Shovon Engler, Robert K. Feris, Kevin P. Shurin, Jon B. TI Assessing the potential of polyculture to accelerate algal biofuel production SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Review DE Algal biofuel; Algal polyculture; Overyielding; Culture resilience ID WASTE-WATER TREATMENT; HYDROTHERMAL LIQUEFACTION PROCESS; DAIRY MANURE EFFLUENT; BIO-CRUDE OIL; PHYTOPLANKTON COMMUNITIES; SPECIES-DIVERSITY; NANNOCHLOROPSIS-SALINA; CHLORELLA-SOROKINIANA; BIODIESEL PRODUCTION; MICROBIAL COMMUNITY AB To date, the algal biofuel industry has focused on the cultivation of monocultures of highly productive algal strains, but scaling up production remains challenging. Algal monocultures are difficult to maintain because they are easily contaminated by wild algal strains, grazers, and pathogens. In contrast, theory suggests that polycultures (multispecies assemblages) can promote both ecosystem stability and productivity. A greater understanding of species interactions and how communities change with time needs to be developed. Ultimately a predictive model of community interactions is needed to harness the capacity of biodiversity to enhance productivity of algal polycultures at industrial scales. Here we review the agricultural and ecological literature to explore opportunities for increased annual biomass production through the use of algal polycultures. We discuss case studies where algal polycultures have been successfully maintained for industries other than the biofuel industry, as well as the few studies that have compared biomass production of algal polycultures to that of monocultures. Assemblages that include species with complementary traits are of particular promise. These assemblages have the potential to increase crop productivity and stability presumably by utilizing natural resources (e.g. light, nutrients, and water) more efficiently via tighter niche packing. Therefore, algal polycultures show promise for enhancing biomass productivity, enabling sustainable production and reducing overall production costs. (C) 2016 Elsevier B.V. All rights reserved. C1 [Newby, Deborah T.; Wahlen, Bradley D.; Engler, Robert K.] Idaho Natl Lab, Idaho Falls, ID USA. [Mathews, Teresa J.; Mandal, Shovon] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Pate, Ron C.; Lane, Todd W.] Sandia Natl Labs, Livermore, CA 94550 USA. [Huesemann, Michael H.] Pacific Northwest Natl Lab, Richland, WA USA. [Feris, Kevin P.] Boise State Univ, Boise, ID 83725 USA. [Shurin, Jon B.] Univ Calif San Diego, La Jolla, CA 92093 USA. RP Newby, DT (reprint author), 5369 W Irving St, Boise, ID 83706 USA. EM deborah.newby@simplot.com RI Wahlen, Bradley/B-9069-2017 OI Wahlen, Bradley/0000-0002-7100-1196 FU DOE/EERE Bioenergy Technologies Office; Department of Energy FX This authors gratefully acknowledge partial funding support from the DOE/EERE Bioenergy Technologies Office. Furthermore, each Department of Energy National Laboratory acknowledge their respective contractor and contract number. Idaho National Laboratory is managed by Battelle Energy Alliance, LLC (DE-AC07-05ID14517). The Oak Ridge National Laboratory is managed by UT-Battelle (DE-AC05-00OR22725). Sandia National Laboratories, is operated by Sandia Corporation, a Lockheed Martin Company (DE-AC04-94AL85000). The Pacific Northwest National Laboratory is operated by Battelle Memorial institute (DE-AC05-76RLO 1830). The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 193 TC 2 Z9 2 U1 20 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD NOV PY 2016 VL 19 BP 264 EP 277 DI 10.1016/j.algal.2016.09.004 PG 14 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EF0FP UT WOS:000390001400032 ER PT J AU Bohutskyi, P Kligerman, DC Byers, N Nasr, LK Cua, C Chow, S Su, CY Tang, YT Betenbaugh, MJ Bouwer, EJ AF Bohutskyi, Pavlo Kligerman, Debora Cynamon Byers, Natalie Nasr, Laila Khaled Cua, Celine Chow, Steven Su, Chunyang Tang, Yuting Betenbaugh, Michael J. Bouwer, Edward J. TI Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgal-bacteria poly-culture; FAME composition; Sustainable biofuel-phytoremediation process; Nitrogen to phosphorus ratio; Macronutrients and trace elements; Chemical fertilizer replacement ID ALGAL BIOFUEL PRODUCTION; FATTY-ACID-COMPOSITION; NUTRIENT REMOVAL; BIODIESEL PRODUCTION; CARBON-DIOXIDE; PHOTOSYNTHETIC MICROORGANISMS; MIXOTROPHIC GROWTH; BIOMASS PRODUCTION; LIPID PRODUCTION; MIXED-CULTURE AB Scale-up of microalgal biofuel technology is challenged by availability of nitrogen and phosphorus fertilizers and the potential negative impact vast increases in chemical fertilizer demand would have on conventional agriculture. The current study investigated replacement of chemical fertilizers with nutrients sourced from primary and secondary wastewater effluents and anaerobic digestion centrate (ADC). Although primary wastewater effluent possessed a high optical density (OD) and bacterial contamination, it was a superior growth medium for microalgal cultivation than nutrient-scarce secondary effluent. Chlorella sorokiniana and Scenedesmus acutus f. alternans showed higher growth rates, productivities, and robustness than other species or poly-cultures of five species. While supplementing with 5-10% nutrient-rich ADC increased wastewater OD, it also enhanced microalgal growth rates from 0.2-0.3 d(-1) to 0.7-0.9 d(-1) and biomass productivity from 10 to 20 mg L-1 d to 40-60 mg L-1 d with greater improvements for secondary effluents. Supplementation with ADC also increased nutrient concentrations (N, P, Mn, B, Zn, Co by > 100% and S, Mg, Ca, Mo by 20-60%) and improved the nitrogen to phosphorus (N: P) ratio. Higher ADC dose of 20% inhibited microalgae growth potentially due to ammonia toxicity. Elevation of inoculum doses and light intensity increased final biomass density and productivity, with intensities <140 mu mol photon m(-2) s(-1) limiting algal growth rates. Inoculum doses of >= 2.5 x 10(5) cell mL(-1) were most favorable for cultivation of all tested microalgae and for FAME content and composition for a newly characterized strain of Chlorella sorokiniana. Overall, ADC represents an economical fertilizer substitute providing various nutrients needed for microalgal growth and enhancing biofuel sustainability. (C) 2016 Elsevier B.V. All rights reserved. C1 [Bohutskyi, Pavlo; Kligerman, Debora Cynamon; Byers, Natalie; Nasr, Laila Khaled; Cua, Celine; Chow, Steven; Su, Chunyang; Bouwer, Edward J.] Johns Hopkins Univ, Dept Geog & Environm Engn, 3400 North Charles St, Baltimore, MD 21218 USA. [Kligerman, Debora Cynamon] Fundacao Oswaldo Cruz, Escola Nacl Saude Publ, Dept Saneamento & Saude Ambiental, Rua Leopoldo Bulhoes 1480, BR-21041210 Rio De Janeiro, RJ, Brazil. [Tang, Yuting; Betenbaugh, Michael J.] Johns Hopkins Univ, Dept Chem & Biomol Engn, 3400 North Charles St, Baltimore, MD 21218 USA. [Tang, Yuting] Nanjing Forestry Univ, Dept Chem Engn, 159 Longpan St, Nanjing, JS 210037, Peoples R China. RP Bohutskyi, P (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Div Biol Sci, Richland, WA USA. EM bohutskyi@jhu.edu RI Bouwer, Edward/A-3287-2010; OI Bohutskyi, Pavlo/0000-0002-0462-8132 FU U.S. Environmental Protection Agency P3 Award Program [SU835318]; U.S. NSF CBET Program [1236691]; Bureau of Education and Cultural Affairs of U.S. Department of State through an International Fulbright Science and Technology Award FX The authors gratefully acknowledge the financial support from the U.S. Environmental Protection Agency P3 Award Program (Grant No. SU835318), from the U.S. NSF CBET Program (Grant No. 1236691), and from the Bureau of Education and Cultural Affairs of U.S. Department of State through an International Fulbright Science and Technology Award to Pavlo Bohutskyi. Also, the authors would like to thank Nick Frankos and Marshall Phillips for their assistance in collection of waste-water and anaerobic digestion effluent samples from the Back River Wastewater Treatment Plant in Baltimore that were used in this study. Finally, we would like to thank Minxi Wan for sharing the Chlorella sorokiniana (CCTCC M209220) strain. NR 100 TC 3 Z9 3 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD NOV PY 2016 VL 19 BP 278 EP 290 DI 10.1016/j.algal.2016.09.010 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EF0FP UT WOS:000390001400033 ER PT J AU Dong, T Knoshaug, EP Davis, R Laurens, LML Van Wychen, S Pienkos, PT Nagle, N AF Dong, Tao Knoshaug, Eric P. Davis, Ryan Laurens, Lieve M. L. Van Wychen, Stefanie Pienkos, Philip T. Nagle, Nick TI Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgal biofuel; Biorefinery; Pretreatment; Fermentation; Extraction; Techno-economic analysis (TEA) ID BIODIESEL PRODUCTION; FATTY-ACIDS; MICROALGAE; BIOMASS; OIL; BIOCHEMISTRY; EPOXIDATION; FEEDSTOCKS; CONVERSION; STILLAGE AB The development of an integrated biorefinery process capable of producing multiple products is crucial for commercialization of microalgal biofuel production. Dilute acid pretreatment has been demonstrated as an efficient approach to utilize algal biomass more fully, by hydrolyzing microalgal carbohydrates into fermentable sugars, while making the lipids more extractable, and a protein fraction available for other products. Previously, we have shown that sugar-rich liquor could be separated from solid residue by solid-liquid separation (SLS) to produce ethanol via fermentation. However, process modeling has revealed that approximately 37% of the soluble sugars were lost in the solid cake after the SLS. Herein, a Combined Algal Processing (CAP) approach with a simplified configuration has been developed to improve the total energy yield. In CAP, whole algal slurry after acid pretreatment is directly used for ethanol fermentation. The ethanol and microalgal lipids can be sequentially recovered from the fermentation broth by thermal treatment and solvent extraction. Almost all the monomeric fermentable sugars can be utilized for ethanol production without compromising the lipid recovery. The techno-economic analysis (TEA) indicates that the CAP can reduce microalgal biofuel cost by $0.95 per gallon gasoline equivalent (GGE), which is a 9% reduction compared to the previous biorefinery scenario. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). C1 [Dong, Tao; Knoshaug, Eric P.; Davis, Ryan; Laurens, Lieve M. L.; Van Wychen, Stefanie; Pienkos, Philip T.; Nagle, Nick] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Pienkos, PT (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM philip.pienkos@nrel.gov NR 34 TC 4 Z9 4 U1 13 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD NOV PY 2016 VL 19 BP 316 EP 323 DI 10.1016/j.algal.2016.12.021 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EF0FP UT WOS:000390001400038 ER PT J AU Huang, RX Mitchell, C Jia, QK Papadopoulos, C Sannibale, F AF Huang, Rui-Xuan Mitchell, Chad Jia, Qi-Ka Papadopoulos, Christos Sannibale, Fernando TI Simulation study on the emittance compensation of off-axis emitted beam in RF photoinjector SO CHINESE PHYSICS C LA English DT Article DE photoinjector; off-axis emission; genetic algorithm; ASTRA; IMPACT-T; RF effect; emittance compensation ID ELECTRON-BEAM; SPACE-CHARGE AB To make full use of the photocathode material and improve its quantum efficiency lifetime, it can be necessary to operate the laser away from the cathode center in photoinjectors. In RF guns, the off-axis emitted beam will see a time-dependent RF effect, which would generate a significant growth in transverse emittance. It has been demonstrated that such an emittance growth can be almost completely compensated by orienting the beam on a proper orbit in the downstream RF cavities along the injector [1]. In this paper we analyze in detail the simulation techniques used in reference [1] and the issues associated with them. The optimization of photoinjector systems involving off-axis beams is a challenging problem. To solve this problem, one needs advanced simulation tools including both genetic algorithms and an efficient algorithm for 3D space charge. In this paper, we report on simulation studies where the two codes ASTRA and IMPACT-T are used jointly to overcome these challenges, in order to optimize a system designed to compensate for the emittance growth in a beam emitted off axis. C1 [Huang, Rui-Xuan; Jia, Qi-Ka] Univ Sci & Technol China, NSRL, Hefei 230029, Peoples R China. [Huang, Rui-Xuan; Mitchell, Chad; Jia, Qi-Ka; Papadopoulos, Christos; Sannibale, Fernando] Lawrence Berkeley Natl Lab, ATAP, One Cyclotron Rd, Berkeley, CA 94720 USA. RP Huang, RX (reprint author), Univ Sci & Technol China, NSRL, Hefei 230029, Peoples R China.; Huang, RX (reprint author), Lawrence Berkeley Natl Lab, ATAP, One Cyclotron Rd, Berkeley, CA 94720 USA. EM hruixuan@mail.ustc.edu.cn; jiaqk@ustc.edu.cn FU National Nature Science Foundation of China [11375199]; Chinese Scholarship Council FX Supported by National Nature Science Foundation of China (11375199), and Chinese Scholarship Council NR 26 TC 0 Z9 0 U1 3 U2 3 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD NOV PY 2016 VL 40 IS 11 AR 117004 DI 10.1088/1674-1137/40/11/117004 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA ED8TS UT WOS:000389144400028 ER PT J AU Tannenbaum, MJ AF Tannenbaum, M. J. TI Waiting for the W SO EUROPEAN PHYSICAL JOURNAL H LA English DT Article ID INTERSECTING STORAGE-RINGS; HADRON-HADRON COLLISIONS; PROTON-PROTON COLLISIONS; HIGH TRANSVERSE-MOMENTUM; WEAK-INTERACTIONS; QUANTUM ELECTRODYNAMICS; PARTON DISTRIBUTIONS; PARITY CONSERVATION; NUCLEUS COLLISIONS; MAGNETIC-MOMENT AB The search for the left-handed W (+/-) bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career. C1 [Tannenbaum, M. J.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tannenbaum, MJ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM mjt@bnl.gov FU U.S. Department of Energy [DE-SC0012704] FX Research supported by U.S. Department of Energy, Contract No. DE-SC0012704. NR 88 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2102-6459 EI 2102-6467 J9 EUR PHYS J H JI Eur. Phys. J. H PD NOV PY 2016 VL 41 IS 4-5 BP 303 EP 325 DI 10.1140/epjh/e2016-70048-7 PG 23 WC History & Philosophy Of Science; Physics, Multidisciplinary SC History & Philosophy of Science; Physics GA EF0GF UT WOS:000390003200002 ER PT J AU Thomas, RT Prentice, LC Graven, H Ciais, P Fisher, JB Hayes, DJ Huang, MY Huntzinger, DN Ito, A Jain, A Mao, JF Michalak, AM Peng, SS Poulter, B Ricciuto, DM Shi, XY Schwalm, C Tian, HQ Zeng, N AF Thomas, Rebecca T. Prentice, Lain Colin Graven, Heather Ciais, Philippe Fisher, Joshua B. Hayes, Daniel J. Huang, Maoyi Huntzinger, Deborah N. Ito, Akihiko Jain, Atul Mao, Jiafu Michalak, Anna M. Peng, Shushi Poulter, Benjamin Ricciuto, Daniel M. Shi, Xiaoying Schwalm, Christopher Tian, Hanqin Zeng, Ning TI Increased light-use efficiency in northern terrestrial ecosystems indicated by CO2 and greening observations SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID ATMOSPHERIC CARBON-DIOXIDE; MODEL INTERCOMPARISON PROJECT; PROGRAM MULTISCALE SYNTHESIS; SEASONAL AMPLITUDE; BIOSPHERE MODELS; ELEVATED CO2; LAND-USE; VEGETATION; TRENDS; CLIMATE AB Observations show an increasing amplitude in the seasonal cycle of CO2 (ASC) north of 45 degrees N of 56 +/- 9.8% over the last 50 years and an increase in vegetation greenness of 7.5-15% in high northern latitudes since the 1980s. However, the causes of these changes remain uncertain. Historical simulations from terrestrial biosphere models in the Multiscale Synthesis and Terrestrial Model Intercomparison Project are compared to the ASC and greenness observations, using the TM3 atmospheric transport model to translate surface fluxes into CO2 concentrations. We find that the modeled change in ASC is too small but the mean greening trend is generally captured. Modeled increases in greenness are primarily driven by warming, whereas ASC changes are primarily driven by increasing CO2. We suggest that increases in ecosystem-scale light use efficiency (LUE) have contributed to the observed ASC increase but are underestimated by current models. We highlight potential mechanisms that could increase modeled LUE. C1 [Thomas, Rebecca T.] Imperial Coll London, Sci & Solut Changing Planet DTP, London, England. [Thomas, Rebecca T.; Prentice, Lain Colin] Imperial Coll London, Dept Life Sci, AXA Chair Programme Biosphere & Climate Impacts, London, England. [Thomas, Rebecca T.; Graven, Heather] Imperial Coll London, Dept Phys, London, England. [Prentice, Lain Colin; Graven, Heather] Imperial Coll London, Grantham Inst Climate Change & Environm, London, England. [Ciais, Philippe] Lab Sci Climat & Environm, St Aubin, France. [Fisher, Joshua B.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Hayes, Daniel J.] Univ Maine, Sch Forest Resources, Orono, ME USA. [Huang, Maoyi] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. [Huntzinger, Deborah N.] No Arizona Univ, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ USA. [Ito, Akihiko] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan. [Jain, Atul] Univ Illinois, Dept Atmospher Sci, Urbana, IL USA. [Mao, Jiafu; Ricciuto, Daniel M.; Shi, Xiaoying] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN USA. [Mao, Jiafu; Ricciuto, Daniel M.; Shi, Xiaoying] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Michalak, Anna M.] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA USA. [Peng, Shushi] Peking Univ, Coll Urban & Environm Sci, Sino French Inst Earth Syst Sci, Beijing, Peoples R China. [Poulter, Benjamin] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. [Schwalm, Christopher] Woods Hole Res Ctr, Falmouth, MA USA. [Tian, Hanqin] Auburn Univ, Sch Forestry & Wildlife Sci, Int Ctr Climate & Global Change Res, Auburn, AL 36849 USA. [Zeng, Ning] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Zeng, Ning] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Thomas, RT (reprint author), Imperial Coll London, Sci & Solut Changing Planet DTP, London, England.; Thomas, RT (reprint author), Imperial Coll London, Dept Life Sci, AXA Chair Programme Biosphere & Climate Impacts, London, England.; Thomas, RT (reprint author), Imperial Coll London, Dept Phys, London, England. EM r.thomas14@imperial.ac.uk RI Mao, Jiafu/B-9689-2012; Ricciuto, Daniel/I-3659-2016; Peng, Shushi/J-4779-2014; Zeng, Ning/A-3130-2008; Jain, Atul/D-2851-2016; OI Mao, Jiafu/0000-0002-2050-7373; Ricciuto, Daniel/0000-0002-3668-3021; Peng, Shushi/0000-0001-5098-726X; Zeng, Ning/0000-0002-7489-7629; Jain, Atul/0000-0002-4051-3228; Huang, Maoyi/0000-0001-9154-9485 FU Grantham Institute: Climate Change and the Environment-Science and Solutions for a Changing Planet DTP [NE/L002515/1]; NASA ROSES [NNX10AG01A, NNH10AN681]; DOE [DE-AC05-00OR22725]; U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research; U.S. DOE [DE-AC06-76RLO1830]; GhG Europe FP7 grant; National Aeronautics and Space Administration; KAKENHI by the Japan Society of Promotion of Science [26281014] FX This work was supported by the Grantham Institute: Climate Change and the Environment-Science and Solutions for a Changing Planet DTP, grant NE/L002515/1 and is a contribution to the AXA Chair Programme in Biosphere and Climate Impacts. All data used for this analysis are publicly available with full sources detailed in the supporting information. We thank Peter Rayner and an anonymous reviewer for their helpful comments on the manuscript. Funding for the Multiscale synthesis and Terrestrial Model Intercomparison Project (MsTMIP; http://nacp.ornl.gov/MsTMIP.shtm) activity was provided through NASA ROSES grant NNX10AG01A. Data management support for preparing, documenting, and distributing model driver and output data was performed by the Modeling and Synthesis Thematic Data Center at Oak Ridge National Laboratory (ORNL; http://nacp.ornl.gov), with funding through NASA ROSES grant NNH10AN681. Finalized MsTMIP data products are archived at the ORNL DAAC (http://daac.ornl.gov). Biome-BGC code was provided by the Numerical Terradynamic Simulation Group at University of Montana. The computational facilities were provided by NASA Earth Exchange at NASA Ames Research Center. CLM4 and GTEC simulations were supported in part by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UTBATTELLE for DOE under contract DE-AC05-00OR22725. CLM4-VIC research is supported in part by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research. PNNL is operated for the U.S. DOE by BATTELLE Memorial Institute under contract DE-AC06-76RLO1830. DLEM developed in International Center for Climate and Global Change Research, Auburn University has been supported by NASA Interdisciplinary Science Program (IDS), NASA Land Cover/Land Use Change Program (LULUC),NASA Terrestrial Ecology Program, NASA Atmospheric Composition Modeling and Analysis Program (ACMAP), NSF Dynamics of Coupled Natural-Human System Program (CNH), Decadal and Regional Climate Prediction using Earth System Models (EaSM), DOE National Institute for Climate Change Research, USDA AFRI Program, and EPA STAR program. LPJwsI work was conducted at LSCE, France, using a modified version of LPJ version 3.1 model, originally made available by the Potsdam Institute for Climate Impact Research. ORCHIDEE is a global land surface model developed at the IPSL institute in France. The simulations were performed with the support of the GhG Europe FP7 grant with computing facilities provided by "LSCE" or "TGCC." SiB3 research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. TEM6 research is supported in part by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725. VISIT was developed at the National Institute of Environmental Studies, Japan. This work was mostly conducted during a visiting stay at Oak Ridge National Laboratory. This study was supported by KAKENHI Grand No. 26281014 by the Japan Society of Promotion of Science. NR 65 TC 0 Z9 0 U1 15 U2 15 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD NOV PY 2016 VL 43 IS 21 BP 11339 EP 11349 DI 10.1002/2016GL070710 PG 11 WC Geosciences, Multidisciplinary SC Geology GA EE0YB UT WOS:000389305000007 ER PT J AU Khan, AI Radhakrishna, U Chatterjee, K Salahuddin, S Antoniadis, DA AF Khan, Asif Islam Radhakrishna, Ujwal Chatterjee, Korok Salahuddin, Sayeef Antoniadis, Dimitri A. TI Negative Capacitance Behavior in a Leaky Ferroelectric SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Ferroelectric (FE); negative capacitance; negative capacitance FET (NCFET); sub-60 mV/decade ID FIELD-EFFECT TRANSISTOR; ROOM-TEMPERATURE AB We present a simulation study of the negative capacitance effect incorporating leakage through the ferroelectric (FE) negative capacitor. The dynamics of the FE is modeled using the Landau-Khalatnikov equation. When an FE and a dielectric are simply connected in series without a metal contact between them, the stabilization of negative capacitance remains unchanged irrespective of leakage. However, when a metal is used, any finite leakage through the FE makes it impossible to stabilize negative capacitance at the steady state. Nonetheless, when a voltage is applied, the series configuration enters the negative capacitance state and as long as the gate voltage is cycled faster than the time needed by the leakage current to discharge all the capacitors, the transistor shows improved subthreshold swing. These results are expected to provide insight into understanding and analyzing recent experimental results on negative capacitance. C1 [Khan, Asif Islam; Chatterjee, Korok; Salahuddin, Sayeef] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Radhakrishna, Ujwal; Antoniadis, Dimitri A.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02142 USA. [Salahuddin, Sayeef] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Khan, AI (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.; Radhakrishna, U (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02142 USA. EM asif.khan@ece.gatech.edu; ujwal@mit.edu FU Office of Naval Research; Center for Low Energy Systems Technology, one of the six SRC STARnet Centers - MARCO; Center for Low Energy Systems Technology, one of the six SRC STARnet Centers - DARPA; Entegris and Applied Materials under the I-Rice Center at the University of California at Berkeley; NSF-NEEDS Grant FX This work was supported in part by the Office of Naval Research, in part by the Center for Low Energy Systems Technology, one of the six SRC STARnet Centers, Sponsored by MARCO and DARPA, and in part by the Entegris and Applied Materials under the I-Rice Center at the University of California at Berkeley, and in part by NSF-NEEDS Grant to MIT. The review of this paper was arranged by Editor B. Kaczer. (Asif Islam Khan and Ujwal Radhakrishna contributed equally to this work.) (Corresponding authors: Asif Islam Khan; Ujwal Radhakrishna.) NR 38 TC 1 Z9 1 U1 8 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD NOV PY 2016 VL 63 IS 11 BP 4416 EP 4422 DI 10.1109/TED.2016.2612656 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA EE1KN UT WOS:000389340400040 ER PT J AU Carlsten, BE Nichols, KE Shchegolkov, DY Simakov, EI AF Carlsten, Bruce E. Nichols, Kimberley E. Shchegolkov, Dmitry Yu. Simakov, Evgenya I. TI Emittance Effects on Gain in W-Band TWTs SO IEEE TRANSACTIONS ON ELECTRON DEVICES LA English DT Article DE Electron beams; millimeter-wave amplifiers; traveling-wave tubes (TWTs) ID TRAVELING-WAVE TUBES; DESIGN; AMPLIFIER; GHZ; TRANSPORT AB We consider the main effects of beam emittance on W-band traveling-wave tube (TWT) performance and gain. Specifically, we consider a representative dielectric TWT structure with similar to 5 dB/ cm of gain driven by a 5-A, 20-keV, sheet electron beam that is focused by a wiggler magnetic field. The normalized beam transverse emittance must be about 1 mu m or lower to ensure that both the transport is stable and the gain is not degraded by the effective energy spread arising from the emittance. This emittance limit scales roughly inversely with frequency. C1 [Carlsten, Bruce E.; Nichols, Kimberley E.; Shchegolkov, Dmitry Yu.; Simakov, Evgenya I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carlsten, BE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM bcarlsten@lanl.gov; knichols@lanl.gov; d_shcheg@lanl.gov; smirnova@lanl.gov OI Carlsten, Bruce/0000-0001-5619-907X; Simakov, Evgenya/0000-0002-7483-1152 FU U.S. Department of Energy through the LANL/LDRD Program FX This work was supported by the U.S. Department of Energy through the LANL/LDRD Program. The review of this paper was arranged by Editor L. Kumar. NR 30 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9383 EI 1557-9646 J9 IEEE T ELECTRON DEV JI IEEE Trans. Electron Devices PD NOV PY 2016 VL 63 IS 11 BP 4493 EP 4498 DI 10.1109/TED.2016.2612583 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA EE1KN UT WOS:000389340400051 ER PT J AU Yeom, H Maier, B Mariani, R Bai, D Sridharan, K AF Yeom, Hwasung Maier, Ben Mariani, Robert Bai, David Sridharan, Kumar TI Evolution of multilayered scale structures during high temperature oxidation of ZrSi2 SO JOURNAL OF MATERIALS RESEARCH LA English DT Article DE oxidation; microstructure; nuclear materials ID CLADDING CANDIDATE MATERIALS; SILICATE THIN-FILMS; AL-ALLOYED ZRSI2; THERMAL-OXIDATION; AMORPHOUS SILICA; PHASE-DIAGRAM; BEHAVIOR; ZIRCALOY-4; MOSI2; STEAM AB The oxidation behavior of bulk ZrSi2 at 700, 1000, and 1200 degrees C in ambient air has been investigated. Parabolic to cubic oxide layer growth kinetics was confirmed by weight gain measurements and the average oxide layer thickness was 470 nm, 6.7 mu m, and 37 mu m at 700 degrees C, 1000 degrees C, and 1200 degrees C, respectively, after 5 h oxidation tests. Evolution of compositionally modulated nano/micro structures was confirmed in the oxide layer. At 700 degrees C, Si diffusion resulted in discontinuous Si-rich oxide phases in amorphous Zr-Si-O matrix. At 1000 degrees C, complex multilayered structures such as fine and coarse irregular spinodal structures, wavy Si-rich oxide, and Si-rich islands evolved. At 1200 degrees C, additional nucleation of nanoscale ZrO2 particulate phase was observed. The spinodal structures were confirmed to be crystalline ZrO2 and amorphous SiO2, and the thermodynamic driving force for phase evolution has been explained by extension of liquid miscibility gap in the binary ZrO2-SiO2 phase diagram. C1 [Yeom, Hwasung; Maier, Ben; Sridharan, Kumar] Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA. [Mariani, Robert; Bai, David] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Sridharan, K (reprint author), Univ Wisconsin Madison, Dept Engn Phys, Madison, WI 53706 USA. EM kumar@engr.wisc.edu RI Bai, Xianming/E-2376-2017 OI Bai, Xianming/0000-0002-4609-6576 FU Department of Energy (DOE) [DE-NE0008300] FX The authors are grateful to Steven Fronek for sample preparation and Alexander Mairov for technical support with STEM. This work is funded by Department of Energy (DOE) through grants DE-NE0008300. NR 47 TC 0 Z9 0 U1 4 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2016 VL 31 IS 21 BP 3409 EP 3419 DI 10.1557/jmr.2016.363 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA ED5BT UT WOS:000388867100014 ER PT J AU Colon, A Stan, L Divan, R Shi, J AF Colon, Albert Stan, Liliana Divan, Ralu Shi, Junxia TI Investigating compositional effects of atomic layer deposition ternary dielectric Ti-Al-O on metal-insulator-semiconductor heterojunction capacitor structure for gate insulation of InAlN/GaN and AlGaN/GaN SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID CRYSTALLIZATION BEHAVIOR; FILMS; INTERFACE; GROWTH; AL2O3 AB Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approach this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material for both AlGaN/GaN and InAlN/GaN based devices. (C) 2016 American Vacuum Society. C1 [Colon, Albert; Shi, Junxia] Univ Illinois, Dept Elect & Comp Engn, Suite 1020 SEO,10th Floor,851 S Morgan St, Chicago, IL 60607 USA. [Stan, Liliana; Divan, Ralu] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shi, J (reprint author), Univ Illinois, Dept Elect & Comp Engn, Suite 1020 SEO,10th Floor,851 S Morgan St, Chicago, IL 60607 USA. EM lucyshi@uic.edu FU NXP Semiconductors; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank NXP Semiconductors for the financial support and CorEnergy Semiconductor Technology for the epistructure supply. The authors would also like to thank Antonio Divenere and Seyoung An, staff at the Nanotechnology Core Facility, for their helpful discussions. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 26 TC 0 Z9 0 U1 9 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV-DEC PY 2016 VL 34 IS 6 AR 06K901 DI 10.1116/1.4964693 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA EE3WD UT WOS:000389530000025 ER PT J AU Halsted, M Wilmoth, JL Briggs, PA Hansen, RR Briggs, DP Timm, AC Retterer, ST AF Halsted, Michelle Wilmoth, Jared L. Briggs, Paige A. Hansen, Ryan R. Briggs, Dayrl P. Timm, Andrea C. Retterer, Scott T. TI Development of transparent microwell arrays for optical monitoring and dissection of microbial communities SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID LIFT-OFF; MICROFLUIDICS AB Microbial communities are incredibly complex systems that dramatically and ubiquitously influence our lives. They help to shape our climate and environment, impact agriculture, drive business, and have a tremendous bearing on healthcare and physical security. Spatial confinement, as well as local variations in physical and chemical properties, affects development and interactions within microbial communities that occupy critical niches in the environment. Recent work has demonstrated the use of silicon based microwell arrays, combined with parylene lift-off techniques, to perform both deterministic and stochastic assembly of microbial communities en masse, enabling the high-throughput screening of microbial communities for their response to growth in confined environments under different conditions. The implementation of a transparent microwell array platform can expand and improve the imaging modalities that can be used to characterize these assembled communities. Here, the fabrication and characterization of a next generation transparent microwell array is described. The transparent arrays, comprised of SU-8 patterned on a glass coverslip, retain the ability to use parylene lift-off by integrating a low temperature atomic layer deposition of silicon dioxide into the fabrication process. This silicon dioxide layer prevents adhesion of the parylene material to the patterned SU-8, facilitating dry lift-off, and maintaining the ability to easily assemble microbial communities within the microwells. These transparent microwell arrays can screen numerous community compositions using continuous, high resolution, imaging. The utility of the design was successfully demonstrated through the stochastic seeding and imaging of green fluorescent protein expressing Escherichia coli using both fluorescence and brightfield microscopies. (C) 2016 American Vacuum Society. C1 [Halsted, Michelle; Retterer, Scott T.] Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA. [Wilmoth, Jared L.; Timm, Andrea C.; Retterer, Scott T.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Briggs, Paige A.] Univ Alabama, Mech Engn, Tuscaloosa, AL 35487 USA. [Hansen, Ryan R.] Kansas State Univ, Chem Engn, Manhattan, KS 66506 USA. [Briggs, Dayrl P.; Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Retterer, ST (reprint author), Univ Tennessee, Bredesen Ctr, Knoxville, TN 37996 USA.; Retterer, ST (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.; Retterer, ST (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM rettererst@ornl.gov FU Oak Ridge National Laboratory Lab Directed Research and Development (LDRD) program FX This work was funded by the Oak Ridge National Laboratory Lab Directed Research and Development (LDRD) program. The fabrication of the transparent microwell arrays was carried out in the Nanofabrication Research Laboratory at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 14 TC 0 Z9 0 U1 4 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV-DEC PY 2016 VL 34 IS 6 AR 06KI03 DI 10.1116/1.4962739 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA EE3WD UT WOS:000389530000042 ER PT J AU Rangelow, IW Ahmad, A Ivanov, T Kaestner, M Krivoshapkina, Y Angelov, T Lenk, S Lenk, C Ishchuk, V Hofmann, M Nechepurenko, D Atanasov, I Volland, B Guliyev, E Durrani, Z Jones, M Wang, C Liu, DX Reum, A Holz, M Nikolov, N Majstrzyk, W Gotszalk, T Staaks, D Dallorto, S Olynick, DL AF Rangelow, Ivo W. Ahmad, Ahmad Ivanov, Tzvetan Kaestner, Marcus Krivoshapkina, Yana Angelov, Tihomir Lenk, Steve Lenk, Claudia Ishchuk, Valentyn Hofmann, Martin Nechepurenko, Diana Atanasov, Ivaylo Volland, Burkhard Guliyev, Elshad Durrani, Zahid Jones, Mervyn Wang, Chen Liu, Dixi Reum, Alexander Holz, Mathias Nikolov, Nikolay Majstrzyk, Wojciech Gotszalk, Teodor Staaks, Daniel Dallorto, Stefano Olynick, Deirdre L. TI Pattern-generation and pattern-transfer for single-digit nano devices SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SCANNING TUNNELING MICROSCOPE; ATOMIC-FORCE MICROSCOPY; FEATURE-SCALE-MODEL; ROOM-TEMPERATURE; QUANTUM-DOT; ELECTRON TRANSISTORS; ETCHING PROCESSES; PROBE MICROSCOPY; SILICON TRENCHES; COULOMB-BLOCKADE AB Single-electron devices operating at room temperature require sub-5 nm quantum dots having tunnel junctions of comparable dimensions. Further development in nanoelectronics depends on the capability to generate mesoscopic structures and interfacing these with complementary metal-oxide-semiconductor devices in a single system. The authors employ a combination of two novel methods of fabricating room temperature silicon single-electron transistors (SETs), Fowler-Nordheim scanning probe lithography (F-N SPL) with active cantilevers and cryogenic reactive ion etching followed by pattern-dependent oxidation. The F-N SPL employs a low energy electron exposure of 5-10 nm thick high-resolution molecular resist (Calixarene) resulting in single nanodigit lithographic performance [Rangelow et al., Proc. SPIE 7637, 76370V (2010)]. The followed step of pattern transfer into silicon becomes very challenging because of the extremely low resist thickness, which limits the etching depth. The authors developed a computer simulation code to simulate the reactive ion etching at cryogenic temperatures (-120 degrees C). In this article, the authors present the alliance of all these technologies used for the manufacturing of SETs capable to operate at room temperatures. (C) 2016 American Vacuum Society. C1 [Rangelow, Ivo W.; Ahmad, Ahmad; Ivanov, Tzvetan; Kaestner, Marcus; Krivoshapkina, Yana; Angelov, Tihomir; Lenk, Steve; Lenk, Claudia; Ishchuk, Valentyn; Hofmann, Martin; Nechepurenko, Diana; Atanasov, Ivaylo; Volland, Burkhard; Guliyev, Elshad] Ilmenau Univ Technol, Inst Micro & Nanoelect, Dept Micro & Nanoelect Syst MNES, Gustav Kirchhoff Str 1, D-98693 Ilmenau, Germany. [Durrani, Zahid; Jones, Mervyn; Wang, Chen; Liu, Dixi] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England. [Reum, Alexander; Holz, Mathias] Nano Analyt GmbH, Ehrenbergstr 11, D-98693 Ilmenau, Germany. [Nikolov, Nikolay] Mikrosistemi Ltd, Varna 9010, Bulgaria. [Majstrzyk, Wojciech; Gotszalk, Teodor] Wroclaw Univ Sci & Technol, Fac Micorsyst Elect & Photon, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland. [Staaks, Daniel; Dallorto, Stefano; Olynick, Deirdre L.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Rangelow, IW (reprint author), Ilmenau Univ Technol, Inst Micro & Nanoelect, Dept Micro & Nanoelect Syst MNES, Gustav Kirchhoff Str 1, D-98693 Ilmenau, Germany. EM ivo.rangelow@tu-ilmenau.de; ahmad.ahmad@TU-Ilmenau.de; tzvetan.ivanov@tu-ilmenau.de; marcus.kaestner@tu-ilmenau.de; yana.krivoshapkina@tu-ilmenau.de; tihomir.angelov@tu-ilmenau.de; steve.lenk@tu-ilmenau.de; claudia.lenk@tu-ilmenau.de; valentyn.ishchuk@tu-ilmenau.de; MartinHofmann@tu-ilmenau.de; DianaNechepurenko@tu-ilmenau.de; ivaylo.atanasov@tu-ilmenau.de; BurkhardVolland@tu-ilmenau.de; elshad.guliyev@tu-ilmenau.de; z.durrani@imperial.ac.uk; m.jones@imperial.ac.uk; c.wang@imperial.ac.uk; d.liu@imperial.ac.uk; alexander.reum@tu-ilmenau.de; m.holz@nanoanalytik.net; n.nikolov@mikrosistemi.com; wojciech.majstrzyk@pwr.edu.pl; teodor.gotszalk@pwr.wroc.pl; DStaaks@lbl.gov; SDallorto@lbl.gov; DLOlynick@lbl.gov FU European Union [318804]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Oxford Instruments; Seagate Technologies FX The research leading to these results has received funding from the European Union's Seventh Framework Programme FP7/2007-2013 under Grant No. 318804 ("Single Nanometer Manufacturing for beyond CMOS devices"-acronym SNM). Some of this work was performed at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 (DO) Oxford Instruments (SD) and Seagate Technologies (DS). NR 62 TC 0 Z9 0 U1 8 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV-DEC PY 2016 VL 34 IS 6 AR 06K202 DI 10.1116/1.4966556 PG 13 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA EE3WD UT WOS:000389530000002 ER PT J AU Matzen, LE Trumbo, MC Haass, MJ Hunter, MA Silva, A Stevens-Adams, SM Bunting, MF O'Rourke, P AF Matzen, Laura E. Trumbo, Michael C. Haass, Michael J. Hunter, Michael A. Silva, Austin Stevens-Adams, Susan M. Bunting, Michael F. O'Rourke, Polly TI Practice makes imperfect: Working memory training can harm recognition memory performance SO MEMORY & COGNITION LA English DT Article DE Working memory training; Mental imagery; Recognition memory; Memory strategies ID FLUID INTELLIGENCE; TASK; CONCRETENESS; IMPROVEMENT; RETRIEVAL; CAPACITY; CHILDREN; IMAGERY; RECALL; SKILLS AB There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved on the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group's performance on a recognition memory task increased after training, the WM training group's performance on the task decreased after training. Participants' descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. These results indicate that WM training may have unintended consequences for other types of memory performance. C1 [Matzen, Laura E.; Trumbo, Michael C.; Haass, Michael J.; Silva, Austin; Stevens-Adams, Susan M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Trumbo, Michael C.; Hunter, Michael A.] Univ New Mexico, Albuquerque, NM 87131 USA. [Bunting, Michael F.; O'Rourke, Polly] Univ Maryland, Ctr Adv Study Language, College Pk, MD 20742 USA. RP Matzen, LE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM lematze@sandia.gov FU Sandia National Laboratories Laboratory Directed Research and Development Program FX This work was funded by the Sandia National Laboratories Laboratory Directed Research and Development Program. NR 48 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-502X EI 1532-5946 J9 MEM COGNITION JI Mem. Cogn. PD NOV PY 2016 VL 44 IS 8 BP 1168 EP 1182 DI 10.3758/s13421-016-0629-4 PG 15 WC Psychology, Experimental SC Psychology GA EE7WC UT WOS:000389834700003 PM 27380498 ER PT J AU Shao, Y Markovic, NM AF Shao, Yuyan Markovic, Nenad M. TI Prelude: The renaissance of electrocatalysis SO NANO ENERGY LA English DT Editorial Material C1 [Shao, Yuyan] Pacific Northwestern Natl Lab, Richland, WA 99352 USA. [Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Shao, Y (reprint author), Pacific Northwestern Natl Lab, Richland, WA 99352 USA.; Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yuyan.shao@pnnl.gov; nmmarkovic@anl.gov RI Shao, Yuyan/A-9911-2008 OI Shao, Yuyan/0000-0001-5735-2670 NR 0 TC 0 Z9 0 U1 15 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 1 EP 3 DI 10.1016/j.nanoen.2016.09.025 PG 3 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100001 ER PT J AU Strmcnik, D Lopes, PP Genorio, B Stamenkovic, VR Markovic, NM AF Strmcnik, Dusan Lopes, Pietro Papa Genorio, Bostjan Stamenkovic, Vojislav R. Markovic, Nenad M. TI Design principles for hydrogen evolution reaction catalyst materials SO NANO ENERGY LA English DT Article DE Hydrogen evolution reaction; Electrocatalysis; pH effect; Surface science; Structure-function relationships ID OXYGEN REDUCTION REACTION; SINGLE-CRYSTAL SURFACES; CATHODIC H-2 EVOLUTION; ELECTROCATALYTIC MATERIALS; PLATINUM SURFACES; ACID-SOLUTIONS; VOLCANO CURVE; ELECTRODES; WATER; METAL AB Design and synthesis of active, stable and cost-effective materials for efficient hydrogen production (hydrogen evolution reaction, HER) is of paramount importance for the successful deployment of hydrogen -based alternative energy technologies. The HER, seemingly one of the simplest electrochemical reactions, has served for decades to bridge the gap between fundamental electrocatalysis and practical catalyst design. However, there are still many open questions that need to be answered before it would be possible to claim that design principles of catalyst materials are fully developed for the efficient hydrogen production. In this review, by summarizing key results for the HER on well-characterized electrochemical interfaces in acidic and alkaline media, we have broadened our understanding of the HER in the whole range of pH by considering three main parameters: the nature of the proton donor (H3O+ in acid and H2O in alkaline), the energy of adsorption of H-ad and OHad, and the presence of spectator species. Simply by considering these three parameters we show that great deal has already been learned and new trends are beginning to emerge, giving some predictive ability with respect to the nature of electrochemical interface and electrocatalytic activity of the HER. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Strmcnik, Dusan; Lopes, Pietro Papa; Genorio, Bostjan; Stamenkovic, Vojislav R.; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Strmcnik, D (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM strmcnik@anl.gov RI Lopes, Pietro/E-2724-2013 OI Lopes, Pietro/0000-0003-3211-470X FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Contract DE-AC02-06CH11357 (BES-DMSE). NR 83 TC 0 Z9 0 U1 69 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 29 EP 36 DI 10.1016/j.nanoen.2016.04.017 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100003 ER PT J AU Holby, EF Zelenay, P AF Holby, Edward F. Zelenay, Piotr TI Linking structure to function: The search for active sites in non-platinum group metal oxygen reduction reaction catalysts SO NANO ENERGY LA English DT Article DE non-PGM catalysts; Oxygen reduction reaction; ORR; DFT modeling; Fuel cells ID CARBON ALLOY CATALYSTS; NITROGEN-DOPED CARBON; FUEL-CELL CATHODE; ELECTROCATALYSTS; GRAPHENE; IRON; FE; 1ST-PRINCIPLES; MECHANISMS; SURFACES AB Atomic-scale structures of oxygen reduction reaction (ORR) active sites in non-platinum group metal (non-PGM) catalysts, made from pyrolysis of carbon, nitrogen, and transition-metal (TM) precursors have been the subject of continuing discussion in the fuel cell electrocatalysis research community. Quantum chemical modeling is one path forward for understanding of these materials and how they catalyze the ORR. We here demonstrate through literature examples of how such modeling can be used to better understand non-PGM ORR active site relative stability and activity and how such efforts can also aid in the interpretation of experimental signatures produced by these materials. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Holby, Edward F.] Los Alamos Natl Lab, Sigma Div, Los Alamos, NM 87545 USA. [Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Zelenay, P (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. EM zelenay@lanl.gov OI Holby, Edward/0000-0001-8419-6298 FU Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy through Fuel Cell Technologies Office; Los Alamos National Laboratory through Laboratory Directed Research and Development FX Financial support from the Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy through Fuel Cell Technologies Office and from Los Alamos National Laboratory through Laboratory Directed Research and Development is gratefully acknowledged. E.H. would like to thank the LANL Institutional Computing Program for computational support. NR 49 TC 4 Z9 4 U1 36 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 54 EP 64 DI 10.1016/j.nanoen.2016.05.025 PG 11 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100006 ER PT J AU Wu, G Santandreu, A Kellogg, W Gupta, S Ogoke, O Zhang, HG Wang, HL Dai, LM AF Wu, Gang Santandreu, Ana Kellogg, William Gupta, Shiva Ogoke, Ogechi Zhang, Hanguang Wang, Hsing-Lin Dai, Liming TI Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition SO NANO ENERGY LA English DT Review DE Oxygen reduction; Oxygen evolution; energy conversion; Carbon; Nitrogen doping; Transition-metal doping ID MEMBRANE FUEL-CELLS; PROTON-EXCHANGE MEMBRANE; CHEMICAL-VAPOR-DEPOSITION; GRAPHENE-BASED CATALYSTS; HETEROATOM-DOPED CARBON; ONION-LIKE CARBON; CATHODE CATALYSTS; ELECTROCATALYTIC ACTIVITY; METHANOL ELECTROOXIDATION; ENERGY-STORAGE AB Oxygen reduction reaction (ORR) and evolution reaction (OER) are one pair of the most important electrochemical reactions associated with energy conversion and storage technologies, such as fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish ORR and OER requires a significantly large quantity of precious metals (e.g., Pt or Ir) to enhance reaction activity and durability. Highly active and robust nonprecious metal catalysts (NPMCs) are desperately required to address the cost and durability issues. Among NPMC formulations studied, carbon-based catalysts hold the greatest promise to replace these precious metals in the future due to their low-cost, extremely high surface area, excellent mechanical and electrical properties, sufficient stability under harsh environments, and high functionality. In particular, nitrogen-doped carbon nanocomposites, which were prepared from "metal-free" N-C formulations and transition metals-derived M-N-C (M=Fe or Co), have demonstrated remarkably improved catalytic activity and stability in alkaline and acidic electrolytes. In this review, based on the recent progress in the field, we aim to provide an overview for both types of carbon catalysts in terms of catalyst synthesis, structure/morphology, and catalytic activity and durability enhancement. We primarily focus on elucidation of synthesis-structure-activity correlations obtained from synthesis and extensive characterization, thereby providing guidance for rational design of advanced catalysts for the ORR. Additionally, a hybrid concept of using highly ORR active carbon nanocomposites to support Pt nanoparticles was highlighted with an aim to enhance catalytic performance and reduce required precious metal loading. Beyond the ORR, opportunities and challenges of ORR/OER bifunctional carbon composite catalysts were outlined. Perspectives on these carbon-based catalysts, future approaches, and possible pathways to address current remaining challenges are also discussed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Wu, Gang; Santandreu, Ana; Kellogg, William; Gupta, Shiva; Ogoke, Ogechi; Zhang, Hanguang] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. [Wang, Hsing-Lin] Los Alamos Natl Lab, Div Chem, Phys Chem & Spect, Los Alamos, NM 87545 USA. [Dai, Liming] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA. RP Wu, G (reprint author), SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA.; Wang, HL (reprint author), Los Alamos Natl Lab, Div Chem, Phys Chem & Spect, Los Alamos, NM 87545 USA.; Dai, LM (reprint author), Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA. EM gangwu@buffalo.edu; hwang@lanl.gov; liming.dai@case.edu RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 FU start-up Funds of University at Buffalo; U.S. Department of Energy, Fuel Cell Technologies Office (FCTO) Incubator Program [DE-EE000696]; NSF [CMMI-1400274, CMMI-1266295]; DOD-AFOSR-MURI [FA9550-12-1-0037]; Laboratory Directed Research & Development (LDRD) program at Los Alamos National Laboratory FX G. Wu. acknowledges the financial support from the start-up Funds of University at Buffalo along with U.S. Department of Energy, Fuel Cell Technologies Office (FCTO) Incubator Program (DE-EE000696). L. Dai. thanks for the financial supports from NSF (CMMI-1400274, CMMI-1266295), and DOD-AFOSR-MURI (FA9550-12-1-0037). H-L Wang is grateful to the support from Laboratory Directed Research & Development (LDRD) program at Los Alamos National Laboratory. NR 178 TC 18 Z9 18 U1 280 U2 280 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 83 EP 110 DI 10.1016/j.nanoen.2015.12.032 PG 28 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100008 ER PT J AU Lv, HF Li, DG Strmcnik, D Paulikas, AP Markovic, NM Stamenkovic, VR AF Lv, Haifeng Li, Dongguo Strmcnik, Dusan Paulikas, Arvydas P. Markovic, Nenad M. Stamenkovic, Vojislav R. TI Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction SO NANO ENERGY LA English DT Article DE Pt alloys; Fuel cells; Nanoparticles; Electrocatalysis; Oxygen reduction reaction ID MEMBRANE FUEL-CELLS; CORE-SHELL NANOPARTICLES; HYDROGEN-PEROXIDE ELECTROCHEMISTRY; HIGH-PERFORMANCE ELECTROCATALYSTS; PALLADIUM ALLOY ELECTROCATALYSTS; SINGLE-CRYSTAL SURFACES; BY-LAYER DEPOSITION; ENHANCED ACTIVITY; PLATINUM-ELECTRODES; BIMETALLIC NANOPARTICLES AB In the past decade, polymer electrolyte membrane fuels (PEMFCs) have been evaluated for both automotive and stationary applications. One of the main obstacles for large scale commercialization of this technology is related to the sluggish oxygen reduction reaction that takes place on the cathode side of fuel cell. Consequently, ongoing research efforts are focused on the design of cathode materials that could improve the kinetics and durability. Majority of these efforts rely on novel synthetic approaches that provide control over the structure, size, shape and composition of catalytically active materials. This article highlights the most recent advances that have been made to tailor critical parameters of the nanoscale materials in order to achieve more efficient performance of the oxygen reduction reaction (ORR). (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Lv, Haifeng; Li, Dongguo; Strmcnik, Dusan; Paulikas, Arvydas P.; Markovic, Nenad M.; Stamenkovic, Vojislav R.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Stamenkovic, VR (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM vrstamenkovic@anl.gov OI Li, Dongguo/0000-0001-7578-7811 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-06CH11357]; Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program FX The research conducted at Argonne National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract no. DE-AC02-06CH11357 and by the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. The authors thank to Chao Wang, Joshua Snyder, Dennis van der Vliet, Dusan Tripkovic, Yijin Kang, Deborah Myers, Peidong Yang and Karren More for many years of collaboration that has led to a number of publications in the field of fuel cell electrocatalysis. NR 177 TC 5 Z9 5 U1 38 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 149 EP 165 DI 10.1016/j.nanoen.2016.04.008 PG 17 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100012 ER PT J AU Cheng, NC Shao, YY Liu, J Sun, XL AF Cheng, Niancai Shao, Yuyan Liu, Jun Sun, Xueliang TI Electrocatalysts by atomic layer deposition for fuel cell applications SO NANO ENERGY LA English DT Article DE Atomic layer deposition; Fuel cells; Electrocatalysts; Nanomaterials; Catalyst design ID OXYGEN REDUCTION REACTION; NITROGEN-DOPED GRAPHENE; FORMIC-ACID ELECTROOXIDATION; PT-SKIN SURFACES; PLATINUM NANOPARTICLES; THIN-FILMS; CARBON NANOTUBES; METHANOL ELECTROOXIDATION; SUPPORT MATERIALS; GAMMA-AL2O3 SURFACES AB Fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focus on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Cheng, Niancai; Sun, Xueliang] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada. [Shao, Yuyan; Liu, Jun] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Sun, XL (reprint author), Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada. EM xsun@eng.uwo.ca RI Shao, Yuyan/A-9911-2008; Sun, Xueliang/C-7257-2012 OI Shao, Yuyan/0000-0001-5735-2670; FU Natural Sciences and Engineering Research Council of Canada (NSERC); Canadian Light Source (CLS); Canada Research Chair (CRC) Program; Canada Foundation for Innovation (CFI); Ontario Research Fund (ORF); Automotive Partnership of Canada (APC); University of Western Ontario; U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152] FX This research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Light Source (CLS), Canada Research Chair (CRC) Program, Canada Foundation for Innovation (CFI), Ontario Research Fund (ORF), Automotive Partnership of Canada (APC), and the University of Western Ontario. Liu and Shao would like to acknowledge the support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award KC020105-FWP12152 for their contribution to this paper. NR 162 TC 3 Z9 3 U1 27 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 220 EP 242 DI 10.1016/j.nanoen.2016.01.016 PG 23 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100016 ER PT J AU Kuttiyiel, KA Choi, Y Sasaki, K Su, D Hwang, SM Yim, SD Yang, TH Park, GG Adzic, RR AF Kuttiyiel, Kurian A. Choi, YongMan Sasaki, Kotaro Su, Dong Hwang, Sun-Mi Yim, Sung-Dae Yang, Tae-Hyun Park, Gu-Gon Adzic, Radoslav R. TI Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction SO NANO ENERGY LA English DT Article DE Fuel Cells; Electrocatalysis; Density function theory; Core-shell catalyst; Pt monolayer; Oxygen reduction reaction ID CATALYSTS; NANOPARTICLES; ADSORPTION; CHALLENGES; STABILITY; SURFACES; LATTICE; ALLOYS AB Platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the D-band center with respect to the Fermi level. Depending on the structure of the IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kuttiyiel, Kurian A.; Sasaki, Kotaro; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Choi, YongMan] SABIC Technol Ctr, Chem Catalysis, Riyadh 11551, Saudi Arabia. [Hwang, Sun-Mi; Yim, Sung-Dae; Yang, Tae-Hyun; Park, Gu-Gon] Korea Inst Energy Res, Fuel Cell Res Ctr, Daejeon 34129, South Korea. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.; Park, GG (reprint author), Korea Inst Energy Res, Fuel Cell Res Ctr, Daejeon 34129, South Korea. EM adzic@bnl.gov; gugon@kier.re.kr RI Su, Dong/A-8233-2013 OI Su, Dong/0000-0002-1921-6683 FU U.S. Department of Energy [DE-SC0012704]; KIER's (Korea Institute of Energy Research) Research and Development Program [B5-2425]; International Collaborative Energy Technology R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry & Energy, Republic of Korea [20158520030830]; Office of Science of the U.S. DOE [DEAC02-05CH11231] FX This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract no. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This work was also conducted under the framework of KIER's (Korea Institute of Energy Research) Research and Development Program (B5-2425) and supported by the International Collaborative Energy Technology R&D Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20158520030830). We thank the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. DOE under Contract no. DEAC02-05CH11231. NR 34 TC 2 Z9 2 U1 48 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 261 EP 267 DI 10.1016/j.nanoen.2016.05.024 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100019 ER PT J AU Du, L Shao, YY Sun, JM Yin, GP Liu, J Wang, Y AF Du, Lei Shao, Yuyan Sun, Junming Yin, Geping Liu, Jun Wang, Yong TI Advanced catalyst supports for PEM fuel cell cathodes SO NANO ENERGY LA English DT Article DE Support materials; PEM fuel cells; Carbon; Metal oxide; Hybride composite; Durability ID OXYGEN REDUCTION REACTION; HIGH-PERFORMANCE CATALYST; NITROGEN-DOPED GRAPHENE; WALLED CARBON NANOTUBES; MESOPOROUS METAL-OXIDE; ELECTROCATALYST SUPPORT; METHANOL OXIDATION; TUNGSTEN CARBIDE; ALCOHOL ELECTROOXIDATION; PLATINUM NANOPARTICLES AB Electrocatalyst support materials are key components for polymer exchange membrane (PEM) fuel cells, which play a critical role in determining electrocatalyst durability and activity, mass transfer and water management. The commonly-used supports, e.g. porous carbon black, cannot meet all the requirements under the harsh operation condition of PEM fuel cells. Great efforts have been made in the last few years in developing alternative support materials. In this paper, we selectively review recent progress on three types of important support materials: carbon, non-carbon and hybrid carbon-oxides nanocomposites. A perspective on future R&D of electrocatalyst support materials is also provided. (C) 2016 Published by Elsevier Ltd. C1 [Du, Lei; Shao, Yuyan; Liu, Jun; Wang, Yong] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Du, Lei; Sun, Junming; Wang, Yong] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Du, Lei; Yin, Geping] Harbin Inst Technol, Sch Chem Engn & Technol, Harbin 150001, Peoples R China. RP Shao, Y; Liu, J; Wang, Y (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA.; Wang, Y (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM yuyan.shao@pnnl.gov; jun.liu@pnnl.gov; yong.wang@pnnl.gov RI Sun, Junming/B-3019-2011; Shao, Yuyan/A-9911-2008 OI Sun, Junming/0000-0002-0071-9635; Shao, Yuyan/0000-0001-5735-2670 FU U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office; China Scholarship Council; DOE [DE-AC05-76L01830] FX This work is supported by the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. L. Du acknowledges the scholarship from the China Scholarship Council. PNNL is operated by Battelle for DOE under Contract DE-AC05-76L01830. NR 145 TC 1 Z9 1 U1 44 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD NOV PY 2016 VL 29 SI SI BP 314 EP 322 DI 10.1016/j.nanoen.2016.03.016 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA EE5DC UT WOS:000389624100023 ER PT J AU Deblonde, GJP Abergel, RJ AF Deblonde, Gauthier J. -P. Abergel, Rebecca J. TI Active actinium SO NATURE CHEMISTRY LA English DT Editorial Material C1 [Deblonde, Gauthier J. -P.; Abergel, Rebecca J.] Lawrence Berkeley Natl Lab, Div Chem Sci, MS 70A-1150,One Cyclotron Rd, Berkeley, CA 94720 USA. RP Deblonde, GJP (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, MS 70A-1150,One Cyclotron Rd, Berkeley, CA 94720 USA. EM gdeblonde@lbl.gov; rjabergel@lbl.gov OI deblonde, gauthier/0000-0002-0825-8714 NR 5 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD NOV PY 2016 VL 8 IS 11 BP 1084 EP 1084 DI 10.1038/nchem.2653 PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA ED9WS UT WOS:000389224800023 PM 27768109 ER PT J AU Meehl, GA Hu, AX Santer, BD Xie, SP AF Meehl, Gerald A. Hu, Aixue Santer, Benjamin D. Xie, Shang-Ping TI Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends SO NATURE CLIMATE CHANGE LA English DT Article ID CLIMATE VARIABILITY; DECADAL VARIABILITY; HIATUS PERIODS; AEROSOL; 20TH AB Longer-term externally forced trends in global mean surface temperatures (GMSTs) are embedded in the background noise of internally generated multidecadal variability(1). A key mode of internal variability is the Interdecadal Pacific Oscillation (IPO), which contributed to a reduced GMST trend during the early 2000s(1-3). We use a novel, physical phenomenon-based approach to quantify the contribution from a source of internally generated multidecadal variability-the IPO-to multidecadal GMST trends. Here we show that the largest IPO contributions occurred in its positive phase during the rapidwarming periods from 1910-1941 and 1971-1995, with the IPO contributing 71% and 75%, respectively, to the difference between the median values of the externally forced trends and observed trends. The IPO transition from positive to negative in the late-1990s contributed 27% of the discrepancy between model median estimates of the forced part of the GMST trend and the observed trend from 1995 to 2013, with additional contributions that are probably due to internal variability outside of the Pacific(4) and an externally forced response from small volcanic eruptions(5). Understanding and quantifying the contribution of a specific source of internally generated variability-the IPO-to GMST trends is necessary to improve decadal climate prediction skill. C1 [Meehl, Gerald A.; Hu, Aixue] Natl Ctr Atmospher Res, Boulder, CO 80301 USA. [Santer, Benjamin D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. [Xie, Shang-Ping] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92037 USA. RP Meehl, GA (reprint author), Natl Ctr Atmospher Res, Boulder, CO 80301 USA. EM meehl@ucar.edu RI Santer, Benjamin/F-9781-2011 FU Regional and Global Climate Modeling Program (RGCM) of the US Department of Energy's Office of Biological & Environmental Research (BER) Cooperative Agreement [DE-FC02-97ER62402]; National Science Foundation FX The authors thank C. Tebaldi for her contributions to formulating the GMST trend distributions and for stimulating discussions on how to quantify the relative roles of internal variability and externally forced response, and G. Jones for providing the masked CMIP5 model data. Portions of this study were supported by the Regional and Global Climate Modeling Program (RGCM) of the US Department of Energy's Office of Biological & Environmental Research (BER) Cooperative Agreement a DE-FC02-97ER62402 and the National Science Foundation. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIR the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The National Center for Atmospheric, Research is sponsored by the National Science Foundation. NR 19 TC 1 Z9 1 U1 4 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD NOV PY 2016 VL 6 IS 11 BP 1005 EP 1008 DI 10.1038/NCLIMATE3107 PG 4 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA EE2QC UT WOS:000389428300013 ER PT J AU Gondhalekar, AD Nakayasu, ES Silva, I Cooper, B Scharf, ME AF Gondhalekar, Ameya D. Nakayasu, Ernesto S. Silva, Isabel Cooper, Bruce Scharf, Michael E. TI Indoxacarb biotransformation in the German cockroach SO PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY LA English DT Article DE Indoxacarb; Sodium channel blocker insecticide; Metabolism; Resistance management; Blattella germanica ID S,S,S-TRIBUTYL PHOSPHOROTRITHIOATE; OXADIAZINE INSECTICIDE; SODIUM-CHANNELS; METABOLISM; TOXICITY; RESISTANCE; BORER; MODE AB Insecticides that are used for pest control undergo physical and biological (enzymatic) degradation. Indoxacarb is an oxadiazine class sodium channel blocicer insecticide used for German cockroach (Blattella germanica L) control. At present, no information is available on enzymatic biotransformation or metabolism of indoxacarb in this important urban pest. We studied the biotransformation pathways of indoxacarb in one susceptible and three field strains with varying susceptibility levels using liquid chromatography and high-resolution mass spectrometry. As shown in other insect species we found evidence for hydrolase-based bioactivation of indoxacarb to a toxic decarbomethoxylated metabolite, DCJW. In addition, both indoxacarb and DCJW were further metabolized to hydroxy, oxadiazine ring-opened and hydroxylated ring-opened metabolites. In general, higher indoxacarb disappearance, increased formation of DCJW and the above-mentioned metabolites were observed in the three field strains. In vitro biotransformation studies showed that hydroxylated and oxadiazine ring opened metabolite formation is NADPH/cytochrome P450-dependent. Bioassays and in vivo metabolism experiments using the enzyme-inhibiting insecticide synergists, piperonyl butoxide (PBO) and S,S,S,-tributyl phosphorotrithioate (DEF), provided insights into potential indoxacarb resistance mechanisms that may proliferate in German cockroach field strains following unchecked selection pressures. The information presented here is an essential step toward developing indoxacarb resistance management programs and also reveals mechanisms of secondary/tertiary indoxacarb toxicity. (C) 2016 Elsevier Inc. All rights reserved. C1 [Gondhalekar, Ameya D.; Silva, Isabel; Scharf, Michael E.] Purdue Univ, Dept Entomol, 901 W State St, W Lafayette, IN 47907 USA. [Nakayasu, Ernesto S.; Cooper, Bruce] Purdue Univ, Bindley Biosci Ctr, Metabolite Profiling Facil, 1201 W State St, W Lafayette, IN 47907 USA. [Nakayasu, Ernesto S.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Silva, Isabel] Royal Liverpool & Broadgreen Univ Hosp, Prescot St, Liverpool L7 8XP, Merseyside, England. RP Scharf, ME (reprint author), Purdue Univ, Dept Entomol, Entomol, 901 W State St, W Lafayette, IN 47907 USA. EM mscharf@purdue.edu NR 27 TC 0 Z9 0 U1 6 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0048-3575 EI 1095-9939 J9 PESTIC BIOCHEM PHYS JI Pest. Biochem. Physiol. PD NOV PY 2016 VL 134 BP 14 EP 23 DI 10.1016/j.pestbp.2016.05.003 PG 10 WC Biochemistry & Molecular Biology; Entomology; Physiology SC Biochemistry & Molecular Biology; Entomology; Physiology GA EE9SX UT WOS:000389967600003 PM 27914535 ER PT J AU Cheng, WY Zhang, Q Schroeder, A Villeneuve, DL Ankley, GT Conolly, R AF Cheng, Wan-Yun Zhang, Qiang Schroeder, Anthony Villeneuve, Daniel L. Ankley, Gerald T. Conolly, Rory TI Editor's Highlight: Computational Modeling of Plasma Vitellogenin Alterations in Response to Aromatase Inhibition in Fathead Minnows SO TOXICOLOGICAL SCIENCES LA English DT Article DE endocrine toxicology; aquatic toxicology; environmental toxicology; predictive toxicology; in vitro and altenatives; adverse outcome pathway; computational toxicology ID CHARACTERIZE ADAPTIVE RESPONSES; REPRODUCTIVE ENDOCRINE AXIS; PIMEPHALES-PROMELAS; DANIO-RERIO; EXPRESSION; GENE; RECEPTOR; FISH; TRANSCRIPTION; DISPOSITION AB In vertebrates, conversion of testosterone into 17 beta-estradiol (E2) is catalyzed by cytochrome P450 (CYP) 19A aromatase. An important role of E2 in oviparous vertebrates such as fish is stimulation of hepatic synthesis of the glycolipoprotein vitellogenin (VTG), an egg yolk precursor essential to oocyte development and larval survival. In fathead minnows (FHMs) (Pimephales promelas) exposed to the aromatase inhibitor fadrozole, plasma VTG levels do not change in concert with plasma E2 levels. Specifically, while plasma VTG and E2 levels both drop quickly when aromatase is first inhibited, the recovery of plasma VTG upon cessation of aromatase inhibition is substantially delayed relative to the recovery of plasma E2. We modified an existing computational model of the FHM hypothalamic-pituitary-gonadal axis to evaluate alternative hypotheses that might explain this delay. In the first hypothesis, a feedback loop involving active transport of VTG from the blood into the ovary is used. The activity of the transporter is negatively regulated by ovarian VTG. In the second hypothesis, a type 1 coherent feed-forward loop is implemented in the liver. This loop has 2 arms, both requiring E2 activation. The first arm describes direct, canonical E2-driven transcriptional induction of VTG, and the second describes an E2-driven intermediate transcriptional regulator that is also required for VTG synthesis. Both hypotheses accurately described the observed VTG dynamics. This result could be used to guide design of laboratory experiments intended to determine if either of the motifs, or perhaps even both of them, actually do control VTG dynamics in FHMs exposed to aromatase inhibitors. C1 [Cheng, Wan-Yun] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Cheng, Wan-Yun; Conolly, Rory] US EPA, Integrated Syst Toxicol Div, Natl Hlth & Effects Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Zhang, Qiang] Emory Univ, Rollins Sch Publ Hlth, Dept Environm Hlth, Atlanta, GA 30322 USA. [Schroeder, Anthony] Univ Minnesota Crookston, Math Sci & Technol Dept, Crookston, MN USA. [Villeneuve, Daniel L.; Ankley, Gerald T.] US EPA, Mid Continent Ecol Div, Natl Hlth & Environm Effects Res Lab, Off Res & Dev, Duluth, MN USA. RP Conolly, R (reprint author), US EPA, Integrated Syst Toxicol Div, Natl Hlth & Effects Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA. EM conolly.rory@epa.gov NR 37 TC 0 Z9 0 U1 8 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD NOV PY 2016 VL 154 IS 1 BP 78 EP 89 DI 10.1093/toxsci/kfw142 PG 12 WC Toxicology SC Toxicology GA ED6CA UT WOS:000388940900009 PM 27503384 ER PT J AU Clark, JF Urioostegui, SH Bibby, RK Esser, BK Tredoux, G AF Clark, Jordan F. Uriostegui, Stephanie H. Bibby, Richard K. Esser, Bradley K. Tredoux, Gideon TI Quantifying Apparent Groundwater Ages near Managed Aquifer Recharge Operations Using Radio-Sulfur (S-35) as an Intrinsic Tracer SO WATER LA English DT Article DE hydrologic tracers; travel time; retention time; radio-sulfur (S-35); Atlantis MAR Facility (South Africa); Orange County Water District MAR Facility (California; USA) ID COSMOGENIC S-35; WATER RECLAMATION; WASTE-WATER; CALIFORNIA; SNOWMELT; COLORADO; SULFATE; FUTURE; COUNTY; RATES AB The application of the cosmogenic radioisotope sulfur-35 (S-35) as a chronometer near spreading basins is evaluated at two well-established Managed Aquifer Recharge (MAR) sites: the Atlantis facility (South Africa) and Orange County Water District's (OCWD's) Kraemer Basin (Northern Orange County, CA, USA). Source water for both of these sites includes recycled wastewater. Despite lying nearer to the outlet end of their respective watersheds than to the headwaters, S-35 was detected in most of the water sampled, including from wells found close to the spreading ponds and in the source water. Dilution with S-35-dead continental SO4 was minimal, a surprising finding given its short similar to 3 month half-life. The initial work at the Atlantis MAR site demonstrated that remote laboratories could be set up and that small volume samples-saline solutions collected after the resin elution step from the recently developed batch method described below-can be stored and transported to the counting laboratory. This study also showed that the batch method needed to be altered to remove unknown compounds eluted from the resin along with SO4. Using the improved batch method, times series measurements of both source and well water from OCWD's MAR site showed significant temporal variations. This result indicates that during future studies, monthly to semi-monthly sampling should be conducted. Nevertheless, both of these initial studies suggest the S-35 chronometer may become a valuable tool for managing MAR sites where regulations require minimum retention times. C1 [Clark, Jordan F.; Uriostegui, Stephanie H.] Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. [Uriostegui, Stephanie H.] Lawrence Livermore Natl Lab, Environm Support & Programmat Outreach, Livermore, CA 94551 USA. [Uriostegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Tredoux, Gideon] CSIR Nat Resources & Environm, ZA-7559 Stellenbosch, South Africa. RP Clark, JF (reprint author), Univ Calif Santa Barbara, Dept Earth Sci, Santa Barbara, CA 93106 USA. EM jfclark@geol.ucsb.edu; uriostegui1@llnl.gov; esser1@llnl.gov; gideon.tredoux@gmail.com FU WaterReuse Research Foundation [WRRF-09-11]; Water Replenishment District of Southern California (WRD); OCWD; State of California Groundwater Ambient Monitoring and Assessment (GAMA) Special Studies Program; Lawrence Graduate Scholarship Program at the Lawrence Livermore National Laboratory; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by the WaterReuse Research Foundation (WRRF-09-11) in cooperation with the Water Replenishment District of Southern California (WRD) and the OCWD; the UCSB Academic Senate Faculty Research Program provided support to travel to and sample the Atlantis MAR system; the State of California Groundwater Ambient Monitoring and Assessment (GAMA) Special Studies Program and the Lawrence Graduate Scholarship Program at the Lawrence Livermore National Laboratory provided support for the 35S analyses. The city of Cape Town is thanked for allowing access to the Atlantis MAR site. We would also like to thank Jason Dadakis, Roy Herndon, Nira Yamachika, Adam Hutchinson, Greg Woodside, Patrick Versluis, and Mike Wehner from OCWD and Theodore Johnson from WRD for their encouragement and project support. Alex Cruz and Bronson Cabalitasan from UCSB assisted in 35S analyses. The original idea for using 35S as an intrinsic tracer near MAR came from a conservation between Jordan F. Clark and Andrew L. Herczeg (CSIRO, Land and Water, Adelaide, South Australia) while both were visiting the Water Resources Program, International Atomic Energy Agency. Contributions by Stephanie Uriostegui, Richard Bibby, and Brad Esser were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 38 TC 0 Z9 0 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4441 J9 WATER-SUI JI Water PD NOV PY 2016 VL 8 IS 11 AR 474 DI 10.3390/w8110474 PG 12 WC Water Resources SC Water Resources GA EE5PR UT WOS:000389660700001 ER PT J AU Uddin, MJ Crews, BC Xu, S Ghebreselasie, K Daniel, CK Kingsley, PJ Banerjee, S Marneet, LJ AF Uddin, Md. Jashim Crews, Brenda C. Xu, Shu Ghebreselasie, Kebreab Daniel, Cristina K. Kingsley, Philip J. Banerjee, Surajit Marneet, Lawrence J. TI Antitumor Activity of Cytotoxic Cyclooxygenase-2 Inhibitors SO ACS CHEMICAL BIOLOGY LA English DT Article ID NONSTEROIDAL ANTIINFLAMMATORY DRUG; SELECTIVE-INHIBITION; COLORECTAL-CANCER; COX-2 INHIBITORS; MOLECULAR-BASIS; IMAGING AGENTS; IN-VIVO; EXPRESSION; INDOMETHACIN; TARGET AB Targeted delivery of chemotherapeutic agents to tumors has been explored as a means to increase the selectivity and potency of cytotoxicity. Most efforts in this area have exploited the molecular recognition of proteins highly expressed on the surface of cancer cells followed by internalization. A related approach that has received less attention is the targeting of intracellular proteins by ligands conjugated to anticancer drugs. An attractive target for this approach is the enzyme cyclooxygenase-2 (COX-2), which is highly expressed in a range of malignant tumors. Herein, we describe the synthesis and evaluation of a series of chemotherapeutic agents targeted to COX-2 by conjugation to indomethacin. Detailed characterization of compound 12, a conjugate of indomethacin with podophyllotoxin, revealed highly potent and selective COX-2 inhibition in vitro and in intact cells. Kinetics and X-ray crystallographic studies demonstrated that compound 12 is a slow, tight-binding inhibitor that likely binds to COX-2's allosteric site with its indomethacin moiety in a conformation similar to that of indomethacin. Compound 12 exhibited cytotoxicity in cell culture similar to that of podophyllotoxin with no evidence of COX-2-dependent selectivity. However, in vivo, compound 12 accumulated selectively in and more effectively inhibited the growth of a COX-2-expressing xenograft compared to a xenograft that did not express COX-2. Compound 12, which we have named chemocoxib A, provides proof-of-concept for the in vivo targeting of chemotherapeutic agents to COX-2 but suggests that COX-2-dependent selectivity may not be evident in cell culture-based assays. C1 [Uddin, Md. Jashim; Crews, Brenda C.; Xu, Shu; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Marneet, Lawrence J.] Vanderbilt Univ, AB Hancock Mem Lab Canc Res, Vanderbilt Inst Chem Biol, Dept Biochem,Sch Med, 850 RRB,2220 Pierce Ave, Nashville, TN 37232 USA. [Uddin, Md. Jashim; Crews, Brenda C.; Xu, Shu; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Marneet, Lawrence J.] Vanderbilt Univ, AB Hancock Mem Lab Canc Res, Vanderbilt Inst Chem Biol, Dept Chem,Sch Med, 850 RRB,2220 Pierce Ave, Nashville, TN 37232 USA. [Uddin, Md. Jashim; Crews, Brenda C.; Xu, Shu; Ghebreselasie, Kebreab; Daniel, Cristina K.; Kingsley, Philip J.; Marneet, Lawrence J.] Vanderbilt Univ, AB Hancock Mem Lab Canc Res, Vanderbilt Inst Chem Biol, Dept Pharmacol,Sch Med, 850 RRB,2220 Pierce Ave, Nashville, TN 37232 USA. [Banerjee, Surajit] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA. [Banerjee, Surajit] Argonne Natl Lab, Northeastern Collaborat Access Team, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Marneet, LJ (reprint author), Vanderbilt Univ, AB Hancock Mem Lab Canc Res, Vanderbilt Inst Chem Biol, Dept Biochem,Sch Med, 850 RRB,2220 Pierce Ave, Nashville, TN 37232 USA.; Marneet, LJ (reprint author), Vanderbilt Univ, AB Hancock Mem Lab Canc Res, Vanderbilt Inst Chem Biol, Dept Chem,Sch Med, 850 RRB,2220 Pierce Ave, Nashville, TN 37232 USA.; Marneet, LJ (reprint author), Vanderbilt Univ, AB Hancock Mem Lab Canc Res, Vanderbilt Inst Chem Biol, Dept Pharmacol,Sch Med, 850 RRB,2220 Pierce Ave, Nashville, TN 37232 USA. EM larrymarnett@vanderbilt.edu RI Xu, Shu/K-6089-2013 OI Xu, Shu/0000-0002-6876-7991 FU National Institutes of Health [R01 CA89450]; National Institute of General Medical Sciences from the National Institutes of Health [P41 GM103403, S10 RR029205]; Argonne National Laboratory [DE-AC02-06CH11357] FX We are grateful to the National Institutes of Health (R01 CA89450) to support this project and to Northeastern Collaborative Access Team beamlines for X-ray cocrystal diffraction studies funded by the National Institute of General Medical Sciences from the National Institutes of Health (P41 GM103403 and S10 RR029205) and Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We are also grateful to the Vanderbilt Small Molecule NMR Core and the Vanderbilt Mass Spectroscopy Research Center for compound characterizations. NR 36 TC 0 Z9 0 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1554-8929 EI 1554-8937 J9 ACS CHEM BIOL JI ACS Chem. Biol. PD NOV PY 2016 VL 11 IS 11 BP 3052 EP 3060 DI 10.1021/acschembio.6b00560 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA EC8YX UT WOS:000388430100012 PM 27588346 ER PT J AU Zhang, HF Vorobeychik, Y Letchford, J Lakkaraju, K AF Zhang, Haifeng Vorobeychik, Yevgeniy Letchford, Joshua Lakkaraju, Kiran TI Data-driven agent-based modeling, with application to rooftop solar adoption SO AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS LA English DT Article DE Machine learning; Agent-based modeling; Innovation diffusion; Rooftop solar; Policy optimization ID TECHNOLOGY DIFFUSION; ENERGY TECHNOLOGIES; SYSTEMS; POLICY; PREFERENCES; BEHAVIOR; SAMPLES AB Agent-based modeling is commonly used for studying complex system properties emergent from interactions among agents. However, agent-based models are often not developed explicitly for prediction, and are generally not validated as such. We therefore present a novel data-driven agent-based modeling framework, in which individual behavior model is learned by machine learning techniques, deployed in multi-agent systems and validated using a holdout sequence of collective adoption decisions. We apply the framework to forecasting individual and aggregate residential rooftop solar adoption in San Diego county and demonstrate that the resulting agent-based model successfully forecasts solar adoption trends and provides a meaningful quantification of uncertainty about its predictions. Meanwhile, we construct a second agent-based model, with its parameters calibrated based on mean square error of its fitted aggregate adoption to the ground truth. Our result suggests that our data-driven agent-based approach based on maximum likelihood estimation substantially outperforms the calibrated agent-based model. Seeing advantage over the state-of-the-art modeling methodology, we utilize our agent-based model to aid search for potentially better incentive structures aimed at spurring more solar adoption. Although the impact of solar subsidies is rather limited in our case, our study still reveals that a simple heuristic search algorithm can lead to more effective incentive plans than the current solar subsidies in San Diego County and a previously explored structure. Finally, we examine an exclusive class of policies that gives away free systems to low-income households, which are shown significantly more efficacious than any incentive-based policies we have analyzed to date. C1 [Zhang, Haifeng; Vorobeychik, Yevgeniy] Vanderbilt Univ, Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA. [Letchford, Joshua; Lakkaraju, Kiran] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Zhang, HF (reprint author), Vanderbilt Univ, Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA. EM haifeng.zhang@vanderbilt.edu; yevgeniy.vorobeychik@vanderbilt.edu; jletchf@sandia.gov; klakkar@sandia.gov FU U.S. Department of Energy (DOE) office of Energy Efficiency and Renewable Energy, under the Solar Energy Evolution and Diffusion Studies (SEEDS) program FX This work was partially supported by the U.S. Department of Energy (DOE) office of Energy Efficiency and Renewable Energy, under the Solar Energy Evolution and Diffusion Studies (SEEDS) program. NR 45 TC 1 Z9 1 U1 7 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-2532 EI 1573-7454 J9 AUTON AGENT MULTI-AG JI Auton. Agents Multi-Agent Syst. PD NOV PY 2016 VL 30 IS 6 SI SI BP 1023 EP 1049 DI 10.1007/s10458-016-9326-8 PG 27 WC Automation & Control Systems; Computer Science, Artificial Intelligence SC Automation & Control Systems; Computer Science GA ED4IY UT WOS:000388812500002 ER PT J AU Marchbank, HR Clark, AH Hyde, TI Playford, HY Tucker, MG Thompsett, D Fisher, JM Chapman, KW Beyer, KA Monte, M Longo, A Sankar, G AF Marchbank, Huw R. Clark, Adam H. Hyde, Timothy I. Playford, Helen Y. Tucker, Matthew G. Thompsett, David Fisher, Janet M. Chapman, Karena W. Beyer, Kevin A. Monte, Manuel Longo, Alessandro Sankar, Gopinathan TI Structure of Nano-sized CeO2 Materials: Combined Scattering and Spectroscopic Investigations SO CHEMPHYSCHEM LA English DT Article DE ceria; EXAFS; pair distribution functions; Reverse Monte Carlo; Rietveld analysis ID CATALYTIC-CONVERTERS; NANOPARTICLES; PERSPECTIVES; TRANSITIONS; VALENCE; POWDER; CERIA AB The structure of several nano-sized ceria, CeO2, systems was investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction and total pair distribution functions (PDFs) revealed that in all of the samples the occupancy of both Ce4+ and O2- are very close to the ideal stoichiometry, the analysis using Reverse Monte Carlo technique revealed significant disorder around oxygen atoms in the nano-sized ceria samples in comparison to the highly crystalline NIST standard. In addition, the analysis revealed that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributable to the particle size of the CeO2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L-3- and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, is attributed to differences in particle size. C1 [Marchbank, Huw R.; Clark, Adam H.; Sankar, Gopinathan] UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England. [Hyde, Timothy I.; Thompsett, David; Fisher, Janet M.] Johnson Matthey Technol Ctr, Reading RG4 9NH, Berks, England. [Playford, Helen Y.; Tucker, Matthew G.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Tucker, Matthew G.] Diamond Light Source, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. [Tucker, Matthew G.] Spallat Neutron Source, One Bethel Valley Rd,MS-6475, Oak Ridge, TN 37831 USA. [Chapman, Karena W.; Beyer, Kevin A.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Monte, Manuel] ESRF European Synchrotron, CS40220, F-38043 Grenoble 9, France. [Longo, Alessandro] ESRF European Synchrotron, Netherlands Org Sci Res NWO, CS40220, F-38043 Grenoble 9, France. [Longo, Alessandro] CNR, ISMN, Via Ugo La Malfa 153, I-90146 Palermo, Italy. RP Sankar, G (reprint author), UCL, Dept Chem, 20 Gordon St, London WC1H 0AJ, England. EM g.sankar@ucl.ac.uk OI Hyde, Timothy/0000-0003-0435-2380 FU Johnson Matthey Plc; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX We thank EPSRC and Johnson Matthey Plc for a Case Award (HRM and AHC). We thank the U.K. Science and Technology Facilities Council for allocating neutron beam time at the ISIS facility. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We also thank Peter Chupas for help with the beamline operations at APS. NR 31 TC 0 Z9 0 U1 14 U2 14 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD NOV PY 2016 VL 17 IS 21 BP 3494 EP 3503 DI 10.1002/cphc.201600697 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA ED1UA UT WOS:000388629200022 PM 27569997 ER PT J AU Eberle, APR King, HE Ravikovitch, PI Walters, CC Rother, G Wesolowski, DJ AF Eberle, Aaron P. R. King, Hubert E. Ravikovitch, Peter I. Walters, Clifford C. Rother, Gernot Wesolowski, David J. TI Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering SO ENERGY & FUELS LA English DT Article ID CAPILLARY CONDENSATION; MOLECULAR SIMULATION; FUNCTIONAL THEORY; PORE VOLUME; ADSORPTION; COAL; KEROGEN; SURFACE; MODEL; ROCKS AB We report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. In contrast, the methane density is 2.1 +/- 0.2 times greater in the organic mesopores. Classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs. C1 [Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; Walters, Clifford C.] ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. [Rother, Gernot; Wesolowski, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Eberle, APR (reprint author), ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. EM aaron.p.eberle@exxonmobil.com RI Rother, Gernot/B-7281-2008 OI Rother, Gernot/0000-0003-4921-6294 FU ExxonMobil through the U.S. Department of Energy Work for Others Project [NFE-12-03861]; NIST FX The authors thank Deniz Ertas and Pavel Kortunov of the ExxonMobil Research and Engineering Company and Yun Liu, Steven Kline, and Paul Butler of the NIST CNR for discussion. The authors also thank Chuong Huynh (Carl Zeiss Microscopy) and Bruce Arey (Pacific Northwest National Laboratory) for conducting imaging on the Zeiss helium ion microscope. The efforts of Gernot Rother and David J. Wesolowski were supported by ExxonMobil through the U.S. Department of Energy Work for Others Project NFE-12-03861. The authors acknowledge the support of the NIST and the U.S. Department of Commerce in providing the neutron research facilities used in this work. NR 47 TC 0 Z9 0 U1 14 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2016 VL 30 IS 11 BP 9022 EP 9027 DI 10.1021/acs.energyfuels.6b01548 PG 6 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC8YK UT WOS:000388428800023 ER PT J AU Brady, PV Thyne, G AF Brady, Patrick V. Thyne, Geoffrey TI Functional Wettability in Carbonate Reservoirs SO ENERGY & FUELS LA English DT Article ID POTENTIAL-DETERMINING IONS; ENHANCED OIL-RECOVERY; SPONTANEOUS IMBIBITION; WATER; SALINITY; IMPACT; CHALK; TEMPERATURE; ADSORPTION; DOLOMITE AB Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the similar to 30% 00113 recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexation model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. The approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery. C1 [Brady, Patrick V.] Sandia Natl Labs, MS-0754,1515 Eubank SE, Albuquerque, NM 87185 USA. [Thyne, Geoffrey] Engn Salin LLC, 1937 Harney St,Suite 216, Laramie, WY 82072 USA. RP Brady, PV (reprint author), Sandia Natl Labs, MS-0754,1515 Eubank SE, Albuquerque, NM 87185 USA. EM pvbrady@sandia.gov FU Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DEAC04-94AL85000] FX P.V.B. appreciates funding from Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DEAC04-94AL85000. NR 55 TC 0 Z9 0 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2016 VL 30 IS 11 BP 9217 EP 9225 DI 10.1021/acs.energyfuels.6b01895 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC8YK UT WOS:000388428800044 ER PT J AU Meyer, PA Snowden-Swan, LJ Rappe, KG Jones, SB Westover, TL Cafferty, KG AF Meyer, Pimphan A. Snowden-Swan, Lesley J. Rappe, Kenneth G. Jones, Susanne B. Westover, Tyler L. Cafferty, Kara G. TI Field-to-Fuel Performance Testing of Lignocellulosic Feedstocks for Fast Pyrolysis and Upgrading: Techno-economic Analysis and Greenhouse Gas Life Cycle Analysis SO ENERGY & FUELS LA English DT Article ID SUPPLY CHAINS; BIOMASS; MISCANTHUS; PATHWAYS AB This work shows preliminary results from techno-economic analysis and life cycle greenhouse gas analysis of the conversion of seven (7) biomass feedstocks to produce liquid transportation fuels via fast pyrolysis and upgrading via hydrodeoxygenation. The biomass consists of five (5) pure feeds (pine, tulip poplar, hybrid poplar, switchgrass, corn stover) and two blends. Blend 1 consists of equal weights of pine, tulip poplar, and switchgrass, and blend 2 is 67% pine and 33% hybrid poplar. Upgraded oil product yield is one of the most significant parameters affecting the process economics, and is a function of both fast pyrolysis oil yield and hydrotreating oil yield. Pure pine produced the highest overall yield, while switchgrass produced the lowest. Interestingly, herbaceous materials blended with woody biomass performed nearly as well as pure woody feedstock, suggesting a nontrivial relationship between feedstock attributes and production yield. Production costs are also highly dependent upon hydrotreating catalyst-related costs. The catalysts contribute an average of similar to 15% to the total fuel cost, which can be reduced through research and development focused on achieving performance at increased space velocity (e.g., reduced catalyst loading) and prolonging catalyst lifetime. Greenhouse gas reduction does not necessarily align with favorable economics. From the greenhouse gas analysis, processing tulip poplar achieves the largest greenhouse gas emission reduction relative to petroleum (similar to 70%) because of its lower natural gas requirement for hydrogen production. Conversely, processing blend 1 results in the smallest GHG emission reduction from petroleum (similar to 58%) because of high natural gas demand for hydrogen production. C1 [Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Rappe, Kenneth G.; Jones, Susanne B.] Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. [Westover, Tyler L.; Cafferty, Kara G.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Meyer, PA (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. EM pimphan.meyer@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830]; Department of Energy Bioenergy Technologies Office FX The manuscript preparation work at PNNL was supported by the U.S. Department of Energy under Contract No. DE-AC05-76RL01830 at the Pacific Northwest National Laboratory. The PNNL authors gratefully acknowledge the support of the Department of Energy Bioenergy Technologies Office. We also thank Daniel Howe (at Pacific Northwest National Laboratory) and Daniel Carpenter (at National Renewable Energy Laboratory) for providing additional information describing the fast pyrolysis and hydrotreating experiment. NR 31 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2016 VL 30 IS 11 BP 9427 EP 9439 DI 10.1021/acs.energyfuels.6b01643 PG 13 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC8YK UT WOS:000388428800067 ER PT J AU Yung, MM Stanton, AR Iisa, K French, RJ Orton, KA Magrini, KA AF Yung, Matthew M. Stanton, Alexander R. Iisa, Kristiina French, Richard J. Orton, Kellene A. Magrini, Kimberly A. TI Multiscale Evaluation of Catalytic Upgrading of Biomass Pyrolysis Vapors on Ni- and Ga-Modified ZSM-5 SO ENERGY & FUELS LA English DT Article ID FLUIDIZED-BED REACTOR; BIO-OIL; ZEOLITE; PERFORMANCE; FEEDSTOCKS; FUELS AB Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite some inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-S, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application. C1 [Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; Magrini, Kimberly A.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Yung, MM (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Matthew.Yung@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Bioenergy Technologies Program FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory, and funding was provided by U.S. DOE Bioenergy Technologies Program. The authors would like to thank Scott Palmer for performing the fluidized bed reactor experiments. NR 38 TC 1 Z9 1 U1 20 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2016 VL 30 IS 11 BP 9471 EP 9479 DI 10.1021/acs.energyfuels.6b01866 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC8YK UT WOS:000388428800072 ER PT J AU Brandt, AR Yeskoo, T McNally, MS Vafi, K Yeh, S Cai, H Wang, MQ AF Brandt, Adam R. Yeskoo, Tim McNally, Michael S. Vafi, Kourosh Yeh, Sonia Cai, Hao Wang, Michael Q. TI Energy Intensity and Greenhouse Gas Emissions from Tight Oil Production in the Bakken Formation SO ENERGY & FUELS LA English DT Article ID METHANE EMISSIONS; INFORMATION GAPS; UNCERTAINTY; MODEL; FUELS AB The Bakken formation has contributed to the recent rapid increase in U.S. oil production, reaching a peak production of >1.2 x 10(6) barrels per day in early 2015. In this study, we estimate the energy intensity and greenhouse gas (GHG) emissions from 7271 Bakken wells drilled from 2006 to 2013. We model energy use and emissions using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) model, supplemented with an open-source drilling and fracturing model, GHGfrack. Overall well-to-refinery-gate (WTR) consumption of natural gas, diesel, and electricity represent 1.3%, 0.2%, and 0.005% of produced crude energy content, respectively. Fugitive emissions are modeled for a "typical" Bakken well using previously published results of atmospheric measurements. Flaring is a key driver of emissions: wells that flared in 2013 had a mean flaring rate that was approximate to 500 standard cubic feet per barrel or approximate to 14% of the energy content of the produced crude oil. Resulting production-weighted mean GHG emissions in 2013 were 10.2 g of CO2 equivalent GHGs per megajoule (henceforth, gCO(2)eq/MJ) of crude. Between-well variability gives a 5-95% range of 2-28 gCO(2)eq/MJ. If flaring is completely controlled, Bakken crude compares favorably to conventional U.S. crude oil, with 2013 emissions of 3.5 gCO(2)eq/MJ for nonflaring wells, compared to the U.S. mean of approximate to 8 gCO(2)eq/MJ. C1 [Brandt, Adam R.; Vafi, Kourosh] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. [Yeskoo, Tim] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [McNally, Michael S.] Harvard Univ, Kennedy Sch Govt, Cambridge, MA 02138 USA. [Yeh, Sonia] Univ Calif Davis, Inst Transportat Studies, Davis, CA 95616 USA. [Cai, Hao; Wang, Michael Q.] Argonne Natl Lab, Div Energy Syst, Syst Assessment Grp, 9700 S Cass Ave, Argonne, IL 60439 USA. [Yeh, Sonia] Chalmers, Environm & Energy Dept, Gothenburg, Sweden. RP Brandt, AR (reprint author), Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. EM abrandt@stanford.edu OI Yeh, Sonia/0000-0002-4852-1177 FU Argonne National Laboratory [DE-AC02-06CH11357] FX Funding for this work was provided to Stanford University by Argonne National Laboratory through grant DE-AC02-06CH11357. We thank North Dakota Department of Mineral Resources for cooperation in providing data and expertise. NR 53 TC 2 Z9 2 U1 4 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2016 VL 30 IS 11 BP 9613 EP 9621 DI 10.1021/acs.energyfuels.6b01907 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC8YK UT WOS:000388428800088 ER PT J AU Osecky, EM Bogin, GE Villano, SM Ratcliff, MA Luecke, J Zigler, BT Dean, AM AF Osecky, Eric M. Bogin, Gregory E., Jr. Villano, Stephanie M. Ratcliff, Matthew A. Luecke, Jon Zigler, Bradley T. Dean, Anthony M. TI Investigation of Iso-octane Ignition and Validation of a Multizone Modeling Method in an Ignition Quality Tester SO ENERGY & FUELS LA English DT Article ID RAPID COMPRESSION MACHINE; DIRECTED RELATION GRAPH; SHOCK-TUBE; N-HEPTANE; REACTION-MECHANISMS; KINETIC MECHANISMS; COMBUSTION; FUELS; AUTOIGNITION; REDUCTION AB An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook, C. K. Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> similar to 30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD kinetics results, but the calculation time was similar to 11 times faster than the coupled CFD kinetics model. Although the coupled CFD kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. These values can be used as inputs to the multizone model to examine the impact on ignition delay. The speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis. C1 [Osecky, Eric M.; Bogin, Gregory E., Jr.; Villano, Stephanie M.; Dean, Anthony M.] Colorado Sch Mines, 1610 Illinois St, Golden, CO 80401 USA. [Ratcliff, Matthew A.; Luecke, Jon; Zigler, Bradley T.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Osecky, EM (reprint author), Colorado Sch Mines, 1610 Illinois St, Golden, CO 80401 USA. EM eosecky@mines.edu FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Funding was provided by U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. The authors thank Convergent Science for providing a software license to CONVERGE at Colorado School of Mines for this analysis. The authors also thank Dr. Sibendu Som at Argonne National Laboratory for sharing initial input data that were used in the CONVERGE simulations. NR 42 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2016 VL 30 IS 11 BP 9761 EP 9771 DI 10.1021/acs.energyfuels.6b01406 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC8YK UT WOS:000388428800106 ER PT J AU Liu, YQ Sabbagh, SA Chapman, IT Gerasimov, S Gribov, Y Hender, TC Igochine, V Maraschek, M Matsunaga, G Okabayashi, M Strait, EJ AF Liu, Yueqiang Sabbagh, S. A. Chapman, I. T. Gerasimov, S. Gribov, Y. Hender, T. C. Igochine, V. Maraschek, M. Matsunaga, G. Okabayashi, M. Strait, E. J. TI Multimachine Data-Based Prediction of High-Frequency Sensor Signal Noise for Resistive Wall Mode Control in ITER SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Sensor noise; resistive wall mode ID DIII-D TOKAMAK; FEEDBACK STABILIZATION; PLASMA ROTATION; ACTIVE FEEDBACK; EXTERNAL-MODES AB The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number) noise level is 10(4) to 10(5) G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. These basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER. C1 [Liu, Yueqiang; Chapman, I. T.; Gerasimov, S.; Hender, T. C.] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Liu, Yueqiang] Southwestern Inst Phys, POB 432, Chengdu 610041, Peoples R China. [Liu, Yueqiang] Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Gribov, Y.] ITER Org, Route Vinon Verdon,CS90046, F-13067 St Paul Les Durance, France. [Igochine, V.; Maraschek, M.] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany. [Matsunaga, G.] Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3110193, Japan. [Okabayashi, M.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Strait, E. J.] Gen Atom, San Diego, CA 92186 USA. RP Liu, YQ (reprint author), CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England.; Liu, YQ (reprint author), Southwestern Inst Phys, POB 432, Chengdu 610041, Peoples R China.; Liu, YQ (reprint author), Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden. EM yueqiang.liu@ukaea.uk FU European Union [633053]; Research Councils UK Energy Programme [EP/I501045]; U.S. Department of Energy [DE-AC02-09CH11466, DE-DE-FC02-04ER54698, DE-FG02-99ER54524] FX This project has received funding from the European Union's Horizon 2020 research and innovation program (grant agreement number 633053) and from the Research Councils UK Energy Programme (grant EP/I501045) and the U.S. Department of Energy (grants DE-AC02-09CH11466, DE-DE-FC02-04ER54698, and DE-FG02-99ER54524). The views and opinions expressed herein do not necessarily reflect those of the European Commission or ITER Organization. NR 42 TC 0 Z9 0 U1 7 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2016 VL 70 IS 3 BP 387 EP 405 DI 10.13182/FST15-207 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED4IP UT WOS:000388811600001 ER PT J AU Zhou, XF Peris, D Kominek, J Kurtzman, CP Hittinger, CT Rokas, A AF Zhou, Xiaofan Peris, David Kominek, Jacek Kurtzman, Cletus P. Hittinger, Chris Todd Rokas, Antonis TI In Silico Whole Genome Sequencer and Analyzer (iWGS): a Computational Pipeline to Guide the Design and Analysis of de novo Genome Sequencing Studies SO G3-GENES GENOMES GENETICS LA English DT Article DE genome sequencing; high-throughput sequencing; de novo assembly; experimental design; simulation; nonmodel organism ID MICROBIAL GENOMES; SACCHAROMYCES-CEREVISIAE; MANAGEMENT-SYSTEM; MAMMALIAN GENOMES; READS SIMULATOR; ASSEMBLIES; VALIDATION; ALGORITHMS; ADAPTATION; DROSOPHILA AB The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimental design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS. C1 [Zhou, Xiaofan; Rokas, Antonis] Vanderbilt Univ, Dept Biol Sci, 221 Kirkland Hall, Nashville, TN 37235 USA. [Peris, David; Kominek, Jacek; Hittinger, Chris Todd] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Wisconsin Energy Inst,JF Crow Inst Study Evolut, Lab Genet,Genome Ctr Wisconsin,Dept Energy, Madison, WI 53706 USA. [Kurtzman, Cletus P.] ARS, Mycotoxin Prevent & Appl Microbiol Res Unit, Natl Ctr Agr Utilizat Res, USDA, Peoria, IL 61604 USA. RP Hittinger, CT (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr,Wisconsin Energy In, Genome Ctr Wisconsin,JF Crow Inst Study Evolut, Lab Genet,DOE,Genet Biotechnol Ctr 4340 4360, 425-G Henry Mall, Madison, WI 53706 USA.; Rokas, A (reprint author), Vanderbilt Univ, Dept Biol Sci, VU Stn B 351634, Nashville, TN 37235 USA. EM cthittinger@wisc.edu; antonis.rokas@vanderbilt.edu FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DEB-1442113, DEB-1253634, DEB-1442148]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494]; U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture [1003258]; National Institutes of Health [NIAID AI105619]; Alexander von Humboldt Foundation; Pew Charitable Trusts FX We thank Branden Timm for technical support on the WEI cluster. We thank Francis Martin for providing access to unpublished genome data for the C. geophilum genome produced by the U.S. Department of Energy Joint Genome Institute, a Department of Energy (DOE) Office of Science User Facility, supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University and the Wisconsin Energy Institute (WEI) cluster at the University of Wisconsin-Madison. This work was funded by the National Science Foundation (DEB-1442113 to A.R.; DEB-1253634 and DEB-1442148 to C.T.H.), in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494 to C.T.H.), the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (Hatch Project 1003258 to C.T.H.), and the National Institutes of Health (NIAID AI105619 to A.R.). C.T.H. is an Alfred Toepfer Faculty Fellow, supported by the Alexander von Humboldt Foundation. C.T.H. is a Pew Scholar in the Biomedical Sciences, supported by the Pew Charitable Trusts. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer. NR 71 TC 1 Z9 1 U1 3 U2 3 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD NOV PY 2016 VL 6 IS 11 BP 3655 EP 3662 DI 10.1534/g3.116.034249 PG 8 WC Genetics & Heredity SC Genetics & Heredity GA ED2LY UT WOS:000388678000022 ER PT J AU Celniker, S AF Celniker, Susan TI Susan Celniker: Foundational Resources To Study a Dynamic Genome SO GENETICS LA English DT Editorial Material ID DROSOPHILA-MELANOGASTER; BITHORAX COMPLEX; SEQUENCE C1 [Celniker, Susan] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 977-180, Berkeley, CA 94720 USA. RP Celniker, S (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 977-180, Berkeley, CA 94720 USA. EM celniker@fruitfly.org NR 10 TC 0 Z9 0 U1 0 U2 0 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 EI 1943-2631 J9 GENETICS JI Genetics PD NOV PY 2016 VL 204 IS 3 BP 845 EP 848 DI 10.1534/genetics.116.196261 PG 4 WC Genetics & Heredity SC Genetics & Heredity GA EC9ZN UT WOS:000388502900005 PM 28114099 ER PT J AU Bosco, N Silverman, TJ Kurtz, S AF Bosco, Nick Silverman, Timothy J. Kurtz, Sarah TI The Influence of PV Module Materials and Design on Solder Joint Thermal Fatigue Durability SO IEEE Journal of Photovoltaics LA English DT Article DE Acceleration factor; photovoltaic (PV) reliability; solder fatigue; thermal cycling ID RELIABILITY; SIMULATION; SNAGCU; MODELS AB Finite element model (FEM) simulations have been performed to elucidate the effect of flat plate photovoltaic (PV) module materials and design on PbSn eutectic solder joint thermal fatigue durability. The statistical method of Latin Hypercube sampling was employed to investigate the sensitivity of simulated damage to each input variable. Variables of laminate material properties and their thicknesses were investigated. Using analysis of variance, we determined that the rate of solder fatigue was most sensitive to solder layer thickness, with copper ribbon and silicon thickness being the next two most sensitive variables. By simulating both accelerated thermal cycles (ATCs) and PV cell temperature histories through two characteristic days of service, we determined that the acceleration factor between the ATC and outdoor service was independent of the variables sampled in this study. This result implies that an ATC test will represent a similar time of outdoor exposure for a wide range of module designs. This is an encouraging result for the standard ATC that must be universally applied across all modules. C1 [Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Bosco, N (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM nick.bosco@nrel.gov; timothy.silverman@nrel.gov; Sarah.Kurtz@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Program FX This work was supported in part by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory and in part by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Program. NR 20 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD NOV PY 2016 VL 6 IS 6 BP 1407 EP 1412 DI 10.1109/JPHOTOV.2016.2598255 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EE2UG UT WOS:000389439800004 ER PT J AU Harvey, SP Aguiar, JA Hacke, P Guthrey, H Johnston, S Al-Jassim, M AF Harvey, Steven P. Aguiar, Jeffery A. Hacke, Peter Guthrey, Harvey Johnston, Steve Al-Jassim, Mowafak TI Sodium Accumulation at Potential-Induced Degradation Shunted Areas in Polycrystalline Silicon Modules SO IEEE Journal of Photovoltaics LA English DT Article DE Accelerated stress; dark lock-in thermography (DLIT); polycrystalline silicon modules; potential-induced degradation (PID); shunting; time-of-flight secondary-ion mass spectrometry (TOF-SIMS); 3-D tomography ID SI SOLAR-CELLS; CRYSTAL DEFECTS; STACKING-FAULTS; DECORATION AB We investigated potential-induced degradation (PID) in silicon mini-modules that were subjected to accelerated stressing to induce PID conditions. Shunted areas on the cells were identified with photoluminescence and dark lock-in thermography (DLIT) imaging. The identical shunted areas were then analyzed via time-of-flight secondary-ion mass spectrometry (TOF-SIMS) imaging, 3-D tomography, and high-resolution transmission electron microscopy. The TOF-SIMS imaging indicates a high concentration of sodium in the shunted areas, and 3-D tomography reveals that the sodium extends more than 2 mu m from the surface below shunted regions. Transmission electron microscopy investigation reveals that a stacking fault is present at an area identified as shunted by DLIT imaging. After the removal of surface sodium, tomography reveals persistent sodium present around the junction depth of 300 nm and a drastic difference in sodium content at the junction when comparing shunted and nonshunted regions. C1 [Harvey, Steven P.; Aguiar, Jeffery A.; Hacke, Peter; Guthrey, Harvey; Johnston, Steve; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80403 USA. RP Harvey, SP (reprint author), Natl Renewable Energy Lab, Golden, CO 80403 USA. EM steve.harvey@nrel.gov; Jeffery.Aguiar@nrel.gov; peter.hacke@nrel.gov; harvey.guthrey@nrel.gov; steve.johnston@nrel.gov; Mowafak.Al-Jassim@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 13 TC 1 Z9 1 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD NOV PY 2016 VL 6 IS 6 BP 1440 EP 1445 DI 10.1109/JPHOTOV.2016.2601950 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EE2UG UT WOS:000389439800009 ER PT J AU Kuciauskas, D Wernsing, K Jensen, SA Barnes, TM Myers, TH Bartels, RA AF Kuciauskas, Darius Wernsing, Keith Jensen, Soren Alkaersig Barnes, Teresa M. Myers, Thomas H. Bartels, Randy A. TI Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy SO IEEE Journal of Photovoltaics LA English DT Article DE Cadmium telluride; photoluminescence (PL); photovoltaic (PV) device; recombination ID MINORITY-CARRIER LIFETIME AB We used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm(2)/(V.s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures. C1 [Kuciauskas, Darius; Jensen, Soren Alkaersig; Barnes, Teresa M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wernsing, Keith; Bartels, Randy A.] Colorado State Univ, Ft Collins, CO 80523 USA. [Myers, Thomas H.] Texas State Univ, San Marcos, TX 78666 USA. RP Kuciauskas, D (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Darius.Kuciauskas@nrel.gov; keithw@rams.colostate.edu; Soren.Jensen@nrel.gov; Teresa.Barnes@nrel.gov; tmyers@txstate.edu; rbartels@rams.colostate.edu FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported in part by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 25 TC 1 Z9 1 U1 4 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD NOV PY 2016 VL 6 IS 6 BP 1581 EP 1586 DI 10.1109/JPHOTOV.2016.2600342 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EE2UG UT WOS:000389439800029 ER PT J AU Johnson, J Neely, JC Delhotal, JJ Lave, M AF Johnson, Jay Neely, Jason C. Delhotal, Jarod J. Lave, Matthew TI Photovoltaic Frequency-Watt Curve Design for Frequency Regulation and Fast Contingency Reserves SO IEEE Journal of Photovoltaics LA English DT Article DE Advanced inverter functions; advanced inverters; frequency regulation; grid-support functions; smart distributed energy resource (DER) ID VARIABILITY MODEL; POWER-PLANTS AB When renewable energy resources are installed in electricity grids, they typically increase generation variability and displace thermal generator control action and inertia. Grid operators combat these emerging challenges with advanced distributed energy resource (DER) functions to support frequency and provide voltage regulation and protection mechanisms. This paper focuses on providing frequency reserves using autonomous IEC TR 61850-90-7 pointwise frequency-watt (FW) functions that adjust DER active power as a function of measured grid frequency. The importance of incorporating FW functions into a fleet of photovoltaic (PV) systems is demonstrated in simulation. Effects of FW curve design, including curtailment, deadband, and droop, were analyzed against performance metrics using Latin hypercube sampling for 20%, 70%, and 120% PV penetration scenarios on the Hawaiian island of Lanai. Finally, to understand the financial implications of FW functions to utilities, a performance function was defined based on monetary costs attributable to curtailed PV production, load shedding, and generator wear. An optimization wrapper was then created to find the best FW function curve for each penetration level. It was found that in all cases, the utility would save money by implementing appropriate FW functions. C1 [Johnson, Jay; Neely, Jason C.; Delhotal, Jarod J.; Lave, Matthew] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Johnson, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jjohns2@sandia.gov; jneely@sandia.gov; jdelhot@sandia.gov; mlave@sandia.gov FU U.S. Department of Energy SunShot program [29092]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy SunShot program under Award 29092. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 28 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD NOV PY 2016 VL 6 IS 6 BP 1611 EP 1618 DI 10.1109/JPHOTOV.2016.2598275 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EE2UG UT WOS:000389439800033 ER PT J AU Hacke, P Spataru, S Johnston, S Terwilliger, K VanSant, K Kempe, M Wohlgemuth, J Kurtz, S Olsson, A Propst, M AF Hacke, Peter Spataru, Sergiu Johnston, Steve Terwilliger, Kent VanSant, Kaitlyn Kempe, Michael Wohlgemuth, John Kurtz, Sarah Olsson, Anders Propst, Michelle TI Elucidating PID Degradation Mechanisms and In Situ Dark I-V Monitoring for Modeling Degradation Rate in CdTe Thin-Film Modules SO IEEE Journal of Photovoltaics LA English DT Article DE CdTe; degradation modeling; high voltage; potential-induced degradation (PID); thin-film modules ID POTENTIAL-INDUCED DEGRADATION; PHOTOVOLTAIC MODULES; TEMPERATURE; STRESS AB A progression of potential-induced degradation (PID) mechanisms is observed in CdTe modules, which are dependent on the stress level and moisture ingress. This includes shunting, junction degradation, and two different manifestations of series resistance. The dark I-V method for in situ characterization of P-max based on superposition was adapted for the thin-film modules undergoing PID in view of the degradation mechanisms observed. An exponential model based on module temperature and relative humidity (RH) was fit to the PID rate for multiple stress levels in chamber tests and validated by predicting the observed degradation of the module type in the field. C1 [Hacke, Peter; Johnston, Steve; Terwilliger, Kent; VanSant, Kaitlyn; Kempe, Michael; Wohlgemuth, John; Kurtz, Sarah] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Spataru, Sergiu] Aalborg Univ, DK-9220 Aalborg, Denmark. [Olsson, Anders; Propst, Michelle] Pearl Labs, Ft Collins, CO 80524 USA. RP Hacke, P (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM peter.hacke@nrel.gov; ssp@et.aau.dk; steve.johnston@nrel.gov; kent.terwilliger@nrel.gov; kaitlyn.vansant@nrel.gov; Michael.Kempe@NREL.gov; john.wohlgemuth@nrel.gov; Sarah.Kurtz@nrel.gov; aolsson@pearllaboratories.com; mpropst@pearllaboratories.com FU U.S. Department of Energy [DE-AC36-08GO28308] FX This work performed at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308. NR 23 TC 1 Z9 1 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD NOV PY 2016 VL 6 IS 6 BP 1635 EP 1640 DI 10.1109/JPHOTOV.2016.2598269 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EE2UG UT WOS:000389439800036 ER PT J AU Duenow, JN Burst, JM Albin, DS Reese, MO Jensen, SA Johnston, SW Kuciauskas, D Swain, SK Ablekim, T Lynn, KG Fahrenbruch, AL Metzger, WK AF Duenow, Joel N. Burst, James M. Albin, David S. Reese, Matthew O. Jensen, Soren A. Johnston, Steven W. Kuciauskas, Darius Swain, Santosh K. Ablekim, Tursun Lynn, Kelvin G. Fahrenbruch, Alan L. Metzger, Wyatt K. TI Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime SO IEEE Journal of Photovoltaics LA English DT Article DE Cadmium compounds; photovoltaic cells; II-VI semiconductor materials ID SOLAR-CELLS AB We investigate the correlation of bulk CdTe and CdZnTe material properties with experimental open-circuit voltage (V-oc) through fabrication and characterization of diverse single-crystal solar cells with different dopants. Several distinct crystal types reach V-oc > 900 mV. Correlations are in general agreement with V-oc limits modeled from bulk minority-carrier lifetime and hole concentration. C1 [Duenow, Joel N.; Burst, James M.; Albin, David S.; Reese, Matthew O.; Jensen, Soren A.; Johnston, Steven W.; Kuciauskas, Darius; Metzger, Wyatt K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Swain, Santosh K.; Ablekim, Tursun] Washington State Univ, Ctr Mat Res, Pullman, WA 99164 USA. [Lynn, Kelvin G.] Washington State Univ, Ctr Mat Res, Sch Mech & Mat Engn, Dept Phys, Pullman, WA 99164 USA. [Fahrenbruch, Alan L.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. RP Duenow, JN (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM joel.duenow@nrel.gov; james.burst@nrel.gov; david.albin@nrel.gov; matthew.reese@nrel.gov; soren.jensen@nrel.gov; steve.johnston@nrel.gov; darius.kuciauskas@nrel.gov; swainsk@gmail.com; tursunjan@wsu.edu; kgl@wsu.edu; alanf@stanford.edu; wyatt.metzger@nrel.gov FU Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX This work was supported by the Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 22 TC 0 Z9 0 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD NOV PY 2016 VL 6 IS 6 BP 1641 EP 1644 DI 10.1109/JPHOTOV.2016.2598260 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EE2UG UT WOS:000389439800037 ER PT J AU Burst, JM Duenow, JN Kanevce, A Moutinho, HR Jiang, CS Al-Jassim, MM Reese, MO Albin, DS Aguiar, JA Colegrove, E Ablekim, T Swain, SK Lynn, KG Kuciauskas, D Barnes, TM Metzger, WK AF Burst, James M. Duenow, Joel N. Kanevce, Ana Moutinho, Helio R. Jiang, Chun Sheng Al-Jassim, Mowafak M. Reese, Matthew Owen Albin, David S. Aguiar, Jeffrey A. Colegrove, Eric Ablekim, Tursun Swain, Santosh K. Lynn, Kelvin G. Kuciauskas, Darius Barnes, Teresa M. Metzger, Wyatt K. TI Interface Characterization of Single-Crystal CdTe Solar Cells With V-OC > 950 mV SO IEEE Journal of Photovoltaics LA English DT Article DE Characterization of defects in photovoltaic (PV); CIGS and CdTe thin-film solar cells; microstructure ID MINORITY-CARRIER LIFETIME; EFFICIENCY AB Advancing CdTe solar cell efficiency requires improving the open-circuit voltage (V-OC) above 900 mV. This requires long carrier lifetime, high hole density, and high-quality interfaces, where the interface recombination velocity is less than about 10(4) cm/s. Using CdTe single crystals as a model system, we report on CdTe/CdS electrical and structural interface properties in devices that produce open-circuit voltage exceeding 950 mV. C1 [Burst, James M.; Duenow, Joel N.; Kanevce, Ana; Moutinho, Helio R.; Jiang, Chun Sheng; Al-Jassim, Mowafak M.; Reese, Matthew Owen; Albin, David S.; Aguiar, Jeffrey A.; Colegrove, Eric; Kuciauskas, Darius; Barnes, Teresa M.; Metzger, Wyatt K.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Ablekim, Tursun; Swain, Santosh K.] Washington State Univ, Ctr Mat Res, Pullman, WA 99164 USA. [Lynn, Kelvin G.] Washington State Univ, Ctr Mat Res, Sch Mech & Mat Engn, Dept Phys, Pullman, WA 99164 USA. RP Burst, JM (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jim.burst@gmail.com; joel.duenow@nrel.gov; Ana.Kanevce@nrel.gov; helio.moutinho@nrel.gov; chun.sheng.jiang@nrel.gov; mowafak.aljassim@nrel.gov; Matthew.Reese@NREL.gov; David.albin@nrel.gov; jeffrey.aguiar@nrel.gov; eric.colegrove@nrel.gov; tursunjan@wsu.edu; swainsk@gmail.com; kgl@wsu.edu; darius.kuciauskas@nrel.gov; teresa.barnes@nrel.gov; wyatt.metzger@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The U.S. Government retains, and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 16 TC 0 Z9 0 U1 9 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD NOV PY 2016 VL 6 IS 6 BP 1650 EP 1653 DI 10.1109/JPHOTOV.2016.2598274 PG 4 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA EE2UG UT WOS:000389439800039 ER PT J AU Muralidharan, G Yamamoto, Y Brady, MP Walker, LR Meyer, HM Leonard, DN AF Muralidharan, G. Yamamoto, Y. Brady, M. P. Walker, L. R. Meyer, H. M. Leonard, D. N. TI Development of Cast Alumina-Forming Austenitic Stainless Steels SO JOM LA English DT Article ID TEMPERATURE WATER-VAPOR; OXIDATION BEHAVIOR; MODEL ALLOYS; MICROSTRUCTURE; RESISTANT; PHASE; AIR; NB AB Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850 degrees C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed. C1 [Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M.; Leonard, D. N.] Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Muralidharan, G (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM muralidhargn@ornl.gov RI Brady, Michael/A-8122-2008 OI Brady, Michael/0000-0003-1338-4747 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; Technology Innovation Program at Oak Ridge National Laboratory; ARPA-E [DE-AC05-00OR22725]; UT-Battelle, LLC. FX Research sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, the Technology Innovation Program at Oak Ridge National Laboratory, and ARPA-E under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 34 TC 1 Z9 1 U1 11 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2016 VL 68 IS 11 BP 2803 EP 2810 DI 10.1007/s11837-016-2094-8 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KG UT WOS:000388816100015 ER PT J AU Chen, WH Sarobol, P Handwerker, CA Blendell, JE AF Chen, Wei-Hsun Sarobol, Pylin Handwerker, Carol A. Blendell, John E. TI Heterogeneous Stress Relaxation Processes at Grain Boundaries in High-Sn Solder Films: Effects of Sn Anisotropy and Grain Geometry During Thermal Cycling SO JOM LA English DT Article ID THIN-FILMS; HILLOCK GROWTH; WHISKER FORMATION; CREEP; RECRYSTALLIZATION; MICROSTRUCTURES; NUCLEATION; EVOLUTION; MODEL; CU AB Four different types of stress relaxation responses have been observed in terms of local microstructural changes along grain boundaries (GBs) in large-grained high-Sn (Sn-3.0Ag-0.5Cu) solder films after thermal cycling. The grain boundaries were characterized using scanning electron microscopy, electron back scattered diffraction, and focused-ion beam (FIB) cross-section imaging. While the anisotropic coefficient of thermal expansion of Sn plays an important role in determining which boundaries have high local stresses relative to the film plane and trace of the grain boundary plane during thermal cycling, the four different relaxation behaviors of specific boundaries (no observable changes, surface defect/whisker formation, GB sliding, or a combination of GB sliding and whisker/defect formation) were determined by a combination of Sn anisotropy, the GB geometry, and crystallographic orientation relative to the film plane. The ability to separate GB sliding from surface defect formation provides insights into how long, straight whiskers form in polycrystalline thin films, particularly with respect to grain rotation at the early stages of their growth. C1 [Chen, Wei-Hsun] Cymer LLC, San Diego, CA 92127 USA. [Sarobol, Pylin] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Handwerker, Carol A.; Blendell, John E.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. RP Handwerker, CA (reprint author), Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. EM handwerker@purdue.edu FU Cisco Systems; Foresite, Inc.; NSF GRF [EAR-0337006]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We gratefully acknowledge Peng Su of Cisco Systems for enlightening discussions and fabrication of the solder films, Foresite, Inc., for performing the thermal cycling experiments, and Thomas Bieler and Gerhard Dehm for their helpful critiques of this work. The support of this research by Cisco Systems, Foresite, Inc., and NSF GRF (EAR-0337006) is also gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 35 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2016 VL 68 IS 11 BP 2888 EP 2899 DI 10.1007/s11837-016-2070-3 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KG UT WOS:000388816100027 ER PT J AU Rak, Z O'Brien, CJ Brenner, DW Andersson, DA Stanek, CR AF Rak, Zs. O'Brien, C. J. Brenner, D. W. Andersson, D. A. Stanek, C. R. TI Understanding the Atomic-Level Chemistry and Structure of Oxide Deposits on Fuel Rods in Light Water Nuclear Reactors Using First Principles Methods SO JOM LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NICKEL FERRITE; CRUD DEPOSITS; BOILING CONDITIONS; CRYSTAL-SURFACES; PWR; STABILITY; BORON; PERFORMANCE AB The results of recent studies are discussed in which first principles calculations at the atomic level have been used to expand the thermodynamic database for science-based predictive modeling of the chemistry, composition and structure of unwanted oxides that deposit on the fuel rods in pressurized light water nuclear reactors. Issues discussed include the origin of the particles that make up deposits, the structure and properties of the deposits, and the forms by which boron uptake into the deposits can occur. These first principles approaches have implications for other research areas, such as hydrothermal synthesis and the stability and corrosion resistance of other materials under other extreme conditions. C1 [Rak, Zs.; O'Brien, C. J.; Brenner, D. W.] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Andersson, D. A.; Stanek, C. R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Rak, Z (reprint author), North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. EM zrak@ncsu.edu OI O'Brien, Christopher/0000-0001-7210-9257 FU Consortium for Advanced Simulation of Light Water Reactors; Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725 NR 40 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2016 VL 68 IS 11 BP 2912 EP 2921 DI 10.1007/s11837-016-2102-z PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KG UT WOS:000388816100029 ER PT J AU Williamson, RL Capps, NA Liu, W Rashid, YR Wirth, BD AF Williamson, R. L. Capps, N. A. Liu, W. Rashid, Y. R. Wirth, B. D. TI Multi-Dimensional Simulation of LWR Fuel Behavior in the BISON Fuel Performance Code SO JOM LA English DT Article ID THERMAL-CONDUCTIVITY MODEL; FISSION-GAS; MULTIPHYSICS SIMULATION AB Nuclear fuel operates in an extreme environment that induces complex multiphysics phenomena occurring over distances ranging from inter-atomic spacing to meters, and times scales ranging from microseconds to years. To simulate this behavior requires a wide variety of material models that are often complex and nonlinear. The recently developed BISON code represents a powerful fuel performance simulation tool based on its material and physical behavior capabilities, finite-element versatility of spatial representation, and use of parallel computing. The code can operate in full three dimensional (3D) mode, as well as in reduced two dimensional (2D) modes, e.g., axisymmetric radial-axial (R-Z) or plane radial-circumferential (R-h), to suit the application and to allow treatment of global and local effects. A BISON case study was used to illustrate analysis of Pellet Clad Mechanical Interaction failures from manufacturing defects using combined 2D and 3D analyses. The analysis involved commercial fuel rods and demonstrated successful computation of metrics of interest to fuel failures, including cladding peak hoop stress and strain energy density. In comparison with a failure threshold derived from power ramp tests, results corroborate industry analyses of the root cause of the pellet-clad interaction failures and illustrate the importance of modeling 3D local effects around fuel pellet defects, which can produce complex effects including cold spots in the cladding, stress concentrations, and hot spots in the fuel that can lead to enhanced cladding degradation such as hydriding, oxidation, CRUD formation, and stress corrosion cracking. C1 [Williamson, R. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Capps, N. A.; Wirth, B. D.] Univ Tennessee, Knoxville, TN USA. [Liu, W.; Rashid, Y. R.] ANATECH, San Diego, CA USA. RP Williamson, RL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Richard.Williamson@inl.gov OI Williamson, Richard/0000-0001-7734-3632 FU DOE Consortium for Advanced Simulation of Light Water Reactors (CASL); Nuclear Energy Advanced Modeling and Simulation (NEAMS) programs; U.S. Government [DE-AC05-00OR22725, DE-AC07-05ID14517] FX This research was supported by the DOE Consortium for Advanced Simulation of Light Water Reactors (CASL) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) programs. The manuscript has been authored by a contractor of the U.S. Government under Contract Numbers DE-AC05-00OR22725 and DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 32 TC 0 Z9 0 U1 5 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2016 VL 68 IS 11 BP 2930 EP 2937 DI 10.1007/s11837-016-2115-7 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KG UT WOS:000388816100031 ER PT J AU Blau, PJ Qu, J Lu, R AF Blau, P. J. Qu, J. Lu, R. TI Modeling of Complex Wear Behavior Associated with Grid-to-Rod Fretting in Light Water Nuclear Reactors SO JOM LA English DT Article ID FUEL ROD; TESTS; MAPS AB Fretting wear damage to fuel cladding from flow-induced vibrations can be a significant concern in the operation of light water nuclear reactors. For years, research on the grid-to-rod fretting (GTRF) phenomena has been underway in countries where nuclear power production is a significant industry. Under the auspices of the U.S. Department of Energy Consortium for Advanced Simulation of Light Water Reactors, an effort has been underway to develop and test an engineering wear model for zirconium alloy fuel rod cladding against a supporting grid. The multi-stage model accounts for oxide layers and wear rate transitions. This paper describes the basis for a GTRF engineering wear model, the physical significance of the wear factor it contains, and recent progress toward model validation based on a fretting wear testing apparatus that accounts for coolant temperature, pressure, and the presence of periodic impacts (gaps) in grid/rod contact. C1 [Blau, P. J.] Blau Tribol Consulting, Enka, NC 28728 USA. [Qu, J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Lu, R.] Westinghouse Elect Co LLC, Columbia, SC USA. RP Blau, PJ (reprint author), Blau Tribol Consulting, Enka, NC 28728 USA. EM pjblau@gmail.com FU Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. The authors wish to express their appreciation for the comments and advice from Brian Wirth of the University of Tennessee and ORNL. NR 25 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2016 VL 68 IS 11 BP 2938 EP 2943 DI 10.1007/s11837-016-2113-9 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KG UT WOS:000388816100032 ER PT J AU Ushizima, DM Bale, HA Bethel, EW Ercius, P Helms, BA Krishnan, H Grinberg, LT Haranczyk, M Macdowell, AA Odziomek, K Parkinson, DY Percian, T Ritchie, RO Yang, C AF Ushizima, Daniela M. Bale, Hrishikesh A. Bethel, E. Wes Ercius, Peter Helms, Brett A. Krishnan, Harinarayan Grinberg, Lea T. Haranczyk, Maciej Macdowell, Alastair A. Odziomek, Katarzyna Parkinson, Dilworth Y. Percian, Talita Ritchie, Robert O. Yang, Chao TI IDEAL: Images Across Domains, Experiments, Algorithms and Learning SO JOM LA English DT Review ID TEXTURE AB Research across science domains is increasingly reliant on image-centric data. Software tools are in high demand to uncover relevant, but hidden, information in digital images, such as those coming from faster next generation high-throughput imaging platforms. The challenge is to analyze the data torrent generated by the advanced instruments efficiently, and provide insights such as measurements for decision-making. In this paper, we overview work performed by an interdisciplinary team of computational and materials scientists, aimed at designing software applications and coordinating research efforts connecting (1) emerging algorithms for dealing with large and complex datasets; (2) data analysis methods with emphasis in pattern recognition and machine learning; and (3) advances in evolving computer architectures. Engineering tools around these efforts accelerate the analyses of image-based recordings, improve reusability and reproducibility, scale scientific procedures by reducing time between experiments, increase efficiency, and open opportunities for more users of the imaging facilities. This paper describes our algorithms and software tools, showing results across image scales, demonstrating how our framework plays a role in improving image understanding for quality control of existent materials and discovery of new compounds. C1 [Ushizima, Daniela M.; Bethel, E. Wes; Krishnan, Harinarayan; Haranczyk, Maciej; Percian, Talita; Yang, Chao] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Bale, Hrishikesh A.; Ritchie, Robert O.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Ercius, Peter; Helms, Brett A.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA. [Grinberg, Lea T.] Univ Calif San Francisco, Memory & Aging Ctr, San Francisco, CA 94143 USA. [Macdowell, Alastair A.; Parkinson, Dilworth Y.] Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA USA. [Odziomek, Katarzyna] Univ Gdansk, Fac Chem, Lab Environm Chemometr, Gdansk, Poland. [Ushizima, Daniela M.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Ushizima, DM (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Ushizima, DM (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM dushizima@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, of the US Department of Energy; Center for Applied Mathematics for Energy Related Applications (CAMERA) [DE-AC02- 05CH11231]; Office of Science of the US Department of Energy [DE-AC02- 05CH11231] FX This work was supported by the Director, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences, of the US Department of Energy. Both the Early Career Research project and the Center for Applied Mathematics for Energy Related Applications (CAMERA) are under Contract No. DE-AC02- 05CH11231. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02- 05CH11231. We would like to thank Przemyslaw Oberbek, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland for preparing the SEM images. Also, the authors thank P. Nico and A. Wills for sharing samples of microCT of geological materials, and STEM of PMO, respectively. Additional thanks to B. Loring for supporting visualization schemes, and M. Alegro for participating on the development of multimodal registration methods. NR 38 TC 0 Z9 0 U1 8 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2016 VL 68 IS 11 BP 2963 EP 2972 DI 10.1007/s11837-016-2098-4 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA ED4KG UT WOS:000388816100036 ER PT J AU Ingle, BL Veber, BC Nichols, JW Tornero-Velez, R AF Ingle, Brandall L. Veber, Brandon C. Nichols, John W. Tornero-Velez, Rogelio TI Informing the Human Plasma Protein Binding of Environmental Chemicals by Machine Learning in the Pharmaceutical Space: Applicability Domain and Limits of Predictability SO Journal of Chemical Information and Modeling LA English DT Article ID IN-VITRO; RANDOM FOREST; EXPOSURE; QSAR; MODELS; PREDICTION; PARAMETERS; DOSIMETRY; SILICO; STATE AB The free fraction of a xenobiotic in plasma (Fob) is an important determinant of chemical adsorption, tic distribution, metabolism, elimination, and toxicity, yet experimental plasma protein binding data are scarce for environmentally relevant chemicals. The presented work explores the merit of utilizing available pharmaceutical data to predict F-ub for environmentally relevant chemicals via machine learning techniques. Quantitative structure activity relationship (QSAR) models were constructed with k nearest neighbors (INN), support vector machines (SVM), and random forest (RF) machine learning algorithms from a training set of 1045 pharmaceuticals. The models were then evaluated with independent test sets of pharmaceuticals (200 compounds) and environmentally relevant ToxCast chemicals (406 total, in two groups of 238 and 168 compounds). The selection of a minimal feature set of 10-15 2D molecular descriptors allowed for both informative feature interpretation and practical applicability domain assessment via a bounded box of descriptor ranges and principal component analysis. The diverse pharmaceutical and environmental chemical sets exhibit similarities in terms of chemical space (99-82% overlap), as well as comparable bias and variance in constructed learning curves. All the models exhibit significant predictability with mean absolute errors (MAE) in the range of 0.10-0.18F(ub). The models performed best for highly bound chemicals (MAE 0.07-0.12), neutrals (MAE 0.11-0.14), and acids (MAE 0.14-0.17). A consensus model had the highest accuracy across both pharmaceuticals (MAE 0.151-0.155) and environmentally relevant chemicals (MAE 0.110-0.131). The inclusion of the majority of the ToxCast test sets within the AD of the consensus model, coupled with high prediction accuracy for these chemicals, indicates the model provides a QSAR for F-ub that is broadly applicable to both pharmaceuticals and environmentally relevant chemicals. C1 [Ingle, Brandall L.; Tornero-Velez, Rogelio] US EPA, Off Res & Dev, Natl Exposure Res Lab, Res Triangle Pk, NC 27709 USA. [Veber, Brandon C.; Nichols, John W.] US EPA, Off Res & Dev, Natl Hlth Exposure Effects Res Lab, Duluth, MN 55804 USA. [Veber, Brandon C.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. RP Tornero-Velez, R (reprint author), 109 TW Alexander Dr,Mail Code E205-01, Res Triangle Pk, NC 27709 USA. EM tornero-velez.rogelio@epa.gov FU U.S. Environmental Protection Agency through its Office of Research and Development; Oak Ridge Institute for Science and Education Research Participation Program at the U.S. Environmental Protection Agency FX The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. B.V. was funded by the Oak Ridge Institute for Science and Education Research Participation Program at the U.S. Environmental Protection Agency. NR 40 TC 0 Z9 0 U1 11 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9596 EI 1549-960X J9 J CHEM INF MODEL JI J. Chem Inf. Model. PD NOV PY 2016 VL 56 IS 11 BP 2243 EP 2252 DI 10.1021/acs.jcim.6b00291 PG 10 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications SC Pharmacology & Pharmacy; Chemistry; Computer Science GA ED8IW UT WOS:000389116200012 PM 27684444 ER PT J AU Qian, Y Yan, HP Berg, LK Hagos, S Feng, Z Yang, B Huang, MY AF Qian, Yun Yan, Huiping Berg, Larry K. Hagos, Samson Feng, Zhe Yang, Ben Huang, Maoyi TI Assessing Impacts of PBL and Surface Layer Schemes in Simulating the Surface-Atmosphere Interactions and Precipitation over the Tropical Ocean Using Observations from AMIE/DYNAMO SO JOURNAL OF CLIMATE LA English DT Article ID PLANETARY BOUNDARY-LAYER; MADDEN-JULIAN OSCILLATION; LARGE-SCALE MODELS; AIR-SEA FLUXES; LAND-SURFACE; TURBULENCE PARAMETERIZATION; BULK PARAMETERIZATION; NUMERICAL-SIMULATION; VERTICAL DIFFUSION; CLOSURE-MODEL AB Accuracy of turbulence parameterization in representing planetary boundary layer (PBL) processes and surface-atmosphere interactions in climate models is critical for predicting the initiation and development of clouds. This study 1) evaluates WRF Model-simulated spatial patterns and vertical profiles of atmospheric variables at various spatial resolutions and with different PBL, surface layer, and shallow convection schemes against measurements; 2) identifies model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments; and 3) investigates the main causes of these biases by analyzing the dependence of modeled surface fluxes on PBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in the PBL and free atmosphere and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and latent heat (LH) flux biases, which suggests the positive feedback between precipitation and surface fluxes is responsible, at least in part, for the model drifts. The updated Kain-Fritsch cumulus potential (KF-CuP) shallow convection scheme tends to suppress the deep convection, consequently decreasing precipitation. The Eta Model surface layer scheme predicts more reasonable LH fluxes and LH-wind speed relationship than those for the MM5 scheme. The results help us identify sources of biases of current parameterization schemes in reproducing PBL processes, the initiation of convection, and intraseasonal variability of precipitation. C1 [Qian, Yun; Yan, Huiping; Berg, Larry K.; Hagos, Samson; Feng, Zhe; Yang, Ben; Huang, Maoyi] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Yan, Huiping] Lanzhou Univ, Sch Atmospher Sci, Lanzhou, Peoples R China. [Yang, Ben] Nanjing Univ, Sch Atmospher Sci, Nanjing, Jiangsu, Peoples R China. [Yan, Huiping] Nanjing Univ Informat & Technol, Coll Atmospher Sci, Nanjing, Jiangsu, Peoples R China. RP Qian, Y (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM yun.qian@pnnl.gov RI qian, yun/E-1845-2011 FU DOE Office of Science Biological and Environmental Research (BER) Atmospheric System Research (ASR) program [1830]; DOE [DE-AC06-76RLO1830] FX We thank three referees for their careful review and constructive comments. This study was supported by the DOE Office of Science Biological and Environmental Research (BER) Atmospheric System Research (ASR) program (Grant 1830). We thank the DOE Atmospheric Radiation Measurement (ARM) programs for providing the ARM/CART data. The computations were performed using resources of the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and PNNL Institutional Computing. PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. NR 72 TC 0 Z9 0 U1 9 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2016 VL 29 IS 22 BP 8191 EP 8210 DI 10.1175/JCLI-D-16-0040.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA ED2RZ UT WOS:000388697500001 ER PT J AU Silling, SA AF Silling, S. A. TI Solitary waves in a peridynamic elastic solid SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Solitary waves; Peridynamic; Nonlocal; Elasticity ID LONG-RANGE FORCES; EQUILIBRIUM; MECHANICS; SOLITONS; STATES AB The propagation of large amplitude nonlinear waves in a peridynamic solid is analyzed. With an elastic material model that hardens in compression, sufficiently large wave pulses propagate as solitary waves whose velocity can far exceed the linear wave speed. In spite of their large velocity and amplitude, these waves leave the material they pass through with no net change in velocity and stress. They are nondissipative and nondispersive, and they travel unchanged over large distances. An approximate solution for solitary waves is derived that reproduces the main features of these waves observed in computational simulations. It is demonstrated by numerical studies that the waves interact only weakly with each other when they collide. Wavetrains composed of many non-interacting solitary waves are found to form and propagate under certain boundary and initial conditions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Silling, S. A.] Sandia Natl Labs, Multiscale Sci Dept, POB 5800, Albuquerque, NM 87185 USA. RP Silling, SA (reprint author), Sandia Natl Labs, Multiscale Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM sasilli@sandia.gov FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 18 TC 1 Z9 1 U1 10 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD NOV PY 2016 VL 96 BP 121 EP 132 DI 10.1016/j.jmps.2016.06.001 PG 12 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA EA6MZ UT WOS:000386744600007 ER PT J AU Messner, MC AF Messner, Mark C. TI Optimal lattice-structured materials SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Lattice materials; Microstructures; Optimization ID HIGH-FREQUENCY HOMOGENIZATION; PRESCRIBED ELASTIC PROPERTIES; TOPOLOGY OPTIMIZATION; NONLOCAL ELASTICITY; WAVE-PROPAGATION; TRUSS; DESIGN; MICROSTRUCTURES; PERFORMANCE; ULTRALIGHT AB This work describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Messner, Mark C.] Lawrence Livermore Natl Lab, POB 808,L-227, Livermore, CA 94551 USA. RP Messner, MC (reprint author), Lawrence Livermore Natl Lab, POB 808,L-227, Livermore, CA 94551 USA. EM messner6@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-683819)] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-683819). The author thanks Holly Carlton for providing the image of a lattice material, used as Fig. 1, and Nathan Barton for a productive discussion on how to measure similarity to the von Mises yield surface. NR 45 TC 0 Z9 0 U1 17 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD NOV PY 2016 VL 96 BP 162 EP 183 DI 10.1016/j.jmps.2016.07.010 PG 22 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA EA6MZ UT WOS:000386744600010 ER PT J AU Banerjee, AS Suryanarayana, P AF Banerjee, Amartya S. Suryanarayana, Phanish TI Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Kohn-Sham density functional theory; Cyclic symmetry group; Finite-differences; Bending deformations; Objective structures ID ELECTRONIC-STRUCTURE CALCULATIONS; FINITE-ELEMENT METHODS; PARTIAL-DIFFERENTIAL EQUATIONS; ADAPTED CRYSTALLINE ORBITALS; FILTERED SUBSPACE ITERATION; LCAO PERIODIC CALCULATIONS; BOUNDARY-VALUE-PROBLEMS; BIOLOGICAL-MEMBRANES; LINEAR-SYSTEMS; SYMMETRY AB We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) a self consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide a trend which can be ascribed to the variation in effective thickness of these materials. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Banerjee, Amartya S.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Suryanarayana, Phanish] Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA. RP Suryanarayana, P (reprint author), Georgia Inst Technol, Coll Engn, Atlanta, GA 30332 USA. EM asb@lbl.gov; phanish.suryanarayana@ce.gatech.edu FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences; National Science Foundation [1553212]; AFOSR [FA9550-15-1-0207]; NSF-PIRE [OISE-0967140]; ONR [N00014-14-1-0714]; MURI project [FA9550-12-1-0458] FX Support for this work, in part, was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. PS acknowledges the support of the National Science Foundation under Grant Number 1553212. This work was partially carried out while ASB was at the University of Minnesota, Minneapolis. ASB acknowledges support from the following grants while at Minnesota: AFOSR FA9550-15-1-0207, NSF-PIRE OISE-0967140, ONR N00014-14-1-0714 and the MURI project FA9550-12-1-0458 (administered by AFOSR). The authors would like to acknowledge informative discussions with Richard James (Univ. of Minnesota), Ryan Elliott (Univ. of Minnesota), Kaushik Bhattacharya (Caltech), Lin Lin (Univ. of California, Berkeley) and Chao Yang (Lawrence Berkeley National Lab). The authors express their gratitude to the anonymous reviewers and the Editor for their comments and suggestions on the manuscript. The authors would also like to thank the Minnesota Supercomputing Institute for making the computing resources used in this work available. NR 148 TC 1 Z9 1 U1 12 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD NOV PY 2016 VL 96 BP 605 EP 631 DI 10.1016/j.jmps.2016.08.007 PG 27 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA EA6MZ UT WOS:000386744600034 ER PT J AU Donald, SB Siekhaus, WJ Nelson, AJ AF Donald, Scott B. Siekhaus, Wigbert J. Nelson, Art J. TI XPS and SIMS study of the surface and interface of aged C+ implanted uranium SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID ELECTRONIC-STRUCTURE; WATER-VAPOR; PHOTOEMISSION; SPECTROSCOPY; UC; INCLUSIONS; CARBIDES; SPECTRA; N-2(+) AB X-ray photoelectron spectroscopy in combination with secondary ion mass spectrometry depth profiling were used to investigate the surface and interfacial chemistry of C+ ion implanted polycrystalline uranium subsequently oxidized in air for over 10 years at ambient temperature. The original implantation of 33 keV C+ ions into U 238 with a dose of 4.3 x 10(17) cm(-3) produced a physically and chemically modified surface layer that was characterized and shown to initially prevent air oxidation and corrosion of the uranium after 1 year in air at ambient temperature. The aging of the surface and interfacial layers were examined by using the chemical shift of the U 4f, C 1s, and O 1s photoelectron lines. In addition, valence band spectra were used to explore the electronic structure of the aged carbide surface and interface layer. Furthermore, the time-of-flight secondary ion mass spectrometry depth profiling results for the aged sample confirmed an oxidized uranium carbide layer over the carbide layer/U metal interface. (C) 2016 American Vacuum Society. C1 [Donald, Scott B.; Siekhaus, Wigbert J.; Nelson, Art J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Nelson, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM nelson63@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 30 TC 0 Z9 0 U1 1 U2 1 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV PY 2016 VL 34 IS 6 AR 061401 DI 10.1116/1.4962386 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA ED3LC UT WOS:000388749600014 ER PT J AU Farmer, MT Bunt, R Corradini, M Ellison, P Francis, M Gabor, J Gauntt, R Henry, C Linthicum, R Luangdilok, W Lutz, R Paik, C Plys, M Rabiti, C Rempe, J Robb, K Wachowiak, R AF Farmer, M. T. Bunt, R. Corradini, M. Ellison, P. Francis, M. Gabor, J. Gauntt, R. Henry, C. Linthicum, R. Luangdilok, W. Lutz, R. Paik, C. Plys, M. Rabiti, C. Rempe, J. Robb, K. Wachowiak, R. TI Reactor Safety Gap Evaluation of Accident-Tolerant Components and Severe Accident Analysis SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Fukushima Daiichi; severe accident; accident-tolerant components AB The reactor accidents at Fukushima Daiichi have rekindled interest in light water reactor (LWR) severe accident phenomenology. Postevent analyses have identified several areas that may warrant additional research and development (R&D) to reduce modeling uncertainties and assist industry in the development of mitigation strategies and in the refinement of severe accident management guidelines to both prevent significant core damage given a beyond-design-basis event and mitigate source term release if core damage does occur. On these bases, a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies was completed with the goal of identifying any data and/or knowledge gaps that may exist given the current state of LWR severe accident research and augmented by insights gained from recent analyses of the Fukushima Daiichi accident. The ultimate benefit of this activity is that the results can be used as a basis for refining research plans to address key knowledge gaps in severe accident phenomenology that affect reactor safety and that are not being directly addressed by the nuclear industry or the U.S. Nuclear Regulatory Commission. As a result of this study, 13 gaps were identified in the areas of severe accident tolerant components and accident modeling. The results clustered in three main areas: (1) modeling and analysis of in-vessel melt progression phenomena, (2) emergency core cooling system equipment performance under beyond-design-basis accident conditions, and (3) ex-vessel debris coolability and core-concrete interaction behavior relevant to accident management actions. This paper provides a high-level summary of the methodology used for the evaluation, the identified gaps, and, finally, the appropriate R&D that may be completed to address the gaps. C1 [Farmer, M. T.] Argonne Natl Lab, Lemont, IL 60439 USA. [Bunt, R.] Southern Nucl, Birmingham, AL USA. [Corradini, M.] Univ Wisconsin, Madison, WI USA. [Ellison, P.] GE Power & Water, Atlanta, GA USA. [Francis, M.; Robb, K.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Gabor, J.] Jensen Hughes, Baltimore, MD USA. [Gauntt, R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Henry, C.; Luangdilok, W.; Paik, C.; Plys, M.] Fauske & Associates, Burr Ridge, IL USA. [Linthicum, R.] Exelon Corp, Chicago, IL USA. [Lutz, R.] Lutz Consulting, Hendersonville, NC USA. [Rabiti, C.] Idaho Natl Lab, Idaho Falls, ID USA. [Rempe, J.] Rempe & Associates LLC, Idaho Falls, ID USA. [Wachowiak, R.] Elect Power Res Inst, Palo Alto, CA USA. RP Farmer, MT (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM farmer@anl.gov NR 34 TC 1 Z9 1 U1 3 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2016 VL 184 IS 3 BP 293 EP 304 DI 10.13182/NSE16-13 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED9DG UT WOS:000389169800002 ER PT J AU Glasser, AH Wang, ZR Park, JK AF Glasser, A. H. Wang, Z. R. Park, J. -K. TI Computation of resistive instabilities by matched asymptotic expansions SO PHYSICS OF PLASMAS LA English DT Article ID STABILITY; LAYER; EQUATIONS; MODES AB We present a method for determining the linear resistive magnetohydrodynamic (MHD) stability of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner regions about singular layers where q = m/n, with m and n toroidal mode numbers, respectively, and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency, which are identical to the Euler-Lagrange equations for minimizing the potential energy delta W. The solutions to these equations go to infinity at the singular surfaces. The inner regions satisfy the equations of motion of resistive MHD with a finite eigenvalue, resolving the singularity. Both outer and inner regions are solved numerically by newly developed singular Galerkin methods, using specialized basis functions. These solutions are matched asymptotically, providing a complex dispersion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry. The dispersion relation may have multiple complex unstable roots, which are found by advanced root-finding methods. These methods are much faster and more robust than the previous numerical methods. The new methods are applicable to more challenging high-pressure and strongly shaped plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear regime, where the outer and inner regions overlap, they are also much faster and more accurate than the straight-through methods, which treat the resistive MHD equations in the whole plasma volume. Published by AIP Publishing. C1 [Glasser, A. H.] Fus Theory & Computat Inc, 24062 Seatter Lane NE, Kingston, WA 98346 USA. [Wang, Z. R.; Park, J. -K.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08540 USA. RP Glasser, AH (reprint author), Fus Theory & Computat Inc, 24062 Seatter Lane NE, Kingston, WA 98346 USA. EM aglasser5@gmail.com FU U.S. Department of Energy, Office of Fusion Energy Sciences [DE-FG02-05ER54811, DE-AC02-09CH11466, DE-SC0016106] FX This work was supported by the following contracts from the U.S. Department of Energy, Office of Fusion Energy Sciences: DE-FG02-05ER54811, DE-AC02-09CH11466, and DE-SC0016106. NR 21 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 112506 DI 10.1063/1.4967862 PG 11 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400036 ER PT J AU Hood, R Scheiner, B Baalrud, SD Hopkins, MM Barnat, EV Yee, BT Merlino, RL Skiff, F AF Hood, R. Scheiner, B. Baalrud, S. D. Hopkins, M. M. Barnat, E. V. Yee, B. T. Merlino, R. L. Skiff, F. TI Ion flow and sheath structure near positively biased electrodes SO PHYSICS OF PLASMAS LA English DT Article ID POTENTIAL DIP AB What effect does a dielectric material surrounding a small positively biased electrode have on the ion flow and sheath structure near the electrode? Measurements of the ion velocity distribution function and plasma potential near positively biased electrodes were made using laser-induced fluorescence and an emissive probe. The results were compared with 2D particle-in-cell simulations. Both measurements and simulations showed that when the positive electrode was surrounded by the dielectric material, ions were accelerated toward the electrode to approximately 0.5 times the ion sound speed before being deflected radially by the electron sheath potential barrier of the electrode. The axial potential profile in this case contained a virtual cathode. In comparison, when the dielectric material was removed from around the electrode, both the ion flow and virtual cathode depth near the electrode were dramatically reduced. These measurements suggest that the ion presheath from the dielectric material surrounding the electrode may enclose the electron sheath of the electrode, resulting in a virtual cathode that substantially influences the ion flow profile in the region. Published by AIP Publishing. C1 [Hood, R.; Scheiner, B.; Baalrud, S. D.; Merlino, R. L.; Skiff, F.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Hopkins, M. M.; Barnat, E. V.; Yee, B. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hood, R (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. OI scheiner, brett/0000-0001-6002-9129 FU Office of Fusion Energy Sciences at the U.S. Department of Energy [DE-AC04-94SL85000]; Office of Science Graduate Student Research (SCGSR) program [DE-AC05-06OR23100] FX This research was supported by the Office of Fusion Energy Sciences at the U.S. Department of Energy under Contract No. DE-AC04-94SL85000. In addition, B. Scheiner was supported by the Office of Science Graduate Student Research (SCGSR) program under Contract No. DE-AC05-06OR23100. NR 22 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 113503 DI 10.1063/1.4967870 PG 9 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400062 ER PT J AU Kaganovich, ID Sydorenko, D AF Kaganovich, I. D. Sydorenko, D. TI Band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma SO PHYSICS OF PLASMAS LA English DT Article AB This paper presents a study of the two-stream instability of an electron beam propagating in a finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary conditions. Even if the width of the plasma matches the resonance condition for a standing wave, a spatially growing wave is excited instead with the growth rate small compared to that of the standing wave in a periodic system. The approximate expression for this growth rate is gamma approximate to (1/13)omega(pe)(n(b)/n(p))(L omega p(e)/v(b))ln(L omega p(e)/v(b))[1 - 0.18 cos (L omega p(e)/v(b) + pi/2)], where omega(pe) is the electron plasma frequency, n(b) and n(p) are the beam and the plasma densities, respectively, v(b) is the beam velocity, and L is the plasma width. The frequency, wave number, and the spatial and temporal growth rates, as functions of the plasma size, exhibit band structure. The amplitude of saturation of the instability depends on the system length, not on the beam current. For short systems, the amplitude may exceed values predicted for infinite plasmas by more than an order of magnitude. Published by AIP Publishing. C1 [Kaganovich, I. D.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Sydorenko, D.] Univ Alberta, Edmonton, AB T6G 2E1, Canada. RP Kaganovich, ID (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy; Air Force Office of Scientific Research FX This research was supported in part by the U.S. Department of Energy and Air Force Office of Scientific Research. The authors acknowledge the valuable discussions with Edward Startsev and Peter Ventzek. NR 17 TC 1 Z9 1 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 112116 DI 10.1063/1.4967858 PG 9 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400019 ER PT J AU Loizu, J Hudson, SR Nuhrenberg, C AF Loizu, J. Hudson, S. R. Nuehrenberg, C. TI Verification of the SPEC code in stellarator geometries SO PHYSICS OF PLASMAS LA English DT Article AB We present the first calculations performed with the Stepped-Pressure Equilibrium Code ( SPEC) in stellarator geometry. Provided a boundary magnetic surface, stellarator vacuum fields with islands are computed and verified to machine precision, for both a classical l = 2 stellarator field and a Wendelstein 7-X limiter configuration of the first experimental campaign. Beyond verification, a detailed comparison of SPEC solutions to Biot-Savart solutions for the corresponding coil currents is shown. The level of agreement is quantified, and the error is shown to be dominated by the accuracy with which the boundary representation is given. Finally, partially relaxed stellarator equilibria are computed with SPEC, and verification is presented with force-balance down to machine precision. C1 [Loizu, J.; Nuehrenberg, C.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Hudson, S. R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Loizu, J (reprint author), Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. RI Hudson, Stuart/H-7186-2013 OI Hudson, Stuart/0000-0003-1530-2733 FU Max-Planck-Princeton Plasma Center; EUROfusion Consortium; Euratom research and training programme [633053] FX We acknowledge useful discussions with Per Helander, Sam Lazerson, Harold Weitzner, and Joachim Geiger. Special thanks to Henry Leyh for helping with the proper compilation and execution of the code. This work has been carried out both within the auspices of the Max-Planck-Princeton Plasma Center and in the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 18 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 112505 DI 10.1063/1.4967709 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400035 ER PT J AU Myers, CE Yamada, M Ji, H Yoo, J Jara-Almonte, J Fox, W AF Myers, C. E. Yamada, M. Ji, H. Yoo, J. Jara-Almonte, J. Fox, W. TI Laboratory study of low-beta forces in arched, line-tied magnetic flux ropes SO PHYSICS OF PLASMAS LA English DT Article ID CORONAL MASS EJECTIONS; SOLAR ERUPTIONS; NUMERICAL SIMULATIONS; TORUS INSTABILITY; EQUILIBRIUM; PLASMA; KINK; PROMINENCES; CATASTROPHE; FIELDS AB The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on longlived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [ Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona. Published by AIP Publishing. C1 [Myers, C. E.; Ji, H.; Jara-Almonte, J.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Myers, C. E.; Yamada, M.; Ji, H.; Yoo, J.; Jara-Almonte, J.; Fox, W.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Ji, H.] Harbin Inst Technol, Lab Space Environm & Phys Sci, Harbin 150001, Heilongjiang, Peoples R China. RP Myers, CE (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Myers, CE (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM cmyers@pppl.gov FU Department of Energy (DoE) [DE-AC02-09CH11466]; National Science Foundation/DoE Center for Magnetic Self-Organization (CMSO) FX The authors thank R. Cutler, E. E. Lawrence, F. Scotti, P. Sloboda, E. Oz, and T. D. Tharp for technical contributions and R. M. Kulsrud for useful discussions. This research is supported by Department of Energy (DoE) Contract No. DE-AC02-09CH11466 and by the National Science Foundation/DoE Center for Magnetic Self-Organization (CMSO). The digital data for this paper can be found at http://arks.princeton.edu/ark:/88435/dsp014x51hm50z. NR 48 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 112102 DI 10.1063/1.4966691 PG 21 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400005 ER PT J AU Myra, JR Russell, DA Zweben, SJ AF Myra, J. R. Russell, D. A. Zweben, S. J. TI Theory based scaling of edge turbulence and implications for the scrape-off layer width SO PHYSICS OF PLASMAS LA English DT Article ID X-POINT; TRANSITION; TRANSPORT; GEOMETRY; MODES AB Turbulence and plasma parameter data from the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40, 557 (2000)] is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database [Zweben et al., Nucl. Fusion 55, 093035 (2015)]. These are compared with theoretical estimates for drift and interchange rates, profile modification saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is, in fact, similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the importance of turbulence in setting the scrape-off layer heat flux width lambda(q) and its scaling. An explicit proportionality of the width lambda(q) to the safety factor and major radius (qR) is obtained under these conditions. Quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining lambda(q) in NSTX, at least for high plasma current discharges. Published by AIP Publishing. C1 [Myra, J. R.; Russell, D. A.] Lodestar Res Corp, 2400 Cent Ave, Boulder, CO 80301 USA. [Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Myra, JR (reprint author), Lodestar Res Corp, 2400 Cent Ave, Boulder, CO 80301 USA. OI Myra, James/0000-0001-5939-8429 FU U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences [DE-FG02-02ER54678, DE-AC02-09CH11466, DE-FG02-97ER54392] FX This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Nos. DE-FG02-02ER54678 and DE-AC02-09CH11466. Basic theory contributions to the paper were also supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award No. DE-FG02-97ER54392. The authors are grateful to B. Davis, S. A. Sabbath and R. J. Maqueda for contributions to the GPI data analysis, to B. LeBlanc for Thomson scattering data and to R. Maingi, J.-W. Ahn, T. K. Gray and G. Canal for preparing discharge data used in the simulations. The digital data for this paper can be found at: http://arks.princeton.edu/ark:/88435/dsp018p58pg426. NR 45 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 112502 DI 10.1063/1.4966564 PG 12 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400032 ER PT J AU Xiao, JY Qin, H Morrison, PJ Liu, J Yu, Z Zhang, RL He, Y AF Xiao, Jianyuan Qin, Hong Morrison, Philip J. Liu, Jian Yu, Zhi Zhang, Ruili He, Yang TI Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems SO PHYSICS OF PLASMAS LA English DT Article ID MAXWELL-VLASOV EQUATIONS; NONLINEAR SCHRODINGER-EQUATION; CONTINUOUS HAMILTONIAN SYSTEM; CHARGED-PARTICLE DYNAMICS; GUIDING CENTER MOTION; MULTISYMPLECTIC GEOMETRY; VARIATIONAL INTEGRATORS; DISCRETE MECHANICS; WAVE-EQUATIONS; FORMULATION AB An explicit high-order noncanonical symplectic algorithm for ideal two-fluid systems is developed. The fluid is discretized as particles in the Lagrangian description, while the electromagnetic fields and internal energy are treated as discrete differential form fields on a fixed mesh. With the assistance of Whitney interpolating forms [H. Whitney, Geometric Integration Theory (Princeton University Press, 1957); M. Desbrun et al., Discrete Differential Geometry (Springer, 2008); J. Xiao et al., Phys. Plasmas 22, 112504 (2015)], this scheme preserves the gauge symmetry of the electromagnetic field, and the pressure field is naturally derived from the discrete internal energy. The whole system is solved using the Hamiltonian splitting method discovered by He et al. [Phys. Plasmas 22, 124503 (2015)], which was been successfully adopted in constructing symplectic particle-in-cell schemes [J. Xiao et al., Phys. Plasmas 22, 112504 (2015)]. Because of its structure preserving and explicit nature, this algorithm is especially suitable for large-scale simulations for physics problems that are multi-scale and require long-term fidelity and accuracy. The algorithm is verified via two tests: studies of the dispersion relation of waves in a two-fluid plasma system and the oscillating two-stream instability. Published by AIP Publishing. C1 [Xiao, Jianyuan; Qin, Hong; Liu, Jian; Zhang, Ruili; He, Yang] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Xiao, Jianyuan; Qin, Hong; Liu, Jian; Zhang, Ruili; He, Yang] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Xiao, Jianyuan; Liu, Jian; Zhang, Ruili; He, Yang] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Morrison, Philip J.] Univ Texas Austin, Dept Phys, Austin, TX 78741 USA. [Morrison, Philip J.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78741 USA. [Yu, Zhi] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. RP Qin, H (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.; Qin, H (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hongqin@ustc.edu.cn OI Liu, Jian/0000-0001-7484-401X FU ITER-China Program [2015GB111003, 2014GB124005, 2013GB111000]; JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics [NSFC-11261140328]; National Science Foundation of China [11575186, 11575185, 11505185, 11505186]; Chinese Scholar Council [201506340103]; CAS Program for Interdisciplinary Collaboration Team; Geo-Algorithmic Plasma Simulator (GAPS) project; U.S. Dept. of Energy [DE-FG02-04ER-54742]; Alexander von Humboldt Foundation FX This research was supported by ITER-China Program (2015GB111003, 2014GB124005, and 2013GB111000), JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328), the National Science Foundation of China (11575186, 11575185, 11505185, and 11505186), the Chinese Scholar Council (201506340103), the CAS Program for Interdisciplinary Collaboration Team, the Geo-Algorithmic Plasma Simulator (GAPS) project. PJM was supported by U.S. Dept. of Energy Contract No. DE-FG02-04ER-54742, and funding provided by the Alexander von Humboldt Foundation. He would also like to acknowledge the hospitality of the Numerical Plasma Physics Division of IPP, Max Planck, Garching. NR 83 TC 2 Z9 2 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 112107 DI 10.1063/1.4967276 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400010 ER PT J AU Yin, L Albright, BJ Taitano, W Vold, EL Chacon, L Simakov, AN AF Yin, L. Albright, B. J. Taitano, W. Vold, E. L. Chacon, L. Simakov, A. N. TI Plasma kinetic effects on interfacial mix SO PHYSICS OF PLASMAS LA English DT Article ID MOMENT-BASED ACCELERATOR; PLANCK-AMPERE SYSTEM; SIMULATION; EQUATION; MASS AB Mixing at interfaces in dense plasma media is a problem central to inertial confinement fusion and high energy density laboratory experiments. In this work, collisional particle-in-cell simulations are used to explore kinetic effects arising during the mixing of unmagnetized plasma media. Comparisons are made to the results of recent analytical theory in the small Knudsen number limit and while the bulk mixing properties of interfaces are in general agreement, some differences arise. In particular, "super-diffusive" behavior, large diffusion velocity, and large Knudsen number are observed in the low density regions of the species mixing fronts during the early evolution of a sharp interface prior to the transition to a slow diffusive process in the small-Knudsen-number limit predicted by analytical theory. A center-of-mass velocity profile develops as a result of the diffusion process and conservation of momentum. Published by AIP Publishing. C1 [Yin, L.; Albright, B. J.; Taitano, W.; Vold, E. L.; Chacon, L.; Simakov, A. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yin, L (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM lyin@lanl.gov FU U.S. Department of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory; Thermonuclear Burn Initiative of the ASC Program; LANL Directed Research and Development (LDRD) Program FX This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory and was supported by the Thermonuclear Burn Initiative of the ASC Program and the LANL Directed Research and Development (LDRD) Program. VPIC simulations were run on ASC Cielo and Trinity supercomputer under Capability Class Computing. The authors acknowledge useful discussions with Drs. Dana Knoll, Dan Winske, Bruce Carlsten, Juan Fernandez, William Daughton, Kim Molvig, Evan Dodd, and Grigory Kagan. NR 41 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2016 VL 23 IS 11 AR 112302 DI 10.1063/1.4966562 PG 14 WC Physics, Fluids & Plasmas SC Physics GA EE6WD UT WOS:000389753400028 ER PT J AU Leonelli, L Erickson, E Lyska, D Niyogi, KK AF Leonelli, Lauriebeth Erickson, Erika Lyska, Dagmar Niyogi, Krishna K. TI Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis SO PLANT JOURNAL LA English DT Article DE non-photochemical quenching; PSBS; carotenoid biosynthesis; xanthophyll cycle; transient assay; photosynthesis; Nicotiana benthamiana; Nannochloropsis; Thalassiosira; lutein epoxide ID VIOLAXANTHIN DE-EPOXIDASE; XANTHOPHYLL-CYCLE; PHOTOSYSTEM-II; CHLAMYDOMONAS-REINHARDTII; IN-VIVO; PHYSCOMITRELLA-PATENS; ARABIDOPSIS-THALIANA; ENERGY-DISSIPATION; LIGHT ENERGY; PHOTOSYNTHESIS AB Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non-photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor-intensive and time-consuming generation of stable transgenic lines and mutant populations - approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ-related genes from diverse organisms, we performed Agrobacterium tumefaciens-mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta. C1 [Leonelli, Lauriebeth; Erickson, Erika; Lyska, Dagmar; Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Erickson, Erika; Lyska, Dagmar; Niyogi, Krishna K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. RP Niyogi, KK (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA.; Niyogi, KK (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. EM niyogi@berkeley.edu FU Bill & Melinda Gates Foundation RIPE Project under University of Illinois; Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy [DE-AR0000204]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [449B]; Gordon and Betty Moore Foundation [GBMF3070] FX We thank Tom Kleist for his contribution of P. patens cDNA, Thuy Truong for providing C. reinhardtii PSBS cDNA, David Nelson for assistance in cytochrome P450 nomenclature, Matthew Brooks for helpful discussions and technical support, Marilyn Kobayashi for general awesomeness, and other members of the Niyogi lab for their support. This work was supported by the Bill & Melinda Gates Foundation RIPE Project under a subaward from the University of Illinois. The work on expression of A. thaliana genes was funded by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000204. The work on expression of PSBS was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under field work proposal 449B. K.K.N. is an investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through Grant GBMF3070). The authors have no conflicts of interest to declare. NR 50 TC 0 Z9 0 U1 8 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD NOV PY 2016 VL 88 IS 3 BP 375 EP 386 DI 10.1111/tpj.13268 PG 12 WC Plant Sciences SC Plant Sciences GA ED9OV UT WOS:000389202800003 PM 27407008 ER PT J AU Sariyuce, AE Pinar, A AF Sariyuce, Ahmet Erdem Pinar, Ali TI Fast Hierarchy Construction for Dense Subgraphs SO PROCEEDINGS OF THE VLDB ENDOWMENT LA English DT Article ID K-CORE DECOMPOSITION; GRAPHS; NETWORKS AB Discovering dense subgraphs and understanding the relations among them is a fundamental problem in graph mining. We want to not only identify dense subgraphs, but also build a hierarchy among them (e.g., larger but sparser subgraphs formed by two smaller dense subgraphs). Peeling algorithms (k-core, k-truss, and nucleus decomposition) have been effective to locate many dense subgraphs. However, constructing a hierarchical representation of density structure, even correctly computing the connected k-cores and k-trusses, have been mostly overlooked. Keeping track of connected components during peeling requires an additional traversal operation, which is as expensive as the peeling process. In this paper, we start with a thorough survey and point to nuances in problem formulations that lead to significant differences in runtimes. We then propose efficient and generic algorithms to construct the hierarchy of dense subgraphs for k-core, k-truss, or any nucleus decomposition. Our algorithms leverage the disjoint-set forest data structure to efficiently construct the hierarchy during traversal. Furthermore, we introduce a new idea to avoid traversal. We construct the subgraphs while visiting neighborhoods in the peeling process, and build the relations to previously constructed subgraphs. We also consider an existing idea to find the k-core hierarchy and adapt for our objectives efficiently. Experiments on different types of large scale real-world networks show significant speedups over naive algorithms and existing alternatives. Our algorithms also outperform the hypothetical limits of any possible traversal-based solution. C1 [Sariyuce, Ahmet Erdem] Sandia Natl Labs, Livermore, CA 94550 USA. RP Sariyuce, AE (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM asariyu@sandia.gov; apinar@sandia.gov NR 57 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 2150-8097 J9 PROC VLDB ENDOW JI Proc. VLDB Endow. PD NOV PY 2016 VL 10 IS 3 BP 97 EP 108 PG 12 WC Computer Science, Information Systems SC Computer Science GA ED5CY UT WOS:000388870400003 ER PT J AU Doubrawa, P Barthelmie, RJ Wang, H Pryor, SC Churchfield, MJ AF Doubrawa, Paula Barthelmie, Rebecca J. Wang, Hui Pryor, S. C. Churchfield, Matthew J. TI Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements SO REMOTE SENSING LA English DT Article DE wind; energy; turbine; wakes; LiDAR ID COHERENT DOPPLER LIDAR; TURBULENCE; DYNAMICS; SENSOR AB Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution. C1 [Doubrawa, Paula; Barthelmie, Rebecca J.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Wang, Hui] SgurrEnergy Ltd, Vancouver, BC V6C 2X6, Canada. [Pryor, S. C.] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA. [Churchfield, Matthew J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Doubrawa, P (reprint author), Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. EM pd343@cornell.edu; rb737@cornell.edu; john.wang@sgurrenergy.com; sp2279@cornell.edu; Matt.Churchfield@nrel.gov OI Barthelmie, Rebecca J/0000-0003-0403-6046; Doubrawa, Paula/0000-0002-0660-7212 FU Department of Energy [DE-EE0005379]; Cooperative Research and Development Agreement [CRD-15-590] FX This work was partly funded by the Department of Energy DE-EE0005379 and by Cooperative Research and Development Agreement CRD-15-590. NR 36 TC 0 Z9 0 U1 4 U2 4 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2016 VL 8 IS 11 AR 939 DI 10.3390/rs8110939 PG 18 WC Remote Sensing SC Remote Sensing GA ED4DS UT WOS:000388798400060 ER PT J AU Zhao, FR Meng, R Huang, CQ Zhao, MS Zhao, FA Gong, P Yu, L Zhu, ZL AF Zhao, Feng R. Meng, Ran Huang, Chengquan Zhao, Maosheng Zhao, Feng A. Gong, Peng Yu, Le Zhu, Zhiliang TI Long-Term Post-Disturbance Forest Recovery in the Greater Yellowstone Ecosystem Analyzed Using Landsat Time Series Stack SO REMOTE SENSING LA English DT Article DE wildland fires; timber harvest; detectable forest recovery; 1988 Yellowstone Fires ID NATIONAL-PARK; BOREAL FORESTS; FIRE SEVERITY; UNITED-STATES; COVER CHANGE; GLOBAL CHANGE; LIDAR DATA; PINE; VEGETATION; TRENDS AB Forest recovery from past disturbance is an integral process of ecosystem carbon cycles, and remote sensing provides an effective tool for tracking forest disturbance and recovery over large areas. Although the disturbance products (tracking the conversion from forest to non-forest type) derived using the Landsat Time Series Stack-Vegetation Change Tracker (LTSS-VCT) algorithm have been validated extensively for mapping forest disturbances across the United States, the ability of this approach to characterize long-term post-disturbance recovery (the conversion from non-forest to forest) has yet to be assessed. In this study, the LTSS-VCT approach was applied to examine long-term (up to 24 years) post-disturbance forest spectral recovery following stand-clearing disturbances (fire and harvests) in the Greater Yellowstone Ecosystem (GYE). Using high spatial resolution images from Google Earth, we validated the detectable forest recovery status mapped by VCT by year 2011. Validation results show that the VCT was able to map long-term post-disturbance forest recovery with overall accuracy of similar to 80% for different disturbance types and forest types in the GYE. Harvested areas in the GYE have higher percentages of forest recovery than burned areas by year 2011, and National Forests land generally has higher recovery rates compared with National Parks. The results also indicate that forest recovery is highly related with forest type, elevation and environmental variables such as soil type. Findings from this study can provide valuable insights for ecosystem modeling that aim to predict future carbon dynamics by integrating fine scale forest recovery conditions in GYE, in the face of climate change. With the availability of the VCT product nationwide, this approach can also be applied to examine long-term post-disturbance forest recovery in other study regions across the U.S. C1 [Zhao, Feng R.; Huang, Chengquan; Zhao, Maosheng; Zhao, Feng A.] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. [Meng, Ran] Brookhaven Natl Lab, Environm & Climate Sci Dept, Bldg 490A, Upton, NY 11973 USA. [Gong, Peng; Yu, Le] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Ctr Earth Syst Sci, Beijing 10083, Peoples R China. [Zhu, Zhiliang] US Geol Survey, Reston, VA 20192 USA. RP Zhao, FR (reprint author), Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA. EM fengzhao@umd.edu; ranmeng@bnl.gov; cqhuang@umd.edu; zhaoms@umd.edu; zhao26@umd.edu; penggong@tsinghua.edu.cn; leyu@tsinghua.edu.cn; zzhu@usgs.gov RI Yu, Le/C-3701-2008; OI Yu, Le/0000-0003-3115-2042; Zhao, Feng/0000-0003-4534-933X FU USGS LANDCarbon project FX This study was supported by funding from the USGS LANDCarbon project. The authors would like to thank Google Earth for providing the validation platform. Roy Renkin and Carrie Guiles from the National Park Service, Yellowstone National Park kindly shared their rich knowledge on YNP and provided data assistance. The authors would also like to thank Kate Rice, Ashwan Reddy, and Cheryl Nichols for proof-reading the manuscript and providing lots of helpful writing suggestions. NR 85 TC 0 Z9 0 U1 15 U2 15 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD NOV PY 2016 VL 8 IS 11 AR UNSP 898 DI 10.3390/rs8110898 PG 22 WC Remote Sensing SC Remote Sensing GA ED4DS UT WOS:000388798400019 ER PT J AU Morris, J Chan, A Detwiler, R Hasenfus, G Huang, HY Sanchez-Nagel, M AF Morris, Joseph Chan, Alvin Detwiler, Russell Hasenfus, Greg Huang, Haiying Sanchez-Nagel, Marisela TI Introduction to Selected Contributions from the 49th US Rock Mechanics/Geomechanics Symposium Held in San Francisco, California from 28 June to 1 July, 2015 SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Editorial Material C1 [Morris, Joseph] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. [Morris, Joseph] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Chan, Alvin] Shell Int, New Orleans, LA USA. [Detwiler, Russell] Univ Calif Irvine, Irvine, CA USA. [Hasenfus, Greg] Consol Energy Inc, Canonsburg, PA USA. [Huang, Haiying] Georgia Inst Technol, Atlanta, GA USA. [Sanchez-Nagel, Marisela] OilField Geomechan, Houston, TX USA. RP Morris, J (reprint author), Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA.; Morris, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM morris50@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD NOV PY 2016 VL 49 IS 11 SI SI BP 4505 EP 4505 DI 10.1007/s00603-016-1115-9 PG 1 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA EC1FH UT WOS:000387849400021 ER PT J AU Roy, P Du Frane, WL Kanarska, Y Walsh, SDC AF Roy, Pratanu Du Frane, Wyatt L. Kanarska, Yuliya Walsh, Stuart D. C. TI Numerical and Experimental Studies of Particle Settling in Real Fracture Geometries SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Proppant transport; Particle settling; Microcapsules; Hydraulic fracture ID PARTICULATE FLOWS; DOMAIN METHOD AB Proppant is a vital component of hydraulic stimulation operations, improving conductivity by maintaining fracture aperture. While correct placement is a necessary part of ensuring that proppant performs efficiently, the transport behavior of proppant in natural rock fractures is poorly understood. In particular, as companies pursue new propping strategies involving new types of proppant, more accurate models of proppant behavior are needed to help guide their deployment. A major difficulty with simulating reservoir-scale proppant behavior is that continuum models traditionally used to represent large-scale slurry behavior loose applicability in fracture geometries. Particle transport models are often based on representative volumes that are at the same scale or larger than fractures found in hydraulic fracturing operations, making them inappropriate for modeling these types of flows. In the absence of a first-principles approach, empirical closure relations are needed. However, even such empirical closure relationships are difficult to derive without an accurate understanding of proppant behavior on the particle level. Thus, there is a need for experiments and simulations capable of probing phenomena at the sub-fracture scale. In this paper, we present results from experimental and numerical studies investigating proppant behavior at the sub-fracture level, in particular, the role of particle dispersion during proppant settling. In the experimental study, three-dimensional printing techniques are used to accurately reproduce the topology of a fractured Marcellus shale sample inside a particle-flow cell. By recreating the surface in clear plastic resin, proppant movement within the fracture can be tracked directly in real time without the need for X-ray imaging. Particle tracking is further enhanced through the use of mixtures of transparent and opaque proppant analogues. The accompanying numerical studies employ a high-fidelity three-dimensional particle-flow model, capable of explicitly representing the particles, the fracture surface and the interstitial fluid flow. Both studies reveal large-scale vortex motion during particle settling. For the most part, this behavior is independent of the fracture topology, instead driven by interactions between the sinking particles and the upwelling interstitial fluid. This motion results in large amounts of particle dispersion, significantly greater than might be expected from traditional slurry models. The competition between the particles and the fluid also results in a redistribution of particles toward the fracture walls, which has significant implications for the transport of proppant along the fracture. C1 [Roy, Pratanu; Du Frane, Wyatt L.; Kanarska, Yuliya; Walsh, Stuart D. C.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. RP Roy, P (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM roy23@llnl.gov OI Walsh, Stuart/0000-0001-8155-4870 FU LLNL's Laboratory Directed Research and Development (LDRD) Program [38315/6.1.4.A.1]; United States Government FX We gratefully acknowledge support for this work provided through LLNL's Laboratory Directed Research and Development (LDRD) Program (Project 38315/6.1.4.A.1). This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC and shall not be used for advertising or product endorsement purposes. NR 21 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD NOV PY 2016 VL 49 IS 11 SI SI BP 4557 EP 4569 DI 10.1007/s00603-016-1100-3 PG 13 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA EC1FH UT WOS:000387849400026 ER PT J AU Pedesseau, L Sapori, D Traore, B Robles, R Fang, HH Loi, MA Tsai, HH Nie, WY Blancon, JC Neukirch, A Tretiak, S Mohite, AD Katan, C Even, J Kepenekian, M AF Pedesseau, Laurent Sapori, Daniel Traore, Boubacar Robles, Roberto Fang, Hong-Hua Loi, Maria Antonietta Tsai, Hsinhan Nie, Wanyi Blancon, Jean-Christophe Neukirch, Amanda Tretiak, Sergei Mohite, Aditya D. Katan, Claudine Even, Jacky Kepenekian, Mikael TI Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors SO ACS NANO LA English DT Review DE halide perovskites; layered materials; quantum confinement; dielectric confinement; Rashba; exciton; density functional theory; k-p; Bethe-Salpeter equation ID ORGANIC-INORGANIC PEROVSKITES; LEAD IODIDE PEROVSKITE; SOLAR-CELLS; OPTICAL-PROPERTIES; QUANTUM CONFINEMENT; PHASE-TRANSITIONS; CRYSTAL-STRUCTURE; BAND-GAP; PHOTOVOLTAIC CELLS; EFFECTIVE MASSES AB Layered halide hybrid organic inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D-4h symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties. C1 [Pedesseau, Laurent; Even, Jacky] CNRS, UMR 6082, INSA Rennes, Fonct Opt Telecommun FOTON, F-35708 Rennes, France. [Sapori, Daniel; Traore, Boubacar; Katan, Claudine; Kepenekian, Mikael] Univ Rennes 1, CNRS, UMR 6226, ISCR, F-35042 Rennes, France. [Robles, Roberto] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain. [Robles, Roberto] Barcelona Inst Sci & Technol, Campus UAB, Barcelona 08193, Spain. [Fang, Hong-Hua; Loi, Maria Antonietta] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands. [Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Even, J (reprint author), CNRS, UMR 6082, INSA Rennes, Fonct Opt Telecommun FOTON, F-35708 Rennes, France.; Kepenekian, M (reprint author), Univ Rennes 1, CNRS, UMR 6226, ISCR, F-35042 Rennes, France. EM jacky.even@insa-rennes.fr; mikael.kepenekian@univ-rennes1.fr RI Robles, Roberto/A-5613-2008; Kepenekian, Mikael/A-3374-2017; KATAN, Claudine/I-9446-2012; Tretiak, Sergei/B-5556-2009; even, jacky/C-6212-2008; OI Robles, Roberto/0000-0001-7808-0395; Kepenekian, Mikael/0000-0001-5192-5896; KATAN, Claudine/0000-0002-2017-5823; Tretiak, Sergei/0000-0001-5547-3647; even, jacky/0000-0002-4607-3390; Blancon, Jean-Christophe/0000-0002-3833-5792; TRAORE, Boubacar/0000-0003-0568-4141 FU Agence Nationale pour la Recherche; GENCI-CINES/IDRIS [2016-c2012096724]; Fondation d'entreprises banque Populaire de l'Ouest; LANL LDRD program; European Research Council (ERC) [306983]; Foundation for Fundamental Research on Matter (FOM) of The Netherlands Organization for Scientific Research (NWO); MINECO [SEV-2013-0295]; European Union [687008] FX The work at FOTON is supported by Agence Nationale pour la Recherche (SNAP and SuperSansPlomb projects) and was performed using HPC resources from GENCI-CINES/IDRIS Grant 2016-c2012096724. The work at ISCR is supported by Agence Nationale pour la Recherche (TRANSHYPERO project). J.E.'s work is supported by the Fondation d'entreprises banque Populaire de l'Ouest under Grant PEROPHOT 2015. The work at Los Alamos National Laboratory (LANL) was supported by LANL LDRD program and was partially performed at the Center for Nonlinear Studies and at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science user facility. The Groningen team would like to acknowledge funding from European Research Council (ERC Starting Grant "Hy-SPOD" No. 306983) and by the Foundation for Fundamental Research on Matter (FOM), which is part of The Netherlands Organization for Scientific Research (NWO), under the framework of the FOM Focus Group "Next Generation Organic Photovoltaics". ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). This project received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement no. 687008. The information and views set out in this publication are those of the authors and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. NR 82 TC 3 Z9 3 U1 119 U2 119 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 9776 EP 9786 DI 10.1021/acsnano.6b05944 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100004 PM 27775343 ER PT J AU Zhou, S Li, JH Gilroy, KD Tao, J Zhu, CL Yang, X Sun, XJ Xia, YN AF Zhou, Shan Li, Jianhua Gilroy, Kyle D. Tao, Jing Zhu, Chunlei Yang, Xuan Sun, Xiaojun Xia, Younan TI Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution SO ACS NANO LA English DT Article DE silver; nanocube; aqueous method; one-pot synthesis; silver chloride ID SHAPE-CONTROLLED SYNTHESIS; ENHANCED RAMAN-SCATTERING; SEED-MEDIATED GROWTH; CORE-SHELL NANOCUBES; OPTICAL-PROPERTIES; AG NANOCUBES; CONTROLLED SIZES; AU NANOCAGES; NANOPARTICLES; NANOCRYSTALS AB It remains a challenge to synthesize Ag nanocubes in an aqueous system, although the polyol process was successfully adopted more than one decade ago. Here, we report an aqueous method for the synthesis of Ag nanocubes with an average edge length of 35-95 nm. It involves the formation of AgCl octahedra by mixing CF3COOAg with cetyltrimethylammonium chloride, followed by the nucleation and growth of Ag nanocrystals in the presence of ascorbic acid (AA) and FeCl3. The Fe3+/Fe2+ redox pair is responsible for the removal of multiply twinned seeds through oxidative etching. The Cl- ions play two critical roles in the nucleation and growth of Ag nanocubes with a single-crystal structure. First, the Cl- ions react with Ag+ ions to generate nanometer-sized AgCl octahedra in the initial stage of a synthesis. In the presence of room light and a proper reducing agent such as AA, the AgCl can be reduced to generate Ag nuclei followed by their evolution into single-crystal seeds and then Ag nanocrystals. Second, the Cl- ions can act as a specific capping agent toward the Ag(100) surface, enabling the formation of Ag nanocubes with sharp corners and edges. Based on the results from a set of time-lapse studies and control experiments, we formulate a plausible mechanism to account for the formation of Ag nanocubes that resembles the formation and development of latent image centers in silver halide grains in the photographic process. C1 [Zhou, Shan; Xia, Younan] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Sun, Xiaojun] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Li, Jianhua; Gilroy, Kyle D.; Zhu, Chunlei; Yang, Xuan; Xia, Younan] Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA. [Li, Jianhua; Gilroy, Kyle D.; Zhu, Chunlei; Yang, Xuan; Xia, Younan] Emory Univ, Atlanta, GA 30332 USA. [Tao, Jing] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Xia, YN (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA.; Xia, YN (reprint author), Georgia Inst Technol, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30332 USA.; Xia, YN (reprint author), Emory Univ, Atlanta, GA 30332 USA. EM younan.xia@bme.gatech.edu RI Xia, Younan/E-8499-2011 FU NSF [DMR-1506018]; Georgia Institute of Technology; China Scholarship Council FX This work was supported in part by a grant from the NSF (DMR-1506018) and startup funds from the Georgia Institute of Technology. As a jointly supervised Ph.D. candidate from Shandong University, J.L. was also partially supported by a fellowship from the China Scholarship Council. NR 41 TC 0 Z9 0 U1 74 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 9861 EP 9870 DI 10.1021/acsnano.6b05776 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100014 PM 27649269 ER PT J AU Ulstrup, S Katoch, J Koch, RJ Schwarz, D Singh, S McCreary, KM Yoo, HK Xu, JS Jonker, BT Kawakami, RK Bostwick, A Rotenberg, E Jozwiak, C AF Ulstrup, Soren Katoch, Jyoti Koch, Roland J. Schwarz, Daniel Singh, Simranjeet McCreary, Kathleen M. Yoo, Hyang Keun Xu, Jinsong Jonker, Berend T. Kawakami, Roland K. Bostwick, Aaron Rotenberg, Eli Jozwiak, Chris TI Spatially Resolved Electronic Properties of Single-Layer WS2 on Transition Metal Oxides SO ACS NANO LA English DT Article DE spatially resolved photoemission; PEEM; ARPES; transition metal dichalcogenides; WS2; high-kappa oxides ID GIANT BANDGAP RENORMALIZATION; CHEMICAL-VAPOR-DEPOSITION; 2-DIMENSIONAL MATERIALS; TITANIUM-DIOXIDE; THIN-FILMS; HETEROSTRUCTURES; RUTILE; GRAPHENE; MOS2; TRANSISTORS AB There is a substantial interest in the heterostructures of semiconducting transition metal dichalcogenides (TMDCs) among each other or with arbitrary materials, through which the control of the chemical, structural, electronic, spintronic, and optical properties can lead to a change in device paradigms. A critical need is to understand the interface between TMDCs and insulating substrates, for example, high-kappa dielectrics, which can strongly impact the electronic properties such as the optical gap. Here, we show that the chemical and electronic properties of the single-layer (SL) TMDC, WS2, can be transferred onto high-K transition metal oxide substrates TiO2 and SrTiO3. The resulting samples are much more suitable for measuring their electronic and chemical structures with angle-resolved photoemission than their native-grown SiO2 substrates. We probe the WS2 on the micron scale across 100 mu m flakes and find that the occupied electronic structure is exactly as predicted for free-standing SL WS2 with a strong spin-orbit splitting of 420 meV and a direct band gap at the valence band maximum. Our results suggest that TMDCs can be combined with arbitrary multifunctional oxides, which may introduce alternative means of controlling the optoelectronic properties of such materials. C1 [Ulstrup, Soren; Koch, Roland J.; Schwarz, Daniel; Yoo, Hyang Keun; Bostwick, Aaron; Rotenberg, Eli; Jozwiak, Chris] EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Katoch, Jyoti; Singh, Simranjeet; Xu, Jinsong; Kawakami, Roland K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [McCreary, Kathleen M.; Jonker, Berend T.] Naval Res Lab, Washington, DC 20375 USA. RP Ulstrup, S; Jozwiak, C (reprint author), EO Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM sulstrup@lbl.gov; cmjozwiak@lbl.gov RI Ulstrup, Soren/B-9190-2017 OI Ulstrup, Soren/0000-0001-5922-4488 FU Danish Council for Independent Research, Natural Sciences [DFF-4090-00125]; German Academic Exchange Service (DAAD); Netherlands Organisation for Scientific Research [680-50-1305]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF-MRSEC [DMR-1420451]; NRL Nanoscience Institute; AFOSR [AOARD 14IOA018- 134141]; [IBS-R009-D1] FX S.U. acknowledges financial support from the Danish Council for Independent Research, Natural Sciences under the Sapere Aude program (Grant No. DFF-4090-00125). R.J.K. is supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD). D.S. acknowledges financial support from The Netherlands Organisation for Scientific Research under the Rubicon Program (Grant 680-50-1305). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work was supported by IBS-R009-D1. The work at Ohio State was primarily supported by NSF-MRSEC (Grant DMR-1420451). Work at NRL was supported by core programs and the NRL Nanoscience Institute and by AFOSR under contract number AOARD 14IOA018- 134141. NR 68 TC 0 Z9 0 U1 31 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 10058 EP 10067 DI 10.1021/acsnano.6b04914 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100034 PM 27768848 ER PT J AU Diroll, BT Guo, PJ Chang, RPH Schaller, RD AF Diroll, Benjamin T. Guo, Peijun Chang, Robert P. H. Schaller, Richard D. TI Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals SO ACS NANO LA English DT Article DE epsilon-near-zero; localized surface plasmon resonance; doping; ultrafast; nanocrystals ID INDIUM TIN OXIDE; ELECTRON-PHONON RELAXATION; PLASMONIC PROPERTIES; ULTRAFAST; DYNAMICS; GOLD; NANOPARTICLES; SILVER; SHAPE; METAMATERIALS AB Epsilon-near-zero materials may be synthesized as colloidal nanocrystals which display large magnitude subpicosecond switching of infrared localized surface plasmon resonances. Such nanocrystals offer a solution-processable, scalable source of tunable metamaterials compatible with arbitrary substrates. Under intraband excitation, these nanocrystals display a red-shift of the plasmon feature arising from the low electron heat capacities and conduction band nonparabolicity of the oxide. Under interband pumping, they show in an ultrafast blueshift of the plasmon resonance due to transient increases in the carrier density. Combined with their high-quality factor, large changes in relative transmittance (+86%) and index of refraction (+85%) at modest control fluences (<5 mJ/cm(2)) suggest that these materials offer great promise for all-optical switching, wavefront engineering, and beam steering operating at terahertz switching frequencies. C1 [Diroll, Benjamin T.; Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Guo, Peijun; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. RP Schaller, RD (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA.; Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM schaller@anl.gov FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; MRSEC program at Northwestern University [NSF DMR-1121262] FX This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under contract no. DE-AC02-06CH11357. P.G. and R.P.H.C. were funded by the MRSEC program (NSF DMR-1121262) at Northwestern University. NR 47 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 10099 EP 10105 DI 10.1021/acsnano.6b05116 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100038 PM 27754640 ER PT J AU Huang, HH Hong, ZJ Xin, HLL Su, D Chen, LQ Huang, GZ Munroe, PR Valanoor, N AF Huang, Hsin-Hui Hong, Zijian Xin, Huolin L. Su, Dong Chen, Long-Qing Huang, Guanzhong Munroe, Paul R. Valanoor, Nagarajan TI Nanoscale Origins of Ferroelastic Domain Wall Mobility in Ferroelectric Multilayers SO ACS NANO LA English DT Article DE nanoscale ferroelectrics; epitaxial thin films; ferroelastic domains; aberration-corrected scanning transmission electron microscopy; nanoscale electromechanics ID THIN-FILMS; ATOMIC-SCALE; FORCE MICROSCOPY; PBTIO3 FILMS; POLARIZATION; SUPERLATTICES; CRYSTAL; STRAIN; ENHANCEMENT; NANODOMAINS AB The nanoscale origins of ferroelastic domain wall motion in ferroelectric multilayer thin films that lead to giant electromechanical responses are investigated. We present direct evidence for complex underpinning factors that result in ferroelastic domain wall mobility using a combination of atomic-level aberration corrected scanning transmission electron microscopy and phase-field simulations in model epitaxial (001) tetragonal (T) PbZrxTi1-xO3 (PZT)/rhombohedral (R) PbZ(x)Ti(1-x)O(3) (PZT) bilayer heterostructures. The local electric dipole distribution is imaged on an atomic scale for a ferroelastic domain wall that nucleates in the R-layer and cuts through the composition breaking the T/R interface. Our studies reveal a highly complex polarization rotation domain structure that is nearly on the knife-edge at the vicinity of this wall. Induced phases, namely tetragonal-like and rhombohedral-like monoclinic were observed close to the interface, and exotic domain arrangements, such as a half-4-fold closure structure, are observed. Phase field simulations show this is due to the minimization of the excessive elastic and electrostatic energies driven by the enormous strain gradient present at the location of the ferroelastic domain walls. Thus, in response to an applied stimulus, such as an electric field, any polarization reorientation must minimize the elastic and electrostatic discontinuities due to this strain gradient, which would induce a dramatic rearrangement of the domain structure. This insight into the origins of ferroelastic domain wall motion will allow researchers to better "craft" such multilayered ferroelectric systems with precisely tailored domain wall functionality and enhanced sensitivity, which can be exploited for the next generation of integrated piezoelectric technologies. C1 [Huang, Hsin-Hui; Munroe, Paul R.; Valanoor, Nagarajan] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Hong, Zijian; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Xin, Huolin L.; Su, Dong; Huang, Guanzhong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Huang, Guanzhong] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Valanoor, N (reprint author), Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. EM nagarajan@unsw.edu.au RI valanoor, nagarajan/B-4159-2012; Su, Dong/A-8233-2013 OI Su, Dong/0000-0002-1921-6683 FU ARC Discovery Project; U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [FG02-07ER46417]; NSF-MRSEC grant [DMR-1420620]; NSF-MWN grant [DMR-1210588] FX The authors would like to thank E. Huang for providing samples. The authors wish to acknowledge J. Halverson for useful discussion and help on tetragonality measurements. NV, acknowledges detailed discussions with L.W. Martin. The research at the University of New South Wales was supported by an ARC Discovery Project. STEM work made use of resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Phase field simulation work is supported by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award FG02-07ER46417 (LQC). Z.J.H. acknowledges the support by NSF-MRSEC grant number DMR-1420620 and NSF-MWN grant number DMR-1210588. NR 72 TC 0 Z9 0 U1 30 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 10126 EP 10134 DI 10.1021/acsnano.6b05180 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100041 PM 27797485 ER PT J AU Mitchell, HD Markillie, LM Chrisler, WB Gaffrey, MJ Hu, DH Szymanski, CJ Xie, YM Melby, ES Dohnalkova, A Taylors, RC Grate, EK Cooley, SK McDermott, JE Heredia-Langner, A Orr, G AF Mitchell, Hugh D. Markillie, Lye Meng Chrisler, William B. Gaffrey, Matthew J. Hu, Dehong Szymanski, Craig J. Xie, Yumei Melby, Eric S. Dohnalkova, Alice Taylors, Ronald C. Grate, Eva K. Cooley, Scott K. McDermott, Jason E. Heredia-Langner, Alejandro Orr, Galya TI Cells Respond to Distinct Nanoparticle Properties with Multiple Strategies As Revealed by Single-Cell RNA-Seq SO ACS NANO LA English DT Article DE single-cell sorting; transcriptional response; hierarchical clustering; functional enrichment; differential gene expression ID WALLED CARBON NANOTUBES; AIR-LIQUID INTERFACE; QUANTUM DOTS; TRANSCRIPTOME ANALYSIS; GENE-EXPRESSION; OXIDE NANOPARTICLES; ZNO NANOPARTICLES; EPITHELIAL-CELLS; STEM-CELLS; CYTOTOXICITY AB The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells "overloaded" while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults. C1 [Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.; Gaffrey, Matthew J.; Hu, Dehong; Szymanski, Craig J.; Xie, Yumei; Melby, Eric S.; Dohnalkova, Alice; Taylors, Ronald C.; Grate, Eva K.; McDermott, Jason E.; Orr, Galya] Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA. [Cooley, Scott K.; Heredia-Langner, Alejandro] Pacific Northwest Natl Lab, Natl Secur Directorate, Richland, WA 99352 USA. RP Orr, G (reprint author), Pacific Northwest Natl Lab, Earth & Biol Sci Directorate, Richland, WA 99352 USA. EM galya.orr@pnnl.gov RI Hu, Dehong/B-4650-2010 OI Hu, Dehong/0000-0002-3974-2963 FU PNNL's Signature Discovery Initiative; National Institute of Environmental Health Sciences [1RC2ES018786-01]; Department of Energy's Office of Biological and Environmental Research FX This work was supported by PNNL's Signature Discovery Initiative, and by the National Institute of Environmental Health Sciences (1RC2ES018786-01 to G.O). The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 56 TC 0 Z9 0 U1 14 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 10173 EP 10185 DI 10.1021/acsnano.6b05452 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100046 PM 27788331 ER PT J AU Li, YW Xie, YJ Wang, Z Zang, NZ Carniato, F Huang, YR Andolina, CM Parent, LR Ditri, TB Walter, ED Botta, M Rinehart, JD Gianneschi, NC AF Li, Yiwen Xie, Yijun Wang, Zhao Zang, Nanzhi Carniato, Fabio Huang, Yuran Andolina, Christopher M. Parent, Lucas R. Ditri, Treffly B. Walter, Eric D. Botta, Mauro Rinehart, Jeffrey D. Gianneschi, Nathan C. TI Structure and Function of Iron-Loaded Synthetic Melanin SO ACS NANO LA English DT Article DE synthetic melanin; MRI; magnetometry; polymerization; antiferromagnetic coupling ID RELAXATION DISPERSION PROFILES; ELECTRON-SPIN RESONANCE; POLYDOPAMINE NANOPARTICLES; VERSATILE PLATFORM; CONTRAST AGENTS; CROSS-LINKS; COMPLEXES; NEUROMELANIN; EPR; ADHESIVE AB We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding of this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins. C1 [Li, Yiwen] Sichuan Univ, State Key Lab Polymer Mat Engn, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China. [Li, Yiwen; Xie, Yijun; Wang, Zhao; Zang, Nanzhi; Huang, Yuran; Parent, Lucas R.; Ditri, Treffly B.; Rinehart, Jeffrey D.; Gianneschi, Nathan C.] Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Xie, Yijun; Zang, Nanzhi; Huang, Yuran; Gianneschi, Nathan C.] Univ Calif San Diego, Mat Sci & Engn Program, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Carniato, Fabio; Botta, Mauro] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Andolina, Christopher M.] Univ Pittsburgh, Dept Chem, 4200 Fifth Ave, Pittsburgh, PA 15260 USA. [Walter, Eric D.] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. [Walter, Eric D.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Rinehart, JD; Gianneschi, NC (reprint author), Univ Calif San Diego, Dept Chem & Biochem, 9500 Gilman Dr, La Jolla, CA 92093 USA.; Gianneschi, NC (reprint author), Univ Calif San Diego, Mat Sci & Engn Program, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM jrinehart@ucsd.edu; ngianneschi@ucsd.edu FU AFOSR [FA9550-11-1-0105]; Department of Chemistry and Biochemistry at UC San Diego; Compagnia di San Paolo; State Key Laboratory of Polymer Materials Engineering, Sichuan University [sklpme2016-3-03]; National Institute of Biomedical Imaging and Bioengineering of NIH [F32EB021859] FX We thank the AFOSR for generous funding through a PECASE to N.C.G. (FA9550-11-1-0105). J.D.R. acknowledges support for this work from the Department of Chemistry and Biochemistry at UC San Diego. M.B. is thankful for the financial support of the "Compagnia di San Paolo" (CSP-2012 NANOPROGLY Project). Y.L. thanks the State Key Laboratory of Polymer Materials Engineering, Sichuan University (No. sklpme2016-3-03), for financial support. Y.X. acknowledges the Materials Science and Engineering Fellowship at UCSD. L.R.P. was supported by the National Institute of Biomedical Imaging and Bioengineering of NIH (F32EB021859). NR 52 TC 0 Z9 0 U1 34 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2016 VL 10 IS 11 BP 10186 EP 10194 DI 10.1021/acsnano.6b05502 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA ED5SR UT WOS:000388913100047 PM 27802021 ER PT J AU Kline, ND Tripathi, A Mirsafavi, R Pardoe, I Moskovits, M Meinhart, C Guicheteau, JA Christesen, SD Fountain, AW AF Kline, Neal D. Tripathi, Ashish Mirsafavi, Rustin Pardoe, Ian Moskovits, Martin Meinhart, Carl Guicheteau, Jason A. Christesen, Steven D. Fountain, Augustus W., III TI Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection SO ANALYTICAL CHEMISTRY LA English DT Article ID CAPPED GOLD NANOPARTICLES; VIBRATIONAL SPECTROSCOPY; LIQUID-CHROMATOGRAPHY; METAL NANOPARTICLES; PLASMONIC MATERIALS; AIRBORNE MOLECULES; MASS-SPECTROMETRY; ILLICIT DRUGS; HUMAN URINE; SILVER AB A microfluidic device is being developed by University of California-Santa Barbara as part of a joint effort with the United States Army to develop a portable, rapid drug detection device. Surface-enhanced Raman spectroscopy (SERS) is used to provide a sensitive, selective detection technique within the microfluidic platform employing metallic nanoparticles as the SERS medium. Using several illicit drugs as analytes, the work presented here describes the efforts of the Edgewood Chemical Biological Center to optimize the microfluidic platform by investigating the role of nanoparticle material, nanoparticle size, excitation wavelength, and capping agents on the performance, and drug concentration detection limits achievable with Ag and Au nanoparticles that will ultimately be incorporated into the final design. This study is particularly important as it lays out a systematic comparison of limits of detection and potential interferences from working with several nanoparticle capping agents-such as tannate, citrate, and borate-which does not seem to have been done previously as the majority of studies only concentrate on citrate as the capping agent. Morphine, cocaine, and methamphetamine were chosen as test analytes for this study and were observed to have limits of detection (LOD) in the range of (1.5-4.7) X 10(-8) M (4.5-13 ng/mL), with the borate capping agent having the best performance. C1 [Kline, Neal D.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37830 USA. [Tripathi, Ashish; Guicheteau, Jason A.; Christesen, Steven D.; Fountain, Augustus W., III] Edgewood Chem Biol Ctr, Res & Technol Directorate, Aberdeen Proving Ground, MD 21010 USA. [Mirsafavi, Rustin] Univ Calif Santa Barbara, Dept Biomol Sci & Engn, Santa Barbara, CA 93106 USA. [Moskovits, Martin] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. [Pardoe, Ian] Excet Inc, Springfield, VA 22150 USA. [Meinhart, Carl] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Fountain, Augustus W., III] ATTN RDCB-DRD-L 1583 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. RP Fountain, AW (reprint author), Edgewood Chem Biol Ctr, Res & Technol Directorate, Aberdeen Proving Ground, MD 21010 USA.; Fountain, AW (reprint author), ATTN RDCB-DRD-L 1583 Blackhawk Rd, Aberdeen Proving Ground, MD 21010 USA. EM augustus.w.fountain.civ@mail.mil FU U.S. Army [PE0602622A, 552]; Institute for Collaborative Biotechnologies through U.S. Army Research Office [W911NF-09-D-0001] FX The authors would like to acknowledge Tracey Hamilton of the U.S. Army Medical Research Institute of Chemical Defense, Gunpowder, Maryland for the TEM images of the borate capped nanoparticle solutions. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government. This research was supported in part by an appointment to the Student Participation Research Program at the U.S. Army Edgewood Chemical Biological Center administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and ECBC. Funding was provided by the U.S. Army, through PE0602622A Project 552, "Forensic Analysis of Explosives", and the Institute for Collaborative Biotechnologies through Contract No. W911NF-09-D-0001 from the U.S. Army Research Office. NR 77 TC 0 Z9 0 U1 48 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD NOV 1 PY 2016 VL 88 IS 21 BP 10513 EP 10522 DI 10.1021/acs.analchem.6b02573 PG 10 WC Chemistry, Analytical SC Chemistry GA EA9UW UT WOS:000386991200027 PM 27715011 ER PT J AU Casanova, J Jose, J Garcia-Berro, E Shore, SN AF Casanova, Jordi Jose, Jordi Garcia-Berro, Enrique Shore, Steven N. TI Three-dimensional simulations of turbulent convective mixing in ONe and CO classical nova explosions SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE novae, cataclysmic variables; nuclear reactions, nucleosynthesis, abundances; convection; hydrodynamics; instabilities; turbulence ID POSSESSING ANGULAR-MOMENTUM; ACCRETING WHITE-DWARFS; NUCLEAR-REACTION; REACTION-RATES; MODELS; OUTBURSTS; EVOLUTION; DIFFUSION; STARS; NUCLEOSYNTHESIS AB Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures of similar to(1-4) x 10(8) K. During these events, about 10(-3)-10(-7) M-circle dot, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the high concentrations of metals spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. Three-dimensional simulations of mixing at the core-envelope interface during nova outbursts have been performed with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We show that the presence of an ONe-rich substrate, as in "neon novae", yields higher metallicity enhancements in the ejecta than CO-rich substrates (i.e., non-neon novae). A number of requirements and constraints for such 3D simulations (e.g., minimum resolution, size of the computational domain) are also outlined. C1 [Casanova, Jordi] Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. [Jose, Jordi] Univ Politecn Cataluna, EUETIB, Dept Fis, C Comte Urgell 187, Barcelona 08036, Spain. [Jose, Jordi; Garcia-Berro, Enrique] Inst Estudis Espacials Catalunya, C Gran Capita 2-4,Ed Nexus 201, Barcelona 08034, Spain. [Garcia-Berro, Enrique] Univ Politecn Cataluna, Dept Fis, C Esteve Terrades 5, Castelldefels 08860, Spain. [Shore, Steven N.] Univ Pisa, Dipartimento Fis Enrico Fermi, Largo B Pontecorvo 3, I-56127 Pisa, Italy. [Shore, Steven N.] Ist Nazl Fis Nucl, Sez Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy. RP Jose, J (reprint author), Univ Politecn Cataluna, EUETIB, Dept Fis, C Comte Urgell 187, Barcelona 08036, Spain.; Jose, J (reprint author), Inst Estudis Espacials Catalunya, C Gran Capita 2-4,Ed Nexus 201, Barcelona 08034, Spain. EM jordi.jose@upc.edu FU DOE; Spanish MINECO grant [AYA2014-59084-P]; E.U. FEDER funds; AGAUR/Generalitat de Catalunya grant [SGR0038/2014]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics FX The authors would like to thank Alan Calder for many fruitful discussions and exchanges. Part of the software used in this work was developed by the DOE-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. This work has been partially supported by the Spanish MINECO grant AYA2014-59084-P, by the E.U. FEDER funds, by the AGAUR/Generalitat de Catalunya grant SGR0038/2014, and by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics. We also acknowledge the Barcelona Supercomputing Center for a generous allocation of time at the MareNostrum supercomputer. NR 50 TC 0 Z9 0 U1 0 U2 0 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD NOV PY 2016 VL 595 AR A28 DI 10.1051/0004-6361/201628707 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED0ZP UT WOS:000388573500064 ER PT J AU Kali, A Cokic, I Tang, R Dohnalkova, A Kovarik, L Yang, HJ Kumar, A Prato, FS Wood, JC Underhill, D Marban, E Dharmakumar, R AF Kali, Avinash Cokic, Ivan Tang, Richard Dohnalkova, Alice Kovarik, Libor Yang, Hsin-Jung Kumar, Andreas Prato, Frank S. Wood, John C. Underhill, David Marban, Eduardo Dharmakumar, Rohan TI Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse Remodeling SO CIRCULATION-CARDIOVASCULAR IMAGING LA English DT Article DE cytokines; hemorrhage; inflammation; iron ischemia-reperfusion injury; myocardial infarction ID CARDIOVASCULAR MAGNETIC-RESONANCE; INTRAMYOCARDIAL HEMORRHAGE; PROGNOSTIC VALUE; RECRUITMENT; CMR; INTERLEUKIN-1-BETA; DETERMINANTS; REPERFUSION; METABOLISM; ALPHA AB Background-Emerging evidence indicates that persistent microvascular obstruction (PMO) is more predictive of major adverse cardiovascular events than myocardial infarct (MI) size. But it remains unclear how PMO, a phenomenon limited to the acute/subacute period of MI, drives adverse remodeling in chronic MI setting. We hypothesized that PMO resolves into chronic iron crystals within MI territories, which in turn are proinflammatory and favor adverse remodeling post-MI. Methods and Results-Canines (n=40) were studied with cardiac magnetic resonance imaging to characterize the spatiotemporal relationships among PMO, iron deposition, infarct resorption, and left ventricular remodeling between day 7 (acute) and week 8 (chronic) post-MI. Histology was used to assess iron deposition and to examine relationships between iron content with macrophage infiltration, proinflammatory cytokine synthesis, and matrix metalloproteinase activation. Atomic resolution transmission electron microscopy was used to determine iron crystallinity, and energy-dispersive X-ray spectroscopy was used to identify the chemical composition of the iron composite. PMO with or without reperfusion hemorrhage led to chronic iron deposition, and the extent of this deposition was strongly related to PMO volume (r>0.8). Iron deposits were found within macrophages as aggregates of nanocrystals (approximate to 2.5 nm diameter) in the ferric state. Extent of iron deposits was strongly correlated with proinflammatory burden, collagen-degrading enzyme activity, infarct resorption, and adverse structural remodeling (r>0.5). Conclusions-Crystallized iron deposition from PMO is directly related to proinflammatory burden, infarct resorption, and adverse left ventricular remodeling in the chronic phase of MI in canines. Therapeutic strategies to combat adverse remodeling could potentially benefit from taking into account the chronic iron-driven inflammatory process. C1 [Kali, Avinash; Cokic, Ivan; Tang, Richard; Yang, Hsin-Jung; Kumar, Andreas; Underhill, David; Marban, Eduardo; Dharmakumar, Rohan] Cedars Sinai Med Ctr, 8700 Beverly Blvd,PACT Suite 800, Los Angeles, CA 90048 USA. [Kali, Avinash; Yang, Hsin-Jung; Underhill, David; Marban, Eduardo; Dharmakumar, Rohan] Univ Calif Los Angeles, Los Angeles, CA USA. [Dohnalkova, Alice; Kovarik, Libor] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA USA. [Prato, Frank S.] Univ Western Ontario, Lawson Hlth Res Inst, London, ON, Canada. [Wood, John C.] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA. RP Dharmakumar, R (reprint author), Cedars Sinai Med Ctr, Biomed Imaging Res Inst, Dept Biomed Sci, 8700 Beverly Blvd,PACT Suite 800, Los Angeles, CA 90048 USA. EM rohandkumar@csmc.edu FU National Heart, Lung, and Blood Institute [HL133407] FX This work was supported in part by grants from the National Heart, Lung, and Blood Institute (HL133407) to Dr Dharmakumar. NR 32 TC 1 Z9 1 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA TWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA SN 1941-9651 EI 1942-0080 J9 CIRC-CARDIOVASC IMAG JI Circ.-Cardiovasc. Imaging PD NOV PY 2016 VL 9 IS 11 AR e004996 DI 10.1161/CIRCIMAGING.115.004996 PG 21 WC Cardiac & Cardiovascular Systems; Radiology, Nuclear Medicine & Medical Imaging SC Cardiovascular System & Cardiology; Radiology, Nuclear Medicine & Medical Imaging GA EC9RS UT WOS:000388482500004 ER PT J AU Trinh, CT Mendoza, B AF Trinh, Cong T. Mendoza, Brian TI Modular cell design for rapid, efficient strain engineering toward industrialization of biology SO CURRENT OPINION IN CHEMICAL ENGINEERING LA English DT Article ID ESTER FERMENTATIVE PATHWAYS; FATTY-ACIDS PRODUCTION; ESCHERICHIA-COLI; MICROBIAL-PRODUCTION; METABOLIC PATHWAYS; E. COLI; RECOMBINANT-DNA; CLONING METHOD; MINIMAL CELL; CHEMICALS AB Transforming biology into an engineering practice has great potential to shape the industrialization of biology that will drive rapid development of novel microbial manufacturing platforms. These platforms will be capable of producing a vast number of sustainable industrial chemicals at scale from alternative renewable feedstocks or wastes (e.g., biomass residues, biogas methane, syngas, CO2) without harming the environment. The challenge is to develop microbial platforms to produce targeted chemicals with high efficiency in a rapid, predictable, and reproducible fashion. This paper highlights recent progress in rational design of heterologous pathways for combinatorial biosynthesis of a large space of chemicals and modular cell design for rapid strain engineering. C1 [Trinh, Cong T.; Mendoza, Brian] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Trinh, Cong T.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Trinh, Cong T.; Mendoza, Brian] Oak Ridge Natl Lab, Bioenergy Sci Ctr BESC, Oak Ridge, TN 37830 USA. RP Trinh, CT (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.; Trinh, CT (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA.; Trinh, CT (reprint author), Oak Ridge Natl Lab, Bioenergy Sci Ctr BESC, Oak Ridge, TN 37830 USA. EM ctrinh@utk.edu FU NSF [1553250, 1360867]; DOE by the BioEnergy Science Center (BESC) [DE-AC05-000R22725]; U.S. Department of Energy Bioenergy Research Center - Office of Biological and Environmental Research in the DOE Office of Science FX This research was financially supported in part by the NSF awards (NSF #1553250, NSF #1360867, NSF #1553250) as well as the DOE subcontract grant (DE-AC05-000R22725) by the BioEnergy Science Center (BESC), the U.S. Department of Energy Bioenergy Research Center funded by the Office of Biological and Environmental Research in the DOE Office of Science. NR 96 TC 1 Z9 1 U1 10 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 2211-3398 J9 CURR OPIN CHEM ENG JI Curr. Opin. Chem. Eng. PD NOV PY 2016 VL 14 BP 18 EP 25 DI 10.1016/j.coche.2016.07.005 PG 8 WC Biotechnology & Applied Microbiology; Engineering, Chemical SC Biotechnology & Applied Microbiology; Engineering GA ED0EZ UT WOS:000388517100004 ER PT J AU Malouf, DB Taymans, JM AF Malouf, David B. Taymans, Juliana M. TI Anatomy of an Evidence Base SO EDUCATIONAL RESEARCHER LA English DT Article DE descriptive analysis; educational policy; educational reform; effect size; instructional practices; policy analysis; research methodology; research utilization ID CLINICAL-SIGNIFICANCE; SOCIAL VALIDITY; EDUCATION; ISSUES AB An analysis was conducted of the What Works Clearinghouse (WWC) research evidence base on the effectiveness of replicable education interventions. Most interventions were found to have little or no support from technically adequate research studies, and intervention effect sizes were of questionable magnitude to meet education policy goals. These findings painted a dim picture of the evidence base on education interventions and indicated a need for new approaches, including a reexamination of federal reliance on experimental impact research as the basis for gauging intervention effectiveness. C1 [Malouf, David B.] US DOE, Off Special Educ Programs, 8047 Glendale Rd, Chevy Chase, MD 20815 USA. [Malouf, David B.] US DOE, Inst Sci Educ, 8047 Glendale Rd, Chevy Chase, MD 20815 USA. [Taymans, Juliana M.] George Washington Univ, Special Educ & Disabil Studies, 2134 G St NW, Washington, DC 20052 USA. RP Malouf, DB (reprint author), US DOE, Off Special Educ Programs, 8047 Glendale Rd, Chevy Chase, MD 20815 USA.; Malouf, DB (reprint author), US DOE, Inst Sci Educ, 8047 Glendale Rd, Chevy Chase, MD 20815 USA. EM david.b.malouf@gmail.com; taymans@gwu.edu NR 30 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0013-189X EI 1935-102X J9 EDUC RESEARCHER JI Educ. Researcher PD NOV PY 2016 VL 45 IS 8 BP 454 EP 459 DI 10.3102/0013189X16678417 PG 6 WC Education & Educational Research SC Education & Educational Research GA ED1GL UT WOS:000388592800002 ER PT J AU Zhang, C Min, HT Yu, YB Wang, D Luke, J Opila, D Saxena, S AF Zhang, Cong Min, Haitao Yu, Yuanbin Wang, Dai Luke, Justin Opila, Daniel Saxena, Samveg TI Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles SO ENERGIES LA English DT Article DE battery; super-capacitor; electric vehicle; hybrid energy storage system; continuous power-energy ID ENERGY-STORAGE; HYBRID; LIFE; MANAGEMENT; STRATEGIES; SYSTEM; ULTRACAPACITORS; OPTIMIZATION; CONVERTER; UTILITY AB Range anxiety and battery cycle life are two major factors which restrict the development of electric vehicles. Battery degradation can be reduced by adding supercapacitors to create a Hybrid Energy Storage System. This paper proposes a systematic approach to configure the hybrid energy storage system and quantifies the battery degradation for electric vehicles when using supercapacitors. A continuous power-energy function is proposed to establish supercapacitor size based on national household travel survey statistics. By analyzing continuous driving action in standard driving cycles and special driving phases (start up and acceleration), the supercapacitor size is calculated to provide a compromise between the capacitor size and battery degradation. Estimating the battery degradation after 10 years, the battery capacity loss value decreases 17.55% and 21.6%, respectively, under the urban dynamometer driving schedule and the US06. Furthermore, the battery lifespan of the continuous power-energy configured system is prolonged 28.62% and 31.39%, respectively, compared with the battery alone system. C1 [Zhang, Cong; Min, Haitao; Yu, Yuanbin] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130022, Peoples R China. [Wang, Dai; Saxena, Samveg] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94710 USA. [Luke, Justin] Univ Calif Berkeley, Engn Sci, Berkeley, CA 94720 USA. [Opila, Daniel] US Naval Acad, Elect & Comp Engn Dept, Annapolis, MD 21402 USA. RP Yu, YB (reprint author), Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130022, Peoples R China. EM zhangcongok@gmail.com; minht@jlu.edu.cn; yyb@jlu.edu.cn; daiwang@lbl.gov; justin.luke@berkeley.edu; opila@usna.edu; ssaxena@lbl.gov FU National Natural Science Foundation of China [51107052]; China Scholarship Council FX This research is supported by National Natural Science Foundation of China (51107052). Thanks for the dynamometer measured data from Argonne National Laboratory. The first author of this paper is funded by China Scholarship Council. NR 47 TC 0 Z9 0 U1 12 U2 12 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD NOV PY 2016 VL 9 IS 11 AR 903 DI 10.3390/en9110903 PG 23 WC Energy & Fuels SC Energy & Fuels GA ED1BY UT WOS:000388580000045 ER PT J AU Martino, LE Dona, CL Dicerbo, J Hawkins, A Moore, B Horner, R AF Martino, Louis E. Dona, Carol L. Dicerbo, Jerry Hawkins, Amy Moore, Beth Horner, Robert TI Green and sustainable remediation practices in Federal Agency cleanup programs SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Green remediation; Sustainability; Environmental footprint; EO 13693; Sustainable remediation; Forum (SURF); Green cleanups AB Federal agencies manage hazardous waste sites under the assumption that environmental restoration will improve the environment by returning contaminated groundwater to beneficial use, removing waste residuals from a site, treating discharges to surface water, and reducing overall risks to human health and the environment. However, the associated time-consuming and expensive operations, extensive performance monitoring, and post-closure care can lead to unanticipated environmental impacts due to both the technological nature of these cleanup activities and the related protracted timelines. These life-cycle impacts can and should be included in the evaluation of remedial alternatives. Increasingly, Federal agencies are considering these life-cycle impacts-variously referred to as "environmental footprint analysis," "sustainable remediation," "green remediation," "greener remediation," and "green and sustainable remediation"when evaluating environmental restoration approaches. For the purposes of this paper, this concept will be referred to as "green and sustainable remediation" (GSR), with application of GSR assumed to take place across the cleanup life cycle, from the investigation phase through site closeout. This paper will discuss the history of GSR, what GSR is, who is implementing GSR, and GSR metrics. The paper will also discuss two approaches to GSR, using case studies to understand and implement it; the first will be a qualitative approach, and the second a more detailed quantitative approach. C1 [Martino, Louis E.] Argonne Natl Lab, Suite 600,955 LEnfant Plaza SW, Washington, DC 20024 USA. [Dona, Carol L.] US Army Corps Engineers, Omaha, NE USA. [Dicerbo, Jerry; Moore, Beth] US DOE, Headquarters, Washington, DC 20585 USA. [Hawkins, Amy] US Naval Facil Engn Serv Ctr, Port Hueneme, CA USA. [Horner, Robert] US DOE, ORISE, Washington, DC 20585 USA. RP Martino, LE (reprint author), Argonne Natl Lab, Suite 600,955 LEnfant Plaza SW, Washington, DC 20024 USA. EM martinol@anl.gov FU US Department of Energy [DE-AC02-06CH11357] FX Argonne National Laboratory's work was supported by the US Department of Energy under contract DE-AC02-06CH11357. NR 35 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD NOV PY 2016 VL 75 IS 21 AR 1407 DI 10.1007/s12665-016-6219-8 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA ED1JG UT WOS:000388600900015 ER PT J AU Holmfeldt, K Solonenko, N Howard-Varona, C Moreno, M Malmstrom, RR Blow, MJ Sullivan, MB AF Holmfeldt, Karin Solonenko, Natalie Howard-Varona, Cristina Moreno, Mario Malmstrom, Rex R. Blow, Matthew J. Sullivan, Matthew B. TI Large-scale maps of variable infection efficiencies in aquatic Bacteroidetes phage-host model systems SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID LYTIC BACTERIOPHAGES; ESCHERICHIA-COLI; SINGLE-MOLECULE; KLEBSIELLA-PNEUMONIAE; MARINE-BACTERIA; DNA METHYLATION; VIRUSES; RESISTANCE; STRAIN; CELL AB Microbes drive ecosystem functioning and their viruses modulate these impacts through mortality, gene transfer and metabolic reprogramming. Despite the importance of virus-host interactions and likely variable infection efficiencies of individual phages across hosts, such variability is seldom quantified. Here, we quantify infection efficiencies of 38 phages against 19 host strains in aquatic Cellulophaga (Bacteroidetes) phage-host model systems. Binary data revealed that some phages infected only one strain while others infected 17, whereas quantitative data revealed that efficiency of infection could vary 10 orders of magnitude, even among phages within one population. This provides a baseline for understanding and modeling intrapopulation host range variation. Genera specific host ranges were also informative. For example, the Cellulophaga Microviridae, showed a markedly broader intra-species host range than previously observed in Escherichia coli systems. Further, one phage genus, Cba41, was examined to investigate nonheritable changes in plating efficiency and burst size that depended on which host strain it most recently infected. While consistent with host modification of phage DNA, no differences in nucleotide sequence or DNA modifications were detected, leaving the observation repeatable, but the mechanism unresolved. Overall, this study highlights the importance of quantitatively considering replication variations in studies of phage-host interactions. C1 [Holmfeldt, Karin; Solonenko, Natalie; Howard-Varona, Cristina; Moreno, Mario; Sullivan, Matthew B.] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA. [Holmfeldt, Karin] Linnaeus Univ, Dept Biol & Environm Sci, Ctr Ecol & Evolut Microbial Model Syst, Kalmar, Sweden. [Malmstrom, Rex R.; Blow, Matthew J.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Solonenko, Natalie; Howard-Varona, Cristina; Sullivan, Matthew B.] Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA. [Sullivan, Matthew B.] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. RP Holmfeldt, K; Sullivan, MB (reprint author), Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA.; Holmfeldt, K (reprint author), Linnaeus Univ, Dept Biol & Environm Sci, Ctr Ecol & Evolut Microbial Model Syst, Kalmar, Sweden.; Sullivan, MB (reprint author), Ohio State Univ, Dept Microbiol, 484 W 12th Ave, Columbus, OH 43210 USA.; Sullivan, MB (reprint author), Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. EM karin.holmfeldt@lnu.se; mbsulli@gmail.com FU Swedish Research Council [623-2012-1395, 623-2010-6548]; Gordon and Betty Moore Foundation [GBMF2631, GBMF3790]; DOE Office of Science [DE-AC02-05CH11231] FX The authors thank Emelie Nilsson for statistical assistance. They thank reviewers for insightful comments improving the manuscript. The study was sponsored by postdoctoral fellowships from the Swedish Research Council (623-2012-1395 and 623-2010-6548) to KH and Gordon and Betty Moore Foundation awards (GBMF2631 and GBMF3790) to MBS. Work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the DOE Office of Science (DE-AC02-05CH11231). NR 97 TC 0 Z9 0 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD NOV PY 2016 VL 18 IS 11 SI SI BP 3949 EP 3961 DI 10.1111/1462-2920.13392 PG 13 WC Microbiology SC Microbiology GA ED1OM UT WOS:000388614800026 PM 27235779 ER PT J AU Lin, P Aiona, PK Li, Y Shiraiwa, M Laskin, J Nizkorodov, SA Laskin, A AF Lin, Peng Aiona, Paige K. Li, Ying Shiraiwa, Manabu Laskin, Julia Nizkorodov, Sergey A. Laskin, Alexander TI Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID SECONDARY ORGANIC AEROSOL; POLYCYCLIC AROMATIC-HYDROCARBONS; CHARGE-TRANSFER COMPLEXES; FLIGHT MASS-SPECTROMETRY; VOLATILITY BASIS-SET; LIGHT-ABSORPTION; OPTICAL-PROPERTIES; WOOD COMBUSTION; TRACE GAS; CHEMICAL-CHARACTERIZATION AB Emissions from biomass burning are a significant source of brown carbon (BrC) in the atmosphere. In this study, we investigate the molecular composition of freshly emitted biomass burning organic aerosol (BBOA) samples collected during test burns of sawgrass, peat, ponderosa pine, and black spruce. We demonstrate that both the BrC absorption and the chemical composition of light-absorbing compounds depend significantly on the type of biomass fuels. Common BrC chromophores in the selected BBOA samples include nitro-aromatics, polycyclic aromatic hydrocarbon derivatives, and polyphenols spanning a wide range of molecular weights, structures, and light absorption properties. A number of biofuel-specific BrC chromophores are observed, indicating that some of them may be used as source-specific markers of BrC. On average, similar to 50% of the light absorption in the solvent-extractable fraction of BBOA can be attributed to a limited number of strong BrC chromophores. The absorption coefficients of BBOA are affected by solar photolysis. Specifically, under typical atmospheric conditions, the 300 nm absorbance decays with a half-life of similar to 16 h. A molecular corridor analysis of the BBOA volatility distribution suggests that many BrC compounds in the fresh BBOA have low saturation mass concentration (<1 mu g m-3) and will be retained in the particle phase under atmospherically relevant conditions. C1 [Lin, Peng; Laskin, Alexander] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Aiona, Paige K.; Shiraiwa, Manabu; Nizkorodov, Sergey A.] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Li, Ying; Shiraiwa, Manabu] Max Planck Inst Chem, Multiphase Chem Dept, D-55128 Mainz, Germany. [Laskin, Julia] Pacific Northwest Natl Lab, Phys Sci Div, Richland, WA 99354 USA. [Li, Ying] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. RP Laskin, A (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. EM alexander.laskin@pnnl.gov RI Lin, Peng/G-4867-2016; Laskin, Alexander/I-2574-2012; Laskin, Julia/H-9974-2012; Shiraiwa, Manabu/A-6246-2010; Nizkorodov, Sergey/I-4120-2014 OI Lin, Peng/0000-0002-3567-7017; Laskin, Alexander/0000-0002-7836-8417; Laskin, Julia/0000-0002-4533-9644; Shiraiwa, Manabu/0000-0003-2532-5373; Nizkorodov, Sergey/0000-0003-0891-0052 FU U.S. Department of Commerce; National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program [NA16OAR4310101, NA16OAR4310102]; Office of Biological and Environmental Research of the U.S. DOE; US DOE [DEAC06-76RL0 1830] FX We acknowledge support by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration through Climate Program Office's AC4 program, awards NA16OAR4310101 and NA16OAR4310102. The HPLC/PDA/ESI-HRMS measurements were performed at the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at PNNL, and sponsored by the Office of Biological and Environmental Research of the U.S. DOE. PNNL is operated for US DOE by Battelle Memorial Institute under Contract No. DEAC06-76RL0 1830. We are grateful to B. Wang and S. Forrester for assistance in sample collection, and R. J. Yokelson for the sampling site arrangements during FLAME-IV study. NR 80 TC 1 Z9 1 U1 28 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2016 VL 50 IS 21 BP 11815 EP 11824 DI 10.1021/acs.est.6603024 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EA9UV UT WOS:000386991100044 PM 27704802 ER PT J AU Csiszar, SA Meyer, DE Dionisio, KL Egeghy, P Isaacs, KK Price, PS Scanlon, KA Tan, YM Thomas, K Vallero, D Bare, JC AF Csiszar, Susan A. Meyer, David E. Dionisio, Kathie L. Egeghy, Peter Isaacs, Kristin K. Price, Paul S. Scanlon, Kelly A. Tan, Yu-Mei Thomas, Kent Vallero, Daniel Bare, Jane C. TI Conceptual Framework To Extend Life Cycle Assessment Using Near Field Human Exposure Modeling and High-Throughput Tools for Chemicals SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POLYBROMINATED DIPHENYL ETHERS; ENVIRONMENTAL-PROTECTION-AGENCY; TOXICS RELEASE INVENTORY; NESTED MULTIMEDIA FATE; AIR-POLLUTANT EXPOSURE; HEALTH-RISK ASSESSMENT; IN-VITRO BIOACTIVITY; IMPACT ASSESSMENT; CONSUMER PRODUCTS; DECISION-MAKING AB Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. C1 [Csiszar, Susan A.] US EPA, Oak Ridge Inst Sci & Educ ORISE, Res Participat Program, 26 West Martin Luther King Dr, Cincinnati, OH 45268 USA. [Meyer, David E.; Bare, Jane C.] US EPA, Off Res & Dev, Natl Risk Management Res Lab, 26 West Martin Luther King Dr, Cincinnati, OH 45268 USA. [Dionisio, Kathie L.; Egeghy, Peter; Isaacs, Kristin K.; Price, Paul S.; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel] US EPA, Off Res & Dev, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Scanlon, Kelly A.] US EPA, Off Air & Radiat, Off Radiat & Indoor Air, Washington, DC 20460 USA. RP Bare, JC (reprint author), US EPA, Natl Risk Management Res Lab, 26 West Martin Luther King Dr, Cincinnati, OH 45268 USA. EM bare.jane@epa.gov FU U.S. Department of Energy [DW-89-92298301]; U.S. EPA [DW-89-92298301] FX This research was part of the Chemical Safety for Sustainability National Research Program in the U.S. Environmental Protection Agency's (EPA) Office of Research and Development. This research was supported in part by an appointment of S. Csiszar to the Postdoctoral Research Program at the National Risk Management Research Laboratory, Office of Research and Development, U.S. EPA administered by the Oak Ridge Institute for Science and Education through Interagency Agreement No. DW-89-92298301 between the U.S. Department of Energy and the U.S. EPA. Expert support from the U.S. EPA's Office of Air and Radiation, Indoor Environments Division is appreciated. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. NR 135 TC 2 Z9 2 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2016 VL 50 IS 21 BP 11922 EP 11934 DI 10.1021/acs.est.6b02277 PG 13 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA EA9UV UT WOS:000386991100056 PM 27668689 ER PT J AU Grigoreva, AA Tyukhtin, AV Vorobev, VV Alekhina, TY Antipov, S AF Grigoreva, Aleksandra A. Tyukhtin, Andrey V. Vorobev, Viktor V. Alekhina, Tatiana Y. Antipov, Sergey TI Mode Transformation in a Circular Waveguide With a Transverse Boundary Between a Vacuum and a Partially Dielectric Area SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Electromagnetic fields; mode transformation; waveguide with dielectric filling ID RADIATION AB We consider the mode transformation in a circular waveguide with a transverse boundary between a vacuum part and a part with a cylindrical dielectric layer and a vacuum channel. Two situations are analyzed: an incident mode is launched on the boundary from the dielectric part of the waveguide or from the vacuum one. The incident mode is assumed to be both propagating and evanescent. Analysis is performed using the mode decomposition technique. Approximate solutions are obtained for the cases of the narrow channel and the case of the thin dielectric layer. A numerical algorithm for calculating the mode transformation at an arbitrary channel radius is developed. Typical dependences of the reflection and transmission coefficients on the channel radius are presented and discussed. It is shown, in particular, that the interaction of the evanescent mode with the boundary can result in excitation of the propagating modes in the reflected and transmitted fields. C1 [Grigoreva, Aleksandra A.; Tyukhtin, Andrey V.; Vorobev, Viktor V.; Alekhina, Tatiana Y.] St Petersburg State Univ, St Petersburg 199034, Russia. [Antipov, Sergey] Euclid TechLabs LLC, Solon, OH 44139 USA. [Antipov, Sergey] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Grigoreva, AA (reprint author), St Petersburg State Univ, St Petersburg 199034, Russia. EM aleksandra.a.grigoreva@gmail.com RI Alekhina, Tatiana/I-7925-2013; Vorobev, Viktor/M-8313-2013 OI Alekhina, Tatiana/0000-0003-1616-503X; Vorobev, Viktor/0000-0002-0473-148X FU Russian Foundation for Basic Research [15-02-03913]; Dynasty Foundation FX This work was supported by the Russian Foundation for Basic Research under Grant 15-02-03913 and by the Dynasty Foundation. NR 18 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD NOV PY 2016 VL 64 IS 11 BP 3441 EP 3448 DI 10.1109/TMTT.2016.2602267 PN 1 PG 8 WC Engineering, Electrical & Electronic SC Engineering GA EC9YT UT WOS:000388500900007 ER PT J AU Castorina, R Tysman, M Bradman, A Hoover, S Iyer, S Russell, M Sultana, D Maddalena, R AF Castorina, Rosemary Tysman, Marie Bradman, Asa Hoover, Sara Iyer, Shoba Russell, Marion Sultana, Daniel Maddalena, Randy TI Volatile organic compound emissions from markers used in preschools, schools, and homes SO INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY LA English DT Article DE Volatile organic compounds; child exposure; health; analytical methods; inhalation exposure; markers ID SAFETY DATA SHEETS; QUALITY AB There is little published research examining volatile organic compound (VOC) emissions from art markers. In this study, we characterised VOC emission rates from markers commonly used by children at home and in school, and by teachers in their classrooms. We developed a method to measure standardised emission rates under controlled laboratory conditions, focusing on four major marker types: permanent, dry erase, highlighter, and washable. Emission rates for other less common marker types were also measured. We conducted additional experiments determining changes in emission profiles over short and long time periods (several hours up to daily use over about 2months), as well as during periods of active drawing. We tested a total of 101 markers and report emission rates for 60 chemicals. Permanent and dry erase markers had average total VOC emissions more than 400 times higher than highlighters and washable markers. Alcohols were the most highly emitted class of VOCs from permanent and dry erase markers. Some chemicals associated with potentially serious health concerns were also identified. Future studies that employ full-scale chamber experiments and personal monitoring in classrooms to measure children's actual exposures are recommended. C1 [Castorina, Rosemary; Tysman, Marie; Bradman, Asa] Univ Calif Berkeley, Sch Publ Hlth, CERCH, Berkeley, CA 94720 USA. [Hoover, Sara; Iyer, Shoba; Sultana, Daniel] Calif Environm Protect Agcy, OEHHA, Oakland, CA USA. [Russell, Marion; Maddalena, Randy] Lawrence Berkeley Natl Lab, Indoor Environm Grp, Berkeley, CA USA. RP Castorina, R (reprint author), Univ Calif Berkeley, Sch Publ Hlth, CERCH, Berkeley, CA 94720 USA. EM rcastori@berkeley.edu FU Office of Environmental Health Hazard Assessment in the California Environmental Protection Agency [12-E0022] FX This research was funded by the Office of Environmental Health Hazard Assessment in the California Environmental Protection Agency (Award No. 12-E0022). We thank George V. Alexeeff for inspiring this project. We also thank Martha Sandy and Roberta Welling for their valuable input and review of this manuscript. NR 26 TC 0 Z9 0 U1 2 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0306-7319 EI 1029-0397 J9 INT J ENVIRON AN CH JI Int. J. Environ. Anal. Chem. PD NOV PY 2016 VL 96 IS 13 BP 1247 EP 1263 DI 10.1080/03067319.2016.1250892 PG 17 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA ED3IJ UT WOS:000388742500003 ER PT J AU Horava, P AF Horava, Petr TI Surprises with nonrelativistic naturalness SO INTERNATIONAL JOURNAL OF MODERN PHYSICS D LA English DT Article; Proceedings Paper CT 2nd LeCosPA International Symposium on Everything about Gravity CY DEC 14-18, 2015 CL Taipei, TAIWAN SP LeCosPA, Assoc Asia Pacific Phys Soc, Div Astrophys Cosmol Grav DE Technical naturalness; nonrelativistic Nambu-Goldstone bosons; resistivity in strange metals AB We explore the landscape of technical naturalness for nonrelativistic systems, finding surprises which challenge and enrich our relativistic intuition already in the simplest case of a single scalar field. While the immediate applications are expected in condensed matter and perhaps in cosmology, the study is motivated by the leading puzzles of fundamental physics involving gravity: the cosmological constant problem and the Higgs mass hierarchy problem. C1 [Horava, Petr] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Horava, Petr] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Horava, Petr] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Horava, P (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA.; Horava, P (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Horava, P (reprint author), Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. EM horava@berkeley.edu NR 15 TC 1 Z9 1 U1 0 U2 0 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-2718 EI 1793-6594 J9 INT J MOD PHYS D JI Int. J. Mod. Phys. D PD NOV PY 2016 VL 25 IS 13 SI SI AR 1645007 DI 10.1142/S0218271816450073 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED3GA UT WOS:000388736400008 ER PT J AU Martin, RF Feinendegen, LE AF Martin, Roger F. Feinendegen, Ludwig E. TI The quest to exploit the Auger effect in cancer radiotherapy - a reflective review SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article; Proceedings Paper CT 8th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes CY MAY 20-22, 2015 CL Japanese Atom Energy Agcy, Kansai Photon Sci Inst, Kyoto, JAPAN HO Japanese Atom Energy Agcy, Kansai Photon Sci Inst DE Auger emitters; Auger electrons; DNA double-strand breaks; Auger endoradiotherapy ID PHOTON-ACTIVATION THERAPY; DOUBLE-STRAND BREAKS; TRIPLEX-FORMING OLIGONUCLEOTIDES; EPIDERMAL-GROWTH-FACTOR; COMBINING EXTERNAL RADIATION; PYRIMIDINES FINAL REPORT; MONTE-CARLO SIMULATIONS; BCL2 PROMOTER REGION; PHASE I-II; DNA-DAMAGE AB To identify the emergence of the recognition of the potential of the Auger effect for clinical application, and after tracing the salient milestones towards that goal, to evaluate the status quo and future prospects. It was not until 40 years after the discovery of Auger electrons, that the availability of radioactive DNA precursors enabled the biological power, and the clinical potential, of the Auger effect to be appreciated. Important milestones on the path to clinical translation have been identified and reached, but hurdles remain. Nevertheless the potential is still evident, and there is reasonable optimism that the goal of clinical translation is achievable. C1 [Martin, Roger F.] Peter MacCallum Canc Ctr, Mol Radiat Biol Lab, Melbourne, Vic, Australia. [Martin, Roger F.] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Melbourne, Vic, Australia. [Martin, Roger F.] Univ Melbourne, Sch Chem, Melbourne, Vic, Australia. [Martin, Roger F.] Univ Melbourne, Bio Mol Sci & Biotechnol Inst 21, Melbourne, Vic, Australia. [Feinendegen, Ludwig E.] Univ Dusseldorf, Dusseldorf, Germany. [Feinendegen, Ludwig E.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Martin, RF (reprint author), Mol Radiat Biol Lab, St Andrews Pl, East Melbourne, Vic 3002, Australia. EM roger.martin@petermac.org NR 127 TC 0 Z9 0 U1 5 U2 5 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0955-3002 EI 1362-3095 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD NOV PY 2016 VL 92 IS 11 BP 617 EP 632 DI 10.3109/09553002.2015.1136854 PG 16 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA ED1UG UT WOS:000388629800004 PM 26926313 ER PT J AU Yasui, LS Duran, M Andorf, C Kroc, T Owens, K Allen-Durdan, K Schuck, A Grayburn, S Becker, R AF Yasui, Linda S. Duran, Maria Andorf, Christine Kroc, Thomas Owens, Kathryn Allen-Durdan, Kelsie Schuck, Andrew Grayburn, Scott Becker, Richard TI Autophagic flux in glioblastoma cells SO INTERNATIONAL JOURNAL OF RADIATION BIOLOGY LA English DT Article; Proceedings Paper CT 8th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes CY MAY 20-22, 2015 CL Japanese Atom Energy Agcy, Kansai Photon Sci Inst, Kyoto, JAPAN HO Japanese Atom Energy Agcy, Kansai Photon Sci Inst DE Glioblastoma cells; autophagy; metabolic profile; cell death; fast neutron; mixed neutron beam; gadolinium neutron capture ID GADOLINIUM NEUTRON-CAPTURE; HIGH-LET RADIATION; CANCER-CELLS; MULTIFORME CELLS; LINE; P62/SQSTM1; METABOLISM; NUCLEUS; ASSAYS; GENE AB To establish metabolic context for radiation sensitivity by measuring autophagic flux in two different glioblastoma (GBM) cell lines. Clonogenic survival curve analysis of U87 or U251 cells exposed to radiation, fast neutrons, a mixed energy neutron beam (METNB) or Auger electrons from a gadolinium neutron capture (GdNC) reaction suggested other factors, beyond a defective DNA damage response, contribute to cell death of U251 cells. Altered tumor metabolism (autophagy) was hypothesized as a factor in U251 cells' clonogenic response. Each of the four different radiation modalities induced an increase in the number of autophagosomes in both U87 and U251 cells. Changes in the number of autophagosomes can be explained by either induction of autophagy or alterations in autophagic flux so autophagic flux was assayed by p62 immunoblotting or in engineered GBM cells that stably express an autophagy marker protein, LC3B-eGFP-mCherry. Perturbations in later stages of autophagy in U251 cells corresponded with radiation sensitivity of U251 cells irradiated with 10Gy rays. Establishment of altered autophagic flux is a useful biomarker for metabolic stress and provided metabolic context for radiation sensitization to 10Gy rays. These results provide strong evidence for the usefulness of managing tumor cell metabolism as a tool for the enhancement of radiation therapy. C1 [Yasui, Linda S.; Duran, Maria; Owens, Kathryn; Allen-Durdan, Kelsie; Schuck, Andrew; Grayburn, Scott; Becker, Richard] Northern Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA. [Andorf, Christine; Kroc, Thomas] Neutron Irradiat Facil, Fermi Natl Accelerator Lab, Batavia, IL USA. RP Yasui, LS (reprint author), Northern Illinois Univ, Dept Biol Sci, De Kalb, IL 60115 USA. EM lyasui@niu.edu NR 44 TC 0 Z9 0 U1 0 U2 0 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0955-3002 EI 1362-3095 J9 INT J RADIAT BIOL JI Int. J. Radiat. Biol. PD NOV PY 2016 VL 92 IS 11 BP 665 EP 678 DI 10.3109/09553002.2016.1150617 PG 14 WC Biology; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA ED1UG UT WOS:000388629800009 PM 26967573 ER PT J AU Karna, RR Hettiarachchi, GM Newville, M Sun, CJ Ma, Q AF Karna, Ranju R. Hettiarachchi, Ganga M. Newville, Matthew Sun, ChengJun Ma, Qing TI Synchrotron-based X-Ray Spectroscopy Studies for Redox-based Remediation of Lead, Zinc, and Cadmium in Mine Waste Materials SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID SMELTER-CONTAMINATED SOIL; FINE-STRUCTURE SPECTROSCOPY; SULFATE-REDUCING BACTERIA; ABSORPTION-SPECTROSCOPY; EXAFS SPECTROSCOPY; MINING DISTRICT; METAL MOBILITY; BINDING-SITES; IRON-RICH; SPECIATION AB Several studies have examined the effect of submergence on the mobility of metals present in mine waste materials. This study examines the effect of organic carbon (OC) and sulfur (S) additions and submergence time on redox-induced biogeochemical transformations of lead (Pb), zinc (Zn), and cadmium (Cd) present in mine waste materials collected from the Tri-State mining district located in southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. A completely randomized design, with a two-way treatment structure, was used for conducting a series of column experiments. Two replicates were used for each treatment combination. Effluent samples were collected at several time points, and soil samples were collected at the end of each column experiment. Because these samples are highly heterogeneous, we used a variety of synchrotron-based techniques to identify Pb, Zn, and Cd speciation at both micro- and bulk-scale. Spectroscopic analysis results from the study revealed that the addition of OC, with and without S, promoted metal-sulfide formation, whereas metal carbonates dominated in the nonamended flooded materials and in mine waste materials only amended with S. Therefore, the synergistic effect of OC and S may be more promising for managing mine waste materials disposed of in flooded subsidence mine pits instead of individual S or OC treatments. The mechanistic understanding gained in this study is also relevant for remediation of waste materials using natural or constructed wetland systems. C1 [Karna, Ranju R.; Hettiarachchi, Ganga M.] Kansas State Univ, Soil & Environm Chem Lab, Dept Agron, Manhattan, KS 66506 USA. [Newville, Matthew] Univ Chicago, GSECARS, Chicago, IL 60637 USA. [Sun, ChengJun] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. [Ma, Qing] Argonne Natl Lab, DND CAT, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Hettiarachchi, GM (reprint author), Kansas State Univ, Soil & Environm Chem Lab, Dept Agron, Manhattan, KS 66506 USA. EM ganga@ksu.edu NR 74 TC 0 Z9 0 U1 6 U2 6 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 EI 1537-2537 J9 J ENVIRON QUAL JI J. Environ. Qual. PD NOV-DEC PY 2016 VL 45 IS 6 BP 1883 EP 1893 DI 10.2134/jeq2015.12.0616 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA ED6DF UT WOS:000388944600010 PM 27898777 ER PT J AU Wang, DR Wolfrum, EJ Virk, P Ismail, A Greenberg, AJ McCouch, SR AF Wang, Diane R. Wolfrum, Edward J. Virk, Parminder Ismail, Abdelbagi Greenberg, Anthony J. McCouch, Susan R. TI Robust phenotyping strategies for evaluation of stem non-structural carbohydrates (NSC) in rice SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Near-infrared spectroscopy; non-structural carbohydrates; Oryza sativa; partial least-squares; replication; yield potential ID ORYZA-SATIVA L.; INFRARED REFLECTANCE SPECTROSCOPY; LODGING RESISTANCE; LEAF SHEATHS; GENOTYPIC VARIATION; CARBON RESERVES; HEADING PERIOD; YIELD; TEMPERATURE; WHEAT AB Experimental design and phenotyping methods were explored to enable efficient evaluation of rice stem non-structural carbohydrates for genetic studies. Evidence was found for phenology-dependent yield and stem NSC relationships.Rice plants (Oryza sativa) accumulate excess photoassimilates in the form of non-structural carbohydrates (NSCs) in their stems prior to heading that can later be mobilized to supplement photosynthate production during grain-filling. Despite longstanding interest in stem NSC for rice improvement, the dynamics of NSC accumulation, remobilization, and re-accumulation that have genetic potential for optimization have not been systematically investigated. Here we conducted three pilot experiments to lay the groundwork for large-scale diversity studies on rice stem NSC. We assessed the relationship of stem NSC components with 21 agronomic traits in large-scale, tropical yield trials using 33 breeder-nominated lines, established an appropriate experimental design for future genetic studies using a Bayesian framework to sample sub-datasets from highly replicated greenhouse data using 36 genetically diverse genotypes, and used 434 phenotypically divergent rice stem samples to develop two partial least-squares (PLS) models using near-infrared (NIR) spectra for accurate, rapid prediction of rice stem starch, sucrose, and total non-structural carbohydrates. We find evidence that stem reserves are most critical for short-duration varieties and suggest that pre-heading stem NSC is worthy of further experimentation for breeding early maturing rice. C1 [Wang, Diane R.; McCouch, Susan R.] Cornell Univ, Sect Plant Breeding & Genet, Sch Integrated Plant Sci, Ithaca, NY 14853 USA. [Wolfrum, Edward J.] Natl Renewable Energy Lab, Integrated Biorefinery Res Facil, Golden, CO 80401 USA. [Virk, Parminder] Ctr Int Agr Trop, Km17 Recta Cali Palmira,POB 6713, Cali, Colombia. [Ismail, Abdelbagi] Int Rice Res Inst, Los Banos, Laguna, Philippines. [Greenberg, Anthony J.] Bayes Res, Ithaca, NY 14850 USA. RP McCouch, SR (reprint author), Cornell Univ, Sect Plant Breeding & Genet, Sch Integrated Plant Sci, Ithaca, NY 14853 USA. EM srm4@cornell.edu OI Wolfrum, Edward/0000-0002-7361-8931 FU NSF Graduate Research Fellowship [DGE-1144153]; USDA NIFA [2014-67003-21858] FX We thank Shaine Olivio and Frederickson Entila for field support at IRRI, Cameron Smith, Camille Tucker, and Sophia Kim for assistance in grinding samples at Cornell, Stephanie Maletich for scanning the initial NIR calibration set, and Kailee Potter for technical support at NREL. We are grateful to Sandy Harrington and Fumio Onishi for greenhouse management at Cornell, and Tim Setter, Julie Hansen, Jamie Crawford, and Ryan Crawford for lending lab space, equipment, and technical guidance for the carbohydrate analysis at Cornell. Jeanne Kisacky gave invaluable advice during manuscript submission and helped with figure formatting. Finally, we thank the two anonymous reviewers for suggestions that helped improve this manuscript. DRW is supported by the NSF Graduate Research Fellowship under Grant No. DGE-1144153 and USDA NIFA #2014-67003-21858. NR 46 TC 0 Z9 0 U1 13 U2 13 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD NOV PY 2016 VL 67 IS 21 BP 6125 EP 6138 DI 10.1093/jxb/erw375 PG 14 WC Plant Sciences SC Plant Sciences GA ED0ZB UT WOS:000388572000015 PM 27707775 ER PT J AU Blanco-Martin, L Rutqvist, J Doughty, C Zhang, YQ Finsterle, S Oldenburg, CM AF Blanco-Martin, Laura Rutqvist, Jonny Doughty, Christine Zhang, Yingqi Finsterle, Stefan Oldenburg, Curtis M. TI Coupled geomechanics and flow modeling of thermally induced compaction in heavy oil diatomite reservoirs under cyclic steaming SO JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING LA English DT Article DE Diatomite; Heavy oil; Cyclic steaming; Thermally induced compaction; Ground displacement; Coupled modeling ID SIMULATION AB Shallow, heavy oil diatomite reservoirs produced using cyclic steaming are often associated with significant subsidence. In cases where the pore pressure is not allowed to deplete noticeably, observed subsidence suggests a mechanism other than pressure decline is responsible. We perform coupled flow and geomechanics modeling to determine whether thermally induced compaction of the reservoir rock could play an important role in subsidence. First, we model laboratory-scale tests on diatomite samples subjected to mechanical and thermal loads. During these tests, substantial non-recoverable thermal compaction was measured. Using the modified Cam-clay model as a basis, thermally induced compaction is implemented by reducing the size of the yield surface as a function of temperature. This leads to a satisfactory modeling of the test results. Second, this new approach is used to model a symmetric pattern of wells in a generic heavy oil diatomite field produced using cyclic steaming. Results from simulations that consider or neglect thermally induced diatomite compaction show that thermal effects can potentially induce significant inelastic pore volume reduction and substantial subsidence. (C) 2016 Elsevier B.V. All rights reserved. C1 [Blanco-Martin, Laura; Rutqvist, Jonny; Doughty, Christine; Zhang, Yingqi; Finsterle, Stefan; Oldenburg, Curtis M.] Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd,MS 74R316C, Berkeley, CA 94720 USA. RP Blanco-Martin, L (reprint author), Lawrence Berkeley Natl Lab, Energy Geosci Div, 1 Cyclotron Rd,MS 74R316C, Berkeley, CA 94720 USA. EM lblancomartin@lbl.gov; jrutcivist@lbl.gov; cadoughty@lbl.gov; yqzhang@lbl.gov; safinsterle@lbl.gov; cmoldenburg@lbl.gov RI Finsterle, Stefan/A-8360-2009; Rutqvist, Jonny/F-4957-2015 OI Finsterle, Stefan/0000-0002-4446-9906; Rutqvist, Jonny/0000-0002-7949-9785 FU Lawrence Berkeley National Laboratory under Department of Energy [DE-AC02-05CH11231] FX Support for this work was provided in part by Lawrence Berkeley National Laboratory under Department of Energy Contract No. DE-AC02-05CH11231. NR 44 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-4105 EI 1873-4715 J9 J PETROL SCI ENG JI J. Pet. Sci. Eng. PD NOV PY 2016 VL 147 BP 474 EP 484 DI 10.1016/j.petrol.2016.09.002 PG 11 WC Energy & Fuels; Engineering, Petroleum SC Energy & Fuels; Engineering GA ED1UR UT WOS:000388630900046 ER PT J AU Dinca, M Leonard, F AF Dinca, Mircea Leonard, Francois TI Metal-organic frameworks for electronics and photonics SO MRS BULLETIN LA English DT Article ID CONDUCTIVITY; LINKER AB Metal-organic frameworks (MOFs), with their crystalline nanoporous three-dimensional structures, have emerged as unique multifunctional materials that combine high porosity with catalytic, photophysical, or other properties to reveal new fundamental science and applications. Because MOFs are composed of organic molecules linking metal centers in ways that are not usually conducive to the formation of free-charge carriers or low-energy charge-transport pathways, they are typically insulators. Accordingly, applications so far have harnessed the unique structural properties and porosity of MOFs, which depend only to a small extent on the ability to manipulate their electronic structure. An exciting new area has emerged due to the recent demonstration of MOFs with controlled electronic and optical properties, which is enabling new fundamental science and opens up the possibility of applications in electronics and photonics. This article presents an overview of the fundamental science issues related to controlling electronic and optical properties of MOFs, and how research groups worldwide have been exploring such properties for electronics, thermoelectrics, photophysics, and charge storage. C1 [Dinca, Mircea] MIT, Chem, Cambridge, MA 02139 USA. [Leonard, Francois] Sandia Natl Labs, Livermore, CA 94550 USA. RP Dinca, M (reprint author), MIT, Chem, Cambridge, MA 02139 USA. EM mdinca@mit.edu; fleonar@sandia.gov FU DOE through the Center for Excitonics, an Energy Frontier Research Center [DE-SC0001088]; Young Investigator Award [DE-SC0006937]; DOE Office of Science, Office of Basic Energy Sciences; Sandia's Laboratory-Directed Research and Development Program; US Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX Work on electronic and photonic properties of MOFs in the Dinca lab has been supported by the DOE through the Center for Excitonics, an Energy Frontier Research Center (Award DE-SC0001088) and a Young Investigator Award (Award DE-SC0006937), both funded by the DOE Office of Science, Office of Basic Energy Sciences. The work at SNL was supported by Sandia's Laboratory-Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC0494AL85000. We thank C. Hendon for assistance with the production of Figure 2. NR 26 TC 0 Z9 0 U1 21 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD NOV PY 2016 VL 41 IS 11 BP 854 EP 857 DI 10.1557/mrs.2016.240 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA ED8QR UT WOS:000389136500010 ER PT J AU Allendorf, MD Medishetty, R Fischer, RA AF Allendorf, Mark D. Medishetty, Raghavender Fischer, Roland A. TI Guest molecules as a design element for metal-organic frameworks SO MRS BULLETIN LA English DT Article ID ELECTRIC CONTROL; FERROELECTRICITY; LIGHT; MULTIFERROICS; CONDUCTIVITY; DEVICES AB The well-known synthetic versatility of metal-organic frameworks (MOFs) is rooted in the ability to predict the metal-ion coordination geometry and the vast possibilities to use organic chemistry to modify the linker groups. However, the use of molecules occupying the pores as a component of framework design has been largely ignored. Recent reports show that the presence of these so-called "guests" can have dramatic effects, even when they are a seemingly innocuous species such as water or polar solvents. We term these guests "non-innocent" when their presence alters the MOF in such a way as to create a new material with properties different from the MOF without the guests. Advantages of using guest molecules to impart new properties to MOFs include the relative ease of introducing new functionalities, the ability to modify the material properties at will by removing the guest or inserting different ones, and avoidance of the difficulties associated with synthesizing new frameworks, which can be challenging even when the basic topology remains constant. In this article, we describe the "Guest@MOF" concept and provide examples illustrating its potential as a new MOF design element. C1 [Allendorf, Mark D.] Sandia Natl Labs, Hydrogen Adv Mat Res Consortium, Livermore, CA 94550 USA. [Medishetty, Raghavender; Fischer, Roland A.] Tech Univ Munich, Inorgan & Met Organ Chem, D-80290 Munich, Germany. RP Allendorf, MD (reprint author), Sandia Natl Labs, Hydrogen Adv Mat Res Consortium, Livermore, CA 94550 USA. EM mdallen@sandia.gov; raghavender.medishetty@tum.de; roland.fischer@ch.tum.de RI Fischer, Roland/B-4042-2011 FU Alexander von Humboldt Foundation; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX R.M. would like to thank the Alexander von Humboldt Foundation for a postdoctoral fellowship. M.A. acknowledges the Sandia National Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 40 TC 0 Z9 0 U1 15 U2 15 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD NOV PY 2016 VL 41 IS 11 BP 865 EP 869 DI 10.1557/mrs.2016.244 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA ED8QR UT WOS:000389136500012 ER PT J AU Talin, AA Jones, RE Hopkins, PE AF Talin, A. Alec Jones, Reese E. Hopkins, Patrick E. TI Metal-organic frameworks for thermoelectric energy-conversion applications SO MRS BULLETIN LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; LATTICE THERMAL-CONDUCTIVITY; ELECTRICAL-CONDUCTIVITY; PART II; ENHANCEMENT; VIBRATIONS; EFFICIENCY; TRANSPORT; CRYSTALS; DEVICES AB Motivated by low cost, low toxicity, mechanical flexibility, and conformability over complex shapes, organic semiconductors are currently being actively investigated as thermoelectric (TE) materials to replace the costly, brittle, and non-eco-friendly inorganic TEs for near-ambient-temperature applications. Metal-organic frameworks (MOFs) share many of the attractive features of organic polymers, including solution processability and low thermal conductivity. A potential advantage of MOFs and MOFs with guest molecules (Guest@MOFs) is their synthetic and structural versatility, which allows both the electronic and geometric structure to be tuned through the choice of metal, ligand, and guest molecules. This could solve the long-standing challenge of finding stable, high-TE-performance n-type organic semiconductors, as well as promote high charge mobility via the long-range crystalline order inherent in these materials. In this article, we review recent advances in the synthesis of MOF and Guest@MOF TEs and discuss how the Seebeck coefficient, electrical conductivity, and thermal conductivity could be tuned to further optimize TE performance. C1 [Talin, A. Alec; Jones, Reese E.] Sandia Natl Labs, Livermore, CA 94550 USA. [Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22903 USA. RP Talin, AA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM aatalin@sandia.gov; rjones@sandia.gov; phopkins@virginia.edu FU Sandia Laboratory Directed Research and Development Program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Army Research Office Grant [W911NF-16-1-0320] FX The authors thank A. Cruz for assistance with inkjet printing. This work was supported by the Sandia Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. P.E.H. is grateful for support from the Army Research Office Grant #W911NF-16-1-0320. NR 46 TC 0 Z9 0 U1 32 U2 32 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD NOV PY 2016 VL 41 IS 11 BP 877 EP 882 DI 10.1557/mrs.2016.242 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA ED8QR UT WOS:000389136500014 ER PT J AU Farmer, MT Corradini, M Rempe, J Reister, R Peko, D AF Farmer, M. T. Corradini, M. Rempe, J. Reister, R. Peko, D. TI United States Department of Energy Severe Accident Research Following the Fukushima Daiichi Accidents SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Severe accidents; Fukushima Daiichi; United States R&D AB The U.S. Department of Energy (DOE) has played a major role in the U.S. response to the events at Fukushima Daiichi. During the first several weeks following the accident, U.S. assistance efforts were guided by results from a significant and diverse set of analyses. In the months that followed, a coordinated analysis activity aimed at gaining a more thorough understanding of the accident sequence was completed using laboratory-developed, system-level best-estimate accident analysis codes, while a parallel analysis was conducted by U.S. industry. A comparison of predictions for Unit 1 from these two studies indicated significant differences between MAAP and MELCOR results for key plant parameters, such as in-core hydrogen production. On that basis, a crosswalk was completed to determine the key modeling variations that led to these differences. In parallel with these activities, it became clear that there was a need to perform a technology gap evaluation on accident-tolerant components and severe accident analysis methodologies with the goal of identifying any data and/or knowledge gaps that may exist given the current state of light water reactor (LWR) severe accident research and augmented by insights from Fukushima. In addition, there is growing international recognition that data from Fukushima could significantly reduce uncertainties related to severe accident progression, particularly for boiling water reactors. On these bases, a group of U. S. experts in LWR safety and plant operations was convened by the DOE Office of Nuclear Energy (DOE-NE) to complete technology gap analysis and Fukushima forensics data needs identification activities. The results from these activities were used as the basis for refining DOE-NE's severe accident research and development (R&D) plan. This paper provides a high-level review of DOE-sponsored R&D efforts in these areas, including planned activities on accident-tolerant components and accident analysis methods. C1 [Farmer, M. T.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Corradini, M.] Univ Wisconsin, Madison, WI USA. [Rempe, J.] Rempe & Associates LLC, Idaho Falls, ID USA. [Reister, R.; Peko, D.] US DOE, Off Nucl Energy, Washington, DC 20585 USA. RP Farmer, MT (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM farmer@anl.gov NR 19 TC 0 Z9 0 U1 4 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP 141 EP 148 DI 10.13182/NT16-42 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400002 ER PT J AU Frepoli, C Yurko, JP Szilard, RH Smith, CL Youngblood, R Zhang, HB AF Frepoli, Cesare Yurko, Joseph P. Szilard, Ronaldo H. Smith, Curtis L. Youngblood, Robert Zhang, Hongbin TI 10 CFR 50.46c Rulemaking: A Novel Approach in Restating the LOCA Problem for PWRs SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE 10 CFR 50.46; LOCA; RISMC AB The U.S. Nuclear Regulatory Commission (NRC) is considering a rulemaking that would revise requirements in 10 CFR 50.46 [also known as the emergency core cooling system (ECCS) rule]. Experimental work sponsored by the NRC suggested that the current regulatory acceptance criteria on ECCS performance during design-basis accidents are actually nonconservative for higher-burnup fuel, that embrittlement mechanisms not contemplated in the original criteria exist, and that the 17% limit on oxidation is not adequate to preserve the level of ductility that the NRC originally deemed to be warranted for adequate protection. The new rule imposes new acceptance criteria and is expected to be in effect within this decade. An implementation plan was developed that will give individual plants up to 7 years with which to comply once the rule is amended, depending on the status of each plant's analysis of record, the effort involved, and existing analytical margin to the limits. The proposed rule may challenge U.S. light water reactor fleet operational flexibility and economics. Within the U. S. Department of Energy Light Water Reactor Sustainability Program, the Idaho National Laboratory is pursuing an initiative that is focused on industry applications using Risk-Informed Safety Margin Characterization (RISMC) tools and methods applied to issues that are of current interest to the operating fleet. The mission of RISMC is to provide cost-beneficial approaches to safety analysis by leveraging modern methods, augmented tools (a combination of existing and new), and repurposed data (existing, but used in a new way). C1 [Frepoli, Cesare; Yurko, Joseph P.] FPoliSolutions LLC, 450 William Pitt Way, Pittsburgh, PA 15238 USA. [Szilard, Ronaldo H.; Smith, Curtis L.; Youngblood, Robert; Zhang, Hongbin] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Frepoli, C (reprint author), FPoliSolutions LLC, 450 William Pitt Way, Pittsburgh, PA 15238 USA. EM frepolc@fpolisolutions.com NR 21 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP 187 EP 197 DI 10.13182/NT16-66 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400006 ER PT J AU Pellegrini, M Dolganov, K Herranz, LE Bonneville, H Luxat, D Sonnenkalb, M Ishikawa, J Song, JH Gauntt, RO Moguel, LF Payot, F Nishi, Y AF Pellegrini, M. Dolganov, K. Herranz, L. E. Bonneville, H. Luxat, D. Sonnenkalb, M. Ishikawa, J. Song, J. H. Gauntt, R. O. Moguel, L. Fernandez Payot, F. Nishi, Y. TI Benchmark Study of the Accident at the Fukushima Daiichi NPS: Best-Estimate Case Comparison SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE OECD/NEA; BSAF; SA codes ID CODE AB The Great East Japan earthquake occurred on March 11, 2011, at 14: 46, and the subsequent tsunami led Tokyo Electric Power Company's (TEPCO's) Fukushima Daiichi Nuclear Power Station (NPS) beyond a design-basis accident. After the accident, the Japanese government and TEPCO compiled a roadmap toward an early resolution to the accident including, among the main activities, the employment and improvement of existing severe accident (SA) computer codes. In the member countries of the Organisation for Economic Co-operation and Development/Nuclear Energy Agency (OECD/NEA), SA codes were developed after the accident at Three Mile Island Unit 2 and widely employed to assess NPS status in the postulated SA conditions. Therefore, working plans have been set up with the country members of the OECD/NEA to apply existing SA codes to analyze the accidents at the Fukushima Daiichi NPS Units 1, 2, and 3 and support the decommissioning, constituting an international program named Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF). The objectives of the BSAF project are to analyze the accident progression of Fukushima Daiichi NPS, to raise the understanding of SA phenomena, to contribute to the improvement of the methods and models of the SA codes, and to define the status of the distribution of debris in the reactor pressure vessels and primary containment vessels for decommissioning. The present technical paper summarizes the achievements obtained through a comparison of the results, emphasizing the portions of the accident where all the participants reached a common consensus and identifying still open questions where future work should be directed. Consensus exists on the current condition of Unit 1, where a large fraction of the fuel is assumed to have relocated ex-vessel. On the other hand, larger uncertainties exist for Units 2 and 3, where in-vessel and ex-vessel scenarios produce a reasonable prediction of the accident progression. C1 [Pellegrini, M.] IAE, Tokyo, Japan. [Dolganov, K.] Russian Acad Sci IBRAE, Nucl Safety Inst, Moscow, Russia. [Herranz, L. E.] Ctr Invest Energet MedioAmbient & Tecnol CIEMAT, Madrid, Spain. [Bonneville, H.] IRSN, Fontenay Aux Roses, France. [Luxat, D.] Elect Power Res Inst, Palo Alto, CA USA. [Sonnenkalb, M.] Gesell Anlagen & Reaktorsicherheit GRS, Cologne, Germany. [Ishikawa, J.] Japan Atom Energy Agcy, Tokyo, Japan. [Song, J. H.] Korea Atom Energy Res Inst, Daejeon, South Korea. [Gauntt, R. O.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Moguel, L. Fernandez] Paul Scherrer Inst, Villigen, Switzerland. [Payot, F.] Commissariat Energie Atom & Energies Alternat CE, Cadarache, France. [Nishi, Y.] Cent Res Inst Elect Power Ind, Tokyo, Japan. RP Pellegrini, M (reprint author), IAE, Tokyo, Japan. EM mpellegrini@iae.or.jp NR 21 TC 1 Z9 1 U1 4 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP 198 EP 210 DI 10.13182/NT16-63 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400007 ER PT J AU Cheng, LY Baek, JS Cuadra, A Aronson, A Diamond, D Yarsky, P AF Cheng, L. -Y. Baek, J. S. Cuadra, A. Aronson, A. Diamond, D. Yarsky, P. TI TRACE/PARCS Analysis of Anticipated Transient Without Scram with Instability for a MELLLA + BWR/5 SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE BWR MELLLA plus operating domain; ATWS instability; TRACE/PARCS model of operator actions AB A TRACE/PARCS model has been developed to analyze anticipated transient without scram (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA +) expanded operating domain. The MELLLA + domain expands the allowable operation in the power/flow map of a BWR to low flow rates at high-power conditions. Such operation exacerbates the likelihood of large-amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large-amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural-circulation flow in the reactor pressure vessel after the trip of the recirculation pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heatup that could result in localized fuel damage. TRACE predicts that heatup will occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet, and the fuel becomes locked into a boiling-film regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability. C1 [Cheng, L. -Y.; Baek, J. S.; Cuadra, A.; Aronson, A.; Diamond, D.] Brookhaven Natl Lab, Nucl Sci & Technol Dept, 33 North Renaissance Rd,Bldg 817, Upton, NY 11973 USA. [Yarsky, P.] US Nucl Regulatory Commiss, Off Nucl Regulatory Res, MS CSB-3A07M, Washington, DC 20555 USA. RP Cheng, LY (reprint author), Brookhaven Natl Lab, Nucl Sci & Technol Dept, 33 North Renaissance Rd,Bldg 817, Upton, NY 11973 USA. EM cheng@bnl.gov NR 15 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP 238 EP 247 DI 10.13182/NT16-29 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400010 ER PT J AU Beeny, B Vaghetto, R Vierow, K Hassan, YA AF Beeny, B. Vaghetto, R. Vierow, K. Hassan, Y. A. TI MELCOR and GOTHIC Analyses of a Large Dry PWR Containment to Support Resolution of GSI-191 SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE MELCOR; GOTHIC; LOCA AB The thermal-hydraulic response of large dry pressurized water reactor containments under loss-of-coolant-accident conditions-particularly with respect to containment pressure and sump pool temperature-is crucial for risk-informed decision making about Generic Safety Issue 191. Texas A& M University has developed models with several computer codes including MELCOR and GOTHIC to model such scenarios. MELCOR is a best-estimate thermal-hydraulic and severe accident code created and actively maintained by Sandia National Laboratories for the U.S. Nuclear Regulatory Commission. GOTHIC is a thermal-hydraulic software package meant for design, licensing, and safety calculations for, among other systems, nuclear power plant containments. It was developed and is maintained by Numerical Applications Inc. for the Electronic Power Research Institute. The overarching goal of the analyses presented here is twofold: (1) produce best-estimate time profiles of sump pool temperature under double-ended guillotine-break conditions with MELCOR and GOTHIC and (2) investigate differences between the MELCOR and GOTHIC code results via a sensitivity study. The sump pool temperature was selected as a key parameter to compare because it has direct implications for sump pool chemistry, residual heat removal during recirculation, and pressure drop across sump screens. Aspects of the MELCOR and GOTHIC modeling strategies are discussed, and best estimates of the containment thermal-hydraulic response are presented. There are significant disagreements between code predictions. Hypotheses to explain the differences are tested through a comparative code sensitivity study. In this context, "sensitivity" refers to how containment thermal hydraulics respond to differences in code inputs or code phenomenological models. Sensitivity calculations are performed to exclude, individually, the model effects on comparative thermal-hydraulic responses of containment fan coolers, containment sprays, thermal surface condensation/films, and break source definition. Calculations are also performed with multiple models excluded. Using containment sump pool temperature as an indicator, the most impactful physics in terms of code agreement are those of thermal surfaces (condensation, film phenomena) whereas fan cooler models have a minimal effect. Containment spray exclusion results in disagreement in parts of the event sequence, while break source definition and/or break effluent flashing models lead to disagreement. C1 [Beeny, B.; Vaghetto, R.; Vierow, K.; Hassan, Y. A.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Beeny, B.] Sandia Natl Labs, Severe Accid Anal Org, POB 5800,MS0748, Albuquerque, NM 87185 USA. RP Beeny, B (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA.; Beeny, B (reprint author), Sandia Natl Labs, Severe Accid Anal Org, POB 5800,MS0748, Albuquerque, NM 87185 USA. EM beenyb@tamu.edu NR 4 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP 292 EP 302 DI 10.13182/NT16-36 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400014 ER PT J AU Lv, Q Lin, HC Shi, S Sun, X Christensen, RN Blue, TE Yoder, G Wilson, D Sabharwall, P AF Lv, Q. Lin, H. C. Shi, S. Sun, X. Christensen, R. N. Blue, T. E. Yoder, G. Wilson, D. Sabharwall, P. TI Experimental Study of DRACS Thermal Performance in a Low-Temperature Test Facility SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE FHR; DRACS; decay heat removal ID REACTOR AB The Direct Reactor Auxiliary Cooling System (DRACS) is a passive decay heat removal system proposed for the Fluoride salt-cooled High-temperature Reactor (FHR) that combines coated particle fuel and a graphite moderator with a liquid fluoride salt as the coolant. The DRACS features three coupled natural circulation/convection loops, relying completely on buoyancy as the driving force. These loops are coupled through two heat exchangers, namely, the DRACS heat exchanger (DHX) and the natural draft heat exchanger (NDHX). To experimentally investigate the thermal performance of the DRACS, a scaled-down low-temperature DRACS test facility (LTDF) has been constructed. The design of the LTDF is obtained through a detailed scaling analysis based on a 200-kW prototypic DRACS design developed at The Ohio State University. The LTDF has a nominal power capacity of 6 kW. It employs water pressurized at 1.0 MPa as the primary coolant, water near the atmospheric pressure as the secondary coolant, and ambient air as the ultimate heat sink. Three accident scenarios simulated in the LTDF are discussed in this paper. In the first scenario, startup of the DRACS system from a cold state is simulated with no initial primary coolant flow. In the second scenario, a reactor coolant pump trip process is studied, during which a flow reversal phenomenon in the DRACS primary loop occurs. In the third scenario, the pump trip process is studied with a simulated intermediate heat exchanger in operation during the simulated core normal operation. In all scenarios, natural circulation flows are developed as the transients approach their quasi steady states, demonstrating the functionality of the DRACS. The accident scenarios in the prototypic FHR design corresponding to the simulated ones in the LTDF are also predicted by following a scaling-up process. The predictions show that at any time during the simulated transient, the salt temperatures will be higher than their melting temperatures and that therefore there will be no issue of salt freezing in the three projected accident scenarios. However, the scaled-up primary salt temperatures indicate that the prototypic DHX may have been undersized and may need to be redesigned. C1 [Lv, Q.; Lin, H. C.; Shi, S.; Sun, X.; Christensen, R. N.; Blue, T. E.] Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 201 W 19th Ave, Columbus, OH 43210 USA. [Yoder, G.; Wilson, D.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Sabharwall, P.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. [Lv, Q.] Argonne Natl Lab, 9700 Cass Ave, Lemont, IL 60439 USA. RP Sun, X (reprint author), Ohio State Univ, Dept Mech & Aerosp Engn, Nucl Engn Program, 201 W 19th Ave, Columbus, OH 43210 USA. EM sun.200@osu.edu OI Sun, Xiaodong/0000-0002-9852-160X NR 11 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP 319 EP 337 DI 10.13182/NT16-41 PG 19 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400016 ER PT J AU Pham, BT Hawkes, GL Einerson, JJ AF Pham, Binh T. Hawkes, Grant L. Einerson, Jeffrey J. TI Uncertainty Quantification of Calculated Temperatures for Advanced Gas Reactor Fuel Irradiation Experiments SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH) CY AUG 30-SEP 04, 2015 CL Chicago, IL SP Amer Nucl Soc, Thermal Hydraul Div DE Thermal analysis; uncertainty quantification; sensitivity coefficient AB This paper presents the quantification of uncertainty of the calculated temperature data for the Advanced Gas Reactor (AGR) fuel irradiation experiments conducted in the Advanced Test Reactor at Idaho National Laboratory in support of the Advanced Reactor Technologies Fuel Development and Qualification Program. The predicted temperatures with associated uncertainty for AGR tests using the ABAQUS finite element heat transfer code are used to validate the fission product transport and fuel performance simulation models. To quantify the uncertainty of calculated temperatures, this study identifies and analyzes model parameters of potential importance to the predicted fuel temperatures. The selection of input parameters for uncertainty quantification is based on the ranking of their influence on the variation of temperature predictions. Thus, selected input parameters include those with high sensitivity and those with large uncertainty. The propagation of model parameter uncertainty and sensitivity is then used to quantify the overall uncertainty of the calculated temperatures. The sensitivity analysis performed in this work went beyond the traditional local sensitivity. Using an experimental design, an analysis of pairwise interactions of model parameters was performed to establish the sufficiency of the first-order (linear) expansion terms in constructing the response surface. To achieve completeness, the uncertainty propagation made use of pairwise noise correlations of model parameters. The AGR-2 overall fuel temperature uncertainties reported here are less than 5% (or 60 degrees C). C1 [Pham, Binh T.; Hawkes, Grant L.; Einerson, Jeffrey J.] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. RP Pham, BT (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. EM binh.pham@inl.gov OI Hawkes, Grant/0000-0003-3496-8100 NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2016 VL 196 IS 2 SI SI BP 396 EP 407 DI 10.13182/NT16-31 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA ED0CK UT WOS:000388510400022 ER PT J AU Haselton, CB Liel, AB Taylor-Lange, SC Deierlein, GG AF Haselton, Curt B. Liel, Abbie B. Taylor-Lange, Sarah C. Deierlein, Gregory G. TI Calibration of Model to Simulate Response of Reinforced Concrete Beam-Columns to Collapse SO ACI STRUCTURAL JOURNAL LA English DT Article DE beam-column; collapse; earthquake engineering; hysteretic behavior; modeling; seismic effects; strength degradation; structural reliability; uncertainty AB This paper describes the calibration of a phenomenological hinge model to simulate the nonlinear hysteretic response of reinforced concrete (RC) beam-columns under large deformations. The model is developed to enable simulation of the nonlinear dynamic response of RC frame buildings, from the initiation of damage to the onset of sidesway collapse, under earthquake ground motions. The model's monotonic backbone curve and hysteretic degradation rules capture post-peak in-cycle softening, combined with cyclic deterioration, which are associated with concrete crushing and reinforcing bar buckling at large cyclic deformations. The model calibration is based on experimental data for 255 rectangular RC columns with widely varying seismic design and detailing characteristics. For each of the 255 tests, the element model parameters, including initial stiffness, inelastic rotation limits, and cyclic energy dissipation capacity, are systematically calibrated to laboratory test data. Regression analyses are then used to develop semi-empirical equations to calculate the model parameters as functions of the column design parameters. The model parameters are calibrated in a statistically rigorous manner, where both median estimates and lognormal standard deviations are reported for each parameter. Important design parameters that affect the column model properties are the axial load ratio, confinement steel ratio, and spacing of confinement steel. C1 [Haselton, Curt B.] Calif State Univ Chico, Dept Civil Engn, Chico, CA 95929 USA. [Liel, Abbie B.] Univ Colorado, Dept Civil Environm & Architectural Engn, Boulder, CO 80309 USA. [Taylor-Lange, Sarah C.] Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, Simulat Res Grp, Berkeley, CA USA. [Deierlein, Gregory G.] Stanford Univ, Civil & Environm Engn, Stanford, CA 94305 USA. [Deierlein, Gregory G.] John A Blume Earthquake Engn Ctr, Stanford, CA USA. RP Haselton, CB (reprint author), Calif State Univ Chico, Dept Civil Engn, Chico, CA 95929 USA. FU Earthquake Engineering Research Centers Program of the National Science Foundation through the Pacific Earthquake Engineering Research Center [EEC-9701568]; FEMA [FEMA P-695 (ATC-63)]; PEER Center's undergraduate summer internship program FX This work was supported primarily by the Earthquake Engineering Research Centers Program of the National Science Foundation under award number EEC-9701568 through the Pacific Earthquake Engineering Research Center. Additional funding was provided by FEMA for the FEMA P-695 (ATC-63) project and the PEER Center's undergraduate summer internship program. Any opinions and findings expressed herein are those of the authors and do not necessarily reflect those of the sponsors. The authors would also like to acknowledge the valuable input from J. Baker, P. Cordova, K. Elwood, R. Hanson, H. Krawinkler, E. Miranda, P. Tothong, and F. Zareian. NR 28 TC 0 Z9 0 U1 16 U2 16 PU AMER CONCRETE INST PI FARMINGTON HILLS PA 38800 COUNTRY CLUB DR, FARMINGTON HILLS, MI 48331 USA SN 0889-3241 EI 1944-7361 J9 ACI STRUCT J JI ACI Struct. J. PD NOV-DEC PY 2016 VL 113 IS 6 BP 1141 EP 1152 DI 10.14359/51689245 PG 12 WC Construction & Building Technology; Engineering, Civil; Materials Science, Multidisciplinary SC Construction & Building Technology; Engineering; Materials Science GA EC5YZ UT WOS:000388214500001 ER PT J AU Mittal, S AF Mittal, Sparsh TI A Survey of Recent Prefetching Techniques for Processor Caches SO ACM COMPUTING SURVEYS LA English DT Article DE Design; Algorithms; Performance; Review; classification; data prefetching; instruction prefetching; hardware (HW) prefetching; software (SW) prefetching; speculative pre-execution; helper thread prefetching; cache pollution ID CHIP MULTIPROCESSORS; SPECULATIVE PRECOMPUTATION; COMMERCIAL APPLICATIONS; MEMORY; PERFORMANCE AB As the trends of process scaling make memory systems an even more crucial bottleneck, the importance of latency hiding techniques such as prefetching grows further. However, naively using prefetching can harm performance and energy efficiency and, hence, several factors and parameters need to be taken into account to fully realize its potential. In this article, we survey several recent techniques that aim to improve the implementation and effectiveness of prefetching. We characterize the techniques on several parameters to highlight their similarities and differences. The aim of this survey is to provide insights to researchers into working of prefetching techniques and spark interesting future work for improving the performance advantages of prefetching even further. C1 [Mittal, Sparsh] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. RP Mittal, S (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM mittals@ornl.gov FU U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research FX This material is based on work supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research. NR 104 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0360-0300 EI 1557-7341 J9 ACM COMPUT SURV JI ACM Comput. Surv. PD NOV PY 2016 VL 49 IS 2 AR 35 DI 10.1145/2907071 PG 35 WC Computer Science, Theory & Methods SC Computer Science GA ED0AB UT WOS:000388504300014 ER PT J AU Kailkhura, B Thiagarajan, JJ Bremer, PT Varshney, PK AF Kailkhura, Bhavya Thiagarajan, Jayaraman J. Bremer, Peer-Timo Varshney, Pramod K. TI Stair Blue Noise Sampling SO ACM TRANSACTIONS ON GRAPHICS LA English DT Article; Proceedings Paper CT ACM SIGGRAPH Asia Conference CY 2016 CL Macao, PEOPLES R CHINA SP ACM SIGGRAPH, Adobe Syst Inc, King Abdullah Univ Sci & Technol, Microsoft Corp DE sampling; blue noise; anti-aliasing; pair correlation function ID PAIR CORRELATION-FUNCTIONS; POISSON AB A common solution to reducing visible aliasing artifacts in image reconstruction is to employ sampling patterns with a blue noise power spectrum. These sampling patterns can prevent discernible artifacts by replacing them with incoherent noise. Here, we propose a new family of blue noise distributions, Stair blue noise, which is mathematically tractable and enables parameter optimization to obtain the optimal sampling distribution. Furthermore, for a given sample budget, the proposed blue noise distribution achieves a significantly larger alias-free low-frequency region compared to existing approaches, without introducing visible artifacts in the mid-frequencies. We also develop a new sample synthesis algorithm that benefits from the use of an unbiased spatial statistics estimator and efficient optimization strategies. C1 [Kailkhura, Bhavya; Varshney, Pramod K.] Syracuse Univ, Syracuse, NY 13244 USA. [Kailkhura, Bhavya; Thiagarajan, Jayaraman J.; Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kailkhura, B (reprint author), Syracuse Univ, Syracuse, NY 13244 USA.; Kailkhura, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 28 TC 0 Z9 0 U1 1 U2 1 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0730-0301 EI 1557-7368 J9 ACM T GRAPHIC JI ACM Trans. Graph. PD NOV PY 2016 VL 35 IS 6 AR 248 DI 10.1145/2980179.2982435 PG 10 WC Computer Science, Software Engineering SC Computer Science GA EC9ED UT WOS:000388446200090 ER PT J AU Weber, RJ Cerchiari, AE Delannoy, LS Garbe, JC LaBarge, MA Desai, TA Gartner, ZJ AF Weber, Robert J. Cerchiari, Alec E. Delannoy, Lucas S. Garbe, James C. LaBarge, Mark A. Desai, Tejal A. Gartner, Zev J. TI Rapid Organoid Reconstitution by Chemical Micromolding SO ACS BIOMATERIALS SCIENCE & ENGINEERING LA English DT Article DE organoid; synthetic biology; 3D tissue culture; DNA programmed assembly; microwell; mammary gland ID SINGLE STEM-CELL; HIGH-THROUGHPUT; IN-VITRO; 3-DIMENSIONAL TISSUES; SELF-ORGANIZATION; DRUG DISCOVERY; MORPHOGENESIS; CANCER; CULTURE; MODELS AB Purified populations of cells can be reconstituted into organoids that recapitulate aspects of their in vivo structure and function. These organoids are useful as models of healthy and diseased tissue in the basic sciences, in vitro screens, and regenerative medicine. Existing strategies to reconstitute organoids from purified cells face obstacles with respect to cell-viability, multicellular connectivity, scalability, and compatibility with subsequent experimental or analytical techniques. To address these challenges, we developed a strategy for rapidly casting populations of cells into micro tissues of prescribed size and shape. This approach begins by chemically remodeling the adhesive properties of living cells with membrane-anchored ssDNA with modest annealing kinetics. Populations of complementary labeled cells are then combined into microwells that rapidly mold the DNA-adhesive cell populations into 3D aggregates of uniform size and shape. Once formed, aggregates are removed from the molds in the presence of "capping" oligonucleotides that block hybridization of residual surface DNA between aggregates in suspension. Finally, transfer of aggregates to biomimetic gels for 3D culture completes the process of reconstitution. This strategy of chemical micromolding allows for control over aggregate internal topology and does not perturb the natural process of self-organization in primary human mammary epithelial cells. C1 [Weber, Robert J.; Cerchiari, Alec E.; Garbe, James C.; Gartner, Zev J.] Univ Calif San Francisco, Dept Pharmaceut Chem, 600 16th St, San Francisco, CA 94158 USA. [Weber, Robert J.; Gartner, Zev J.] Univ Calif San Francisco, Chem & Chem Biol Grad Program, 600 16th St,Room 522, San Francisco, CA 94158 USA. [Weber, Robert J.] Univ Calif San Francisco, Med Scientist Training Program, 513 Parnassus Ave, San Francisco, CA 94143 USA. [Cerchiari, Alec E.; Desai, Tejal A.; Gartner, Zev J.] UC Berkeley UCSF Grp Bioengn, 1700 Fourth St,Room 216, San Francisco, CA 94158 USA. [Delannoy, Lucas S.] Ecole Polytech Fed Lausanne, Inst Bioengn, Lab Stem Cell Bioengn, Stn 15, Bldg Al 1106, CH-1015 Lausanne, Switzerland. [Garbe, James C.; LaBarge, Mark A.] Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Cerchiari, Alec E.; Desai, Tejal A.] UCSF Bioengn & Therapeut Sci, 1700 Fourth St,Room 216B, San Francisco, CA 94158 USA. RP Gartner, ZJ (reprint author), Univ Calif San Francisco, Dept Pharmaceut Chem, 600 16th St, San Francisco, CA 94158 USA.; Gartner, ZJ (reprint author), Univ Calif San Francisco, Chem & Chem Biol Grad Program, 600 16th St,Room 522, San Francisco, CA 94158 USA.; Desai, TA; Gartner, ZJ (reprint author), UC Berkeley UCSF Grp Bioengn, 1700 Fourth St,Room 216, San Francisco, CA 94158 USA.; Desai, TA (reprint author), UCSF Bioengn & Therapeut Sci, 1700 Fourth St,Room 216B, San Francisco, CA 94158 USA. EM Tejal.Desai@ucsf.edu; Zev.Gartner@ucsf.edu FU Department of Defense Breast Cancer Research Program [W81XWH-10-1-1-1023, W81XWH-13-1-0221]; US National Institutes of Health common fund [DP2 HD080351-01]; UCSF Research Resource Program Shared Equipment Award - Chancellor FX We are grateful for support from the Department of Defense Breast Cancer Research Program (W81XWH-10-1-1-1023 and W81XWH-13-1-0221 to Z.J.G.) and US National Institutes of Health common fund (DP2 HD080351-01 to Z.J.G). MALDI support from the UCSF Research Resource Program Shared Equipment Award funded by the Chancellor. NR 44 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2373-9878 J9 ACS BIOMATER SCI ENG JI ACS Biomater. Sci. Eng. PD NOV PY 2016 VL 2 IS 11 BP 1851 EP 1855 DI 10.1021/acsbiomaterials.6b00421 PG 5 WC Materials Science, Biomaterials SC Materials Science GA EC5GK UT WOS:000388161200002 ER PT J AU Schloss, AC Liu, W Williams, DM Kaufman, G Hendrickson, HP Rudshteyn, B Fu, L Wang, H Batista, VS Osuji, C Yan, ECY Regan, L AF Schloss, Ashley C. Liu, Wei Williams, Danielle M. Kaufman, Gilad Hendrickson, Heidi P. Rudshteyn, Benjamin Fu, Li Wang, Hongfei Batista, Victor S. Osuji, Chinedum Yan, Elsa C. Y. Regan, Lynne TI Fabrication of Modularly Functionalizable Microcapsules Using Protein-Based Technologies SO ACS BIOMATERIALS SCIENCE & ENGINEERING LA English DT Article DE microcapsules; protein design; self-assembly; hydrophobin; modular; surface display ID SUM-FREQUENCY GENERATION; BACTERIAL HYDROPHOBIN; MOLECULAR-DYNAMICS; PEPTIDE TAG; SPECTROSCOPY; SPYCATCHER; BIOFILM; COMPLEX AB Proteins are desirable building blocks to create self-assembled, spatially defined structures and interfaces on length-scales that are inaccessible by traditional methods. Here, we describe a novel approach to create functionalized monolayers using the proteins BsIA and SpyCatcher/SpyTag. BsIA is a bacterial hydrophobin whose amphiphilic character underlies its ability to assemble into a monolayer at both air/water and oil/water interfaces. We demonstrate that Bsa1A having the SpyTag peptide fused at the N- or C-terminus does not affect the formation of such monolayers. We establish the creation of stable oil-in-water microcapsules using Bs1A, and also show the fabrication of capsules outwardly displaying the reactive SpyTag peptide by fusing it to the C-terminus of Bs1A. Such capsules can be covalently labeled by reacting the surface-displayed SpyTag with SpyCatcher fused to any desired protein. We demonstrate this principle by labeling microcapsules using green fluorescent protein (GFP). All components are genetically encodable, the reagents can be readily prepared in large quantities, and all reactions occur at ambient temperature in aqueous solution. Thus, this straightforward, modular, scalable strategy has myriad potential applications in the creation of novel, functional materials, and interfaces. C1 [Schloss, Ashley C.; Williams, Danielle M.; Regan, Lynne] Yale Univ, Dept Mol Biophys & Biochem, 266 Whitney Ave, New Haven, CT 06511 USA. [Liu, Wei; Hendrickson, Heidi P.; Rudshteyn, Benjamin; Batista, Victor S.; Yan, Elsa C. Y.; Regan, Lynne] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA. [Kaufman, Gilad; Osuji, Chinedum] Yale Univ, Dept Chem & Environm Engn, 9 Hillhouse Ave, New Haven, CT 06511 USA. [Yan, Elsa C. Y.; Regan, Lynne] Yale Univ, Integrated Grad Program Phys & Engn Biol, New Haven, CT 06511 USA. [Fu, Li; Wang, Hongfei] Pacific Northwest Natl Lab, Div Phys Sci, 902 Battelle Blvd, Richland, WA 99352 USA. RP Regan, L (reprint author), Yale Univ, Dept Mol Biophys & Biochem, 266 Whitney Ave, New Haven, CT 06511 USA.; Yan, ECY; Regan, L (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06511 USA.; Yan, ECY; Regan, L (reprint author), Yale Univ, Integrated Grad Program Phys & Engn Biol, New Haven, CT 06511 USA. EM elsa.yan@yale.edu; lynne.regan@yale.edu RI Wang, Hongfei/B-1263-2010; OI Wang, Hongfei/0000-0001-8238-1641; Osuji, Chinedum/0000-0003-0261-3065; kaufman, gilad/0000-0001-5084-9027 FU NSF through the Yale Materials Research Science and Engineering Center [MRSEC DMR-1119826]; Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences; NSF [CBET-1066904, CHE-1213362, DMR-1307712]; National Science Foundation Graduate Research Fellowship; Department of Energy's Office of Biological and Environmental Research (BER); National Institute of Health (NIH) [1R01GM10621-01A1] FX We thank Susan Pratt for helpful instruction and discussions regarding the use of the microscope. We gratefully acknowledge the Support from the NSF through the Yale Materials Research Science and Engineering Center (grant no. MRSEC DMR-1119826) and from the Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences. C. O. also acknowledge NSF support under CBET-1066904 and the facilities of the Yale Institute for Nano and Quantum Engineering (YINQE); E.Y. also acknowledges support from the NSF (CHE-1213362); L.R also acknowledges support from the NSF (DMR-1307712). A.C.S. is supported by a National Science Foundation Graduate Research Fellowship. Part of this work was conducted at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility located at the Pacific Northwest National Laboratory and sponsored by the Department of Energy's Office of Biological and Environmental Research (BER). V.S.B. acknowledges supercomputer time from the National Energy Research Scientific Computing Center (NERSC) and support from the National Institute of Health (NIH) grant 1R01GM10621-01A1. NR 27 TC 1 Z9 1 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2373-9878 J9 ACS BIOMATER SCI ENG JI ACS Biomater. Sci. Eng. PD NOV PY 2016 VL 2 IS 11 BP 1856 EP 1861 DI 10.1021/acsbiomaterials.6b00447 PG 6 WC Materials Science, Biomaterials SC Materials Science GA EC5GK UT WOS:000388161200003 ER PT J AU Armstrong, DP Mineart, KP Lee, B Spontak, RJ AF Armstrong, Daniel P. Mineart, Kenneth P. Lee, Byeongdu Spontak, Richard J. TI Olefinic Thermoplastic Elastomer Gels: Combining Polymer Crystallization and Microphase Separation in a Selective Solvent SO ACS MACRO LETTERS LA English DT Article ID BLOCK-COPOLYMERS; TRIBLOCK COPOLYMER; DIELECTRIC ELASTOMERS; MULTIBLOCK COPOLYMERS; MECHANICAL-PROPERTIES; PHASE-BEHAVIOR; ORGANOGELS; PROPERTY; SYSTEMS AB Since selectively swollen thermoplastic elastomer gels (TPEGs) afford a wide range of beneficial properties that open new doors to developing elastomer-based technologies, we examine the unique structure property behavior of TPEGs composed of olefinic block copolymers (OBCs) in this study. Unlike their styrenic counterparts typically possessing two chemically different blocks, this class of multiblock copolymers consists of linear polyethylene hard blocks and poly(ethylene-co-alpha-octene) soft blocks, in which case, microphase separation between the hard and the soft blocks is accompanied by crystallization of the hard blocks. Here, we prepare olefinic TPEGs (OTPEGs) through the incorporation of a primarily aliphatic oil that selectively swells the soft block and investigate the resultant morphological features through the use of polarized light microscopy and small-/wide-angle X-ray scattering. These features are correlated with thermal and mechanical property measurements from calorimetry, rheology, and extensiometry to elucidate the roles of crystallization and self-assembly on gel characteristics and establish useful structure-property relationships. C1 [Armstrong, Daniel P.; Mineart, Kenneth P.; Spontak, Richard J.] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Spontak, Richard J.] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Mineart, Kenneth P.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. RP Spontak, RJ (reprint author), North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA.; Spontak, RJ (reprint author), North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. EM rich_spontak@ncsu.edu OI Mineart, Kenneth/0000-0003-2374-4670 FU Becton-Dickinson Technologies; Nonwovens Institute at North Carolina State University; DOE Office of Science [DE-AC02-06CH11357] FX This work was supported by Becton-Dickinson Technologies and the Nonwovens Institute at North Carolina State University. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 40 TC 0 Z9 0 U1 14 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD NOV PY 2016 VL 5 IS 11 BP 1273 EP 1277 DI 10.1021/acsmacrolett.6b00677 PG 5 WC Polymer Science SC Polymer Science GA EC5GJ UT WOS:000388161100017 ER PT J AU Miller, EK AF Miller, Edmund K. TI Using a Radial, Switchable, Sector Ground Screen to Produce Azimuthal Directivity for a Monopole Antenna SO APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL LA English DT Article DE Directivity; ground screen; monopole antenna; steerable pattern; switching radials AB Ground-mounted monopole antennas are usually driven against a radial-wire ground system to control their input impedance and to improve their radiation efficiency. This results in a radiation pattern that is uniform in azimuth angle with a front-to-back ratio of 1, or 0 dB. The use of a sectorial ground screen, one whose radial or angular extent is varied to produce a radiation pattern having azimuthal directivity has received some attention. An alternate approach also is explored in this discussion. It involves exploring the effect of varying the number of "active" radials in an otherwise uniform ground system of radial wires, an active radial being one that is electrically connected to the base of the monopole. A "passive" radial on the other hand is one that is separated from the monopole by a switch. By varying the number and angular locations of the active and passive ground wires, the resulting azimuth pattern can be varied in angle and directive gain. This arrangement makes possible a steerable pattern, something not usually associated with ground-mounted monopoles. The antenna and ground screen are modeled using the well-known NEC package. For convenience in modeling, active radials are made into passive ones by adding a large resistance between the base of the monopole and a given radial. Directive gains of more than 5 dB are found to be possible. C1 [Miller, Edmund K.] Los Alamos Natl Lab, 597 Rust Ranch Lane, Lincoln, CA USA. EM e.miller@ieee.org NR 11 TC 0 Z9 0 U1 0 U2 0 PU APPLIED COMPUTATIONAL ELECTROMAGNETICS SOC PI UNIVERSITY PA UNIV MISSISSIPPI, DEPT ELECTRICAL ENGINEERING, UNIVERSITY, MS 38677 USA SN 1054-4887 EI 1943-5711 J9 APPL COMPUT ELECTROM JI Appl. Comput. Electromagn. Soc. J. PD NOV PY 2016 VL 31 IS 11 BP 1293 EP 1296 PG 4 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA EC9XT UT WOS:000388498300005 ER PT J AU Balboni, E Jones, N Spano, T Simonetti, A Burns, PC AF Balboni, Enrica Jones, Nina Spano, Tyler Simonetti, Antonio Burns, Peter C. TI Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications SO APPLIED GEOCHEMISTRY LA English DT Article DE Uranium deposits in the United States; Uranium ore concentrate; Strontium isotopes; ICP-MS ID STRONTIUM ISOTOPE; TRACE-ELEMENTS; BEARING MATERIALS; NEW-HAMPSHIRE; NILE VALLEY; NEW-KINGDOM; ORIGIN; URANINITE; METHODOLOGY; PROVENANCE AB This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high-and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relative to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (< 1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic Sr-87/Sr-86 ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. This result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Balboni, Enrica; Jones, Nina; Spano, Tyler; Simonetti, Antonio; Burns, Peter C.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Balboni, Enrica] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Glenn T Seaborg Inst, 7000 East Ave, Livermore, CA 94550 USA. [Burns, Peter C.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Balboni, E (reprint author), 7000 East Ave, Livermore, CA 94550 USA. EM balboni1@llnl.gov RI Simonetti, Antonio/E-4187-2016; OI Simonetti, Antonio/0000-0002-4025-2283; Burns, Peter/0000-0002-2319-9628 FU DHS [2014-DN-077-ARI082]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work is funded by DHS Grant 2014-DN-077-ARI082. The authors thank Dr. Ian Steele for his expertise with electron microprobe analysis. The Center of Environmental Science and Technology (CEST) at the University of Notre Dame is thanked for the training and use of the mu-XRF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 37 TC 1 Z9 1 U1 7 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD NOV PY 2016 VL 74 BP 24 EP 32 DI 10.1016/j.apgeochem.2016.08.016 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC9YE UT WOS:000388499400003 ER PT J AU Xiong, YL AF Xiong, Yongliang TI Solubility constants of hydroxyl sodalite at elevated temperatures evaluated from hydrothermal experiments: Applications to nuclear waste isolation SO APPLIED GEOCHEMISTRY LA English DT Article DE Pitzer model; Nuclear waste disposal; Salt formations ID HIGH IONIC-STRENGTH; DEGREES-C; ZEOLITE SYNTHESIS; AQUEOUS-SOLUTION; FLY-ASH; SYSTEM; PERRHENATE; FORM; SPECIATION; CONVERSION AB In this study, solubility constants of hydroxyl sodalite (ideal formula, Na-8[Al6Si6O24][OH](2).3H(2)O) from 25 degrees C to 100 degrees C are obtained by applying a high temperature Al-Si Pitzer model to evaluate solubility data on hydroxyl sodalite in high ionic strength solutions at elevated temperatures. A validation test comparing model-independent experimental data to model predictions demonstrates that the solubility values produced by the model are in excellent agreement with the experimental data. The equilibrium constants obtained in this study have a wide range of applications, including synthesis of hydroxyl sodalite, de-silication in the Bayer process for extraction of alumina, and the performance of proposed sodalite waste forms in geological repositories in various lithologies including salt formations. The thermodynamic calculations based on the equilibrium constants obtained in this work indicate that the solubility products in terms of m(Sigma Al) x m(Sigma Si) for hydroxyl sodalite are very low (e.g., similar to 10(-13) [mol.kg(-1)](2) at 100 degrees C) in brines characteristic of salt formations, implying that sodalite waste forms would perform very well in repositories located in salt formations. The information regarding the solubility behavior of hydroxyl sodalite obtained in this study provides guidance to investigate the performance of other pure end-members of sodalite such as chloride-and iodide-sodalite, which may be of interest for geological repositories in various media. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xiong, Yongliang] Sandia Natl Labs, Carlsbad Programs Grp, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. RP Xiong, YL (reprint author), Sandia Natl Labs, Carlsbad Programs Grp, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM yxiong@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Salt RD Programs [SAND2016-2300J] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research was supported by the Salt R&D Programs administrated by the Office of Nuclear Energy, U.S. Department of Energy. SAND2016-2300J. The author is grateful to the three journal reviewers, and thanks for their detailed and insightful reviews, which have improved the paper. The author would like to thank Dr. Michael Kersten, the journal editor, and Dr. Eric Pierce, AE, for their editorial efforts. NR 45 TC 0 Z9 0 U1 3 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD NOV PY 2016 VL 74 BP 138 EP 143 DI 10.1016/j.apgeochem.2016.09.009 PG 6 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC9YE UT WOS:000388499400012 ER PT J AU Hicks, RK Day, DA Jimenez, JL Tolbert, MA AF Hicks, Raea K. Day, Douglas A. Jimenez, Jose L. Tolbert, Margaret A. TI Follow the Carbon: Isotopic Labeling Studies of Early Earth Aerosol SO ASTROBIOLOGY LA English DT Article DE Atmosphere; Early Earth; Planetary atmospheres; Carbon dioxide; Methane ID RESOLUTION MASS-SPECTROMETRY; EARLY ATMOSPHERE; ORGANIC HAZES; ELEMENTAL ANALYSIS; PHOTOCHEMISTRY; METHANE; TITAN; PHOTOLYSIS; CHEMISTRY; OXYGEN AB Despite the faint young Sun, early Earth might have been kept warm by an atmosphere containing the greenhouse gases CH4 and CO2 in mixing ratios higher than those found on Earth today. Laboratory and modeling studies suggest that an atmosphere containing these trace gases could lead to the formation of organic aerosol haze due to UV photochemistry. Chemical mechanisms proposed to explain haze formation rely on CH4 as the source of carbon and treat CO2 as a source of oxygen only, but this has not previously been verified experimentally. In the present work, we use isotopically labeled precursor gases and unit-mass resolution (UMR) and high-resolution (HR) aerosol mass spectrometry to examine the sources of carbon and oxygen to photochemical aerosol formed in a CH4/CO2/N-2 atmosphere. UMR results suggest that CH4 contributes 70-100% of carbon in the aerosol, while HR results constrain the value from 94% to 100%. We also confirm that CO2 contributes approximately 10% of the total mass to the aerosol as oxygen. These results have implications for the geochemical interpretations of inclusions found in Archean rocks on Earth and for the astrobiological potential of other planetary atmospheres. C1 Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Hicks, Raea K.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA USA. RP Tolbert, MA (reprint author), Univ Colorado, Dept Chem & Biochem UCB 215, Boulder, CO 80309 USA. EM Tolbert@Colorado.edu RI Jimenez, Jose/A-5294-2008 OI Jimenez, Jose/0000-0001-6203-1847 FU NASA [NNX12AD92G, NNX10AP76H]; NOAA [NA13OAR4310063] FX This work was supported by NASANNX12AD92G. R.K.H. gratefully acknowledges NASA Earth and Space Science Fellowship (NESSF) NNX10AP76H. D.A.D. and J.L.J. were partially supported by NOAA NA13OAR4310063. NR 44 TC 1 Z9 1 U1 5 U2 5 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD NOV PY 2016 VL 16 IS 11 BP 822 EP 830 DI 10.1089/ast.2015.1436 PG 9 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA EC6ZB UT WOS:000388284100002 PM 27870584 ER PT J AU Banados, E Venemans, BP Decarli, R Farina, EP Mazzucchelli, C Walter, F Fan, X Stern, D Schlafly, E Chambers, KC Rix, HW Jiang, L McGreer, I Simcoe, R Wang, F Yang, J Morganson, E De Rosa, G Greiner, J Balokovic, M Burgett, WS Cooper, T Draper, PW Flewelling, H Hodapp, KW Jun, HD Kaiser, N Kudritzki, RP Magnier, EA Metcalfe, N Miller, D Schindler, JT Tonry, JL Wainscoat, RJ Waters, C Yang, Q AF Banados, E. Venemans, B. P. Decarli, R. Farina, E. P. Mazzucchelli, C. Walter, F. Fan, X. Stern, D. Schlafly, E. Chambers, K. C. Rix, H-W. Jiang, L. McGreer, I. Simcoe, R. Wang, F. Yang, J. Morganson, E. De Rosa, G. Greiner, J. Balokovic, M. Burgett, W. S. Cooper, T. Draper, P. W. Flewelling, H. Hodapp, K. W. Jun, H. D. Kaiser, N. Kudritzki, R. -P. Magnier, E. A. Metcalfe, N. Miller, D. Schindler, J. -T. Tonry, J. L. Wainscoat, R. J. Waters, C. Yang, Q. TI THE PAN-STARRS1 DISTANT z > 5.6 QUASAR SURVEY: MORE THAN 100 QUASARS WITHIN THE FIRST GYR OF THE UNIVERSE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; quasars: emission lines; quasars: general ID DIGITAL SKY SURVEY; SIMILAR-TO 6; EMISSION-LINE QUASARS; ACTIVE GALACTIC NUCLEI; NEAR-INFRARED CAMERA; STAR-FORMATION RATE; THAN 6.5 QUASARS; 10(8) SOLAR MASS; HOST GALAXIES; HIGH-REDSHIFT AB Luminous quasars at z > 5.6 can be studied in detail with the current generation of telescopes and provide us with unique information on the first gigayear of the universe. Thus far, these studies have been statistically limited by the number of quasars known at these redshifts. Such quasars are rare, and therefore, wide-field surveys are required to identify them, and multiwavelength data are required to separate them efficiently from their main contaminants, the far more numerous cool dwarfs. In this paper, we update and extend the selection for the z similar to 6 quasars presented in Banados et al. (2014) using the Pan- STARRS1 (PS1) survey. We present the PS1 distant quasar sample, which currently consists of 124 quasars in the redshift range 5.6 less than or similar to z less than or similar to 6.7 that satisfy our selection criteria. Of these quasars, 77 have been discovered with PS1, and 63 of them are newly identified in this paper. We present the composite spectra of the PS1 distant quasar sample. This sample spans a factor of similar to 20 in luminosity and shows a variety of emission line properties. The number of quasars at z > 5.6 presented in this work almost doubles the previously known quasars at these redshifts, marking a transition phase from studies of individual sources to statistical studies of the high-redshift quasar population, which was impossible with earlier, smaller samples. C1 [Banados, E.; Venemans, B. P.; Decarli, R.; Farina, E. P.; Mazzucchelli, C.; Walter, F.; Schlafly, E.; Rix, H-W.] Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany. [Banados, E.] Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Fan, X.; McGreer, I.; Wang, F.; Yang, J.; Schindler, J. -T.; Yang, Q.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [Stern, D.; Jun, H. D.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Schlafly, E.] Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. [Chambers, K. C.; Burgett, W. S.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. -P.; Magnier, E. A.; Tonry, J. L.; Wainscoat, R. J.; Waters, C.] Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. [Jiang, L.] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China. [Simcoe, R.; Cooper, T.; Miller, D.] MIT Kavli Ctr Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Wang, F.; Yang, J.; Yang, Q.] Peking Univ, Sch Phys, Dept Astron, Beijing 100871, Peoples R China. [Morganson, E.] Univ Illinois, Natl Ctr Supercomp Applicat, 1205 W Clark St, Urbana, IL 61801 USA. [De Rosa, G.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Greiner, J.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Balokovic, M.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Draper, P. W.; Metcalfe, N.] Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. RP Banados, E (reprint author), Max Planck Inst Astron, Konigstuhl 17, D-69117 Heidelberg, Germany.; Banados, E (reprint author), Observ Carnegie Inst Washington, 813 Santa Barbara St, Pasadena, CA 91101 USA. EM ebanados@carnegiescience.edu OI Venemans, Bram/0000-0001-9024-8322; Farina, Emanuele Paolo/0000-0002-6822-2254; Banados, Eduardo/0000-0002-2931-7824; Chambers, Kenneth /0000-0001-6965-7789 FU NSF [AST-9987045]; NSF Telescope System Instrumentation Program; Ohio Board of Regents; Ohio State University Office of Research; Leibniz Prize (DFG) [HA 1850/28-1]; National Aeronautics and Space Administration FX The LBT is an international collaboration among institutions in the United States, Italy, and Germany. The LBT Corporation partners are the University of Arizona, on behalf of the Arizona University System; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; the Ohio State University; and Research Corporation, on behalf of the University of Notre Dame, the University of Minnesota, and the University of Virginia. This paper used data obtained with the MODS spectrograph, built with funding from NSF grant AST-9987045 and the NSF Telescope System Instrumentation Program and with additional funds from the Ohio Board of Regents and the Ohio State University Office of Research.; Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz Prize to Prof. G. Hasinger (DFG grant HA 1850/28-1).; This publication makes use of data products from the WideField Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 119 TC 1 Z9 1 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2016 VL 227 IS 1 AR 11 DI 10.3847/0067-0049/227/1/11 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA ED1MA UT WOS:000388608400004 ER PT J AU Shara, MM Doyle, TF Lauer, TR Zurek, D Neill, JD Madrid, JP Mikolajewska, J Welch, DL Baltz, EA AF Shara, Michael M. Doyle, Trisha F. Lauer, Tod R. Zurek, David Neill, J. D. Madrid, Juan P. Mikolajewska, Joanna Welch, D. L. Baltz, Edward A. TI A HUBBLE SPACE TELESCOPE SURVEY FOR NOVAE IN M87. I. LIGHT AND COLOR CURVES, SPATIAL DISTRIBUTIONS, AND THE NOVA RATE SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE binaries: close; novae, cataclysmic variables ID CLASSICAL NOVAE; VIRGO CLUSTER; GLOBULAR-CLUSTER; PARAMETER SPACE; GALAXIES; M31; POPULATION; EVOLUTION; NEBULA; MODELS AB The Hubble Space Telescope has imaged the central part of M87 over a 10 week span, leading to the discovery of 32 classical novae (CNe) and nine fainter, likely very slow, and/or symbiotic novae. In this first paper of a series, we present the M87 nova finder charts, and the light and color curves of the novae. We demonstrate that the rise and decline times, and the colors of M87 novae are uncorrelated with each other and with position in the galaxy. The spatial distribution of the M87 novae follows the light of the galaxy, suggesting that novae accreted by M87 during cannibalistic episodes are well-mixed. Conservatively using only the 32 brightest CNe we derive a nova rate for M87: 363(-45)(+33) novae yr(-1). We also derive the luminosity-specific classical nova rate for this galaxy, which is 7.88(-2.6)(+2.3) yr(-1)/10(10) L-circle dot, K. Both rates are 3-4 times higher than those reported for M87 in the past, and similarly higher than those reported for all other galaxies. We suggest that most previous ground-based surveys for novae in external galaxies, including M87, miss most faint, fast novae, and almost all slow novae near the centers of galaxies. C1 [Shara, Michael M.; Doyle, Trisha F.; Zurek, David] Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. [Doyle, Trisha F.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Lauer, Tod R.] Natl Opt Astron Observ, POB 26732, Tucson, AZ 85726 USA. [Neill, J. D.] CALTECH, 1200 East Calif Blvd,MC 278-17, Pasadena, CA 91125 USA. [Madrid, Juan P.] CSIRO, Sydney, NSW, Australia. [Mikolajewska, Joanna] Polish Acad Sci, N Copernicus Astron Ctr, Bartycka 18, PL-00716 Warsaw, Poland. [Welch, D. L.] McMaster Univ, Dept Phys & Astron, Hamilton L8S 4M1, ON, Canada. [Baltz, Edward A.] SLAC, KIPAC, 2575 Sand Hill Rd,M-S 29, Menlo Pk, CA 94025 USA. RP Shara, MM (reprint author), Amer Museum Nat Hist, Dept Astrophys, Cent Pk West & 79th St, New York, NY 10024 USA. OI Neill, James/0000-0002-0466-1119; Mikolajewska, Joanna/0000-0003-3457-0020; Welch, Doug/0000-0002-2350-0898 FU NASA through Space Telescope Science Institute [10543]; NASA [NAS 5-26555]; Polish NCN grant [DEC-2013/10/M/ST9/00086] FX We gratefully acknowledge the support of the STScI team responsible for ensuring timely and accurate implementation of our M87 program. Support for program #10543 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research has been partly supported by the Polish NCN grant DEC-2013/10/M/ST9/00086. M.M.S. gratefully acknowledges the support of Hilary and Ethel Lipsitz, longtime friends of the AMNH Astrophysics department. We thank a referee for a careful reading and useful suggestions that improved earlier versions of the paper. NR 55 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2016 VL 227 IS 1 AR 1 DI 10.3847/0067-0049/227/1/1 PG 72 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC9MX UT WOS:000388469800001 ER PT J AU Scharadin, TM Zhang, HY Zimmermann, M Wang, SS Malfatti, MA Cimino, GD Turteltaub, K White, RD Pan, CX Henderson, PT AF Scharadin, Tiffany M. Zhang, Hongyong Zimmermann, Maike Wang, Sisi Malfatti, Michael A. Cimino, George D. Turteltaub, Kenneth White, Ralph de Vere Pan, Chong-xian Henderson, Paul T. TI Diagnostic Microdosing Approach to Study Gemcitabine Resistance SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID ACCELERATOR MASS-SPECTROMETRY; BLADDER-CANCER CELLS; DNA; PHARMACOGENOMICS; QUANTIFICATION; CHEMOTHERAPY; PHARMACOLOGY; PERSPECTIVES; INSIGHTS; REPAIR AB Gemcitabine metabolites cause the termination of DNA replication and induction of apoptosis. We determined whether subtherapeutic "microdoses" of gemcitabine are incorporated into DNA at levels that correlate to drug cytotoxicity. A pair of nearly isogenic bladder cancer cell lines differing in resistance to several chemotherapy drugs were treated with various concentrations of C-14-labeled gemcitabine for 4-24 h. Drug incorporation into DNA was determined by accelerator mass spectrometry. A mechanistic analysis determined that RRM2., a DNA synthesis protein and a known resistance factor, substantially mediated gemcitabine toxicity. These results support gemcitabine levels in DNA as a potential biomarker of drug cytotoxicity. C1 [Scharadin, Tiffany M.; Zhang, Hongyong; Zimmermann, Maike; Wang, Sisi; Pan, Chong-xian; Henderson, Paul T.] Univ Calif Davis, Dept Internal Med, Div Hematol & Oncol, Sacramento, CA 95817 USA. [Malfatti, Michael A.; Turteltaub, Kenneth] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Zimmermann, Maike; Cimino, George D.; Pan, Chong-xian; Henderson, Paul T.] Accelerated Med Diagnost Inc, Berkeley, CA 95618 USA. [White, Ralph de Vere] Univ Calif Davis, Med Ctr, Dept Urol, Sacramento, CA 95817 USA. [Wang, Sisi] Jilin Univ, Hosp 1, Translat Med Res Inst, Changchun, Peoples R China. RP Pan, CX; Henderson, PT (reprint author), Univ Calif Davis, Dept Internal Med, Div Hematol & Oncol, Sacramento, CA 95817 USA.; Pan, CX; Henderson, PT (reprint author), Accelerated Med Diagnost Inc, Berkeley, CA 95618 USA. EM cxpan@ucdavis.edu; phenderson@ucdavis.edu FU NIH/NCI [R01-CA155642, 5T32CA108459, NIGMS 8P41GM103483]; NIH/NCI SBIR contracts [HHSN261201000133C, HHSN261201200048C, HHSN261201200084C]; VA Merit award [I01BX001784] FX This work was supported by funding from the NIH/NCI (R01-CA155642 and 5T32CA108459 to UC Davis, and NIGMS 8P41GM103483 to LLNL) and NIH/NCI SBIR contracts (HHSN261201000133C, HHSN261201200048C, and HHSN261201200084C) to Accelerated Medical Diagnostics Incorporated, and a VA Merit award (PI: Pan, Grant number: I01BX001784). The work reported here does not represent the views or opinions of the Department of Veterans Affairs or the United States Government. NR 24 TC 1 Z9 1 U1 0 U2 0 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD NOV PY 2016 VL 29 IS 11 BP 1843 EP 1848 DI 10.1021/acs.chemrestox.6b00247 PG 6 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA ED0QY UT WOS:000388548200008 PM 27657672 ER PT J AU Poyraz, AS Huang, JP Wu, LJ Bock, DC Zhu, YM Marschilok, AC Takeuchi, KJ Takeuchi, ES AF Poyraz, Altug S. Huang, Jianping Wu, Lijun Bock, David C. Zhu, Yimei Marschilok, Amy C. Takeuchi, Kenneth J. Takeuchi, Esther S. TI Potassium-Based alpha-Manganese Dioxide Nanofiber BinderFree Self-Supporting Electrodes: A Design Strategy for High Energy Density Batteries SO ENERGY TECHNOLOGY LA English DT Article DE batteries; cryptomelane; electrochemistry; energy conversion; manganese dioxide ID LITHIUM-ION BATTERIES; CARBON NANOTUBES; CATHODE MATERIALS; LI-ION; RAPID SYNTHESIS; OXIDE; PAPER; PERFORMANCE; HOLLANDITE; STORAGE AB This work minimizes the passive components of electrodes and moves toward bridging the gap between actual and theoretical battery gravimetric energy density. Binder-free self-supporting (BFSS) cathodes were prepared from redoxactive, high aspect ratio, potassium alpha-MnO2 nanofibers (KOMS- 2) by eliminating the binder and current collector. The electroactive and structural element, K-OMS-2, was prepared by using a scalable, moderate temperature, aqueous synthesis. The BFFS electrode approach allows fabrication of thick, high energy density electrodes with low impedance, with up to 10-fold improvement in delivered specific energy relative to conventional cathodes. This could enable the design of high-capacity large form factor cells, as required for applications demanding high energy content. In principle, this approach suggests a widely applicable paradigm for the construction of other BFFS electrodes through the targeted synthesis of other transition-metal oxides with high aspect, fibrous morphologies. C1 [Poyraz, Altug S.; Wu, Lijun; Bock, David C.; Zhu, Yimei; Takeuchi, Esther S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Huang, Jianping; Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Marschilok, Amy C.; Takeuchi, Kenneth J.; Takeuchi, Esther S.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. RP Takeuchi, ES (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Marschilok, AC; Takeuchi, KJ; Takeuchi, ES (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Marschilok, AC; Takeuchi, KJ; Takeuchi, ES (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM amy.marschilok@stonybrook.edu; kenneth.takeuchi.1@stonybrook.edu; esther.takeuchi@stonybrook.edu RI Huang, Jianping/C-9379-2014 OI Huang, Jianping/0000-0002-8391-1381 FU Center for Mesoscale Transport Properties, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering [DE-SC0012704] FX This work was supported as part of the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. The XPS experiments were performed at the Center for Functional Nanomaterials at Brookhaven National Laboratory, which is supported by the Department of Energy, Office of Basic Energy Sciences (DE-AC02-98CH10886). TEM work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering, under Contract No. DE-SC0012704. NR 75 TC 0 Z9 0 U1 19 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 2194-4288 EI 2194-4296 J9 ENERGY TECHNOL-GER JI Energy Technol. PD NOV PY 2016 VL 4 IS 11 BP 1358 EP 1368 DI 10.1002/ente.201600128 PG 11 WC Energy & Fuels SC Energy & Fuels GA ED1LX UT WOS:000388608100004 ER PT J AU Harris, AE Hopkinson, L Soeder, DJ AF Harris, Aubrey E. Hopkinson, Leslie Soeder, Daniel J. TI Developing monitoring plans to detect spills related to natural gas production SO ENVIRONMENTAL MONITORING AND ASSESSMENT LA English DT Article DE Surface water; Water quality; Water monitoring; Spill detection; Hydraulic fracturing ID SHALE GAS; DISSOLVED-OXYGEN; PENNSYLVANIA; WELLS; USA AB Surface water is at risk from Marcellus Shale operations because of chemical storage on drill pads during hydraulic fracturing operations, and the return of water high in total dissolved solids (up to 345 g/L) from shale gas production. This research evaluated how two commercial, off-the-shelf water quality sensors responded to simulated surface water pollution events associated with Marcellus Shale development. First, peak concentrations of contaminants from typical spill events in monitored watersheds were estimated using regression techniques. Laboratory measurements were then conducted to determine how standard in-stream instrumentation that monitor conductivity, pH, temperature, and dissolved oxygen responded to three potential spill materials: ethylene glycol (corrosion inhibitor), drilling mud, and produced water. Solutions ranging from 0 to 50 ppm of each spill material were assessed. Over this range, the specific conductivity increased on average by 19.9, 27.9, and 70 mu S/cm for drilling mud, ethylene glycol, and produced water, respectively. On average, minor changes in pH (0.5-0.8) and dissolved oxygen (0.13-0.23 ppm) were observed. While continuous monitoring may be part of the strategy for detecting spills to surface water, these minor impacts to water quality highlight the difficulty in detecting spill events. When practical, sensors should be placed at the mouths of small watersheds where drilling activities or spill risks are present, as contaminant travel distance strongly affects concentrations in surface water systems. C1 [Harris, Aubrey E.; Soeder, Daniel J.] Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. [Harris, Aubrey E.; Hopkinson, Leslie] West Virginia Univ, Dept Civil & Environm Engn, POB 6103, Morgantown, WV 26506 USA. [Harris, Aubrey E.] US Bur Reclamat, 555 Broadway NE, Albuquerque, NM 87102 USA. RP Hopkinson, L (reprint author), West Virginia Univ, Dept Civil & Environm Engn, POB 6103, Morgantown, WV 26506 USA. EM Leslie.Hopkinson@mail.wvu.edu FU National Energy Technology Laboratory's ongoing research under the RES [DE-FE0004000]; NETL Strategic Center for Natural Gas and Oil (SCNGO) FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. Support from the NETL Strategic Center for Natural Gas and Oil (SCNGO) is gratefully acknowledged. The authors would like to thank Roger Lapeer and Karl Jarvis for their assistance with the instrumentation set-ups and testing and Tim Ford for the photography. NR 33 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-6369 EI 1573-2959 J9 ENVIRON MONIT ASSESS JI Environ. Monit. Assess. PD NOV PY 2016 VL 188 IS 11 AR 647 DI 10.1007/s10661-016-5641-4 PG 13 WC Environmental Sciences SC Environmental Sciences & Ecology GA EC5UL UT WOS:000388202300048 PM 27796832 ER PT J AU Nguyen, BN Hou, ZS Stewart, ML Murray, CJ Bonneville, A AF Ba Nghiep Nguyen Hou, Zhangshuan Stewart, Mark L. Murray, Christopher J. Bonneville, Alain TI Thermal impact of CO2 injection on geomechanical response at the FutureGen 2.0 Site: A three-dimensional thermo-geomechanical approach SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 reservoir; Geomechanics; Geomechanical modeling; Hydraulic fracture; Shear slip activation; Elastic modulus; Thermal stress ID FLUID-FLOW; GEOLOGICAL SEQUESTRATION; CARBON-DIOXIDE; COUPLED FLOW; FAULT-SLIP; STORAGE; TEMPERATURE; STABILITY; CONSOLIDATION; PERMEABILITY AB The impact of temperature variations of the injected CO2 on the mechanical integrity of a reservoir is an important problem but rarely addressed in the design of a CO2 storage site. In this study, a three-dimensional (3D) thermo-geomechanical approach was developed to evaluate the possibility of fracturing the FutureGen 2.0 site due to injection of CO2 at different temperatures. The approach sequentially coupled the STOMP-CO2 code for flow and thermal analyses to the ABAQUS (R) finite element package for performing thermo-geomechanical analyses of this site. The 3D STOMP-CO2 model of the FutureGen 2.0 site contains four horizontal wells and variable layer thickness, flow and thermal properties. The 3D ABAQUS (R) finite element (FE) model for thermo-geomechanical analysis which exactly maps the STOMP-CO2 model contains variable thermo-geomechanical properties. Boundary conditions were prescribed to the FE model to achieve the strike-slip faulting stress regime observed at the FutureGen 2.0 site. The STOMP-CO2 model takes into account the results from modeling the heat exchange between the environment and CO2 during its transport in the pipeline and injection wells before reaching the reservoir, as well as its interaction with the reservoir host rock. Injection temperature in the reservoir, whose initial temperature was 36 degrees C, was varied, and two cases were simulated and modeled: 28 degrees C, the minimum possible temperature considered as an extreme case since it corresponds to winter conditions maintained during the 20 years of the injection, and 47 degrees C that represents the annual average injection temperature. The STOMP-CO2/ABAQUS (R) analyses indicate lower injection temperatures approaching 28 degrees C could locally induce shear slip activation close to the wells and confined to the reservoir. Thermally induced hydraulic fracture is not expected for the 28 degrees C-47 degrees C injection temperature range or higher. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ba Nghiep Nguyen; Hou, Zhangshuan; Stewart, Mark L.; Murray, Christopher J.; Bonneville, Alain] Pacific Northwest Natl Lab, POB 999,MSIN J4-55, Richland, WA 99352 USA. RP Nguyen, BN (reprint author), Pacific Northwest Natl Lab, POB 999,MSIN J4-55, Richland, WA 99352 USA. EM Ba.Nguyen@pnnl.gov RI Hou, Zhangshuan/B-1546-2014 OI Hou, Zhangshuan/0000-0002-9388-6060 FU Department of Energy [DE-FE0001882, DE-FE0005054] FX This material is based upon work supported by the Department of Energy under Award Number DE-FE0001882 and Award Number DE-FE0005054. The authors would like to thank Dr. Jonny Rutqvist, Staff Scientist at Lawrence Berkeley National Laboratory, two anonymous reviewers and the Associate Editor, Dr. Jens Birkholzer for their detailed reviews that have contributed to greatly improve this manuscript. The authors also thank Dr. Fred Zhang and Ms. Signe White, Senior Research Scientists at Pacific Northwest National Laboratory for their assistance in developing the STOMP-CO2 model and for helpful discussions. STOMP-CO2/ABAQUS (R) analyses were performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. NR 55 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2016 VL 54 BP 29 EP 49 DI 10.1016/j.ijggc.2016.08.026 PN 1 PG 21 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EC0HW UT WOS:000387781500003 ER PT J AU Goodman, A Sanguinito, S Levine, JS AF Goodman, Angela Sanguinito, Sean Levine, Jonathan S. TI Prospective CO2 saline resource estimation methodology: Refinement of existing US-DOE-NETL methods based on data availability SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 resource estimation; CO2 sequestration; Geologic storage; Saline formations; Data availability ID STORAGE CAPACITY; REGIONAL-SCALE; AQUIFERS; EFFICIENCY AB Carbon storage resource estimation in subsurface saline formations plays an important role in establishing the scale of carbon capture and storage activities for governmental policy and commercial project decision-making. Prospective CO2 resource estimation of large regions or sub-regions, such as a basin, occurs at the initial screening stages of a project using only limited publicly available geophysical data, i.e. prior to project-specific site selection data generation. As the scale of investigation is narrowed and selected areas and formations are identified, prospective CO2 resource estimation can be refined and uncertainty narrowed when site-specific geophysical data are available. Here, we refine the United States Department of Energy - National Energy Technology Laboratory (US-DOE-NETL) methodology as the scale of investigation is narrowed from very large regional assessments down to selected areas and formations that may be developed for commercial storage. In addition, we present a new notation that explicitly identifies differences between data availability and data sources used for geologic parameters and efficiency factors as the scale of investigation is narrowed. This CO2 resource estimation method is available for screening formations in a tool called CO2-SCREEN. Published by Elsevier Ltd. C1 [Goodman, Angela; Sanguinito, Sean; Levine, Jonathan S.] US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. RP Goodman, A (reprint author), US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM angela.goodman@netl.doe.gov FU U.S. Department of Energy FX This research was supported in part by appointments to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. NR 35 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2016 VL 54 BP 242 EP 249 DI 10.1016/j.ijggc.2016.09.009 PN 1 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EC0HW UT WOS:000387781500019 ER PT J AU Soltanian, MR Amooie, MA Cole, DR Graham, DE Hosseini, SA Hovorka, S Pfiffner, SM Phelps, TJ Moortgat, J AF Soltanian, Mohamad Reza Amooie, Mohammad Amin Cole, David R. Graham, David E. Hosseini, Seyyed Abolfazl Hovorka, Susan Pfiffner, Susan M. Phelps, Tommy J. Moortgat, Joachim TI Simulating the Cranfield geological carbon sequestration project with high-resolution static models and an accurate equation of state SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Geological sequestration; Cranfield; CPA-EOS; Higher-order finite elements; Heterogeneity; Fluvial deposition ID ENHANCED OIL-RECOVERY; 3-PHASE RELATIVE PERMEABILITY; MISCIBLE-GAS PROJECT; CO2 INJECTION; FLOW SIMULATION; RISK ANALYSIS; SITE; MISSISSIPPI; DIOXIDE; FIELD AB A field-scale carbon dioxide (CO2) injection pilot project was conducted as part of the Southeast Regional Sequestration Partnership (SECARB) at Cranfield, Mississippi. We present higher-order finite element simulations of the compositional two-phase CO2-brine flow and transport during the experiment. High resolution static models of the formation geology in the Detailed Area Study (DAS) located below the oil water contact (brine saturated) are used to capture the impact of connected flow paths on breakthrough times in two observation wells. Phase behavior is described by the cubic-plus-association (CPA) equation of state, which takes into account the polar nature of water molecules. Parameter studies are performed to investigate the importance of Fickian diffusion, permeability heterogeneity, relative permeabilities, and capillarity. Simulation results for the pressure response in the injection well and the CO2 breakthrough times at the observation wells show good agreement with the field data. For the high injection rates and short duration of the experiment, diffusion is relatively unimportant (high Peclet numbers), while relative permeabilities have a profound impact on the pressure response. High-permeability pathways, created by fluvial deposits, strongly affect the CO2 transport and highlight the importance of properly characterizing the formation heterogeneity in future carbon sequestration projects. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Cole, David R.; Moortgat, Joachim] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Graham, David E.; Phelps, Tommy J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Hosseini, Seyyed Abolfazl; Hovorka, Susan] Univ Texas Austin, Bur Econ Geol, Austin, TX USA. [Pfiffner, Susan M.] Univ Tennessee, Knoxville, TN USA. RP Moortgat, J (reprint author), Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. EM moortgat.1@osu.edu RI Moortgat, Joachim/J-7450-2013; Hosseini, Seyyed Abolfazl/C-5289-2011 OI Moortgat, Joachim/0000-0002-0259-3597; FU U.S. Department of Energy [DE-AC05-00OR22725]; DOE Public Access Plan FX This manuscript has been coauthored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 72 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2016 VL 54 BP 282 EP 296 DI 10.1016/j.ijggc.2016.10.002 PN 1 PG 15 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EC0HW UT WOS:000387781500023 ER PT J AU Buscheck, TA Bielicki, JM White, JA Sun, Y Hao, Y Bourcier, WL Carroll, SA Aines, RD AF Buscheck, Thomas A. Bielicki, Jeffrey M. White, Joshua A. Sun, Yunwei Hao, Yue Bourcier, William L. Carroll, Susan A. Aines, Roger D. TI Pre-injection brine production in CO2 storage reservoirs: An approach to augment the development, operation, and performance of CCS while generating water SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 capture and storage; CO2 capture, utilization, and storage; Enhanced water recovery; Pressure management; Risk management ID GEOLOGIC CARBON SEQUESTRATION; PRESSURE MANAGEMENT; SALINE FORMATIONS; DIOXIDE; EXTRACTION; CAPACITY; SNOHVIT; IMPACT; EQUATION; STRATEGY AB Two of the most important challenges facing the global energy sector are to reduce the CO2 intensity and the water intensity of energy production. Because many economies will continue to depend on fossil fuels as primary energy sources, CO2 capture and storage (CCS) must play a major role in curbing CO2 emissions. A large portion of CO2 storage will need to occur in saline reservoirs because these resources are more widely distributed than hydrocarbon resources-where CO2 capture utilization and storage (CCUS) can be deployed for enhanced oil recovery (EOR). CCS deployment can be accelerated with a pressure-management strategy, called pre-injection brine production that proactively manages project risks linked to reservoir pressure. In this approach, a CCS wellfield is deployed sequentially, one well at a time, with each well being used for three stages: (1) monitoring, (2) brine production, and (3) CO2 injection. Using the same well to produce brine before injecting CO2 provides pre-injection reservoir diagnostics needed for proactive planning of wellfield operations. Because pressure drawdown is greatest where CO2 injection will subsequently occur, reservoir pressure is efficiently managed per well, and per unit of removed brine. This approach to managing geologic CO2 storage can (1) identify resources with sufficient CO2 storage capacity and permanence, and provide information needed to effectively manage those resources prior to injecting CO2; (2) increase CO2 storage capacity and efficiency; (3) limit pore-space competition with neighboring subsurface operations; and (4) reduce the duration of post-injection site care and monitoring, while (5) creating the opportunity to generate water, using an emerging CCUS technology called enhanced water recovery (EWR). Although beneficial consumptive use of produced brine may be preferred in water constrained regions, there may be situations where the brine composition is not economically treatable, which could necessitate reinjecting some or all of the produced brine into a separate reservoir. In this study we consider a range of brine-disposition options, from 100% reinjection in the subsurface to near zero net injection of fluid, which maximizes the water generation benefit per tonne of stored CO2. These options are analyzed for a case where a nearby saline reservoir overlying a CO2 storage reservoir is used to store some or all of the brine removed from the CO2 storage reservoir. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Buscheck, Thomas A.; White, Joshua A.; Sun, Yunwei; Hao, Yue; Bourcier, William L.; Carroll, Susan A.; Aines, Roger D.] Lawrence Livermore Natl Lab, POB 808,L-223, Livermore, CA 94550 USA. [Bielicki, Jeffrey M.] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA. [Bielicki, Jeffrey M.] Ohio State Univ, John Glenn Coll Publ Affairs, Columbus, OH 43210 USA. RP Buscheck, TA (reprint author), Lawrence Livermore Natl Lab, POB 808,L-223, Livermore, CA 94551 USA. EM buscheck1@llnl.gov OI Bielicki, Jeffrey/0000-0001-8449-9328 FU USDOE Fossil Energy, National Energy Technology Laboratory (NETL); US-China Clean Energy Research Center; Advanced Coal Technology Consortium from the NETL of the USDOE [DE-PI0000017]; USDOE by Lawrence Livermore National Laboratory under DOE [DE-AC52-07NA27344] FX This work was sponsored by the USDOE Fossil Energy, National Energy Technology Laboratory (NETL), managed by Traci Rodosta and Andrea McNemar and by the US-China Clean Energy Research Center, Advanced Coal Technology Consortium, under grant DE-PI0000017 from the NETL of the USDOE. This work was performed under the auspices of the USDOE by Lawrence Livermore National Laboratory under DOE contract DE-AC52-07NA27344. NR 67 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2016 VL 54 BP 499 EP 512 DI 10.1016/j.ijggc.2016.04.018 PN 2 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EC0HZ UT WOS:000387781800008 ER PT J AU Ziemkiewicz, P Stauffer, PH Sullivan-Graham, J Chu, SP Bourcier, WL Buscheck, TA Carr, T Donovan, J Jiao, Z Lin, L Song, L Wagoner, JL AF Ziemkiewicz, Paul Stauffer, Philip H. Sullivan-Graham, Jeri Chu, Shaoping P. Bourcier, William L. Buscheck, Thomas A. Carr, Timothy Donovan, Joseph Jiao, Zunsheng Lin, Lianshin Song, Liaosha Wagoner, Jeffrey L. TI Opportunities for increasing CO2 storage in deep, saline formations by active reservoir management and treatment of extracted formation water: Case study at the GreenGen IGCC facility, Tianjin, PR China SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 storage and utilization; Reservoir pressure management; GreenGen; Water treatment ID BOHAI BAY BASIN; PRESSURE MANAGEMENT; BRINE EXTRACTION; CARBON CAPTURE; NORTH CHINA; SEQUESTRATION; INJECTION; PROJECT; MODEL; EVOLUTION AB Carbon capture, utilization and storage (CCUS) seeks beneficial applications for CO2 recovered from fossil fuel combustion. This study evaluated the potential for removing formation water to create additional storage capacity for CO2, while simultaneously treating the produced water for beneficial use. The process would control pressures within the target formation, lessen the risk of caprock failure, and better control the movement of CO2 within that formation. The project plans to highlight the method of using individual wells to produce formation water prior to injecting CO2 as an efficient means of managing reservoir pressure. Because the pressure drawdown resulting from pre-injection formation water production will inversely correlate with pressure buildup resulting from CO2 injection, it can be proactively used to estimate CO2 storage capacity and to plan well-field operations. The project studied the GreenGen site in Tianjin, China where Huaneng Corporation is capturing CO2 at a coal fired IGCC power plant. Known as the Tianjin Enhanced Water Recovery (EWR) project, local rock units were evaluated for CO2 storage potential and produced water treatment options were then developed. Average treatment cost for produced water with a cooling water treatment goal ranged from 2.27 to 2.96 US$/m(3) (recovery 95.25%), and for a boiler water treatment goal ranged from 2.37 to 3.18 US$/m(3) (recovery 92.78%). Importance analysis indicated that water quality parameters and transportation are significant cost factors as the injection-extraction system is managed over time. The study found that in a broad sense, active reservoir management in the context of CCUS/EWR is technically feasible. In addition, criteria for evaluating suitable vs. unsuitable reservoir properties, reservoir storage (caprock) integrity, a recommended injection/withdrawal strategy and cost estimates for water treatment and reservoir management are proposed. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Ziemkiewicz, Paul; Carr, Timothy; Donovan, Joseph; Lin, Lianshin; Song, Liaosha] West Virginia Univ, Morgantown, WV USA. [Bourcier, William L.; Buscheck, Thomas A.; Wagoner, Jeffrey L.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stauffer, Philip H.; Sullivan-Graham, Jeri; Chu, Shaoping P.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Jiao, Zunsheng] Univ Wyoming, Laramie, WY 82071 USA. RP Sullivan-Graham, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. EM ejs@lanl.gov OI Ziemkiewicz, Paul.F./0000-0002-1425-9393 FU US-China Clean Energy Research Center, Advanced Coal Technology Consortium from the National Energy Technology Laboratory of the US Department of Energy [DE-PI0000017] FX This work was funded by the US-China Clean Energy Research Center, Advanced Coal Technology Consortium, under grant DE-PI0000017 from the National Energy Technology Laboratory of the US Department of Energy. NR 49 TC 0 Z9 0 U1 9 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2016 VL 54 BP 538 EP 556 DI 10.1016/j.ijggc.2016.07.039 PN 2 PG 19 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EC0HZ UT WOS:000387781800011 ER PT J AU Schroeder, JN Harto, CB Clark, CE AF Schroeder, Jenna N. Harto, Christopher B. Clark, Corrie E. TI Analysis of state and federal regulatory regimes potentially governing the extraction of water from carbon storage reservoirs in the United States SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Carbon capture and storage; CCS; Energy water nexus; Extracted water; Policy; Management AB Extracted water-water brought to the surface of the ground during carbon capture and sequestration (CCS) projects to create additional room for carbon dioxide injection-exists in a murky legal environment. As part of a broader attempt to identify the complex interactions between water resource policies and CCS, an analysis was undertaken at both the state and the federal level to scope the policy environments surrounding extracted water policies and laws. Six states (California, Illinois, Mississippi, Montana, North Dakota, and Texas) were chosen for this analysis because either active CCS work is currently underway, or the potential exists for future work. Although regulation of extracted waters could potentially occur at many points along the CCS life cycle, this paper focuses on regulation that may apply when the water is with drawn that is, accessed and removed from the saline aquifer-and when it is re-injected in a close but unconnected aquifer. It was found that no regulations exist for this source specifically. In addition, greater input is needed from regulators and policy makers in terms of defining this resource. In particular, regulation of extracted waters (and CCS activities broadly) often overlaps with the management of fluids produced during oil and gas development. Many regulations would apply to extracted waters if they were classified as such. Therefore, correct categorization is key as the industry in this space continues to grow. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Schroeder, Jenna N.; Harto, Christopher B.; Clark, Corrie E.] Argonne Natl Lab, 955 LEnfant Plaza SW 6000, Washington, DC 20024 USA. RP Clark, CE (reprint author), Argonne Natl Lab, 955 LEnfant Plaza SW 6000, Washington, DC 20024 USA. EM ceclark@anl.gov FU U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), Carbon Sequestration Program [DE-AC02-06CH11357] FX Argonne National Laboratory's work was supported by the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), Carbon Sequestration Program, under contract DE-AC02-06CH11357. NR 22 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2016 VL 54 BP 566 EP 573 DI 10.1016/j.ijggc.2016.08.025 PN 2 PG 8 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EC0HZ UT WOS:000387781800013 ER PT J AU Kobos, PH Klise, GT Malczynski, LA Walker, LN AF Kobos, Peter H. Klise, Geoffrey T. Malczynski, Leonard A. Walker, La Tonya N. TI Parametric analysis of technology costs for CO2 storage in saline formations SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE CO2 capture and storage; Energy and water; System dynamics; Desalination; Power plants; Cooling watera ID CARBON CAPTURE; WATER; SEQUESTRATION; MANAGEMENT; IMPACTS; ENERGY AB the last decade, a substantial amount of economic, engineering, and geoscience research has focused on storing CO2 in geological formations. Of those different formations, storage in saline water-bearing formations represents the largest storage potential. Fossil fuel-based power plants in the U.S. (coal and natural gas) contributed to 40% of all CO2 emissions in 2008 and therefore represent an important factor to address atmospheric CO2 emissions. The Water, Energy and Carbon Sequestration Simulation Model (WECSsim) was developed to calculate water use and treatment options, CO2 injection volumes and the levelized cost of energy (LCOE) results for both a single representative power plant paired with a saline formation scenario, and a full power plant fleet. The details of the analysis presented here broadly demonstrate the sensitivity of CO2 capture and storage (CCS) costs in geologic saline formations with water extraction, treatment and reuse to changes in the water demands associated with implementing CCS across the power plant fleet (coal and natural gas). The majority of the coal and natural gas plants in the U.S. have an avoided cost of $70-200 per tonne of CO2. Storing 1.0 Gt/yr of the nation's 2.3 Gt/yr total CO2 emissions returns an avoided (storage) cost of range 79-143 (57-81) $/t ($US 2013) under various scenarios. These scenarios include allowing competition between power plants for saline formation space to store CO2, varying the duration of the storage rights, and permitting the extraction of saline waters for treatment. Under the same 1 Gt/yr captured scenario, the extracted and treated water volumes could offset 12% of the added water demand due to the parasitic energy requirements of CCS at the national level. The cost of water treatment, using a reverse osmosis system, ranges between approximately $3.20/m(3) water( for larger, older coal-fired plants like the San Juan Power Generating Station) and $2.60/m(3) water for natural gas combined cycle plants (such as the Oyster Creek Power Generating Station) with substantial variability in costs based on plant location and design. For context, the levelized cost of energy (LCOE) composition of the pulverized coal-based San Juan Generation Station is 52%, 43% and 5% for the base LCOE, parasitic energy requirements, and water extraction, treatment and utilization costs, respectively. Similarly, for the Oyster Creek natural gas combined cycle plant, these percentages are 64%, 33%, and 2% of the total LCOE, respectively. In both technology cases the parasitic energy requirement costs far out weigh the cost to extract, treat, transport, and utilize saline formation waters. Additional results indicate that of the 325 saline formations included in the national-level analysis, the Mt. Simon formation has an estimated capacity to hold 53% of all the CO2 generated from the U.S. coal and natural gas-based power plants without extracting and treating saline water. The St. Peter Sandstone formation could hold 43%, though with saline water extraction and treatment. These results suggest that focusing research, development and demonstration (RD&D) efforts on careful geologic site selection and reducing the parasitic energy penalty, and its respective costs, will help lower the overall cost of CCS across the U.S. coal and natural gas-based power plant fleet. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kobos, Peter H.; Klise, Geoffrey T.; Malczynski, Leonard A.; Walker, La Tonya N.] Sandia Natl Labs, POB 5800,MS 1124, Albuquerque, NM 87185 USA. RP Kobos, PH (reprint author), Sandia Natl Labs, POB 5800,MS 1124, Albuquerque, NM 87185 USA. EM phkobosa@sandia.gov FU National Energy Technology Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors wish to thank the National Energy Technology Laboratory for supporting this work and to Andrea McNemar in particular for her guidance. Thanks also go to Tom Dewers, Jason Heath and Dave Borns of Sandia National Laboratories for their scientific insights, as well as productive insights from three anonymous reviewers. The authors also are particularly grateful to Jesse D. Roach, formerly of Sandia National Laboratories and currently with Tetra Tech Inc. for his contributions to WECSsim (c). Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 36 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 EI 1878-0148 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2016 VL 54 BP 574 EP 587 DI 10.1016/j.ijggc.2016.08.027 PN 2 PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA EC0HZ UT WOS:000387781800014 ER PT J AU Schwenzer, SP Bridges, JC Wiens, RC Conrad, PG Kelley, SP Leveille, R Mangold, N Martin-Torres, J McAdam, A Newsom, H Zorzano, MP Rapin, W Spray, J Treiman, AH Westall, F Fairen, G Meslin, PY AF Schwenzer, S. P. Bridges, J. C. Wiens, R. C. Conrad, P. G. Kelley, S. P. Leveille, R. Mangold, N. Martin-Torres, J. McAdam, A. Newsom, H. Zorzano, M. P. Rapin, W. Spray, J. Treiman, A. H. Westall, F. Fairen, G. Meslin, P. -Y. TI Fluids during diagenesis and sulfate vein formation in sediments at Gale crater, Mars SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID GENERATED HYDROTHERMAL SYSTEMS; NAKHLITE MARTIAN METEORITES; PHOENIX LANDING SITE; MERIDIANI-PLANUM; OMEGA/MARS EXPRESS; ALTERATION ASSEMBLAGES; MINERAL ASSEMBLAGES; AQUEOUS-SOLUTIONS; SATURATION STATE; YELLOWKNIFE BAY AB We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations-relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10(-3) to 10(-2) concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater-type fluid formed impure sulfate-and silica-rich deposits-veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK. C1 [Schwenzer, S. P.; Kelley, S. P.] Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England. [Schwenzer, S. P.; Treiman, A. H.] Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Wiens, R. C.] Los Alamos Natl Lab, Space Remote Sensing, Los Alamos, NM 87544 USA. [Conrad, P. G.; McAdam, A.] NASA Goddard Space Flight Ctr, Greenbelt, MD USA. [Leveille, R.] Canadian Space Agcy, St Hubert, PQ J3Y 8Y9, Canada. [Mangold, N.] CNRS, LPGN, UMR6112, F-44322 Nantes, France. [Mangold, N.] Univ Nantes, F-44322 Nantes, France. [Martin-Torres, J.; Zorzano, M. P.] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Kiruna, Sweden. [Martin-Torres, J.] UGR, CSIC, Inst Andaluz Ciencias Tierra, Granada, Spain. [Newsom, H.] 1 Univ New Mexico, Inst Meteorit, MSC03-2050, Albuquerque, NM 87131 USA. [Newsom, H.] 1 Univ New Mexico, Dept Earth & Planetary Sci, MSC03-2050, Albuquerque, NM 87131 USA. [Zorzano, M. P.] INTA, CSIC, Ctr Astrobiol, Madrid, Spain. [Rapin, W.] Univ Toulouse, UPS OMP, Toulouse, France. [Spray, J.] CNRS, Inst Rech Astrophys & Planetol, UMR 5277, Toulouse, France. [Spray, J.] Univ New Brunswick, Planetary & Space Sci Ctr, 2 Bailey Dr, Fredericton, NB E3B 5A3, Canada. [Westall, F.] CNRS, Ctr Biophys Mol, Rue Charles Sadron, F-45071 Orleans 2, France. [Fairen, G.] INTA, CSIC, Ctr Astrobiol, Dept Planetol & Habitabil, Madrid 28850, Spain. [Fairen, G.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Meslin, P. -Y.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse, France. RP Schwenzer, SP (reprint author), Open Univ, Dept Environm Earth & Ecosyst, Milton Keynes MK7 6AA, Bucks, England.; Schwenzer, SP (reprint author), Lunar & Planetary Inst, 3600 Bay Area Blvd, Houston, TX 77058 USA. EM susanne.schwenzer@open.ac.uk RI Zorzano, Maria-Paz/F-2184-2015 OI Zorzano, Maria-Paz/0000-0002-4492-9650 FU UK Space Agency; Open University Research Investment Fellowship; CNES FX We thank the two reviewers Brian Hynek and Sally Potter-McIntyre and AE Justin Filiberto for their insightful comments, which improved the presentation of this article. We are grateful to Mark H. Reed and his team for providing CHIM-XPT for this study. Support from the engineers, colleagues in operations roles, and staff of NASA Mars Science Laboratory Mission are gratefully acknowledged. JCB and SPS acknowledge funding from the UK Space Agency, SPS additional funding through an Open University Research Investment Fellowship. F.W. acknowledges CNES funding. NR 142 TC 0 Z9 0 U1 11 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD NOV PY 2016 VL 51 IS 11 BP 2175 EP 2202 DI 10.1111/maps.12668 PG 28 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EC6XL UT WOS:000388279900013 ER PT J AU Horiuchi, D Camarda, R Zhou, AY Yau, C Momcilovic, O Balakrishnan, S Corella, AN Eyob, H Kessenbrock, K Lawson, DA Marsh, LA Anderton, BN Rohrberg, J Kunder, R Bazarov, AV Yaswen, P McManus, MT Rugo, HS Werb, Z Goga, A AF Horiuchi, Dai Camarda, Roman Zhou, Alicia Y. Yau, Christina Momcilovic, Olga Balakrishnan, Sanjeev Corella, Alexandra N. Eyob, Henok Kessenbrock, Kai Lawson, Devon A. Marsh, Lindsey A. Anderton, Brittany N. Rohrberg, Julia Kunder, Ratika Bazarov, Alexey V. Yaswen, Paul McManus, Michael T. Rugo, Hope S. Werb, Zena Goga, Andrei TI PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression SO NATURE MEDICINE LA English DT Article ID PROSTATE-CANCER CELLS; C-MYC; DEPENDENT PHOSPHORYLATION; ANTICANCER THERAPY; TUMORIGENESIS; ACTIVATION; P27(KIP1); PATHWAY; GROWTH; LOCALIZATION AB Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcomes. No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC-an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes-is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors(2). Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve(3). Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine-threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone-and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression. C1 [Horiuchi, Dai; Camarda, Roman; Zhou, Alicia Y.; Momcilovic, Olga; Balakrishnan, Sanjeev; Corella, Alexandra N.; Eyob, Henok; Anderton, Brittany N.; Rohrberg, Julia; Goga, Andrei] Univ Calif San Francisco, Dept Cell & Tissue Biol, San Francisco, CA 94143 USA. [Horiuchi, Dai; Werb, Zena; Goga, Andrei] Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA. [Horiuchi, Dai; Marsh, Lindsey A.; Kunder, Ratika] Northwestern Univ, Dept Pharmacol, Feinberg Sch Med, Chicago, IL 60611 USA. [Horiuchi, Dai; Marsh, Lindsey A.; Kunder, Ratika] Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA. [Yau, Christina] Univ Calif San Francisco, Dept Surg, San Francisco, CA USA. [Yau, Christina] Buck Inst Res Aging, Canc & Dev Therapeut Program, Novato, CA USA. [Kessenbrock, Kai; Lawson, Devon A.; Werb, Zena] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Bazarov, Alexey V.; Yaswen, Paul] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA USA. [McManus, Michael T.] Univ Calif San Francisco, Dept Microbiol & Immunol, San Francisco, CA 94143 USA. [Rugo, Hope S.; Goga, Andrei] Univ Calif San Francisco, Dept Med, San Francisco, CA USA. [Zhou, Alicia Y.] Color Genom, Burlingame, CA USA. [Balakrishnan, Sanjeev] Dovetail Genom, Santa Cruz, CA USA. [Corella, Alexandra N.] Univ Washington, Mol & Cellular Biol Grad Program, Seattle, WA 98195 USA. [Corella, Alexandra N.] Fred Hutchinson Canc Res Ctr, Human Biol Div, 1124 Columbia St, Seattle, WA 98104 USA. [Eyob, Henok] Boston Consulting Grp Inc, Summit, NJ USA. [Kessenbrock, Kai] Univ Calif Irvine, Sch Med, Dept Biol Chem, Irvine, CA 92717 USA. [Lawson, Devon A.] Univ Calif Irvine, Sch Med, Dept Physiol & Biophys, Irvine, CA 92717 USA. [Anderton, Brittany N.] Univ Calif Davis, Biol Educ Res Grp, Davis, CA 95616 USA. [Bazarov, Alexey V.] Cypre Inc, San Francisco, CA USA. RP Horiuchi, D; Goga, A (reprint author), Univ Calif San Francisco, Dept Cell & Tissue Biol, San Francisco, CA 94143 USA.; Horiuchi, D; Goga, A (reprint author), Univ Calif San Francisco, Helen Diller Family Comprehens Canc Ctr, San Francisco, CA 94143 USA.; Horiuchi, D (reprint author), Northwestern Univ, Dept Pharmacol, Feinberg Sch Med, Chicago, IL 60611 USA.; Horiuchi, D (reprint author), Northwestern Univ, Robert H Lurie Comprehens Canc Ctr, Chicago, IL 60611 USA. EM dai.horiuchi@northwestern.edu; andrei.goga@ucsf.edu FU US National Institutes of Health [K99CA175700, R00CA175700, 5T32DK007418, K99CA181490, ES019458, U01CA168370, P30DK63720, R01CA180039, R01CA170447]; Susan G. Komen Foundation [PDF15331114]; UCSF Program for Breakthrough Biomedical Research; California Breast Cancer Research Program [17lB-0024]; CDMRP Breast Cancer Research Program [W81XWH-12-1-0272, W81XWH-16-1-0603]; LLS Scholar Award; V-Foundation Award; Breast Cancer Research Foundation; Northwestern Medicine Catalyst Funds FX This work was supported in part by grants from the US National Institutes of Health (K99CA175700 (D.H.), R00CA175700 (D.H.), 5T32DK007418 (R.C.), K99CA181490 (K.K.), ES019458 (P.Y. and Z.W.), U01CA168370 (M.T.M.), P30DK63720 (M.T.M.), R01CA180039 (Z.W.) and R01CA170447 (A.G.)), the Susan G. Komen Foundation (PDF15331114; J.R.), the UCSF Program for Breakthrough Biomedical Research (M.T.M.), an Innovative, Developmental, and Exploratory Award from the California Breast Cancer Research Program (17lB-0024; A.G.), an Era of Hope Scholar Award from the CDMRP Breast Cancer Research Program (W81XWH-12-1-0272 and W81XWH-16-1-0603; both to AG.), an LLS Scholar Award (A.G.), a V-Foundation Award (A.G.), the Breast Cancer Research Foundation (H.S.R. and A.G.) and the Northwestern Medicine Catalyst Funds (D.H.). The authors thank A. Welm for her guidance with the use of the patient derived orthotopic tumor xenograft models, J.W. Smyth for his assistance with the generation of the transgenic breast cancer cell lines, and D.B. Udy, C.L. Hueschen and A. Vasilopoulos for their assistance with microscopy. We thank S. Samson, C. Baas, H. Klein-Connolly and D. Roth for consumer advocacy support and feedback related to this project, and J.M. Bishop for his insights into the project and his mentorship to D.H. NR 38 TC 2 Z9 2 U1 9 U2 9 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1078-8956 EI 1546-170X J9 NAT MED JI Nat. Med. PD NOV PY 2016 VL 22 IS 11 BP 1321 EP 1329 DI 10.1038/nm.4213 PG 9 WC Biochemistry & Molecular Biology; Cell Biology; Medicine, Research & Experimental SC Biochemistry & Molecular Biology; Cell Biology; Research & Experimental Medicine GA EB3XK UT WOS:000387302300025 PM 27775705 ER PT J AU Gaillard, MK AF Gaillard, Mary K. TI Quantum supergravity, supergravity anomalies and string phenomenology SO NUCLEAR PHYSICS B LA English DT Article ID MODULAR INVARIANT SUPERGRAVITY; PAULI-VILLARS REGULARIZATION; SOFT SUPERSYMMETRY BREAKING; FAYET-ILIOPOULOS TERMS; SUSY GAUGE-THEORIES; YANG-MILLS THEORIES; ONE-LOOP; GRAVITATIONAL COUPLINGS; AXION COUPLINGS; MASSLESS LIMIT AB I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli-Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory. (C) 2016 The Author. Published by Elsevier B.V. C1 [Gaillard, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA. [Gaillard, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Gaillard, MK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Phys, Berkeley, CA 94720 USA.; Gaillard, MK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. EM mkgaillard@lbl.gov FU Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231]; National Science Foundation [PHY-1316783] FX This work was supported in part by the Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231, and in part by the National Science Foundation under grant PHY-1316783. NR 82 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV PY 2016 VL 912 BP 172 EP 191 DI 10.1016/j.nuclphysb.2016.03.007 PG 20 WC Physics, Particles & Fields SC Physics GA ED0DD UT WOS:000388512300017 ER PT J AU Blaschke, DN Gieres, F Reboud, M Schweda, M AF Blaschke, Daniel N. Gieres, Franois Reboud, Meril Schweda, Manfred TI The energy-momentum tensor(s) in classical gauge theories SO NUCLEAR PHYSICS B LA English DT Article ID HIGGS-KIBBLE MODEL; YANG-MILLS; WARD IDENTITIES; FIELD-THEORY; GENERAL-RELATIVITY; CONSERVATION-LAWS; NOETHERS THEOREM; ANGULAR-MOMENTUM; CHIRAL ANOMALIES; RENORMALIZATION AB We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. The relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Blaschke, Daniel N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Gieres, Franois; Reboud, Meril] Univ Claude Bernard Lyon 1, Univ Lyon, Inst Phys Nucl Lyon, Bat P Dirac,4 Rue Enrico Fermi, F-69622 Villeurbanne, France. [Gieres, Franois; Reboud, Meril] CNRS IN2P3, Bat P Dirac,4 Rue Enrico Fermi, F-69622 Villeurbanne, France. [Reboud, Meril] Ecole Normale Super Lyon, 46 Allee Italie, F-69364 Lyon 07, France. [Schweda, Manfred] Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria. RP Gieres, F (reprint author), Univ Claude Bernard Lyon 1, Univ Lyon, Inst Phys Nucl Lyon, Bat P Dirac,4 Rue Enrico Fermi, F-69622 Villeurbanne, France.; Gieres, F (reprint author), CNRS IN2P3, Bat P Dirac,4 Rue Enrico Fermi, F-69622 Villeurbanne, France. EM dblaschke@lanl.gov; gieres@ipnl.in2p3.fr; meril.reboud@ens-lyon.fr; mschweda@tph.tuwien.ac.at OI Reboud, Meril/0000-0001-6033-3606 NR 124 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0550-3213 EI 1873-1562 J9 NUCL PHYS B JI Nucl. Phys. B PD NOV PY 2016 VL 912 BP 192 EP 223 DI 10.1016/j.nuclphysb.2016.07.001 PG 32 WC Physics, Particles & Fields SC Physics GA ED0DD UT WOS:000388512300018 ER PT J AU Tilton, SC Markillie, LM Hays, S Taylor, RC Stenoien, DL AF Tilton, Susan C. Markillie, Lye Meng Hays, Spencer Taylor, Ronald C. Stenoien, David L. TI Identification of Differential Gene Expression Patterns after Acute Exposure to High and Low Doses of Low-LET Ionizing Radiation in a Reconstituted Human Skin Tissue SO RADIATION RESEARCH LA English DT Article ID RNA-SEQ; RESPONSES; MODEL; TARGETS; RISKS; CELLS AB In this study we utilized a systems biology approach to identify dose-(0.1, 2.0 and 10 Gy) and time-(3 and 8 h) dependent responses to acute ionizing radiation exposure in a complex tissue, reconstituted human skin. The low dose used here (0.1 Gy) falls within the range of certain medical diagnostic procedures. Of the two higher doses used, 2.0 Gy is typically administered for radiotherapy, while 10 Gy is lethal. Because exposure to any of these doses is possible after an intentional or accidental radiation events, biomarkers are needed to rapidly and accurately triage potentially exposed individuals. Here, tissue samples were acutely exposed to Xray-generated low-linear-energy transfer (LET) ionizing radiation, and direct RNA sequencing (RNA-seq) was used to quantify altered transcripts. The time points used for this study aid in assessing early responses to exposure, when key signaling pathways and biomarkers can be identified, which precede and regulate later phenotypic alterations that occur at high doses, including cell death. We determined that a total of 1,701 genes expressed were significantly affected by high-dose radiation, with the majority of genes affected at 10 Gy. Expression levels of a group of 29 genes, including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA and AEN, were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at both time points. A much larger group of upregulated genes, including those involved in inflammatory responses, was significantly altered only after 10 Gy irradiation. At high doses, downregulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a few genes were significantly affected by 0.1 Gy irradiation, using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to high-dose irradiated groups. Differential regulation of PLK1 signaling at low-and high-dose irradiation was confirmed using qRTPCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of ionizing radiation in this model system. They also highlight potential biomarkers for radiation exposure that may precede the development of overt physiological symptoms in exposed individuals. (C) 2016 by Radiation Research Society C1 [Tilton, Susan C.] Oregon State Univ, Ctr Genome Res & Biotechnol, Corvallis, OR 97331 USA. [Markillie, Lye Meng; Taylor, Ronald C.; Stenoien, David L.] Pacific Northwest Natl Lab, Div Earth & Biol Sci, Richland, WA USA. [Hays, Spencer] Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA USA. RP Stenoien, DL (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. EM david.stenoien@pnl.gov FU Defense Threat Reduction Agency of the U.S. Department of Energy Office of Biological and Environmental Research Low Dose Radiation Research Program [CBS.MEDRAD.01.10.PN.017]; U.S. DOE [DE-AC05-76RL01830] FX We thank Drs. William F. Morgan and Antone L. Brooks for helpful guidance during the conduct of this study and manuscript preparation. This research was supported by the Defense Threat Reduction Agency (CBS.MEDRAD.01.10.PN.017) of the U.S. Department of Energy Office of Biological and Environmental Research Low Dose Radiation Research Program. Experiments and data analyses were performed in the Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (Richland, WA), which is a multiprogram national laboratory operated by Battelle Memorial Institute (Columbus, OH) for the U.S. DOE (contract no. DE-AC05-76RL01830). NR 36 TC 0 Z9 0 U1 1 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD NOV PY 2016 VL 186 IS 5 BP 531 EP 538 DI 10.1667/RR14471.1 PG 8 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA ED0KN UT WOS:000388531500010 PM 27802111 ER PT J AU Tsai, CL Yen, HJ Liou, GS AF Tsai, Chia-Liang Yen, Hung-Ju Liou, Guey-Sheng TI Highly transparent polyimide hybrids for optoelectronic applications SO REACTIVE & FUNCTIONAL POLYMERS LA English DT Review DE Polyimide; Hybrid material; TiO2; ZrO2; silver nanowire ID HIGH-REFRACTIVE-INDEX; FIELD-EFFECT TRANSISTORS; AROMATIC TETRACARBOXYLIC DIANHYDRIDES; ORGANIC-INORGANIC MATERIALS; PENDENT TRIFLUOROMETHYL GROUPS; SILVER-NANOWIRE NETWORK; LOW DIELECTRIC-CONSTANT; SOL-GEL TRANSITION; HIGH ON/OFF RATIO; MEMORY DEVICES AB Polyimides comprising high polarized moieties and electron-withdrawing groups usually exhibit high-refractive index and good transparency with great potential for optoelectronic devices. Particularly, the incorporation of hydroxyl groups on the backbones of polyimides is an important strategy to enhance the solubility and provide reactive sites for organic-inorganic bonding. Composites prepared from organic polymer binder and inorganic fillers have recently attracted considerable interests due to their enhanced mechanical, thermal, optical and electrical properties compared to the corresponding polymer or inorganic component. Moreover, the inorganic components in hybrid films can also serve as electron acceptors for stabilizing the charge transfer complex thus result in electrically programmable digital memory properties. In addition, the high performance polyimides can further served as substrate and protector for the AgNWs-polyimide conductive hybrid films, exhibiting good adhesive property, high bendability, and excellent thermal stability. Owing to the high glass transition temperature (T-g) of polyimides, the resulted AgNWs-polyimide electrode can maintain its conducting performance at high temperature operation. Thus, the hybrid electrode, provided extremely high potential to operate at harsh working environment or further post processing. By the excellent combination of transparent polyimides and inorganic materials, the resulting polyimide hybrids showing promising potential are indispensable to optical and electrical applications. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tsai, Chia-Liang; Liou, Guey-Sheng] Natl Taiwan Univ, Inst Polymer Sci & Engn, Funct Polymer Mat Lab, 1 Roosevelt Rd,4th Sec, Taipei 10617, Taiwan. [Yen, Hung-Ju] Los Alamos Natl Lab, Phys Chem & Appl Spect C PCS, Div Chem, Los Alamos, NM 87545 USA. RP Liou, GS (reprint author), Natl Taiwan Univ, Inst Polymer Sci & Engn, Funct Polymer Mat Lab, 1 Roosevelt Rd,4th Sec, Taipei 10617, Taiwan. EM gsliou@ntu.edu.tw FU Ministry of Science and Technology of Taiwan [104-2113-M-002 -002 -MY3] FX The authors are grateful acknowledge to the Ministry of Science and Technology of Taiwan (104-2113-M-002 -002 -MY3) for the financial support. NR 268 TC 1 Z9 1 U1 60 U2 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1381-5148 EI 1873-166X J9 REACT FUNCT POLYM JI React. Funct. Polym. PD NOV PY 2016 VL 108 BP 2 EP 30 DI 10.1016/j.reactfunctpolym.2016.04.021 PG 29 WC Chemistry, Applied; Engineering, Chemical; Polymer Science SC Chemistry; Engineering; Polymer Science GA EC5DL UT WOS:000388153200002 ER PT J AU Yan, BH Yang, XF Yao, SY Wan, J Myint, M Gomez, E Xie, ZH Kattel, S Xu, WQ Chen, JGG AF Yan, Binhang Yang, Xiaofang Yao, Siyu Wan, Jie Myint, MyatNoeZin Gomez, Elaine Xie, Zhenhua Kattel, Shyam Xu, Wenqian Chen, Jingguang G. TI Dry Reforming of Ethane and Butane with CO2 over PtNi/CeO2 Bimetallic Catalysts SO ACS CATALYSIS LA English DT Article DE dry reforming; bimetallic catalyst; synthesis gas; ethane; butane; CO2 ID RAY PHOTOELECTRON-SPECTROSCOPY; GAS SHIFT REACTION; OXIDATIVE DEHYDROGENATION; METAL-OXIDE; NI; REDUCTION; PT/CEO2; CERIA; ENVIRONMENT; INTERFACE AB Dry reforming is a potential process to convert CO2 and light alkanes into syngas (H-2 and CO), which can be subsequently transformed to chemicals and fuels. In this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability in comparison to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce4+ to Ce3+ under reaction conditions are demonstrated by in situ ambient-pressure X-ray photoemission spectroscopy (AP-XPS), X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) following CO adsorption. Combined in situ experimental results and density functional theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenate/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity. C1 [Yan, Binhang; Yang, Xiaofang; Yao, Siyu; Kattel, Shyam; Xu, Wenqian; Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yan, Binhang] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China. [Wan, Jie] Tsinghua Univ, Coll Mat Sci & Engn, Beijing 100084, Peoples R China. [Myint, MyatNoeZin; Gomez, Elaine; Xie, Zhenhua; Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. RP Chen, JGG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.; Chen, JGG (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. EM jgchen@columbia.edu FU United States Department of Energy, Office of Science [DE-AC02-98CH10886]; Chinese International Postdoctoral Exchange Fellowship Program; Synchrotron Catalysis Consortium [DE-FG02-05ER15688]; U.S. DOE Office of Science [DE-AC02-05CH11231] FX The work was sponsored by the United States Department of Energy, Office of Science, under Contract No. DE-AC02-98CH10886. BY. was also partially supported by the Chinese International Postdoctoral Exchange Fellowship Program. The in situ XAFS spectra were collected at beamline 2-2 of the Stanford Synchrotron Radiation Lightsource (SSRL), with help from the Synchrotron Catalysis Consortium (Grant #DE-FG02-05ER15688). The DFT calculations were performed using computational resources at the Center for Functional Nanomaterials, a user facility at Brookhaven National Laboratory which is supported by the U.S. DOE Office of Science under Contract No. DE-AC02-05CH11231. NR 40 TC 1 Z9 1 U1 70 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2016 VL 6 IS 11 BP 7283 EP 7292 DI 10.1021/acscatal.6b02176 PG 10 WC Chemistry, Physical SC Chemistry GA EB3YT UT WOS:000387306100003 ER PT J AU Howell, JG Li, YP Bell, AT AF Howell, John G. Li, Yi-Pei Bell, Alexis T. TI Propene Metathesis over Supported Tungsten Oxide Catalysts: A Study of Active Site Formation SO ACS CATALYSIS LA English DT Article DE propene; butene; metathesis; silica; tungstate species; catalyst activation ID OLEFIN METATHESIS; STRUCTURAL-ANALYSIS; RAMAN-SPECTROSCOPY; SILICA; DISPROPORTIONATION; XAFS; WO3 AB A detailed investigation was conducted on the factors influencing the properties of silica-supported tungsten oxide catalysts for propene metathesis. A principal goal of this work was to identify the processes involved in the formation of catalytically active sites. To probe the influence of dispersion, samples were prepared across a range of W loadings using two methods of catalyst preparation: incipient wetness impregnation of amorphous silica and ion exchange of mesoporous SBA-15. The samples were characterized by nitrogen adsorption, UV-vis, Raman, and X-ray absorption spectroscopy (XAS). Catalytic activity was observed to increase with W surface concentration up to the point where WO, nanoparticles formed. The catalytic performance of all samples was enhanced 2-fold by pretreatment in He, in comparison to pretreatment in air. In situ characterization of samples pretreated in He by Raman and XAS shows an increase in the relative concentration of isolated dioxo W(6+) species relative to mono-oxo W(6+) species, and in situ XAS data collected during propene metathesis indicated that a similar conversion occurs for air-pretreated samples in the presence of propene. For both air- and He-pretreated catalysts an activation period was observed, during which the activity increased and attained steady-state activity. This period was significantly longer for air-pretreated catalysts and was accompanied by the transient formation of acetone. While acetone was not observed during the much shorter transient of He-pretreated samples, in situ XAS provided evidence of reduction occurring in these samples upon contact with propene. It is also notable that, independent of the manner of catalyst preparation or pretreatment, the rate of propene metathesis is first order in propene and exhibits an activation energy of 200 kJ/mol. A model is proposed to explain why only a fraction of the isolated tungstate species is active for propene metathesis (similar to 5%) and why this fraction increases with increasing concentration of W dispersed on silica. C1 [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM bell@cchem.berkeley.edu NR 27 TC 2 Z9 2 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2016 VL 6 IS 11 BP 7728 EP 7738 DI 10.1021/acscatal.6b01842 PG 11 WC Chemistry, Physical SC Chemistry GA EB3YT UT WOS:000387306100051 ER PT J AU Thenuwara, AC Shumlas, SL Attanayake, NH Aulin, YV McKendry, IG Qiao, Q Zhu, YM Borguet, E Zdilla, MJ Strongin, DR AF Thenuwara, Akila C. Shumlas, Samantha L. Attanayake, Nuwan H. Aulin, Yaroslav V. McKendry, Ian G. Qiao, Qiao Zhu, Yimei Borguet, Eric Zdilla, Michael J. Strongin, Daniel R. TI Intercalation of Cobalt into the Interlayer of Birnessite Improves Oxygen Evolution Catalysis SO ACS CATALYSIS LA English DT Article DE oxygen evolution reaction; cobalt intercalation; birnessite; electrocatalyst; water splitting ID WATER OXIDATION CATALYST; MANGANESE OXIDE; ELECTROCATALYST; EFFICIENT; PLANET AB We show that the activity of cobalt for the oxygen evolution reaction (OER) can be enhanced by confining it in the interlayer region of birnessite (layered manganese oxide). The cobalt intercalation was verified by employing state-of-the-art characterization techniques such as X-ray diffraction, Raman spectroscopy, and electron microscopy. It is demonstrated that the Co2+/birnessite electrocatalyst can reach 10 mA cm(-2) at an overpotential of 360 mV with near-unity Faradaic efficiency. This overpotential is lower than that which can be achieved by using a pure cobalt hydroxide electrocatalyst for the OER. Furthermore, the Co2+/birnessite catalyst shows no degradation after 1000 electrochemical cycles. C1 [Thenuwara, Akila C.; Shumlas, Samantha L.; Attanayake, Nuwan H.; Aulin, Yaroslav V.; McKendry, Ian G.; Borguet, Eric; Zdilla, Michael J.; Strongin, Daniel R.] Temple Univ, Dept Chem, Beury Hall,1901 North 13th St, Philadelphia, PA 19122 USA. [Qiao, Qiao; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Thenuwara, Akila C.; Shumlas, Samantha L.; Attanayake, Nuwan H.; Aulin, Yaroslav V.; McKendry, Ian G.; Qiao, Qiao; Zhu, Yimei; Borguet, Eric; Zdilla, Michael J.; Strongin, Daniel R.] Temple Univ, Ctr Computat Design Funct Layered Mat CCDM, Philadelphia, PA 19122 USA. RP Strongin, DR (reprint author), Temple Univ, Dept Chem, Beury Hall,1901 North 13th St, Philadelphia, PA 19122 USA.; Strongin, DR (reprint author), Temple Univ, Ctr Computat Design Funct Layered Mat CCDM, Philadelphia, PA 19122 USA. EM dstrongi@temple.edu OI Thenuwara, Akila/0000-0002-6146-9238 FU Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012575]; DOE-BES; DOE-MSE [DE-SC0012704]; NSF [1428149]; NIH NIGMS COBRE program [P30-GM110758] FX This work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award No. DE-SC0012575 (paper concept, synthesis, XRD, electrochemistry, and Raman). Y.Z. was supported by DOE-BES, MSE, under Contract No. DE-SC0012704 (cross sectional EELS and high resolution inverted ADF imaging). The XPS measurements carried out at the University of Delaware surface analysis facility were supported by NSF (Grant 1428149) and the NIH NIGMS COBRE program (Grant P30-GM110758). NR 31 TC 0 Z9 0 U1 32 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2016 VL 6 IS 11 BP 7739 EP 7743 DI 10.1021/acscatal.6b01980 PG 5 WC Chemistry, Physical SC Chemistry GA EB3YT UT WOS:000387306100052 ER PT J AU Cheng, MJ Clark, EL Pham, HH Bell, AT Head-Gordon, M AF Cheng, Mu-Jeng Clark, Ezra L. Pham, Hieu H. Bell, Alexis T. Head-Gordon, Martin TI Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C-1 Hydrocarbons SO ACS CATALYSIS LA English DT Article DE CO2 reduction; single-atom alloys; one-pot tandem catalyst; electrocatalysis; density functional theory ID DENSITY-FUNCTIONAL THEORY; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; COPPER ELECTRODES; AU NANOPARTICLES; METAL-CATALYSTS; ACTIVE-SITES; AQUEOUS CO2; ELECTROREDUCTION AB Electrocatalytic reduction of CO2 to energy-rich hydrocarbons such as alkanes, alkenes, and alcohols is a very challenging task. So far, only copper has proven to be capable of such a conversion. We report density functional theory (DFT) calculations combined with the Poisson-Boltzmann implicit solvation model to show that single-atom alloys (SAAs) are promising electrocatalysts for CO2 reduction to C-1 hydrocarbons in aqueous solution. The majority component of the SAAs studied is either gold or silver, in combination with isolated single atoms, M (M = Cu, Ni, Pd, Pt, CO2 Rh, and Ir), replacing surface atoms. We envision that the SAA behaves as a one-pot tandem catalyst: first gold (or silver) reduces CO2 to CO2 and the newly formed CO is then captured by M and is further reduced to C-1 hydrocarbons such as methane or methanol. We studied 28 SAAs, and found about half of them selectively favor the CO2 reduction reaction over the competing hydrogen evolution reaction. Most of those promising SAAs contain M = CO2 Rh, or Ir. The reaction mechanism of two SAAs, Rh@Au(100) and Rh@Ag(100), is explored in detail. Both of them reduce CO2 to methane but via different pathways. For Rh@Au(100), reduction occurs through the pathway *CO -> *CHO -> *CHOH -> *CH + H2O(l) -> *CH2 + H2O(l) -> *CH3 + H2O(l) -> * + H2O(l) + CH4(g); whereas, for Rh@Ag(100), the pathway is *CO -> *CHO -> *CH2O ->*OCH3 -> *O + CH4(g) -> *OH + CH4(g) -> * + H2O(l) + CH4(g). The minimum applied voltages to drive the two electrocatalytic systems are -1.01 and -1.12 V-RHE for Rh@Au(100) and Rh@Ag(100), respectively, at which the Faradaic efficiencies for CO2 reduction to CO are 60% for gold and 90% for silver. This suggests that SAA can efficiently reduce CO2 to methane with as small as 40% loss to the hydrogen evolution reaction for Rh@Au(100) and as small as 10% for Rh@Ag(100). We hope these computational results can stimulate experimental efforts to explore the use of SAA to catalyze CO2 electrochemical reduction to hydrocarbons. C1 [Cheng, Mu-Jeng; Clark, Ezra L.; Pham, Hieu H.; Bell, Alexis T.; Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Cheng, Mu-Jeng; Head-Gordon, Martin] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Clark, Ezra L.; Bell, Alexis T.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Bell, AT; Head-Gordon, M (reprint author), Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA.; Head-Gordon, M (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Bell, AT (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM alexbell@berkeley.edu; mhg@cchem.berkeley.edu OI Cheng, Mu-Jeng/0000-0002-8121-0485 FU Office of Science of the U.S. Department of Energy [DE-SC0004993] FX This material is based on work performed in the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy, under Award No. DE-SC0004993. NR 72 TC 0 Z9 0 U1 132 U2 132 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2016 VL 6 IS 11 BP 7769 EP 7777 DI 10.1021/acscatal.6b01393 PG 9 WC Chemistry, Physical SC Chemistry GA EB3YT UT WOS:000387306100056 ER PT J AU Suram, SK Newhouse, PF Zhou, L Van Campen, DG Mehta, A Gregoire, JM AF Suram, Santosh K. Newhouse, Paul F. Zhou, Lan Van Campen, Douglas G. Mehta, Apurva Gregoire, John M. TI High Throughput Light Absorber Discovery, Part 2: Establishing Structure-Band Gap Energy Relationships SO ACS COMBINATORIAL SCIENCE LA English DT Article DE high-throughput screening; combinatorial science; band gap; UV-vis spectroscopy; optical spectroscopy; solar fuels ID X-RAY-DIFFRACTION; WATER; IDENTIFICATION; LIBRARIES; DESIGN; AL AB Combinatorial materials science strategies have accelerated materials development in a variety of fields, and we extend these strategies to enable structure-property mapping for light absorber materials, particularly in high order composition spaces. High throughput optical spectroscopy and synchrotron X-ray diffraction are combined to identify the optical properties of Bi-V-Fe oxides, leading to the identification of Bi4V1.5Fe0.5O10.5 as a light absorber with direct band gap near 2.7 eV. The strategic combination of experimental and data analysis techniques includes automated Tauc analysis to estimate band gap energies from the high throughput spectroscopy data, providing an automated platform for identifying new optical materials. C1 [Suram, Santosh K.; Newhouse, Paul F.; Zhou, Lan; Gregoire, John M.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Van Campen, Douglas G.; Mehta, Apurva] Stanford Univ, Stanford Linear Accelerator Ctr, Menlo Pk, CA 94025 USA. RP Gregoire, JM (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. EM gregoire@caltech.edu FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX This manuscript is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy (Award No. DE-SC0004993). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The authors thank Ryan Jones, Chad Miller, Samuil Belopolskiy, and Tim Dunn for assistance with the synchrotron experiments. NR 41 TC 1 Z9 1 U1 9 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2156-8952 EI 2156-8944 J9 ACS COMB SCI JI ACS Comb. Sci. PD NOV PY 2016 VL 18 IS 11 BP 682 EP 688 DI 10.1021/acscombsci.6b00054 PG 7 WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Chemistry; Pharmacology & Pharmacy GA EC5EL UT WOS:000388155800004 PM 27662502 ER PT J AU Manzoni, F Saraboji, K Sprenger, J Kumar, R Noresson, AL Nilsson, UJ Leffler, H Fisher, Z Schrader, TE Ostermann, A Coates, L Blakeley, MP Oksanen, E Logan, DT AF Manzoni, Francesco Saraboji, Kadhirvel Sprenger, Janina Kumar, Rohit Noresson, Ann-Louise Nilsson, Ulf J. Leffler, Hakon Fisher, Zoe Schrader, Tobias E. Ostermann, Andreas Coates, Leighton Blakeley, Matthew P. Oksanen, Esko Logan, Derek T. TI Perdeuteration, crystallization, data collection and comparison of five neutron diffraction data sets of complexes of human galectin-3C SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE neutron crystallography; galectin-3C; perdeuteration; crystallogenesis ID CARBOHYDRATE-RECOGNITION DOMAIN; X-RAY; MACROMOLECULAR CRYSTALLOGRAPHY; PROTEIN CRYSTALLOGRAPHY; INHIBITORS; RESOLUTION; CRYSTALS; DESIGN; SUITE AB Galectin-3 is an important protein in molecular signalling events involving carbohydrate recognition, and an understanding of the hydrogen-bonding patterns in the carbohydrate-binding site of its C-terminal domain (galectin-3C) is important for the development of new potent inhibitors. The authors are studying these patterns using neutron crystallography. Here, the production of perdeuterated human galectin-3C and successive improvement in crystal size by the development of a crystal-growth protocol involving feeding of the crystallization drops are described. The larger crystals resulted in improved data quality and reduced data-collection times. Furthermore, protocols for complete removal of the lactose that is necessary for the production of large crystals of apo galectin-3C suitable for neutron diffraction are described. Five data sets have been collected at three different neutron sources from galectin-3C crystals of various volumes. It was possible to merge two of these to generate an almost complete neutron data set for the galectin-3C-lactose complex. These data sets provide insights into the crystal volumes and data-collection times necessary for the same system at sources with different technologies and data-collection strategies, and these insights are applicable to other systems. C1 [Manzoni, Francesco; Saraboji, Kadhirvel; Sprenger, Janina; Kumar, Rohit; Oksanen, Esko; Logan, Derek T.] Lund Univ, Dept Chem, Biochem & Struct Biol, S-22100 Lund, Sweden. [Manzoni, Francesco; Fisher, Zoe; Oksanen, Esko] European Spallat Source ERIC, Box 176, S-22100 Lund, Sweden. [Noresson, Ann-Louise; Nilsson, Ulf J.] Lund Univ, Dept Chem, Ctr Anal & Synth, S-22100 Lund, Sweden. [Leffler, Hakon] Lund Univ, Sect MIG, Dept Lab Med, S-22100 Lund, Sweden. [Fisher, Zoe] Los Alamos Natl Lab, Los Alamos, NM USA. [Schrader, Tobias E.] Forschungszentrum Julich, JCNS, Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85748 Garching, Germany. [Ostermann, Andreas] Tech Univ Munich, Heinz Maier Leibnitz Zentrum MLZ, Lichtenbergstr 1, D-85748 Garching, Germany. [Coates, Leighton] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN USA. [Blakeley, Matthew P.] Inst Laue Langevin, 71 Ave Martyrs, F-38000 Grenoble, France. [Saraboji, Kadhirvel] SASTRA Univ, Sch Chem & Biotechnol, Dept Bioinformat, Thanjavur, Tamil Nadu, India. RP Logan, DT (reprint author), Lund Univ, Dept Chem, Biochem & Struct Biol, S-22100 Lund, Sweden. EM derek.logan@biochemistry.lu.se RI Oksanen, Esko/D-4639-2009; Nilsson, Ulf/L-3219-2014; OI Oksanen, Esko/0000-0002-1841-4813; Nilsson, Ulf/0000-0001-5815-9522; Blakeley, Matthew/0000-0002-6412-4358 FU European Spallation Source; Knut and Alice Wallenberg Foundation [KAW2013.022]; Natural Science Faculty at Lund University; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; Office of Biological and Environmental Research; European Union's Seventh Framework Programme for research, technological development and demonstration [283883] FX We wish to thank Lund Protein Production Facility (LP3), in particular Annika Rogstam, for the production of some of the batches of deuterated galectin-3C used in this work. We acknowledge the contribution of Joakim Brorsson and Oskar Aurelius to exploring large crystal growth by repeated macroseeding, and we thank Susana Teixeira for collecting the room-temperature X-ray data for the lactose-1 crystal. FM was supported by a PhD fellowship from the European Spallation Source to DTL and UR. RK was supported by a project grant from the Knut and Alice Wallenberg Foundation KAW2013.022). The work was also funded by two seed grants from the Natural Science Faculty at Lund University to DTL. Research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The Office of Biological and Environmental Research supported research at Oak Ridge National Laboratory's Center for Structural Molecular Biology (CSMB) and the Protein Crystallography Station at Los Alamos National Laboratory, using facilities supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. For experiments at FRM-II, DTL and FM received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under NMI3-II Grant No. 283883. NR 39 TC 0 Z9 0 U1 8 U2 8 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD NOV PY 2016 VL 72 BP 1194 EP 1202 DI 10.1107/S2059798316015540 PN 11 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA EB7TI UT WOS:000387593100004 PM 27841752 ER PT J AU Goh, T Huang, JS Yager, KG Sfeir, MY Nam, CY Tong, X Guard, LM Melvin, PR Antonio, F Bartolome, BG Lee, ML Hazari, N Taylor, AD AF Goh, Tenghooi Huang, Jing-Shun Yager, Kevin G. Sfeir, Matthew Y. Nam, Chang-Yong Tong, Xiao Guard, Louise M. Melvin, Patrick R. Antonio, Francisco Bartolome, Benjamin G. Lee, Minjoo L. Hazari, Nilay Taylor, Andre D. TI Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies > 10% SO ADVANCED ENERGY MATERIALS LA English DT Article DE morphology enhancement; organic crystallization; polymer solar cells; resonance energy transfer; squaraine dye ID RESONANCE ENERGY-TRANSFER; LOW-BANDGAP POLYMER; 25TH ANNIVERSARY ARTICLE; HIGH-PERFORMANCE; PHASE-SEPARATION; TERNARY BLENDS; FILL FACTOR; CATHODE; PHOTOVOLTAICS; MORPHOLOGY AB The incorporation of multiple donors into the bulk-heterojunction layer of organic polymer solar cells (PSCs) has been demonstrated as a practical and elegant strategy to improve photovoltaics performance. However, it is challenging to successfully design and blend multiple donors, while minimizing unfavorable interactions (e.g., morphological traps, recombination centers, etc.). Here, a new Forster resonance energy transfer-based design is shown utilizing the synergistic nature of three light active donors (two small molecules and a high-performance donor-acceptor polymer) with a fullerene acceptor to create highly efficient quaternary PSCs with power conversion efficiencies (PCEs) of up to 10.7%. Within this quaternary architecture, it is revealed that the addition of small molecules in low concentrations broadens the absorption bandwidth, induces cocrystalline molecular conformations, and promotes rapid (picosecond) energy transfer processes. These results provide guidance for the design of multiple-donor systems using simple processing techniques to realize single-junction PSC designs with unprecedented PCEs. C1 [Goh, Tenghooi; Huang, Jing-Shun; Antonio, Francisco; Bartolome, Benjamin G.; Taylor, Andre D.] Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA. [Yager, Kevin G.; Sfeir, Matthew Y.; Nam, Chang-Yong; Tong, Xiao] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Guard, Louise M.; Melvin, Patrick R.; Hazari, Nilay] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. [Lee, Minjoo L.] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA. [Huang, Jing-Shun] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA. RP Taylor, AD (reprint author), Yale Univ, Dept Chem & Environm Engn, New Haven, CT 06511 USA.; Hazari, N (reprint author), Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA. EM nilay.hazari@yale.edu; andre.taylor@yale.edu RI Lee, Minjoo/A-9720-2008; Nam, Chang-Yong/D-4193-2009 OI Lee, Minjoo/0000-0002-3151-3808; Nam, Chang-Yong/0000-0002-9093-4063 FU National Science Foundation [DMR-1410171]; NSF-CAREER award [CBET-0954985]; Yale Climate and Energy Institute (YCEI); NASA (CT Space Grant Consortium); Edward A. Bouchet-Robertson Fellowship; U.S. Department of Energy (DoE), Office of Basic Energy Sciences [DE-AC02-98CH10886]; YINQE; NSF MRSEC [DMR 1119826] FX T.G. and J.-S.H. contributed equally to this work. The authors gratefully acknowledge the National Science Foundation (DMR-1410171), NSF-CAREER award (CBET-0954985), the Yale Climate and Energy Institute (YCEI), and the NASA (CT Space Grant Consortium) for partial support of this work. B.G.B. also acknowledges support from the Edward A. Bouchet-Robertson Fellowship. This research was carried out in part at the Center for Functional Nanomaterials (CFN), and the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy (DoE), Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The SEM and AFM used were supported by YINQE and NSF MRSEC DMR 1119826 (CRISP). The authors further thank Michelle Vaisman from Yale Electrical Engineering Department for assistance with EQE and steady state PL measurements, as well as Dr. Jaemin Kong for useful discussions. A.D.T and J.-S.H. initially conceptualized the project. J.-S.H. performed the preliminary device experiments and T.G. designed and performed the rest of experiments necessary for publication, while B.G.B. assisted in film preparation. J.-S.H., T.G., and M.Y.S. performed the ultrafast experiments and resulting data analysis. J.-S.H. and T.G. performed the AFM and EQE experiments. C.-Y.N. and T.G. examined device performance in BNL. T.G., F.A., and K.G.Y. conducted GIXS experiments. T.G. and X.T. ran XPS studies. J.-S.H. and T.G. recorded the TEM images and F.A. performed cross-section SEM. L.M.G., P.R.M., and N.H. contributed to the synthesis of the squaraine dyes, PT8 polymer, and guided in data analysis. The authors declare no competing financial interests. NR 68 TC 1 Z9 1 U1 40 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD NOV PY 2016 VL 6 IS 21 AR 1600660 DI 10.1002/aenm.201600660 PG 12 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA EB8TU UT WOS:000387664800003 ER PT J AU Zhou, YN Yue, JL Hu, EY Li, H Gu, L Nam, KW Bak, SM Yu, XQ Liu, J Bai, JM Dooryhee, E Fu, ZW Yang, XQ AF Zhou, Yong-Ning Yue, Ji-Li Hu, Enyuan Li, Hong Gu, Lin Nam, Kyung-Wan Bak, Seong-Min Yu, Xiqian Liu, Jue Bai, Jianming Dooryhee, Eric Fu, Zheng-Wen Yang, Xiao-Qing TI High-Rate Charging Induced Intermediate Phases and Structural Changes of Layer-Structured Cathode for Lithium-Ion Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article DE cathode materials; high rate; lithium ion batteries; structure changes ID X-RAY-DIFFRACTION; SOLID-STATE CHEMISTRY; IN-SITU XRD; RATE-PERFORMANCE; LI; LICO1/3NI1/3MN1/3O2; INTERCALATION; ELECTRODE; ELECTROCHEMISTRY; TRANSITIONS AB Using fast time-resolved in situ X-ray diffraction, charge-rate dependent phase transition processes of layer structured cathode material LiNi1/3Mn1/3Co1/3O2 for lithium-ion batteries are studied. During first charge, intermediate phases emerge at high rates of 10C, 30C, and 60C, but not at low rates of 0.1C and 1C. These intermediate phases can be continuously observed during relaxation after the charging current is switched off. After half-way charging at high rate, sample studied by scanning transmission electron microscopy shows Li-rich and Li-poor phases' coexistence with tetrahedral occupation of Li in Li-poor phase. The high rate induced overpotential is thought to be the driving force for the formation of this intermediate Li-poor phase. The in situ quick X-ray absorption results show that the oxidation of Ni accelerates with increasing charging rate and the Ni4+ state can be reached at the end of charge with 30C rate. These results give new insights in the understanding of the layered cathodes during high-rate charging. C1 [Zhou, Yong-Ning] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China. [Zhou, Yong-Ning; Hu, Enyuan; Bak, Seong-Min; Yu, Xiqian; Liu, Jue; Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Yue, Ji-Li; Fu, Zheng-Wen] Fudan Univ, Shanghai Key Lab Mol Catalysts & Innovat Mat, Dept Chem, Shanghai 200433, Peoples R China. [Yue, Ji-Li; Fu, Zheng-Wen] Fudan Univ, Laser Chem Inst, Shanghai 200433, Peoples R China. [Li, Hong; Gu, Lin] Chinese Acad Sci, Inst Phys, Lab Adv Mat & Electron Microscopy, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Nam, Kyung-Wan] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 100715, South Korea. [Bai, Jianming; Dooryhee, Eric] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. RP Yang, XQ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.; Fu, ZW (reprint author), Fudan Univ, Shanghai Key Lab Mol Catalysts & Innovat Mat, Dept Chem, Shanghai 200433, Peoples R China.; Fu, ZW (reprint author), Fudan Univ, Laser Chem Inst, Shanghai 200433, Peoples R China.; Gu, L (reprint author), Chinese Acad Sci, Inst Phys, Lab Adv Mat & Electron Microscopy, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. EM l.gu@aphy.iphy.ac.cn; zwfu@fudan.edu.cn; xyang@bnl.gov RI Gu, Lin/D-9631-2011; Li, Hong/C-4643-2008; Yu, Xiqian/B-5574-2014; Nam, Kyung-Wan/E-9063-2015 OI Gu, Lin/0000-0002-7504-031X; Li, Hong/0000-0002-8659-086X; Yu, Xiqian/0000-0001-8513-518X; Nam, Kyung-Wan/0000-0001-6278-6369 FU U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-SC0012704]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704, DE-AC02-98CH10886]; NSFC [51502039, U1430104]; 1000 Youth Talents Plan and Science & Technology Commission of Shanghai Municipality [08DZ2270500, 11JC1400500]; U.S. Department of Energy, Basic Energy Science [DE-AC02-06CH11357] FX Y.-N.Z. and J.-L.Y. contributed equally to this work. The work at Brookhaven National Laboratory was supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies under Contract No. DE-SC0012704. Use of the NSLS and of the NSLS-II, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886 and No. DE-SC0012704, respectively. The work at Fudan University and Institute of Physics, Chinese Academy of Sciences was supported by the NSFC (No. 51502039 and No. U1430104), 1000 Youth Talents Plan and Science & Technology Commission of Shanghai Municipality (08DZ2270500 and 11JC1400500). The authors thank technical supports by the beamline scientists at X14A and X18A of NSLS, and at the XPD beamline of NSLS-II at Brookhaven National Laboratory. The authors gratefully acknowledge the help by beamline scientists Sungsik Lee and Benjamin Reinhart at 12BM of Advanced Photon Source at Argonne National Laboratory, supported by the U.S. Department of Energy, Basic Energy Science, under Contract No. DE-AC02-06CH11357. NR 40 TC 0 Z9 0 U1 77 U2 77 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1614-6832 EI 1614-6840 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD NOV PY 2016 VL 6 IS 21 AR 1600597 DI 10.1002/aenm.201600597 PG 8 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA EB8TU UT WOS:000387664800001 ER PT J AU Li, Q Zhu, H Zheng, LR Fan, LL Ren, Y Chen, J Deng, JX Xing, XR AF Li, Qiang Zhu, He Zheng, Lirong Fan, Longlong Ren, Yang Chen, Jun Deng, Jinxia Xing, Xianran TI Local Structural Distortion Induced Uniaxial Negative Thermal Expansion in Nanosized Semimetal Bismuth SO ADVANCED SCIENCE LA English DT Article ID PAIR DISTRIBUTION FUNCTION; RAMAN-SPECTROSCOPY; NANOWIRE ARRAYS; NANOPARTICLES; SEMICONDUCTORS; NANOCLUSTERS; GRAPHENE; ANTIMONY; EXAFS C1 [Li, Qiang; Zhu, He; Fan, Longlong; Chen, Jun; Deng, Jinxia; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. [Zheng, Lirong] Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100039, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Xing, XR (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. EM xing@ustb.edu.cn FU National Natural Science Foundation of China [91022016, 21031005, 91422301, 21590793, 21231001]; Program for Changjiang Scholars; Innovative Research Team in University [IRT1207]; Fundamental Research Funds for the Central Universities, China [FRF-SD-13-008A]; Program of Introducing Talents of Discipline to Universities [B14003]; US DOE [DE-AC02-06CH11357] FX The authors thank Maohua Quan for the insightful discussion of TEM experiments. This work was supported by the National Natural Science Foundation of China (Nos. 91022016, 21031005, 91422301, 21590793, and 21231001), the Program for Changjiang Scholars, the Innovative Research Team in University (IRT1207), the Fundamental Research Funds for the Central Universities, China (No. FRF-SD-13-008A), and the Program of Introducing Talents of Discipline to Universities (B14003). Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract No. DE-AC02-06CH11357. NR 43 TC 0 Z9 0 U1 7 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2198-3844 J9 ADV SCI JI Adv. Sci. PD NOV PY 2016 VL 3 IS 11 AR 1600108 DI 10.1002/advs.201600108 PG 6 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB8NZ UT WOS:000387649100005 PM 27980986 ER PT J AU Palau, A Valencia, S Del-Valle, N Navau, C Cialone, M Arora, A Kronast, F Tennant, DA Obradors, X Sanchez, A Puig, T AF Palau, Anna Valencia, Sergio Del-Valle, Nuria Navau, Carles Cialone, Matteo Arora, Ashima Kronast, Florian Tennant, D. Alan Obradors, Xavier Sanchez, Alvaro Puig, Teresa TI Encoding Magnetic States in Monopole-Like Configurations Using Superconducting Dots SO ADVANCED SCIENCE LA English DT Article ID ARTIFICIAL SPIN-ICE; DOMAIN-WALL; FERROMAGNET; DYNAMICS; HYBRIDS C1 [Palau, Anna; Obradors, Xavier; Puig, Teresa] ICMAB CSIC, Inst Ciencia Mat Barcelona, Campus UAB, Bellaterra 08193, Spain. [Valencia, Sergio; Cialone, Matteo; Arora, Ashima; Kronast, Florian] Helmholtz Zentrum Berlin Mat & Energie, Albert Einstein Str 15, D-12489 Berlin, Germany. [Del-Valle, Nuria; Navau, Carles; Sanchez, Alvaro] Univ Autonoma Barcelona, Dept Fis, Grp Electromagnetisme, E-08193 Barcelona, Spain. [Tennant, D. Alan] Oak Ridge Natl Lab, Neutron Sci Directorate, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Palau, A (reprint author), ICMAB CSIC, Inst Ciencia Mat Barcelona, Campus UAB, Bellaterra 08193, Spain.; Valencia, S (reprint author), Helmholtz Zentrum Berlin Mat & Energie, Albert Einstein Str 15, D-12489 Berlin, Germany. EM palau@icmab.es; sergio.valencia@helmholtz-berlin.de RI Tennant, David/Q-2497-2015; Palau, Anna/C-2947-2014; Obradors, Xavier/A-8146-2012; Sanchez, Alvaro/C-7041-2008 OI Tennant, David/0000-0002-9575-3368; Palau, Anna/0000-0002-2217-164X; FU MINECO [MAT2014-51778-C2-1R, MAT2012-35370, CSD2007-0041]; Generalitat de Catalunya [2014-SGR-00753, 2014-SGR-150, 2014-PROD00059]; European Seventh Framework Program (FP7) [312284]; EUROTAPES project [EU-NMP-LA-2012-280432]; Cost Action [MP1201]; ICREA Academia - Generalitat de Catalunya FX This work has been supported by MINECO (MAT2014-51778-C2-1R, MAT2012-35370, CSD2007-0041), Generalitat de Catalunya (2014-SGR-00753, 2014-SGR-150, 2014-PROD00059), European Seventh Framework Program (FP7/2007-2013) under grant agreement 312284, EU-NMP-LA-2012-280432EUROTAPES project and Cost Action MP1201. A. Sanchez acknowledges a grant from ICREA Academia, funded by the Generalitat de Catalunya. ICMAB acknowledge the Severo Ochoa Center of Excellence mentioned from MINECO. A. Palau and S. Valencia contributed equally to this work. NR 36 TC 0 Z9 0 U1 11 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2198-3844 J9 ADV SCI JI Adv. Sci. PD NOV PY 2016 VL 3 IS 11 AR 1600207 DI 10.1002/advs.201600207 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA EB8NZ UT WOS:000387649100016 PM 27980997 ER PT J AU Munteanu, F AF Munteanu, Florin TI Stochastic characterization of phase detection algorithms in phase-shifting interferometry SO APPLIED OPTICS LA English DT Article ID ERROR-COMPENSATING ALGORITHMS; DESIGN; DERIVATION; VIBRATION AB Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here, we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. The usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations. (C) 2016 Optical Society of America C1 [Munteanu, Florin] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Munteanu, F (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM munteanu1@llnl.gov FU U.S. Department of Energy (DOE) [DE-AC52-07NA27344] FX U.S. Department of Energy (DOE) (DE-AC52-07NA27344). NR 21 TC 0 Z9 0 U1 0 U2 0 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1559-128X EI 2155-3165 J9 APPL OPTICS JI Appl. Optics PD NOV 1 PY 2016 VL 55 IS 31 BP 8925 EP 8931 DI 10.1364/AO.55.008925 PG 7 WC Optics SC Optics GA EB1HT UT WOS:000387101100047 PM 27828294 ER PT J AU Farrah, D Balokovic, M Stern, D Harris, K Kunimoto, M Walton, DJ Alexander, DM Arevalo, P Ballantyne, DR Bauer, FE Boggs, S Brandt, WN Brightman, M Christensen, F Clements, DL Craig, W Fabian, A Hailey, C Harrison, F Koss, M Lansbury, GB Luo, B Paine, J Petty, S Pitchford, K Ricci, C Zhang, W AF Farrah, Duncan Balokovic, Mislav Stern, Daniel Harris, Kathryn Kunimoto, Michelle Walton, Dominic J. Alexander, David M. Arevalo, Patricia Ballantyne, David R. Bauer, Franz E. Boggs, Steven Brandt, William N. Brightman, Murray Christensen, Finn Clements, David L. Craig, William Fabian, Andrew Hailey, Charles Harrison, Fiona Koss, Michael Lansbury, George B. Luo, Bin Paine, Jennie Petty, Sara Pitchford, Kate Ricci, Claudio Zhang, William TI THE GEOMETRY OF THE INFRARED AND X-RAY OBSCURER IN A DUSTY HYPERLUMINOUS QUASAR SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: evolution; galaxies: individual (IRAS 09104+4109); galaxies: Seyfert; galaxies: starburst; infrared: galaxies; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; SPITZER-SPACE-TELESCOPE; STAR-FORMING GALAXIES; DIGITAL-SKY-SURVEY; SPECTRAL ENERGY-DISTRIBUTIONS; ZCOSMOS-BRIGHT SURVEY; BLACK-HOLE ACCRETION; CORONAL LINE REGION; SIMILAR-TO 2; IRAS 09104+4109 AB We study the geometry of the active galactic nucleus (AGN) obscurer in IRAS 09104+4109, an IR-luminous, radio-intermediate FR-I source at z = 0.442, using infrared data from Spitzer and Herschel, X-ray data from NuSTAR, Swift, Suzaku, and Chandra, and an optical spectrum from Palomar. The infrared data imply a total rest-frame 1-1000 mu m luminosity of 5.5 x 10(46) erg s(-1) and require both an AGN torus and a starburst model. The AGN torus has an anisotropy-corrected IR luminosity of 4.9 x 10(46) erg s(-1). and a viewing angle and half-opening angle both of approximately 36 degrees from pole-on. The starburst has a star formation rate of (110 +/- 34)M-circle dot yr(-1) and an age of <50 Myr. These results are consistent with two epochs of luminous activity in IRAS 09104+4109: one approximately 150 Myr ago, and one ongoing. The X-ray data suggest a photon index of Gamma similar or equal to 1.8 and a line-of-sight column density of N-H similar or equal to 5 x 10(23) cm(-2). This argues against a reflection-dominated hard X-ray spectrum, which would have implied a much higher NH and luminosity. The X-ray and infrared data are consistent with a bolometric AGN luminosity of L-bol similar to (0.5-2.5) x 10(47) erg s(-1). The X-ray and infrared data are further consistent with coaligned AGN obscurers in which the line of sight "skims" the torus. This is also consistent with the optical spectra, which show both coronal iron lines and broad lines in polarized but not direct light. Combining constraints from the X-ray, optical, and infrared data suggest. that the AGN obscurer is within a vertical height of 20 pc, and a radius of 125 pc, of the nucleus. C1 [Farrah, Duncan; Harris, Kathryn; Paine, Jennie; Pitchford, Kate] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Balokovic, Mislav; Brightman, Murray; Harrison, Fiona] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Stern, Daniel; Walton, Dominic J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Harris, Kathryn] IAC, E-38200 Tenerife, Spain. [Harris, Kathryn] ULL, Dept Astrofis, E-38205 Tenerife, Spain. [Kunimoto, Michelle] Imperial Coll London, Astrophys Grp, Blackett Lab, Prince Consort Rd, London SW7 2AZ, England. [Alexander, David M.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Arevalo, Patricia] Univ Valparaiso, Fac Ciencias, Inst Fis & Astron, Gran Bretana N 1111, Valparaiso, Chile. [Ballantyne, David R.] Georgia Inst Technol, Sch Phys, Ctr Relativist Astrophys, 837 State St, Atlanta, GA 30332 USA. [Bauer, Franz E.; Ricci, Claudio] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Santiago 22, Chile. [Bauer, Franz E.] MAS, Millennium Inst Astrophys, Nuncio Monsenor Sotero Sanz 100, Santiago, Chile. [Bauer, Franz E.] Space Sci Inst, 4750 Walnut St,Suite 205, Boulder, CO 80301 USA. [Bauer, Franz E.; Craig, William; Ricci, Claudio] EMBIGGEN Anillo, Concepcion, Chile. [Boggs, Steven] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Brandt, William N.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Brandt, William N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Brandt, William N.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [Christensen, Finn] Tech Univ Denmark, DTU Space, Natl Space Inst, Elektrovej 327, DK-2800 Lyngby, Denmark. [Craig, William] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Fabian, Andrew] Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Hailey, Charles] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Koss, Michael] ETH, Dept Phys, Inst Astron, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Luo, Bin] Nanjing Univ, Sch Astron & Space Sci, Nanjing 210093, Jiangsu, Peoples R China. [Luo, Bin] Nanjing Univ, Key Lab Modern Astron & Astrophys, Minist Educ, Nanjing 210093, Jiangsu, Peoples R China. [Petty, Sara] Green Sci Policy Inst, Berkeley, CA 94709 USA. [Zhang, William] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Farrah, D (reprint author), Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. EM farrah@vt.edu OI Ballantyne, David/0000-0001-8128-6976 FU NASA [NNG08FD60C, NNX14AQ07H]; National Aeronautics and Space Administration; BMVIT (Austria); ESA-PRODEX (Belgium); CEA/CNES (France); DLR (Germany); ASI/INAF (Italy); CICYT/MCYT (Spain); NASA; CONICYT-Chile grants Basal-CATA [PFB-06/2007]; FONDECYT [1141218]; "EMBIGGEN" Anillo [ACT1101]; Ministry of Economy, Development, and Tourism's Millennium Science Initiative [IC120009]; ERC [340442] FX We thank the referee for a very helpful report. This work was supported under NASA Contract No. NNG08FD60C and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. PACS has been developed by a consortium of institutes led by MPE (Germany) and including UVIE (Austria); KU Leuven, CSL, IMEC (Belgium); CEA, LAM (France); MPIA (Germany); INAF-IFSI/OAA/OAP/OAT, LENS, SISSA (Italy); and IAC (Spain). This development has been supported by the funding agencies BMVIT (Austria), ESA-PRODEX (Belgium), CEA/CNES (France), DLR (Germany), ASI/INAF (Italy), and CICYT/MCYT (Spain). This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Part of this work is based on archival data, software, and online services provided by the ASDC. This research has made use of NASA's Astrophysics Data System. We acknowledge support from the NASA Earth and Space Science Fellowship Program grant NNX14AQ07H (M.B.), CONICYT-Chile grants Basal-CATA PFB-06/2007 (F.E.B., C.R.), FONDECYT Regular 1141218 (F.E.B., C.R.), "EMBIGGEN" Anillo ACT1101 (F.E.B., C.R.), and the Ministry of Economy, Development, and Tourism's Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (F.E.B.). A.C.F. acknowledges ERC Advanced Grant Feedback 340442. NR 152 TC 1 Z9 1 U1 4 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 76 DI 10.3847/0004-637X/831/1/76 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600019 ER PT J AU Skinner, MA Burrows, A Dolence, JC AF Skinner, M. Aaron Burrows, Adam Dolence, Joshua C. TI SHOULD ONE USE THE RAY-BY-RAY APPROXIMATION IN CORE-COLLAPSE SUPERNOVA SIMULATIONS? SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: general ID SPECTRAL NEUTRINO TRANSPORT; CIRCLE-DOT STARS; RADIATION HYDRODYNAMICS; EXPLOSIONS; MECHANISM; MODELS; SHOCK; CODE; DEPENDENCE; CASTRO AB We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (FORNAX) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12, 15, 20, and 25 M-circle dot progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum postbounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more "explodable." In fact, for our 25 Me progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions, the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results. C1 [Skinner, M. Aaron; Burrows, Adam] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Dolence, Joshua C.] Los Alamos Natl Lab, CCS 2, POB 1663, Los Alamos, NM 87545 USA. RP Skinner, MA (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. EM askinner@astro.princeton.edu; burrows@astro.princeton.edu; jdolence@lanl.gov OI Dolence, Joshua/0000-0003-4353-8751; Skinner, Michael/0000-0001-8353-8305 FU NSF PetaApps program via Louisiana State University [OCI-0905046, 44592]; Max-Planck/Princeton Center (MPPC) for Plasma Physics [NSF PHY-1144374]; Princeton Institute for Computational Science and Engineering (PICSciE); Princeton University Office of Information Technology; National Energy Research Scientific Computing Center (NERSC) - Office of Science of the US Department of Energy [DE-AC03-76SF00098]; National Science Foundation [ACI-1440032, OCI-0725070, ACI-1238993]; state of Illinois FX The authors acknowledge the help of Evan O'Connor with the Lattimer-Swesty equation of state and numerous useful conversations with Christian Ott. We also thank the anonymous referee for encouraging us to further minimize the numerical noise in the dendritic region of the grid. Support was provided by the NSF PetaApps program, under award OCI-0905046 via subaward No. 44592 from Louisiana State University to Princeton University and by the Max-Planck/Princeton Center (MPPC) for Plasma Physics (NSF PHY-1144374). The authors employed computational resources provided by the TIGRESS high performance computer center at Princeton University, which is jointly supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Princeton University Office of Information Technology, and by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under contract DE-AC03-76SF00098. This work is part of the "Three Dimensional Modeling of Core-Collapse Supernovae" PRAC allocation support by the National Science Foundation (award number ACI-1440032) and is part of the Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications. This paper has been assigned a LANL preprint # LA-UR-15-28756. NR 54 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 81 DI 10.3847/0004-637X/831/1/81 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600024 ER PT J AU Yang, C Archibald, RF Vogel, JK An, H Kaspi, VM Guillot, S Beloborodov, AM Pivovaroff, M AF Yang, C. Archibald, R. F. Vogel, J. K. An, H. Kaspi, V. M. Guillot, S. Beloborodov, A. M. Pivovaroff, M. TI NuSTAR OBSERVATIONS OF MAGNETAR 1E 1048.1-5937 SO ASTROPHYSICAL JOURNAL LA English DT Article DE pulsars: general; pulsars: individual (1E 1048.1); stars: magnetars; stars: magnetic field; stars: neutron; X-rays: stars ID X-RAY PULSAR; PHOTON IMAGING CAMERA; SOFT GAMMA-REPEATERS; XMM-NEWTON; 4U 0142+61; TORQUE VARIATIONS; CROSS-SECTIONS; BROAD-BAND; EMISSION; 1E-1048.1-5937 AB We report on simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and XMM-Newton observations of the magnetar 1E. 1048.1-5937, along with Rossi X-ray Timing Explorer (RXTE) data for the same source. The NuSTAR data provide a clear detection of this magnetar's persistent emission up to 20 keV. We detect a previously unreported small secondary peak in the average pulse profile in the 7-10 keV band, which grows to an amplitude comparable to that of the main peak in the 10-20 keV band. We show using RXTE data that this secondary peak is likely transient. We find that the pulsed fraction increases with energy from a value of similar to 0.55 at similar to 2. keV to a value of similar to 0.75 near 8. keV but shows evidence of decreasing at higher energies. After filtering out multiple bright X-ray bursts during the observation, we find that the phase-averaged spectrum from combined NuSTAR and XMM data is well described by an absorbed double blackbody plus power-law model, with no evidence for the spectral turn-up near similar to 10. keV as has been seen in some other magnetars. Our data allow us to rule out a spectral turn-up similar to those seen in magnetars 4U 0142+61 and 1E 2259+586 of Delta Gamma greater than or similar to 2, where Delta Gamma is the difference between the soft-band and hard-band photon indexes. The lack of spectral turn-up is consistent with what has been observed from an active subset of magnetars given previously reported trends suggesting that the degree of spectral turn-up is correlated with spin-down rate and/or spin-inferred magnetic field. C1 [Yang, C.] Beijing Inst Technol, 5 South Zhongguancun St, Beijing 100081, Peoples R China. [Yang, C.; Archibald, R. F.; Kaspi, V. M.] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Yang, C.; Archibald, R. F.; Kaspi, V. M.] McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Vogel, J. K.; Pivovaroff, M.] Lawrence Livermore Natl Lab, PLS Phys, Livermore, CA 94550 USA. [An, H.] Stanford Univ, KIPAC, Stanford, CA 94305 USA. [Guillot, S.] Pontificia Univ Catolica Chile, Fac Fis, Inst Astrofis, Av Vicuna Mackenna 4860, Santiago 7820436, Chile. [Beloborodov, A. M.] Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA. [Beloborodov, A. M.] Columbia Univ, Columbia Astrophys Lab, 538 West 120th St, New York, NY 10027 USA. RP Yang, C (reprint author), Beijing Inst Technol, 5 South Zhongguancun St, Beijing 100081, Peoples R China.; Yang, C (reprint author), McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada.; Yang, C (reprint author), McGill Univ, McGill Space Inst, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. OI An, Hongjun/0000-0002-6389-9012; Archibald, Robert/0000-0002-4017-8837 FU NASA [NNG08FD60C, NAS5-00136, NNX-10-AI72G, NNX-13-AI34G]; National Aeronautics and Space Administration; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSERC Alexander Graham Bell Canada Graduate Scholarship; NSERC; Centre de Recherche en Astrophysique du Quebec; R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Study; Canada Research Chairs Program; Lorne Trottier Chair in Astrophysics and Cosmology FX We thank Daniel Stern for helpful comments. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. We thank the NuSTAR Operations, Software, and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. R.F.A. receives support from an NSERC Alexander Graham Bell Canada Graduate Scholarship. J.K.V. was supported by supported by NASA contract NAS5-00136. V.M.K. receives support from an NSERC Discovery Grant and Accelerator Supplement, from the Centre de Recherche en Astrophysique du Quebec, an R. Howard Webster Foundation Fellowship from the Canadian Institute for Advanced Study, the Canada Research Chairs Program and the Lorne Trottier Chair in Astrophysics and Cosmology. A.M.B. was supported by NASA grants NNX-10-AI72G and NNX-13-AI34G. NR 46 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2016 VL 831 IS 1 AR 80 DI 10.3847/0004-637X/831/1/80 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC0KD UT WOS:000387788600023 ER PT J AU Bayliss, MB Ruel, J Stubbs, CW Allen, SW Applegate, DE Ashby, MLN Bautz, M Benson, BA Bleem, LE Bocquet, S Brodwin, M Capasso, R Carlstrom, JE Chang, CL Chiu, I Cho, HM Clocchiatti, A Crawford, TM Crites, AT de Haan, T Desai, S Dietrich, JP Dobbs, MA Doucouliagos, AN Foley, RJ Forman, WR Garmire, GP George, EM Gladders, MD Gonzalez, AH Gupta, N Halverson, NW Hlavacek-Larrondo, J Hoekstra, H Holder, GP Holzapfel, WL Hou, Z Hrubes, JD Huang, N Jones, C Keisler, R Knox, L Lee, AT Leitch, EM von der Linden, A Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Meyer, SS Mocanu, LM Mohr, JJ Murray, SS Padin, S Pryke, C Rapetti, D Reichardt, CL Rest, A Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Schrabback, T Shirokoff, E Song, J Spieler, HG Stalder, B Stanford, SA Staniszewski, Z Stark, AA Story, KT Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zenteno, A AF Bayliss, M. B. Ruel, J. Stubbs, C. W. Allen, S. W. Applegate, D. E. Ashby, M. L. N. Bautz, M. Benson, B. A. Bleem, L. E. Bocquet, S. Brodwin, M. Capasso, R. Carlstrom, J. E. Chang, C. L. Chiu, I. Cho, H-M. Clocchiatti, A. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dietrich, J. P. Dobbs, M. A. Doucouliagos, A. N. Foley, R. J. Forman, W. R. Garmire, G. P. George, E. M. Gladders, M. D. Gonzalez, A. H. Gupta, N. Halverson, N. W. Hlavacek-Larrondo, J. Hoekstra, H. Holder, G. P. Holzapfel, W. L. Hou, Z. Hrubes, J. D. Huang, N. Jones, C. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. von der Linden, A. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Meyer, S. S. Mocanu, L. M. Mohr, J. J. Murray, S. S. Padin, S. Pryke, C. Rapetti, D. Reichardt, C. L. Rest, A. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Schrabback, T. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. T. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zenteno, A. TI SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE galaxies: clusters: general; galaxies: distances and redshifts; techniques: spectroscopic ID POLE TELESCOPE SURVEY; GRAVITATIONALLY LENSED GALAXY; DIGITAL SKY SURVEY; LYMAN-BREAK GALAXIES; SIMILAR-TO 2; ZELDOVICH EFFECT SURVEY; REGION NEARBY SURVEY; 720 SQUARE DEGREES; GIANT ARCS SURVEY; GREATER-THAN 1 AB We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg(2) of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] lambda lambda 3727, 3729 and H-delta, and the 4000 angstrom break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m*). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or similar to 20% of the full SPT-SZ sample. C1 [Bayliss, M. B.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA. [Bayliss, M. B.; Stubbs, C. W.; Ashby, M. L. N.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Bayliss, M. B.] Colby Coll, Dept Phys & Astron, 5100 Mayflower Hill Dr, Waterville, ME 04901 USA. [Allen, S. W.; Keisler, R.; von der Linden, A.; Mantz, A.; Story, K. T.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Allen, S. W.; Hlavacek-Larrondo, J.; Keisler, R.; von der Linden, A.; Mantz, A.; Story, K. T.] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. [Allen, S. W.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Applegate, D. E.; Schrabback, T.] Argelander Inst Astron, Hugel 71, D-53121 Bonn, Germany. [Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Clocchiatti, A.; Crawford, T. M.; Gladders, M. D.; Leitch, E. M.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Shirokoff, E.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Benson, B. A.; Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.; Clocchiatti, A.; Crawford, T. M.; Gladders, M. D.; Hou, Z.; Keisler, R.; Leitch, E. M.; Mantz, A.; Meyer, S. S.; Mocanu, L. M.; Padin, S.; Rest, A.; Schaffer, K. K.; Shirokoff, E.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bleem, L. E.; Carlstrom, J. E.; Clocchiatti, A.; Hou, Z.; Keisler, R.; Meyer, S. S.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Bocquet, S.; Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Aty 8rgonne, Argonne, IL 60439 USA. [Bocquet, S.; Capasso, R.; Chiu, I.; Clocchiatti, A.; Dietrich, J. P.; Gupta, N.; Mohr, J. J.; Rapetti, D.; Saro, A.] Ludwig Maximilians Univ Munchen, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Bocquet, S.; Capasso, R.; Chiu, I.; Dietrich, J. P.; Gupta, N.; Mohr, J. J.; Rapetti, D.; Saro, A.] Excellence Cluster Univ, Boltzmannstr 2, D-85748 Garching, Germany. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Cho, H-M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrosifis, Santiago, Region Metropol, Chile. [Crites, A. T.; Padin, S.; Williamson, R.] CALTECH, Pasadena, CA 91125 USA. [de Haan, T.; George, E. M.; Holzapfel, W. L.; Huang, N.; Lee, A. T.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [de Haan, T.; Dobbs, M. A.; Holder, G. P.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Dobbs, M. A.] Canadian Inst Adv Res, CIFAR Program Cosmol & Grav, Toronto, ON M5G 1Z8, Canada. [Doucouliagos, A. N.; Reichardt, C. L.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. [Vieira, J. D.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Vieira, J. D.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Garmire, G. P.] Huntingdon Inst Xray Astron LLC, Huntingdon, PA USA. [George, E. M.; Mohr, J. J.] Max Planck Inst Extraterrestrial Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.; Sayre, J. T.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Hlavacek-Larrondo, J.] Univ Montreal, Dept Phys, Montreal, PQ H3T 1J4, Canada. [Hlavacek-Larrondo, J.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Hoekstra, H.] Leiden Univ, Leiden Observ, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands. [Hrubes, J. D.; Luong-Van, D.] Univ Chicago, Chicago, IL 60637 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [von der Linden, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [von der Linden, A.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Marrone, D. P.] Univ Arizona, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Ruhl, J. E.; Saliwanchik, B. R.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Song, J.] Korea Astron & Space Sci Inst, Daejeon 305348, South Korea. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Vanderlinde, K.] Univ Toronto, Dunlap Inst Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Vanderlinde, K.] Univ Toronto, Dept Astron & Astrophys, 50 St George St, Toronto, ON M5S 3H4, Canada. [Zenteno, A.] Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Desai, S.] IIT Hyderabad, Dept Phys, Sangareddy 502285, Telangana, India. [Foley, R. J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Bayliss, MB (reprint author), Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA.; Bayliss, MB (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA.; Bayliss, MB (reprint author), Colby Coll, Dept Phys & Astron, 5100 Mayflower Hill Dr, Waterville, ME 04901 USA. EM mbbayliss@cfa.harvard.edu OI Bocquet, Sebastian/0000-0002-4900-805X; Stubbs, Christopher/0000-0003-0347-1724; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [AST-1009012, PHY-1125897]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; NSF [AST-1009649, MRI-0723073]; Alfred P. Sloan Foundation; U.S. Department of Energy [DE-AC02-06CH11357]; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy; NASA through Space Telescope Science Institute [HST-GO-13412.004-A]; NASA [NAS 5-26555]; [GS-2011A-C-03]; [GS-2011A-C-04]; [GS-2011B-C-06]; [GS-2011B-C-33]; [GS-2012A-Q-04]; [GS-2012A-Q-37]; [GS-2012B-Q-29]; [GS-2012B-Q-59]; [GS-2013A-Q-05]; [GS-2013A-Q-45]; [GS-2013B-Q-25]; [GS-2013B-Q-72]; [GS-2014B-Q-31]; [GS-2014B-Q-64]; [13412] FX We thank the anonymous referee for helpful and thoughtful feedback that improved this paper. This work is supported by the National Science Foundation through Grant AST-1009012. The South Pole Telescope is supported by the National Science Foundation through grant PLR-1248097. Partial support was also provided by the NSF Physics Frontier Center grant PHY-1125897 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. R.J.F. gratefully acknowledges support from the Alfred P. Sloan Foundation. Argonne National Laboratory work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. BB is supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. Support for program #HST-GO-13412.004-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.; The data presented here were taken with the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: The United States, Canada, Chile, Australia, Brazil, and Argentina. Gemini data used in this work was taken as a part of the following Gemini programs: GS-2011A-C-03, GS-2011A-C-04, GS-2011B-C-06, GS-2011B-C-33, GS-2012A-Q-04, GS-2012A-Q-37, GS-2012B-Q-29, GS-2012B-Q-59, GS-2013A-Q-05, GS-2013A-Q-45, GS-2013B-Q-25, GS-2013B-Q-72, GS-2014B-Q-31, and GS-2014B-Q-64. Additional supporting data were obtained with the 6.5m Magellan Telescopes, which are located at the Las Campanas Observatory in Chile. This work is also partly based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555; these observations are associated with program #13412. NR 111 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2016 VL 227 IS 1 AR 3 DI 10.3847/0067-0049/227/1/3 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EC5VO UT WOS:000388205600002 ER PT J AU Hu, QN Aboustait, M Kim, T Ley, MT Bullard, JW Scherer, G Hanan, JC Rose, V Winarski, R Gelb, J AF Hu, Qinang Aboustait, Mohammed Kim, Taehwan Ley, M. Tyler Bullard, Jeffrey W. Scherer, George Hanan, Jay C. Rose, Volker Winarski, Robert Gelb, Jeffrey TI Direct measurements of 3d structure, chemistry and mass density during the induction period of C(3)s hydration SO CEMENT AND CONCRETE RESEARCH LA English DT Article DE Induction period; C3S hydration; C-S-H; Microstructure; Nanoscale ID TRICALCIUM SILICATE HYDRATION; RAY COMPUTED-TOMOGRAPHY; CEMENT-BASED MATERIALS; C-S-H; PORTLAND-CEMENT; FLY-ASH; DISSOLUTION; CALCIUM; MICROSCOPY; RESOLUTION AB The reasons for the start and end of the induction period of cement hydration remain a topic of controversy. One long-standing hypothesis is that a thin metastable hydrate forming on the surface of cement grains significantly reduces the particle dissolution rate; the eventual disappearance of this layer re-establishes higher dissolution rates at the beginning of the acceleration period. However, the importance, or even the existence, of this metastable layer has been questioned because it cannot be directly detected in most experiments. In this work a combined analysis using nano-tomography and nano-X-ray fluorescence makes the direct imaging of early hydration products possible. These novel X-ray imaging techniques provide quantitative measurements of 3D structure, chemical composition, and mass density of the hydration products during the induction period. This work does not observe a low density product on the surface of the particle, but does provide insights into the formation of etch pits and the subsequent hydration products that fill them. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Hu, Qinang; Aboustait, Mohammed; Ley, M. Tyler] Oklahoma State Univ, Dept Civil & Environm Engn, Stillwater, OK 74078 USA. [Kim, Taehwan] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia. [Bullard, Jeffrey W.] NIST, Mat & Struct Syst Div, Gaithersburg, MD 20899 USA. [Scherer, George] Princeton Univ, Civil & Environm Engn, Princeton, NJ 08544 USA. [Hanan, Jay C.] Oklahoma State Univ, Dept Mech & Aerosp Engn, Tulsa, OK 74106 USA. [Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Winarski, Robert] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gelb, Jeffrey] Carl Zeiss Xray Microscopy, Pleasanton, CA 94588 USA. RP Ley, MT (reprint author), Oklahoma State Univ, Dept Civil & Environm Engn, Stillwater, OK 74078 USA. EM tyler.ley@okstate.edu RI Rose, Volker/B-1103-2008; OI Rose, Volker/0000-0002-9027-1052; Kim, Taehwan/0000-0003-4371-7178 FU Federal Highway Administration (FHWA) Exploratory Advanced Research (EAR) program [DTFH61-12-H-00003]; United State National Science Foundation CMMI CAREER Award [1150404]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was sponsored by funding from Federal Highway Administration (FHWA) Exploratory Advanced Research (EAR) program award # DTFH61-12-H-00003 and funding from the United State National Science Foundation CMMI 1150404 CAREER Award. We thank our collaborators, George Scherer (Princeton University), Brad Chmelka (University of California, Santa Barbara), Andreas Lange and Rolf Arvidson (University of Bremen), Denise Silva and Josephine Cheung (W.R. Grace) and Larry Robert (Roberts Consulting), for their insightful advice on this work. The XRD and ICP-OES measurements were made at W.R. Grace by Jeffrey Nicolich.; Use of the Center for Nanoscale Materials and the Advanced Photon Source were supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 56 TC 0 Z9 0 U1 8 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-8846 EI 1873-3948 J9 CEMENT CONCRETE RES JI Cem. Concr. Res. PD NOV PY 2016 VL 89 BP 14 EP 26 DI 10.1016/j.cemconres.2016.07.008 PG 13 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA EC3VU UT WOS:000388056000002 ER PT J AU Di Bella, C Griffa, M Ulrich, TJ Lura, P AF Di Bella, Carmelo Griffa, Michele Ulrich, T. J. Lura, Pietro TI Early-age elastic properties of cement-based materials as a function of decreasing moisture content SO CEMENT AND CONCRETE RESEARCH LA English DT Article DE Elastic modulus; Equivalent systems; Early-age; Resonant ultrasound spectroscopy ID RESONANT ULTRASOUND SPECTROSCOPY; MECHANICAL-PROPERTIES; CONCRETE; WATER; BEHAVIOR; MICROSTRUCTURE; SANDSTONE; MODULUS; MORTARS; SAMPLES AB The moisture content is of particular relevance in cement-based materials, as it has a strong impact on their fundamental material properties. For example, it directly affects their strength and elastic properties, which in turn are closely related to volumetric deformations and cracking susceptibility. This paper investigates the influence of the decreasing moisture content on the elastic properties at early-ages, when the material properties are still developing simultaneously to the drying process. Mortar mixtures containing either Portland cement or cement blended with slag were specifically designed to halt the hydration at predefined stages without altering the microstructure or promoting further hydration during drying (equivalent systems). The elastic modulus of the equivalent mortars as a function of the moisture content is measured through resonant ultrasound spectroscopy. At early age the elastic modulus remained constant during drying, while at later ages a steady reduction was observed as a function of the decreasing relative humidity. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Di Bella, Carmelo; Griffa, Michele; Lura, Pietro] Empa, Swiss Fed Labs Mat Sci & Technol, Dusseldorf, Germany. [Di Bella, Carmelo; Lura, Pietro] Swiss Fed Inst Technol, Swiss Fed Inst Technol Zurich, Zurich, Switzerland. [Ulrich, T. J.] Los Alamos Natl Lab, Solid Earth Geophys Grp EES 17, Los Alamos, NM 87545 USA. RP Di Bella, C (reprint author), Empa, Swiss Fed Labs Mat Sci & Technol, Dusseldorf, Germany. EM carmelo.dibella@empa.ch OI Griffa, Michele/0000-0001-8407-9438 FU Nanocem consortium [13] FX We would like to thank the Nanocem consortium for supporting this study (Core Project 13, Early-Age Shrinkage and Cracking of Cementitious Materials). NR 57 TC 1 Z9 1 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-8846 EI 1873-3948 J9 CEMENT CONCRETE RES JI Cem. Concr. Res. PD NOV PY 2016 VL 89 BP 87 EP 96 DI 10.1016/j.cemconres.2016.08.001 PG 10 WC Construction & Building Technology; Materials Science, Multidisciplinary SC Construction & Building Technology; Materials Science GA EC3VU UT WOS:000388056000010 ER PT J AU Mirzaei, B Hayton, D Thoen, D Gao, JR Kao, TY Hu, Q Reno, JL AF Mirzaei, Behnam Hayton, Darren Thoen, David Gao, Jian-Rong Kao, Tsung-Yu Hu, Qing Reno, John L. TI Frequency Tuning of Third-Order Distributed Feedback Terahertz Quantum Cascade Lasers by SiO2 and PMMA SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Frequency tuning; local oscillator; quantum cascade laser (QCL); terahertz (THz) ID WIRE LASER; MU-M AB We report an extensive study of the effect of an additional dielectric layer on the frequency of terahertz quantum cascade lasers (QCLs). QCLs with third-order distributed feedback structure at frequencies of 3.5 and 4.7 THz are used in our experiment. The applied dielectric layer is either Silicon dioxide (SiO2) or Polymethylmethacrylaat (PMMA). We find that both dielectric layers can shift the lasing frequency by up to -6 GHz on a 3.5-THz QCL, and up to -13 GHz for a 4.7-THz QCL. Full 3-D FEM simulations suggest that the effect is dominated by the effective thickness of the dielectric on the side walls of the laser structure, and also confirm that for a given dielectric layer, the effect is stronger in the 4.7-THz QCL due to its different extension of the electromagnetic field to the free space. This study provides a guideline for shifting the frequency of an existing QCL for frequency critical applications such as spectroscopy or use as a local oscillator. C1 [Mirzaei, Behnam; Thoen, David; Gao, Jian-Rong] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 Delft, Netherlands. [Hayton, Darren; Gao, Jian-Rong] SRON Netherlands Inst Space Res, NL-3584 Utrecht, Netherlands. [Kao, Tsung-Yu] LongWave Photon LLC, Mountain View, CA 94043 USA. [Hu, Qing] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Hu, Qing] MIT, Elect Res Lab, Cambridge, MA 02139 USA. [Reno, John L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Mirzaei, B (reprint author), Delft Univ Technol, Kavli Inst Nanosci, NL-2628 Delft, Netherlands. EM b.mirzaei@tudelft.nl; d.j.hayton@sron.nl; d.j.thoen@tudelft.nl; j.r.gao@tudelft.nl; wilt_kao@longwavephotonics.com; qhu@mit.edu; jlreno@sandia.gov FU NWO; NATO SFP; NASA; NSF; U.S. Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX The work in The Netherlands was supported by NWO and NATO SFP. The work at MIT was supported by NASA and NSF. The work at Sandia was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by the Sandia Corporation, a wholly owned subsidiary of the Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 17 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD NOV PY 2016 VL 6 IS 6 BP 851 EP 857 DI 10.1109/TTHZ.2016.2613519 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA EC2WZ UT WOS:000387986400012 ER PT J AU Dickie, DA Chacon, BE Issabekov, A Lam, K Kemp, RA AF Dickie, Diane A. Chacon, Brittany E. Issabekov, Alibek Lam, Kevin Kemp, Richard A. TI Nickel(II) and nickel(0) complexes of bis(diisopropylphosphino)amine: Synthesis, structure, and electrochemical activity SO INORGANICA CHIMICA ACTA LA English DT Article DE X-ray structures; Nickel complexes; Electrochemistry; CO2 reactions; Phosphorus ligands ID CARBON-DIOXIDE CAPTURE; ELECTROCATALYTIC REDUCTION; CO2 REDUCTION; PHOSPHINE; CATALYSTS; REACTIVITY; ETHYLENE; ACTIVATION; LIGANDS; BONDS AB In its neutral state, bis(diisopropylphosphino)amine HL reacts in equimolar amounts with the nickel halides NiCl2.6H(2)O, NiBr2, and NiI2 in ethanol solutions to give the air- and moisture-stable P,P-chelated complexes (HL)NiX2 (X = CI, Br, I). Under similar conditions, complexes of the form [(HL)(2)Ni]X-2(X = BF4, NO3, ClO4) were prepared from 2:1 ligand-metal ratios of Ni(BF4)(2).6H(2)O, Ni(NO3)(2).6H(2)O, or Ni (ClO4)(2).6H(2)O. Deprotonation of the ligand with NaNH2 followed by reaction with NiI2 gives L2Ni when performed in Et2O, but leads to the co-crystal L2Ni.2[NCCHC(Me)NH2] when the solvent is acetonitrile. In addition to these Ni2+ compounds, the Ni complex (HL)(2)Ni can be prepared from a toluene solution of Ni(cod)(2). Each complex has been characterized by a combination of IR and multi-nuclear NMR spectroscopies, as well as single-crystal X-ray diffraction. Electrochemical studies of the complexes revealed irreversible decomposition of the (HL)NiX2 (X = Cl, Br, I) series, but electrocatalytic CO2 reduction by the [(HP2Ni]X-2 (X=NO3, ClO4) compounds. (C) 2016 Elsevier B.V. All rights reserved. C1 [Dickie, Diane A.; Kemp, Richard A.] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87111 USA. [Chacon, Brittany E.; Kemp, Richard A.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Issabekov, Alibek; Lam, Kevin] Nazarbayev Univ, Dept Chem, Sch Sci & Technol, Astana 010000, Kazakhstan. RP Lam, K; Kemp, RA (reprint author), Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87111 USA. EM kevin.lam@nu.edu.kz; rakemp@unm.edu OI Dickie, Diane/0000-0003-0939-3309 FU National Science Foundation [CHE12-13529]; Sandia National Laboratories sponsored STAR Summer Fellows program; Kazakh Ministry of Education and Science; University of New Mexico [CHE04-43580]; NSF [CHE08-40523, CHE09-46690]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94-AL85000] FX Dr. Beth Donovan (UNM) and Mr. Nate Wilson (SNL) performed preliminary electrochemical experiments on 5. Mr. Jeremiah Sears (SNL) performed the elemental analysis on compounds 7 and 7a. This work was financially supported by the National Science Foundation (Grant CHE12-13529), the Sandia National Laboratories sponsored STAR Summer Fellows program, and the Kazakh Ministry of Education and Science. The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE04-43580), and the NMR spectrometers were upgraded via grants from the NSF (CHE08-40523 and CHE09-46690). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. NR 66 TC 1 Z9 1 U1 12 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD NOV 1 PY 2016 VL 453 BP 42 EP 50 DI 10.1016/j.ica.2016.07.048 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB8EY UT WOS:000387625500007 ER PT J AU Gee, LB Scott, AD Dapper, CH Newton, WE Cramer, SP AF Gee, Leland B. Scott, Aubrey D. Dapper, Christie H. Newton, William E. Cramer, Stephen P. TI Is trehalose an effective quenching agent of Azotobacter vinelandii Mo-nitrogenase turnover? SO INORGANICA CHIMICA ACTA LA English DT Article DE Mo-nitrogenase; Trehalose; EPR; FTIR; Photolysis; Carbon monoxide ID ELECTRON-PARAMAGNETIC-RESONANCE; CO-INHIBITED NITROGENASE; FEMO-COFACTOR; ROOM-TEMPERATURE; VANADIUM NITROGENASE; CARBON-MONOXIDE; PROTEIN; BINDING; CATALYSIS; LIGAND AB H-2-evolution assays, plus EPR and FTIR spectroscopies, using CO-inhibited Azotobacter vinelandii Mo-nitrogenase have shown that the disaccharide trehalose is an effective quenching agent of enzymatic turnover and also stabilizes the reaction intermediates formed. Complete inhibition of H-2-evolution activity was achieved at 1.5 M trehalose, which compares favorably to the requirement for 10 M ethylene glycol to achieve similar inhibition. Reaction-intermediate stabilization was demonstrated by monitoring the EPR spectrum of the 'hi-CO' form of CO-inhibited N(2)ase, which did not change during 1 h after trehalose quenching. Similarly, in situ photolysis with FTIR monitoring of 'hi-CO' resulted in the same 1973 and 1681 cm (-1) signals as observed previously in ethylene glycol-quenched systems (Yan et al., 2011). These results clearly show that 1.5 M trehalose is an effective quench and stabilization agent for Mo-N(2)ase studies. Possible applications are discussed. (C) 2016 Published by Elsevier B.V. C1 [Gee, Leland B.; Scott, Aubrey D.; Cramer, Stephen P.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. [Cramer, Stephen P.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Dapper, Christie H.; Newton, William E.] Virginia Tech, Dept Biochem, Blacksburg, VA 24061 USA. RP Cramer, SP (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM spjcramer@ucdavis.edu FU National Institutes of Health Grant [GM-65440]; National Science Foundation [CHE 1308384] FX This work was funded by National Institutes of Health Grant GM-65440, and the National Science Foundation grant CHE 1308384 (S.P.C.). NR 29 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD NOV 1 PY 2016 VL 453 BP 74 EP 77 DI 10.1016/j.ica.2016.07.039 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB8EY UT WOS:000387625500011 ER PT J AU Yin, JF Takeuchi, ES Takeuchi, KJ Marschilok, AC AF Yin, Jiefu Takeuchi, Esther S. Takeuchi, Kenneth J. Marschilok, Amy C. TI Synthetic control of manganese birnessite: Impact of crystallite size on Li, Na, and Mg based electrochemistry SO INORGANICA CHIMICA ACTA LA English DT Article DE Magnesium birnessite; Manganese oxide; Sol gel; Lithium ion battery; Sodium ion battery; Magnesium ion battery ID SODIUM-ION BATTERIES; X-RAY-DIFFRACTION; APROTIC ELECTROLYTES; MAGNESIUM; WATER; CATHODE; OXIDES; PERFORMANCE; INSERTION; LITHIUM AB The synthesis and characterization of Mg-birnessite (MgxMnO2) with different crystallite sizes, prepared though low temperature precipitation and ion exchange was demonstrated. The influence of crystallite size on electrochemical performance of Mg-birnessite was studied for the first time, where material with smaller crystallite size was demonstrated to have enhanced capacity and rate capability in Li ion, Na ion, and Mg ion based electrolytes. Cation diffusion using GM type testing demonstrated the ion diffusion coefficient of Mg2+ was similar to 10x lower compared with Li+ and Na+. This work illustrates that tuning of inorganic materials properties can lead to significant enhancement of electrochemical performance in lithium, sodium as well as magnesium based batteries for materials such as Mg-birnessite and provides a deliberate approach to improve electrochemical performance. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yin, Jiefu; Takeuchi, Esther S.; Takeuchi, Kenneth J.; Marschilok, Amy C.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Takeuchi, Esther S.; Takeuchi, Kenneth J.; Marschilok, Amy C.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Takeuchi, Esther S.; Marschilok, Amy C.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11793 USA. RP Takeuchi, ES; Takeuchi, KJ; Marschilok, AC (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM esther.takeuchi@stonybrook.edu; kenneth.takeuchi.1@stonybrook.edu; amy.marschilok@stonybrook.edu RI Yin, Jiefu/A-9654-2017 OI Yin, Jiefu/0000-0003-4363-900X FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; Department of Energy, Office of Electricity [1275961] FX Support for the material synthesis, characterization, and the lithium and sodium electrochemistry was provided by the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673. Support for the magnesium electrochemistry was provided by the Department of Energy, Office of Electricity, administered through Sandia National Laboratories, Purchase Order #1275961. The authors also acknowledge Brookhaven National Laboratory for the SmartLab X-ray Diffractometer. NR 38 TC 0 Z9 0 U1 16 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD NOV 1 PY 2016 VL 453 BP 230 EP 237 DI 10.1016/j.ica.2016.08.026 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB8EY UT WOS:000387625500030 ER PT J AU Li, X Dai, JW Wan, HX Wu, AA Zhou, ZH AF Li, Xing Dai, Jun-Wei Wan, Hong-Xin Wu, An-An Zhou, Zhao-Hui TI Chiral and achiral vanadyl lactates with vibrational circular dichroism: Toward the chiral metal cluster in nitrogenase SO INORGANICA CHIMICA ACTA LA English DT Article DE Lactate; Vanadyl; Vibrational circular dichroism; EPR; Iron vanadium cofactor; Nitrogenase ID AQUEOUS VANADIUM(V)-CITRATE SPECIATION; DINUCLEAR VANADIUM(IV) COMPLEX; IRON-MOLYBDENUM COFACTOR; CRYSTAL-STRUCTURE; FEMO-COFACTOR; STRUCTURAL-CHARACTERIZATION; STEREOSPECIFIC FORMATION; ABSOLUTE-CONFIGURATION; INTERSTITIAL CARBON; LIGAND AB A series of chiral and achiral neutral vanadyl complexes with N-heterocycle chelated ligands [V2O2(S-lact)(2)(bpy)(2)] (1), [V2O2(S-lact)(2)(phen)(2)] (2), [V2O2(R-lact)(S-lact)(bpy)(2)] (3), [V2O2(R-lact) (S-lact)(phen)(2)] (4) (H(2)lact = lactic acid, phen = 1,10-phenanthroline, and bpy = 2,2'-bipyridine) have been obtained under hydrothermal condition. The complexes feature bidentate lactate that chelates to vanadium atom through their alpha-alkoxido and carboxylato groups, while the other coordination sites are occupied by N-heterocycle ligand and terminal oxygen without coordinated or crystallized water molecule. Unusual short bond distances are observed for the coordinated lactates with V-(IV)-O alpha-alkoxy and V-(IV)-O-carboxy 1.986(7) angstrom in average, which imply the influence of full deprotonation in the chelated ring compared with those of 2.15 angstrom in iron vanadium cofactor of V-nitrogenase. Enhanced activity and the red-shifts of vibrational circular dichroism (VCD) have been observed for the chiral neutral vanadyl complexes 1 and 2 and supported by B3LYP calculation. The carboxylato vibrations in VCD are observed in 1660, 1649, 1600, 1474, 1443 cm(-1) and 1664, 1653, 1636, 1483, 1431 cm(-1) for 1 and 2 respectively. Their absolute configurations of chiral metal center are assigned as A(s). The EPR spectra of 1 and 3 with bpy ligands appear to be isotropic, while 2 and 4 with phen ligands display textbook rhombic EPR spectra, and the g values obtained are g(xx) 2.4727, g(yy) 1.9975, g(zz) 1.6456 for 2; and g(xx) 2.4585, g(yy) 1.9976, g(zz) 1.6412 for 4 respectively. (C) 2016 Elsevier B.V. All rights reserved. C1 [Li, Xing; Dai, Jun-Wei; Wu, An-An; Zhou, Zhao-Hui] Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China. [Wan, Hong-Xin] Lawrence Berkeley Natl Lab, Phys BiosciDiv, Berkeley, CA 94720 USA. RP Zhou, ZH (reprint author), Xiamen Univ, State Key Lab Phys Chem Solid Surfaces, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China. EM zhzhou@xmu.edu.cn FU Natural Science Foundation of Fujian Province of China [201610012]; Research Funds for the Central Universities [20720150041] FX This project was supported by the Natural Science Foundation of Fujian Province of China (No. 201610012) and the Research Funds for the Central Universities (No. 20720150041). What's more, we thank Ms. Xue-Ming Fang in VCD and Ms. La-Jia Yu in EPR measurements. NR 71 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD NOV 1 PY 2016 VL 453 BP 501 EP 506 DI 10.1016/j.ica.2016.09.007 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB8EY UT WOS:000387625500064 ER PT J AU Burton-Pye, BP Poineau, F Bertoia, J Czerwinski, KR Francesconi, LC Sattelberger, AP AF Burton-Pye, Benjamin P. Poineau, Frederic Bertoia, Julie Czerwinski, Kenneth R. Francesconi, Lynn C. Sattelberger, Alfred P. TI Photochemical behavior of the quadruply metal-metal bonded [Tc2Cl8](2-) anion in acetonitrile SO INORGANICA CHIMICA ACTA LA English DT Article DE Technetium; Photochemistry; Metal-metal multiple bonds ID TECHNETIUM TETRACHLORIDE; COMPLEXES; PRECURSOR AB The photochemical behavior of [Tc2Cl8](2-) was investigated in acetonitrile. The speciation of Tc before and after irradiation at 254 nm was performed by UV-vis spectroscopy. Upon irradiation at 254 nm, [Tc2Cl8](2-) was unstable, the scission of the Tc equivalent to Tc unit occurred and the complex [TcCl4(CH3CN)(2)] was identified. The disappearance rate of [M2Cl8](2-) (M = Tc, Re) under irradiation has been measured and was similar to 7.5 time faster for Tc than for Re. (C) 2016 Elsevier B.V. All rights reserved. C1 [Burton-Pye, Benjamin P.; Francesconi, Lynn C.] CUNY Hunter Coll, Dept Chem, New York, NY 10065 USA. [Burton-Pye, Benjamin P.] CUNY, Lehman Coll, Dept Chem, Bronx, NY 10468 USA. [Burton-Pye, Benjamin P.; Francesconi, Lynn C.] CUNY, Grad Ctr, PhD Program Chem, New York, NY 10016 USA. [Poineau, Frederic; Bertoia, Julie; Czerwinski, Kenneth R.; Sattelberger, Alfred P.] Univ Nevada, Dept Chem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. [Sattelberger, Alfred P.] Argonne Natl Lab, Off Director, Lemont, IL 60439 USA. RP Poineau, F (reprint author), Univ Nevada, Dept Chem, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. EM poineauf@unlv.nevada.edu FU Department of Chemistry and Biochemistry at UNLV; National Science Foundation [CHE 0750118]; U.S. Department of Energy [DE-FG02-09ER16097, DE-SC0002456]; National Center for Research Resources (NCRR), a component of the National Institutes of Health [RR003037] FX FP acknowledges the Department of Chemistry and Biochemistry at UNLV for supporting his research through a start-up package. Funding at Hunter College was provided by National Science Foundation (CHE 0750118). U.S. Department of Energy, Grant DE-FG02-09ER16097 (Heavy Element Chemistry, Office of Science) and Grant DE-SC0002456 (Biological and Environmental Research, Office of Science). Infrastructure at Hunter College is partially supported by Grant RR003037 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health. The authors thank Trevor Low at UNLV and Ricardo Franco and Garrett Hauschild for outstanding health physics support. NR 21 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 EI 1873-3255 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD NOV 1 PY 2016 VL 453 BP 724 EP 727 DI 10.1016/j.ica.2016.09.041 PG 4 WC Chemistry, Inorganic & Nuclear SC Chemistry GA EB8EY UT WOS:000387625500088 ER PT J AU Herbert, C Marino, R Rosenberg, D Pouquet, A AF Herbert, Corentin Marino, Raffaele Rosenberg, Duane Pouquet, Annick TI Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation SO JOURNAL OF FLUID MECHANICS LA English DT Article DE internal waves; rotating turbulence; stratified turbulence ID INTERNAL GRAVITY-WAVES; DIRECT NUMERICAL SIMULATIONS; 2-DIMENSIONAL TURBULENCE; ENERGY CASCADE; GEOSTROPHIC TURBULENCE; POTENTIAL ENSTROPHY; BOUSSINESQ FLOWS; MIXING LAYERS; ASPECT-RATIO; LARGE SCALES AB We study the partition of energy between waves and vortices in stratified turbulence, with or without rotation, for a variety of parameters, focusing on the behaviour of the waves and vortices in the inverse cascade of energy towards the large scales. To this end, we use direct numerical simulations in a cubic box at a Reynolds number Re approximate to 1000, with the ratio between the Brunt-Vaisala frequency N and the inertial frequency f varying from 1/4 to 20, together with a purely stratified run. The Froude number, measuring the strength of the stratification, varies within the range 0.02 <= Fr <= 0.32. We find that the inverse cascade is dominated by the slow quasi-geostrophic modes. Their energy spectra and fluxes exhibit characteristics of an inverse cascade, even though their energy is not conserved. Surprisingly, the slow vortices still dominate when the ratio N/f increases, also in the stratified case, although less and less so. However, when N/f increases, the inverse cascade of the slow modes becomes weaker and weaker, and it vanishes in the purely stratified case. We discuss how the disappearance of the inverse cascade of energy with increasing N/f can be interpreted in terms of the waves and vortices, and identify the main effects that can explain this transition based on both inviscid invariants arguments and viscous effects due to vertical shear. C1 [Herbert, Corentin] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel. [Herbert, Corentin; Pouquet, Annick] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Marino, Raffaele] Univ Lyon, CNRS, ENS Lyon, Lab Phys, F-69342 Lyon, France. [Marino, Raffaele] Univ Lyon, Ecole Cent Lyon, CNRS, Lab Mecan Fluides & Acoust, F-69134 Ecully, France. [Marino, Raffaele] Univ Calabria, Dipartimento Fis, Cubo 31C, I-87036 Arcavacata Di Rende, Italy. [Rosenberg, Duane] Oak Ridge Natl Lab, Natl Ctr Computat Sci, POB 2008, Oak Ridge, TN 37831 USA. [Pouquet, Annick] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. RP Herbert, C (reprint author), Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel.; Herbert, C (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM corentin.herbert@weizmann.ac.il RI Marino, Raffaele/M-5130-2015; Herbert, Corentin/C-4306-2012 OI Marino, Raffaele/0000-0002-7372-8620; Herbert, Corentin/0000-0001-8705-624X FU Advanced Study Program at NCAR; National Science Foundation; Regional Operative Program, Calabria ESF; European Community's Seventh Framework Programme FP7-PEOPLE-IRSES [269297 - TURBOPLASMAS]; Laboratory for Atmospheric and Space Physics, University of Colorado; Oak Ridge Leadership Computing Facility at ORNL via the Office of Science under DOE [DE-AC05-00OR22725]; Geophysical Turbulence Program at NCAR FX The work of C.H. on this research was partially supported by the Advanced Study Program and the Geophysical Turbulence Program at NCAR. The National Center for Atmospheric Research is sponsored by the National Science Foundation. R.M. was supported by the Regional Operative Program, Calabria ESF 2007/2013 and the European Community's Seventh Framework Programme FP7-PEOPLE-2010-IRSES under grant agreement no. 269297 - TURBOPLASMAS. A.P. acknowledges support from the Laboratory for Atmospheric and Space Physics, University of Colorado. D.R. acknowledges support from the Oak Ridge Leadership Computing Facility at ORNL via the Office of Science under DOE Contract no. DE-AC05-00OR22725. Computer time was provided by ASD/ASP (NCAR) and the WEXAC cluster (Weizmann Institute). The authors would like to thank the referees for valuable comments and interesting suggestions which helped in improving the manuscript. NR 95 TC 0 Z9 0 U1 1 U2 1 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD NOV PY 2016 VL 806 BP 165 EP 204 DI 10.1017/jfm.2016.581 PG 40 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA EA0XN UT WOS:000386312600008 ER PT J AU Wilding, MC Delaizir, G Benmore, CJ Gueguen, Y Dolhen, M Duclere, JR Chenu, S Sukenaga, S McMillan, PF AF Wilding, Martin C. Delaizir, Gaelle Benmore, Chris J. Gueguen, Yann Dolhen, Morgane Duclere, Jean-Rene Chenu, Sebastien Sukenaga, Sohei McMillan, Paul F. TI Structural studies of Bi2O3-Nb2O5-TeO2 glasses SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Tellurite glass; Polyamorphism; Fragility; High energy X-ray diffraction ID X-RAY-DIFFRACTION; SUPERCOOLED AL2O3-Y2O3 LIQUIDS; MELTING-CURVE MAXIMA; TELLURITE GLASSES; PHASE-TRANSITIONS; NEUTRON-DIFFRACTION; K2O-TEO2 GLASSES; HIGH-PRESSURE; SYSTEM; POLYAMORPHISM AB Bi2O3-Nb2O5-TeO2 glasses show unusual annealing behavior with appearance of spherulites within the matrix glass structure for the Bi0.5Nb0.5Te3O8 composition. The textures resemble those found previously among polyamorphic Al2O3-Y2O3 glasses containing metastably co-existing high- and low-density phases produced during quenching. However the spherulites produced within the Bi2O3-Nb2O5-TeO2 glass are crystalline and can be identified as an "anti-glass" phase related to beta-Bi2Te4O11. We used high energy synchrotron X-ray diffraction data to study structures of binary and ternary glasses quenched from liquids within the Bi2O3-Nb2O5-TeO2 system. These reveal a glassy network based on interconnected TeO4 and TeO3 units that is related to TeO2 crystalline materials but with larger Te ... Te separations due to the presence of TeO3 groups and non-bridging oxygens linked to modifier (Bi3+, Nb5+) cations. Analysis of the viscosity-temperature relations indicates that the glass-forming liquids are "fragile" and there is no evidence for a LLPT occurring in the supercooled liquid. The glasses obtained by quenching likely correspond to a high-density amorphous (HDA) state. Subsequent annealing above T-g shows mainly evidence for direct crystallization of the "anti-glass" tellurite phase. However, some evidence may exist for simultaneous formation of nanoscale amorphous spherulites that could correspond to the LDA polyamorph. The quenching and annealing behavior of Bi2O3-Nb2O5-TeO2 supercooled liquids and glasses is compared with similar materials in the Al2O3-Y2O3 systeth. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wilding, Martin C.; McMillan, Paul F.] UCL, Dept Chem, Christopher Ingold Lab, 20 Gordon St, London WC1H 0AJ, England. [Delaizir, Gaelle; Dolhen, Morgane; Duclere, Jean-Rene; Chenu, Sebastien] Univ Limoges, CNRS, Ctr Europeen Ceram, ENSCI,SPCTS,UMR 7315, F-87068 Limoges, France. [Benmore, Chris J.] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gueguen, Yann] Univ Rennes 1, Dept Mecan & Verre, UMR CNRS 6251, Inst Phys Rennes, Rennes, France. [Sukenaga, Sohei] Tohoku Univ, IMRAM, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan. [Wilding, Martin C.] Univ Bath, Dept Phys, Bath BA4 7AY, Avon, England. RP Wilding, MC; McMillan, PF (reprint author), UCL, Dept Chem, Christopher Ingold Lab, 20 Gordon St, London WC1H 0AJ, England. EM m.c.wilding@ucl.ac.uk; p.f.mcmillan@ucl.ac.uk RI Chenu, Sebastien/A-3388-2014; OI Chenu, Sebastien/0000-0002-5648-9779; Benmore, Chris/0000-0001-7007-7749 FU US DOE Argonne National Laboratory [DE-AC02-06CH11357]; EPSRC [EP/L017091/1] FX We would like to thank Professor Alex Navrotsky for discussion. The HEXRD work is supported by the US DOE Argonne National Laboratory under contract number DE-AC02-06CH11357. We would like to sincerely thank Prof. Kunihiko Nakashima (Kyushu University) and Prof. Noritaka Saito (Kyushu University) for supporting us on the viscosity measurements. PFM acknowledges support from the EPSRC (EP/L017091/1). NR 63 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD NOV 1 PY 2016 VL 451 SI SI BP 68 EP 76 DI 10.1016/j.jnoncrysol.2016.07.004 PG 9 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA EC3UF UT WOS:000388051600008 ER PT J AU Hunault, MOJY Galoisy, L Lelong, G Newville, M Calas, G AF Hunault, Myrtille O. J. Y. Galoisy, Laurence Lelong, Gerald Newville, Matt Calas, Georges TI Effect of cation field strength on Co2+ speciation in alkali-borate glasses SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Borate glass; Cobalt; Color; Alkali field strength; Glass structure; EXAFS ID TETRAHEDRALLY COORDINATED CO2+; TRANSITION-METAL IONS; X-RAY-DIFFRACTION; OPTICAL-ABSORPTION; NEUTRON-DIFFRACTION; SILICATE-GLASSES; OXIDE GLASSES; CO(II) IONS; SPECTRA; COBALT AB The speciation of Co2+ in alkali (Li, Na, K) borate glasses is investigated by combining optical and X-ray absorption spectroscopy. The glass color is directly correlated to the Co2+ local structure. It changes from pink for 10 mol% alkali borate glass containing 6-fold coordinated Co-[6](2+) clusters to blue for 30 mol% alkali borate glass containing 4-fold coordinated Co-[4](2+). The colorimetric parameters L*, a* and b* vary non-linearly as a function of the alkali content, and indicate of the presence of a third Co2+ species. The linear combination analysis of EXAFS and optical absorption data shows the presence of Co-[5](2+) in 23 mol% K2O borate glass, as revealed by specific electronic transitions and an intermediate Co-O distance. Alkali field strength governs Co-coordination in high-alkali borate glasses: the 30% K2O-glass shows an almost complete conversion of Co2+ to a tetrahedral environment, while only partial conversion occurs in 30% Li2O-glass. Structural models of the relations between Co2+ sites and the borate glass network are proposed in relation with super-structure units. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hunault, Myrtille O. J. Y.; Galoisy, Laurence; Lelong, Gerald; Calas, Georges] UPMC Univ Paris 06, Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim, CNRS,IRD,MNHN, 4 Pl Jussieu, F-75252 Paris, France. [Newville, Matt] Univ Chicago, Consortium Adv Radiat Sci, Adv Photon Source, GSECARS, Argonne, IL 60439 USA. RP Hunault, MOJY; Calas, G (reprint author), UPMC Univ Paris 06, Sorbonne Univ, Inst Mineral Phys Mat & Cosmochim, CNRS,IRD,MNHN, 4 Pl Jussieu, F-75252 Paris, France. EM Myrtille.hunault@impmc.upmc.fr; Georges.calas@impmc.upmc.fr OI Hunault, Myrtille/0000-0002-3754-8630 FU Convergence Project VITRAUX of Sorbonne Universite [SU-14-R-ScPC-15-2]; National Science Foundation - Earth Sciences [EAR-1128799]; Department of Energy - Geosciences [DE-FG02-94ER14466]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is part of the Convergence Project VITRAUX (SU-14-R-ScPC-15-2) of Sorbonne Universite. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy - Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 48 TC 2 Z9 2 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD NOV 1 PY 2016 VL 451 SI SI BP 101 EP 110 DI 10.1016/j.jnoncrysol.2016.06.025 PG 10 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA EC3UF UT WOS:000388051600013 ER PT J AU Peisert, S Barnett, W Dart, E Cuff, J Grossman, RL Balas, E Berman, A Shankar, A Tierney, B AF Peisert, Sean Barnett, William Dart, Eli Cuff, James Grossman, Robert L. Balas, Edward Berman, Ari Shankar, Anurag Tierney, Brian TI The Medical Science DMZ SO JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION LA English DT Article DE Computer Communication Networks; Data Intensive Science; High Performance Computing; Biomedical Research; Computer Security; Health Insurance Portability and Accountability Act AB Objective We describe use cases and an institutional reference architecture for maintaining high-capacity, data-intensive network flows (e.g., 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. Materials and Methods High-end networking, packet filter firewalls, network intrusion detection systems. Results We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive data sets between research institutions over national research networks. Discussion The exponentially increasing amounts of "omics" data, the rapid increase of high-quality imaging, and other rapidly growing clinical data sets have resulted in the rise of biomedical research "big data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large data sets. Maintaining data-intensive flows that comply with HIPAA and other regulations presents a new challenge for biomedical research. Recognizing this, we describe a strategy that marries performance and security by borrowing from and redefining the concept of a "Science DMZ"-a framework that is used in physical sciences and engineering research to manage high-capacity data flows. Conclusion By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and meeting regulatory requirements. C1 [Peisert, Sean] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Peisert, Sean] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Peisert, Sean] CENIC, Berkeley, CA 94709 USA. [Barnett, William] Indiana Univ, Indiana Clin & Translat Sci Inst, Indianapolis, IN 46204 USA. [Barnett, William] Indiana Univ, Regenstrief Inst, Indianapolis, IN 46204 USA. [Dart, Eli; Tierney, Brian] Lawrence Berkeley Natl Lab, ESnet, Berkeley, CA USA. [Cuff, James] Harvard Univ, Res Comp, Cambridge, MA 02138 USA. [Grossman, Robert L.] Univ Chicago, Ctr Data Intens Sci, Chicago, IL 60637 USA. [Balas, Edward] Indiana Univ, Global Res Network Operat Ctr, Bloomington, IN USA. [Berman, Ari] BioTeam, Middleton, MA USA. [Shankar, Anurag] Indiana Univ, Pervas Technol Inst, Bloomington, IN USA. RP Peisert, S (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA.; Peisert, S (reprint author), Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA.; Peisert, S (reprint author), CENIC, Berkeley, CA 94709 USA. EM sppeisert@lbl.gov FU Office of Science, Office of Advanced Scientific Computing Research, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Director, Office of Science, Office of Advanced Scientific Computing Research, of the US Department of Energy, under contract number DE-AC02-05CH11231. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of any of the employers or sponsors of this work. NR 7 TC 0 Z9 0 U1 20 U2 20 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1067-5027 EI 1527-974X J9 J AM MED INFORM ASSN JI J. Am. Med. Inf. Assoc. PD NOV PY 2016 VL 23 IS 6 BP 1199 EP 1201 DI 10.1093/jamia/ocw032 PG 3 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics SC Computer Science; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics GA EC3DZ UT WOS:000388006800024 PM 27136944 ER PT J AU Kirby, J Dietzel, KL Wichmann, G Chan, R Antipov, E Moss, N Baidoo, EEK Jackson, P Gaucher, SP Gottlieb, S LaBarge, J Mahatdejkul, T Hawkins, KM Muley, S Newman, JD Liu, PH Keasling, JD Zhao, LS AF Kirby, James Dietzel, Kevin L. Wichmann, Gale Chan, Rossana Antipov, Eugene Moss, Nathan Baidoo, Edward E. K. Jackson, Peter Gaucher, Sara P. Gottlieb, Shayin LaBarge, Jeremy Mahatdejkul, Tina Hawkins, Kristy M. Muley, Sheela Newman, Jack D. Liu, Pinghua Keasling, Jay D. Zhao, Lishan TI Engineering a functional 1-deoxy-D-xylulose 5-phosphate (DXP) pathway in Saccharomyces cerevisiae SO METABOLIC ENGINEERING LA English DT Article DE MEP pathway; yeast; metabolic engineering; terpene ID NON-MEVALONATE PATHWAY; IRON-SULFUR PROTEINS; 2-C-METHYL-D-ERYTHRITOL 4-PHOSPHATE PATHWAY; ISOPRENOID BIOSYNTHESIS PATHWAYS; FE-S PROTEIN; ESCHERICHIA-COLI; PHOSPHATE-PATHWAY; BIOGENESIS; PURIFICATION; MATURATION AB Isoprenoids are used in many commercial applications and much work has gone into engineering microbial hosts for their production. Isoprenoids are produced either from acetyl-CoA via the mevalonate pathway or from pyruvate and glyceraldehyde 3-phosphate via the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway. Saccharomyces cerevisiae exclusively utilizes the mevalonate pathway to synthesize native isoprenoids and in fact the alternative DXP pathway has never been found or successfully reconstructed in the eukaryotic cytosol. There are, however, several advantages to isoprenoid synthesis via the DXP pathway, such as a higher theoretical yield, and it has long been a goal to transplant the pathway into yeast. In this work, we investigate and address barriers to DXP pathway functionality in S. cerevisiae using a combination of synthetic biology, biochemistry and metabolomics. We report, for the first time, functional expression of the DXP pathway in S. cerevisiae. Under low aeration conditions, an engineered strain relying solely on the DXP pathway for isoprenoid biosynthesis achieved an endpoint biomass 80% of that of the same strain using the mevalonate pathway. C1 [Dietzel, Kevin L.; Wichmann, Gale; Antipov, Eugene; Moss, Nathan; Jackson, Peter; Gaucher, Sara P.; Gottlieb, Shayin; LaBarge, Jeremy; Mahatdejkul, Tina; Hawkins, Kristy M.; Muley, Sheela; Newman, Jack D.; Zhao, Lishan] Amyris Inc, 5885 Hollis St,Suite 100, Emeryville, CA 94608 USA. [Kirby, James; Chan, Rossana; Keasling, Jay D.] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94702 USA. [Kirby, James; Chan, Rossana; Baidoo, Edward E. K.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Liu, Pinghua] Boston Univ, Dept Chem, Boston, MA 02215 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94702 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Biomol Engn, Berkeley, CA 94702 USA. [Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94702 USA. [Keasling, Jay D.] Lawrence Berkeley Natl Lab, Biol Syst & Engn Div, Berkeley, CA 94702 USA. [Keasling, Jay D.] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, Kogle Alle, DK-2970 Horsholm, Denmark. RP Zhao, LS (reprint author), Amyris Inc, 5885 Hollis St,Suite 100, Emeryville, CA 94608 USA. EM zhao@amyris.com FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; University of California at Berkeley [180561]; NIH [GM093903] FX We thank Dr. Youli Xiao and Sylvia Cho (Boston University) for assistance with the IspH and IspG activity assays, and Dr. Chris Paddon (Amyris, Inc.) for helpful discussions. The work conducted through the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. The work conducted through the University of California at Berkeley was funded through the U.C. Discovery Program, under Grant no. 180561. The relevant research in the Liu lab was funded by NIH GM093903. NR 46 TC 0 Z9 0 U1 6 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD NOV PY 2016 VL 38 BP 494 EP 503 DI 10.1016/j.ymben.2016.10.017 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA EC2WI UT WOS:000387984600048 ER EF