FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Tang, YH Mandal, KC McGuire, JA Lai, CW AF Tang, Yanhao Mandal, Krishna C. McGuire, John A. Lai, Chih Wei TI Layer- and frequency-dependent second harmonic generation in reflection from GaSe atomic crystals SO PHYSICAL REVIEW B LA English DT Article ID GALLIUM SELENIDE; EPSILON-GASE; EXCITONS; LIGHT; GAP AB We report optical second-harmonic generation (SHG) in reflection from GaSe crystals of 1 to more than 100 layers using a fundamental picosecond pulsed pump at 1.58 eV and a supercontinuum white light pulsed laser with energies ranging from 0.85 to 1.4 eV. The measured reflected SHG signal is maximal in samples of similar to 20 layers, decreasing in thicker samples as a result of interference. The thickness-and frequency-dependence of the SHG response of samples thicker than similar to 7 layers can be reproduced by a second-order optical susceptibility that is the same as in bulk samples. For samples similar to 7 layers, the second-order optical susceptibility is reduced compared to that in thicker samples, which is attributed to the expected band-gap increase in mono-and few-layer GaSe. C1 [Tang, Yanhao; McGuire, John A.; Lai, Chih Wei] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Mandal, Krishna C.] Univ South Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Lai, Chih Wei] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lai, Chih Wei] US Army, Res Lab, Adelphi, MD 20783 USA. RP McGuire, JA (reprint author), Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. EM mcguire@pa.msu.edu; cwlai@msu.edu RI McGuire, John/C-3380-2015; Lai, Chih Wei/E-4945-2010 OI McGuire, John/0000-0002-0682-0953; Lai, Chih Wei/0000-0003-3571-4671 FU NSF [DMR-09055944]; Michigan State University FX We thank Brage Golding for discussions. This work was supported by NSF Grant No. DMR-09055944 as well as start-up funding and the Cowen endowment at Michigan State University. This research has used the W. M. Keck Microfabrication Facility. NR 29 TC 0 Z9 0 U1 23 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 6 PY 2016 VL 94 IS 12 AR 125302 DI 10.1103/PhysRevB.94.125302 PG 6 WC Physics, Condensed Matter SC Physics GA DV9BT UT WOS:000383235000010 ER PT J AU Benczer-Koller, N Kumbartzki, GJ Speidel, KH Torres, DA Robinson, SJQ Sharon, YY Allmond, JM Fallon, P Abramovic, I Bernstein, LA Bevins, JE Crawford, HL Guevara, ZE Hurst, AM Kirsch, L Laplace, TA Lo, A Matthews, EF Mayers, I Phair, LW Ramirez, F Wiens, A AF Benczer-Koller, N. Kumbartzki, G. J. Speidel, K. -H. Torres, D. A. Robinson, S. J. Q. Sharon, Y. Y. Allmond, J. M. Fallon, P. Abramovic, I. Bernstein, L. A. Bevins, J. E. Crawford, H. L. Guevara, Z. E. Hurst, A. M. Kirsch, L. Laplace, T. A. Lo, A. Matthews, E. F. Mayers, I. Phair, L. W. Ramirez, F. Wiens, A. TI Magnetic moment and lifetime measurements of Coulomb-excited states in Cd-106 SO PHYSICAL REVIEW C LA English DT Article AB Background: The Cd isotopes are well studied, but experimental data for the rare isotopes are sparse. At energies above the Coulomb barrier, higher states become accessible. Purpose: Remeasure and supplement existing lifetimes and magnetic moments of low-lying states in Cd-106. Methods: In an inverse kinematics reaction, a Cd-106 beam impinging on a C-12 target was used to Coulomb excite the projectiles. The high recoil velocities provide a unique opportunity to measure g factors with the transient-field technique and to determine lifetimes from lineshapes by using the Doppler-shift-attenuation method. Large-scale shell-model calculations were carried out for Cd-106. Results: The g factors of the 2(1)(+) and 4(1)(+) states in Cd-106 were measured to be g(2(1)(+)) = + 0.398(22) and g(4(1)(+)) = + 0.23(5). A lineshape analysis yielded lifetimes in disagreement with published values. The new results are tau(Cd-106; 2(1)(+)) = 7.0(3) ps and tau(Cd-106; 4(1)(+)) = 2.5(2) ps. The mean life tau(Cd-106; 2(2)(+)) = 0.28(2) ps was determined from the fully-Doppler-shifted gamma line. Mean lives of tau(Cd-106; 4(3)(+)) = 1.1(1) ps and tau(Cd-106; 3(1)(-)) = 0.16(1) ps were determined for the first time. Conclusions: The newly measured g(4(1)(+)) of Cd-106 is found to be only 59% of the g(2(1)(+)). This difference cannot be explained by either shell-model or collective-model calculations. C1 [Benczer-Koller, N.; Kumbartzki, G. J.; Sharon, Y. Y.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Speidel, K. -H.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Torres, D. A.; Guevara, Z. E.; Ramirez, F.] Univ Nacl Colombia, Dept Fis, Carrera 30 45-03, Bogota, Colombia. [Robinson, S. J. Q.] Millsaps Coll, Dept Phys, Jackson, MS 39210 USA. [Allmond, J. M.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Fallon, P.; Bernstein, L. A.; Crawford, H. L.; Hurst, A. M.; Phair, L. W.; Wiens, A.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Abramovic, I.; Bernstein, L. A.; Bevins, J. E.; Hurst, A. M.; Kirsch, L.; Laplace, T. A.; Lo, A.; Matthews, E. F.; Mayers, I.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Bernstein, L. A.; Laplace, T. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Benczer-Koller, N (reprint author), Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. EM nkoller@physics.rutgers.edu FU Deutsche Forschungsgemeinschaft [SP190/18-1]; Colciencias [110165842984 - 2015]; Stockton University Research and Professional Development award; U.S. National Science Foundation; US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-05CH11231, DE-AC52-07NA27344, DE-AC05-00OR22725(ORNL)] FX The authors thank the Berkeley 88-Inch Cyclotron staff for their help in setting up the experiment and providing the cadmium beam. The target was prepared by P. Maier-Komor at the Technische Universitat Munich, Germany. The authors are grateful to L. Zamick for many discussions and suggestions about the theoretical interpretation of the g-factor results. K.-H.S. acknowledges support by the Deutsche Forschungsgemeinschaft under SP190/18-1. D.A.T., Z.E.G., and F.R. acknowledge support by Colciencias under contract 110165842984 - 2015. Y.Y.S. acknowledges a Stockton University Research and Professional Development award. The work has been supported in part by the U.S. National Science Foundation and by the US Department of Energy, Office of Science, Office of Nuclear Physics under contracts No. DE-AC02-05CH11231, No. DE-AC52-07NA27344 and No. DE-AC05-00OR22725(ORNL). NR 16 TC 0 Z9 0 U1 4 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 6 PY 2016 VL 94 IS 3 AR 034303 DI 10.1103/PhysRevC.94.034303 PG 6 WC Physics, Nuclear SC Physics GA DV9DC UT WOS:000383238900001 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, B Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M Della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R De Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanisch, S Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Herget, V Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Jivan, H Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-Zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koehler, NM Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, C Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, L Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. Guimaraes da Costa, J. Barreiro Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, Bh Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Lopez, S. Calvente Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. Della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Fernandez Perez, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. De Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanisch, S. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Herget, V. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Jivan, H. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Rozas, A. Juste Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-Zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koehler, N. M. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, C. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Paz, I. Lopez Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Losel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Oleiro Seabra, L. F. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero Y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Rodriguez, L. Pacheco Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, L. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St. Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tannenwald, B. B. Araya, S. Tapia Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. TI Search for Higgs and Z Boson Decays to phi gamma with the ATLAS Detector SO PHYSICAL REVIEW LETTERS LA English DT Article ID MASS; LHC; HIERARCHY; VIOLATION; MODEL AB A search for the decays of the Higgs and Z bosons to a phi meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb(-1) collected at root s = 13 TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to phi gamma of 1.4 x 10(-3) and 8.3 x 10(-6), respectively, are obtained. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Chekanov, S.; Jiang, H.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Sijacki, Dj.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Kim, H. Y.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Tsipolitis, G.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Ahmadov, F.; Gingrich, D. M.; Huseynov, N.; Javadov, N.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Fernandez Perez, S.; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Gonzalez Parra, G.; Grinstein, S.; Rozas, A. Juste; Korolkov, I.; Lange, J. C.; Paz, I. Lopez; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Korol, A. A.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Phys Engn, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Phys Inst, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio De Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Protopopescu, S.; Purohit, M.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stucci, S. A.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Otero Y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, Bh; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hanisch, S.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Araya, S. Tapia; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Guimaraes da Costa, J. Barreiro; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Liu, B.; Ma, L. L.; Ma, Y.; Oakham, F. G.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai, Peoples R China. [Bret, M. Cano; El Moursli, R. Cherkaoui; Fassi, F.; Guo, J.; Haddad, N.; Hu, S.; Idrissi, Z.; Li, L.; Tayalati, Y.; Yang, H.] PKU CHEP, Beijing, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Sijacki, Dj.; Simon, D.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Pavia, Italy. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; Sijacki, Dj.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Sijacki, Dj.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; Della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Ivane Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, High Energy Phys Inst, Tbilisi, Rep of Georgia. [Duren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Phys Inst 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St. Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Albrand, S.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Blair, R. E.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Ins Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Phys Dept, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Leone, R.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris 06, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Lopez, S. Calvente; Cueto, A.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Geng, C.; Guan, L.; Guo, Y.; Levin, D.; Li, B.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Giokaris, N.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Losel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Koehler, N. M.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Napoli, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Igonkina, O.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] RAS, SB, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris Saclay, CNRS, IN2P3, Univ Paris 06,LAL, Orsay, France. [Hanagaki, K.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Schaefer, L.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Oleiro Seabra, L. F.; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Amorim, A.; Carvalho, J.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Pedro, R.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Sijacki, Dj.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Ryzhov, A.; Solodkov, A. A.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.] NRC KI, Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Pavia, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Pavia, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dept Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Pavia, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energie, DSM IRFU Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Nielsen, J.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Bylund, O. Bessidskaia; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Jivan, H.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bertolucci, F.; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bertolucci, F.; Bohm, C.; Clement, C.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Sijacki, Dj.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Aloisio, A.; Asai, S.; Chen, S.; Duhrssen, M.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Sijacki, Dj.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.; Santurio, E. Valdes] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Savard, P.; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, Udine, Italy. [Acharya, B. S.; Cobal, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim & Fis Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Sijacki, Dj.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Aloisio, A.; Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Duhrssen, M.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Sijacki, Dj.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Hard, A. S.; Ji, H.; Kashif, L.; Kruse, A.; Wang, F.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Sijacki, Dj.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Math & Naturwissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Sijacki, Dj.; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 823, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Grinstein, S.; Rozas, A. Juste; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Acad Sinica Grid Comp, Inst Phys, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, INRNE, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Gladilin, Leonid/B-5226-2011; Brooks, William/C-8636-2013; Conde Muino, Patricia/F-7696-2011; Tikhomirov, Vladimir/M-6194-2015; Ventura, Andrea/A-9544-2015; Warburton, Andreas/N-8028-2013; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; Boyko, Igor/J-3659-2013; Prokoshin, Fedor/E-2795-2012; Coccaro, Andrea/P-5261-2016; Staroba, Pavel/G-8850-2014; Lazzaroni, Massimo/N-3675-2015; Kukla, Romain/P-9760-2016; Goncalo, Ricardo/M-3153-2016; Gavrilenko, Igor/M-8260-2015; Owen, Mark/Q-8268-2016; Doyle, Anthony/C-5889-2009; Shulga, Evgeny/R-1759-2016; Maleev, Victor/R-4140-2016; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; White, Ryan/E-2979-2015; Kantserov, Vadim/M-9761-2015; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; Snesarev, Andrey/H-5090-2013; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Carli, Ina/C-2189-2017; Martinez, Mario /I-3549-2015; Guo, Jun/O-5202-2015; Villa, Mauro/C-9883-2009; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; OI Gladilin, Leonid/0000-0001-9422-8636; Brooks, William/0000-0001-6161-3570; Conde Muino, Patricia/0000-0002-9187-7478; Tikhomirov, Vladimir/0000-0002-9634-0581; Ventura, Andrea/0000-0002-3368-3413; Warburton, Andreas/0000-0002-2298-7315; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; Boyko, Igor/0000-0002-3355-4662; Prokoshin, Fedor/0000-0001-6389-5399; Coccaro, Andrea/0000-0003-2368-4559; Lazzaroni, Massimo/0000-0002-4094-1273; Kukla, Romain/0000-0002-1140-2465; Goncalo, Ricardo/0000-0002-3826-3442; Owen, Mark/0000-0001-6820-0488; Doyle, Anthony/0000-0001-6322-6195; Shulga, Evgeny/0000-0001-5099-7644; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; White, Ryan/0000-0003-3589-5900; Kantserov, Vadim/0000-0001-8255-416X; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Carli, Ina/0000-0002-0411-1141; Guo, Jun/0000-0001-8125-9433; Villa, Mauro/0000-0002-9181-8048; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Terzo, Stefano/0000-0003-3388-3906; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; La Rosa, Alessandro/0000-0001-6291-2142; Beck, Hans Peter/0000-0001-7212-1096; Smirnov, Sergei/0000-0002-6778-073X; Vazquez Schroeder, Tamara/0000-0002-9780-099X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR (Ministry of Industry and Trade), Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF (Helmholtz Association), Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; FOM, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD (Ministry of Education, Science and Technological Development), Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissement d'Avenir Labex, France; Investissement d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF (Bergen Research Foundation), Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR (Ministry of Industry and Trade) and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF (Helmholtz Association), and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD (Ministry of Education, Science and Technological Development), Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF (Bergen Research Foundation), Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [46]. NR 45 TC 0 Z9 0 U1 47 U2 58 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 6 PY 2016 VL 117 IS 11 AR 111802 DI 10.1103/PhysRevLett.117.111802 PG 19 WC Physics, Multidisciplinary SC Physics GA DV9GN UT WOS:000383248700004 PM 27661680 ER PT J AU Chou, AS Gustafson, R Hogan, C Kamai, B Kwon, O Lanza, R McCuller, L Meyer, SS Richardson, J Stoughton, C Tomlin, R Waldman, S Weiss, R AF Chou, Aaron S. Gustafson, Richard Hogan, Craig Kamai, Brittany Kwon, Ohkyung Lanza, Robert McCuller, Lee Meyer, Stephan S. Richardson, Jonathan Stoughton, Chris Tomlin, Raymond Waldman, Samuel Weiss, Rainer CA Holometer Collaboration TI First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers SO PHYSICAL REVIEW LETTERS LA English DT Article ID STABILIZATION; DETECTOR AB Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of colocated 39 m long, high power Michelson interferometers with flat broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light-crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2 x 10(8) independent spectral measurements with 381 Hz frequency resolution to obtain 2.1 x 10(-20)m/root Hz sensitivity to stationary signals. For signal bandwidths Delta f > 11 kHz, the sensitivity to strain h or shear power spectral density of classical or exotic origin surpasses a milestone PSD delta h < t(p) where t(p) = 5.39 x 10(-44)/Hz is the Planck time. C1 [Chou, Aaron S.; Hogan, Craig; Stoughton, Chris; Tomlin, Raymond] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Gustafson, Richard] Univ Michigan, Ann Arbor, MI 48109 USA. [Hogan, Craig; Kamai, Brittany; Kwon, Ohkyung; Lanza, Robert; McCuller, Lee; Meyer, Stephan S.; Richardson, Jonathan] Univ Chicago, Chicago, IL 60637 USA. [Kamai, Brittany] Vanderbilt Univ, Nashville, TN 37235 USA. [Kwon, Ohkyung] Korea Adv Inst Sci & Technol, Daejeon 34141, South Korea. [Lanza, Robert; McCuller, Lee; Weiss, Rainer] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Waldman, Samuel] SpaceX, Hawthorne, CA 90250 USA. RP Chou, AS (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. OI Kwon, Ohkyung/0000-0002-0785-4346 FU Department of Energy at Fermilab [DE-AC02-07CH11359, FNAL FWP 11-03]; John Templeton Foundation; National Science Foundation [PHY-1205254, DGE-0909667, DGE-0638477, DGE-1144082]; NASA [NNX09AR38G]; Fermi Research Alliance; Ford Foundation; Kavli Institute for Cosmological Physics; University of Chicago/Fermilab Strategic Collaborative Initiatives; Universities Research Association Visiting Scholars Program FX This work was supported by the Department of Energy at Fermilab under Contract No. DE-AC02-07CH11359 and the Early Career Research Program (FNAL FWP 11-03), and by grants from the John Templeton Foundation, the National Science Foundation (Grants No. PHY-1205254, No. DGE-0909667, No. DGE-0638477, and No. DGE-1144082), NASA (Grant No. NNX09AR38G), the Fermi Research Alliance, the Ford Foundation, the Kavli Institute for Cosmological Physics, University of Chicago/Fermilab Strategic Collaborative Initiatives, and the Universities Research Association Visiting Scholars Program. The Holometer team gratefully acknowledges the extensive support and contributions of Bradford Boonstra, Benjamin Brubaker, Marcin Burdzy, Herman Cease, Tim Cunneen, Steve Dixon, Bill Dymond, Valera Frolov, Jose Gallegos, Hank Glass, Emily Griffith, Hartmut Grote, Gaston Gutierrez, Evan Hall, Sten Hansen, Young-Kee Kim, Mark Kozlovsky, Dan Lambert, Scott McCormick, Erik Ramberg, Doug Rudd, Geoffrey Schmit, Alex Sippel, Jason Steffen, Sali Sylejmani, David Tanner, Jim Volk, William Wester, and James Williams for the design and construction of the apparatus. NR 21 TC 2 Z9 2 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 6 PY 2016 VL 117 IS 11 AR 111102 DI 10.1103/PhysRevLett.117.111102 PG 5 WC Physics, Multidisciplinary SC Physics GA DV9GN UT WOS:000383248700003 PM 27661676 ER PT J AU Coloma, P Ipek, S AF Coloma, Pilar Ipek, Seyda TI Neutrino Masses from a Pseudo-Dirac Bino SO PHYSICAL REVIEW LETTERS LA English DT Article ID SEESAW MECHANISM; STANDARD MODEL; LEPTON NUMBER; R-PARITY; SUPERSYMMETRY; DECAYS AB We show that, in U(1)(R)-symmetric supersymmetric models, the bino and its Dirac partner (the singlino) can play the role of right-handed neutrinos and generate the neutrino masses and mixing, without the need for traditional bilinear or trilinear R-parity violating operators. The two particles form a pseudo-Dirac pair, the "bi nu o." An inverse seesaw texture is generated for the neutrino-bi nu o sector, and the lightest neutrino is predicted to be massless. Unlike in most models with heavy right-handed neutrinos, the bi nu o can be sizably produced at the LHC through its interactions with colored particles, while respecting low energy constraints from neutrinoless double-beta decay and charged lepton flavor violation. C1 [Coloma, Pilar; Ipek, Seyda] Fermi Natl Lab, Batavia, IL 60510 USA. RP Coloma, P (reprint author), Fermi Natl Lab, Batavia, IL 60510 USA. EM pcoloma@fnal.gov; sipek@fnal.gov FU U.S. Department of Energy [DE-AC02-07CH11359]; National Science Foundation [PHY-1066293]; European Union [690575, 674896] FX We thank Paddy Fox, Roni Harnik, Kiel Howe, and Jacobo Lopez-Pavon for valuable conversations. S. I. thanks Ann Nelson for comments. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. The work of S. I. was partly performed at the Aspen Center for Physics, which is supported by National Science Foundation Grant No. PHY-1066293. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie Grant Agreements No. 690575 and No. 674896. NR 42 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 6 PY 2016 VL 117 IS 11 AR 111803 DI 10.1103/PhysRevLett.117.111803 PG 5 WC Physics, Multidisciplinary SC Physics GA DV9GN UT WOS:000383248700005 PM 27661681 ER PT J AU Karrasch, C Kennes, DM Heidrich-Meisner, F AF Karrasch, C. Kennes, D. M. Heidrich-Meisner, F. TI Thermal Conductivity of the One-Dimensional Fermi-Hubbard Model SO PHYSICAL REVIEW LETTERS LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; STATISTICAL-MECHANICAL THEORY; CARBON NANOTUBES; IRREVERSIBLE PROCESSES; OPTICAL LATTICE; ULTRACOLD ATOMS; PRODUCT STATES; MOTT INSULATOR; XXZ CHAIN; TRANSPORT AB We study the thermal conductivity of the one-dimensional Fermi-Hubbard model at a finite temperature using a density matrix renormalization group approach. The integrability of this model gives rise to ballistic thermal transport. We calculate the temperature dependence of the thermal Drude weight at half filling for various interaction strengths. The finite-frequency contributions originating from the fact that the energy current is not a conserved quantity are investigated as well. We report evidence that breaking the integrability through a nearest-neighbor interaction leads to vanishing Drude weights and diffusive energy transport. Moreover, we demonstrate that energy spreads ballistically in local quenches with initially inhomogeneous energy density profiles in the integrable case. We discuss the relevance of our results for thermalization in ultracold quantum-gas experiments and for transport measurements with quasi-one-dimensional materials. C1 [Karrasch, C.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA. [Karrasch, C.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kennes, D. M.] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany. [Kennes, D. M.] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany. [Heidrich-Meisner, F.] Univ Munich, Dept Phys, D-80333 Munich, Germany. [Heidrich-Meisner, F.] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany. [Karrasch, C.] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany. [Karrasch, C.] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany. RP Karrasch, C (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 95720 USA.; Karrasch, C (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Karrasch, C (reprint author), Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany.; Karrasch, C (reprint author), Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany. RI Karrasch, Christoph/S-5716-2016 OI Karrasch, Christoph/0000-0002-6475-3584 FU Nanostructured Thermoelectrics program of LBNL; DFG through the Research Training Group 1995; Emmy Noether program FX We thank C. Hess, T. Prosen, R. Steinigeweg, and X. Zotos for very helpful discussions. We thank M. Medenjak and T. Prosen for pointing out a mistake in a previous version of Fig. S2 to us. We acknowledge support by the Nanostructured Thermoelectrics program of LBNL (C. K.) as well as by the DFG through the Research Training Group 1995 (D. M. K.) and the Emmy Noether program (C. K.). NR 118 TC 1 Z9 1 U1 17 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 6 PY 2016 VL 117 IS 11 AR 116401 DI 10.1103/PhysRevLett.117.116401 PG 7 WC Physics, Multidisciplinary SC Physics GA DV9GN UT WOS:000383248700013 PM 27661705 ER PT J AU Johnson, LE Sushko, PV Tomota, Y Hosono, H AF Johnson, Lewis E. Sushko, Peter V. Tomota, Yudai Hosono, Hideo TI Electron anions and the glass transition temperature SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE amorphous materials; glass transition; electrides; molecular dynamics; density functional theory ID CALCIUM ALUMINOSILICATE GLASSES; ALUMINATE GLASSES; ROOM-TEMPERATURE; MOLECULAR-DYNAMICS; STABLE ELECTRIDE; SOLVATED ELECTRONS; AMMONIA-SYNTHESIS; FORMING ABILITY; METALLIC STATE; HYDRIDE IONS AB Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32](2+) center dot (e(-))(2), we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. C1 [Johnson, Lewis E.; Sushko, Peter V.] Pacific Northwest Natl Lab, Phys Sci Div, Phys & Computat Sci Directorate, Richland, WA 99354 USA. [Tomota, Yudai; Hosono, Hideo] Tokyo Inst Technol, Mat Res Ctr Element Strategy, Midori Ku, Yokohama, Kanagawa 2268503, Japan. RP Sushko, PV (reprint author), Pacific Northwest Natl Lab, Phys Sci Div, Phys & Computat Sci Directorate, Richland, WA 99354 USA.; Hosono, H (reprint author), Tokyo Inst Technol, Mat Res Ctr Element Strategy, Midori Ku, Yokohama, Kanagawa 2268503, Japan. EM peter.sushko@pnnl.gov; hosono@msl.titech.ac.jp RI Hosono, Hideo/J-3489-2013; Sushko, Peter/F-5171-2013 OI Hosono, Hideo/0000-0001-9260-6728; Sushko, Peter/0000-0001-7338-4146 FU Laboratory Directed Research and Development program at PNNL; US Department of Energy [DE-AC05-76RLO1830]; Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values program of the Japan Science and Technology Agency FX Calculations were performed using Pacific Northwest National Laboratory (PNNL) Institutional Computing resources. This work was supported by the Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values program of the Japan Science and Technology Agency. P.V.S. was supported by the Laboratory Directed Research and Development program at PNNL, a multiprogram national laboratory operated by Battelle for the US Department of Energy under Contract DE-AC05-76RLO1830. NR 60 TC 2 Z9 2 U1 6 U2 7 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 6 PY 2016 VL 113 IS 36 BP 10007 EP 10012 DI 10.1073/pnas.1606891113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DV7CU UT WOS:000383094500030 PM 27559083 ER PT J AU Swann, ALS Hoffman, FM Koven, CD Randerson, JT AF Swann, Abigail L. S. Hoffman, Forrest M. Koven, Charles D. Randerson, James T. TI Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE drought; global warming; climate impact; evaporation; global hydrology ID EARTH SYSTEM MODEL; WATER-USE EFFICIENCY; ATMOSPHERIC CO2; GLOBAL DROUGHT; ELEVATED CO2; CMIP5; PHOTOSYNTHESIS; TRANSPIRATION; CONDUCTANCE; UNCERTAINTY AB Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment. C1 [Swann, Abigail L. S.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Swann, Abigail L. S.] Univ Washington, Dept Biol, Seattle, WA 98195 USA. [Hoffman, Forrest M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Hoffman, Forrest M.] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. [Koven, Charles D.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA. [Randerson, James T.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. RP Swann, ALS (reprint author), Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA.; Swann, ALS (reprint author), Univ Washington, Dept Biol, Seattle, WA 98195 USA. EM aswann@u.washington.edu RI Hoffman, Forrest/B-8667-2012; Koven, Charles/N-8888-2014 OI Hoffman, Forrest/0000-0001-5802-4134; Koven, Charles/0000-0002-3367-0065 FU National Science Foundation [AGS-1321745, EF-1340649]; Regional and Global Climate Modeling Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the US Department of Energy Office of Science FX We thank B. Cook for sharing his software for calculating PDSI and M. Mu for help with retrieving data from the Earth System Grid Federation. A.L.S.S. was supported by National Science Foundation Grants AGS-1321745 and EF-1340649. F.M.H., C.D.K., and J.T.R. received support from the Regional and Global Climate Modeling Program in the Climate and Environmental Sciences Division of the Biological and Environmental Research Program in the US Department of Energy Office of Science. We acknowledge the organizations and groups responsible for CMIP, including the World Climate Research Programme, the climate modeling groups (listed in Table S4), and the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison. NR 56 TC 8 Z9 8 U1 40 U2 42 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 6 PY 2016 VL 113 IS 36 BP 10019 EP 10024 DI 10.1073/pnas.1604581113 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DV7CU UT WOS:000383094500032 PM 27573831 ER PT J AU Rangamani, P Levy, MG Khan, S Oster, G AF Rangamani, Padmini Levy, Michael G. Khan, Shahid Oster, George TI Paradoxical signaling regulates structural plasticity in dendritic spines SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE CaMKII; dendritic spine; actin ID LONG-TERM POTENTIATION; ACTIN-BASED PLASTICITY; SYNAPTIC PLASTICITY; MYOSIN IIB; PROTEIN PHOSPHATASE-1; SYSTEMS BIOLOGY; RHO GTPASES; CELL-SHAPE; F-ACTIN; DYNAMICS AB Transient spine enlargement (3-to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. C1 [Rangamani, Padmini] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Levy, Michael G.] Univ Calif Berkeley, Biophys Grad Program, Berkeley, CA 94720 USA. [Khan, Shahid] Lawrence Berkeley Natl Lab, Mol Biol Consortium, Berkeley, CA 94720 USA. [Oster, George] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. RP Rangamani, P (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA.; Oster, G (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM padmini.rangamani@eng.ucsd.edu; goster@berkeley.edu FU Air Force Office of Scientific Research Award [FA9550-15-1-0124]; NIH [R01GM104979]; University of California, Berkeley Chancellor's Postdoctoral Fellowship; NIH Grant from the National Institute for General Medical Sciences [P41GM103313] FX We thank Ms. Jasmine Nirody for help with extracting data from the time courses of the experiment. This work was supported by Air Force Office of Scientific Research Award FA9550-15-1-0124 (to P.R.), NIH Grant R01GM104979 (to G.O.), and the University of California, Berkeley Chancellor's Postdoctoral Fellowship. The Virtual Cell is supported by NIH Grant P41GM103313 from the National Institute for General Medical Sciences. NR 65 TC 0 Z9 0 U1 4 U2 4 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD SEP 6 PY 2016 VL 113 IS 36 BP E5298 EP E5307 DI 10.1073/pnas.1610391113 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DV7CU UT WOS:000383094500009 PM 27551076 ER PT J AU Bauer, CW Ferland, N AF Bauer, Christian W. Ferland, Nicolas TI Resummation of electroweak Sudakov logarithms for real radiation SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Perturbative QCD; Resummation ID LOOP LEADING LOGARITHMS; HIGH-ENERGY; MASS SINGULARITIES; FORM-FACTORS AB Using the known resummation of virtual corrections together with knowledge of the leading-log structure of real radiation in a parton shower, we derive analytic expressions for the resummed real radiation after they have been integrated over all of phase space. Performing a numerical analysis for both the 13 TeV LHC and a 100 TeV pp collider, we show that resummation of the real corrections is at least as important as resummation of the virtual corrections, and that this resummation has a sizable effect for partonic center of mass energies exceeding root s = O(few TeV). For partonic center of mass energies root s greater than or similar to 10 TeV, which can be reached at a 100 TeV collider, resummation becomes an O(1) effect and needs to be included even for rough estimates of the cross-sections. C1 [Bauer, Christian W.; Ferland, Nicolas] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bauer, CW (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cwbauer@lbl.gov; nferland@lbl.gov FU Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231] FX We would like the thank Aneesh Manohar for several stimulating discussions, and Michelangelo Mangano for helpful comments. This work was supported by by the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 31 TC 2 Z9 2 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 6 PY 2016 IS 9 AR 025 DI 10.1007/JHEP09(2016)025 PG 23 WC Physics, Particles & Fields SC Physics GA DV4HG UT WOS:000382885800001 ER PT J AU Frandsen, BA Gong, ZZ Terban, MW Banerjee, S Chen, BJ Jin, CQ Feygenson, M Uemura, YJ Billinge, SJL AF Frandsen, Benjamin A. Gong, Zizhou Terban, Maxwell W. Banerjee, Soham Chen, Bijuan Jin, Changqing Feygenson, Mikhail Uemura, Yasutomo J. Billinge, Simon J. L. TI Local atomic and magnetic structure of dilute magnetic semiconductor (Ba, K)(Zn, Mn)(2)As-2 SO PHYSICAL REVIEW B LA English DT Article AB We have studied the atomic and magnetic structure of the dilute ferromagnetic semiconductor system (Ba, K)(Zn, Mn)(2)As-2 through atomic and magnetic pair distribution function analysis of temperature-dependent x-ray and neutron total scattering data. We detected a change in curvature of the temperature-dependent unit cell volume of the average tetragonal crystallographic structure at a temperature coinciding with the onset of ferromagnetic order. We also observed the existence of a well-defined local orthorhombic structure on a short length scale of less than or similar to 5 angstrom, resulting in a rather asymmetrical local environment of the Mn and As ions. Finally, the magnetic PDF revealed ferromagnetic alignment of Mn spins along the crystallographic c axis, with robust nearest-neighbor ferromagnetic correlations that exist even above the ferromagnetic ordering temperature. We discuss these results in the context of other experiments and theoretical studies on this system. C1 [Frandsen, Benjamin A.; Gong, Zizhou; Uemura, Yasutomo J.] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Terban, Maxwell W.; Banerjee, Soham; Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Chen, Bijuan; Jin, Changqing] Chinese Acad Sci, Inst Phys, Beijing, Peoples R China. [Feygenson, Mikhail] Forschungszentrum Julich GmbH, Julich Ctr Neutron Sci, D-52425 Julich, Germany. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA.; Billinge, SJL (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM sb2896@columbia.edu FU NSF [OISE-0968226, DMR-1436095, DGE-11-44155]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DOE-BES) [DE-SC00112704]; National Science Foundation (NSF) of China; Ministry of Science & Technology (MOST) of China; Chinese Academy of Sciences [112111KYS820150017]; DOE-BES [DE-SC0012704]; Scientific User Facilities Division, Office of Basic Energy Science, U.S. DOE FX We thank Joan Siewenie for technical assistance with the measurements performed on the NOMAD instrument. B.A.F. and Y.J.U. acknowledge support from the NSF via PIRE program OISE-0968226 and DMREF program DMR-1436095, and BAF by the NSF GRFP program DGE-11-44155. S.J.L.B. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DOE-BES) under Contract No. DE-SC00112704. Work at the Institute of Physics, Chinese Academy of Sciences was supported by the National Science Foundation (NSF) & Ministry of Science & Technology (MOST) of China as well as by the Chinese Academy of Sciences (112111KYS820150017). Use of the National Synchrotron Light Source (NSLS) and the NSLS-II, at Brookhaven National Laboratory, was supported by DOE-BES under Contract No. DE-SC0012704. Use of the Spallation Neutron Source, Oak Ridge National Laboratory, was sponsored by the Scientific User Facilities Division, Office of Basic Energy Science, U.S. DOE. NR 29 TC 0 Z9 0 U1 20 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 6 PY 2016 VL 94 IS 9 AR 094102 DI 10.1103/PhysRevB.94.094102 PG 8 WC Physics, Condensed Matter SC Physics GA DV1YV UT WOS:000382718900001 ER PT J AU Maca, F Kudrnovsky, J Drchal, V Turek, I Stelmakhovych, O Beran, P Llobet, A Marti, X AF Maca, F. Kudrnovsky, J. Drchal, V. Turek, I. Stelmakhovych, O. Beran, P. Llobet, A. Marti, X. TI Defect-induced magnetic structure of CuMnSb SO PHYSICAL REVIEW B LA English DT Article ID PLANE-WAVE BASIS; EXCHANGE INTERACTIONS; HEUSLER ALLOYS; PHASE; METALS; ENERGY AB The observed ground state for the CuMnSb alloy is the antiferromagnetic (111) phase as confirmed by neutron diffraction experiments. Ab initio total energy calculations for ideal, defect-free CuMnSb contradict this result and indicate that other magnetic structures can have their total energies lower. It is known that Heusler alloys usually contain various defects depending on the sample preparation. We have therefore investigated magnetic phases of CuMnSb assuming the most common defects which exist in real experimental conditions. The full-potential supercell approach and a Heisenberg model approach using the coherent potential approximation are adopted. The results of the total energy supercell calculations indicate that defects that bring Mn atoms close together promote the antiferromagnetic (111) structure already for a low critical defect concentrations (approximate to 3%). A detailed study of exchange interactions between Mn moments further supports the above stabilization mechanism. Finally, the stability of the antiferromagnetic (111) order is enhanced by inclusion of electron correlations in narrow Mn bands. The present refinement structure analysis of the neutron scattering experiment supports theoretical conclusions. C1 [Maca, F.; Kudrnovsky, J.; Drchal, V.] Inst Phys ASCR, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. [Turek, I.; Stelmakhovych, O.] Charles Univ Prague, Fac Math & Phys, Dept Condensed Matter Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic. [Beran, P.] Nucl Phys Inst ASCR, CZ-25068 Rez, Czech Republic. [Llobet, A.] Los Alamos Natl Lab, Neutron Sci & Technol, Phys, Los Alamos, NM 87544 USA. [Marti, X.] Inst Phys ASCR, Cukrovarnicka 10, CZ-16253 Prague 6, Czech Republic. RP Maca, F (reprint author), Inst Phys ASCR, Na Slovance 2, CZ-18221 Prague 8, Czech Republic. RI Marti, Xavier/E-1103-2014; Turek, Ilja/G-5553-2014; Beran, Premysl/F-8855-2012; Maca, Frantisek/G-4467-2014 OI Marti, Xavier/0000-0003-1653-5619; Beran, Premysl/0000-0002-1217-3131; FU Czech Science Foundation [14-37427G]; National Grid Infrastructure MetaCentrum (CZ) [LM2010005]; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX We acknowledge financial support from the Czech Science Foundation (Grant No. 14-37427G) and the National Grid Infrastructure MetaCentrum (CZ) (Project No. LM2010005) for access to computation facilities. This work has benefited from the use of HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract No. DE-AC52-06NA25396. NR 31 TC 0 Z9 0 U1 13 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 6 PY 2016 VL 94 IS 9 AR 094407 DI 10.1103/PhysRevB.94.094407 PG 9 WC Physics, Condensed Matter SC Physics GA DV1YV UT WOS:000382718900007 ER PT J AU Watanabe, SM Simon, V Durham, ND Kemp, BR Machihara, S Kemal, KS Shi, BS Foley, B Li, HR Chen, BK Weiser, B Burger, H Anastos, K Chen, CP Carter, CA AF Watanabe, Susan M. Simon, Viviana Durham, Natasha D. Kemp, Brittney R. Machihara, Satoshi Kemal, Kimdar Sherefa Shi, Binshan Foley, Brian Li, Hongru Chen, Benjamin K. Weiser, Barbara Burger, Harold Anastos, Kathryn Chen, Chaoping Carter, Carol A. TI The HIV-1 late domain-2 S(40)A polymorphism in antiretroviral (or ART)-exposed individuals influences protease inhibitor susceptibility SO RETROVIROLOGY LA English DT Article DE HIV Gag; HIV protease; Protease inhibitors; Late domain; Anti-retroviral drugs; ESCRT ID VIRUS TYPE-1 PROTEASE; DRUG-NAIVE; RESISTANCE MUTATIONS; GAG; P6; THERAPY; INSERTIONS; VARIANTS; RESIDUE; P6(GAG) AB Background: The p6 region of the HIV-1 structural precursor polyprotein, Gag, contains two motifs, P(7)TAP(11) and L35YPLXSL41, designated as late (L) domain-1 and -2, respectively. These motifs bind the ESCRT-I factor Tsg101 and the ESCRT adaptor Alix, respectively, and are critical for efficient budding of virus particles from the plasma membrane. L domain-2 is thought to be functionally redundant to PTAP. To identify possible other functions of L domain-2, we examined this motif in dominant viruses that emerged in a group of 14 women who had detectable levels of HIV-1 in both plasma and genital tract despite a history of current or previous antiretroviral therapy. Results: Remarkably, variants possessing mutations or rare polymorphisms in the highly conserved L domain-2 were identified in seven of these women. A mutation in a conserved residue (S40A) that does not reduce Gag interaction with Alix and therefore did not reduce budding efficiency was further investigated. This mutation causes a simultaneous change in the Pol reading frame but exhibits little deficiency in Gag processing and virion maturation. Whether introduced into the HIV-1 NL4-3 strain genome or a model protease (PR) precursor, S40A reduced production of mature PR. This same mutation also led to high level detection of two extended forms of PR that were fairly stable compared to the WT in the presence of IDV at various concentrations; one of the extended forms was effective in trans processing even at micromolar IDV. Conclusions: Our results indicate that L domain-2, considered redundant in vitro, can undergo mutations in vivo that significantly alter PR function. These may contribute fitness benefits in both the absence and presence of PR inhibitor. C1 [Watanabe, Susan M.; Carter, Carol A.] SUNY Stony Brook, Dept Mol Genet & Microbiol, Life Sci Bldg, Stony Brook, NY 11794 USA. [Simon, Viviana] Icahn Sch Med Mt Sinai, Global Hlth & Emerging Pathogens Inst, Dept Microbiol, New York, NY 10029 USA. [Durham, Natasha D.; Li, Hongru; Chen, Benjamin K.] Icahn Sch Med Mt Sinai, Inst Immunol, Dept Med, Div Infect Dis, New York, NY 10029 USA. [Kemp, Brittney R.; Machihara, Satoshi; Chen, Chaoping] Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA. [Kemal, Kimdar Sherefa; Anastos, Kathryn] Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA. [Shi, Binshan] Albany Coll Pharm & Hlth Sci, Dept Hlth Sci, Albany, NY USA. [Foley, Brian] Los Alamos Natl Lab, Los Alamos, NM USA. [Weiser, Barbara; Burger, Harold] Univ Calif Davis, Dept Med, Davis, CA 95616 USA. [Weiser, Barbara; Burger, Harold] Sacramento VA Med Ctr, Dept Med, Cordova, CA USA. RP Carter, CA (reprint author), SUNY Stony Brook, Dept Mol Genet & Microbiol, Life Sci Bldg, Stony Brook, NY 11794 USA.; Chen, CP (reprint author), Colorado State Univ, Dept Biochem & Mol Biol, Ft Collins, CO 80523 USA. EM chaoping.chen@colostate.edu; carol.carter@stonybrook.edu OI Chen, Benjamin K/0000-0002-5404-1997 FU NIH NIAID [R01 AI068463, R21A1080351, R03AI108392, R01AI064001]; NIGMS [R01 GM111028]; ARRA; NIH [U3U 01AI35004, R01GM113885] FX This study was supported by NIH NIAID R01 AI068463, NIGMS R01 GM111028 and ARRA supplemental funding awards to CAC; NIH NIAID R21A1080351 and R03AI108392 to CC; NIH U3U 01AI35004 award to KA and NIH NIAID R01AI064001 to VS; NIH R01GM113885 to BKC. The content is solely the responsibility of the authors. NR 48 TC 0 Z9 0 U1 3 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1742-4690 J9 RETROVIROLOGY JI Retrovirology PD SEP 6 PY 2016 VL 13 AR 64 DI 10.1186/s12977-016-0298-1 PG 14 WC Virology SC Virology GA DV0WX UT WOS:000382642400002 PM 27600154 ER PT J AU Wang, X Gong, ZL Dong, KC Lou, S Slack, J Anders, A Yao, J AF Wang, Xi Gong, Zilun Dong, Kaichen Lou, Shuai Slack, Jonathan Anders, Andre Yao, Jie TI Tunable Bragg filters with a phase transition material defect layer SO OPTICS EXPRESS LA English DT Article ID DIMENSIONAL PHOTONIC CRYSTAL; METAL-INSULATOR DOMAINS; VANADIUM DIOXIDE; MODE; VO2; METAMATERIALS; ORGANIZATION; GRATINGS AB We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities. (C) 2016 Optical Society of America C1 [Wang, Xi; Gong, Zilun; Dong, Kaichen; Lou, Shuai; Yao, Jie] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Gong, Zilun; Slack, Jonathan; Anders, Andre] Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Berkeley, CA 94720 USA. [Dong, Kaichen; Yao, Jie] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yao, J (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Yao, J (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM yaojie@berkeley.edu FU Samsung Advanced Institute of Technology [037361-003]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231] FX Samsung Advanced Institute of Technology (037361-003); the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract (DE-AC02-05CH11231). NR 41 TC 1 Z9 1 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 5 PY 2016 VL 24 IS 18 BP 20365 EP 20372 DI 10.1364/OE.24.020365 PG 8 WC Optics SC Optics GA DZ8AT UT WOS:000386091300046 PM 27607643 ER PT J AU Li, ZG Wang, W Rosenmann, D Czaplewski, DA Yang, XD Gao, J AF Li, Zhigang Wang, Wei Rosenmann, Daniel Czaplewski, David A. Yang, Xiaodong Gao, Jie TI All-metal structural color printing based on aluminum plasmonic metasurfaces SO OPTICS EXPRESS LA English DT Article ID EXTRAORDINARY OPTICAL-TRANSMISSION; NANOPARTICLE ARRAYS; DIFFRACTION LIMIT; SILICON NANOWIRES; HOLE ARRAYS; FILTERS; LIGHT; METAMATERIALS; ABSORPTION; PIXELS AB An all-metal structural color printing platform based on aluminum plasmonic metasurfaces is proposed and demonstrated with high color performance using only one-step etching process on aluminum surface. A wide visible color range is realized with the designed metallic square-shaped disk arrays by simply adjusting geometrical parameters of the disk etching depth, disk width and unit cell period. The demonstrated all-metal microscale structural color printing on aluminum surface offers great potential for many practical color related applications. (C) 2016 Optical Society of America C1 [Li, Zhigang; Wang, Wei; Yang, Xiaodong; Gao, Jie] Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA. [Rosenmann, Daniel; Czaplewski, David A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Gao, J (reprint author), Missouri Univ Sci & Technol, Dept Mech & Aerosp Engn, Rolla, MO 65409 USA. EM yangxia@mst.edu; gaojie@mst.edu FU Office of Naval Research (ONR) [N00014-16-1-2408]; National Science Foundation (NSF) [DMR-1552871, CBET-1402743]; U.S. Department of Energy [DE-AC02-06CH11357] FX Office of Naval Research (ONR) (N00014-16-1-2408); National Science Foundation (NSF) (DMR-1552871, CBET-1402743); U.S. Department of Energy (DE-AC02-06CH11357). NR 48 TC 1 Z9 1 U1 15 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD SEP 5 PY 2016 VL 24 IS 18 BP 20472 EP 20480 DI 10.1364/OE.24.020472 PG 9 WC Optics SC Optics GA DZ8AT UT WOS:000386091300055 PM 27607652 ER PT J AU Chen, MH Sun, XD Christensen, RN Skavdahl, I Utgikar, V Sabharwall, P AF Chen, Minghui Sun, Xiaodong Christensen, Richard N. Skavdahl, Isaac Utgikar, Vivek Sabharwall, Piyush TI Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger SO APPLIED THERMAL ENGINEERING LA English DT Article DE PCHE; Thermal-hydraulic performance; Compact heat exchangers; Zigzag channels; VHTR; Intermediate heat exchanger ID THERMAL-HYDRAULIC PERFORMANCE AB Printed circuit heat exchanger (PCHE) is one of the leading intermediate heat exchanger (IHX) candidates to be employed in the very-high-temperature gas-cooled reactors (VHTRs) due to its capability for high temperature, high-pressure applications. In the current study, a reduced-scale zigzag-channel PCHE was fabricated using Alloy 617 plates for the heat exchanger core and Alloy 800H pipes for the headers. The pressure drop and heat transfer characteristics of the PCHE were investigated experimentally in a high temperature helium test facility (HTHF) at The Ohio State University. The PCHE helium inlet temperatures and pressures were varied up to 464 degrees C/2.7 MPa for the cold side and 802 degrees C/2.7 MPa for the hot side, respectively, while the maximum helium mass flow rates on both sides of the PCHE reached 39"kg/h. The corresponding maximum channel Reynolds number was approximately 3558, covering the laminar flow and laminar-to-turbulent flow transition regimes. New pressure drop and heat transfer correlations for the current zigzag channels with rounded bends were developed based on the experimental data. Comparisons between the experimental data and the results obtained from the available PCHE and straight circular pipe correlations were conducted. Compared to the heat transfer performance in straight circular pipes, the zigzag channels provided little advantage in the laminar flow regime but significant advantage near the transition flow regime. Published by Elsevier Ltd. C1 [Chen, Minghui; Sun, Xiaodong; Christensen, Richard N.] Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA. [Skavdahl, Isaac; Utgikar, Vivek] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Christensen, Richard N.] Univ Idaho, Nucl Engn Program, 995 Univ Pl, Idaho Falls, ID 83401 USA. RP Sun, XD (reprint author), Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA. EM sun.200@osu.edu OI Sun, Xiaodong/0000-0002-9852-160X FU U.S. Department of Energy Office of Nuclear Energy's Nuclear Energy University Programs FX This research is being performed using funding received from the U.S. Department of Energy Office of Nuclear Energy's Nuclear Energy University Programs. The first author wish to thank Dr. Sai Mylavarapu for his work of constructing the high temperature helium test facility. The assistance provided by Qiuping Lv and Kevin Wegman of The Ohio State University is also appreciated. NR 18 TC 0 Z9 0 U1 16 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-4311 J9 APPL THERM ENG JI Appl. Therm. Eng. PD SEP 5 PY 2016 VL 108 BP 1409 EP 1417 DI 10.1016/j.applthermaleng.2016.07.149 PG 9 WC Thermodynamics; Energy & Fuels; Engineering, Mechanical; Mechanics SC Thermodynamics; Energy & Fuels; Engineering; Mechanics GA DY0JL UT WOS:000384783000137 ER PT J AU Hattendorf, B Gusmini, B Dorta, L Houk, RS Gunther, D AF Hattendorf, Bodo Gusmini, Bianca Dorta, Ladina Houk, Robert S. Gunther, Detlef TI Mass Spectrometric Observation of Doubly Charged Alkaline-Earth Argon Ions SO CHEMPHYSCHEM LA English DT Article DE alkaline earth metals; inductively coupled plasma mass spectrometry; mass spectrometry; molecular ions; noble gases ID INDUCTIVELY-COUPLED PLASMA; ISOTOPE RATIO MEASUREMENTS; MC-ICP-MS; POLYATOMIC IONS; GAS-PHASE; PRECISION; EXTRACTION; DISSOCIATION; TEMPERATURE; RESOLUTION AB Doubly charged diatomic ions MAr2+ where M=Mg, Ca, Sr or Ba have been observed by mass spectrometry with an inductively coupled plasma ion source. Abundance ratios are quite high, 0.1% for MgAr2+, 0.4% for CaAr2+, 0.2% for SrAr2+ and 0.1% for BaAr2+ relative to the corresponding doubly charged atomic ions M2+. It is assumed that these molecular ions are formed through reactions of the doubly charged metal ions with neutral argon atoms within the ion source. Bond dissociation energies (D-0) were calculated and agree well with previously published values. The abundance ratios MAr+/M+ and MAr2+/M2+ generally follow the predicted bond dissociation energies with the exception of MgAr2+. Mg2+ should form the strongest bond with Ar [D-0 (MgAr2+)=124 to 130kJmol(-1)] but its relative abundance is similar to that of the weakest bound BaAr2+ (D-0=34 to 42kJmol(-1)). The relative abundances of the various MAr2+ ions are higher than those expected from an argon plasma at T=6000K, indicating that collisions during ion extraction reduce the abundance of the MAr2+ ions relative to the composition in the source. The corresponding singly charged MAr+ ions are also observed but occur at about three orders of magnitude lower intensity than MAr2+. C1 [Hattendorf, Bodo; Gusmini, Bianca; Dorta, Ladina; Gunther, Detlef] ETH, Inorgan Chem Lab, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland. [Houk, Robert S.] Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. [Dorta, Ladina] Solvias AG, Romerpk 2, CH-4303 Kaiseraugst, Switzerland. RP Hattendorf, B (reprint author), ETH, Inorgan Chem Lab, Vladimir Prelog Weg 1, CH-8093 Zurich, Switzerland. EM bodo@inorg.chem.ethz.ch FU ETH Zurich FX The authors wish to thank ETH Zurich for support of this research and especially Markus Reiher for the newly calculated bond dissociation energies. NR 36 TC 1 Z9 1 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1439-4235 EI 1439-7641 J9 CHEMPHYSCHEM JI ChemPhysChem PD SEP 5 PY 2016 VL 17 IS 17 BP 2640 EP 2644 DI 10.1002/cphc.201600441 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DW4DY UT WOS:000383593900003 PM 27252087 ER PT J AU Brahlek, M Zhang, L Zhang, HT Lapano, J Dedon, LR Martin, LW Engel-Herbert, R AF Brahlek, Matthew Zhang, Lei Zhang, Hai-Tian Lapano, Jason Dedon, Liv R. Martin, Lane W. Engel-Herbert, Roman TI Mapping growth windows in quaternary perovskite oxide systems by hybrid molecular beam epitaxy SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTRONIC-PROPERTIES; TOPOLOGICAL INSULATOR; PHASE-TRANSITION; SUPERCONDUCTIVITY; SRTIO3; FILMS AB Requisite to growing stoichiometric perovskite thin films of the solid-solution A(1-x)'A(x)BO(3) by hybrid molecular beam epitaxy is understanding how the growth conditions interpolate between the end members A'BO3 and ABO(3), which can be grown in a self-regulated fashion, but under different conditions. Using the example of La1-xSrxVO3, the two-dimensional growth parameter space that is spanned by the flux of the metal-organic precursor vanadium oxytriisopropoxide and composition, x, was mapped out. The evolution of the adsorption-controlled growth window was obtained using a combination of X-ray diffraction, atomic force microscopy, reflection high-energy electron-diffraction (RHEED), and Rutherford backscattering spectroscopy. It is found that the stoichiometric growth conditions can be mapped out quickly with a single calibration sample using RHEED. Once stoichiometric conditions have been identified, the out-of-plane lattice parameter can be utilized to precisely determine the composition x. This strategy enables the identification of growth conditions that allow the deposition of stoichiometric perovskite oxide films with random A-site cation mixing, which is relevant to a large number of perovskite materials with interesting properties, e.g., high-temperature superconductivity and colossal magnetoresistance, that emerge in solid solution A(1-x)'A(x)BO(3). Published by AIP Publishing. C1 [Brahlek, Matthew; Zhang, Lei; Zhang, Hai-Tian; Lapano, Jason; Engel-Herbert, Roman] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16801 USA. [Dedon, Liv R.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Dedon, Liv R.; Martin, Lane W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Engel-Herbert, R (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16801 USA. EM rue2@psu.edu RI Martin, Lane/H-2409-2011; OI Martin, Lane/0000-0003-1889-2513; Zhang, Lei/0000-0002-1559-8469; Zhang, Hai-Tian/0000-0002-1122-8647 FU Department of Energy [DE-SC0012375]; National Science Foundation through Penn State MRSEC Program [DMR-1420620]; NSF [DMR-1352502]; U.S. Department of Energy [DE-SC0012375] FX M.B. and R.E.H. acknowledge the Department of Energy (Grant No. DE-SC0012375) for the growth, XRD, AFM measurements, and preparation of the manuscript. L.Z., J.M.L., and H.T.Z. assisted in the growth and acknowledge support from the National Science Foundation through the Penn State MRSEC Program DMR-1420620 (J.M.L., H.T.Z., and R.E.H.) as well as NSF Career Grant No. DMR-1352502 (L.Z. and R.E.H.). L.R.D. and L.W.M. acknowledge support from the U.S. Department of Energy under Grant No. DE-SC0012375 for RBS measurements and analysis. NR 39 TC 2 Z9 2 U1 12 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 5 PY 2016 VL 109 IS 10 BP 56 EP 60 AR 101903 DI 10.1063/1.4962388 PG 5 WC Physics, Applied SC Physics GA DX5EP UT WOS:000384402900010 ER PT J AU Qian, D Zhang, AF Zhu, JX Li, Y Zhu, WX Qi, BL Tamura, N Li, DC Song, ZX Chen, K AF Qian, Dan Zhang, Anfeng Zhu, Jianxue Li, Yao Zhu, Wenxin Qi, Baolu Tamura, Nobumichi Li, Dichen Song, Zhongxiao Chen, Kai TI Hardness and microstructural inhomogeneity at the epitaxial interface of laser 3D-printed Ni-based superalloy SO APPLIED PHYSICS LETTERS LA English DT Article ID LAUE MICRODIFFRACTION; NANOINDENTATION; SYNCHROTRON; DEPOSITION; EVOLUTION; GRADIENT AB In this letter, microstructural and mechanical inhomogeneities, a great concern for single crystal Ni-based superalloys repaired by laser assisted 3D printing, have been probed near the epitaxial interface. Nanoindentation tests show the hardness to be uniformly lower in the bulk of the substrate and constantly higher in the epitaxial cladding layer. A gradient of hardness through the heat affected zone is also observed, resulting from an increase in dislocation density, as indicated by the broadening of the synchrotron X-ray Laue microdiffraction reflections. The hardening mechanism of the cladding region, on the other hand, is shown to originate not only from high dislocation density but also and more importantly from the fine gamma/gamma' microstructure. Published by AIP Publishing. C1 [Qian, Dan; Zhu, Jianxue; Li, Yao; Zhu, Wenxin; Song, Zhongxiao; Chen, Kai] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China. [Zhang, Anfeng; Qi, Baolu; Li, Dichen] Xi An Jiao Tong Univ, State Key Lab Mfg Syst Engn, Xian 710049, Shaanxi, Peoples R China. [Tamura, Nobumichi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chen, K (reprint author), Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China. EM kchenlbl@gmail.com OI Li, Yao/0000-0002-2680-4408; Tamura, Nobumichi/0000-0002-3698-2611 FU National Natural Science Foundation of China [51671154, 51302207, 51275392, 11132006]; National Key Research and Development Program [2016YFB0700404]; National Basic Research Program of China ("973" Program) [2015CB057400]; Fundamental Research Funds for the Central Universities [2015gjhz03]; International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies and Collaborative Innovation Center of High-End Manufacturing Equipment; National Young 1000 Talents Program of China; Office of Science, Office of Basic Energy Sciences, Materials Science Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is supported by the National Natural Science Foundation of China (Grant Nos. 51671154, 51302207, 51275392, and 11132006), the National Key Research and Development Program (Grant No. 2016YFB0700404), the National Basic Research Program of China ("973" Program) (Grant No. 2015CB057400), and the Fundamental Research Funds for the Central Universities (Grant No. 2015gjhz03). We also appreciate the support from the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies and Collaborative Innovation Center of High-End Manufacturing Equipment. K.C. is supported by the National Young 1000 Talents Program of China. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at LBNL. NR 26 TC 0 Z9 0 U1 33 U2 33 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 5 PY 2016 VL 109 IS 10 BP 74 EP 78 AR 101907 DI 10.1063/1.4962485 PG 5 WC Physics, Applied SC Physics GA DX5EP UT WOS:000384402900014 ER PT J AU Hong, F Yue, BB Wang, JL Studer, A Fang, CS Wang, XL Dou, SX Cheng, ZX AF Hong, Fang Yue, Binbin Wang, Jianli Studer, Andrew Fang, Chunsheng Wang, Xiaolin Dou, Shixue Cheng, Zhenxiang TI Collapse and reappearance of magnetic orderings in spin frustrated TbMnO3 induced by Fe substitution SO APPLIED PHYSICS LETTERS LA English DT Article ID REORIENTATION TRANSITIONS; PHASE; ICE; FERROELECTRICITY; POLARIZATION; MONOPOLES; BEHAVIOR AB We studied the temperature dependent magnetic phase evolution in spin frustrated TbMnO3 affected by Fe doping via powder neutron diffraction. With the introduction of Fe (10% and 20%), the long range incommensurate magnetic orderings collapse. When the Fe content is increased to 30%, a long-range antiferromagnetic ordering develops, while a spin reorientation transition is found near 35K from a canted G-type antiferromagnetic ordering to a collinear G-type antiferromagnetic ordering. This work demonstrates the complex magnetic interactions existing in transition metal oxides, which helps to understand the frustrated spin states in other similar systems and design magnetic materials as well. Published by AIP Publishing. C1 [Hong, Fang; Wang, Jianli; Fang, Chunsheng; Wang, Xiaolin; Dou, Shixue; Cheng, Zhenxiang] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Innovation Campus,Squires Way, Wollongong, NSW 2500, Australia. [Hong, Fang; Yue, Binbin] Ctr High Pressure Sci & Technol Adv Res, 1690 Cailun Rd Pudong, Shanghai 201203, Peoples R China. [Hong, Fang; Yue, Binbin] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd,MS 80R0114, Berkeley, CA 94720 USA. [Wang, Jianli; Studer, Andrew] Australian Nucl Sci & Technol Org ANSTO, Bragg Inst, New South Wales 2234, Australia. RP Cheng, ZX (reprint author), Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Innovation Campus,Squires Way, Wollongong, NSW 2500, Australia.; Yue, BB (reprint author), Ctr High Pressure Sci & Technol Adv Res, 1690 Cailun Rd Pudong, Shanghai 201203, Peoples R China. EM yuebb@hpstar.ac.cn; cheng@uow.edu.au RI Yue, Binbin/K-2399-2016; HONG, Fang/C-6070-2014 OI Yue, Binbin/0000-0002-7784-2850; HONG, Fang/0000-0003-0060-2063 FU Australian Research Council through Future Fellowship [FT 0990287] FX Z. X. Cheng thanks the Australian Research Council through a Future Fellowship (FT 0990287). We thank Dr. Tania Silver for polishing the English. NR 44 TC 2 Z9 2 U1 15 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 5 PY 2016 VL 109 IS 10 BP 113 EP 117 AR 102401 DI 10.1063/1.4962465 PG 5 WC Physics, Applied SC Physics GA DX5EP UT WOS:000384402900023 ER PT J AU Kim, B Seol, D Lee, S Lee, HN Kim, Y AF Kim, Bora Seol, Daehee Lee, Shinbuhm Lee, Ho Nyung Kim, Yunseok TI Ferroelectric-like hysteresis loop originated from non-ferroelectric effects SO APPLIED PHYSICS LETTERS LA English DT Article ID PIEZORESPONSE FORCE MICROSCOPY; SCANNING PROBE MICROSCOPY; PIEZOELECTRICITY; NANOCAPACITORS; POLARIZATION; NANOSCALE; FILMS AB Piezoresponse force microscopy (PFM) has provided advanced nanoscale understanding and analysis of ferroelectric and piezoelectric properties. In PFM-based studies, electromechanical strain induced by the converse piezoelectric effect is probed and analyzed as a PFM response. However, electromechanical strain can also arise from several non-piezoelectric origins that may lead to a misinterpretation of the observed response. Among them, electrostatic interaction can significantly affect the PFM response. Nonetheless, previous studies explored solely the influence of electrostatic interaction on the PFM response under the situation accompanied with polarization switching. Here, we show the influence of the electrostatic interaction in the absence of polarization switching by using unipolar voltage sweep. The obtained results reveal that the electromechanical neutralization between piezoresponse of polarization and electrostatic interaction plays a crucial role in the observed ferroelectric-like hysteresis loop despite the absence of polarization switching. Thus, our work can provide a basic guideline for the correct interpretation of the hysteresis loop in PFM-based studies. Published by AIP Publishing. C1 [Kim, Bora; Seol, Daehee; Kim, Yunseok] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea. [Lee, Shinbuhm; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN USA. [Lee, Shinbuhm] Daegu Gyeongbuk Inst Sci & Technol, Dept Emerging Mat Sci, Daegu 42988, South Korea. RP Kim, Y (reprint author), Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea. EM yunseokkim@skku.edu RI LEE, SHINBUHM/A-9494-2011; Lee, Ho Nyung/K-2820-2012 OI LEE, SHINBUHM/0000-0002-4907-7362; Lee, Ho Nyung/0000-0002-2180-3975 FU Basic Science Research Program through National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [NRF-2014R1A1A1008061]; U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A1A1008061). The synthesis work at ORNL was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 29 TC 1 Z9 1 U1 16 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 5 PY 2016 VL 109 IS 10 BP 141 EP 145 AR 102901 DI 10.1063/1.4962387 PG 5 WC Physics, Applied SC Physics GA DX5EP UT WOS:000384402900029 ER PT J AU Jiang, XY Lu, HD Yin, YW Zhang, XZ Wang, X Yu, L Ahmadi, Z Costa, PS DiChiara, AD Cheng, XM Gruverman, A Enders, A Xu, XS AF Jiang, Xuanyuan Lu, Haidong Yin, Yuewei Zhang, Xiaozhe Wang, Xiao Yu, Le Ahmadi, Zahra Costa, Paulo S. DiChiara, Anthony D. Cheng, Xuemei Gruverman, Alexei Enders, Axel Xu, Xiaoshan TI Room temperature ferroelectricity in continuous croconic acid thin films SO APPLIED PHYSICS LETTERS LA English DT Article ID PIEZORESPONSE FORCE MICROSCOPY; THERMAL-STABILITY; VAPOR-DEPOSITION; MORPHOLOGY; NANOSCALE; BEHAVIOR; GROWTH AB Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages >= 20 nm, quasi 2D and polycrystalline films, with an average grain size of 50-100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications. Published by AIP Publishing. C1 [Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Zhang, Xiaozhe; Ahmadi, Zahra; Costa, Paulo S.; Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Zhang, Xiaozhe] Xi An Jiao Tong Univ, Dept Phys, Xian 710049, Peoples R China. [Wang, Xiao; Yu, Le; Cheng, Xuemei] Bryn Mawr Coll, Dept Phys, Bryn Mawr, PA 19010 USA. [DiChiara, Anthony D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Gruverman, Alexei; Enders, Axel; Xu, Xiaoshan] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Gruverman, A; Enders, A; Xu, XS (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. EM alexei_gruverman@unl.edu; a.enders@me.com; xiaoshan.xu@unl.edu RI Xu, Xiaoshan/B-1255-2009; Yin, Yuewei/A-2966-2013 OI Xu, Xiaoshan/0000-0002-4363-392X; Yin, Yuewei/0000-0003-0965-4951 FU National Science Foundation through Materials Research Science and Engineering Center [DMR-1420645]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; National Institute of General Medical Sciences of the National Institutes of Health [R24GM111072]; National Science Foundation [DMR-1053854] FX The authors acknowledge the support from the National Science Foundation through the Materials Research Science and Engineering Center (Grant No. DMR-1420645). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The use of BioCARS was also supported by the National Institute of General Medical Sciences of the National Institutes of Health under Grant No. R24GM111072. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. X.M.C. acknowledges the support from National Science Foundation Grant No. DMR-1053854. NR 25 TC 1 Z9 1 U1 13 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD SEP 5 PY 2016 VL 109 IS 10 BP 146 EP 149 AR 102902 DI 10.1063/1.4962278 PG 4 WC Physics, Applied SC Physics GA DX5EP UT WOS:000384402900030 ER PT J AU Andersson, MP Dobberschutz, S Sand, KK Tobler, DJ De Yoreo, JJ Stipp, SLS AF Andersson, M. P. Dobberschutz, S. Sand, K. K. Tobler, D. J. De Yoreo, J. J. Stipp, S. L. S. TI A Microkinetic Model of Calcite Step Growth SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article; Proceedings Paper CT 6th EuCheMS Chemistry Congress CY SEP 11-15, 2016 CL Seville, SPAIN SP EuCheMS, Asociac Nacl Quimicos Espana DE calcite; calcium carbonate; microkinetic model; mineral growth ID SOLUTION CHEMISTRY; SATURATION INDEX; CRYSTAL-GROWTH; ACTIVITY RATIO; KINETICS; CARBONATE; SURFACE; CLUSTERS; INSIGHT; WATER AB In spite of decades of research, mineral growth models based on ion attachment and detachment rates fail to predict behavior beyond a narrow range of conditions. Here we present a microkinetic model that accurately reproduces calcite growth over a very wide range of published experimental data for solution composition, saturation index, pH and impurities. We demonstrate that polynuclear complexes play a central role in mineral growth at high supersaturation and that a classical complexation model is sufficient to reproduce measured rates. Dehydration of the attaching species, not the mineral surface, is rate limiting. Density functional theory supports our conclusions. The model provides new insights into the molecular mechanisms of mineral growth that control biomineralization, mineral scaling and industrial material synthesis. C1 [Andersson, M. P.; Dobberschutz, S.; Sand, K. K.; Tobler, D. J.; Stipp, S. L. S.] Univ Copenhagen, Dept Chem, Nanosci Ctr, DK-1168 Copenhagen, Denmark. [Sand, K. K.; De Yoreo, J. J.] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [De Yoreo, J. J.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [De Yoreo, J. J.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Andersson, MP (reprint author), Univ Copenhagen, Dept Chem, Nanosci Ctr, DK-1168 Copenhagen, Denmark. EM ma@nano.ku.dk RI Sand, Karina/P-1008-2014; Andersson, Martin/F-9598-2010; Tobler, Dominique/G-3213-2012 OI Sand, Karina/0000-0002-0720-7229; Andersson, Martin/0000-0002-4921-1461; Tobler, Dominique/0000-0001-8532-1855 NR 28 TC 1 Z9 1 U1 25 U2 25 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD SEP 5 PY 2016 VL 55 IS 37 SI SI BP 11086 EP 11090 DI 10.1002/anie.201604357 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DW4VY UT WOS:000383642300020 PM 27532505 ER PT J AU Schmidt, JE Poplawsky, JD Mazumder, B Attila, O Fu, DL de Winter, DAM Meirer, F Bare, SR Weckhuysen, BM AF Schmidt, Joel E. Poplawsky, Jonathan D. Mazumder, Baishakhi Attila, Ozgun Fu, Donglong de Winter, D. A. Matthijs Meirer, Florian Bare, Simon R. Weckhuysen, Bert M. TI Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article; Proceedings Paper CT 6th EuCheMS Chemistry Congress CY SEP 11-15, 2016 CL Seville, SPAIN SP EuCheMS, Asociac Nacl Quimicos Espana DE Al zoning; atom probe tomography; carbon deposits; methanol to hydrocarbons; zeolites ID H-ZSM-5; CONVERSION; CATALYSTS; ALUMINUM; ZSM-5; DEACTIVATION; PERFORMANCE; STATE; NOX AB Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using C-13-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 C-13 atoms. These clusters correlate with local increases in BrOnsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation. C1 [Schmidt, Joel E.; Attila, Ozgun; Fu, Donglong; Meirer, Florian; Weckhuysen, Bert M.] Univ Utrecht, Debye Inst Nanomat Sci, Univ Weg 99, NL-3584 CG Utrecht, Netherlands. [Poplawsky, Jonathan D.; Mazumder, Baishakhi] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [de Winter, D. A. Matthijs] Univ Utrecht, Struct Geol & EM, Postbus 80-021, NL-3508 TA Utrecht, Netherlands. [Bare, Simon R.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Weckhuysen, BM (reprint author), Univ Utrecht, Debye Inst Nanomat Sci, Univ Weg 99, NL-3584 CG Utrecht, Netherlands.; Bare, SR (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM simon.bare@slac.stanford.edu; b.m.weckhuysen@uu.nl RI Weckhuysen, Bert/D-3742-2009; Meirer, Florian/H-7642-2016; OI Weckhuysen, Bert/0000-0001-5245-1426; Meirer, Florian/0000-0001-5581-5790; Schmidt, Joel/0000-0002-0039-2863; Bare, Simon/0000-0002-4932-0342; de Winter, Matthijs/0000-0002-6289-4359 NR 25 TC 2 Z9 2 U1 22 U2 24 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD SEP 5 PY 2016 VL 55 IS 37 SI SI BP 11173 EP 11177 DI 10.1002/anie.201606099 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DW4VY UT WOS:000383642300038 PM 27485276 ER PT J AU Marangoni, T Haberer, D Rizzo, DJ Cloke, RR Fischer, FR AF Marangoni, Tomas Haberer, Danny Rizzo, Daniel J. Cloke, Ryan R. Fischer, Felix R. TI Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE graphene; nanostructures; nc-AFM; STM; surface chemistry ID ON-SURFACE SYNTHESIS; BAND-GAP; HETEROJUNCTIONS AB Atomically precise engineering of defined segments within individual graphene nanoribbons (GNRs) represents a key enabling technology for the development of advanced functional device architectures. Here, the bottom-up synthesis of chevron GNRs decorated with reactive functional groups derived from 9-methyl-9H-carbazole is reported. Scanning tunneling and non-contact atomic force microscopy reveal that a thermal activation of GNRs induces the rearrangement of the electron-rich carbazole into an electron-deficient phenanthridine. The selective chemical edge-reconstruction of carbazole-substituted chevron GNRs represents a practical strategy for the controlled fabrication of spatially defined GNR heterostructures from a single molecular precursor. C1 [Marangoni, Tomas; Haberer, Danny; Cloke, Ryan R.; Fischer, Felix R.] Univ Calif Berkeley, Dept Chem, 699 Tan Hall, Berkeley, CA 94720 USA. [Rizzo, Daniel J.] Univ Calif Berkeley, Dept Phys, 345 Birge Hall, Berkeley, CA 94720 USA. [Fischer, Felix R.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Fischer, Felix R.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Fischer, Felix R.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Fischer, FR (reprint author), Univ Calif Berkeley, Dept Chem, 699 Tan Hall, Berkeley, CA 94720 USA.; Fischer, FR (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Fischer, FR (reprint author), Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA.; Fischer, FR (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ffischer@berkeley.edu FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0010409]; Center for Energy Efficient Electronics Science NSF [0939514]; David and Lucile Packard Foundation for Science and Engineering; NIH [SRR023679A, S10-RR027172] FX Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award #DE-SC0010409 (design, synthesis and characterization of molecules); the Center for Energy Efficient Electronics Science NSF Award 0939514 (STM and nc-AFM imaging); SPM instrument is supported by the David and Lucile Packard Foundation for Science and Engineering; Berkeley NMR Facility is supported in part by NIH grant SRR023679A; Berkeley X-ray Facility is supported in part by NIH Shared Instrumentation Grant S10-RR027172. The authors acknowledge Dr. Christian Canlas and Dr. Hasan Celik for support with NMR acquisition and Dr. Antonio DiPasquale for assistance with X-ray analysis. NR 27 TC 1 Z9 1 U1 20 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD SEP 5 PY 2016 VL 22 IS 37 BP 13037 EP 13040 DI 10.1002/chem.201603497 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA DW6LT UT WOS:000383763200012 PM 27458978 ER PT J AU Banerjee, D Xu, WQ Nie, ZM Johnson, LEV Coghlan, C Sushko, ML Kim, D Schweiger, MJ Kruger, AA Doonan, CJ Thallapally, PK AF Banerjee, Debasis Xu, Wenqian Nie, Zimin Johnson, Lewis E. V. Coghlan, Campbell Sushko, Maria L. Kim, Dongsang Schweiger, Michael J. Kruger, Albert A. Doonan, Christian J. Thallapally, Praveen K. TI Zirconium-Based Metal-Organic Framework for Removal of Perrhenate from Water SO INORGANIC CHEMISTRY LA English DT Article ID NUCLEAR-WASTES; PERTECHNETATE; RECOGNITION; SEPARATION AB The efficient removal of pertechnetate (TcO4-) anions from liquid waste or melter off-gas solution for an alternative treatment is one of the promising options to manage Tc-99 in legacy nuclear waste. Safe immobilization of Tc-99 is of major importance because of its long half-life (t(1/2) = 2.13 X 10(5) yrs) and environmental mobility. Different types of inorganic and solid-state ion-exchange materials have been shown to absorb TcO4- anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultrastable zirconium-based metal-organic framework can adsorb perrhenate (ReO4-) anions, a nonradioactive surrogate for TcO4-, from water even in the presence of other common anions. Synchrotron-based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4- (surrogate for TcO4-) molecule within the framework. C1 [Banerjee, Debasis; Johnson, Lewis E. V.; Sushko, Maria L.; Thallapally, Praveen K.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. [Xu, Wenqian] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Nie, Zimin; Kim, Dongsang; Schweiger, Michael J.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Coghlan, Campbell; Doonan, Christian J.] Univ Adelaide, Dept Chem, Adelaide, SA 5005, Australia. [Kruger, Albert A.] US DOE, Off River Protect, Richland, WA 99352 USA. RP Thallapally, PK (reprint author), Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. EM Praveen.thallapally@pnnl.gov OI Coghlan, Campbell/0000-0003-1625-3216; Thallapally, Praveen Kumar/0000-0001-7814-4467 FU U.S. Department of Energy (DOE) Waste Treatment and Immobilization Plant Project of the Office of River Protection; DOE Office of Environmental Management (EM) International Program as part of the portfolio; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX This work was jointly supported by the U.S. Department of Energy (DOE) Waste Treatment and Immobilization Plant Project of the Office of River Protection and the DOE Office of Environmental Management (EM) International Program as part of the portfolio managed by Rodrigo Rimando of EM-HQ. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for the DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. This research used Beamline 17-BM of the Advanced Photon Source, a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357. NR 20 TC 4 Z9 4 U1 25 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 5 PY 2016 VL 55 IS 17 BP 8241 EP 8243 DI 10.1021/acs.inorgchem.6b01004 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DV1WX UT WOS:000382713900001 PM 27494264 ER PT J AU Hall, GB Andersen, A Washton, NM Chatterjee, S Levitskaia, TG AF Hall, Gabriel B. Andersen, Amity Washton, Nancy M. Chatterjee, Sayandev Levitskaia, Tatiana G. TI Theoretical Modeling of Tc-99 NMR Chemical Shifts SO INORGANIC CHEMISTRY LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL METHODS; METAL-CARBONYLS; PBE0 MODEL; BASIS-SETS; COMPLEXES; EXCHANGE; TECHNETIUM; SPECTROSCOPY; RE AB Technetium-99 (Tc) displays a rich chemistry due to its wide range of accessible oxidation states (from -I to +VII) and ability to form coordination compounds. Determination of Tc speciation in complex mixtures is a major challenge, and Tc-99 nuclear magnetic resonance (NMR) spectroscopy is widely used to probe chemical environments of Tc in odd oxidation states. However, interpretation of Tc-99 NMR data is hindered by the lack of reference compounds. Density functional theory (DFT) calculations can help to fill this gap, but to date few computational studies have focused on Tc-99 NMR of compounds and complexes. This work evaluates the effectiveness of both pure generalized gradient approximation and their corresponding hybrid functionals, both with and without the inclusion of scalar relativistic effects, to model the Tc-99 NMR spectra of Tc(I) carbonyl compounds. With the exception of BLYP, which performed exceptionally well overall, hybrid functionals with inclusion of scalar relativistic effects are found to be necessary to accurately calculate Tc-99 NMR spectra. The computational method developed was used to tentatively assign an experimentally observed Tc-99 NMR peak at -1204 ppm to fac-Tc(CO)(3)(OH)(3)(2-). This study examines the effectiveness of DFT computations for interpretation of the Tc-99 NMR spectra of Tc(I) coordination compounds in high salt alkaline solutions. C1 [Hall, Gabriel B.; Chatterjee, Sayandev; Levitskaia, Tatiana G.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Andersen, Amity; Washton, Nancy M.] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. RP Levitskaia, TG (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM Tatiana.Levitskaia@pnnl.gov OI Chatterjee, Sayandev/0000-0003-2218-5635 FU U.S. Department of Energy's Office of Environmental Management; U.S. Department of Energy [DE-AC05-76RL01830] FX This research was supported by the U.S. Department of Energy's Office of Environmental Management and performed as part of the Technetium Management Hanford Site project at the Pacific Northwest National Laboratory (PNNL) operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. Part of this research was performed at EMSL, a national scientific user facility at PNNL managed by the Department of Energy's Office of Biological and Environmental Research. The authors would like to especially acknowledge Dr. N. P. Machara for the stewardship of this research. NR 54 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 5 PY 2016 VL 55 IS 17 BP 8341 EP 8347 DI 10.1021/acs.inorgchem.6b00458 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DV1WX UT WOS:000382713900020 PM 27518482 ER PT J AU Mounce, AM Yasuoka, H Koutroulakis, G Lee, JA Cho, H Gendron, F Zurek, E Scott, BL Trujillo, JA Slemmons, AK Cross, JN Thompson, JD Kozimor, SA Bauer, ED Autschbach, J Clark, DL AF Mounce, Andrew M. Yasuoka, Hiroshi Koutroulakis, Georgios Lee, Jeongseop A. Cho, Herman Gendron, Frederic Zurek, Eva Scott, Brian L. Trujillo, Julie A. Slemmons, Alice K. Cross, Justin N. Thompson, Joe D. Kozimor, Stosh A. Bauer, Eric D. Autschbach, Jochen Clark, David L. TI Nuclear Magnetic Resonance Measurements and Electronic Structure of Pu(IV) in [(Me)(4)N](2)PuCl6 SO INORGANIC CHEMISTRY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; DENSITY-FUNCTIONAL THEORY; CRYSTAL-FIELDS; COMPLEXES; ACTINIDE; COVALENCY; PLUTONIUM; ELEMENTS; NMR; ION AB The synthesis, electronic structure, and characterization via single-crystal X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and magnetic susceptibility of (Me4N)(2)PuCl6 are reported. NMR measurements were performed to both search for the direct Pu-239 resonance and to obtain local magnetic and electronic information at the Cl site through Cl-35 and Cl-37 spectra. No signature of Pu-239 NMR was observed. The temperature dependence of the Cl spectra was simulated by diagonalizing the Zeeman and quadrupolar Hamiltonians for Cl-35, Cl-37, and N-14 isotopes. Electronic structure calculations predict a magnetic Gamma(5) triplet ground state of Pu(IV) in the crystalline electric field of the undistorted PuCl6 octahedron. A tetragonal distortion would result in a very small splitting (similar to 20 cm(-1)) of the triplet ground state into a nonmagnetic singlet and a doublet state. The Cl shifts have an inflection point at T approximate to 15 K, differing from the bulk susceptibility, indicating a nonmagnetic crystal field ground state. The Cl spin-lattice relaxation time is constant to T = 15 K, below which it rapidly increases, also supporting the nonmagnetic crystal field ground state. C1 [Mounce, Andrew M.; Yasuoka, Hiroshi; Koutroulakis, Georgios; Scott, Brian L.; Trujillo, Julie A.; Slemmons, Alice K.; Cross, Justin N.; Thompson, Joe D.; Kozimor, Stosh A.; Bauer, Eric D.; Clark, David L.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Koutroulakis, Georgios] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Lee, Jeongseop A.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Cho, Herman] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Gendron, Frederic; Zurek, Eva; Autschbach, Jochen] SUNY Buffalo, Univ Buffalo, Dept Chem, Buffalo, NY 14260 USA. [Mounce, Andrew M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Mounce, AM (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA.; Mounce, AM (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM ammounce@gmail.com RI Zurek, Eva/J-4387-2012; Autschbach, Jochen/S-5472-2016; Scott, Brian/D-8995-2017; OI Zurek, Eva/0000-0003-0738-867X; Autschbach, Jochen/0000-0001-9392-877X; Scott, Brian/0000-0003-0468-5396; Cross, Justin/0000-0003-1881-155X; Bauer, Eric/0000-0003-0017-1937 FU Heavy Element Chemistry Program at Los Alamos National Laboratory (LANL) by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy; Glenn T. Seaborg Institute; Director's Postdoctoral Fellowship; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry program [DE-SC0001136, DE-FG02-09ER16066, NSF (DMR-1505817)]; U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Heavy Element Chemistry program; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-05ER46248]; U.S. Department of Energy [DE-AC52-06NA25396] FX A.M.M. would like to thank H. Sakai for guidance in NMR calculations. The work was supported under the Heavy Element Chemistry Program at Los Alamos National Laboratory (LANL) by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (H.Y., B.L.S., J.A.T., S.A.K., E.D.B., and D.L.C.) and the U.S. Department of Energy. Portions of this work were supported by postdoctoral and graduate Fellowships from the Glenn T. Seaborg Institute (A.M.M.) and the Director's Postdoctoral Fellowship (A.M.M. and J.N.C). Initial characterization and NMR measurements (J.D.T. and G.K.) were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. F.G. and J.A. acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry program, under Grant No. DE-SC0001136 (formerly DE-FG02-09ER16066) to J.A. and grant No. NSF (DMR-1505817) to E.Z., for the electronic structure calculations, the Center for Computational Research (CCR) at the Univ. at Buffalo for providing computational resources, and Mr. T. Terpstra for help with the optimizations of hydrogen positions in the solid-state structure. Work at PNNL was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, Heavy Element Chemistry program (H.C). Research support for J.A.L. (NMR simulation and analysis) was provided by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-05ER46248. LANL is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. DE-AC52-06NA25396). NR 67 TC 2 Z9 2 U1 11 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 5 PY 2016 VL 55 IS 17 BP 8371 EP 8380 DI 10.1021/acs.inorgchem.6b00735 PG 10 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DV1WX UT WOS:000382713900023 PM 27513717 ER PT J AU Liu, J Yin, L Wu, LJ Bai, JM Bak, SM Yu, XQ Zhu, YM Yang, XQ Khalifah, PG AF Liu, Jue Yin, Liang Wu, Lijun Bai, Jianming Bak, Seong-Min Yu, Xiqian Zhu, Yimei Yang, Xiao-Qing Khalifah, Peter G. TI Quantification of Honeycomb Number-Type Stacking Faults: Application to Na3Ni2BiO6 Cathodes for Na-Ion Batteries SO INORGANIC CHEMISTRY LA English DT Article ID INITIO STRUCTURE DETERMINATION; RAY-POWDER DIFFRACTION; HIGH-ENERGY DENSITY; X-RAY; MAGNETIC-PROPERTIES; ELECTROCHEMICAL INTERCALATION; SODIUM; ELECTRODES; LI2MNO3; OXIDE AB Ordered and disordered samples of honeycomb lattice Na3Ni2BiO6 were investigated as cathodes for Na-ion batteries, and it was determined that the ordered sample exhibits better electrochemical performance, with a specific capacity of 104 mA h/g delivered at plateaus of 3.5 and 3.2 V (vs NA(+)/Na) with minimal capacity fade during extended cycling. Advanced imaging and diffraction investigations showed that the primary difference between the ordered and disordered samples is the amount of number-type stacking faults associated with the three possible centering choices for each honeycomb layer. A labeling scheme for assigning the number position of honeycomb layers is described, and it is shown that the translational shift vectors between layers provide the simplest method for classifying different repeat patterns. It is demonstrated that the number position of honeycomb layers can be directly determined in high-angle annular dark-field scanning transmission electron microscopy (STEM-HAADF) imaging studies. By the use of fault models derived from STEM studies, it is shown that both the sharp, symmetric subcell peaks and the broad, asymmetric superstructure peaks in powder diffraction patterns can be quantitatively modeled. About 20% of the layers in the ordered monoclinic sample are faulted in a nonrandom manner, while the disordered sample stacking is not fully random but instead contains about 4% monoclinic order. Furthermore, it is shown that the ordered sample has a series of higher-order superstructure peaks associated with 6-, 9-, 12-, and 15-layer periods whose existence is transiently driven by the presence of long-range strain that is an inherent consequence of the synthesis mechanism revealed through the present diffraction and imaging studies. This strain is closely associated with a monoclinic shear that can be directly calculated from cell lattice parameters and is strongly correlated with the degree of ordering in the samples. The present results are broadly applicable to other honeycomb-lattice systems, including Li2MnO3 and related Li-excess cathode compositions. C1 [Liu, Jue; Yin, Liang; Khalifah, Peter G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Liu, Jue; Bak, Seong-Min; Yu, Xiqian; Yang, Xiao-Qing; Khalifah, Peter G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Bai, Jianming] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. RP Khalifah, PG (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Khalifah, PG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM kpete@bnl.gov RI Yu, Xiqian/B-5574-2014; Bak, Seong Min/J-4597-2013 OI Yu, Xiqian/0000-0001-8513-518X; FU NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012583]; NYSTAR-NYSERDA; National Science Foundation [DMR-0955646]; U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies [DE-SC0012704]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0012704]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704, DE-AC02-76SF00515] FX The research by J.L. was supported as part of the NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences, under Award DE-SC0012583, including matching support from NYSTAR-NYSERDA. L.Y. was supported by National Science Foundation Grant DMR-0955646. S.-M.B., X.Y., and X.-Q.Y. at BNL were supported by the U.S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under Contract DE-SC0012704. L.W. and Y.Z. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract DE-SC0012704. This research was in part carried out at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-SC0012704. This research utilized the facilities at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-SC0012704. Use of the National Synchrotron Light Source (beamlines X18A and XPD), Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-SC0012704. J.L. is also thankful for technical support by the scientists from beamline BL2-2 at SSRL, SLAC, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contractor No. DE-AC02-76SF00515. NR 51 TC 0 Z9 0 U1 19 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 5 PY 2016 VL 55 IS 17 BP 8478 EP 8492 DI 10.1021/acs.inorgchem.6b01078 PG 15 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DV1WX UT WOS:000382713900033 PM 27532675 ER PT J AU Burns, JD Moyer, BA AF Burns, Jonathan D. Moyer, Bruce A. TI Group Hexavalent Actinide Separations: A New Approach to Used Nuclear Fuel Recycling SO INORGANIC CHEMISTRY LA English DT Article ID URANYL-NITRATE HEXAHYDRATE; NITRIC-ACID; GEOLOGIC REPOSITORY; SOLVENT-EXTRACTION; AMERICIUM; OXIDATION; CRYSTAL; BEHAVIOR; PLUTONIUM; AM(VI) AB Hexavalent Np, Pu, and Am individually, and as a group, have all been cocrystallized with UO2(NO3)(2).6H(2)O, constituting the first demonstration of an An(VI) group cocrystallization. The hexavalent dioxo cations of Np, Pu, and Am cocrystallize with UO2(NO3)(2).6H(2)O in near proportion with a simple reduction in temperature, while the lower valence states, An(III) and An(IV), are only slightly removed from solution. A separation of An(VI) species from An(III) ions by crystallization has been demonstrated, with an observed separation factor of 14. Separation of An(VI) species from key fission products, Zr-95, Nb-95, Cs-137, and Ce-144, has also been demonstrated by crystallization, with separation factors ranging from 6.5 to 71 in the absence of Am(VI), while in the presence of Am(VI), the separation factors were reduced to 0.99-7.7. One interesting observation is that Am(VI) shows increased stability in the cocrystallized form, with no reduction observed after 13 days, as opposed to in solution, in which >50% is reduced after only 10 days. The ability to cocrystallize and stabilize hexavalent actinides from solution, especially Am(VI), introduces a new separations approach that can be applied to closing the nuclear fuel cycle. C1 [Burns, Jonathan D.] Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, POB 2008, Oak Ridge, TN 37831 USA. [Moyer, Bruce A.] Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. [Burns, Jonathan D.] Texas A&M Univ, Nucl Secur Sci & Policy Inst, College Stn, TX 77845 USA. RP Burns, JD (reprint author), Oak Ridge Natl Lab, Nucl Secur & Isotope Technol Div, POB 2008, Oak Ridge, TN 37831 USA.; Burns, JD (reprint author), Texas A&M Univ, Nucl Secur Sci & Policy Inst, College Stn, TX 77845 USA. EM burns.jon@tamu.edu RI Burns, Jonathan/O-2028-2015 OI Burns, Jonathan/0000-0003-0301-9607 FU Fuel Cycle Research and Development program, Office of Nuclear Energy, U.S. Department of Energy FX This work was sponsored by the Fuel Cycle Research and Development program, Office of Nuclear Energy, U.S. Department of Energy. The authors gratefully acknowledge the Pu-238 Production Program for supplying the sample containing fission products mimicking used fuel. We also acknowledge Dr. Laetitia H. Delmau at Oak Ridge National Laboratory and Dr. Bruce J. Mincher and Dr. Travis S. Grimes at Idaho National Laboratory for fruitful discussions on experimental design. NR 36 TC 0 Z9 0 U1 15 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD SEP 5 PY 2016 VL 55 IS 17 BP 8913 EP 8919 DI 10.1021/acs.inorgchem.6b01430 PG 7 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DV1WX UT WOS:000382713900079 PM 27532485 ER PT J AU Grosso-Giordano, NA Eaton, TR Bo, ZY Yacob, S Yang, CC Notestein, JM AF Grosso-Giordano, Nicolas A. Eaton, Todd R. Bo, Zhenyu Yacob, Sara Yang, Chieh-Chao Notestein, Justin M. TI Silica support modifications to enhance Pd-catalyzed deoxygenation of stearic acid SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Biodiesel; Green diesel; Deoxygenation; Biofuels; Palladium; Nanoparticles; Hybrid materials; Carbon ID FREE FATTY-ACIDS; PALLADIUM CATALYSTS; CONTINUOUS DECARBOXYLATION; RENEWABLE FEEDSTOCKS; VEGETABLE-OILS; DIESEL FUEL; ADSORPTION; HYDROCARBONS; DERIVATIVES; ALUMINA AB The catalytic deoxygenation of fatty acids has recently received significant attention as a low-hydrogen approach to biomass feedstock deoxygenation for production of hydrocarbon fuels with superior properties to biodiesel. Unfortunately, it is a challenging reaction to push to high yields. Of typical catalysts, Pd/C is typically reported to give the best performance, while most oxide supports are inferior, with exceptions for very specific preparation and pre-treatment protocols. Here, we investigate the role of organosilane-modified silicas as supports for the Pd-catalyzed deoxygenation of stearic acid at 300 degrees C under inert atmosphere. Comparing aminopropylsilane-modified, phenylsilane-modified, and unmodified silica supports with Pd incorporated by several methods, it is first shown that changes in dispersion alone do not account for improvements in deoxygenation yields. Capping silanols with phenylsilane is also ineffective on its own in improving deoxygenation yields. The most effective treatment is shown to be a co-deposition of phenylsilane and aminopropylsilane before Pd incipient wetness impregnation, followed by direct reduction of the catalyst, which gives heptadecane yields >85%, exceeding even the productivity of Pd/C. These results demonstrate that basic, aromatic-rich surfaces are accessible through organosilane grafting and that these surfaces can control Pd particle sizes and the adsorption of stearic acid and products. This work improves our understanding of support effects for biomass feedstock deoxygenation catalysts and could help design new catalysts that take advantage of modified inorganic supports. (C) 2016 Elsevier B.V. All rights reserved. C1 [Grosso-Giordano, Nicolas A.; Eaton, Todd R.; Bo, Zhenyu; Yacob, Sara; Yang, Chieh-Chao; Notestein, Justin M.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA. [Grosso-Giordano, Nicolas A.] Univ Calif Berkeley, Chem & Biomol Engn, Berkeley, CA 94720 USA. [Eaton, Todd R.] Natl Renewable Energy Lab, Golden, CO USA. [Yacob, Sara] ExxonMobil Corp Res, Clinton, NJ USA. RP Notestein, JM (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA. EM j-notestein@northwestern.edu RI Notestein, Justin/B-7651-2009 FU Department of Energy, Basic Energy Sciences [DE-SC0006718]; Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center - U.S. Department of Energy, Basic Energy Sciences; Department of Energy [DE-FG02-03ER15457]; MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nano-technology (IIN); State of Illinois through the IIN FX This work was supported by the Department of Energy, Basic Energy Sciences grant DE-SC0006718 and is also based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Basic Energy Sciences. DRIFTS and CO chemisorption were carried out in the CleanCat Core facility that acknowledges funding from the Department of Energy (DE-FG02-03ER15457). IEP and TEM were performed in the Keck-II and EPIC facilities, respectively of NUANCE Center at Northwestern University. The NUANCE Center has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nano-technology (IIN); and the State of Illinois, through the IIN. NMR and ICP were carried out in the IMSERC core facility at Northwestern University with instrument acquisition supported by the US Department of Energy NSF DMR-0521267, and Northwestern University. NR 40 TC 0 Z9 0 U1 24 U2 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 EI 1873-3883 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD SEP 5 PY 2016 VL 192 BP 93 EP 100 DI 10.1016/j.apcatb.2016.03.041 PG 8 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA DL8JE UT WOS:000375887500011 ER PT J AU Hu, D Yin, ZP Zhang, WL Ewings, RA Ikeuchi, K Nakamura, M Roessli, B Wei, Y Zhao, LX Chen, GF Li, SL Luo, HQ Haule, K Kotliar, G Dai, PC AF Hu, Ding Yin, Zhiping Zhang, Wenliang Ewings, R. A. Ikeuchi, Kazuhiko Nakamura, Mitsutaka Roessli, Bertrand Wei, Yuan Zhao, Lingxiao Chen, Genfu Li, Shiliang Luo, Huiqian Haule, Kristjan Kotliar, Gabriel Dai, Pengcheng TI Spin excitations in optimally P-doped BaFe2(As0.7P0.3)(2) superconductor SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; IRON-BASED SUPERCONDUCTORS; PNICTIDES; CHALCOGENIDES; DYNAMICS; ORDER AB We use inelastic neutron scattering to study the temperature and energy dependence of spin excitations in an optimally P-doped BaFe2(As0.7P0.3)(2) superconductor (T-c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe2As2 stem from an antiferromagnetic (AF) ordering wave vector Q(AF) = (+/- 1,0), and peak near the zone boundary at (+/- 1,+/- 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low- energy spin excitations of BaFe2(As0.7P0.3)(2) form a resonance in the superconducting state and high-energy spin excitations now peak around 220 meV near (+/- 1,+/- 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe2(As0.7P0.3)(2) reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations. C1 [Hu, Ding; Yin, Zhiping; Dai, Pengcheng] Beijing Normal Univ, Ctr Adv Quantum Studies, Beijing 100875, Peoples R China. [Hu, Ding; Yin, Zhiping; Dai, Pengcheng] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China. [Hu, Ding; Zhang, Wenliang; Wei, Yuan; Zhao, Lingxiao; Chen, Genfu; Li, Shiliang; Luo, Huiqian] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. [Ewings, R. A.] STFC Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Didcot OX11 0QX, Oxon, England. [Ikeuchi, Kazuhiko] CROSS, Res Ctr Neutron Sci & Technol, Tokai, Ibaraki 3191106, Japan. [Nakamura, Mitsutaka] J PARC Ctr, Mat & Life Sci Div, Tokai, Ibaraki 3191195, Japan. [Roessli, Bertrand] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland. [Li, Shiliang] Collaborat Innovat Ctr Quantum Matter, Beijing, Peoples R China. [Kotliar, Gabriel] Brookhaven Natl Lab, Upton, NY 11973 USA. [Dai, Pengcheng] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. RP Yin, ZP (reprint author), Beijing Normal Univ, Ctr Adv Quantum Studies, Beijing 100875, Peoples R China.; Yin, ZP (reprint author), Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China.; Yin, ZP (reprint author), Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. EM yinzhiping@bnu.edu.cn; pdai@rice.edu RI Dai, Pengcheng /C-9171-2012; Li, Shiliang/B-9379-2009 OI Dai, Pengcheng /0000-0002-6088-3170; FU National Natural Science Foundation of China (NSFC) [11374011, 11374346, 11674406, 11611130165]; Ministry of Science and Technology of China (973 projects) [2012CB821400, 2015CB921302]; Strategic Priority Research Program (B) of CAS [XDB07020300]; Youth Innovation Promotion Association, CAS [2016004]; U.S. DOE, Office of Basic Energy Sciences [DE-SC0012311]; Robert A. Welch Foundation [C-1839]; NSF DMREF [DMR-1436006, DMR-1435918]; Science and Technology Facilities Council FX The work at IOP, CAS is supported by National Natural Science Foundation of China (NSFC Projects: 11374011, 11374346, 11674406 and 11611130165), the Ministry of Science and Technology of China (973 projects: 2012CB821400 and 2015CB921302), and the Strategic Priority Research Program (B) of CAS (Grant No. XDB07020300). H. Luo is grateful for the support from the Youth Innovation Promotion Association, CAS (No. 2016004). Neutron scattering work at Rice is supported by the U.S. DOE, Office of Basic Energy Sciences, under Contract No. DE-SC0012311. Part of the materials work at Rice University is supported by the Robert A. Welch Foundation Grant No. C-1839. The neutron experiment at the Materials and Life Science Experimental Facility of J-PARC was performed under a user program (Proposal No. 2014B0277). The computational works at Rice and Rutgers are supported by NSF DMREF DMR-1436006 and DMR-1435918, respectively. Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beam time allocation from the Science and Technology Facilities Council. NR 48 TC 0 Z9 0 U1 1 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2016 VL 94 IS 9 AR 094504 DI 10.1103/PhysRevB.94.094504 PG 7 WC Physics, Condensed Matter SC Physics GA DV6IL UT WOS:000383037400002 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duffield, EM Duflot, L Duguid, L Duhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JE Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, G Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-Zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubu, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Zu Theenhausen, HM Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ueno, R Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A Zur Nedden, M Zurzolo, G Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Verzini, M. J. Alconada Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Piqueras, D. Alvarez Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Dos Santos, S. P. Amor Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Navarro, L. Barranco Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Sola, J. D. Bossio Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Urban, S. Cabrera Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Gimenez, V. Castillo Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Alberich, L. Cerda Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. De Sousa, M. J. Da Cunha Sargedas Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duffield, E. M. Duflot, L. Duguid, L. Duhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Martinez, P. Fernandez Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Juste Rozas, A. Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-Zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubu, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Miguens, J. Machado Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. de Andrade Filho, L. Manhaes Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Zu Theenhausen, H. Meyer Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nguyen Manh, T. Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Seabra, L. F. Oleiro Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Garzon, G. Otero y Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Rodriguez, L. Pacheco Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tapia Araya, S. Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Delgado, A. Tavares Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ueno, R. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. Zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for pair production of Higgs bosons in the bbbb final state using proton-proton collisions at root s=13 TeV with the ATLAS detector SO PHYSICAL REVIEW D LA English DT Article ID HERWIG PLUS AB A search for Higgs-boson pair production in the bbbb final state is carried out with 3.2 fb(-1) of protonproton collision data collected at root s = 13 TeV with the ATLAS detector. The data are consistent with the estimated background and are used to set upper limits on the production cross section of Higgs-boson pairs times branching ratio to bbbb for both nonresonant and resonant production. In the case of resonant production of Kaluza-Klein gravitons within the Randall-Sundrum model, upper limits in the 24 to 91 fb range are obtained for masses between 600 and 3000 GeV, at the 95% confidence level. The production cross section times branching ratio for nonresonant Higgs-boson pairs is also constrained to be less than 1.22 pb, at the 95% confidence level. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Smart, B. H.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Khalil-Zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Perez, S. Fernandez; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Sorin, V.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin dit; Sjursen, T. B.; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; Zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hiller, K. H.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; de Andrade Filho, L. Manhaes; Peralva, B. S.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Dell Rei UFSJ, Sao Joao Dell Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politeh Bucharest, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Sola, J. D. Bossio; Marceca, G.; Garzon, G. Otero y; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Koffas, T.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Bryant, P.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Okumura, Y.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Phys, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Liu, B.; Ma, L. L.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai, Peoples R China. [Bret, M. Cano; Guo, J.; Li, L.; Yang, H.] PKU CHEP, Beijing, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Mader, W. F.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Blaise Pascal, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Khoo, T. J.; Lionti, A. E.; March, L.; Mermod, P.; Miucci, A.; Nackenhorst, O.; Nessi, M.; Paolozzi, L.; Ristic, B.; Schramm, S.; Sfyrla, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Miglioranzi, S.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubu, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Stolte, P.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Georg August Univ, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA USA. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Zu Theenhausen, H. Meyer; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Radescu, V.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Verzini, M. J. Alconada; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dept Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Cerrito, L.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Grossi, G. C.; Jana, D. K.; Sawyer, C.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Huelsing, T. A.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Wollstadt, S. J.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Gao, J.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Fedin, O. L.; Feng, H.; Ferretti, C.; Fleischmann, P.; Geng, C.; Goldfarb, S.; Guan, L.; Guo, Y.; Levin, D.; Li, B.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Mazza, S. M.; Meroni, C.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Nguyen Manh, T.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Ludwig Maximilians Univ Munchen, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Igonkina, O.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Radloff, P.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris 11, CNRS, IN2P3, Univ Paris Saclay,LAL, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Mistry, K. P.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] B P Konstantinov Petersburg Nucl Phys, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA USA. [Aguilar-Saavedra, J. A.; Dos Santos, S. P. Amor; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Seabra, L. F. Oleiro; Onofre, A.; Palma, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Delgado, A. Tavares; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao Fis Expt & Particulas, Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; De Sousa, M. J. Da Cunha Sargedas; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Delgado, A. Tavares] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Dos Santos, S. P. Amor; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, Caparica, Portugal. Univ Nova Lisboa, CEFITEC, Fac Ciencias & Tecnol, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Balek, P.; Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Verducci, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU, Commissariat Energie Atom & Energies Alternat, Inst Rech Lois Fondament Univers, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, M.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Astron, Stony Brook, NY 11794 USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Hod, N.; Jovicevic, J.; Oakham, F. G.; Codina, E. Perez; Savard, P.; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Coll Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Ferrere, D.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Rossi, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Piqueras, D. Alvarez; Navarro, L. Barranco; Urban, S. Cabrera; Gimenez, V. Castillo; Alberich, L. Cerda; Costa, M. J.; Martinez, P. Fernandez; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fac Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Phys, Fak Mathemat & Nat Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Ahmadov, F.; Huseynov, N.; Javadov, N.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Dept Fis & Astron, Fac Ciencias, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Ducu, O. A.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubu, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Piacquadio, G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. RP Aaboud, M (reprint author), Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. RI Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Mitsou, Vasiliki/D-1967-2009; Garcia, Jose /H-6339-2015; Camarri, Paolo/M-7979-2015; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; Snesarev, Andrey/H-5090-2013; Solodkov, Alexander/B-8623-2017; Doyle, Anthony/C-5889-2009; Zaitsev, Alexandre/B-8989-2017; Carli, Ina/C-2189-2017; Martinez, Mario /I-3549-2015; Guo, Jun/O-5202-2015; Villa, Mauro/C-9883-2009; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Lazzaroni, Massimo/N-3675-2015; Prokoshin, Fedor/E-2795-2012; Warburton, Andreas/N-8028-2013; Owen, Mark/Q-8268-2016; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Ventura, Andrea/A-9544-2015; Mashinistov, Ruslan/M-8356-2015; Gutierrez, Phillip/C-1161-2011; Tikhomirov, Vladimir/M-6194-2015; White, Ryan/E-2979-2015; Kantserov, Vadim/M-9761-2015 OI Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645; Solodkov, Alexander/0000-0002-2737-8674; Doyle, Anthony/0000-0001-6322-6195; Zaitsev, Alexandre/0000-0002-4961-8368; Carli, Ina/0000-0002-0411-1141; Guo, Jun/0000-0001-8125-9433; Villa, Mauro/0000-0002-9181-8048; Peleganchuk, Sergey/0000-0003-0907-7592; Lazzaroni, Massimo/0000-0002-4094-1273; Prokoshin, Fedor/0000-0001-6389-5399; Warburton, Andreas/0000-0002-2298-7315; Owen, Mark/0000-0001-6820-0488; Gladilin, Leonid/0000-0001-9422-8636; Livan, Michele/0000-0002-5877-0062; Ventura, Andrea/0000-0002-3368-3413; Mashinistov, Ruslan/0000-0001-7925-4676; Tikhomirov, Vladimir/0000-0002-9634-0581; White, Ryan/0000-0003-3589-5900; Kantserov, Vadim/0000-0001-8255-416X FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation;; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society and Leverhulme Trust, United Kingdom FX We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [54]. NR 55 TC 2 Z9 2 U1 29 U2 29 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 2 PY 2016 VL 94 IS 5 AR 052002 DI 10.1103/PhysRevD.94.052002 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DV6MN UT WOS:000383050400002 ER PT J AU Richard, E Okumura, K Abe, K Haga, Y Hayato, Y Ikeda, M Iyogi, K Kameda, J Kishimoto, Y Miura, M Moriyama, S Nakahata, M Nakajima, T Nakano, Y Nakayama, S Orii, A Sekiya, H Shiozawa, M Takeda, A Tanaka, H Tomura, T Wendell, RA Akutsu, R Irvine, T Kajita, T Kaneyuki, K Nishimura, Y Labarga, L Fernandez, P Gustafson, J Kachulis, C Kearns, E Raaf, JL Stone, JL Sulak, LR Berkman, S Nantais, CM Tanaka, HA Tobayama, S Goldhaber, M Kropp, WR Mine, S Weatherly, P Smy, MB Sobel, HW Takhistov, V Ganezer, KS Hartfiel, BL Hill, J Hong, N Kim, JY Lim, IT Park, RG Himmel, A Li, Z O'Sullivan, E Scholberg, K Walter, CW Wongjirad, T Ishizuka, T Tasaka, S Jang, JS Learned, JG Matsuno, S Smith, SN Friend, M Hasegawa, T Ishida, T Ishii, T Kobayashi, T Nakadaira, T Nakamura, K Oyama, Y Sakashita, K Sekiguchi, T Tsukamoto, T Suzuki, AT Takeuchi, Y Yano, T Cao, SV Hiraki, T Hirota, S Huang, K Kikawa, T Minamino, A Nakaya, T Suzuki, K Fukuda, Y Choi, K Itow, Y Suzuki, T Mijakowski, P Frankiewicz, K Hignight, J Imber, J Jung, CK Li, X Palomino, JL Wilking, MJ Yanagisawa, C Fukuda, D Ishino, H Kayano, T Kibayashi, A Koshio, Y Mori, T Sakuda, M Xu, C Kuno, Y Tacik, R Kim, SB Okazawa, H Choi, Y Nishijima, K Koshiba, M Totsuka, Y Suda, Y Yokoyama, M Bronner, C Hartz, M Martens, K Marti, L Suzuki, Y Vagins, MR Martin, JF Konaka, A Chen, S Zhang, Y Wilkes, RJ AF Richard, E. Okumura, K. Abe, K. Haga, Y. Hayato, Y. Ikeda, M. Iyogi, K. Kameda, J. Kishimoto, Y. Miura, M. Moriyama, S. Nakahata, M. Nakajima, T. Nakano, Y. Nakayama, S. Orii, A. Sekiya, H. Shiozawa, M. Takeda, A. Tanaka, H. Tomura, T. Wendell, R. A. Akutsu, R. Irvine, T. Kajita, T. Kaneyuki, K. Nishimura, Y. Labarga, L. Fernandez, P. Gustafson, J. Kachulis, C. Kearns, E. Raaf, J. L. Stone, J. L. Sulak, L. R. Berkman, S. Nantais, C. M. Tanaka, H. A. Tobayama, S. Goldhaber, M. Kropp, W. R. Mine, S. Weatherly, P. Smy, M. B. Sobel, H. W. Takhistov, V. Ganezer, K. S. Hartfiel, B. L. Hill, J. Hong, N. Kim, J. Y. Lim, I. T. Park, R. G. Himmel, A. Li, Z. O'Sullivan, E. Scholberg, K. Walter, C. W. Wongjirad, T. Ishizuka, T. Tasaka, S. Jang, J. S. Learned, J. G. Matsuno, S. Smith, S. N. Friend, M. Hasegawa, T. Ishida, T. Ishii, T. Kobayashi, T. Nakadaira, T. Nakamura, K. Oyama, Y. Sakashita, K. Sekiguchi, T. Tsukamoto, T. Suzuki, A. T. Takeuchi, Y. Yano, T. Cao, S. V. Hiraki, T. Hirota, S. Huang, K. Kikawa, T. Minamino, A. Nakaya, T. Suzuki, K. Fukuda, Y. Choi, K. Itow, Y. Suzuki, T. Mijakowski, P. Frankiewicz, K. Hignight, J. Imber, J. Jung, C. K. Li, X. Palomino, J. L. Wilking, M. J. Yanagisawa, C. Fukuda, D. Ishino, H. Kayano, T. Kibayashi, A. Koshio, Y. Mori, T. Sakuda, M. Xu, C. Kuno, Y. Tacik, R. Kim, S. B. Okazawa, H. Choi, Y. Nishijima, K. Koshiba, M. Totsuka, Y. Suda, Y. Yokoyama, M. Bronner, C. Hartz, M. Martens, K. Marti, Ll. Suzuki, Y. Vagins, M. R. Martin, J. F. Konaka, A. Chen, S. Zhang, Y. Wilkes, R. J. TI Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation SO PHYSICAL REVIEW D LA English DT Article ID NEAR-EARTH ORBIT; COSMIC-RAYS; 200 TEV; SPECTROMETER; OSCILLATION; DETECTOR; PROTONS; HELIUM; MUONS AB A comprehensive study of the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande (SK) water Cherenkov detector is presented in this paper. The energy and azimuthal spectra, and variation over time, of the atmospheric nu(e) + (nu) over bar (e) and nu(mu) + (nu) over bar (mu) fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the nu(e) and nu(mu) samples at 8.0 sigma and 6.0 sigma significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 sigma level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is performed, and a weak preference for a correlation was seen at the 1.1 sigma level, using SK-I-SK-IV data spanning a 20-year period. For several particularly strong solar activity periods, corresponding to Forbush decrease events, no theoretical prediction is available but a deviation below the typical neutrino event rate is seen at the 2.4 sigma level. The seasonal modulation of the neutrino flux is also examined, but the change in flux at the SK site is predicted to be negligible, and, as expected, no evidence for a seasonal correlation is seen. C1 [Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.] Univ Tokyo, Kamioka Observ, Inst Cosm Ray Res, Gifu 5061205, Japan. [Richard, E.; Okumura, K.; Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.] Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. [Labarga, L.; Fernandez, P.] Univ Autonoma Madrid, Dept Theoret Phys, E-28049 Madrid, Spain. [Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Goldhaber, M.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Vagins, M. R.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Ganezer, K. S.; Hartfiel, B. L.; Hill, J.] Calif State Univ Dominguez Hills, Dept Phys, Carson, CA 90747 USA. [Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.] Chonnam Natl Univ, Dept Phys, Kwangju 500757, South Korea. [Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.] Duke Univ, Dept Phys, Durham, NC 27708 USA. [Ishizuka, T.] Fukuoka Inst Technol, Jr Coll, Fukuoka, Fukuoka 8110295, Japan. [Tasaka, S.] Gifu Univ, Dept Phys, Gifu, Gifu 5011193, Japan. [Jang, J. S.] GIST Coll, Gwangju Inst Sci & Technol, Gwangju 500712, South Korea. [Learned, J. G.; Matsuno, S.; Smith, S. N.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Suzuki, A. T.; Takeuchi, Y.; Yano, T.] Kobe Univ, Dept Phys, Kobe, Hyogo 6578501, Japan. [Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.] Kyoto Univ, Dept Phys, Kyoto, Kyoto 6068502, Japan. [Fukuda, Y.] Miyagi Univ Educ, Dept Phys, Sendai, Miyagi 9800845, Japan. [Choi, K.; Itow, Y.; Suzuki, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648602, Japan. [Mijakowski, P.; Frankiewicz, K.] Natl Ctr Nucl Res, PL-00681 Warsaw, Poland. [Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.] Okayama Univ, Dept Phys, Okayama, Okayama 7008530, Japan. [Kuno, Y.] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Tacik, R.] Univ Regina, Dept Phys, 3737 Wascana Pkwy, Regina, SK S4S OA2, Canada. [Kim, S. B.] Seoul Natl Univ, Dept Phys, Seoul 151742, South Korea. [Okazawa, H.] Shizuoka Univ Welf, Dept Informat Social Welf, Shizuoka 4258611, Japan. [Choi, Y.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Nishijima, K.] Tokai Univ, Dept Phys, Hiratsuka, Kanagawa 2591292, Japan. [Koshiba, M.; Totsuka, Y.] Univ Tokyo, Bunkyo Ku, Tokyo 1130033, Japan. [Okumura, K.; Abe, K.; Hayato, Y.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tomura, T.; Wendell, R. A.; Kajita, T.; Kaneyuki, K.; Kearns, E.; Stone, J. L.; Smy, M. B.; Sobel, H. W.; Scholberg, K.; Walter, C. W.; Nakamura, K.; Takeuchi, Y.; Nakaya, T.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.] Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778582, Japan. [Martin, J. F.] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Tacik, R.; Konaka, A.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Chen, S.; Zhang, Y.] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China. [Wilkes, R. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Suda, Y.; Yokoyama, M.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan. [Yanagisawa, C.] CUNY, BMCC, Dept Sci, New York, NY 10021 USA. RP Richard, E (reprint author), Univ Tokyo, Inst Cosm Ray Res, Res Ctr Cosm Neutrinos, Kashiwa, Chiba 2778582, Japan. RI Nakano, Yuuki/S-2684-2016; Koshio, Yusuke/C-2847-2015 OI Koshio, Yusuke/0000-0003-0437-8505 FU European Union's FP7 programme [213007]; National Science Foundation; Japanese Ministry of Education, Culture, Sports, Science, and Technology; U.S. Department of Energy; U.S. National Science Foundation; Institute for Cosmic Ray Research, at the University of Tokyo; Research Foundation of Korea (BK21); Korean Ministry of Science and Technology; National Science Foundation of China; European Union [RISE-GA641540-SKPLUS]; National Science and Engineering Research Council (NSERC) of Canada; Scinet and Westgrid consortia of Compute Canada; National Science Centre, Poland [2015/17/N/ST2/04064, 2015/18/E/ST200758]; Research Foundation of Korea (KNRC); [25105004]; [25105005] FX The authors would like to thank M. Honda for many suggestions and discussions, and for providing the data on the correlation between the atmospheric flux and neutron count. The authors would like to thank S. Yoshida, K. Mase, A. Ishihara, T. Kuwabara, and M. Schmitz for the useful discussions on the atmospheric neutrino flux measurement. We acknowledge the NMDB database [82], founded under the European Union's FP7 programme (Contract No. 213007) for providing data. The Newark, Thule, and McMurdo neutron monitors of the Bartol Research Institute are supported by the National Science Foundation. Kerguelen neutron monitor data were kindly provided by the French Polar Institute (IPEV, Brest) and by the Paris Observatory. The authors gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. Super-Kamiokande has been built and operated from funds provided by the Japanese Ministry of Education, Culture, Sports, Science, and Technology, the U.S. Department of Energy, and the U.S. National Science Foundation. This work was supported by Grants-in-Aid for Scientific Research on Innovative Areas, Grants No. 25105004 and No. 25105005. This work was partially supported by the joint research program of the Institute for Cosmic Ray Research, at the University of Tokyo. This work was partially supported by the Research Foundation of Korea (BK21 and KNRC), the Korean Ministry of Science and Technology, the National Science Foundation of China, the European Union H2020 Grant No. RISE-GA641540-SKPLUS, the National Science and Engineering Research Council (NSERC) of Canada, the Scinet and Westgrid consortia of Compute Canada, and the National Science Centre, Poland (Grants No. 2015/17/N/ST2/04064 and No. 2015/18/E/ST200758). NR 81 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD SEP 2 PY 2016 VL 94 IS 5 AR 052001 DI 10.1103/PhysRevD.94.052001 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DV6MN UT WOS:000383050400001 ER PT J AU Lawrence, DM Hurtt, GC Arneth, A Brovkin, V Calvin, KV Jones, AD Jones, CD Lawrence, PJ de Noblet-Ducoudre, N Pongratz, J Seneviratne, SI Shevliakova, E AF Lawrence, David M. Hurtt, George C. Arneth, Almut Brovkin, Victor Calvin, Kate V. Jones, Andrew D. Jones, Chris D. Lawrence, Peter J. de Noblet-Ducoudre, Nathalie Pongratz, Julia Seneviratne, Sonia I. Shevliakova, Elena TI The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design SO GEOSCIENTIFIC MODEL DEVELOPMENT LA English DT Article ID EARTH SYSTEM MODEL; CLIMATE-CHANGE MITIGATION; COVER CHANGE; CARBON-CYCLE; SOIL-MOISTURE; SATELLITE-OBSERVATIONS; SCALE DEFORESTATION; SURFACE CLIMATE; HOT EXTREMES; WOOD HARVEST AB Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-management strategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent to which impacts of enhanced CO2 concentrations on plant photosynthesis are modulated by past and future land use. LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a twophase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential landcover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed. C1 [Lawrence, David M.; Lawrence, Peter J.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Hurtt, George C.] Univ Maryland, College Pk, MD 20742 USA. [Arneth, Almut] Karlsruhe Inst Technol, Garmisch Partenkirchen, Germany. [Brovkin, Victor; Pongratz, Julia] Max Planck Inst Meteorol, Hamburg, Germany. [Calvin, Kate V.] Joint Global Change Res Inst, College Pk, MD USA. [Jones, Andrew D.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Jones, Chris D.] Met Off Hadley Ctr, Exeter, Devon, England. [de Noblet-Ducoudre, Nathalie] Lab Sci Climat & Environm, Gif Sur Yvette, France. [Seneviratne, Sonia I.] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland. [Shevliakova, Elena] NOAA, GFDL, Princeton, NJ USA. [Shevliakova, Elena] Princeton Univ, Princeton, NJ 08544 USA. RP Lawrence, DM (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM dlawren@ucar.edu RI Brovkin, Victor/C-2803-2016; Jones, Chris/I-2983-2014; Jones, Andrew/M-4363-2013; OI Brovkin, Victor/0000-0001-6420-3198; Jones, Andrew/0000-0002-1913-7870; Seneviratne, Sonia/0000-0001-9528-2917 FU US Department of Energy [DE-FC03-97ER62402/A010, DE-SC0012972]; US Department of Agriculture [2015-67003-23489]; German Research Foundation's Emmy Noether Program; European Research Council (ERC DROUGHT-HEAT project); EC [LUC4C, 603542]; Helmholtz Association through its ATMO programme FX We would like to thank Andy Pitman, Paul Dirmeyer, Alan DiVittorio, and Ron Stouffer for their thoughtful and constructive reviews that led to considerable improvements to the document. David M. Lawrence is supported by the US Department of Energy grants DE-FC03-97ER62402/A010 and DE-SC0012972 and US Department of Agriculture grant 2015-67003-23489. Julia Pongratz is supported by the German Research Foundation's Emmy Noether Program. Sonia I. Seneviratne acknowledges support from the European Research Council (ERC DROUGHT-HEAT project). Almut Arneth acknowledges support by the EC FP7 project LUC4C (grant no. 603542) and the Helmholtz Association through its ATMO programme. Nathalie de Noblet-Ducoudre acknowledges support by the EC FP7 project LUC4C (grant no. 603542) and by all participants to former LUCID exercises. NR 112 TC 5 Z9 5 U1 16 U2 18 PU COPERNICUS GESELLSCHAFT MBH PI GOTTINGEN PA BAHNHOFSALLEE 1E, GOTTINGEN, 37081, GERMANY SN 1991-959X EI 1991-9603 J9 GEOSCI MODEL DEV JI Geosci. Model Dev. PD SEP 2 PY 2016 VL 9 IS 9 BP 2973 EP 2998 DI 10.5194/gmd-9-2973-2016 PG 26 WC Geosciences, Multidisciplinary SC Geology GA DW8GL UT WOS:000383892800002 ER PT J AU Ramezani, H Dubois, M Wang, Y Shen, YR Zhang, X AF Ramezani, Hamidreza Dubois, Marc Wang, Yuan Shen, Y. Ron Zhang, Xiang TI Directional excitation without breaking reciprocity SO NEW JOURNAL OF PHYSICS LA English DT Article DE PT symmetry; acoustics; directional excitation ID OPTICAL ISOLATION AB We propose a mechanism for directional excitation without breaking reciprocity. This is achieved by embedding an impedance matched parity-time symmetric potential in a three-port system. The amplitude distribution within the gain and loss regions is strongly influenced by the direction of the incoming field. Consequently, the excitation of the third port is contingent on the direction of incidence while transmission in the main channel is immune. Our design improves the four-port directional coupler scheme, as there is no need to implement an anechoic termination to one of the ports. C1 [Ramezani, Hamidreza; Dubois, Marc; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Ramezani, Hamidreza] Univ Texas Rio Grande Valley, Dept Phys, Brownsville, TX 78520 USA. [Shen, Y. Ron] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Shen, Y. Ron; Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Wang, Yuan/F-7211-2011 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231] FX This work was funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231. NR 37 TC 0 Z9 0 U1 8 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD SEP 2 PY 2016 VL 18 AR 095001 DI 10.1088/1367-2630/18/9/095001 PG 6 WC Physics, Multidisciplinary SC Physics GA DW9KL UT WOS:000383977700001 ER PT J AU Kanungo, R Horiuchi, W Hagen, G Jansen, GR Navratil, P Ameil, F Atkinson, J Ayyad, Y Cortina-Gil, D Dillmann, I Estrade, A Evdokimov, A Farinon, F Geissel, H Guastalla, G Janik, R Kimura, M Knobel, R Kurcewicz, J Litvinov, YA Marta, M Mostazo, M Mukha, I Nociforo, C Ong, HJ Pietri, S Prochazka, A Scheidenberger, C Sitar, B Strmen, P Suzuki, Y Takechi, M Tanaka, J Tanihata, I Terashima, S Vargas, J Weick, H Winfield, JS AF Kanungo, R. Horiuchi, W. Hagen, G. Jansen, G. R. Navratil, P. Ameil, F. Atkinson, J. Ayyad, Y. Cortina-Gil, D. Dillmann, I. Estrade, A. Evdokimov, A. Farinon, F. Geissel, H. Guastalla, G. Janik, R. Kimura, M. Knoebel, R. Kurcewicz, J. Litvinov, Yu. A. Marta, M. Mostazo, M. Mukha, I. Nociforo, C. Ong, H. J. Pietri, S. Prochazka, A. Scheidenberger, C. Sitar, B. Strmen, P. Suzuki, Y. Takechi, M. Tanaka, J. Tanihata, I. Terashima, S. Vargas, J. Weick, H. Winfield, J. S. TI Proton Distribution Radii of C12-19 Illuminate Features of Neutron Halos SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELASTIC ELECTRON-SCATTERING; CHANGING CROSS-SECTIONS; NUCLEAR RADII; TOTAL CHARGE; C-14 AB Proton radii of C12-19 densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from similar to 0.5 fm in C-15 to similar to 1 fm in C-19. The halo radius in C-19 is found to be 6.4 +/- 0.7 fm as large as Li-11. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well. C1 [Kanungo, R.; Atkinson, J.; Estrade, A.] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. [Horiuchi, W.; Kimura, M.] Hokkaido Univ, Dept Phys, Sapporo, Hokkaido 0600810, Japan. [Hagen, G.; Jansen, G. R.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Hagen, G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Jansen, G. R.] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Navratil, P.; Dillmann, I.] TRIUMF, Vancouver, BC V6T 4A3, Canada. [Ameil, F.; Dillmann, I.; Estrade, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mukha, I.; Nociforo, C.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Takechi, M.; Weick, H.; Winfield, J. S.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Ayyad, Y.; Cortina-Gil, D.; Mostazo, M.; Vargas, J.] Univ Santiago de Compostela, E-15706 Santiago De Compostella, Spain. [Geissel, H.; Scheidenberger, C.] Univ Giessen, D-35392 Giessen, Germany. [Janik, R.; Sitar, B.; Strmen, P.] Comenius Univ, Fac Math & Phys, Bratislava 84215, Slovakia. [Ong, H. J.; Tanaka, J.; Tanihata, I.] Osaka Univ, RCNP, Osaka 5670047, Japan. [Suzuki, Y.] RIKEN Nishina Ctr, Wako, Saitama 3510198, Japan. [Suzuki, Y.] Niigata Univ, Dept Phys, Niigata 9502181, Japan. [Tanihata, I.; Terashima, S.] Beihang Univ, Sch Phys & Nucl Energy Engn, Beijing 100191, Peoples R China. [Tanihata, I.; Terashima, S.] Beihang Univ, IRCNPC, Beijing 100191, Peoples R China. RP Kanungo, R (reprint author), St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada. EM ritu@triumf.ca RI Cortina-Gil, Dolores/H-9626-2015 OI Cortina-Gil, Dolores/0000-0001-7672-9912 FU NSERC, Canada; HIC-for-FAIR program; JLU-Giessen; People's Republic of China government; Beihang University under the Thousand Talents Program; Japanese government [23224008]; Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory) [DE-SC0008499]; NERRSC Grant [491045-2011]; National Research Council Canada; Office of Science of the Department of Energy [DE-AC05-00OR22725] FX The authors are thankful for the support of the GSI accelerator staff and the FRS technical staff for an efficient running of the experiment. The support from NSERC, Canada for this work is gratefully acknowledged. R. Kanungo thankfully acknowledges the HIC-for-FAIR program and JLU-Giessen for supporting part of the research stay. The support of the People's Republic of China government and Beihang University under the Thousand Talents Program is gratefully acknowledged. The experiment is partly supported by the grant-in-aid program of the Japanese government under the Grant No. 23224008. This work was supported by the Office of Nuclear Physics, U.S. Department of Energy (Oak Ridge National Laboratory), Grant No. DE-SC0008499 (NUCLEI SciDAC Collaboration), NERRSC Grant No. 491045-2011, and the Field Work Proposal ERKBP57 at Oak Ridge National Laboratory. Computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment program. TRIUMF receives funding via a contribution through the National Research Council Canada. This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725 and used computational resources of the National Center for Computational Sciences and the National Institute for Computational Sciences. NR 41 TC 2 Z9 2 U1 8 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 2 PY 2016 VL 117 IS 10 AR 102501 DI 10.1103/PhysRevLett.117.102501 PG 6 WC Physics, Multidisciplinary SC Physics GA DV6KQ UT WOS:000383044700006 PM 27636470 ER PT J AU Su, GM Cordova, IA Brady, MA Prendergast, D Wang, C AF Su, Gregory M. Cordova, Isvar A. Brady, Michael A. Prendergast, David Wang, Cheng TI Combining theory and experiment for X-ray absorption spectroscopy and resonant X-ray scattering characterization of polymers SO POLYMER LA English DT Review DE Polymer; Resonant scattering; Resonant reflectivity; NEXAFS; XPCS; Simulations; In situ; Operando ID PHOTON-CORRELATION SPECTROSCOPY; HETEROJUNCTION SOLAR-CELLS; ORGANIC THIN-FILMS; INTENSITY FLUCTUATION SPECTROSCOPY; LANGMUIR-BLODGETT MONOLAYERS; 25TH ANNIVERSARY ARTICLE; DOPED CONDUCTING POLYMER; BLOCK-COPOLYMER; MOLECULAR-ORIENTATION; ELECTRONIC-STRUCTURE AB An improved understanding of fundamental chemistry, electronic structure, morphology, and dynamics in polymers and soft materials requires advanced characterization techniques that are amenable to in situ and operando studies. Soft X-ray methods are especially useful in their ability to non-destructively provide information on specific materials or chemical moieties. Analysis of these experiments, which can be very dependent on X-ray energy and polarization, can quickly become complex. Complementary modeling and predictive capabilities are required to properly probe these critical features. Here, we present relevant background on this emerging suite of techniques. We focus on how the combination of theory and experiment has been applied and can be further developed to drive our understanding of how these methods probe relevant chemistry, structure, and dynamics in soft materials. Published by Elsevier Ltd. C1 [Su, Gregory M.; Cordova, Isvar A.; Brady, Michael A.; Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Brady, Michael A.; Prendergast, David] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Wang, C (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM gsu@lbl.gov; iacordova@lbl.gov; mabrady@lbl.gov; dgprendergast@lbl.gov; cwang2@lbl.gov RI Wang, Cheng/A-9815-2014 FU Advanced Light Source (ALS); Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Advanced Light Source (ALS) and the Molecular Foundry, user facilities located at the Lawrence Berkeley National Laboratory and supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Xiaodan Gu for helpful discussions. NR 154 TC 1 Z9 1 U1 20 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 EI 1873-2291 J9 POLYMER JI Polymer PD SEP 2 PY 2016 VL 99 BP 782 EP 796 DI 10.1016/j.polymer.2016.06.068 PG 15 WC Polymer Science SC Polymer Science GA DW8DW UT WOS:000383885000085 ER PT J AU Borca, MV O'Donnell, V Holinka, LG Rai, DK Sanford, B Alfano, M Carlson, J Azzinaro, PA Alonso, C Gladue, DP AF Borca, Manuel V. O'Donnell, Vivian Holinka, Lauren G. Rai, Devendra K. Sanford, Brenton Alfano, Marialexia Carlson, Jolene Azzinaro, Paul A. Alonso, Covadonga Gladue, Douglas P. TI The Ep152R ORF of African swine fever virus strain Georgia encodes for an essential gene that interacts with host protein BAG6 SO VIRUS RESEARCH LA English DT Article DE African swine fever virus; ASFV; BAG6; ASF; Viral-host interactions ID ISOLATE HARBORING DELETIONS; VIRULENCE-ASSOCIATED GENE; PARENTAL VIRUS; DOMESTIC SWINE; INFECTED-CELLS; VERO CELLS; IN-VITRO; SIMILARITY; PROTECTION; CHALLENGE AB African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The viral genome encodes for more than 150 genes, and only a select few of these genes have been studied in some detail. Here we report the characterization of open reading frame Ep152R that has a predicted complement control module/SCR domain. This domain is found in Vaccinia virus proteins that are involved in blocking the immune response during viral infection. A recombinant ASFV harboring a HA tagged version of the Ep152R protein was developed (ASFV-G-Ep152R-HA) and used to demonstrate that Ep152R is an early virus protein. Attempts to construct recombinant viruses having a deleted Ep152R gene were consistently unsuccessful indicating that Ep152R is an essential gene. Interestingly, analysis of host-protein interactions for Ep152R using a yeast two-hybrid screen, identified BAG6, a protein previously identified as being required for ASFV replication. Furthermore, fluorescent microscopy analysis confirms that Ep152R-BAG6 interaction actually occurs in cells infected with ASFV. Published by Elsevier B.V. C1 [Borca, Manuel V.; O'Donnell, Vivian; Holinka, Lauren G.; Rai, Devendra K.; Alfano, Marialexia; Carlson, Jolene; Azzinaro, Paul A.; Gladue, Douglas P.] ARS, Greenport, NY 11944 USA. [Borca, Manuel V.; O'Donnell, Vivian; Holinka, Lauren G.; Rai, Devendra K.; Alfano, Marialexia; Carlson, Jolene; Azzinaro, Paul A.; Gladue, Douglas P.] Plum Isl Anim Dis Ctr, Dept Homeland Secur, Greenport, NY 11944 USA. [Sanford, Brenton] Plum Isl Anim Dis Ctr, Dept Homeland Secur, Greenport, NY 11944 USA. [O'Donnell, Vivian; Rai, Devendra K.] Univ Connecticut, Dept Pathobiol, Storrs, CT 06269 USA. [O'Donnell, Vivian; Rai, Devendra K.] Univ Connecticut, Dept Vet Sci, Storrs, CT 06269 USA. [Alfano, Marialexia; Azzinaro, Paul A.] Oak Ridge Inst Sci & Educ ORISE, Oak Ridge, TN 37831 USA. [Carlson, Jolene] Kansas State Univ, Coll Vet Med, Biosecur Res Inst, Manhattan, KS 66506 USA. [Carlson, Jolene] Kansas State Univ, Coll Vet Med, Dept Diagnost Med & Pathobiol, Manhattan, KS 66506 USA. [Alonso, Covadonga] Inst Nacl Invest & Tecnol Agr & Alimentaria, Dept Biotechnol, Madrid, Spain. RP Gladue, DP (reprint author), ARS, Plum Isl Anim Dis Ctr, USDA, NAA, POB 848, Greenport, NY 11944 USA. EM douglas.gladue@ars.usda.gov RI Alonso, Covadonga/A-8000-2011; OI Alonso, Covadonga/0000-0002-0862-6177; Borca, Manuel/0000-0002-0888-1178 FU Science and Technology Directorate of the U.S. Department of Homeland Security [HSHQDC-11-X-00077, HSHQPM-12-X-00005] FX We thank the Plum Island Animal Disease Center Animal Care Unit staff for excellent technical assistance. This project was funded through an interagency agreement with the Science and Technology Directorate of the U.S. Department of Homeland Security under Award Numbers HSHQDC-11-X-00077 and HSHQPM-12-X-00005. NR 37 TC 0 Z9 0 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-1702 EI 1872-7492 J9 VIRUS RES JI Virus Res. PD SEP 2 PY 2016 VL 223 BP 181 EP 189 DI 10.1016/j.virusres.2016.07.013 PG 9 WC Virology SC Virology GA DW7JI UT WOS:000383826600023 PM 27497620 ER PT J AU Yang, SH Mohagheghi, A Franden, MA Chou, YC Chen, XW Dowe, N Himmel, ME Zhang, M AF Yang, Shihui Mohagheghi, Ali Franden, Mary Ann Chou, Yat-Chen Chen, Xiaowen Dowe, Nancy Himmel, Michael E. Zhang, Min TI Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars SO BIOTECHNOLOGY FOR BIOFUELS LA English DT Article DE Zymomonas mobilis; 2,3-Butanediol; Metabolic engineering; Omics; Redox balance; Advanced biofuel; Fermentation; Respiration chain ID HIGH-YIELD PRODUCTION; DILUTE-ACID PRETREATMENT; CYTOCHROME-C PEROXIDASE; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; RESPIRATORY-CHAIN; BACILLUS-LICHENIFORMIS; ENTEROBACTER-CLOACAE; NADH OXIDASE; MESO-2,3-BUTANEDIOL DEHYDROGENASE AB Background: To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a bulk chemical building block, and can be upgraded in high yields to gasoline, diesel, and jet fuel. Results: 2,3-BDO biosynthesis pathways from various bacterial species were examined, which include three genes encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase. Bioinformatics analysis was carried out to pinpoint potential bottlenecks for high 2,3-BDO production. Different combinations of 2,3-BDO biosynthesis metabolic pathways using genes from different bacterial species have been constructed. Our results demonstrated that carbon flux can be deviated from ethanol production into 2,3-BDO biosynthesis, and all three heterologous genes are essential to efficiently redirect pyruvate from ethanol production for high 2,3-BDO production in Z. mobilis. The down-selection of best gene combinations up to now enabled Z. mobilis to reach the 2,3-BDO production of more than 10 g/L from glucose and xylose, as well as mixed C6/C5 sugar streams derived from the deacetylation and mechanical refining process. Conclusions: This study confirms the value of integrating bioinformatics analysis and systems biology data during metabolic engineering endeavors, provides guidance for value-added chemical production in Z. mobilis, and reveals the interactions between host metabolism, oxygen levels, and a heterologous 2,3-BDO biosynthesis pathway. Taken together, this work provides guidance for future metabolic engineering efforts aimed at boosting 2,3-BDO titer anaerobically. C1 [Yang, Shihui; Mohagheghi, Ali; Franden, Mary Ann; Chou, Yat-Chen; Chen, Xiaowen; Dowe, Nancy; Zhang, Min] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Yang, Shihui] Hubei Univ, Hubei Collaborat Innovat Ctr Green Transformat Bi, Hubei Key Lab Ind Biotechnol, Coll Life Sci, Wuhan 430062, Peoples R China. RP Yang, SH; Zhang, M (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM shhyoung@hotmail.com; Min.Zhang@nrel.gov FU BioEnergy Technologies Office (BETO) program in the U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC36-08GO28308] FX The funding support was from the BioEnergy Technologies Office (BETO) program in the U.S. DOE Office of Energy Efficiency and Renewable Energy (EERE) under the contract # DE-AC36-08GO28308. NR 90 TC 3 Z9 3 U1 25 U2 32 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1754-6834 J9 BIOTECHNOL BIOFUELS JI Biotechnol. Biofuels PD SEP 2 PY 2016 VL 9 AR 189 DI 10.1186/s13068-016-0606-y PG 15 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DV6BS UT WOS:000383016300002 PM 27594916 ER PT J AU Harigaya, K Lin, TY Lou, HK AF Harigaya, Keisuke Lin, Tongyan Lou, Hou Keong TI GUT zilla dark matter SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; GUT ID GRAND UNIFIED THEORIES; STANDARD-MODEL; HIGH-ENERGIES; UNIFICATION; DECAY; PARTICLES; STABILITY; MASSES; BOUNDS; BOSON AB Motivated by gauge coupling unification and dark matter, we present an extension to the Standard Model where both are achieved by adding an extra new matter multiplet. Such considerations lead to a Grand Unified Theory with very heavy WIMPzilla dark matter, which has mass greater than similar to 10(7) GeV and must be produced before reheating ends. Naturally, we refer to this scenario as GUTzilla dark matter. Here we present a minimal GUTzilla model, adding a vector-like quark multiplet to the Standard Model. Proton decay constraints require the new multiplet to be both color and electroweak charged, which prompts us to include a new confining SU(3) gauge group that binds the multiplet into a neutral composite dark matter candidate. Current direct detection constraints are evaded due to the large dark matter mass; meanwhile, next-generation direct detection and proton decay experiments will probe much of the parameter space. The relic abundance is strongly dependent on the dynamics of the hidden confining sector, and we show that dark matter production during the epoch of reheating can give the right abundance. C1 [Harigaya, Keisuke] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. Univ Tokyo, Inst Adv Study, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan. RP Harigaya, K (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM keisukeharigaya@berkeley.edu; tongyan@berkeley.edu; hlou@berkeley.edu FU Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231]; National Science Foundation [PHY-1316783, PHY-1521446]; World Premier International Research Center Initiative (WPI), MEXT, Japan FX We thank Daniele Bertolini, Matthew Low, Hitoshi Murayama, and Yasunori Nomura for helpful discussions, and Timothy Cohen and Mariangela Lisanti for commenting on the draft. This work was supported in part by the Department of Energy, Office of Science, Office of High Energy Physics, under contract No. DE-AC02-05CH11231, by the National Science Foundation under grants PHY-1316783 and PHY-1521446, and by the World Premier International Research Center Initiative (WPI), MEXT, Japan. NR 71 TC 1 Z9 1 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 2 PY 2016 IS 9 AR 014 DI 10.1007/JHEP09(2016)014 PG 24 WC Physics, Particles & Fields SC Physics GA DV4DE UT WOS:000382874300001 ER PT J AU Fu, ZH Zhang, QF Legut, D Si, C Germann, TC Lookman, T Du, SY Francisco, JS Zhang, RF AF Fu, Z. H. Zhang, Q. F. Legut, D. Si, C. Germann, T. C. Lookman, T. Du, S. Y. Francisco, J. S. Zhang, R. F. TI Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide SO PHYSICAL REVIEW B LA English DT Article ID TRANSITION-METAL CARBIDES; HIGH VOLUMETRIC CAPACITANCE; LI-ION BATTERIES; ELECTRONIC-PROPERTIES; MECHANICAL-PROPERTIES; ELASTIC PROPERTIES; MXENES; ENERGY; MONOLAYER; STABILITY AB Two-dimensional (2D) materials have attracted considerable interest due to their remarkable properties and potential applications for nanoelectronics, electrodes, energy storage devices, among others. However, many well-studied 2D materials lack appreciable conductivity and tunable mechanical strength, limiting their applications in flexible devices. Newly developed MXenes open up the opportunity to design novel flexible conductive electronic materials. Here, using density functional theory (DFT), we investigate systematically the effects of several functional groups on the stabilization, mechanical properties, and electronic structures of a representative MXene. It is found that oxygen possesses the largest adsorption energy as compared to other functional groups, indicating its good thermodynamic stabilization. In comparison with bare and other functionalized titanium carbides, the oxygen functionalized one exhibits the most superior ideal strength; however, the premature softening of the long-wave phonon modes might limit the intrinsic strength for Ti3C2O2. Furthermore, the introduction of functional groups can induce a strong anisotropy under tensile loading. By analyzing the deformation paths and the electronic instability under various loadings, we demonstrate that the unique strengthening by oxygen functional groups is attributed to a significant charge transfer from inner bonds to outer surface ones after functionalization. Our results shed a novel view into exploring a variety of MXenes for their potential applications in flexible electronic and energy storage devices. C1 [Fu, Z. H.; Zhang, Q. F.; Si, C.; Zhang, R. F.] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China. [Fu, Z. H.; Zhang, Q. F.; Si, C.; Zhang, R. F.] Beihang Univ, Ctr Integrated Computat Engn, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China. [Legut, D.] VSB Tech Univ Ostrava, Ctr IT4Innovat, CZ-70833 Ostrava, Czech Republic. [Germann, T. C.; Lookman, T.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Du, S. Y.] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Engn Lab Specialty Fibers & Nucl Energy Mat, Ningbo 315201, Zhejiang, Peoples R China. [Francisco, J. S.] Purdue Univ, Dept Chem, W Lafayette, IN 47906 USA. [Francisco, J. S.] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47906 USA. RP Zhang, QF (reprint author), Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China.; Zhang, QF (reprint author), Beihang Univ, Ctr Integrated Computat Engn, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China. EM qianfan@buaa.edu.cn; zrf@buaa.edu.cn RI Si, Chen/A-5442-2017; OI Si, Chen/0000-0002-4292-4151; Germann, Timothy/0000-0002-6813-238X FU Fundamental Research Funds for the Central Universities; National Natural Science Foundation of China [51471018, 51672015, 11404017]; National Thousand Young Talents Program of China; Technology Foundation for Selected Overseas Chinese Scholar; Ministry of Human Resources and Social Security of China; Program for New Century Excellent Talents in University [NCET-12-0033]; IT4Innovations Centre of Excellence project [CZ.1.05/1.1.00/02.0070]; European Regional Development Fund; national budget of the Czech Republic via Research and Development for Innovations Operational Programme; Czech Ministry of Education, Youth and Sports via the project LargeResearch, Development, and Innovations Infrastructures [LM2011033] FX Z.H.F. and R.F.Z. are supported by the Fundamental Research Funds for the Central Universities, National Natural Science Foundation of China (Grants No. 51471018 and No. 51672015), and National Thousand Young Talents Program of China. Q.F.Z. is supported by National Natural Science Foundation of China (Grant No. 11404017), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Human Resources and Social Security of China, and the Program for New Century Excellent Talents in University (NCET-12-0033). D.L. acknowledges IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and the national budget of the Czech Republic via the Research and Development for Innovations Operational Programme, as well as Czech Ministry of Education, Youth and Sports via the project LargeResearch, Development, and Innovations Infrastructures (LM2011033). We appreciate the support from the key technology of nuclear energy, 2014, CAS Interdisciplinary Innovation Team and ITaP at Purdue University for computing resources. We would also like to thank G. Kresse for valuable advice for the application of VASP. NR 75 TC 5 Z9 5 U1 64 U2 70 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2016 VL 94 IS 10 AR 104103 DI 10.1103/PhysRevB.94.104103 PG 10 WC Physics, Condensed Matter SC Physics GA DV6IF UT WOS:000383036600002 ER PT J AU Han, MG Garlow, JA Bugnet, M Divilov, S Marshall, MSJ Wu, LJ Dawber, M Fernandez-Serra, M Botton, GA Cheong, SW Walker, FJ Ahn, CH Zhu, YM AF Han, Myung-Geun Garlow, Joseph A. Bugnet, Matthieu Divilov, Simon Marshall, Matthew S. J. Wu, Lijun Dawber, Matthew Fernandez-Serra, Marivi Botton, Gianluigi A. Cheong, Sang-Wook Walker, Frederick J. Ahn, Charles H. Zhu, Yimei TI Coupling of bias-induced crystallographic shear planes with charged domain walls in ferroelectric oxide thin films SO PHYSICAL REVIEW B LA English DT Article ID ELECTRON-GAS; INTERFACES; PEROVSKITE; CONDUCTION; MECHANISM; TITANIUM; SURFACES; NIOBIUM; SCALE; PHASE AB Polar discontinuity at interfaces plays deterministic roles in charge transport, magnetism, and even superconductivity of functional oxides. To date, most polar discontinuity problems have been explored in heterointerfaces between two dissimilar materials. Here, we show that charged domain walls (CDWs) in epitaxial thin films of ferroelectric PbZr0.2Ti0.8O3 are strongly coupled to polar interfaces through the formation of 1/2 < 101 > {h0l}-type crystallographic shear planes (CSPs). Using atomic resolution imaging and spectroscopy we illustrate that the CSPs consist of both conservative and nonconservative segments when coupled to the CDWs where necessary compensating charges for stabilizing the CDWs are associated with vacancies at the CSPs. The CDW/CSP coupling yields an atomically narrow domain wall, consisting of a single atomic layer of oxygen. This study shows that the CDW/CSP coupling is a fascinating venue to develop emergent material properties. C1 [Han, Myung-Geun; Garlow, Joseph A.; Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci, Upton, NY 11953 USA. [Garlow, Joseph A.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Bugnet, Matthieu; Botton, Gianluigi A.] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada. [Divilov, Simon; Dawber, Matthew; Fernandez-Serra, Marivi] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Marshall, Matthew S. J.; Walker, Frederick J.; Ahn, Charles H.] Yale Univ, Dept Appl Phys, Ctr Res Interface Struct & Phenomena, New Haven, CT 06520 USA. [Marshall, Matthew S. J.; Walker, Frederick J.; Ahn, Charles H.] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06520 USA. [Cheong, Sang-Wook] Rutgers State Univ, Dept Phys & Astron, Rutgers Ctr Emergent Mat, Piscataway, NJ 08854 USA. RP Han, MG (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci, Upton, NY 11953 USA. EM mghan@bnl.gov RI Fernandez-Serra, Maria Victoria/H-5446-2015 OI Fernandez-Serra, Maria Victoria/0000-0001-6823-8339 FU Materials Science and Engineering Divisions, Office of Basic Energy Sciences of the U.S. Department of Energy [DESC0012704]; NSF MRSEC (CRISP) [DMR 119826, DMR 1309868]; FAME; Canada Foundation for Innovation through MSI Program; NSERC; McMaster University; NSF Grant [DMR-1334867]; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4413] FX This work was supported by the Materials Science and Engineering Divisions, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DESC0012704. The TEM sample preparation using FIB was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory. The work at Yale University was supported by NSF MRSEC Grants No. DMR 119826 (CRISP) and No. DMR 1309868 and FAME. The EELS work was performed at the Canadian Centre for Electron Microscopy, a national facility supported by the Canada Foundation for Innovation through the MSI Program, NSERC, and McMaster University. The work at Stony Brook University was supported by NSF Grant No. DMR-1334867. S.-W.C. is funded by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant No. GBMF4413 to the Rutgers Center for Emergent Materials. NR 36 TC 0 Z9 0 U1 15 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 2 PY 2016 VL 94 IS 10 AR 100101 DI 10.1103/PhysRevB.94.100101 PG 6 WC Physics, Condensed Matter SC Physics GA DV6IF UT WOS:000383036600001 ER PT J AU McClure, JE Berrill, MA Gray, WG Miller, CT AF McClure, James E. Berrill, Mark A. Gray, William G. Miller, Cass T. TI Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems SO PHYSICAL REVIEW E LA English DT Article ID GENERALIZED ADDITIVE-MODELS; X-RAY MICROTOMOGRAPHY; MEMBRANE FUEL-CELLS; 2-PHASE FLOW; PORE-NETWORK; AIR-WATER; MULTIPHASE FLOW; OIL-WET; SCALE; DYNAMICS AB Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models. C1 [McClure, James E.] Virginia Tech, Adv Res Comp, Blacksburg, VA 24061 USA. [Berrill, Mark A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gray, William G.; Miller, Cass T.] Univ N Carolina, Dept Environm Sci & Engn, Chapel Hill, NC 27599 USA. RP McClure, JE (reprint author), Virginia Tech, Adv Res Comp, Blacksburg, VA 24061 USA. EM mcclurej@vt.edu FU Army Research Office [W911NF-14-1-02877]; Department of Energy [DE-SC0002163]; National Science Foundation [1619767]; DOE Office of Science [DE-AC05-00OR22725] FX This work was supported by Army Research Office Grant No. W911NF-14-1-02877, Department of Energy Grant No. DE-SC0002163, and National Science Foundation Grant No. 1619767. An award of computer time was provided by the Department of Energy INCITE program. This research also used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract No. DE-AC05-00OR22725. NR 98 TC 1 Z9 1 U1 12 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0045 EI 2470-0053 J9 PHYS REV E JI Phys. Rev. E PD SEP 2 PY 2016 VL 94 IS 3 AR 033102 DI 10.1103/PhysRevE.94.033102 PG 12 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA DV6NB UT WOS:000383052300010 PM 27739835 ER PT J AU Black, JM Zhu, MY Zhang, PF Unocic, RR Guo, DQ Okatan, MB Dai, S Cummings, PT Kalinin, SV Feng, G Balke, N AF Black, Jennifer M. Zhu, Mengyang Zhang, Pengfei Unocic, Raymond R. Guo, Daqiang Okatan, M. Baris Dai, Sheng Cummings, Peter T. Kalinin, Sergei V. Feng, Guang Balke, Nina TI Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy SO SCIENTIFIC REPORTS LA English DT Article ID IONIC LIQUID/AU(111) INTERFACE; SUM-FREQUENCY GENERATION; IN-SITU STM; SURFACE-STRUCTURE; SOLVATION LAYERS; TEMPERATURE; AFM; GRAPHITE; AU(111); SPECTROSCOPY AB Atomic force microscopy (AFM) force-distance measurements are used to investigate the layered ion structure of Ionic Liquids (ILs) at the mica surface. The effects of various tip properties on the measured force profiles are examined and reveal that the measured ion position is independent of tip properties, while the tip radius affects the forces required to break through the ion layers as well as the adhesion force. Force data is collected for different ILs and directly compared with interfacial ion density profiles predicted by molecular dynamics. Through this comparison it is concluded that AFM force measurements are sensitive to the position of the ion with the larger volume and mass, suggesting that ion selectivity in force-distance measurements are related to excluded volume effects and not to electrostatic or chemical interactions between ions and AFM tip. The comparison also revealed that at distances greater than 1 nm the system maintains overall electroneutrality between the AFM tip and sample, while at smaller distances other forces (e.g., van der waals interactions) dominate and electroneutrality is no longer maintained. C1 [Black, Jennifer M.; Unocic, Raymond R.; Okatan, M. Baris; Kalinin, Sergei V.; Balke, Nina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhu, Mengyang; Guo, Daqiang; Feng, Guang] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China. [Zhang, Pengfei; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cummings, Peter T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA. [Cummings, Peter T.] Vanderbilt Univ, Multiscale Modeling & Simulat Ctr, Nashville, TN 37235 USA. RP Balke, N (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Feng, G (reprint author), Huazhong Univ Sci & Technol, Sch Energy & Power Engn, State Key Lab Coal Combust, Wuhan 430074, Peoples R China. EM gfeng@hust.edu.ch; balken@ornl.gov RI Okatan, M. Baris/E-1913-2016; Feng, Guang/D-8989-2011; Balke, Nina/Q-2505-2015 OI Okatan, M. Baris/0000-0002-9421-7846; Balke, Nina/0000-0001-5865-5892 FU Fluid Interface Reactions, Structures and Transport (FIRST), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The experimental, synthesis and modeling efforts of JMB, PZ, PTC, SD, NB and RRU were supported by the Fluid Interface Reactions, Structures and Transport (FIRST), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The experiments were conducted at and additional support for data analytics were provided by the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (MBO and SVK). MYZ, DQG, and GF, acknowledge the support for modeling from National Natural Science Foundation of China (51406060) and Natural Science Foundation of Hubei Province of China (2014CFA089). We thank the computational resource from the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors would also like to thank Stephen Jesse for providing helpful suggestions and fruitful discussions. NR 68 TC 0 Z9 0 U1 40 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD SEP 2 PY 2016 VL 6 AR 32389 DI 10.1038/srep32389 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU7FT UT WOS:000382379500001 PM 27587276 ER PT J AU Cho, K Konczykowski, M Teknowijoyo, S Tanatar, MA Liu, Y Lograsso, TA Straszheim, WE Mishra, V Maiti, S Hirschfeld, PJ Prozorov, R AF Cho, Kyuil Konczykowski, Marcin Teknowijoyo, Serafim Tanatar, Makariy A. Liu, Yong Lograsso, Thomas A. Straszheim, Warren E. Mishra, Vivek Maiti, Saurabh Hirschfeld, Peter J. Prozorov, Ruslan TI Energy gap evolution across the superconductivity dome in single crystals of (Ba1-xKx)Fe2As2 SO SCIENCE ADVANCES LA English DT Article AB The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1-xKx)Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x approximate to 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, lambda(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Delta lambda similar to T-n, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x similar or equal to 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s +/- pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system. C1 [Cho, Kyuil; Teknowijoyo, Serafim; Tanatar, Makariy A.; Liu, Yong; Lograsso, Thomas A.; Straszheim, Warren E.; Prozorov, Ruslan] Ames Lab, Ames, IA 50011 USA. [Cho, Kyuil; Teknowijoyo, Serafim; Tanatar, Makariy A.; Prozorov, Ruslan] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Konczykowski, Marcin] Univ Paris Saclay, Ecole Polytech, Lab Solides Irradies, CNRS,CEA, F-91128 Palaiseau, France. [Lograsso, Thomas A.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Mishra, Vivek] Univ Tennessee, Joint Inst Computat Sci, Knoxville, TN 37996 USA. [Mishra, Vivek] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Maiti, Saurabh; Hirschfeld, Peter J.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. RP Prozorov, R (reprint author), Ames Lab, Ames, IA 50011 USA.; Prozorov, R (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM prozorov@iastate.edu FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; U.S. DOE [DE-AC02-07CH11358]; EMIR (Reseau national d'accelerateurs pour les Etudes des Materiaux sous Irradiation) network [11-11-0121]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, U.S. DOE; [NSF-DMR-1005625] FX This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358. We thank the SIRIUS team, O. Cavani, B. Boizot, V. Metayer, and J. Losco, for running electron irradiation at Ecole Polytechnique [supported by the EMIR (Reseau national d'accelerateurs pour les Etudes des Materiaux sous Irradiation) network, proposal 11-11-0121]. V.M. acknowledges the support from the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. DOE. P.J.H. and S.M. were partially supported by NSF-DMR-1005625. NR 51 TC 2 Z9 2 U1 0 U2 0 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD SEP PY 2016 VL 2 IS 9 AR e1600807 DI 10.1126/sciadv.1600807 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA EP1QJ UT WOS:000397159100006 ER PT J AU Pilgrim, MG Lanzirotti, A Newville, M Fearn, S Knowles, J Messinger, JD Read, RW Guidry, C Curcio, CA Lengyel, I AF Pilgrim, Matthew Glynn Lanzirotti, Antonio Newville, Matt Fearn, Sarah Knowles, Jonathan Messinger, Jeffrey D. Read, Russell W. Guidry, Clyde Curcio, Christine A. Lengyel, Imre TI A primary retinal pigment epithelial (RPE) cell culture model produces lipid- and hydroxyapatite-rich extracellular deposits characteristic of early stage age-related macular degeneration SO INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE LA English DT Meeting Abstract CT Annual Meeting of the Association-for-Research-in-Vision-and-Ophthalmology (ARVO) CY MAY 01-05, 2016 CL Seattle, WA SP Assoc Res Vis & Ophthalmol C1 [Pilgrim, Matthew Glynn; Lengyel, Imre] UCL, Inst Ophthalmol, Ocular Biol & Therapeut, London, England. [Pilgrim, Matthew Glynn; Knowles, Jonathan] UCL Eastman Dent Inst, London, England. [Lanzirotti, Antonio; Newville, Matt] Argonne Natl Lab, Chicago, IL USA. [Fearn, Sarah] Imperial Coll London, Dept Mat, London, England. [Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.] Univ Alabama Birmingham, Ophthalmol, Birmingham, AL USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASSOC RESEARCH VISION OPHTHALMOLOGY INC PI ROCKVILLE PA 12300 TWINBROOK PARKWAY, ROCKVILLE, MD 20852-1606 USA SN 0146-0404 EI 1552-5783 J9 INVEST OPHTH VIS SCI JI Invest. Ophthalmol. Vis. Sci. PD SEP PY 2016 VL 57 IS 12 MA 6535 PG 3 WC Ophthalmology SC Ophthalmology GA EK8YM UT WOS:000394210603263 ER PT J AU Voytchev, M Behrens, R Ambrosi, P Radev, R Chiaro, P AF Voytchev, M. Behrens, R. Ambrosi, P. Radev, R. Chiaro, P. TI EVOLUTION OF THE IEC AND EN STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION SO RADIATION PROTECTION DOSIMETRY LA English DT Article AB This article presents the evolution of the International Electrotechnical Commission (IEC) and the European standards for individual monitoring of ionising radiation issued, respectively, from the committees IEC/Sub Committee 45B and European Committee for Electro-technical Standardization/Technical Committee 45B 'Radiation protection instrumentation'. Standards for passive individual photon and beta dosimetry systems as well as those for active individual monitors are discussed. A neutron ambient dose equivalent (rate) meter standard and a technical report concerning the determination of uncertainty in measurement are also covered. C1 [Voytchev, M.] IRSN, PSN RES, SCA, LPMA, F-91192 Gif Sur Yvette, France. [Behrens, R.; Ambrosi, P.] PTB, Bundesallee 100, D-38116 Braunschweig, Germany. [Radev, R.] Lawrence Livermore Natl Lab, POB 808,L-186, Livermore, CA 94550 USA. [Chiaro, P.] DNDO, Dept Homeland Secur, 245 Murray Lane,Bldg 410, Washington, DC 20528 USA. RP Voytchev, M (reprint author), IRSN, PSN RES, SCA, LPMA, F-91192 Gif Sur Yvette, France. EM miroslav.voytchev@irsn.fr NR 21 TC 0 Z9 0 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0144-8420 EI 1742-3406 J9 RADIAT PROT DOSIM JI Radiat. Prot. Dosim. PD SEP PY 2016 VL 170 IS 1-4 BP 13 EP 16 DI 10.1093/rpd/ncv423 PG 4 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DX9KF UT WOS:000384713300004 PM 26443545 ER PT J AU Stamper-Kurn, DM Marti, GE Muller, H AF Stamper-Kurn, D. M. Marti, G. E. Mueller, H. TI Verifying quantum superpositions at metre scales SO NATURE LA English DT Letter ID INTERFERENCE C1 [Stamper-Kurn, D. M.; Mueller, H.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Stamper-Kurn, D. M.] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Marti, G. E.] NIST, JILA, Boulder, CO USA. [Marti, G. E.] Univ Colorado, Boulder, CO 80309 USA. RP Stamper-Kurn, DM (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM dmsk@berkeley.edu NR 9 TC 1 Z9 1 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 EI 1476-4687 J9 NATURE JI Nature PD SEP 1 PY 2016 VL 537 IS 7618 BP E1 EP E2 DI 10.1038/nature19108 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DU7XC UT WOS:000382426900057 PM 27582225 ER PT J AU Baldauf, T Seljak, U Senatore, L Zaldarriaga, M AF Baldauf, Tobias Seljak, Uros Senatore, Leonardo Zaldarriaga, Matias TI Linear response to long wavelength fluctuations using curvature simulations SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological simulations; galaxy clustering; galaxy surveys; power spectrum ID LARGE-SCALE STRUCTURE; N-BODY SIMULATIONS; LY-ALPHA FOREST; POWER SPECTRUM; MASS FUNCTION; DARK-MATTER; BIAS; PERTURBATION; UNIVERSE; HALOES AB We study the local response to long wavelength fluctuations in cosmological N-body simulations, focusing on the matter and halo power spectra, halo abundance and nonlinear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the response of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naive derivation assuming a universal mass function by approximately 8-20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix. C1 [Baldauf, Tobias; Zaldarriaga, Matias] Inst Adv Study, Sch Nat Sci, Olden Lane, Princeton, NJ 08540 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Astron, Phys Dept, 601 Campbell Hall, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Senatore, Leonardo] Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA USA. RP Baldauf, T (reprint author), Inst Adv Study, Sch Nat Sci, Olden Lane, Princeton, NJ 08540 USA. EM baldauf@ias.edu; useljak@berkeley.edu; senatore@stanford.edu; matiasz@ias.edu FU Institute for Advanced Study through a Corning Glass Works Foundation grant; NASA [NNX15AL17G]; DOE [DE-FG02-12ER41854]; NSF [PHY-1068380, PHY-1213563, PHY-1521097, AST-1409709] FX We would like to thank A. Font-Ribera, Y. Li, and E. Schaan for discussions, and V. Desjacques for comments and initial help with the simulations. T.B. would like to thank the Berkeley Center for Cosmological Physics and the Lawrence Berkeley Laboratory for the kind hospitality. The simulations were performed on the ZBOX3 supercomputer of the Institute for Theoretical Physics at the University of Zurich. T.B. gratefully acknowledges support from the Institute for Advanced Study through a Corning Glass Works Foundation grant. U.S. acknowledges support from NASA grant NNX15AL17G. L.S. is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. M.Z. is supported in part by the NSF grants PHY-1213563, PHY-1521097 and AST-1409709. NR 48 TC 5 Z9 5 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD SEP PY 2016 IS 9 AR 007 DI 10.1088/1475-7516/2016/09/007 PG 34 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EE7CM UT WOS:000389772300006 ER PT J AU Proulx, C Noe, F Yoo, S Connolly, MD Zuckermann, RN AF Proulx, Caroline Noe, Falko Yoo, Stan Connolly, Michael D. Zuckermann, Ronald N. TI On-Resin N-Terminal Peptoid Degradation: Toward Mild Sequencing Conditions SO BIOPOLYMERS LA English DT Article DE peptoid sequencing; Edman degradation; N-terminal degradation ID PARTIAL EDMAN DEGRADATION; SOLID-PHASE SYNTHESIS; MASS-SPECTROMETRY; ACIDIC CONDITIONS; PEPTIDES; GLYCINES) AB A novel approach to sequentially degrade peptoid N-terminal N-(substituted) glycine residues on the solid-phase using very mild conditions is reported. This method relies on the treatment of resin-bound, bromoacetylated peptoids with silver perchlorate in THF, leading to an intramolecular cyclization reaction to liberate the terminal residue as a N-substituted morpholine-2,5-dione, resulting in a truncated peptoid upon hydrolysis and a silver bromide byproduct. Side-chain functional group tolerance is explored and reaction kinetics are determined. In a series of pentapeptoids possessing variable, non-nucleophilic side-chains at the second position (R-2), we demonstrate that sequential N-terminal degradation of the first two residues proceeds in 87% and 74% conversions on average, respectively. We further demonstrate that the degradation reaction is selective for peptoids, and represents substantial progress toward a mild, iterative sequencing method for peptoid oligomers. (C) 2016 Wiley Periodicals, Inc. C1 [Proulx, Caroline; Noe, Falko; Yoo, Stan; Connolly, Michael D.; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov FU Defense Threat Reduction Agency [DTRA10027-15875]; Molecular Foundry, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; Natural Sciences and Engineering Council of Canada (NSERC); Defense Advanced Research Projects Agency (DARPA), Fold F(x) Program FX Contract grant sponsor: Defense Threat Reduction Agency; Contract grant number: DTRA10027-15875; Contract grant sponsor: Molecular Foundry, Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy; Contract grant number: DE-AC02-05CH11231; Contract grant sponsor: Natural Sciences and Engineering Council of Canada (NSERC); Contract grant sponsor: Defense Advanced Research Projects Agency (DARPA), Fold F(x) Program. NR 16 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3525 EI 1097-0282 J9 BIOPOLYMERS JI Biopolymers PD SEP PY 2016 VL 106 IS 5 BP 726 EP 736 DI 10.1002/bip.22884 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA EJ8GY UT WOS:000393464600009 PM 27258140 ER PT J AU Borraz-Sanchez, C Bent, R Backhaus, S Hijazi, H Van Hentenryck, P AF Borraz-Sanchez, Conrado Bent, Russell Backhaus, Scott Hijazi, Hassan Van Hentenryck, Pascal TI Convex Relaxations for Gas Expansion Planning SO INFORMS JOURNAL ON COMPUTING LA English DT Article DE natural gas; convex relaxations; network design; mixed-integer programming; second-order cone programming ID NATURAL-GAS; TRANSMISSION NETWORKS; PIPE NETWORKS; OPTIMIZATION; DESIGN; FLOW; PIPELINES; ALGORITHM; MODELS AB Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Given the nonconvex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solutions. C1 [Borraz-Sanchez, Conrado; Bent, Russell; Backhaus, Scott] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hijazi, Hassan] Australian Natl Univ, CSIRO Data61, Canberra, ACT 2601, Australia. [Van Hentenryck, Pascal] Univ Michigan, Ann Arbor, MI 48109 USA. RP Borraz-Sanchez, C (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM conradob@lanl.gov; rbent@lanl.gov; backhaus@lanl.gov; hassan.hijazi@nicta.com.au; pvanhent@umich.edu FU Advanced Grid Modeling Program in the Office of Electricity in the U.S. Department of Energy; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; NICTA's Optimization Research Group as part of the Future Energy Systems project; Australian Government through the Department of Communications; Australian Research Council through the ICT Centre of Excellence Program FX The authors thank the two anonymous reviewers who helped improve the quality and clarity of the paper. This work was in part funded by the Advanced Grid Modeling Program in the Office of Electricity in the U.S. Department of Energy and was in part carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [Contract DE-AC52-06NA25396]. This work is also supported by NICTA's Optimization Research Group as part of the Future Energy Systems project. NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program. NR 56 TC 0 Z9 0 U1 0 U2 0 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 1091-9856 EI 1526-5528 J9 INFORMS J COMPUT JI INFORMS J. Comput. PD FAL PY 2016 VL 28 IS 4 BP 645 EP 656 DI 10.1287/ijoc.2016.0697 PG 12 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA EJ1HT UT WOS:000392961800004 ER PT J AU Gavrilenko, M Herzberg, C Vidito, C Carr, MJ Tenner, T Ozerov, A AF Gavrilenko, Maxim Herzberg, Claude Vidito, Christopher Carr, Michael J. Tenner, Travis Ozerov, Alexey TI A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism SO JOURNAL OF PETROLOGY LA English DT Article DE olivine; calcium; subduction zone; magmatic water ID HOSTED MELT INCLUSIONS; EARTHS UPPER-MANTLE; PLUS SPINEL LHERZOLITE; HIGH-ALUMINA BASALTS; OCEAN-RIDGE BASALT; TRACE-ELEMENTS; SILICATE MELT; ARC MAGMAS; COSTA-RICA; PARTITION-COEFFICIENTS AB High-precision electron microprobe analyses were obtained on olivine grains from Klyuchevskoy, Shiveluch and Gorely volcanoes in the Kamchatka Arc; Irazu, Platanar and Barva volcanoes of the Central American Arc; and mid-ocean ridge basalt (MORB) from the Siqueiros Transform. Calcium contents of these subduction zone olivines are lower than those for olivines from modern MORB, Archean komatiite and Hawaii. A role for magmatic H2O is likely for subduction zone olivines, and we have explored the suggestion of earlier workers that it has affected the partitioning of CaO between olivine and silicate melt. We provide a provisional calibration of DCaO Ol/L as a function of magmatic MgO and H2O, based on nominally anhydrous experiments and minimally degassed H2O contents of olivine-hosted melt inclusions. Application of our geohygrometer typically yields 3-4 wt % magmatic H2O at the Kamchatka and Central American arcs for olivines having similar to 1000ppm Ca, which agrees with H2O maxima from melt inclusion studies; Cerro Negro and Shiveluch volcanoes are exceptions, with about 6% H2O. High-precision electron microprobe analyses with 10-20 mu m spatial resolution on some olivine grains from Klyuchevskoy and Shiveluch show a decrease in Ca content from the core centers to the rim contacts, and a sharp increase in Ca in olivine rims. We suggest that the zoning of Ca in olivine from subduction zone lavas may provide the first petrological record of temporal changes that occur during hydration of the mantle wedge and dehydration during ascent, and we predict olivine H2O contents that can be tested by secondary ionization mass spectrometry analysis. C1 [Gavrilenko, Maxim; Herzberg, Claude; Vidito, Christopher; Carr, Michael J.] Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ 08854 USA. [Gavrilenko, Maxim; Ozerov, Alexey] Inst Volcanol & Seismol, Piip Blvd 9, Petropavlovsk Kamchatski 683006, Russia. [Tenner, Travis] Los Alamos Natl Lab, Div Chem, Nucl & Radiochem, MSJ514, Los Alamos, NM 87545 USA. RP Herzberg, C (reprint author), Rutgers State Univ, Dept Earth & Planetary Sci, Piscataway, NJ 08854 USA. EM herzberg@rci.rutgers.edu RI Gavrilenko, Maxim/C-6251-2015; Ozerov, Alexey/D-9964-2017 OI Gavrilenko, Maxim/0000-0002-0710-0763; FU International Fulbright Science and Technology Award; Graduate School of Rutgers University, New Brunswick; Far East Branch of the Russian Academy of Sciences [12-III-A-08-166, 15-I-1-025, 15-I-2-069]; Russian Foundation of Basic Research [15-05-05502] FX M.G. thanks the International Fulbright Science and Technology Award for financial support of the study in 2011-2014, and Graduate School of Rutgers University, New Brunswick for financial support of the study in 2015-2016. M.G. also acknowledges support from the Far East Branch of the Russian Academy of Sciences grants 12-III-A-08-166 and 15-I-1-025. A.O. acknowledges support from the Far East Branch of the Russian Academy of Sciences, grant 15-I-2-069, and Russian Foundation of Basic Research, grant 15-05-05502. NR 147 TC 1 Z9 1 U1 3 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-3530 EI 1460-2415 J9 J PETROL JI J. Petrol. PD SEP PY 2016 VL 57 IS 9 BP 1811 EP 1831 DI 10.1093/petrology/egw062 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA EJ2DT UT WOS:000393020800006 ER PT J AU Pirani, A Rack, P Mcloughlin, K Le, L Sheppy, C Slezak, T Shapero, M AF Pirani, A. Rack, P. Mcloughlin, K. Le, L. Sheppy, C. Slezak, T. Shapero, M. TI Pan-microbial detection using Axiom genotyping solution from Affymetrix. SO JOURNAL OF ANIMAL SCIENCE LA English DT Meeting Abstract DE microarray; microbiome; Axiom C1 [Pirani, A.; Rack, P.; Le, L.; Sheppy, C.; Shapero, M.] Affymetrix Inc, Santa Clara, CA USA. [Mcloughlin, K.; Slezak, T.] LLNL, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC ANIMAL SCIENCE PI CHAMPAIGN PA PO BOX 7410, CHAMPAIGN, IL 61826-7410 USA SN 0021-8812 EI 1525-3163 J9 J ANIM SCI JI J. Anim. Sci. PD SEP PY 2016 VL 94 SU 4 MA P1029 BP 29 EP 29 PG 1 WC Agriculture, Dairy & Animal Science SC Agriculture GA EI7GM UT WOS:000392665800054 ER PT J AU Hambright, WS Deng, J Tiedje, JM Brettar, I Rodrigues, JLM AF Hambright, W. S. Deng, Jie Tiedje, James M. Brettar, Ingrid Rodrigues, Jorge L. M. TI Shewanella baltica Ecotypes Have Wide Transcriptional Variation under the Same Growth Conditions SO MSPHERE LA English DT Article DE ecotype; speciation; transcriptional divergence ID GENE-EXPRESSION; PROCHLOROCOCCUS ECOTYPES; BACTERIAL SYSTEMATICS; NATURAL-POPULATIONS; METABOLIC PATHWAYS; FUNDAMENTAL UNITS; MESSENGER-RNA; WATER COLUMN; DIVERSITY; GENOME AB In bacterial populations, subtle expressional differences may promote ecological specialization through the formation of distinct ecotypes. In a barrier-free habitat, this process most likely precedes population divergence and may predict speciation events. To examine this, we used four sequenced strains of the bacterium Shewanella baltica, OS155, OS185, OS195, and OS223, as models to assess transcriptional variation and ecotype formation within a prokaryotic population. All strains were isolated from different depths throughout a water column of the Baltic Sea, occupying different ecological niches characterized by various abiotic parameters. Although the genome sequences are nearly 100% conserved, when grown in the laboratory under standardized conditions, all strains exhibited different growth rates, suggesting significant expressional variation. Using the Ecotype Simulation algorithm, all strains were considered to be discrete ecotypes when compared to 32 other S. baltica strains isolated from the same water column, suggesting ecological divergence. Next, we employed custom microarray slides containing oligonucleotide probes representing the core genome of OS155, OS185, OS195, and OS223 to detect natural transcriptional variation among strains grown under identical conditions. Significant transcriptional variation was noticed among all four strains. Differentially expressed gene profiles seemed to coincide with the metabolic signatures of the environment at the original isolation depth. Transcriptional pattern variations such as the ones highlighted here may be used as indicators of short-term evolution emerging from the formation of bacterial ecotypes. IMPORTANCE Eukaryotic studies have shown considerable transcriptional variation among individuals from the same population. It has been suggested that natural variation in eukaryotic gene expression may have significant evolutionary consequences and may explain large-scale phenotypic divergence of closely related species, such as humans and chimpanzees (M.-C. King and A. C. Wilson, Science 188: 107116, 1975, http://dx.doi.org/10.1126/science. 1090005; M. F. Oleksiak, G. A. Churchill, and D. L. Crawford, Nat Genet 32: 261-266, 2002, http://dx.doi.org/10.1038/ng983). However, natural variation in gene expression is much less well understood in prokaryotic organisms. In this study, we used four sequenced strains of the marine bacterium Shewanella baltica to better understand the natural transcriptional divergence of a stratified prokaryotic population. We found substantial low-magnitude expressional variation among the four S. baltica strains cultivated under identical laboratory conditions. Collectively, our results indicate that transcriptional variation is an important factor for ecological speciation. C1 [Hambright, W. S.] Univ Texas Hlth Sci Ctr San Antonio, Dept Cellular & Struct Biol, San Antonio, TX 78229 USA. [Deng, Jie; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Brettar, Ingrid] Helmholtz Ctr Infect Res, Dept Vaccinol & Appl Microbiol, Braunschweig, Germany. [Rodrigues, Jorge L. M.] Univ Calif Davis, Dept Land Water & Air Resources, Davis, CA 95616 USA. [Rodrigues, Jorge L. M.] Lawrence Berkeley Natl Lab, Environm Genom & Syst Biol Div, Berkeley, CA 94720 USA. EM jmrodrigues@ucdavis.edu NR 48 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2379-5042 J9 MSPHERE JI mSphere PD SEP-OCT PY 2016 VL 1 IS 5 AR e00158-16 DI 10.1128/mSphere.00158-16 PG 11 WC Microbiology SC Microbiology GA EI6EC UT WOS:000392586800003 ER PT J AU Mammoliti, F Bellini, V Cisbani, E Musico, P Noto, F Perrino, R Re, L Spinali, S Sutera, MC Tortorici, F Wojtsekhowski, B AF Mammoliti, F. Bellini, V. Cisbani, E. Musico, P. Noto, F. Perrino, R. Re, L. Spinali, S. Sutera, M. C. Tortorici, F. Wojtsekhowski, B. TI GEM tracker for high-luminosity experiments at the JLab HallA SO RADIATION EFFECTS AND DEFECTS IN SOLIDS LA English DT Article; Proceedings Paper CT 12th Workshop on European Collaboration for Higher Education and Research in Nuclear Engineering and Radiological Protection CY MAY 30-JUN 01, 2016 CL Cervia, ITALY SP Univ Bologna, Univ Catania, Univ Milan DE GEM detector; tracker; spectrometer ID DETECTORS AB A Large-Acceptance Forward Angle Spectrometer (Super BigBite) is under development for the upcoming experiments in Hall A at Jefferson Lab to optimally exploit the exciting opportunities offered by the 12GeV upgrade of the electron beam. The tracking of this new apparatus is based on the Gas Electron Multiplier technology, which has been chosen to optimize cost/performance, position resolution and meet the high hits rate (>1MHz/cm(2)). In this report we present the technical features of the detector and comment on the presently achieved performance. C1 [Mammoliti, F.; Bellini, V.; Noto, F.; Re, L.; Spinali, S.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Mammoliti, F.; Bellini, V.; Noto, F.; Re, L.; Spinali, S.; Sutera, M. C.; Tortorici, F.] Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. [Cisbani, E.] Ist Nazl Fis Nucl, Sez Roma La Sapienza, Rome, Italy. [Cisbani, E.] Ist Super Sanita, Rome, Italy. [Musico, P.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Perrino, R.] Ist Nazl Fis Nucl, Sez Bari, Bari, Italy. [Tortorici, F.] Ctr Siciliano Fis Nucl & Struttura Mat, Catania, Italy. [Wojtsekhowski, B.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA USA. RP Mammoliti, F (reprint author), Univ Catania, Dipartimento Fis & Astron, Catania, Italy.; Mammoliti, F (reprint author), Ist Nazl Fis Nucl, Sez Catania, Catania, Italy. EM francesco.mammoliti@ct.infn.it RI BELLINI, Vincenzo/B-1239-2012; OI BELLINI, Vincenzo/0000-0001-6906-7463; Noto, Francesco/0000-0003-2926-7342 NR 7 TC 0 Z9 0 U1 2 U2 2 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 1042-0150 EI 1029-4953 J9 RADIAT EFF DEFECT S JI Radiat. Eff. Defects Solids PD SEP-OCT PY 2016 VL 171 IS 9-10 SI SI BP 775 EP 781 DI 10.1080/10420150.2016.1263633 PG 7 WC Nuclear Science & Technology; Physics, Fluids & Plasmas; Physics, Condensed Matter SC Nuclear Science & Technology; Physics GA EI3UA UT WOS:000392416100010 ER PT J AU Hong, T Chen, C Huang, JW Lu, N Xie, L Zareipour, H AF Hong, Tao Chen, Chen Huang, Jianwei Lu, Ning Xie, Le Zareipour, Hamidreza TI Big Data Analytics for Grid Modernization SO IEEE TRANSACTIONS ON SMART GRID LA English DT Editorial Material C1 [Hong, Tao] Univ North Carolina Charlotte, Charlotte, NC 28223 USA. [Chen, Chen] Argonne Natl Lab, Lemont, IL USA. [Huang, Jianwei] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China. [Lu, Ning] North Carolina State Univ, Raleigh, NC USA. [Xie, Le] Texas A&M Univ, College Stn, TX USA. [Zareipour, Hamidreza] Univ Calgary, Calgary, AB, Canada. RP Hong, T (reprint author), Univ North Carolina Charlotte, Charlotte, NC 28223 USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2016 VL 7 IS 5 BP 2395 EP 2396 DI 10.1109/TSG.2016.2593358 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA EH4DU UT WOS:000391722100022 ER PT J AU Zhou, D Guo, JH Zhang, Y Chai, JD Liu, HS Liu, Y Huang, C Gui, X Liu, YL AF Zhou, Dao Guo, Jiahui Zhang, Ye Chai, Jidong Liu, Hesen Liu, Yong Huang, Can Gui, Xun Liu, Yilu TI Distributed Data Analytics Platform for Wide-Area Synchrophasor Measurement Systems SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Frequency monitoring network (FNET/GridEye); wide area measurement system (WAMS); big data analytics; distributed computing; Apache Spark AB As synchrophasor data start to play a significant role in power system operation and dynamic study, data processing and data analysis capability are critical to wide-area measurement systems (WAMSs). The frequency monitoring network (FNET/GridEye) is a WAMS network that collects data from hundreds of frequency disturbance recorders at the distribution level. The previous FNET/GridEye data center is limited by its data storage capability and computation power. Targeting scalability, extensibility, concurrency, and robustness, a distributed data analytics platform is proposed in this paper to process large volume, high velocity dataset. A variety of real-time and non-realtime synchrophasor data analytics applications are hosted by this platform. The computation load is shared with balance by multiple nodes of the analytics cluster, and big data analytics tools such as Apache Spark are adopted to manage large volume data and to boost the data processing speed. Future data analytics applications can be easily developed and plugged into the system with simple configuration. C1 [Zhou, Dao; Guo, Jiahui; Chai, Jidong; Liu, Hesen; Liu, Yong; Huang, Can; Liu, Yilu] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Zhang, Ye] Alstom Grid, Redmond, WA 98052 USA. [Gui, Xun] Univ Elect Sci & Technol China, Sch Energy Sci & Engn, Chengdu 611731, Peoples R China. [Liu, Yilu] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. RP Zhou, D (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM dao@utk.edu; jguo7@utk.edu; zoe.yezhang@gmail.com; jchai@utk.edu; hliu24@utk.edu; yliu66@utk.edu; chuang16@utk.edu; guinh3@uestc.edu.cn; liu@utk.edu RI Guo, Jiahui/I-8225-2015 OI Guo, Jiahui/0000-0003-0877-2091 FU Engineering Research Center Shared Facilities through the Engineering Research Center Program of the National Science Foundation; Department of Energy (DOE) under National Science Foundation (NSF) Award [EEC-1041877]; Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT) Industry Partnership Program FX This work was supported in part by the Engineering Research Center Shared Facilities through the Engineering Research Center Program of the National Science Foundation, in part by the Department of Energy (DOE) under National Science Foundation (NSF) Award EEC-1041877, and in part by the Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks (CURENT) Industry Partnership Program. Paper no. TSG-01274-2015. NR 28 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2016 VL 7 IS 5 BP 2397 EP 2405 DI 10.1109/TSG.2016.2528895 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EH4DU UT WOS:000391722100023 ER PT J AU Peppanen, J Reno, MJ Broderick, RJ Grijalva, S AF Peppanen, Jouni Reno, Matthew J. Broderick, Robert J. Grijalva, Santiago TI Distribution System Model Calibration With Big Data From AMI and PV Inverters SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Load modeling; parameter estimation; power distribution; power system modeling; power system measurements; power system simulation; regression analysis; smart grids AB Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. The parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system. C1 [Peppanen, Jouni; Grijalva, Santiago] Georgia Inst Technol, Atlanta, GA 30332 USA. [Reno, Matthew J.; Broderick, Robert J.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Peppanen, J (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM jouni.peppanen@gatech.edu FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 21 TC 1 Z9 1 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2016 VL 7 IS 5 BP 2497 EP 2506 DI 10.1109/TSG.2016.2531994 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA EH4DU UT WOS:000391722100033 ER PT J AU Chen, YC Wang, JH Dominguez-Garcia, AD Sauer, PW AF Chen, Yu Christine Wang, Jianhui Dominguez-Garcia, Alejandro D. Sauer, Peter W. TI Measurement-Based Estimation of the Power Flow Jacobian Matrix SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Power flow Jacobian matrix; real-time monitoring; phasor measurement units; sensitivity ID LINE OUTAGE DETECTION; STATE ESTIMATION; TOPOLOGY ERRORS; IDENTIFICATION; SYSTEMS AB In this paper, we propose a measurement-based method to compute the power flow Jacobian matrix, from which we can infer pertinent information about the system topology in near real-time. A salient feature of our approach is that it readily adapts to changes in system operating point and topology; this is desirable as it provides power system operators with a way to update, as the system evolves, the models used in many reliability analysis tools. The method uses high-speed synchronized voltage and current phasor data collected from phasor measurement units to estimate entries of the Jacobian matrix through linear total least-squares (TLS) estimation. In addition to centralized TLS-based algorithms, we provide distributed alternatives aimed at reducing computational burden. Through numerical case studies, we illustrate the effectiveness of our proposed Jacobian-matrix estimation approach as compared with the conventional model-based one. C1 [Chen, Yu Christine] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada. [Wang, Jianhui] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Dominguez-Garcia, Alejandro D.; Sauer, Peter W.] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. RP Chen, YC (reprint author), Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada. EM chen@ece.ubc.ca; jianhui.wang@anl.gov; aledan@illinois.edu; psauer@illinois.edu FU U.S. Department of Energy under the Consortium for Electric Reliability Technology Solutions; Power Systems Engineering Research Center; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Advanced Grid Modeling Program FX The work of Y. C. Chen was supported in part by the U.S. Department of Energy under the Consortium for Electric Reliability Technology Solutions, in part by the Power Systems Engineering Research Center, and in part by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Advanced Grid Modeling Program. The work of A. D. Dominguez-Garcia and P. W. Sauer was supported in part by the U.S. Department of Energy under the Consortium for Electric Reliability Technology Solutions, and in part by the Power Systems Engineering Research Center. The work of J. Wang was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Advanced Grid Modeling Program. NR 27 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2016 VL 7 IS 5 BP 2507 EP 2515 DI 10.1109/TSG.2015.2502484 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EH4DU UT WOS:000391722100034 ER PT J AU Sun, HF Wang, ZY Wang, JH Huang, Z Carrington, N Liao, JX AF Sun, Haifeng Wang, Zhaoyu Wang, Jianhui Huang, Zhen Carrington, NichelleLe Liao, Jianxin TI Data-Driven Power Outage Detection by Social Sensors SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Power outage detection; social media; Twitter; heterogenous information network; supervised topic model ID EVENT DETECTION; SYSTEM AB This paper proposes a novel method to detect and locate power outages based on the information collected from social media. Twitter is used as a real-time social sensor in the proposed method. To solve the challenges of detecting a targeted event from the fragmented and noisy tweets, we devise a probabilistic framework to integrate the textual, temporal, and spatial information to identify the event. To improve the accuracy of outage detection, we propose a supervised topic model with a heterogeneous information network. The proposed technique is tested with real tweets and outage cases. The numerical results demonstrate the effectiveness of the proposed methodology. The comparison between the proposed method, and support vector machine and statistics Bayesian method shows the accuracy of the developed model. C1 [Sun, Haifeng; Liao, Jianxin] Beijing Univ Posts & Telecommun, Inst Network Technol, Beijing 100876, Peoples R China. [Wang, Zhaoyu; Carrington, NichelleLe] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Wang, Jianhui] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Huang, Zhen] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Sun, HF (reprint author), Beijing Univ Posts & Telecommun, Inst Network Technol, Beijing 100876, Peoples R China. EM hfsun@bupt.edu.cn; wzy@iastate.edu; jianhui.wang@anl.gov; zhenhuangee@gatech.edu; nkcarrin@iastate.edu; jxlbupt@gmail.com FU U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX This work was supported by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. NR 32 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2016 VL 7 IS 5 BP 2516 EP 2524 DI 10.1109/TSG.2016.2546181 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EH4DU UT WOS:000391722100035 ER PT J AU Jiang, HG Dai, XX Gao, DW Zhang, JJ Zhang, YC Muljadi, E AF Jiang, Huaiguang Dai, Xiaoxiao Gao, David Wenzhong Zhang, Jun Jason Zhang, Yingchen Muljadi, Eduard TI Spatial-Temporal Synchrophasor Data Characterization and Analytics in Smart Grid Fault Detection, Identification, and Impact Causal Analysis SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Big data; secondary voltage control; pilot bus; phasor measurement unit; fault disturbance recorder; optimal synchrophasor measurement devices selection; matching pursuit decomposition; hidden Markov model; situational awareness; Granger causality ID SECONDARY VOLTAGE CONTROL; RELATIVE ELECTRICAL DISTANCES; OPTIMAL PMU PLACEMENT; BIG DATA; POWER-SYSTEMS; OPEN ACCESS; RECOGNITION; TOOLBOX; FRANCE; CLOUD AB An approach of big data characterization for smart grids (SGs) and its applications in fault detection, identification, and causal impact analysis is proposed in this paper, which aims to provide substantial data volume reduction while keeping comprehensive information from synchrophasor measurements in spatial and temporal domains. Especially, based on secondary voltage control (SVC) and local SG observation algorithm, a two-layer dynamic optimal synchrophasor measurement devices selection algorithm (OSMDSA) is proposed to determine SVC zones, their corresponding pilot buses, and the optimal synchrophasor measurement devices. Combining the two-layer dynamic OSMDSA and matching pursuit decomposition, the synchrophasor data is completely characterized in the spatial-temporal domain. To demonstrate the effectiveness of the proposed characterization approach, SG situational awareness is investigated based on hidden Markov model based fault detection and identification using the spatial-temporal characteristics generated from the reduced data. To identify the major impact buses, the weighted Granger causality for SGs is proposed to investigate the causal relationship of buses during system disturbance. The IEEE 39-bus system and IEEE 118-bus system are employed to validate and evaluate the proposed approach. C1 [Jiang, Huaiguang; Zhang, Yingchen; Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Dai, Xiaoxiao; Gao, David Wenzhong; Zhang, Jun Jason] Univ Denver, Denver, CO 80210 USA. RP Gao, DW (reprint author), Univ Denver, Denver, CO 80210 USA. EM wenzhong.gao@du.edu NR 41 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 EI 1949-3061 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2016 VL 7 IS 5 BP 2525 EP 2536 DI 10.1109/TSG.2016.2552229 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA EH4DU UT WOS:000391722100036 ER PT J AU Urpi, L Rinaldi, AP Rutqvist, J Cappa, F Spiers, CJ AF Urpi, Luca Rinaldi, Antonio P. Rutqvist, Jonny Cappa, Frederic Spiers, Christopher J. TI Dynamic simulation of CO2-injection-induced fault rupture with slip-rate dependent friction coefficient SO GEOMECHANICS FOR ENERGY AND THE ENVIRONMENT LA English DT Article DE Seismicity; Carbon sequestration; Geomechanics; Fault reactivation; Velocity-dependent friction ID CO2 STORAGE; EARTHQUAKE PROPAGATION; INDUCED SEISMICITY; FLUID INJECTION; ROCK; SEQUESTRATION; DEFORMATION; STABILITY; ANHYDRITE; FLOW AB Poro-elastic stress and effective stress reduction associated with deep underground fluid injection can potentially trigger shear rupture along pre-existing faults. We modeled an idealized CO2 injection scenario, to assess the effects on faults in the first phase of a generic CO2 aquifer storage operation. We used coupled multiphase fluid flow and geomechanical numerical modeling to evaluate the stress and pressure perturbations induced by fluid injection and the response of a nearby normal fault. Slip-rate dependent friction and inertial effects have been taken into account during rupture. Contact elements have been used to take into account the frictional behavior of the rupture plane. We investigated different scenarios of injection rate to induce rupture on the fault, employing various fault rheologies. Published laboratory data on CO2-saturated intact and crushed rock samples, representative of a potential target aquifer, sealing formation and fault gouge, have been used to define a scenario where different fault rheologies apply at different depths. Nucleation of fault rupture takes place at the bottom of the reservoir, in agreement with analytical poro-elastic stress calculations, depending on injection-induced reservoir inflation and the tectonic stress scenario. For the stress state considered here, the first triggered rupture always produces the largest rupture length and slip magnitude, both of which correlate with the fault rheology. Velocity weakening produces larger ruptures and generates larger magnitude seismic events. Heterogeneous faults have been considered including velocity-weakening or velocity strengthening sections inside and below the aquifer, with the upper sections being velocity-neutral. Nucleation of rupture in a velocity-strengthening section results in a limited rupture extension, both in terms of maximum slip and rupture length. For a heterogeneous fault with nucleation in a velocity-weakening section, the rupture may propagate into the overlying velocity-neutral section, if the extent of velocity-weakening and associated friction drop are large enough. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Urpi, Luca; Rinaldi, Antonio P.] Swiss Fed Inst Technol ETHZ, Swiss Seismol Serv, Zurich, Switzerland. [Rinaldi, Antonio P.; Rutqvist, Jonny; Cappa, Frederic] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Cappa, Frederic] Univ Nice Sophia Antipolis, Geoazur, CNRS, Observ Cote Azur, Nice, France. [Cappa, Frederic] Inst Univ France, Paris, France. [Urpi, Luca; Spiers, Christopher J.] Univ Utrecht, Fac Geosci, HPT Lab, Utrecht, Netherlands. RP Urpi, L (reprint author), Swiss Fed Inst Technol ETHZ, Swiss Seismol Serv, Zurich, Switzerland. EM luca.urpi@sed.ethz.ch OI Rinaldi, Antonio Pio/0000-0001-7052-8618 FU Dutch government (Ministry of Economic Affairs); CATO-2 consortium; SNSF Ambizione Energy grant [PZENP2_160555]; Office of Natural Gas and Petroleum Technology through National Energy Technology Laboratory under US Department of Energy [DE-AC02-05CH11231] FX This research has been carried out in the context of the CATO-2-program (www.co2cato.org), the Dutch national research program on CO2 Capture and Storage technology (CCS)), within WorkPackage 3.3 (Caprock and fault integrity) and partly through a contract with Swiss Nuclear Safety Inspectorate (ENSI). The CATO-2 program is financially supported by the Dutch government (Ministry of Economic Affairs) and the CATO-2 consortium parties. A.P. Rinaldi is currently funded by SNSF Ambizione Energy grant (PZENP2_160555). Funding to the Lawrence Berkeley National Laboratory was supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the US Department of Energy Contract No. DE-AC02-05CH11231. NR 81 TC 1 Z9 3 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-3808 J9 GEOMECH ENERGY ENVIR JI Geomech. Energy Environ. PD SEP PY 2016 VL 7 BP 47 EP 65 DI 10.1016/j.gete.2016.04.003 PG 19 WC Engineering, Geological SC Engineering GA EG5UB UT WOS:000391108900004 ER PT J AU De, K Jha, S Klimentov, A Maeno, T Mashinistov, R Nilsson, P Novikov, A Oleynik, D Panitkin, S Poyda, A Read, KF Ryabinkin, E Teslyuk, A Velikhov, V Wells, JC Wenaus, T AF De, K. Jha, S. Klimentov, A. Maeno, T. Mashinistov, R. Nilsson, P. Novikov, A. Oleynik, D. Panitkin, S. Poyda, A. Read, K. F. Ryabinkin, E. Teslyuk, A. Velikhov, V. Wells, J. C. Wenaus, T. TI Integration of Panda Workload Management System with Supercomputers SO PHYSICS OF PARTICLES AND NUCLEI LETTERS LA English DT Article AB The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 140 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250000 cores with a peak performance of 0.3+ petaFLOPS, next LHC data taking runs will require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), Supercomputer at the National Research Center "Kurchatov Institute", IT4 in Ostrava, and others). The current approach utilizes a modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single-threaded workloads in parallel on Titan's multi-core worker nodes. This implementation was tested with a variety of Monte-Carlo workloads on several supercomputing platforms. We will present our current accomplishments in running PanDA WMS at supercomputers and demonstrate our ability to use PanDA as a portal independent of the computing facility's infrastructure for High Energy and Nuclear Physics, as well as other data-intensive science applications, such as bioinformatics and astro-particle physics. C1 [De, K.; Oleynik, D.] Univ Texas Arlington, Arlington, TX 76019 USA. [Jha, S.] Rutgers State Univ, Piscataway, NJ USA. [Klimentov, A.; Maeno, T.; Nilsson, P.; Panitkin, S.; Wenaus, T.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Klimentov, A.; Mashinistov, R.; Novikov, A.; Poyda, A.; Ryabinkin, E.; Teslyuk, A.; Velikhov, V.] Natl Res Ctr Kurchatov Inst, Moscow, Russia. [Read, K. F.; Wells, J. C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Oleynik, D.] Joint Inst Nucl Res, Dubna, Russia. RP Mashinistov, R (reprint author), Natl Res Ctr Kurchatov Inst, Moscow, Russia. EM Ruslan.Mashinistov@cern.ch OI Wells, Jack/0000-0002-5083-3030 FU U.S. Department of Energy, Office of Science, High Energy Physics and Advanced Scientific Computing Research [DE-SC0012704, DE-AC02-98CH10886, DE-AC02-06CH11357]; Russian Ministry of Science and Education [14.Z50.31.0024, RFMEFI62114X0006]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This work was funded in part by the U.S. Department of Energy, Office of Science, High Energy Physics and Advanced Scientific Computing Research under Contracts nos. DE-SC0012704, DE-AC02-98CH10886 and Contract no. DE-AC02-06CH11357. NRC-KI team work was funded by the Russian Ministry of Science and Education under Contract no 14.Z50.31.0024. Supercomputing resources at NRC-KI are supported as a part of the center for collective usage (project RFMEFI62114X0006, funded by Russian Ministry of Science and Education). We would like to acknowledge that this research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract no. DE-AC05-00OR22725. NR 5 TC 0 Z9 0 U1 0 U2 0 PU PLEIADES PUBLISHING INC PI MOSCOW PA PLEIADES PUBLISHING INC, MOSCOW, 00000, RUSSIA SN 1547-4771 EI 1531-8567 J9 PHYS PART NUCLEI LET JI Phys. Part. Nuclei Lett. PD SEP PY 2016 VL 13 IS 5 BP 647 EP 653 DI 10.1134/S1547477116050150 PG 7 WC Physics, Particles & Fields SC Physics GA EG6YR UT WOS:000391192700028 ER PT J AU Krasnopevtsev, DV Klimentov, AA Mashinistov, RY Belyaev, NL Ryabinkin, EA AF Krasnopevtsev, D. V. Klimentov, A. A. Mashinistov, R. Yu. Belyaev, N. L. Ryabinkin, E. A. CA ATLAS Collaboration TI Study of ATLAS TRT Performance with GRID and Supercomputers SO PHYSICS OF PARTICLES AND NUCLEI LETTERS LA English DT Article AB One of the most important studies dedicated to be solved for ATLAS physical analysis is a reconstruction of proton-proton events with large number of interactions in Transition Radiation Tracker. Paper includes Transition Radiation Tracker performance results obtained with the usage of the ATLAS GRID and Kurchatov Institute's Data Processing Center including Tier-1 grid site and supercomputer as well as analysis of CPU efficiency during these studies. C1 [Krasnopevtsev, D. V.; Belyaev, N. L.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Klimentov, A. A.; Mashinistov, R. Yu.; Ryabinkin, E. A.] NRC Kurchatov Inst, Moscow, Russia. [Klimentov, A. A.] Brookhaven Natl Lab, New York, NY USA. [Mashinistov, R. Yu.] PN Lebedev Inst Phys, Moscow, Russia. RP Krasnopevtsev, DV (reprint author), Natl Res Nucl Univ MEPhI, Moscow, Russia. EM Dimitriy.Krasnopevtsev@cern.ch OI Belyaev, Nikita/0000-0002-1131-7121 FU Russian Ministry of Science and Education [14.Z50.31.0024]; Ministry of Science and Education of Russia [RFMEFI62114X0006] FX We wish to thank all our colleagues from the ATLAS experiment, PanDA team and TRT project. This work was funded in part by the Russian Ministry of Science and Education under contract no. 14.Z50.31.0024.; Supercomputing resources at NRC-KI are supported as a part of the center for collective usage (project RFMEFI62114X0006, funded by Ministry of Science and Education of Russia). NR 12 TC 0 Z9 0 U1 0 U2 0 PU PLEIADES PUBLISHING INC PI MOSCOW PA PLEIADES PUBLISHING INC, MOSCOW, 00000, RUSSIA SN 1547-4771 EI 1531-8567 J9 PHYS PART NUCLEI LET JI Phys. Part. Nuclei Lett. PD SEP PY 2016 VL 13 IS 5 BP 659 EP 664 DI 10.1134/S1547477116050307 PG 6 WC Physics, Particles & Fields SC Physics GA EG6YR UT WOS:000391192700030 ER PT J AU Alekseev, AA Osipova, VV Ivanov, MA Klimentov, A Grigorieva, NV Nalamwar, HS AF Alekseev, A. A. Osipova, V. V. Ivanov, M. A. Klimentov, A. Grigorieva, N. V. Nalamwar, H. S. TI Efficient Data Management Tools for the Heterogeneous Big Data Warehouse SO PHYSICS OF PARTICLES AND NUCLEI LETTERS LA English DT Article DE Relational Database Management System (RDBMS); Non-relational Structure Query Language (NoSQL); Structure Query Language (SQL); Big Data; Heterogeneous Data Warehouse; Apache Hadoop; Hive; MongoDB; Data Manipulation Language (DML) Operations AB The traditional RDBMS has been consistent for the normalized data structures. RDBMS served well for decades, but the technology is not optimal for data processing and analysis in data intensive fields like social networks, oil-gas industry, experiments at the Large Hadron Collider, etc. Several challenges have been raised recently on the scalability of data warehouse like workload against the transactional schema, in particular for the analysis of archived data or the aggregation of data for summary and accounting purposes. The paper evaluates new database technologies like HBase, Cassandra, and MongoDB commonly referred as NoSQL databases for handling messy, varied and large amount of data. The evaluation depends upon the performance, throughput and scalability of the above technologies for several scientific and industrial use-cases. This paper outlines the technologies and architectures needed for processing Big Data, as well as the description of the back-end application that implements data migration from RDBMS to NoSQL data warehouse, NoSQL database organization and how it could be useful for further data analytics. C1 [Alekseev, A. A.; Osipova, V. V.; Ivanov, M. A.; Grigorieva, N. V.; Nalamwar, H. S.] Natl Res Tomsk Polytech Univ, Tomsk, Russia. [Klimentov, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Osipova, VV (reprint author), Natl Res Tomsk Polytech Univ, Tomsk, Russia. EM vikosi@tpu.ru NR 4 TC 0 Z9 0 U1 3 U2 3 PU PLEIADES PUBLISHING INC PI MOSCOW PA PLEIADES PUBLISHING INC, MOSCOW, 00000, RUSSIA SN 1547-4771 EI 1531-8567 J9 PHYS PART NUCLEI LET JI Phys. Part. Nuclei Lett. PD SEP PY 2016 VL 13 IS 5 BP 689 EP 692 DI 10.1134/S1547477116050022 PG 4 WC Physics, Particles & Fields SC Physics GA EG6YR UT WOS:000391192700037 ER PT J AU Zhang, Y Guo, XM Yao, Y Wu, F Zhang, CZ Lu, J AF Zhang, Yan Guo, Xingming Yao, Ying Wu, Feng Zhang, Cunzhong Lu, Jun TI Synthesis of Mg-Decorated Carbon Nanocomposites from MesoCarbon MicroBeads (MCMB) Graphite: Application for Wastewater Treatment SO ACS OMEGA LA English DT Article ID LAYERED DOUBLE HYDROXIDES; SUGAR-BEET TAILINGS; PHOSPHATE REMOVAL; AQUEOUS-SOLUTIONS; ENGINEERED CARBON; ADSORPTION; BIOCHAR; EUTROPHICATION; PHOSPHORUS; BATTERIES AB The potential application of a carbon nanocomposite from battery anode materials modified with magnesium (Mg) was explored to remove phosphate from aqueous solutions. Thermogravimetric analysis (TGA) shows that the Mg content of the prepared Mg/C composite is around 23.5%. Laboratory batch adsorption kinetics and equilibrium isotherm experiments demonstrate that the composite has an extremely high phosphate adsorption capacity of 406.3 mg PO4/g, which is among the highest phosphate removal abilities reported so far. Results from XRD, SEM-EDX, and XPS analyses of the postsorption Mg/C composite indicate that phosphate adsorption is mainly controlled by the precipitation of P to form Mg-3(PO4)(2)center dot 8H(2)O and MgHPO4 center dot 1.2H(2)O nanocrystals on the surface of the adsorbent. The approach of synthesizing Mg-enriched carbon-based adsorbent described in this work provides new opportunities for disposing spent batteries and developing a low-cost and highefficiency adsorbent to mitigate eutrophication. C1 [Zhang, Yan; Guo, Xingming; Yao, Ying; Wu, Feng; Zhang, Cunzhong] Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, 5 Zhongguancun South St, Beijing 100081, Peoples R China. [Zhang, Yan; Guo, Xingming; Yao, Ying; Wu, Feng; Zhang, Cunzhong] Natl Dev Ctr High Technol Green Mat, 5 Zhongguancun South St, Beijing 100081, Peoples R China. [Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Yao, Y (reprint author), Beijing Inst Technol, Beijing Key Lab Environm Sci & Engn, Sch Mat Sci & Engn, 5 Zhongguancun South St, Beijing 100081, Peoples R China.; Yao, Y (reprint author), Natl Dev Ctr High Technol Green Mat, 5 Zhongguancun South St, Beijing 100081, Peoples R China.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM yaoying@bit.edu.cn; junlu@anl.gov FU National Natural Science Foundation of China (NSFC) [51402018]; National Key Program for Basic Research of China [2015CB251100]; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office (VTO); Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE); U.S. Department of Energy under U.S.-China Clean Energy Research Center for Clean Vehicles (CERC-CVC) FX This research was supported by the National Natural Science Foundation of China (NSFC) through Grant 51402018 and the National Key Program for Basic Research of China through Grant 2015CB251100. This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the main support provided by the Vehicle Technologies Office (VTO), the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). Financial support was also partially provided by the U.S. Department of Energy under U.S.-China Clean Energy Research Center for Clean Vehicles (CERC-CVC). NR 33 TC 0 Z9 0 U1 3 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2470-1343 J9 ACS OMEGA JI ACS Omega PD SEP PY 2016 VL 1 IS 3 BP 417 EP 423 DI 10.1021/acsomega.6b00073 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA EG7CW UT WOS:000391204000012 ER PT J AU Vidal, O Lanari, P Munoz, M Bourdelle, F De Andrade, V AF Vidal, Olivier Lanari, Pierre Munoz, Manuel Bourdelle, Franck De Andrade, Vincent TI Deciphering temperature, pressure and oxygen-activity conditions of chlorite formation SO CLAY MINERALS LA English DT Article DE chlorite; oxidation state; thermodynamics ID CONSISTENT THERMODYNAMIC DATA; SOLID-SOLUTION; SYSTEM NA2O-K2O-CAO-MGO-FEO-FE2O3-AL2O3-SIO2-TIO2-H2O-CO2; CHEMICAL-COMPOSITION; MIXING PROPERTIES; FE-CHLORITE; MINERALS; GEOTHERMOMETRY; MODEL; QUANTIFICATION AB The advantages and limits of empirical, semi-empirical and thermodynamic methods devoted to the estimation of chlorite-formation temperature are discussed briefly. The results of semi-empirical and thermodynamic approaches with different assumptions regarding the redox state of iron in chlorite are compared for a large set of natural data covering a range of pressure conditions from a few hundred bars to 18 kbar and temperature from 100 to 500 degrees C. The T-XFe3+ evolution estimated using the thermodynamic approach of Vidal et al. (2005) shows a systematic increase in XFe3+ with decreasing temperature, which is compatible with the decrease in aO(2) buffered by magnetite-or hematite-chlorite equilibrium. This trend as well as the observed increase in vacancies in chlorite with decreasing temperature is interpreted as the incorporation of Fe3+-sudoite. The standard-state properties of this end-member have been derived to reproduce the observed T-aO(2)-XFe3+ evolutions. It can be used to estimate T-aO(2)-XFe3 values with a Chl-Qtz-H2O multi-equilibrium approach. When combining our results with those of other studies published recently, it appears that thermodynamic approaches and mapping techniques developed for metamorphic rocks can be used to discuss the conditions of formation of very low-grade rocks where kinetics is much more sluggish than in metamorphic rocks. This requires use of appropriate analytical tools and techniques with a spatial resolution of a few hundred nanometres. C1 [Vidal, Olivier; Munoz, Manuel] Univ Grenoble Alpes, CNRS, Isterre, 1381 Rue Piscine 53, F-38041 Grenoble 09, France. [Lanari, Pierre] Univ Bern, Dept Geol Sci, Baltzerstr 1 3, CH-3012 Bern, Switzerland. [Bourdelle, Franck] Univ Lille, LGCgE, Bat SN5, F-59655 Villeneuve Dascq, France. [De Andrade, Vincent] Argonne Natl Lab, 9700 South Cass Ave,Bldg 438-B007, Lemont, IL 60439 USA. RP Vidal, O (reprint author), Univ Grenoble Alpes, CNRS, Isterre, 1381 Rue Piscine 53, F-38041 Grenoble 09, France. EM olivier.vidal@ujf-grenoble.fr RI Lanari, Pierre/G-8183-2011 OI Lanari, Pierre/0000-0001-8303-0771 NR 46 TC 1 Z9 1 U1 4 U2 4 PU MINERALOGICAL SOC PI TWICKENHAM PA 12 BAYLIS MEWS, AMYAND PARK ROAD,, TWICKENHAM TW1 3HQ, MIDDLESEX, ENGLAND SN 0009-8558 EI 1471-8030 J9 CLAY MINER JI Clay Min. PD SEP PY 2016 VL 51 IS 4 BP 615 EP 633 DI 10.1180/claymin.2016.051.4.06 PG 19 WC Chemistry, Physical; Geosciences, Multidisciplinary; Mineralogy SC Chemistry; Geology; Mineralogy GA EG3CE UT WOS:000390920600006 ER PT J AU Gehmlich, RK Dumitrescu, CE Wang, YF Mueller, CJ AF Gehmlich, Ryan K. Dumitrescu, Cosmin E. Wang, Yefu Mueller, Charles J. TI Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel in an Optical CI Engine SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article AB Leaner lifted-flame combustion (LLFC) is a mixing-controlled combustion strategy for compression-ignition (CI) engines that does not produce soot because the equivalence ratio at the lift-off length is less than or equal to approximately two. In addition to completely preventing soot formation, LLFC can simultaneously control emissions of nitrogen oxides because it is tolerant to the use of exhaust-gas recirculation for lowering in-cylinder temperatures. Experiments were conducted in a heavy-duty CI engine that has been modified to provide optical access to the combustion chamber, to study whether LLFC is facilitated by an oxygenated fuel blend (T50) comprising a 1: 1 mixture by volume of tri-propylene glycol mono-methyl ether with an ultra-low-sulfur #2 diesel emissions-certification fuel (CFA). Results from the T50 experiments are compared against baseline results using the CFA fuel without the oxygenate. Experimental measurements include crank-angle-resolved natural luminosity and chemiluminescence imaging. Dilution effects were studied by adding nitrogen and carbon dioxide to the intake charge. Initial experiments with a 2-hole fuel-injector tip achieved LLFC at low loads with the T50 fuel, and elucidated the most important operating parameters necessary to achieve LLFC. The strategy was then extended to more moderate loads by employing a 6-hole injector tip, where lowering the intake-manifold temperature, reducing the coolant temperature, and retarding the start-of-combustion timing resulted in sustained LLFC at both 21% and 16% intake-oxygen mole fractions at loads greater than 5 bar gross indicated mean effective pressure. In contrast to the results with T50, LLFC was not achieved under any of the test conditions with CFA. C1 [Gehmlich, Ryan K.; Dumitrescu, Cosmin E.; Wang, Yefu; Mueller, Charles J.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Gehmlich, RK (reprint author), Sandia Natl Labs, Combust Res Facil, Engine Combust Dept, 7011 East Ave,MS 9053, Livermore, CA 94550 USA. EM rgehmli@sandia.gov OI Gehmlich, Ryan/0000-0003-0903-2992 FU U.S. Department of Energy, Office of Vehicle Technologies; Ford Motor Company; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was supported by the U.S. Department of Energy, Office of Vehicle Technologies, and Ford Motor Company. The authors gratefully acknowledge: Office of Vehicle Technologies Program Manager Kevin Stork for long-term support of the optical-engine laboratory at Sandia; Eric Kurtz, Jim Anderson, and Chris Polonowski from Ford for helpful technical discussions; Bill Cannella from Chevron, for providing the #2 ULSD certification fuel; Sandia technologists Sam Fairbanks, Gary Hubbard, Keith Penney, and Chris Carlen for their assistance with mechanical, data-acquisition hardware/software, laser, and electronic systems, respectively. The research was conducted at the Combustion Research Facility, Sandia National Laboratories, Livermore California. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 45 TC 0 Z9 0 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD SEP PY 2016 VL 9 IS 3 BP 1526 EP 1543 DI 10.4271/2016-01-0730 PG 18 WC Transportation Science & Technology SC Transportation GA EF8RD UT WOS:000390595900014 ER PT J AU Pineda, DI Wolk, B Chen, JY Dibble, RW AF Pineda, Daniel I. Wolk, Benjamin Chen, Jyh-Yuan Dibble, Robert W. TI Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article ID PLASMA-ASSISTED IGNITION; SYSTEM AB The downsizing of internal combustion engines to increase fuel economy leads to challenges in both obtaining ignition and stabilizing combustion at boosted intake pressures and high exhaust gas recirculation dilution conditions. The use of non-thermal plasma ignition technologies has shown promise as a means to more reliably ignite dilute charge mixtures at high pressures. Despite progress in fundamental research on this topic, both the capabilities and operation implications of emerging non-thermal plasma ignition technologies in internal combustion engine applications are not yet fully explored. In this work, we document the effects of using a corona discharge ignition system in a single cylinder gasoline direct injection research engine relative to using a traditional inductive spark ignition system under conditions associated with both naturally aspirated (8 bar BMEP) and boosted (20 bar BMEP) loads at moderate (2000 rpm) and high (4000 rpm) engine speeds. Analysis of experimental results shows that relative to optimum load-speed equivalent baseline operation, using the corona discharge ignition system improves fuel economy by (1) reducing cycle-to-cycle variability, (2) promoting more complete combustion, and (3) enabling combustion phasing advancement at high loads by extending the knock limit. Additionally, the system reduces emissions by extending the practical exhaust gas recirculation limits of stable operation. C1 [Pineda, Daniel I.; Chen, Jyh-Yuan; Dibble, Robert W.] Univ Calif Berkeley, 246 Hesse Hall, Berkeley, CA 94720 USA. [Wolk, Benjamin] Sandia Natl Labs, Livermore, CA 94550 USA. RP Pineda, DI (reprint author), Univ Calif Berkeley, 246 Hesse Hall, Berkeley, CA 94720 USA. EM dpinedai@berkeley.edu FU NSF/DOE [CBET-1258653] FX This research conducted at the Ricardo Detroit Technical Campus is the result of an industry/university collaboration supported by the NSF/DOE Partnership on Advanced Combustion Engines, Award No. CBET-1258653. The authors would like to acknowledge the professional and technical support of James Kezerle, Gregory Beauprez, Jeffrey Brueckheimer, Shiva Aher, Nick Fortino, and Eric Klos of Ricardo North America for the experiment coordination and test cell operation, as well as the acquisition and management of the data. The ignition system utilized in this work was graciously provided and serviced by Federal Mogul, Inc, and the authors would particularly like to thank Kris Mixell for the assistance. The authors thank Alex Jordan and Michael Neufer of the Mechanical Engineering Department Technical & Instructional Support Group staff at UC Berkeley for their helpful insight in emissions uncertainties. DIP wishes to thank Jordan Yvette Nerison for her helpful instruction regarding the assembly of Encapsulated PostScript files and for illustrating the piston-cylinder assembly and corona ignitor in Figures 1 and 2. NR 33 TC 0 Z9 0 U1 1 U2 1 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD SEP PY 2016 VL 9 IS 3 BP 1970 EP 1988 DI 10.4271/2016-01-9045 PG 19 WC Transportation Science & Technology SC Transportation GA EF8RD UT WOS:000390595900054 ER PT J AU Speck, C Riera, A Yuan, Z Sun, J Barbon, M Rappsilber, J Stillman, B Li, H AF Speck, C. Riera, A. Yuan, Z. Sun, J. Barbon, M. Rappsilber, J. Stillman, B. Li, H. TI Key mechanism in the loading and activation of the replicative helicase MCM2-7 SO FEBS JOURNAL LA English DT Meeting Abstract CT 41st FEBS Congress on Molecular and Systems Biology for a Better Life CY SEP 03-08, 2016 CL Kusadasi, TURKEY SP FEBS C1 [Speck, C.; Riera, A.; Barbon, M.] Imperial Coll London, London, England. [Yuan, Z.; Sun, J.; Li, H.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Rappsilber, J.] Univ Edinburgh, Edinburgh, Midlothian, Scotland. [Stillman, B.] Cold Spring Harbor Lab, POB 100, Cold Spring Harbor, NY 11724 USA. [Li, H.] SUNY Stony Brook, Stony Brook, NY 11794 USA. RI Speck, Christian/G-2882-2011 OI Speck, Christian/0000-0001-6646-1692 NR 0 TC 0 Z9 0 U1 1 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD SEP PY 2016 VL 283 SU 1 SI SI MA 01.01.1001 BP 12 EP 12 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DW4MJ UT WOS:000383616900025 ER PT J AU Schnase, JL Lee, TJ Mattmann, CA Lynnes, CS Cinquini, L Ramirez, PM Hart, AF Williams, DN Waliser, D Rinsland, P Webster, WP Duffy, DQ Mcinerney, MA Tamkin, GS Potter, GL Carrier, L AF Schnase, John L. Lee, Tsengdar J. Mattmann, Chris A. Lynnes, Christopher S. Cinquini, Luca Ramirez, Paul M. Hart, Andre F. Williams, Dean N. Waliser, Duane Rinsland, Pamela Webster, W. Philip Duffy, Daniel Q. Mcinerney, Mark A. Tamkin, Glenn S. Potter, Gerald L. Carrier, Laura TI Big Data Challenges in Climate Science Improving the next-generation cyberinfrastructure SO IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE LA English DT Article ID SYSTEM C1 [Schnase, John L.] Angelo State Univ, San Angelo, TX 76909 USA. [Schnase, John L.] Univ Texas Austin, Austin, TX 78712 USA. [Schnase, John L.] Baylor Coll Med, Houston, TX 77030 USA. [Schnase, John L.] Texas A&M Univ, College Stn, TX USA. [Lee, Tsengdar J.] Colorado State Univ, Ft Collins, CO 80523 USA. [Mattmann, Chris A.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Waliser, Duane] NASA, Jet Prop Lab, Pasadena, CA USA. [Lynnes, Christopher S.; Duffy, Daniel Q.; Mcinerney, Mark A.; Tamkin, Glenn S.; Potter, Gerald L.; Carrier, Laura] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Williams, Dean N.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Rinsland, Pamela] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Schnase, JL (reprint author), Angelo State Univ, San Angelo, TX 76909 USA.; Schnase, JL (reprint author), Univ Texas Austin, Austin, TX 78712 USA.; Schnase, JL (reprint author), Baylor Coll Med, Houston, TX 77030 USA.; Schnase, JL (reprint author), Texas A&M Univ, College Stn, TX USA. EM john.l.schnase@nasa.gov; tsengdar.j.lee@nasa.gov; chris.a.mattmann@jpl.nasa.gov; christopher.s.lynnes@nasa.gov; luca.cinauini@jpl.nasa.gov; paul.m.ramirez@jpl.nasa.gov; andrew.f.hart@jpl.nasa.gov; williams13@llnl.gov; duane.waliser@jpl.nasa.gov; pamela.l.rinsland@nasa.gov; phil.webster@nasa.gov; daniel.q.duffy@nasa.gov; mark.mcincerney@nasa.gov; glenn.s.tamkin@nasa.gov; gerald.l.potter.@nasa.gov; laura.carriere@nasa.gov FU NASA Computational Modeling Algorithms and Cyberinfrastructure program FX This work has been funded by the NASA Computational Modeling Algorithms and Cyberinfrastructure program through grants to the authors' collaborating institutions. NR 23 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6831 J9 IEEE GEOSC REM SEN M JI IEEE Geosci. Remote Sens. Mag. PD SEP PY 2016 VL 4 IS 3 SI SI BP 10 EP 22 DI 10.1109/MGRS.2015.2514192 PG 13 WC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Remote Sensing; Imaging Science & Photographic Technology GA EF0HY UT WOS:000390007700004 ER PT J AU Dumke, R Lu, ZH Close, J Robins, N Weis, A Mukherjee, M Birkl, G Hufnagel, C Amico, L Boshier, MG Dieckmann, K Li, WH Killian, TC AF Dumke, Rainer Lu, Zehuang Close, John Robins, Nick Weis, Antoine Mukherjee, Manas Birkl, Gerhard Hufnagel, Christoph Amico, Luigi Boshier, Malcolm G. Dieckmann, Kai Li, Wenhui Killian, Thomas C. TI Roadmap on quantum optical systems SO JOURNAL OF OPTICS LA English DT Article DE quantum optical systems; quantum measurements; quantum information; quantum gases; quantum optics ID MULTICHANNEL ATOMIC MAGNETOMETER; BOSE-EINSTEIN CONDENSATION; FROZEN RYDBERG GAS; TRAPPED IONS; ULTRACOLD ATOMS; POLAR-MOLECULES; NEUTRAL ATOMS; NOBEL LECTURE; COLD ATOMS; SUPERFLUID AB This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future. C1 [Dumke, Rainer] Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore. [Dumke, Rainer; Mukherjee, Manas; Hufnagel, Christoph; Amico, Luigi; Dieckmann, Kai; Li, Wenhui] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore. [Lu, Zehuang] Huazhong Univ Sci & Technol, Sch Phys, MOE Key Lab Fundamental Quant Measurement, Wuhan 430074, Peoples R China. [Close, John; Robins, Nick] Australian Natl Univ, Dept Quantum Sci, Quantum Sensors & Atomlaser Lab, Canberra, ACT 0200, Australia. [Weis, Antoine] Univ Fribourg, Dept Phys, Chemin Musee 3, CH-1700 Fribourg, Switzerland. [Mukherjee, Manas; Li, Wenhui] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Birkl, Gerhard] Tech Univ Darmstadt, Inst Appl Phys, Schlossgartenstr 7, Darmstadt, Germany. [Amico, Luigi] CNR MATIS IMM, Via S Sofia 64, I-95127 Catania, Italy. [Amico, Luigi] Dipartimento Fis & Astron, Via S Sofia 64, I-95127 Catania, Italy. [Amico, Luigi] Ist Nazl Fis Nucl, Lab Nazl Sud, Via S Sofia 62, I-95123 Catania, Italy. [Boshier, Malcolm G.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Killian, Thomas C.] Rice Univ, Dept Phys & Astron, MS 61, Houston, TX 77005 USA. [Killian, Thomas C.] Rice Univ, Rice Ctr Quantum Mat, MS 61, Houston, TX 77005 USA. RP Dumke, R (reprint author), Nanyang Technol Univ, Div Phys & Appl Phys, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore.; Dumke, R (reprint author), Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore. EM rdumke@ntu.edu.sg OI Boshier, Malcolm/0000-0003-0769-1927 NR 137 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2040-8978 EI 2040-8986 J9 J OPTICS-UK JI J. Opt. PD SEP PY 2016 VL 18 IS 9 AR 093001 DI 10.1088/2040-8978/18/9/093001 PG 28 WC Optics SC Optics GA EF3JR UT WOS:000390221200001 ER PT J AU Xue, K Yuan, MTM Xie, JP Li, DJ Qin, YJ Hale, LE Wu, LY Deng, Y He, ZL Van Nostrand, JD Luo, YQ Tiedje, JM Zhou, JZ AF Xue, Kai Yuan, Mengting M. Xie, Jianping Li, Dejun Qin, Yujia Hale, Lauren E. Wu, Liyou Deng, Ye He, Zhili Van Nostrand, Joy D. Luo, Yiqi Tiedje, James M. Zhou, Jizhong TI Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming SO MBIO LA English DT Article ID BIOFUEL FEEDSTOCK HARVEST; MITIGATE CLIMATE-CHANGE; TALLGRASS PRAIRIE; ELEVATED CO2; NITROGEN DEPOSITION; CARBON-DIOXIDE; GLOBAL CHANGE; SEMIARID GRASSLAND; BACTERIAL TAXONOMY; ORGANIC-MATTER AB Clipping (i.e., harvesting aboveground plant biomass) is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C-4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened. IMPORTANCE Global change involves simultaneous alterations, including those caused by climate warming and land management practices (e.g., clipping). Data on the interactive effects of warming and clipping on ecosystems remain elusive, particularly in microbial ecology. This study found that clipping alters microbial responses to warming and demonstrated the effects of antagonistic interactions between clipping and warming on microbial functional genes. Clipping alone or combined with warming enriched genes degrading relatively recalcitrant carbon, likely reflecting the decreased quantity of soil carbon input from litter, which could weaken long-term soil C stability and trigger positive warming feedback. These results have important implications in assessing and predicting the consequences of global climate change and indicate that the removal of aboveground biomass for biofuel production may need to be reconsidered. C1 [Xue, Kai; Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China. [Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Qin, Yujia; Hale, Lauren E.; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Xue, Kai; Yuan, Mengting M.; Xie, Jianping; Li, Dejun; Qin, Yujia; Hale, Lauren E.; Wu, Liyou; Deng, Ye; He, Zhili; Van Nostrand, Joy D.; Luo, Yiqi; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Xie, Jianping] Cent S Univ, Sch Mineral Proc & Bioengn, Changsha, Hunan, Peoples R China. [Deng, Ye] Chinese Acad Sci, Ecoenvironm Sci Res Ctr, Beijing, Peoples R China. [Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Zhou, Jizhong] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA. [Zhou, Jizhong] Lawrence Berkeley Natl Lab, Earth & Environm Sci Div, Berkeley, CA USA. RP Zhou, JZ (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing, Peoples R China.; Zhou, JZ (reprint author), Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA.; Zhou, JZ (reprint author), Lawrence Berkeley Natl Lab, Earth & Environm Sci Div, Berkeley, CA USA. EM jzhou@ou.edu OI Hale, Lauren/0000-0002-2574-2225 FU U.S. Department of Energy (DOE) [DE-SC0004601, DE-SC0010715] FX This work, including the efforts of Jizhong Zhou, was funded by U.S. Department of Energy (DOE) (DE-SC0004601 and DE-SC0010715). NR 100 TC 0 Z9 0 U1 12 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD SEP-OCT PY 2016 VL 7 IS 5 AR e00976-16 DI 10.1128/mBio.00976-16 PG 12 WC Microbiology SC Microbiology GA EF2CU UT WOS:000390132900076 ER PT J AU Chen, MM Ren, H Cai, WG Li, XH Ren, PY Deson, L AF Chen Mingman Ren Hong Cai Weiguang Li Xiaohui Ren Pengyu Deson Lee TI APPLICATION OF REGIONAL CULTURAL ELEMENTS IN URBAN COMPLEX -ILLUSTRATED BY GUIZHOU, CHINA. SO OPEN HOUSE INTERNATIONAL LA English DT Article DE Regional Cultural Elements; Urban Complex; Concept Mappin ID ECOSYSTEM SERVICES; ARCHITECTURE; CITY AB Along with the acceleration of Chinese urbanization, urban history degrades at a rapid rate, and development follows formalism. Based on architectural typology, this study introduces a methodology of concept mapping and discusses the urban complex design method from a perspective of regional cultural elements. The theoretical analysis shows that concept mapping represents an integrated solution that incorporates regional cultural elements into architectural planning. Through the concept mapping method, it not only protects the physical environment, but also strengthens modern urban residents' psychological sense of belonging to their own living space. Meanwhile, distinct regional cultural elements can be efficiently combined in the overall layout, monomer building design, building details design, and landscape design of urban complex by using different architectural design methods. This design method is validated using an actual case in Guizhou. Therefore, it forms a complete set of design method with a three-step framework, namely positioning cultural areas, summarizing regional cultural elements, and selecting the mapping method and combination mode. C1 [Chen Mingman; Ren Hong; Cai Weiguang; Li Xiaohui] Chongqing Univ, Fac Construct Management & Real Estate, Chongqing, Peoples R China. [Ren Pengyu] Chongqing Jiaotong Univ, Fac Architecture & Urban Planning, Chongqing, Peoples R China. [Deson Lee] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA USA. RP Cai, WG (reprint author), Chongqing Univ, Fac Construct Management & Real Estate, Chongqing, Peoples R China. EM wgcai@cqu.edu.cn FU Social Science and Humanity on Young Fund of the Ministry of Education P.R.China [15YJC630003]; Chongqing Graduate Student Research Innovation Project [CYB14038]; Fundamental Research Funds for the Central Universities [106112015CDJSK03JD10] FX This research was supported by grants from the Social Science and Humanity on Young Fund of the Ministry of Education P.R.China(No. 15YJC630003), Chongqing Graduate Student Research Innovation Project (No. CYB14038), and the Fundamental Research Funds for the Central Universities (No. 106112015CDJSK03JD10). In addition, You Dao marketing company of Guizhou offered a wide range of cases for my study. NR 30 TC 0 Z9 0 U1 0 U2 0 PU OPEN HOUSE INT PI GREAT BRITAIN PA URBAN INTERNATIONAL PRESS, PO BOX 74, GATESHEAD, TYNE & WEAR, GREAT BRITAIN, NE9 5UZ, ENGLAND SN 0168-2601 J9 OPEN HOUSE INT JI Open House Int. PD SEP PY 2016 VL 41 IS 3 BP 12 EP 19 PG 8 WC Architecture; Environmental Studies; Urban Studies SC Architecture; Environmental Sciences & Ecology; Urban Studies GA EF4UI UT WOS:000390327100002 ER PT J AU Cheng, L Curtiss, LA Zavadil, KR Gewirth, AA Shao, YY Gallagher, KG AF Cheng, Lei Curtiss, Larry A. Zavadil, Kevin R. Gewirth, Andrew A. Shao, Yuyan Gallagher, Kevin G. TI Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries SO ACS ENERGY LETTERS LA English DT Article ID IONIC LIQUID ELECTROLYTES; LI-S BATTERIES; LI-O-2 BATTERIES; SUPERCONCENTRATED ELECTROLYTES; POROUS-ELECTRODES; SOLUBLE REACTANTS; ANION RECEPTORS; ZINC ELECTRODE; DESIGN; CARBON AB Moving to lighter and less expensive battery chemistries compared to contemporary lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation dissolution chemistry require large excesses of electrolyte to fully solubilize the polysulfide intermediates. Achieving reversible electrochemistry under lean electrolyte operation is the most promising path for Li/S to move beyond niche applications to potentially transformational performance. An emerging Li/S research area is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from sulfur and polysulfide reaction mechanism. This Perspective presents an outlook for sparingly solvating electrolytes as a key path forward for long-lived, high energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it. C1 [Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin G.] Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA. [Cheng, Lei; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Gallagher, Kevin G.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Zavadil, Kevin R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Gewirth, Andrew A.] Univ Illinois, Dept Chem, 600 South Mathews Ave, Urbana, IL 61801 USA. [Shao, Yuyan] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Gallagher, KG (reprint author), Argonne Natl Lab, Joint Ctr Energy Storage Res, Lemont, IL 60439 USA.; Gallagher, KG (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM kevin.gallagher@anl.gov RI Shao, Yuyan/A-9911-2008 OI Shao, Yuyan/0000-0001-5735-2670 FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We gratefully acknowledge Dr. Junzheng Chen, Dr. Huilin Pan, Dr. Heng-Liang Wu, Dr. Kimberly A. See, Dr. Kah Chun Lau, Dr. Mahalingam Balasubramanian, Prof. Linda Nazar, Prof. Nitash Balsara, and Dr. Zhengcheng Zhang for helpful discussions and Dr. Venkat Srinivasan for pointing out the connection to historical precipitation-dissolution chemistries. NR 57 TC 3 Z9 3 U1 20 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD SEP PY 2016 VL 1 IS 3 BP 503 EP 509 DI 10.1021/acsenergylett.6b00194 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EE5AU UT WOS:000389617900003 ER PT J AU Reid, OG Yang, MJ Kopidakis, N Zhu, K Rumbles, G AF Reid, Obadiah G. Yang, Mengjin Kopidakis, Nikos Zhu, Kai Rumbles, Garry TI Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films SO ACS ENERGY LETTERS LA English DT Article ID RESOLVED MICROWAVE CONDUCTIVITY; ORGANIC-INORGANIC PEROVSKITES; SOLAR-CELLS; CHARGE-CARRIERS; CONJUGATED POLYMERS; HALIDE PEROVSKITES; SINGLE-CRYSTALS; PLANAR; CH3NH3PBI3; EFFICIENT AB We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylanunonium lead iodide perovskite films as a function of average grain size using time resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is much slower than the period of the microwave field in this measurement (similar to 100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm(2) V-1 s(-1) at the probe frequency (8.9 GHz). C1 [Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos; Zhu, Kai; Rumbles, Garry] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Rumbles, Garry] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Reid, Obadiah G.; Rumbles, Garry] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. RP Rumbles, G (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.; Rumbles, G (reprint author), Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA.; Rumbles, G (reprint author), Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA. EM garry.rumbles@nrel.gov OI REID, OBADIAH/0000-0003-0646-3981 FU Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy under Contract DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 32 TC 8 Z9 8 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD SEP PY 2016 VL 1 IS 3 BP 561 EP 565 DI 10.1021/acsenergylett.6b00288 PG 5 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EE5AU UT WOS:000389617900012 ER PT J AU Ma, YM Mesa, CA Pastor, E Kafizas, A Francas, L Le Formal, F Pendlebury, SR Durrant, JR AF Ma, Yimeng Mesa, Camilo A. Pastor, Ernest Kafizas, Andreas Francas, Laia Le Formal, Florian Pendlebury, Stephanie R. Durrant, James R. TI Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO4 Photoanode SO ACS ENERGY LETTERS LA English DT Article ID BISMUTH VANADATE PHOTOANODES; COBALT-PHOSPHATE CATALYST; OXYGEN EVOLUTION REACTION; NANOSTRUCTURED ALPHA-FE2O3; PHOTOGENERATED HOLES; HEMATITE PHOTOANODES; NEUTRAL PH; RECOMBINATION; EFFICIENT; SURFACE AB Spectroelectrochemical studies employing pulsed LED irradiation are used to investigate the kinetics of water oxidation on undoped dense bismuth vanadate (BiVO4) photoanodes under conditions of photoelectrochemical water oxidation and compare to those obtained for oxidation of a simple redox couple. These measurements are employed to determine the quasi-steady-state densities of surface accumulated holes, p(s), and correlate these with photocurrent density as a function of light intensity, allowing a rate law analysis of the water oxidation mechanism. The reaction order in surface hole density is found to be first order for p(s) < 1 nm(-2) and third order for p(s) > 1 nm(-2). The effective turnover frequency of each surface hole is estimated to be 14 s(-1) at AM 1.5 conditions. Using a single-electron redox couple, potassium ferrocyanide, as the hole scavenger, only the first-order reaction is observed, with a higher rate constant than that for water oxidation. These results are discussed in terms implications for material design strategies for efficient water oxidation. C1 [Ma, Yimeng; Mesa, Camilo A.; Pastor, Ernest; Kafizas, Andreas; Francas, Laia; Le Formal, Florian; Pendlebury, Stephanie R.; Durrant, James R.] Imperial Coll London, Dept Chem, South Kensington Campus, London SW7 2AZ, England. [Ma, Yimeng] Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Solar Fuels, Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Kafizas, Andreas] UCL, Dept Chem, Christopher Ingold Labs, Gordon St, London WC1H 0AJ, England. [Le Formal, Florian] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn, Lab Mol Engn Optoelect Nanomat, Stn 6,CH H4 565, CH-1015 Lausanne, Switzerland. [Pastor, Ernest] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Durrant, JR (reprint author), Imperial Coll London, Dept Chem, South Kensington Campus, London SW7 2AZ, England. EM j.durrant@imperial.ac.uk RI Kafizas, Andreas /B-2533-2010; OI Kafizas, Andreas /0000-0002-2282-4639; Mesa, Camilo A./0000-0002-8450-2563; Ma, Yimeng/0000-0002-7826-5338; Francas Forcada, Laia/0000-0001-9171-6247 FU European Research Council (project Intersolar) [291482]; COLCIENCIAS; EPSRC; Ramsay Memorial Fellowships Trust; Swiss National Science Foundation [140709]; CEC FX The authors thank the European Research Council (project Intersolar 291482) for funding. C.A.M. thanks COLCIENCIAS for funding. E.P. thanks EPSRC for award of a DTP studentship. A.K. thanks the Ramsay Memorial Fellowships Trust. F.L.F. thanks the Swiss National Science Foundation (project: 140709). L.F. thanks the CEC for the award of a Marie Curie Fellowship. NR 45 TC 0 Z9 0 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2380-8195 J9 ACS ENERGY LETT JI ACS Energy Lett. PD SEP PY 2016 VL 1 IS 3 BP 618 EP 623 DI 10.1021/acsenergylett.6b00263 PG 6 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Science & Technology - Other Topics; Materials Science GA EE5AU UT WOS:000389617900022 ER PT J AU Hazra, DK Shafieloo, A Smoot, GF Starobinsky, AA AF Hazra, Dhiraj Kumar Shafieloo, Arman Smoot, George F. Starobinsky, Alexei A. TI Primordial features and Planck polarization SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological perturbation theory; inflation; cosmological parameters from CMBR; non-gaussianity ID PROBE WMAP OBSERVATIONS; OBSERVATIONS COSMOLOGICAL INTERPRETATION; POWER SPECTRUM; RECONSTRUCTION; INFLATION; MODELS AB With the Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization data, we search for possible features in the primordial power spectrum (PPS). We revisit the Wiggly Whipped Inflation (WWI) framework and demonstrate how generation of some particular primordial features can improve the fit to Planck data. WWI potential allows the scalar field to transit from a steeper potential to a nearly flat potential through a discontinuity either in potential or in its derivatives. WWI offers the inflaton potential parametrizations that generate a wide variety of features in the primordial power spectra incorporating most of the localized and non-local inflationary features that are obtained upon reconstruction from temperature and polarization angular power spectrum. At the same time, in a single framework it allows us to have a background parameter estimation with a nearly free-form primordial spectrum. Using Planck 2015 data, we constrain the primordial features in the context of Wiggly Whipped Inflation and present the features that are supported both by temperature and polarization. WWI model provides more than 13 improvement in chi(2) fit to the data with respect to the best fit power law model considering combined temperature and polarization data from Planck and B-mode polarization data from BICEP and Planck dust map. We use 2-4 extra parameters in the WWI model compared to the featureless strict slow roll inflaton potential. We find that the differences between the temperature and polarization data in constraining background cosmological parameters such as baryon density, cold dark matter density are reduced to a good extent if we use primordial power spectra from WWI. We also discuss the extent of bispectra obtained from the best potentials in arbitrary triangular configurations using the BI-spectra and Non-Gaussianity Operator (BINGO). C1 [Hazra, Dhiraj Kumar; Smoot, George F.] Univ Paris Diderot, Sorbonne PAris Cite Univ, APC, CNRS,CEA,Observ Paris,Paris Ctr Cosmol Phys, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Shafieloo, Arman] Korea Astron & Space Sci Inst, Daejeon 34055, South Korea. [Shafieloo, Arman] Univ Sci & Technol, Daejeon 34113, South Korea. [Smoot, George F.] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China. [Smoot, George F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Smoot, George F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Starobinsky, Alexei A.] RAS, Landau Inst Theoret Phys, Moscow 119334, Russia. [Starobinsky, Alexei A.] Kazan Fed Univ, Kazan 420008, Republic Of Tat, Russia. RP Hazra, DK (reprint author), Univ Paris Diderot, Sorbonne PAris Cite Univ, APC, CNRS,CEA,Observ Paris,Paris Ctr Cosmol Phys, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. EM dhiraj.kumar.hazra@apc.univ-paris7.fr; shafieloo@kasi.re.kr; gfsmoot@lbl.gov; alstar@landau.ac.ru OI Starobinsky, Alexei/0000-0002-8946-9088 FU UnivEarthS Labex program at Sorbonne Paris Cite [ANR-10-LABX-0023, ANR-11-IDEX-0005-02]; DOE HEP's Forum on Computational Excellence; National Research Foundation of Korea [NRF-2016R1C1B2016478]; Russian Government Program of Competitive Growth of Kazan Federal University; [RFBR 14-02-00894] FX DKH and GFS acknowledge Laboratoire APC-PCCP, Universite Paris Diderot and Sorbonne Paris Cite (DXCACHEXGS) and also the financial support of the UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). DKH would like to thank the hospitality of Cluster Computing Center (through the support from the DOE HEP's Forum on Computational Excellence) and Berkeley Center for Cosmological Physics, LBL, Berkeley and Princeton University where a part of the work has been carried out. AS would like to acknowledge the support of the National Research Foundation of Korea (NRF-2016R1C1B2016478). AAS was partially supported by the grant RFBR 14-02-00894 and by the Russian Government Program of Competitive Growth of Kazan Federal University. NR 87 TC 3 Z9 3 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD SEP PY 2016 IS 9 AR 009 DI 10.1088/1475-7516/2016/09/009 PG 26 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EE7CM UT WOS:000389772300022 ER PT J AU Hooper, D AF Hooper, Dan TI A case for radio galaxies as the sources of IceCube's astrophysical neutrino flux SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE neutrino astronomy; active galactic nuclei; ultra high energy photons and neutrinos ID ENERGY COSMIC-RAYS; ACTIVE GALACTIC NUCLEI; INTERSTELLAR RADIATION-FIELD; GAMMA-RAY; LUMINOSITY FUNCTION; CROSS-CORRELATIONS; MILKY-WAY; EMISSION; BURSTS; ACCELERATION AB We present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are con fined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes of neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays. C1 [Hooper, Dan] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Hooper, Dan] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Hooper, Dan] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. RP Hooper, D (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA.; Hooper, D (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA.; Hooper, D (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. EM dhooper@fnal.gov FU US Department of Energy [DE-FG02-13ER41958, DE-AC02-07CH11359] FX We would like to thank Tim Linden, Alejandro Lopez, Markus Ahlers, and Francis Halzen for helpful discussions. DH is supported by the US Department of Energy under contract DE-FG02-13ER41958. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the US Department of Energy. NR 95 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD SEP PY 2016 IS 9 AR 002 DI 10.1088/1475-7516/2016/09/002 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EE7CM UT WOS:000389772300025 ER PT J AU Beuerlein, MA Kumar, N Usher, TM Brown-Shaklee, HJ Raengthon, N Reaney, IM Cann, DP Jones, JL Brennecka, GL AF Beuerlein, Michaela A. Kumar, Nitish Usher, Tedi-Marie James Brown-Shaklee, Harlan Raengthon, Natthaphon Reaney, Ian M. Cann, David P. Jones, Jacob L. Brennecka, Geoff L. TI Current Understanding of Structure-Processing-Property Relationships in BaTiO3-Bi(M)O-3 Dielectrics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE perovskites; multilayer capacitor; barium titanate; dielectric; materials/properties; relaxors ID HIGH-ENERGY DENSITY; TEMPERATURE CAPACITOR APPLICATIONS; PEROVSKITE SOLID-SOLUTIONS; POTASSIUM-SODIUM NIOBATE; LEAD-FREE CERAMICS; RELAXOR FERROELECTRICS; DEFECT CHEMISTRY; PHASE-TRANSITION; BARIUM-TITANATE; SYSTEM AB As part of a continued push for high permittivity dielectrics suitable for use at elevated operating temperatures and/or large electric fields, modifications of BaTiO3 with Bi(M)O-3, where M represents a net-trivalent B-site occupied by one or more species, have received a great deal of recent attention. Materials in this composition family exhibit weakly coupled relaxor behavior that is not only remarkably stable at high temperatures and under large electric fields, but is also quite similar across various identities of M. Moderate levels of Bi content (as much as 50 mol%) appear to be crucial to the stability of the dielectric response. In addition, the presence of significant Bi reduces the processing temperatures required for densification and increases the required oxygen content in processing atmospheres relative to traditional X7R-type BaTiO3-based dielectrics. Although detailed understanding of the structure-processing-property relationships in this class of materials is still in its infancy, this article reviews the current state of understanding of the mechanisms underlying the high and stable values of both relative permittivity and resistivity that are characteristic of BaTiO3-Bi(M)O-3 dielectrics as well as the processing challenges and opportunities associated with these materials. C1 [Beuerlein, Michaela A.; Brennecka, Geoff L.] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Kumar, Nitish; Cann, David P.] Oregon State Univ, Mat Sci, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA. [Usher, Tedi-Marie; Jones, Jacob L.] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [James Brown-Shaklee, Harlan] Sandia Natl Labs, Elect Opt & Nanostruct Mat Dept, POB 5800, Albuquerque, NM 87185 USA. [Raengthon, Natthaphon] Chulalongkorn Univ, Fac Sci, Dept Mat Sci, Bangkok 10330, Thailand. [Reaney, Ian M.] Univ Sheffield, Dept Mat Engn, Sheffield, S Yorkshire, England. [Usher, Tedi-Marie] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Brennecka, GL (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. EM gbrennec@mines.edu RI Brennecka, Geoff/J-9367-2012; OI Brennecka, Geoff/0000-0002-4476-7655; Usher, Tedi-Marie/0000-0001-8265-5972 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Department of Energy's Office of Electricity Delivery and Energy Reliability through the Energy Storage Program; State of Colorado Office of Economic Development and International Trade; National Science Foundation [DMR-1308032, DMR-1445926]; U.S. Department of Commerce [70NANB13H197]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; NSF [DMR 00-76488] FX Bonnie B. McKenzie and Dr. Joseph R. Michael of Sandia National Laboratories provided invaluable assistance on the SEM analysis and interpretation; Mia A. Blea-Kirby of Sandia National Labs and Kelsey E. Meyer (formerly S of Sandia, now at the University of Virginia) also provided significant technical assistance to this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Portions of the effort for Geoff L. Brennecka, Harlan James Brown-Shaklee, David P. Cann, and Natthaphon Raengthon were supported by the Department of Energy's Office of Electricity Delivery and Energy Reliability through the Energy Storage Program managed by Dr. Imre Gyuk. Geoff L. Brennecka and Michaela A. Beuerlein were supported in part by the State of Colorado Office of Economic Development and International Trade. A portion of the hot-stage microscopy was carried out by Dr. David Hook of CoorsTek Advanced Ceramics. David P. Cann and Natthaphon Raengthon were partially supported by the National Science Foundation under grant no. DMR-1308032. Tedi-Marie Usher acknowledges support from the U.S. Department of Commerce under award number 70NANB13H197, and Jacob L Jones from the National Science Foundation under DMR-1445926. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work has benefited from the use of NPDF at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. The upgrade of NPDF has been funded by the NSF through grant DMR 00-76488. NR 101 TC 1 Z9 1 U1 17 U2 17 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2016 VL 99 IS 9 BP 2849 EP 2870 DI 10.1111/jace.14472 PG 22 WC Materials Science, Ceramics SC Materials Science GA EF0UT UT WOS:000390042400001 ER PT J AU Lee, MH Truex, M Freshley, M Wellman, D AF Lee, M. Hope Truex, Mike Freshley, Mark Wellman, Dawn TI Idaho National Laboratory Test Area North: Application of Endpoints to Guide Adaptive Remediation at a Complex Site SO REMEDIATION-THE JOURNAL OF ENVIRONMENTAL CLEANUP COSTS TECHNOLOGIES & TECHNIQUES LA English DT Article ID FIELD EVIDENCE; GROUNDWATER AB Complex sites in the subsurface are defined as those with difficult access, deep, and/or thick zones of contamination, large areal extent, heterogeneities that limit the effectiveness of remediation, or where long-term remedies are needed to address contamination (e.g., because of long-term sources or large extent). The Test Area North at the Idaho National Laboratory, developed for nuclear fuel operations and heavy metal manufacturing, is a complex site that demonstrates the endpoints strategy for adaptive remediation. Liquid wastes and sludge from experimental facilities were disposed in an injection well, which contaminated the subsurface aquifer located deep within fractured basalt. The mixed wastes included organic, inorganic, and low-level radioactive constituents, with the focus of this study on the remediation of trichloroethylene within a systems-based, regulatory framework. The framework facilitates site, regulator, and stakeholder interactions during the remedial planning and implementation process by using a conceptual model description as a technical foundation for decisions identifying endpoints. Endpoints are defined as interim remediation targets or decision points on the path to an ultimate end, and maintaining protectiveness during the remediation process. Results demonstrate that the three-component remedy used at Test Area North as an example of the structured framework is largely functioning as intended and is projected to meet remedial action objectives by 2095. The remedy approach is being adjusted as new data become available. The framework provides a structured process for evaluating and adjusting the remediation approach, allowing site owners, regulators, and stakeholders to manage contamination at complex sites where adaptive remedies are needed. (C) 2016 Wiley Periodicals, Inc. C1 [Lee, M. Hope] PNNL Soil & Groundwater Program, Richland, WA 99354 USA. [Truex, Mike; Freshley, Mark] PNNL, Remediat Experience Including Technol Dev, Richland, WA USA. [Wellman, Dawn] PNNL, Environm Hlth & Remediat Market Sect, Richland, WA USA. RP Lee, MH (reprint author), PNNL Soil & Groundwater Program, Richland, WA 99354 USA. NR 27 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1051-5658 EI 1520-6831 J9 REMEDIATION JI Remediation PD FAL PY 2016 VL 26 IS 4 BP 11 EP 25 DI 10.1002/rem.21483 PG 15 WC Engineering, Environmental SC Engineering GA EE3JE UT WOS:000389482900002 ER PT J AU Ghim, YS Oh, HS Kim, JY Woo, JH Chang, YS AF Ghim, Young Sung Oh, Hyun Sun Kim, Jin Young Woo, Jung-Hun Chang, Young-Soo TI Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008 SO Asian Journal of Atmospheric Environment LA English DT Article DE CMAQ-Hg/WRF; Wet deposition; Dry deposition; Precipitation amount; Wind speed ID EMISSIONS; UNCERTAINTIES; MODEL; CHINA AB Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of 66 ng/m(2)-day was about twice as large as the dry deposition flux of 32 ng/m(2)-day, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder. C1 [Ghim, Young Sung; Oh, Hyun Sun] Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin 17035, Gyeonggi, South Korea. [Kim, Jin Young] Korea Inst Sci & Technol, Green City Technol Inst, Seoul 02792, South Korea. [Woo, Jung-Hun] Konkuk Univ, Coll Global Integrated Studies, Seoul 05029, South Korea. [Chang, Young-Soo] Argonne Natl Lab, Div Environm Sci, 9700 South Cass Ave, Argonne, IL 60439 USA. RP Ghim, YS (reprint author), Hankuk Univ Foreign Studies, Dept Environm Sci, Yongin 17035, Gyeonggi, South Korea. EM ysghim@hufs.ac.kr NR 21 TC 0 Z9 0 U1 0 U2 0 PU JAPAN SOC ATMOSPHERIC ENVIRONMENT PI SEOUL PA JAPAN SOC ATMOSPHERIC ENVIRONMENT, SEOUL, 00000, SOUTH KOREA SN 1976-6912 EI 2287-1160 J9 ASIAN J ATMOS ENVIRO JI Asian J. Atmos. Environ. PD SEP PY 2016 VL 10 IS 3 BP 146 EP 155 DI 10.5572/ajae.2016.10.3.146 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EE0DS UT WOS:000389244500003 ER PT J AU Narayanaswami, V Lek, M Ibe, N Beck, W Bielicki, J Weers, P AF Narayanaswami, V. Lek, M. Ibe, N. Beck, W. Bielicki, J. Weers, P. TI LIPOPROTEINS AND LIPID METABOLISM: LIPOPROTEIN METABOLISM. NOVEL CHIMERAS PROVIDE INSIGHT INTO STRUCTURE/FUNCTION ACTIVITY IN APOLIPOPROTEIN E3 AND APOLIPOPROTEIN AI SO ATHEROSCLEROSIS LA English DT Meeting Abstract CT Congress of the European-Atherosclerosis-Society (EAS) CY MAY 29-JUN 01, 2016 CL Innsbruck, AUSTRIA SP European Atherosclerosis Soc C1 [Narayanaswami, V.; Lek, M.; Ibe, N.; Beck, W.; Weers, P.] Calif State Univ Long Beach, Chem & Biochem, Long Beach, CA 90840 USA. [Bielicki, J.] Lawrence Berkeley Natl Lab, Donner Lab MS1 267, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0021-9150 EI 1879-1484 J9 ATHEROSCLEROSIS JI Atherosclerosis PD SEP PY 2016 VL 252 MA EAS16-0203 BP E114 EP E115 PG 2 WC Cardiac & Cardiovascular Systems; Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA ED6PR UT WOS:000388978400386 ER PT J AU Allanach, BC Badziak, M Cottin, G Desai, N Hugonie, C Ziegler, R AF Allanach, B. C. Badziak, Marcin Cottin, Giovanna Desai, Nishita Hugonie, Cyril Ziegler, Robert TI Prompt signals and displaced vertices in sparticle searches for next-to-minimal gauge-mediated supersymmetric models SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HIGGS MASSES; FORTRAN CODE; SOFTSUSY; PROGRAM; NMSSM; MSSM AB We study the LHC phenomenology of the next-to-minimal model of gauge-mediated supersymmetry breaking, both for Run I and Run II. The Higgs phenomenology of the model is consistent with observations: a 125 GeV standard model-like Higgs which mixes with singlet-like state of mass around 90 GeV that provides a 2 sigma excess at LEP II. The model possesses regions of parameter space where a longer-lived lightest neutralino decays in the detector into a gravitino and a b-jet pair or a tau pair resulting in potential displaced vertex signatures. We investigate current bounds on sparticle masses and the discovery potential of the model, both via conventional searches and via searches for displaced vertices. The searches based on promptly decaying sparticles currently give a lower limit on the gluino mass 1080 GeV and could be sensitive up to 1900 GeV with 100 fb(-1), whereas the current displaced vertex searches cannot probe this model due to b-quarks in the final state. We show how the displaced vertex cuts might be relaxed in order to improve signal efficiency, while simultaneously applied prompt cuts reduce background, resulting in a much better sensitivity than either strategy alone and motivating a fully fledged experimental study. C1 [Allanach, B. C.] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England. [Badziak, Marcin] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland. [Badziak, Marcin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Badziak, Marcin] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cottin, Giovanna] Univ Cambridge, Cavendish Lab, 19 JJ Thomson Ave, Cambridge CB3 0HW, England. [Desai, Nishita] Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Hugonie, Cyril] Univ Montpellier, CNRS, UMR 5299, LUPM, F-34095 Montpellier, France. [Ziegler, Robert] UPMC Univ Paris 06, Sorbonne Univ, UMR 7589, LPTHE, F-75005 Paris, France. [Ziegler, Robert] CNRS, UMR 7589, LPTHE, F-75005 Paris, France. RP Allanach, BC (reprint author), Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England. EM b.c.allanach@damtp.cam.ac.uk; mbadziak@fuw.edu.pl; gfc24@cam.ac.uk; n.desai@thphys.uni-heidelberg.de; cyril.hugonie@umontpellier.fr; robert.ziegler@lpthe.jussieu.fr RI Badziak, Marcin/G-3382-2011 FU STFC [ST/L000385/1]; Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-1316783]; Foundation for Polish Science; National Science Centre [DEC-2014/15/B/ST2/02157]; ILP LABEX [ANR-10-LABX-63]; postgraduate Conicyt-Chile Cambridge Scholarship [84130011]; Alexander von Humboldt Foundation; Polish Ministry of Science and Higher Education [1266/MOB/IV/2015/0]; Galileo Galilei Institute for Theoretical Physics; INFN; [ANR-11-IDEX-0004-02] FX The authors acknowledge the support of France Grilles for providing cloud computing resources on the French National Grid Infrastructure. This work has been partially supported by STFC Grant ST/L000385/1, by the Office of High Energy Physics of the U.S. Department of Energy under Contract DE-AC02-05CH11231, by the National Science Foundation under Grant PHY-1316783, by the Foundation for Polish Science through its programme HOMING PLUS, by National Science Centre under research Grant DEC-2014/15/B/ST2/02157, by the ILP LABEX under reference ANR-10-LABX-63, and by French state funds managed by the ANR within the Investissements d'Avenir programme under reference ANR-11-IDEX-0004-02. GC was funded by the postgraduate Conicyt-Chile Cambridge Scholarship 84130011. ND was partially supported by the Alexander von Humboldt Foundation. MB acknowledges support from the Polish Ministry of Science and Higher Education (Decision No. 1266/MOB/IV/2015/0). BCA, MB and GC would like to thank other members of the Cambridge SUSY Working group for discussions. RZ thanks B. Fuks, A. Mariotti, D. Redigolo and O. Slone for useful discussions. We thank the authors of Delphes3 for discussions about the program related to this work. ND and MB would like to thank the Cavendish Laboratory for hospitality offered while working on this project. MB and RZ thanks the Galileo Galilei Institute for Theoretical Physics and INFN for hospitality and partial support during the completion of this work. NR 54 TC 2 Z9 2 U1 2 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD SEP 1 PY 2016 VL 76 IS 9 AR 482 DI 10.1140/epjc/s10052-016-4330-3 PG 13 WC Physics, Particles & Fields SC Physics GA EE4RR UT WOS:000389593300001 ER PT J AU Ssegane, H Negri, MC AF Ssegane, Herbert Negri, M. Cristina TI An Integrated Landscape Designed for Commodity and Bioenergy Crops for a Tile-Drained Agricultural Watershed SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID EAST-CENTRAL ILLINOIS; NITROGEN-FERTILIZER APPLICATION; ASSESSMENT-TOOL; MARGINAL LAND; UNITED-STATES; CLIMATE-CHANGE; BIOFUEL CROPS; SWAT; QUALITY; NITRATE AB Locating bioenergy crops on strategically selected subfield areas of marginal interest for commodity agriculture can increase environmental sustainability. Location and choice of bioenergy crops should improve environmental benefits with minimal disruption of current food production systems. We identified subfield soils of a tile-drained agricultural watershed as marginal if they had areas of low crop productivity index (CPI), were susceptible to nitrate-nitrogen (NO3-N) leaching, or were susceptible to at least two other forms of environmental degradation (marginal areas). In the test watershed (Indian Creek watershed, IL) with annual precipitation of 852 mm, 3% of soils were CPI areas and 22% were marginal areas. The Soil and Water Assessment Tool was used to forecast the impact of growing switchgrass (Panicum virgatum L.), willow (Salix spp.), and big bluestem (Andropogon gerardi Vitman) in these subfield areas on annual grain yields, NO3-N and sediment exports, and water yield. Simulated conversion of CPI areas from current land use to bioenergy crops had no significant (p = 0.05) impact on grain production and reduced NO3-N and sediment exports by 5.0 to 6.0% and 3.0%, respectively. Conversion of marginal areas from current land use to switchgrass forecasted the production of 34,000 t of biomass and reductions in NO3-N (26.0%) and sediment (33.0%) exports. Alternatively, conversion of marginal areas from current land use to willow forecasted similar reductions as switchgrass for sediment but significantly (p = 0.01) lower reductions in annual NO3-N export (18.0 vs. 26.0%). C1 [Ssegane, Herbert; Negri, M. Cristina] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Ssegane, H; Negri, MC (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hssegane@anl.gov; negri@anl.gov FU US Department of Energy, Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office; Argonne, a US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The authors thank Dr. C.H. Green at the USDI-Bureau of Land Management for insightful comments on the manuscript and for her SWAT modeling guidance together with Dr. Daniel Moriasi (USDA-ARS). This work was supported by the US Department of Energy, Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 55 TC 1 Z9 1 U1 8 U2 8 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 EI 1537-2537 J9 J ENVIRON QUAL JI J. Environ. Qual. PD SEP-OCT PY 2016 VL 45 IS 5 BP 1588 EP 1596 DI 10.2134/jeq2015.10.0518 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA ED6DC UT WOS:000388944200013 PM 27695735 ER PT J AU Prado, ML AF De Prado, Marcos Lopez TI Mathematics and Economics: A Reality Check SO JOURNAL OF PORTFOLIO MANAGEMENT LA English DT Editorial Material C1 [De Prado, Marcos Lopez] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Prado, ML (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM lopezdeprado@lbl.gov NR 17 TC 0 Z9 0 U1 0 U2 0 PU INST INVESTOR INC PI NEW YORK PA 225 PARK AVE SOUTH, NEW YORK, NY 10003 USA SN 0095-4918 EI 2168-8656 J9 J PORTFOLIO MANAGE JI J. Portf. Manage. PD FAL PY 2016 VL 43 IS 1 BP 5 EP 8 DI 10.3905/jpm.2016.43.1.005 PG 4 WC Business, Finance SC Business & Economics GA ED8SW UT WOS:000389142200002 ER PT J AU Agar, JC Pandya, S Xu, RJ Yadav, AK Liu, ZQ Angsten, T Saremi, S Asta, M Ramesh, R Martin, LW AF Agar, Joshua C. Pandya, Shishir Xu, Ruijuan Yadav, Ajay K. Liu, Zhiqi Angsten, Thomas Saremi, Sahar Asta, Mark Ramesh, R. Martin, Lane W. TI Frontiers in strain-engineered multifunctional ferroic materials SO MRS Communications LA English DT Article ID FERROELECTRIC THIN-FILMS; ELECTRIC-FIELD CONTROL; ROOM-TEMPERATURE; TUNNEL-JUNCTIONS; DOMAIN-WALLS; PHASE-TRANSITIONS; PHOTOVOLTAIC DEVICES; CRYSTAL-STRUCTURE; MATERIALS DESIGN; MAGNETIC ORDER AB Multifunctional, complex oxides capable of exhibiting highly-coupled electrical, mechanical, thermal, and magnetic susceptibilities have been pursued to address a range of salient technological challenges. Today, efforts are focused on addressing the pressing needs of a range of applications and identifying, understanding, and controlling materials with the potential for enhanced or novel responses. In this prospective, we highlight important developments in theoretical and computational techniques, materials synthesis, and characterization techniques. We explore how these new approaches could revolutionize our ability to discover, probe, and engineer these materials and provide a context for new arenas where these materials might make an impact. C1 [Agar, Joshua C.; Pandya, Shishir; Xu, Ruijuan; Yadav, Ajay K.; Liu, Zhiqi; Angsten, Thomas; Saremi, Sahar; Asta, Mark; Ramesh, R.; Martin, Lane W.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Asta, Mark; Martin, Lane W.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ramesh, R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94270 USA. RP Agar, JC (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM jagar@berkeley.edu RI Yadav, Ajay/I-6337-2016 OI Yadav, Ajay/0000-0001-5088-6506 FU Air Force Office of Scientific Research [FA9550-12-1-0471]; Army Research Office [W911NF-14-1-0104]; Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the Department of Energy [DE-SC0012375]; National Science Foundation [DMR-1451219, CMMI-1434147, OISE-1545907]; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF5307]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy through the Thermoelectrics Materials FWP [DE-AC02-05CH11231]; National Science Foundation; Materials Project; FAME, one of six centers of STARnet, a Semiconductor Research Corporation program - MARCO; DARPA FX The J. C. A., S. P., R. X., S. S., and L. W. M. acknowledge support from the Air Force Office of Scientific Research under grant FA9550-12-1-0471, the Army Research Office under grant W911NF-14-1-0104, the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the Department of Energy under grant No. DE-SC0012375, and the National Science Foundation under grants DMR-1451219, CMMI-1434147, and OISE-1545907. R. R. and L. W. M. acknowledge support from the Gordon and Betty Moore Foundation's EPiQS Initiative, Grant GBMF5307. A. K. Y. and R. R. acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 through the Thermoelectrics Materials FWP. T. A. acknowledges support from a National Science Foundation Graduate Research Fellowship. M. A. acknowledges support from the Materials Project. R. R. also acknowledges was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. NR 170 TC 0 Z9 0 U1 17 U2 17 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD SEP PY 2016 VL 6 IS 3 BP 151 EP 166 DI 10.1557/mrc.2016.29 PG 16 WC Materials Science, Multidisciplinary SC Materials Science GA ED8RA UT WOS:000389137400004 ER PT J AU Lee, D Lee, YL Wang, XR Morgan, D Shao-Horn, Y AF Lee, Dongkyu Lee, Yueh-Lin Wang, Xiao Renshaw Morgan, Dane Shao-Horn, Yang TI Enhancement of oxygen surface exchange on epitaxial La0.6Sr0.4Co0.2Fe0.8O3-delta thin films using advanced heterostructured oxide interface engineering SO MRS Communications LA English DT Article ID HIGH-TEMPERATURE PROPERTIES; FUEL-CELLS; KINETICS; STABILITY; CATHODE; ELECTROCATALYSIS; CONDUCTIVITY; PERFORMANCE; REDUCTION; CHEMISTRY AB Engineering of a novel heterostructured oxide interface was used to enhance the oxygen surface exchange kinetics of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF113) thin films. A single-layer decoration of mixed (LaSr)(2)CoO4 +/-delta (LSC214) and La1-xSrxCoO3-delta (LSC113) and a double-layer decoration of stacked LSC214 and LSC113 grown on the LSCF113 markedly enhanced the surface exchange coefficients of the LSCF113 by up to similar to 1.5 orders of magnitude relative to the undecorated LSCF113. It is hypothesized that two different types of surface decorations can enable Sr segregation at the interface and surfaces of LSC113 and LSC214, leading to enhancement of the oxygen surface exchange kinetics of decorated LSCF113. C1 [Lee, Dongkyu; Lee, Yueh-Lin; Wang, Xiao Renshaw; Shao-Horn, Yang] MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Lee, Dongkyu; Lee, Yueh-Lin; Wang, Xiao Renshaw; Shao-Horn, Yang] MIT, Dept Mech Engn, 77 MA Ave, Cambridge, MA 02139 USA. [Lee, Dongkyu] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Morgan, Dane] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. [Shao-Horn, Yang] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Shao-Horn, Y (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Shao-Horn, Y (reprint author), MIT, Dept Mech Engn, 77 MA Ave, Cambridge, MA 02139 USA.; Shao-Horn, Y (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Renshaw Wang, Xiao/I-5352-2012 OI Renshaw Wang, Xiao/0000-0002-5503-9899 FU Department of Energy (DOE), National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program [DEFE0009435]; Skoltech-MIT Center for Electrochemical Energy; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2013-292]; National Energy Research Scientific Computing Center [CNMS2013-292] FX This work was supported by the Department of Energy (DOE), National Energy Technology Laboratory (NETL), Solid State Energy Conversion Alliance (SECA) Core Technology Program (Funding Opportunity Number DEFE0009435) and the Skoltech-MIT Center for Electrochemical Energy. The PLD and XRD performed were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy, and computations in this work were also benefited from the use of the National Energy Research Scientific Computing Center allocation of the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, both under grant number CNMS2013-292. NR 30 TC 0 Z9 0 U1 7 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 EI 2159-6867 J9 MRS COMMUN JI MRS Commun. PD SEP PY 2016 VL 6 IS 3 BP 204 EP 209 DI 10.1557/mrc.2016.28 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA ED8RA UT WOS:000389137400008 ER PT J AU Walker, AM Sattler, SA Regner, M Jones, JP Ralph, J Vermerris, W Sattler, SE Kang, C AF Walker, Alexander M. Sattler, Steven A. Regner, Matt Jones, Jeffrey P. Ralph, John Vermerris, Wilfred Sattler, Scott E. Kang, ChulHee TI The Structure and Catalytic Mechanism of Sorghum bicolor Caffeoyl-CoA O-Methyltransferase SO PLANT PHYSIOLOGY LA English DT Article ID COENZYME-A 3-O-METHYLTRANSFERASE; BROWN-MIDRIB MUTANTS; LIGNIN BIOSYNTHESIS; L. MOENCH; SWEET SORGHUM; ACID 3-O-METHYLTRANSFERASE; ARABIDOPSIS-THALIANA; GENETIC-MODIFICATION; ETHANOL-PRODUCTION; ALFALFA AB Caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is an S-adenosyl methionine (SAM)-dependent O-methyltransferase responsible for methylation of the meta-hydroxyl group of caffeoyl-coenzyme A (CoA) on the pathway to monolignols, with their ring methoxylation status characteristic of guaiacyl or syringyl units in lignin. In order to better understand the unique class of type 2 O-methyltransferases from monocots, we have characterized CCoAOMT from sorghum(Sorghum bicolor; SbCCoAOMT), including the SAM binary complex crystal structure and steady-state enzyme kinetics. Key amino acid residues were validated with site-directed mutagenesis. Isothermal titration calorimetry data indicated a sequential binding mechanism for SbCCoAOMT, wherein SAM binds prior to caffeoyl-CoA, and the enzyme showed allosteric behavior with respect to it. 5-Hydroxyferuloyl-CoA was not a substrate for SbCCoAOMT. We propose a catalytic mechanism in which lysine-180 acts as a catalytic base and deprotonates the reactive hydroxyl group of caffeoyl-CoA. This deprotonation is facilitated by the coordination of the reactive hydroxyl group by Ca2+ in the active site, lowering the pK(a) of the 3'-OH group. Collectively, these data give a new perspective on the catalytic mechanism of CCoAOMTs and provide a basis for the functional diversity exhibited by type 2 plant OMTs that contain a unique insertion loop (residues 208-231) conferring affinity for phenylpropanoid-CoA thioesters. The structural model of SbCCoAOMT can serve as the basis for protein engineering approaches to enhance the nutritional, agronomic, and industrially relevant properties of sorghum. C1 [Walker, Alexander M.; Sattler, Steven A.; Kang, ChulHee] Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA. [Jones, Jeffrey P.; Kang, ChulHee] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Regner, Matt; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Biochem, Madison, WI 53726 USA. [Regner, Matt; Ralph, John] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Dept Energy, Madison, WI 53726 USA. [Vermerris, Wilfred] Univ Florida, Dept Microbiol & Cell Sci, Gainesville, FL 32610 USA. [Vermerris, Wilfred] Univ Florida, Genet Inst, Gainesville, FL 32610 USA. [Sattler, Scott E.] USDA ARS, Grain Forage & Bioenergy Res Unit, Lincoln, NE 68583 USA. RP Kang, C (reprint author), Washington State Univ, Sch Mol Biosci, Pullman, WA 99164 USA.; Kang, C (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99164 USA. EM chkang@wsu.edu FU National Science Foundation [MCB 102114, CHE 118359]; National Institutes of Health [1R01GM11125401]; M.J. Murdock Charitable Trust; Biomass Research and Development Initiative [2011-1006-30358]; U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office [DE-PI0000031]; Department of Energy Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; U.S. Department of Agriculture (National Institute of Food and Agriculture AFRI grant) [2011-67009-30026]; U.S. Department of Agriculture (CRIS project) [3042-21220-032-00D] FX This work was supported by the National Science Foundation (grant nos. MCB 102114 and CHE 118359 to C.K.), the National Institutes of Health (grant no. 1R01GM11125401 to C.K.) and the M.J. Murdock Charitable Trust (to C.K.); by the Biomass Research and Development Initiative (grant no. 2011-1006-30358 to W.V.); by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office (grant no. DE-PI0000031 to W.V.); by the Department of Energy Great Lakes Bioenergy Research Center (grant no. DE-FC02-07ER64494 to M.R. and J.R.); and by the U.S. Department of Agriculture (National Institute of Food and Agriculture AFRI grant no. 2011-67009-30026 to S.E.S. and CRIS project grant no. 3042-21220-032-00D). NR 65 TC 1 Z9 1 U1 12 U2 12 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD SEP PY 2016 VL 172 IS 1 BP 78 EP 92 DI 10.1104/pp.16.00845 PG 15 WC Plant Sciences SC Plant Sciences GA EC9GG UT WOS:000388451900007 PM 27457122 ER PT J AU Zuniga, C Li, CT Huelsman, T Levering, J Zielinski, DC McConnell, BO Long, CP Knoshaug, EP Guarnieri, MT Antoniewicz, MR Betenbaugh, MJ Zengler, K AF Zuniga, Cristal Li, Chien-Ting Huelsman, Tyler Levering, Jennifer Zielinski, Daniel C. McConnell, Brian O. Long, Christopher P. Knoshaug, Eric P. Guarnieri, Michael T. Antoniewicz, Maciek R. Betenbaugh, Michael J. Zengler, Karsten TI Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions SO PLANT PHYSIOLOGY LA English DT Article ID FLUX BALANCE ANALYSIS; GAS CHROMATOGRAPHY/MASS SPECTROMETRY; CHLAMYDOMONAS-REINHARDTII; BIODIESEL PRODUCTION; CARBONIC-ANHYDRASE; LIPID-ACCUMULATION; BIOFUEL PRODUCTION; RECONSTRUCTION; MICROALGAE; PROTOTHECOIDES AB The green microalga Chlorella vulgaris has been widely recognized as a promising candidate for biofuel production due to its ability to store high lipid content and its natural metabolic versatility. Compartmentalized genome-scale metabolic models constructed from genome sequences enable quantitative insight into the transport and metabolism of compounds within a target organism. These metabolic models have long been utilized to generate optimized design strategies for an improved production process. Here, we describe the reconstruction, validation, and application of a genome-scale metabolic model for C. vulgaris UTEX 395, iCZ843. The reconstruction represents the most comprehensive model for any eukaryotic photosynthetic organism to date, based on the genome size and number of genes in the reconstruction. The highly curated model accurately predicts phenotypes under photoautotrophic, heterotrophic, and mixotrophic conditions. The model was validated against experimental data and lays the foundation for model-driven strain design and medium alteration to improve yield. Calculated flux distributions under different trophic conditions show that a number of key pathways are affected by nitrogen starvation conditions, including central carbon metabolism and amino acid, nucleotide, and pigment biosynthetic pathways. Furthermore, model prediction of growth rates under various medium compositions and subsequent experimental validation showed an increased growth rate with the addition of tryptophan and methionine. C1 [Zuniga, Cristal; Huelsman, Tyler; Levering, Jennifer; Zielinski, Daniel C.; Zengler, Karsten] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA. [Li, Chien-Ting; Betenbaugh, Michael J.] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA. [McConnell, Brian O.; Long, Christopher P.; Antoniewicz, Maciek R.] Univ Delaware, Dept Chem & Biomol Engn, Metab Engn & Syst Biol Lab, Newark, DE 19716 USA. [Knoshaug, Eric P.; Guarnieri, Michael T.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Zengler, K (reprint author), Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA. EM kzengler@ucsd.edu OI Zengler, Karsten/0000-0002-8062-3296 FU National Science Foundation [1332344]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program [DE-SC0012658]; Mexican National Research Council [237897] FX This work was supported by the National Science Foundation (grant no. 1332344), the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences Energy Frontier Research Centers program (grant no. DE-SC0012658), and the Mexican National Research Council (fellowship no. 237897 to C.Z.). NR 73 TC 2 Z9 2 U1 11 U2 11 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD SEP PY 2016 VL 172 IS 1 BP 589 EP 602 DI 10.1104/pp.16.00593 PG 14 WC Plant Sciences SC Plant Sciences GA EC9GG UT WOS:000388451900044 PM 27372244 ER PT J AU Poli, FM Bonoli, PT Chilenski, M Mumgaard, R Shiraiwa, S Wallace, GM Andre, R Delgado-Aparicio, L Scott, S Wilson, JR Harvey, RW Petrov, YV Reinke, M Faust, I Granetz, R Hughes, J Rice, J AF Poli, F. M. Bonoli, P. T. Chilenski, M. Mumgaard, R. Shiraiwa, S. Wallace, G. M. Andre, R. Delgado-Aparicio, L. Scott, S. Wilson, J. R. Harvey, R. W. Petrov, Yu V. Reinke, M. Faust, I. Granetz, R. Hughes, J. Rice, J. TI Experimental and modeling uncertainties in the validation of lower hybrid current drive SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE lower hybrid waves; tokamak; validation; hard x-rays; integrated modeling ID ALCATOR-C-MOD; TRANSPORT; WAVES; SIMULATIONS; TOKAMAKS; ELECTRON; RUNAWAY AB This work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker-Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and-in some cases-compensate each other. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, which is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. It is shown that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed. C1 [Poli, F. M.; Andre, R.; Delgado-Aparicio, L.; Scott, S.; Wilson, J. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bonoli, P. T.; Chilenski, M.; Mumgaard, R.; Shiraiwa, S.; Wallace, G. M.; Faust, I.; Granetz, R.; Hughes, J.; Rice, J.] Plasma Sci & Fus Ctr, Cambridge, MA USA. [Harvey, R. W.; Petrov, Yu V.] CompX, POB 2672, Del Mar, CA 92014 USA. [Reinke, M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Poli, FM (reprint author), Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM fpoli@pppl.gov FU US Department of Energy [DE-AC02-CH0911466, DE-FC02-99ER54512] FX This work was supported by the US Department of Energy under contract DE-AC02-CH0911466 and under Contract No. DE-FC02-99ER54512 on Alcator C-Mod, a Department of Energy Office of Science User Facility. The digital data for this article are available at https://dataverse.harvard.edu/dataverse/MIT-PSFC. NR 42 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2016 VL 58 IS 9 AR 095001 DI 10.1088/0741-3335/58/9/095001 PG 15 WC Physics, Fluids & Plasmas SC Physics GA EE2TI UT WOS:000389437000001 ER PT J AU Wang, D Gao, N Setyawan, W Kurtz, RJ Wang, ZG Gao, X He, WH Pang, LL AF Wang, Dong Gao, Ning Setyawan, W. Kurtz, R. J. Wang, Zhi-Guang Gao, Xing He, Wen-Hao Pang, Li-Long TI Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation SO CHINESE PHYSICS LETTERS LA English DT Article ID RADIATION-DAMAGE; INTERATOMIC POTENTIALS; COMPUTER-SIMULATION; CASCADES; IRON; BCC; IRRADIATION; GENERATION; CLUSTERS; METALS AB The influence of strain field on defect formation energy and threshold displacement energy (E-d) in body-centered cubic tungsten (W) is studied with molecular dynamics simulation. Two different W potentials (Fikar and Juslin) are compared and the results indicate that the connection distance and selected function linking the short-range and long-range portions of the potentials affect the threshold displacement energy and its direction-specific values. The minimum E-d direction calculated with the Fikar potential is < 100 > and with the Juslin potential is < 111 >. Nevertheless, the most stable self-interstitial configuration is found to be a < 111 >-crowdion for both the potentials. This stable configuration does not change with the applied strain. Varying the strain from compression to tension increases the vacancy formation energy while decreases the self-interstitial formation energy. The formation energy of a self-interstitial changes more significantly than a vacancy such that E-d decreases with the applied hydrostatic strain from compression to tension. C1 [Wang, Dong; Gao, Ning; Wang, Zhi-Guang; Gao, Xing; He, Wen-Hao; Pang, Li-Long] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Wang, Dong; He, Wen-Hao] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Setyawan, W.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Gao, N; Wang, ZG (reprint author), Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. EM ning.gao@impcas.ac.cn; zhgwang@impcas.ac.cn FU National Natural Science Foundation of China [11375242, 91026002, 91426301, 11405231]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDA03010301]; Office of Fusion Energy Sciences, U.S. Department of Energy [DE-AC05-76RL01830] FX Supported by the National Natural Science Foundation of China under Grant Nos 11375242, 91026002, 91426301 and 11405231, the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA03010301. WS and RJK acknowledge the support of the Office of Fusion Energy Sciences, U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 33 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X EI 1741-3540 J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD SEP PY 2016 VL 33 IS 9 AR 096102 DI 10.1088/0256-307X/33/9/096102 PG 5 WC Physics, Multidisciplinary SC Physics GA EC7MW UT WOS:000388324800022 ER PT J AU Cornford, SL Martin, DF Lee, V Payne, AJ Ng, EG AF Cornford, S. L. Martin, D. F. Lee, V. Payne, A. J. Ng, E. G. TI Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics SO ANNALS OF GLACIOLOGY LA English DT Article DE ice dynamics; ice streams; ice-sheet modelling ID GROUNDING LINE; SHEET MODELS; PARAMETERIZATION; COLLAPSE AB At least in conventional hydrostatic ice-sheet models, the numerical error associated with grounding line dynamics can be reduced by modifications to the discretization scheme. These involve altering the integration formulae for the basal traction and/or driving stress close to the grounding line and exhibit lower - if still first-order - error in the MISMIP3d experiments. MISMIP3d may not represent the variety of real ice streams, in that it lacks strong lateral stresses, and imposes a large basal traction at the grounding line. We study resolution sensitivity in the context of extreme forcing simulations of the entire Antarctic ice sheet, using the BISICLES adaptive mesh ice-sheet model with two schemes: the original treatment, and a scheme, which modifies the discretization of the basal traction. The second scheme does indeed improve accuracy - by around a factor of two - for a given mesh spacing, but. 1 km resolution is still necessary. For example, in coarser resolution simulations Thwaites Glacier retreats so slowly that other ice streams divert its trunk. In contrast, with. 1 km meshes, the same glacier retreats far more quickly and triggers the final phase of West Antarctic collapse a century before any such diversion can take place. C1 [Cornford, S. L.; Lee, V.; Payne, A. J.] Univ Bristol, Sch Geog Sci, Ctr Polar Observat & Modelling, Bristol, Avon, England. [Martin, D. F.; Ng, E. G.] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA USA. RP Cornford, SL (reprint author), Univ Bristol, Sch Geog Sci, Ctr Polar Observat & Modelling, Bristol, Avon, England. EM s.l.cornford@bristol.ac.uk OI Cornford, Stephen/0000-0003-1844-274X FU NERC CPOM project; iSTAR project; iGlass consortium project; Scientific Discovery through Advanced Computing (SciDAC) project - US Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the US Department of Energy [DE-AC0-205CH11231] FX Work at the University of Bristol was supported by the NERC CPOM, iSTAR and iGlass consortium projects. Work at Lawrence Berkeley National Laboratory was supported by the Scientific Discovery through Advanced Computing (SciDAC) project funded by the US Department of Energy, Office of Science, Advanced Scientific Computing Research and Biological and Environmental Research under Contract No. DE-AC02-05CH11231. Simulations were carried out using the computational facilities of the Advanced Computing Research Centre, University of Bristol, and resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC0-205CH11231. We thank the editor, Jo Jacka, and two anonymous referees for their contributions to this paper. NR 30 TC 0 Z9 0 U1 3 U2 3 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0260-3055 EI 1727-5644 J9 ANN GLACIOL JI Ann. Glaciol. PD SEP PY 2016 VL 57 IS 73 BP 1 EP 9 DI 10.1017/aog.2016.13 PG 9 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA ED6GJ UT WOS:000388953800002 ER PT J AU Little, CM Urban, NM AF Little, Christopher M. Urban, Nathan M. TI CMIP5 temperature biases and 21st century warming around the Antarctic coast SO ANNALS OF GLACIOLOGY LA English DT Article DE Antarctic glaciology; climate models; ice/ocean interactions; ice sheet mass balance ID CIRCUMPOLAR DEEP-WATER; MODELS HISTORICAL BIAS; SOUTHERN-OCEAN; ICE-SHELF; MESOSCALE EDDIES; FORCING RESPONSE; CLIMATE-CHANGE; ANNULAR MODE; SEA; SIMULATIONS AB Projections of ice-sheet mass balance require regional ocean warming projections derived from atmosphere-ocean general circulation models (AOGCMs). However, the coarse resolution of AOGCMs: (1) may lead to systematic or AOGCM-specific biases and (2) makes it difficult to identify relevant water masses. Here, we employ a large-scale metric of Antarctic Shelf Bottom Water (ASBW) to investigate circum-Antarctic temperature biases and warming projections in 19 different Coupled Model Intercomparison Project Phase 5 (CMIP5) AOGCMs forced with two different 'representative concentration pathways' (RCPs). For high-emissions RCP 8.5, the ensemble mean 21st century ASBW warming is 0.66, 0.74 and 0.58 degrees C for the Amundsen, Ross and Weddell Seas (AS, RS and WS), respectively. RCP 2.6 ensemble mean projections are substantially lower: 0.21, 0.26, and 0.19 degrees C. All distributions of regional ASBW warming are positively skewed; for RCP 8.5, four AOGCMs project warming of greater than 1.8 degrees C in the RS. Across the ensemble, there is a strong, RCP-independent, correlation between WS and RS warming. AS warming is more closely linked to warming in the Southern Ocean. We discuss possible physical mechanisms underlying the spatial patterns of warming and highlight implications of these results on strategies for forcing ice-sheet mass balance projections. C1 [Little, Christopher M.] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Urban, Nathan M.] Los Alamos Natl Lab, Computat Phys & Methods CCS 2, Los Alamos, NM 87545 USA. RP Little, CM (reprint author), Atmospher & Environm Res Inc, Lexington, MA 02421 USA. EM clittle@aer.com FU Regional and Global Climate Modeling program of the US Department of Energy Office of Science FX C.M.L is grateful for discussions with Laurie Padman, and financial support from NSF-PLR Award # 1513396. This research was also supported by the Regional and Global Climate Modeling program of the US Department of Energy Office of Science, as a contribution to the HiLAT project. The authors would like to thank the BEDMAP2 project and the developers of the Bedmap2 Toolbox for Matlab, and the NOAA Geophysical Fluid Dynamics Laboratory for data and analysis tools. We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. The U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support for CMIP and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 45 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 0260-3055 EI 1727-5644 J9 ANN GLACIOL JI Ann. Glaciol. PD SEP PY 2016 VL 57 IS 73 BP 69 EP 78 DI 10.1017/aog.2016.25 PG 10 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA ED6GJ UT WOS:000388953800009 ER PT J AU Laine, HS Vahanissi, V Morishige, AE Hofstetter, J Haarahiltunen, A Lai, B Savin, H Fenning, DP AF Laine, Hannu S. Vahanissi, Ville Morishige, Ashley E. Hofstetter, Jasmin Haarahiltunen, Antti Lai, Barry Savin, Hele Fenning, David P. TI Impact of Iron Precipitation on Phosphorus-Implanted Silicon Solar Cells SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Gettering; ion implantation; iron; modeling; precipitation; silicon; solar cell ID N-TYPE SILICON; ION-IMPLANTATION; MULTICRYSTALLINE SILICON; CRYSTALLINE SILICON; RECOMBINATION; GENERATION; COMPLEXES; EVOLUTION; DIFFUSION; WAFER AB Ion implantation is a promising method to implement a high-performance emitter for crystalline silicon solar cells. However, an implanted emitter redistributes and mitigates harmful metal impurities to a different degree than a diffused one. This paper quantitatively assesses the effect of iron contamination level on the bulk diffusion length and open-circuit voltage of phosphorus-implanted solar cells manufactured with varying gettering parameters. By synchrotron-based micro-X-ray fluorescence measurements, we directly observe a process-dependent iron precipitate size distribution in the implanted emitters. We show that controlling the iron precipitate size distribution is important when optimizing final cell performance and discover a tradeoff between large shunting precipitates in the emitter and a high density of recombination active small precipitates in the wafer bulk. We present a heterogeneous iron precipitation model capable of reproducing the experimentally measured size distributions. We use the model to show that the dominant gettering mechanism in our samples is precipitation and that implanted emitters with surface phosphorus concentrations around 2x10(19) cm(-3) induce little-to-no segregation-based gettering. Based on this finding, we discuss optimal gettering strategies for industrial silicon solar cells with implanted emitters. C1 [Laine, Hannu S.; Vahanissi, Ville; Haarahiltunen, Antti] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland. [Morishige, Ashley E.; Hofstetter, Jasmin; Fenning, David P.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Hofstetter, Jasmin] 1366 Technol Inc, Bedford, MA 01730 USA. [Lai, Barry] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fenning, David P.] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA. RP Laine, HS (reprint author), Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland. EM hannu.laine@aalto.fi; ville.vahanissi@aalto.fi; aemorish@alum.mit.edu; jasmin.hofstetter@gmx.de; antti.haarahiltunen@aalto.fi; blai@aps.anl.gov; hele.savin@aalto.fi; dfenning@eng.ucsd.edu RI Savin, Hele/E-5155-2012 OI Savin, Hele/0000-0003-3946-7727 FU Finnish Technology Agency [2196/31/2011, 1109/31/2012]; National Science Foundation (NSF); Department of Energy under NSF [EEC-1041895]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Finnish Cultural Foundation; Fulbright-Technology Industries of Finland Grant; Department of Defense through the NDSEG fellowship program; University of California San Diego Start-Up Funds FX The work of the authors from Aalto University was supported by the Finnish Technology Agency under the projects "PASSI" (project No. 2196/31/2011) and "NANOSOLAR" (project No. 1109/31/2012). The work of the authors from the Massachusetts Institute of Technology was supported by the National Science Foundation (NSF) and the Department of Energy under NSF CA No. EEC-1041895. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The work of H.S. Laine was supported by the Finnish Cultural Foundation and the Fulbright-Technology Industries of Finland Grant. The work of A. E. Morishige was supported by the Department of Defense through the NDSEG fellowship program. The work of D. P. Fenning was supported by the University of California San Diego Start-Up Funds. NR 58 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2016 VL 6 IS 5 BP 1094 EP 1102 DI 10.1109/JPHOTOV.2016.2576680 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA ED6KD UT WOS:000388963600006 ER PT J AU Sun, XS Silverman, T Garris, R Deline, C Alam, MA AF Sun, Xingshu Silverman, Timothy Garris, Rebekah Deline, Chris Alam, Muhammad Ashraful TI An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Analytical model; compact model; copper indium gallium diselenide (CIGS); heterojunction; illumination dependent; temperature dependent ID MODULE EFFICIENCY GAP; INTERFACE; VOLTAGE; COLLECTION; BARRIER AB In this paper, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination-and temperature-dependent currentvoltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the driftdiffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-basedmodel can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict the long-term output yields of photovoltaic farms under different environmental conditions. C1 [Sun, Xingshu; Alam, Muhammad Ashraful] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Silverman, Timothy; Garris, Rebekah; Deline, Chris] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Sun, XS (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. EM sun106@purdue.edu; timothy.silverman@nrel.gov; Rebekah.Garris@nrel.gov; chris.deline@nrel.gov; alam@ecn.purdue.edu FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy under DOE [DE-EE0004946]; National Science Foundation through the NCN-NEEDS program [1227020-EEC]; Semiconductor Research Corporation FX This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory; the U.S. Department of Energy under DOE Cooperative Agreement DE-EE0004946 ("PVMI Bay Area PV Consortium"); the National Science Foundation through the NCN-NEEDS program, under Contract 1227020-EEC; and by the Semiconductor Research Corporation. NR 57 TC 0 Z9 0 U1 6 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2016 VL 6 IS 5 BP 1298 EP 1307 DI 10.1109/JPHOTOV.2016.2583790 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA ED6KD UT WOS:000388963600031 ER PT J AU He, XQ Varley, J Ercius, P Erikson, T Bailey, J Zapalac, G Poplavskyy, D Mackie, N Bayman, A Lordi, V Rockett, A AF He, Xiaoqing Varley, Joel Ercius, Peter Erikson, Thomson Bailey, Jeff Zapalac, Geordie Poplavskyy, Dmitry Mackie, Neil Bayman, Atiye Lordi, Vincenzo Rockett, Angus TI Intermixing and Formation of Cu-Rich Secondary Phases at Sputtered CdS/CuInGaSe2 Heterojunctions SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE CdS structure; Cu(In,Ga)Se-2 (CIGS) photovoltaics; secondary ion mass spectrometry (SIMS) depth profile; STEM-EDS mapping; transmission electron microscopy ID FILM SOLAR-CELLS; TRANSMISSION ELECTRON-MICROSCOPY; TOTAL-ENERGY CALCULATIONS; CU(IN,GA)SE-2 THIN-FILMS; WAVE BASIS-SET; PHOTOVOLTAIC MATERIALS; LAYERS; CDS AB The Cu migration behavior in PVD-CdS/PVDCu (In,Ga)Se-2 (CIGS) heterojunctions is investigated by highresolution electron microscopy (HREM) and energy dispersive X-ray spectroscopy (EDS). Incorporation of Cu into the CdS forms Cu-rich domains but has no effect on epitaxy of the CdS. Epitaxy is commonly observed in the CdS studied. Secondary ion mass spectroscopy depth profiles confirm the presence of Cu in the CdS. In some cases, Cd is completely replaced by Cu, resulting in a Cu-S binary compound epitaxially grown on the CIGS and fully coherent with the surrounding CdS. This is most likely to be cubic Cu2S, based on lattice spacing measurements from HREM images and EDS elemental quantification. In addition, we find that the buffer layer crystal structure influences the extent of Ga depletion at the CIGS surface, which is more pronounced adjacent to zinc-blende CdS than wurtzite CdS. Density functional theory calculations reveal that Cu clustering and different Ga depletion widths can be attributed to the inherent anisotropy of wurtzite CdS and differences in CIGS point-defect migration barriers. Understanding the influence of these effects on device properties is a critical step in developing more efficient CdS/CIGS-based photovoltaics. C1 [He, Xiaoqing; Erikson, Thomson; Rockett, Angus] Univ Illinois, Urbana, IL 61801 USA. [Varley, Joel; Lordi, Vincenzo] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ercius, Peter] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Bailey, Jeff; Zapalac, Geordie; Poplavskyy, Dmitry; Mackie, Neil; Bayman, Atiye] MiaSole Hi Tech, Santa Clara, CA 95051 USA. RP He, XQ (reprint author), Univ Illinois, Urbana, IL 61801 USA. EM hhexiaoqing@gmail.com; varley2@llnl.gov; percius@lbl.gov; ericks11@illinois.edu; jbailey@miasole.com; gzapalac@miasole.com; dpoplavskyy@miasole.com; nmackie@miasole.com; abayman@miasole.com; lordi2@llnl.gov; arockett@illinois.edu FU DOE/EERE SunShot BRIDGE program; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy FX This work was supported by the DOE/EERE SunShot BRIDGE program. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. Part of this work was carried out at the Center for Microanalysis of Materials at the University of Illinois at Urbana-Champaign, which was supported in part by the U.S. Department of Energy. NR 30 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2016 VL 6 IS 5 BP 1308 EP 1315 DI 10.1109/JPHOTOV.2016.2589362 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA ED6KD UT WOS:000388963600032 ER PT J AU Silverman, TJ Mansfield, L Repins, I Kurtz, S AF Silverman, Timothy J. Mansfield, Lorelle Repins, Ingrid Kurtz, Sarah TI Damage in Monolithic Thin-Film Photovoltaic Modules Due to Partial Shade SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Electric breakdown; photovoltaic cells; photovolatic systems; reliability ID SOLAR-CELLS; EFFICIENCY AB The typical configuration ofmonolithic thin-film photovoltaic modules makes it possible for partial shade to place one or more cells in such a module in reverse bias. Reverse bias operation leads to high voltage, current density, and power density conditions, which can act as driving forces for failure. We showed that a brief outdoor shadow event can cause a 7% permanent loss in power. We applied an indoor partial shade durability test that moves beyond the standard hot spot endurance test by using more realistic mask and bias conditions and by carefully quantifying the permanent change in performance due to the stress. With the addition of a pass criterion based on change in maximum power, this procedure will soon be proposed as a part of the module-type qualification test. All six commercial copper indium gallium diselenide and cadmium telluride modules we tested experienced permanent damage due to the indoor partial shade test, ranging from 4% to 14% loss in maximum power. We conclude by summarizing ways to mitigate partial shade stress at the cell, module, and system levels. C1 [Silverman, Timothy J.; Mansfield, Lorelle; Repins, Ingrid; Kurtz, Sarah] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Silverman, TJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM timothy.silverman@nrel.gov; lorelle.mansfield@nrel.gov; ingrid.repins@nrel.gov; Sarah.Kurtz@nrel.gov FU U.S. Department of Energy (DOE) [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy FX This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Some of the data in this report were obtained using equipment at the Energy Systems Integration Facility (a national user facility sponsored by the U.S. DOE Office of Energy Efficiency and Renewable Energy) located at the National Renewable Energy Laboratory. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2016 VL 6 IS 5 BP 1333 EP 1338 DI 10.1109/JPHOTOV.2016.2591330 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA ED6KD UT WOS:000388963600036 ER PT J AU Perl, EE Simon, J Geisz, JF Lee, ML Friedman, DJ Steiner, MA AF Perl, Emmett E. Simon, John Geisz, John F. Lee, Minjoo Larry Friedman, Daniel J. Steiner, Myles A. TI Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 degrees C SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE III-V and concentrator photovoltaics (PV); PV cells; semiconductor materials; solar energy; temperature dependence ID DEPENDENCE; PERFORMANCE; PARAMETERS AB In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J(01) and J(02) dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased, we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from similar to 30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation. C1 [Perl, Emmett E.; Simon, John; Geisz, John F.; Friedman, Daniel J.; Steiner, Myles A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Perl, Emmett E.] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. [Lee, Minjoo Larry] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA. [Lee, Minjoo Larry] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA. RP Perl, EE (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Perl, EE (reprint author), Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA. EM emmett.perl@nrel.gov; john.simon@nrel.gov; john.geisz@nrel.gov; minjoo.lee@yale.edu; daniel.friedman@nrel.gov; myles.steiner@nrel.gov RI Lee, Minjoo/A-9720-2008 OI Lee, Minjoo/0000-0002-3151-3808 FU ARPA-E FOCUS program [DE-AR0000508]; U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the ARPA-E FOCUS program under Award DE-AR0000508 and in part by the U.S. Department of Energy under Contract DE-AC36-08GO28308. The U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 24 TC 0 Z9 0 U1 2 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2016 VL 6 IS 5 BP 1345 EP 1352 DI 10.1109/JPHOTOV.2016.2582398 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA ED6KD UT WOS:000388963600038 ER PT J AU Colli, A Attenkofer, K Raghothamachar, B Dudley, M AF Colli, Alessandra Attenkofer, Klaus Raghothamachar, Balaji Dudley, Michael TI Synchrotron X-Ray Topography for Encapsulation Stress/Strain and Crack Detection in Crystalline Silicon Modules SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Article DE Crystalline silicon; photovoltaic (PV) modules; reliability; X-ray topography ID STRESS AB In this paper, we present the first experiment to prove the capabilities of X-ray topography for the direct imaging and analysis of defects, stress, and strain affecting the cell within the laminated photovoltaic (PV) module. Cracks originating from grain boundaries structures have been detected, developing along the cleavage planes of the crystal. The strain affecting the cell is clearly visualized through the bending of the metallization line images and can be easily mapped. While the recording conditions need to be optimized to maximize image contrast, this experiment demonstrates how synchrotron facilities can enable PV industry and research to characterize full PV modules. Appropriate development of the technique could also lead to future use of laboratory-level X-ray sources. C1 [Colli, Alessandra; Attenkofer, Klaus] Brookhaven Natl Lab, Upton, NY 11973 USA. [Raghothamachar, Balaji; Dudley, Michael] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Colli, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM alessandra.colli@gmail.com; kattenkofer@bnl.gov; balaji.raghothamachar@stonybrook.edu; michael.dudley@stonybrook.edu FU Brookhaven Science Associates, LLC, under U.S. DOE [DE-SC0012704]; Advance Photon Source, Argonne National Laboratory under the U.S. Department of Energy BES [DE-AC02-06CH11357] FX This work was supported by Brookhaven Science Associates, LLC, under U.S. DOE Contract DE-SC0012704. The Advance Photon Source, Argonne National Laboratory, was funded under the U.S. Department of Energy BES Contract DE-AC02-06CH11357. NR 11 TC 1 Z9 1 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2016 VL 6 IS 5 BP 1387 EP 1389 DI 10.1109/JPHOTOV.2016.2585022 PG 3 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA ED6KD UT WOS:000388963600043 ER PT J AU Sun, XS Asadpour, R Nie, WY Mohite, AD Alam, MA AF Sun, Xingshu Asadpour, Reza Nie, Wanyi Mohite, Aditya D. Alam, Muhammad Ashraful TI A Physics-Based Analytical Model for Perovskite Solar Cells (vol 5, pg 1389, 2015) SO IEEE JOURNAL OF PHOTOVOLTAICS LA English DT Correction C1 [Sun, Xingshu; Asadpour, Reza; Alam, Muhammad Ashraful] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Nie, Wanyi; Mohite, Aditya D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Sun, XS (reprint author), Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. EM sunxingshu@gmail.com; rasadpou@purdue.edu; wanyi@lanl.gov; amohite@lanl.gov; alam@purdue.edu NR 1 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3381 J9 IEEE J PHOTOVOLT JI IEEE J. Photovolt. PD SEP PY 2016 VL 6 IS 5 BP 1390 EP 1390 DI 10.1109/JPHOTOV.2016.2589658 PG 1 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA ED6KD UT WOS:000388963600044 ER PT J AU Strazzo, SE Elsner, JB LaRow, TE Murakami, H Wehner, M Zhao, M AF Strazzo, S. E. Elsner, J. B. LaRow, T. E. Murakami, H. Wehner, M. Zhao, M. TI The influence of model resolution on the simulated sensitivity of North Atlantic tropical cyclone maximum intensity to sea surface temperature SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE tropical cyclones; climate models ID CLIMATE SIMULATIONS; HURRICANE INTENSITY; CUMULUS CONVECTION; PARAMETERIZATION; SST; VARIABILITY; PREDICTION; DEPENDENCE; INCREASE; IMPACTS AB Global climate models (GCMs) are routinely relied upon to study the possible impacts of climate change on a wide range of meteorological phenomena, including tropical cyclones (TCs). Previous studies addressed whether GCMs are capable of reproducing observed TC frequency and intensity distributions. This research builds upon earlier studies by examining how well GCMs capture the physically relevant relationship between TC intensity and SST. Specifically, the influence of model resolution on the ability of a GCM to reproduce the sensitivity of simulated TC intensity to SST is examined for the MRI-AGCM (20 km), the GFDL-HiRAM (50 km), the FSU-COAPS (0.94 degrees) model, and two versions of the CAM5 (1 degrees and 0.25 degrees). Results indicate that while a 1 degrees C increase in SST corresponds to a 5.5-7.0 m s(-1) increase in observed maximum intensity, the same 1 degrees C increase in SST is not associated with a statistically significant increase in simulated TC maximum intensity for any of the models examined. However, it also is shown that the GCMs all capably reproduce the observed sensitivity of potential intensity to SST. The models generate the thermodynamic environment suitable for the development of strong TCs over the correct portions of the North Atlantic basin, but strong simulated TCs do not develop over these areas, even for models that permit Category 5 TCs. This result supports the notion that direct simulation of TC eyewall convection is necessary to accurately represent TC intensity and intensification processes in climate models, although additional explanations are also explored. C1 [Strazzo, S. E.; Elsner, J. B.] Florida State Univ, Dept Geog, Tallahassee, FL 32306 USA. [Strazzo, S. E.] US Mil Acad, Dept Geog & Environm Engn, West Point, NY 10996 USA. [LaRow, T. E.] Verato Inc, Mclean, VA USA. [Murakami, H.; Zhao, M.] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA. [Wehner, M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Murakami, H.] Meteorol Res Inst, Tsukuba, Ibaraki, Japan. RP Strazzo, SE (reprint author), Florida State Univ, Dept Geog, Tallahassee, FL 32306 USA.; Strazzo, SE (reprint author), US Mil Acad, Dept Geog & Environm Engn, West Point, NY 10996 USA. EM s.e.strazz@gmail.com FU Risk Prediction Initiative (RPI) of the Bermuda Institute of Ocean Sciences (BIOS); program "Projection of the Change in Future Weather Extremes Using Super-High-Resolution Atmospheric Models'' - KAKUSHIN program of Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; program "Projection of the Change in Future Weather Extremes Using Super-High-Resolution Atmospheric Models'' - SOUSEI program of Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; U.S. Department of Energy Office of Science; NOAA Climate Program Office; Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231] FX We are grateful for the constructive feedback Jim Kossin and two anonymous reviewers provided during the review of this paper. We also thank Baoqiang Xiang for comments and suggestions provided during a NOAA internal review. JBE was supported by a grant from the Risk Prediction Initiative (RPI) of the Bermuda Institute of Ocean Sciences (BIOS). HM was supported by the program "Projection of the Change in Future Weather Extremes Using Super-High-Resolution Atmospheric Models'' funded by the KAKUSHIN and SOUSEI programs of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. Calculations by the MRI-AGCM3.2 were performed on the Earth Simulator. TEL received grant support from the U.S. Department of Energy Office of Science and the NOAA Climate Program Office. MW was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under contract DE-AC02-05CH11231. Observed tropical cyclone data used in this paper were obtained from http://www.nhc.noaa.gov/data/#hurdat, and the code used to interpolate the TC data can be found at http://www.hurricaneclimate.com/. SST data were downloaded from http://www.metoffice.gov.uk/hadobs/hadisst/data/download.html, and MERRA reanalysis data were downloaded from http://disc.sci.gsfc.nasa.gov/mdisc/data-holdings/merra/merra_products_n onjs.shtml. Simulated TC track data are available upon request. The code used to generate these results is available at http://rpubs.com/sestrazz/modelRes. NR 59 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2016 VL 8 IS 3 BP 1037 EP 1054 DI 10.1002/2016MS000635 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC0LV UT WOS:000387793500001 ER PT J AU Lin, GX Wan, H Zhang, K Qian, Y Ghan, SJ AF Lin, Guangxing Wan, Hui Zhang, Kai Qian, Yun Ghan, Steven J. TI Can nudging be used to quantify model sensitivities in precipitation and cloud forcing? SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE parametric sensitivity; CAM5; nudging; short ensembles; cloud; precipitation ID COMMUNITY ATMOSPHERE MODEL; GLOBAL CLIMATE MODEL; UNCERTAINTY QUANTIFICATION; PARAMETERIZATION; SIMULATIONS; CIRCULATION; CONVECTION; IMPACT; SCHEME; MICROPHYSICS AB Efficient simulation strategies are crucial for the development and evaluation of high-resolution climate models. This paper evaluates simulations with constrained meteorology for the quantification of parametric sensitivities in the Community Atmosphere Model version 5 (CAM5). Two parameters are perturbed as illustrating examples: the convection relaxation time scale (TAU), and the threshold relative humidity for the formation of low-level stratiform clouds (rhminl). Results suggest that the fidelity of the constrained simulations depends on the detailed implementation of nudging and the mechanism through which the perturbed parameter affects precipitation and cloud. The relative computational costs of nudged and free-running simulations are determined by the magnitude of internal variability in the physical quantities of interest, as well as the magnitude of the parameter perturbation. In the case of a strong perturbation in convection, temperature, and/or wind nudging with a 6 h relaxation time scale leads to nonnegligible side effects due to the distorted interactions between resolved dynamics and parameterized convection, while 1 year free-running simulations can satisfactorily capture the annual mean precipitation and cloud forcing sensitivities. In the case of a relatively weak perturbation in the large-scale condensation scheme, results from 1 year free-running simulations are strongly affected by natural noise, while nudging winds effectively reduces the noise, and reasonably reproduces the sensitivities. These results indicate that caution is needed when using nudged simulations to assess precipitation and cloud forcing sensitivities to parameter changes in general circulation models. We also demonstrate that ensembles of short simulations are useful for understanding the evolution of model sensitivities. C1 [Lin, Guangxing; Wan, Hui; Zhang, Kai; Qian, Yun; Ghan, Steven J.] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. RP Lin, GX (reprint author), Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. EM guangxing.lin@pnnl.gov RI Ghan, Steven/H-4301-2011; qian, yun/E-1845-2011; Zhang, Kai/F-8415-2010 OI Ghan, Steven/0000-0001-8355-8699; Zhang, Kai/0000-0003-0457-6368 FU U.S. Department of Energy (DOE) Office of Science as part of Scientific Discovery through Advanced Computing (SciDAC) Program; Office of Science of U.S. Department of Energy [DE-AC02-05CH11231]; DOE [DE-AC05-76RL01830] FX The study described in this paper was supported by the U.S. Department of Energy (DOE) Office of Science as part of the Scientific Discovery through Advanced Computing (SciDAC) Program. The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for DOE under contract DE-AC05-76RL01830. Model results can be accessed from https://portal.nersc.gov/project/m1704/gxlin. NR 38 TC 0 Z9 0 U1 11 U2 11 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2016 VL 8 IS 3 BP 1073 EP 1091 DI 10.1002/2016MS000659 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC0LV UT WOS:000387793500003 ER PT J AU Gao, WH Fan, JW Easter, RC Yang, Q Zhao, C Ghan, SJ AF Gao, Wenhua Fan, Jiwen Easter, R. C. Yang, Qing Zhao, Chun Ghan, Steven J. TI Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE cloud microphysics; aerosol-cloud interactions; aerosol microphyscis ID DEEP CONVECTIVE CLOUDS; PART I; ANTHROPOGENIC AEROSOLS; SOUTHEAST PACIFIC; VOCALS-REX; CELLULAR STRUCTURES; RESOLVING MODEL; LIQUID WATER; WARM-RAIN; PRECIPITATION AB Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics. C1 [Gao, Wenhua] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing, Peoples R China. [Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.] Pacific Northwest Natl Lab, Richland, WA USA. RP Fan, JW (reprint author), Pacific Northwest Natl Lab, Richland, WA USA. EM Jiwen.Fan@pnnl.gov RI Ghan, Steven/H-4301-2011; Fan, Jiwen/E-9138-2011 OI Ghan, Steven/0000-0001-8355-8699; FU Laboratory Directed Research and Development at Pacific Northwest National Laboratory (PNNL) [FY2015, N28647]; DOE by Battelle Memorial Institute [DE-AC06-76RLO1830]; National Natural Science Foundation of China [91437101]; National (Key) Basic Research and Development (973) Program of China [2015CB452805]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH1123] FX This research is sponsored by the FY2015 Laboratory Directed Research and Development at Pacific Northwest National Laboratory (PNNL) with a project N28647. The PNNL is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO1830. Gao is supported by National Natural Science Foundation of China 91437101, National (Key) Basic Research and Development (973) Program of China 2015CB452805. The research used PNNL Institutional Computing resources and also resources at the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH1123. The measurements from C-130 aircraft were obtained from the VOCALS data archive of NCAR/EOL. The coupled modeling system is not yet publically available yet because more cloud cases need to be tested before a public release. However, the code and the model simulation data can be available through collaboration by contacting J. Fan at jiwen.fan@pnnl.gov. NR 85 TC 0 Z9 0 U1 8 U2 8 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2016 VL 8 IS 3 BP 1289 EP 1309 DI 10.1002/2016MS000676 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC0LV UT WOS:000387793500014 ER PT J AU Vanderwende, BJ Kosovic, B Lundquist, JK Mirocha, JD AF Vanderwende, Brian J. Kosovic, Branko Lundquist, Julie K. Mirocha, Jeffrey D. TI Simulating effects of a wind-turbine array using LES and RANS SO JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS LA English DT Article DE wind-farm parameterization; LES; RANS; actuator-disk model; WRF; turbine wakes ID LARGE-EDDY SIMULATION; BOUNDARY-LAYERS; WRF MODEL; NUMERICAL SIMULATIONS; FORECASTING-MODEL; WEATHER RESEARCH; FARMS; WAKE; TURBULENCE; MESOSCALE AB Growth in wind power production has motivated investigation of wind-farm impacts on in situ flow fields and downstream interactions with agriculture and other wind farms. These impacts can be simulated with both large-eddy simulations (LES) and mesoscale wind-farm parameterizations (WFP). The Weather Research and Forecasting (WRF) model offers both approaches. We used the validated generalized actuator disk (GAD) parameterization in WRF-LES to assess WFP performance. A 12-turbine array was simulated using the GAD model and the WFP in WRF. We examined the performance of each scheme in both convective and stable conditions. The GAD model and WFP produced qualitatively similar wind speed deficits and turbulent kinetic energy (TKE) production across the array in both stability regimes, though the magnitudes of velocity deficits and TKE production levels were underestimated and overestimated, respectively. While wake growth slowed in the latter half of the WFP array as expected, wakes did not approach steady state by the end of the array as simulated by the GAD model. A sensitivity test involving the deactivation of explicit TKE production by the WFP resulted in turbulence levels within the array well that were below those produced by the GAD in both stable and unstable conditions. Finally, the WFP overestimated downwind power production deficits in stable conditions because of the lack of wake stabilization in the latter half of the array. C1 [Vanderwende, Brian J.; Lundquist, Julie K.] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA. [Vanderwende, Brian J.; Kosovic, Branko] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Lundquist, Julie K.] Natl Renewable Energy Lab, Golden, CO USA. [Mirocha, Jeffrey D.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Vanderwende, BJ (reprint author), Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA.; Vanderwende, BJ (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM vanderwb@colorado.edu OI LUNDQUIST, JULIE/0000-0001-5490-2702 FU National Renewable Energy Laboratory under APUP [UGA-0-41026-22]; National Science Foundation [BCS-1413980, CNS-0821794]; University of Colorado Boulder; University of Colorado Denver; National Center for Atmospheric Research; NSF [OCI-1126839] FX The authors are thankful to Dr. Sven Schmitz and his research group at The Pennsylvania State University for generously providing turbine blade specifications of the PSU Generic 1.5-MW turbine. We also thank our reviewers, whose suggestions yielded new avenues of inquiry. This work was partially supported by the National Renewable Energy Laboratory under APUP UGA-0-41026-22 and by the National Science Foundation grant BCS-1413980 (Coupled Human Natural Systems). Our simulations were performed on the Janus supercomputer, which is supported by the National Science Foundation (award CNS-0821794), the University of Colorado Boulder, the University of Colorado Denver, and the National Center for Atmospheric Research. The Janus supercomputer is operated by the University of Colorado Boulder. The data used in this paper are available from the University of Colorado PetaLibrary (funded by NSF under grant OCI-1126839) and can be obtained from the corresponding author upon request. NR 64 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1942-2466 J9 J ADV MODEL EARTH SY JI J. Adv. Model. Earth Syst. PD SEP PY 2016 VL 8 IS 3 BP 1376 EP 1390 DI 10.1002/2016MS000652 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA EC0LV UT WOS:000387793500019 ER PT J AU Wang, L Yao, BW Cha, MS Alqahtani, NB Patterson, TW Kneafsey, TJ Miskimins, JL Yin, XL Wu, YS AF Wang, Lei Yao, Bowen Cha, Minsu Alqahtani, Naif B. Patterson, Taylor W. Kneafsey, Timothy J. Miskimins, Jennifer L. Yin, Xiaolong Wu, Yu-Shu TI Waterless fracturing technologies for unconventional reservoirs opportunities for liquid nitrogen SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Hydraulic fracturing; Shale; Tight sandstone; Waterless fracturing; Cryogenic fracturing; Liquid nitrogen ID SHALE GAS; THERMODYNAMIC PROPERTIES; CARBON-DIOXIDE; FLUIDS; STIMULATION; RECOVERY; CO2; HYDROCARBONS; PRESSURES; METHANE AB During the past two decades, hydraulic fracturing has significantly improved oil and gas production from shale and tight sandstone reservoirs in the United States and elsewhere. Considering formation damage, water consumption, and environmental impacts associated with water-based fracturing fluids, efforts have been devoted to developing waterless fracturing technologies because of their potential to alleviate these issues. Herein, key theories and features of waterless fracturing technologies, including Oil-based and CO2 energized oil fracturing, explosive and propellant fracturing, gelled LPG and alcohol fracturing, gas fracturing, CO2 fracturing, and cryogenic fracturing, are reviewed. We then experimentally elaborate on the efficacy of liquid nitrogen in enhancing fracture initiation and propagation in concrete samples, and shale and sandstone reservoir rocks. In our laboratory study, cryogenic fractures generated were qualitatively and quantitatively characterized by pressure decay tests, acoustic measurements, gas fracturing, and CT scans. The capacity and applicability of cryogenic fracturing using liquid nitrogen are demonstrated and examined. By properly formulating the technical procedures for field implementation, cryogenic fracturing using liquid nitrogen could be an advantageous option for fracturing unconventional reservoirs. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wang, Lei; Yao, Bowen; Patterson, Taylor W.; Miskimins, Jennifer L.; Yin, Xiaolong; Wu, Yu-Shu] Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA. [Cha, Minsu] Texas A&M Univ, Dept Civil Engn, College Stn, TX 77843 USA. [Alqahtani, Naif B.] King Abdulaziz City Sci & Technol, Riyadh, Saudi Arabia. [Kneafsey, Timothy J.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Patterson, Taylor W.] Devon Energy, Oklahoma City, OK USA. RP Wang, L (reprint author), Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA. EM lwang@mines.edu FU DOE (Development of Non-Contaminating Cryogenic Fracturing Technology for Shale and Tight Gas Reservoirs) [10122-20] FX The authors thank the financial support from Research Partnership to Secure Energy for America from DOE (Development of Non-Contaminating Cryogenic Fracturing Technology for Shale and Tight Gas Reservoirs, Project Number: 10122-20). NR 90 TC 1 Z9 1 U1 7 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD SEP PY 2016 VL 35 BP 160 EP 174 DI 10.1016/j.jngse.2016.08.052 PN A PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA ED0PH UT WOS:000388543900017 ER PT J AU DiStefano, VH McFarlane, J Anovitz, LM Stack, AG Gordon, AD Littrell, KC Chipera, SJ Hunt, RD Lewis, SA Hale, RE Perfect, E AF DiStefano, Victoria H. McFarlane, Joanna Anovitz, Lawrence M. Stack, Andrew G. Gordon, Alexander D. Littrell, Ken C. Chipera, Steve J. Hunt, Rodney D. Lewis, Samuel A., Sr. Hale, Richard E. Perfect, Edmund TI Extraction of organic compounds from representative shales and the effect on porosity SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Small angle neutron scattering; Solvent extraction from shales; Eagle Ford shale; Marcellus shale; Pore size distribution ID ANGLE NEUTRON-SCATTERING; CLAY-MINERALS; TEXTURAL PROPERTIES; CARBON AEROGELS; GAS-ADSORPTION; IMAGE-ANALYSIS; SURFACE-AREA; PORE-SIZE; ROCKS; MONTMORILLONITE AB As the location and accessibility of hydrocarbons is key to understanding and improving the extractability of hydrocarbons in hydraulic fracturing, this study is an attempt to understand how native organics are distributed with respect to pore size to determine the relationship between hydrocarbon chemistry and pore structure in shales. First, selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis gas chromatography (GC), thermogravimetric analysis, and organic solvent extraction with the resulting effluent analyzed by GC-mass spectrometry (MS). Organics representing the oil and gas fraction (0.1-1 wt %) were observed by GC-MS. For most of the samples, the amount of native organic extracted directly related to the percentage of clay in the shale. The porosity and pore size distribution (0.95 nm-135 mu m) in the Eagle Ford and Marcellus shales was measured before and after solvent extraction using small angle neutron scattering (SANS). An unconventional method was used to quantify the background from incoherent scattering as the Porod transformation obscures the Bragg peak from the clay minerals. The change in porosity from SANS is indicative of the extraction or breakdown of higher molecular weight bitumen with high C/H ratios (asphaltenes and resins). This is mostly likely attributed to complete dissolution or migration of asphaltenes and resins. These longer carbon chain lengths, C30-C40, were observed by pyrolysis GC, but either were too heavy to be analyzed in the extracts by GC-MS or were not effectively leached into the organic solvents. Thus, experimental limitations meant that the amount of extractable material could not be directly correlated to the changes in porosity measured by SANS. However, the observable porosity generally increased with solvent extraction. A decrease in porosity after extraction as observed in a shale with high clay content and low maturity was attributed to swelling of pores with solvent uptake or migration of resins and asphaltenes. (C) 2016 Elsevier B.V. All rights reserved. C1 [DiStefano, Victoria H.; McFarlane, Joanna; Anovitz, Lawrence M.; Stack, Andrew G.; Gordon, Alexander D.; Littrell, Ken C.; Hunt, Rodney D.; Lewis, Samuel A., Sr.; Hale, Richard E.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [DiStefano, Victoria H.] Univ Tennessee, Bredesen Ctr, Knoxville, TN USA. [Chipera, Steve J.] Chesapeake Energy, Oklahoma City, OK USA. [Perfect, Edmund] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. RP DiStefano, VH (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM distefanovh@ornl.gov RI Littrell, Kenneth/D-2106-2013; OI Littrell, Kenneth/0000-0003-2308-8618; Anovitz, Lawrence/0000-0002-2609-8750 FU US Department of Energy through the program Research Partnership to Secure Energy for America; US Department of Energy through the program Office of Science, Scientific User Facilities Program; US Department of Energy through the program Laboratory Directed Research and Development of Oak Ridge National Laboratory; University of Tennessee through the Bredesen Center; Chesapeake Energy FX Funding for the project came from the US Department of Energy through the following programs: Research Partnership to Secure Energy for America, Office of Science, Scientific User Facilities Program, and from Laboratory Directed Research and Development of Oak Ridge National Laboratory, managed by UT-Battelle. The University of Tennessee supported the research through the Bredesen Center. Chesapeake Energy also supported the research. NR 59 TC 1 Z9 1 U1 12 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD SEP PY 2016 VL 35 BP 646 EP 660 DI 10.1016/j.jngse.2016.08.064 PN A PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA ED0PH UT WOS:000388543900059 ER PT J AU Shen, WJ Xu, YM Li, XZ Huang, WG Gu, JR AF Shen, Weijun Xu, Yanmei Li, Xizhe Huang, Weigang Gu, Jiangrui TI Numerical simulation of gas and water flow mechanism in hydraulically fractured shale gas reservoirs SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Shale gas; Hydraulic fractures; Reservoir properties; Water retention; Gas rate ID PERMEABILITY; OPERATIONS; BASIN; WELLS AB The problem of the fracturing water remaining in hydraulically fractured shale gas reservoirs has become one of the major concerns in terms of gas productivity and operating costs. The fracturing water retention is influenced by reservoir properties and production parameters, such as matrix porosity and permeability, fracture porosity and permeability, Langmuir pressure and volume, diffusion coefficient, shut-in time, drawdowns and injection rate. In this study, a horizontal well with six-stage hydraulic fracturing treatment was constructed to understand the water retention and gas production performance in shale gas reservoirs. Gas diffusion, gas adsorption/desorption and Darcy flow as well as non-Darcy flow were considered in this model. The process of water retention and gas production performance was analyzed, and the effects of reservoir and production properties on this problem were performed. The results show that only 34% of the fracturing water can flow back to the surface, most of which remains in shale formations to interfere with gas production. The increasing of matrix porosity, fracture porosity, Langmuir pressure and drawdowns will reduce water retention while water retention in shale matrix will increase with the increasing of matrix permeability and Langmuir volume, and consequently impact gas production. But the trapped water and gas rate increase with the higher fracture permeability. Furthermore, the diffusion coefficient, shut-in time and injection rate do not have a significant effect on water retention and gas productivity. These results can provide insights into a better understanding of gas and water flow in the shale gas reservoirs and the effects of reservoir and production parameters on water retention and gas production. (C) 2016 Elsevier B.V. All rights reserved. C1 [Shen, Weijun] Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China. [Shen, Weijun] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Shen, Weijun] Chinese Acad Sci, Inst Porous Flow & Fluid Mech, Langfang 065007, Hebei, Peoples R China. [Xu, Yanmei; Li, Xizhe; Huang, Weigang; Gu, Jiangrui] PetroChina Res Inst Petr Explorat & Dev, Langfang Branch, Langfang 065007, Hebei, Peoples R China. RP Shen, WJ (reprint author), Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China. EM wjshen763@imech.ac.cn FU National Energy Technology Laboratory under U.S. Department of Energy [ESD14085]; National Science and Technology Major Project of the Ministry of Science and Technology of China [50150503-12]; Foundation of China Scholarship Council FX This work was supported by the National Energy Technology Laboratory under U.S. Department of Energy Contract No. ESD14085, "Understanding Water Controls on Shale Gas Mobilization into Fractures", and by National Science and Technology Major Project of the Ministry of Science and Technology of China Project (NO. 50150503-12). We also thank the support from the Foundation of China Scholarship Council. NR 38 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD SEP PY 2016 VL 35 BP 726 EP 735 DI 10.1016/j.jngse.2016.08.078 PN A PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA ED0PH UT WOS:000388543900066 ER PT J AU Myshakin, EM Ajayi, T Anderson, BJ Seol, Y Boswell, R AF Myshakin, Evgeniy M. Ajayi, Taiwo Anderson, Brian J. Seol, Yongkoo Boswell, Ray TI Numerical simulations of depressurization-induced gas production from gas hydrates using 3-D heterogeneous models of L-Pad, Prudhoe Bay Unit, North Slope Alaska SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Gas hydrates; Numerical simulations; Geostatistical modeling; 3D heteroheneous reservoir simulations; Alaska's North Slope hydrate accumulations ID STRATIGRAPHIC TEST WELL; SINGLE HORIZONTAL WELL; GULF-OF-MEXICO; QILIAN MOUNTAIN; PERMAFROST; DEPOSITS; SITE AB Gas production potential is estimated using a three-dimensional reservoir model based on gas hydrate deposits located in the Prudhoe Bay region of the Alaska's North Slope. The model incorporates two hydrate-bearing sand units using detailed reservoir geological and structural information obtained from past and recent drilling programs. Geostatistical porosity models, conditioned to log data from 78 wells drilled in the vicinity of the Prudhoe Bay "L-Pad," were developed, providing 3D heterogeneity in porosity, porosity-dependent hydrate saturation, and intrinsic permeability. The simulations utilize both vertical and inclined wellbores to induce depressurization of the reservoir at a constant bottom-hole pressure. The results show the superior performance of the inclined well design. Average gas production rates during the first five years were similar to 6.0 x 10(4) ST m(3)/day (similar to 2.1 MMSCF/day) and similar to 2.7 x 10(4) ST m(3)/day (similar to 1.0 MMSCF/day) for incline and vertical wells, respectively. After 30 years 5.3 x 10(8) - 5.7 x 10(8) ST m(3) (18.6-20.2 BSCF) and 6.2 x 10(8) - 6.4 x 10(8) ST m(3) (22.0-22.7 BSCF) gas were produced using the vertical and inclined well configurations, respectively. The analysis reveals that 2D reservoir models with homogeneous representations for porosity and hydrate saturation significantly underestimate production potential. The heterogeneity implemented in this work provides complex porous network and preferential pathways for mobile phase flow to a producing well. Consequently, no secondary hydrate formation around a wellbore is predicted in contrast to models that utilize uniform porosity and hydrate saturation distributions. (C) 2016 Elsevier B.V. All rights reserved. C1 [Myshakin, Evgeniy M.; Ajayi, Taiwo; Anderson, Brian J.; Seol, Yongkoo; Boswell, Ray] Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. [Myshakin, Evgeniy M.] AECOM, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. [Ajayi, Taiwo; Anderson, Brian J.] West Virginia Univ, Chem Engn, POB 6009, Morgantown, WV 26506 USA. RP Myshakin, EM (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM evgeniy.myshakin@netl.doe.gov FU National Energy Technology Laboratory [DE-FE0004000] FX The authors are thankful to Drs. Tim Collett, and Margarita Zyrianova (both U.S. Geological Survey) for providing log data, fruitful discussions, and comments on this paper. This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. NR 48 TC 1 Z9 1 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD SEP PY 2016 VL 35 BP 1336 EP 1352 DI 10.1016/j.jngse.2016.09.070 PN A PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA ED0PH UT WOS:000388543900120 ER PT J AU Mathis, JE Kidder, MK Li, YC Zhang, JS Paranthaman, MP AF Mathis, John E. Kidder, Michelle K. Li, Yunchao Zhang, Jinshui Paranthaman, M. P. TI Controlled synthesis of mesoporous codoped titania nanoparticles and their photocatalytic activity SO ADVANCES IN NANO RESEARCH LA English DT Article DE titania; codoped; phototcatalysis; macro-spores; micro-spheres; hydrothermal method; hybrid method ID SENSITIZED SOLAR-CELLS; ELECTRICAL-CONDUCTIVITY; TIO2 FILMS; THIN-FILMS; BEADS; MICROSPHERES; INJECTION; SNO2; NB; CR AB The photocatalytic (PC) activity of anatase titania nanoparticles can be improved through codoping with transition metals and nitrogen. In addition, the PC activity can also be improved by creating monodisperse, mesoporous nanoparticles of titania. The question naturally arose as to whether combining these two characteristics would result in further improvement in the PC activity or not. Herein, we describe the synthesis and photocatalytic characteristics of codoped, monodisperse anatase titania. The transition metals tested in the polydisperse and the monodisperse forms were Mn, Co, Ni, and Cu. In each case, it was found that the monodisperse version had a higher PC activity compared to the corresponding polydisperse version. C1 [Mathis, John E.; Kidder, Michelle K.; Li, Yunchao; Zhang, Jinshui; Paranthaman, M. P.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Mathis, John E.] Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL 32114 USA. RP Mathis, JE (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA.; Mathis, JE (reprint author), Embry Riddle Aeronaut Univ, Dept Phys Sci, Daytona Beach, FL 32114 USA. EM mathisjo@erau.edu NR 18 TC 0 Z9 0 U1 5 U2 5 PU TECHNO-PRESS PI DAEJEON PA PO BOX 33, YUSEONG, DAEJEON 305-600, SOUTH KOREA SN 2287-237X EI 2287-2388 J9 ADV NANO RES JI Adv. Nano Res. PD SEP PY 2016 VL 4 IS 3 BP 157 EP 165 DI 10.12989/anr.2016.4.3.157 PG 9 WC Nanoscience & Nanotechnology SC Science & Technology - Other Topics GA EC6ZH UT WOS:000388284700001 ER PT J AU Singh, AK Lin, YC Sheehan, CJ Dattelbaum, AM Gupta, G Mohite, AD AF Singh, Akhilesh K. Lin, Yung-Chen Sheehan, Chris J. Dattelbaum, Andrew M. Gupta, Gautam Mohite, Aditya D. TI Millimeter-scale gate-tunable graphene nanoribbon devices as a platform for mid-infrared and bio sensing applications SO APPLIED MATERIALS TODAY LA English DT Article DE Graphene; Plasmons; Ribbon-ribbon interaction; Mid-IR detector; Bio sensor ID INFRARED-SPECTROSCOPY; PLASMONS; NANOSTRUCTURES; HYBRIDIZATION AB The experimental observation of graphene plasmon resonance has generated tremendous interest due to numerous potential applications such as photosensors, detectors, biosensors, and switches from THz to mid-infrared regime. However, practical applications require much larger dimensions (mm to cm scale) than that demonstrated in the proof-of-concept devices. Moreover, such devices also require a detailed understanding of ribbon-to-ribbon interaction, which has not been investigated so far. Here we demonstrate gate tunable plasmon resonance in the mid-infrared spectral region on millimeter-scale graphene nanoribbon ( GNR) array devices fabricated using graphene monolayer. Gate dependent Fourier-transform infrared (FTIR) transmission measurements on GNR of various widths were investigated experimentally. The shift in plasmon resonance peaks of wave number 100 cm(-1) at applied external gate voltage 100 V was observed. This shift is attributed to strong gate modulation. Our investigation of ribbon-to-ribbon interaction by tuning the aspect ratio reveals strong modulation of surface plasmon resonance peaks in GNR. This suggests that plasmon resonances are coupled as evidenced by blue-shifted plasmon resonance. These studies demonstrate that large-area GNR devices can serve as an ideal platform for ultrasensitive sensing and detector applications. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Singh, Akhilesh K.; Lin, Yung-Chen; Sheehan, Chris J.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Singh, Akhilesh K.; Dattelbaum, Andrew M.; Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, MPA Mat Synth & Integrated Devices 11, Los Alamos, NM 87545 USA. RP Singh, AK (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM akhilesh@lanl.gov NR 23 TC 1 Z9 1 U1 9 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2352-9407 J9 APPL MATER TODAY JI Appl. Mater. Today PD SEP PY 2016 VL 4 BP 40 EP 44 DI 10.1016/j.apmt.2016.05.002 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA EC9LK UT WOS:000388465900006 ER PT J AU Hsu, SC Joshi, TR Hakel, P Vold, EL Schmitt, MJ Hoffman, NM Rauenzahn, RM Kagan, G Tang, XZ Mancini, RC Kim, Y Herrmann, HW AF Hsu, S. C. Joshi, T. R. Hakel, P. Vold, E. L. Schmitt, M. J. Hoffman, N. M. Rauenzahn, R. M. Kagan, G. Tang, X. -Z. Mancini, R. C. Kim, Y. Herrmann, H. W. TI Observation of interspecies ion separation in inertial-confinement-fusion implosions SO EPL LA English DT Article ID DIFFUSION; PLASMAS; OMEGA AB We report direct experimental evidence of interspecies ion separation in direct-drive, inertial-confinement-fusion experiments on the OMEGA laser facility. These experiments, which used plastic capsules with D-2/Ar gas fill (1% Ar by atom), were designed specifically to reveal interspecies ion separation by exploiting the predicted, strong ion thermo-diffusion between ion species of large mass and charge difference. Via detailed analyses of imaging x-ray-spectroscopy data, we extract Ar-atom-fraction radial profiles at different times, and observe both enhancement and depletion compared to the initial 1%-Ar gas fill. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree reasonably, but not exactly, with calculated profiles associated with the incoming and rebounding first shock. Copyright (C) EPLA, 2016 C1 [Hsu, S. C.; Joshi, T. R.; Hakel, P.; Vold, E. L.; Schmitt, M. J.; Hoffman, N. M.; Rauenzahn, R. M.; Kagan, G.; Tang, X. -Z.; Kim, Y.; Herrmann, H. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mancini, R. C.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. RP Hsu, SC (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Joshi, Tirtha/0000-0003-2218-8190; Hakel, Peter/0000-0002-7936-4231; Schmitt, Mark/0000-0002-0197-9180 FU U.S. Department of Energy [DE-AC52-06NA25396] FX We acknowledge R. ARAGONEZ, T. ARCHULETA, J. COBBLE, J. FOOKS, V. GLEBOV, M. SCHOFF, T. SEDILLO, C. SORCE, R. STAERKER, N. WHITING, B. YAAKOBI, and the OMEGA operations team for their support in experimental planning, execution, and providing processed x-ray and neutron data. This work was supported by the LANL ICF and ASC (Advanced Simulation and Computing) Programs under U.S. Department of Energy contract no. DE-AC52-06NA25396. NR 46 TC 0 Z9 0 U1 0 U2 0 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2016 VL 115 IS 6 AR 65001 DI 10.1209/0295-5075/115/65001 PG 7 WC Physics, Multidisciplinary SC Physics GA EC8CW UT WOS:000388368900019 ER PT J AU Phipps, ML Goodwin, PM Martinez, JS Goodwin, EH AF Phipps, Mary Lisa Goodwin, Peter M. Martinez, Jennifer S. Goodwin, Edwin H. TI Super-resolution optical microscopy study of telomere structure SO JOURNAL OF BIOMEDICAL OPTICS LA English DT Article DE super-resolution microscopy; telomere; DNA replication ID MAMMALIAN TELOMERES; FLUORESCENT-PROBES; CRYSTAL-STRUCTURE; DNA; CHROMOSOMES; ENDS; LOOP AB Chromosome ends are shielded from exonucleolytic attack and inappropriate end-joining by terminal structures called telomeres; these structures are potential targets for anticancer drugs. Telomeres are composed of a simple DNA sequence (5'-TTAGGG-3' in humans) repeated more than a thousand times, a short 3' single-stranded overhang, and numerous proteins. Electron microscopy has shown that the 3' overhang pairs with the complementary strand at an internal site creating a small displacement loop and a large double-stranded "t-loop." Our goal is to determine whether all telomeres adopt the t-loop configuration, or whether there are two or more distinct configurations. Progress in optimizing super-resolution (SR) microscopy for this ongoing investigation is reported here. Results suggest that under certain conditions sample preparation procedures may disrupt chromatin by causing loss of nucleosomes. This finding may limit the use of SR microscopy in telomere studies. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Phipps, Mary Lisa; Goodwin, Peter M.; Martinez, Jennifer S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663,Bikini Atoll Rd,SM-30, Los Alamos, NM 84545 USA. [Martinez, Jennifer S.] Los Alamos Natl Lab, Inst Mat Sci, POB 1663,Bikini Atoll Rd,SM-30, Los Alamos, NM 84545 USA. [Goodwin, Edwin H.] New Mexico Consortium, 100 Entrada Dr, Los Alamos, NM 87544 USA. RP Goodwin, EH (reprint author), New Mexico Consortium, 100 Entrada Dr, Los Alamos, NM 87544 USA. EM eds_mail2@msn.com FU National Nuclear Security Administration of the U.S. DOE [DE-AC52-06NA25396] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract No. DE-AC52-06NA25396. NR 19 TC 1 Z9 1 U1 7 U2 7 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1083-3668 EI 1560-2281 J9 J BIOMED OPT JI J. Biomed. Opt. PD SEP PY 2016 VL 21 IS 9 AR 094003 DI 10.1117/1.JBO.21.9.094003 PG 5 WC Biochemical Research Methods; Optics; Radiology, Nuclear Medicine & Medical Imaging SC Biochemistry & Molecular Biology; Optics; Radiology, Nuclear Medicine & Medical Imaging GA EC5YH UT WOS:000388212700026 ER PT J AU Yonkofski, CMR Horner, JA White, MD AF Yonkofski, Catherine M. R. Horner, Jake A. White, Mark D. TI Experimental and numerical investigation of hydrate-guest molecule exchange kinetics SO JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING LA English DT Article DE Methane hydrate; Hydrate-guest molecule exchange; Hydrate kinetics; CH4 replacement; STOMP-HYDT-KE ID METHANE HYDRATE; CARBON-DIOXIDE; MARINE-SEDIMENTS; GLOBAL INVENTORY; GAS AB The 2012 Ignik Sikumi #1 Field Trial in Alaska was designed to test at field scale a methane hydrate production methodology that involves injecting carbon dioxide (CO2) in situ to exchange with methane (CH4) within a hydrate structure, thus releasing the methane for production. Since the completion of the field trial, experimental and numerical investigations have sought to better understand observations in terms of CH4 production and changes to the hydrate bearing formation. Collectively, these insights may lead to more effective strategies for producing CH4 from naturally occurring hydrates. This study presents results from a laboratory experiment performed at conditions experienced during the field trial (8.27 MPa and 275.15 K) to collect data relating to the CH4 molecular exchange process. The experiment intentionally isolated the kinetic guest molecule exchange process from additional hydrate formation and mechanical changes to the hydrate bearing sand. Data were used to inform development of numerical models that were then used to fit key hydrate parameters (bound water saturation, kinetic formation constant, kinetic exchange constant, and preferential exchange weighting factors) and analyze experimental results. Results were in agreement with Observations of preferential CO2/CH4 guest molecule exchange at Ignik Sikumi #1 and from previous experimental studies while providing quantitative estimates of changing hydrate compositions. Additionally, simulations confirmed hydrate behavior and composition profiles otherwise indirectly evidenced by experimental results. (C) 2016 Elsevier B.V. All rights reserved. C1 [Yonkofski, Catherine M. R.; Horner, Jake A.; White, Mark D.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Yonkofski, CMR (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM catherine.yonkofski@pnnl.gov FU U.S. National Energy Technology Laboratory (NETL) [FWP 65213]; Korea Institute of Geoscience and Mineral Resources (KIGAM) under Korea-USA Joint Gas Hydrate Project [65212]; KIGAM FX This study was supported by the U.S. National Energy Technology Laboratory (NETL) under contract FWP 65213 and by the Korea Institute of Geoscience and Mineral Resources (KIGAM) (65212) under the Korea-USA Joint Gas Hydrate Project. The authors greatly appreciate the support of both NETL and KIGAM in the development of the numerical simulator STOMP-HYDT-KE. NR 23 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1875-5100 EI 2212-3865 J9 J NAT GAS SCI ENG JI J. Nat. Gas Sci. Eng. PD SEP PY 2016 VL 35 SI SI BP 1480 EP 1489 DI 10.1016/j.jngse.2016.03.080 PN B PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA EC6LJ UT WOS:000388247300013 ER PT J AU Burke, RL Calle, PP Figueras, MP Green, TM AF Burke, Russell L. Calle, Paul P. Figueras, Miranda P. Green, Timothy M. TI Internal Body Temperatures of an Overwintering Adult Terrapene carolina (Eastern Box Turtle) SO NORTHEASTERN NATURALIST LA English DT Article AB Terrapene carolina (Eastern Box Turtle) is the only turtle species in which adults are known to be tolerant of freezing. We report the first systematically collected data on internal body temperatures of an overwintering Eastern Box Turtle. Despite nearby air temperatures as low as -21.8 degrees C, this turtle probably supercooled rather than froze. Snow cover, thermal inertia, and the insulating effects of its refugium's substrate may have protected this turtle from the very cold conditions. C1 [Burke, Russell L.; Figueras, Miranda P.] Hofstra Univ, Dept Biol, Hempstead, NY 11549 USA. [Calle, Paul P.] Wildlife Conservat Soc, Zool Hlth Program, 2300 Southern Blvd, Bronx, NY 10460 USA. [Green, Timothy M.] Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. RP Burke, RL (reprint author), Hofstra Univ, Dept Biol, Hempstead, NY 11549 USA. EM biorlb@hofstra.edu NR 6 TC 0 Z9 0 U1 2 U2 2 PU HUMBOLDT FIELD RESEARCH INST PI STEUBEN PA PO BOX 9, STEUBEN, ME 04680-0009 USA SN 1092-6194 EI 1938-5307 J9 NORTHEAST NAT JI Northeast. Nat PD SEP PY 2016 VL 23 IS 3 BP 364 EP 366 PG 3 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EC9FG UT WOS:000388449200007 ER PT J AU Basu, S McCrae, JE Fiorino, S Przelomski, J AF Basu, Santasri McCrae, Jack E. Fiorino, Steven Przelomski, Jared TI Estimation of temporal variations in path-averaged atmospheric refractive index gradient from time-lapse imagery SO OPTICAL ENGINEERING LA English DT Article DE refractive index; correlation; imaging; meteorology AB The sea level vertical refractive index gradient in the U.S. Standard Atmosphere model is -2.7 x 10(-8) m(-1) at 500 nm. At any particular location, the actual refractive index gradient varies due to turbulence and local weather conditions. An imaging experiment was conducted to measure the temporal variability of this gradient. A tripod mounted digital camera captured images of a distant building every minute. Atmospheric turbulence caused the images to wander quickly, randomly, and statistically isotropically and changes in the average refractive index gradient along the path caused the images to move vertically and more slowly. The temporal variations of the refractive index gradient were estimated from the slow, vertical motion of the building over a period of several days. Comparisons with observational data showed the gradient variations derived from the time-lapse imagery correlated well with solar heating and other weather conditions. The time-lapse imaging approach has the potential to be used as a validation tool for numerical weather models. These validations will benefit directed energy simulation tools and applications. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. C1 [Basu, Santasri; McCrae, Jack E.; Fiorino, Steven; Przelomski, Jared] US Air Force, Inst Technol, Dept Engn Phys, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA. [Basu, Santasri] Oak Ridge Inst Sci & Educ, 1299 Bethel Valley Rd, Oak Ridge, TN 37830 USA. [Przelomski, Jared] Southwestern Ohio Council Higher Educ, 3155 Res Blvd,Suite 204, Dayton, OH 45420 USA. [Przelomski, Jared] West Chester Univ, Dept Phys, 127 Merion Sci Ctr, W Chester, PA 19383 USA. RP Basu, S (reprint author), US Air Force, Inst Technol, Dept Engn Phys, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA.; Basu, S (reprint author), Oak Ridge Inst Sci & Educ, 1299 Bethel Valley Rd, Oak Ridge, TN 37830 USA. EM santasri.basu.ctr.in@afit.edu FU Air Force Office of Scientific Research (AFOSR) Multidisciplinary Research Program of the University Research Initiative (MURI) Grant FX This work was supported by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary Research Program of the University Research Initiative (MURI) Grant. This research was also supported in part by an appointment at the Air Force Institute of Technology administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and AFIT. The views expressed in this paper are those of the authors and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the U.S. Government. NR 12 TC 0 Z9 0 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD SEP PY 2016 VL 55 IS 9 AR 090503 DI 10.1117/1.OE.55.9.090503 PG 4 WC Optics SC Optics GA EC6FV UT WOS:000388232800003 ER PT J AU Yamaguchi, H Ogawa, S Watanabe, D Hozumi, H Gao, YQ Eda, G Mattevi, C Fujita, T Yoshigoe, A Ishizuka, S Adamska, L Yamada, T Dattelbaum, AM Gupta, G Doorn, SK Velizhanin, KA Teraoka, Y Chen, MW Htoon, H Chhowalla, M Mohite, AD Takakuwa, Y AF Yamaguchi, Hisato Ogawa, Shuichi Watanabe, Daiki Hozumi, Hideaki Gao, Yongqian Eda, Goki Mattevi, Cecilia Fujita, Takeshi Yoshigoe, Akitaka Ishizuka, Shinji Adamska, Lyudmyla Yamada, Takatoshi Dattelbaum, Andrew M. Gupta, Gautam Doorn, Stephen K. Velizhanin, Kirill A. Teraoka, Yuden Chen, Mingwei Htoon, Han Chhowalla, Manish Mohite, Aditya D. Takakuwa, Yuji TI Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article DE Fermi level; graphene oxide; optoelectronic; ultraviolet photoelectron spectroscopy; valence-band electronic structure ID GRAPHITE OXIDE; REDUCTION; TRANSPARENT; STABILITY; TRANSPORT; FILMS AB We report valence-band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. The degree of oxygen functionalization was controlled by annealing temperature, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in the density of states around the Fermi level upon thermal annealing at similar to 600 degrees C. The result indicates that while there is an apparent bandgap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of bandgap closure was correlated with the electrical, chemical, and structural properties to determine a set of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of similar to 500 degrees C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to an as-synthesized counterpart. [GRAPHICS] (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Yamaguchi, Hisato; Dattelbaum, Andrew M.; Gupta, Gautam; Mohite, Aditya D.] Los Alamos Natl Lab, Mat Phys & Applicat MPA Div, MPA Mat Synth & Integrated Devices MSID 11, Mail Stop K763,POB 1663, Los Alamos, NM 87545 USA. [Ogawa, Shuichi; Watanabe, Daiki; Hozumi, Hideaki; Takakuwa, Yuji] Tohoku Univ, IMRAM, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan. [Gao, Yongqian; Doorn, Stephen K.; Htoon, Han] LANL, Ctr Integrated Nanotechnol CINT, MPA Div, Mail Stop K771,POB 1663, Los Alamos, NM 87545 USA. [Eda, Goki] Natl Univ Singapore, Dept Phys, 2 Sci Dr 3, Singapore 117542, Singapore. [Eda, Goki] Natl Univ Singapore, Dept Chem, 3 Sci Dr 3, Singapore 117543, Singapore. [Eda, Goki] Natl Univ Singapore, Graphene Res Ctr, 6 Sci Dr 2, Singapore 117546, Singapore. [Mattevi, Cecilia] Imperial Coll London, Dept Mat, Exhibit Rd, London SW7 2AZ, England. [Fujita, Takeshi; Chen, Mingwei] Tohoku Univ, WPI Adv Inst Mat Res AIMR, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan. [Yoshigoe, Akitaka; Teraoka, Yuden] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Sayo, Hyogo 6795198, Japan. [Ishizuka, Shinji] Akita Natl Coll Technol, Dept Mat Sci & Engn, 1-1 Bunkyo Machi, Akita 0118511, Japan. [Adamska, Lyudmyla; Velizhanin, Kirill A.] LANL, Div Theoret, Phys & Chem Mat T1, Mail Stop B221,POB 1663, Los Alamos, NM 87545 USA. [Adamska, Lyudmyla] LANL, Div Theoret, Ctr Nonlinear Studies CNLS, Mail Stop B258,POB 1663, Los Alamos, NM 87545 USA. [Yamada, Takatoshi] Natl Inst Adv Ind Sci & Technol, Nanotube Res Ctr, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan. [Chhowalla, Manish] Rutgers State Univ, Dept Mat Sci & Engn, 607 Taylor Rd, Piscataway, NJ 08854 USA. [Gao, Yongqian] Nanjing Tech Univ NanjingTech, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect KLOFE, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China. [Gao, Yongqian] Nanjing Tech Univ NanjingTech, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, Inst Adv Mat, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China. RP Yamaguchi, H (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat MPA Div, MPA Mat Synth & Integrated Devices MSID 11, Mail Stop K763,POB 1663, Los Alamos, NM 87545 USA. EM hyamaguchi@lanl.gov; amohite@lanl.gov; takakuwa@tagen.tohoku.ac.jp RI Yamaguchi, Hisato/C-5571-2008; Fujita, Takeshi/B-1867-2009; Velizhanin, Kirill/C-4835-2008; Chen, Mingwei/A-4855-2010; OI Yamaguchi, Hisato/0000-0002-6703-8826; Fujita, Takeshi/0000-0002-2318-0433; Chen, Mingwei/0000-0002-2850-8872; Htoon, Han/0000-0003-3696-2896 FU Rutgers University; Laboratory Directed Research and Development (LDRD) Director's Postdoctoral Fellowship of LANL; Japanese Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research Abroad; LDRD Program; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX The authors acknowledge T. Kaga and S. Takabayashi of Tohoku University, Japan, and E. Cheng and D. Voiry of Rutgers University for the experimental support. The authors also acknowledge Asbury Carbon, NJ for generously supplying the starting graphite powders as a part of their U.S. national laboratory supporting program. H. Y. and M. C. acknowledge Donald H. Jacobs' Chair funding from Rutgers University. H. Y. acknowledges the Laboratory Directed Research and Development (LDRD) Director's Postdoctoral Fellowship of LANL, and the Japanese Society for the Promotion of Science (JSPS) Postdoctoral Fellowship for Research Abroad for financial support. This work was performed under the Cooperative Research Program of the "Network Joint Research Center for Materials and Devices" by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The XPS measurements using synchrotron radiation were performed at BL23SU in SPring-8 under the "Nano-net Project" of the Japan Synchrotron Research Institute (JASRI) and Japan Atomic Energy Agency (JAEA) (proposal Nos. 2010A3874, 2010B3879, and 2014B3874). The research was also supported by the LDRD Program and performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 39 TC 1 Z9 1 U1 12 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1862-6300 EI 1862-6319 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD SEP PY 2016 VL 213 IS 9 BP 2380 EP 2386 DI 10.1002/pssa.201532855 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA EC7KZ UT WOS:000388318600017 ER PT J AU Aguiar, JA Erkan, ME Pruzan, DS Nagaoka, A Yoshino, K Moutinho, H Al-Jassim, M Scarpulla, MA AF Aguiar, Jeffery A. Erkan, Mehmet E. Pruzan, Dennis S. Nagaoka, Akira Yoshino, Kenji Moutinho, Helio Al-Jassim, Mowafak Scarpulla, Michael A. TI Cation ratio fluctuations in Cu2ZnSnS4 at the 20 nm length scale investigated by analytical electron microscopy SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article DE CZTS; inverted structures; nanodomains; STEM ID SOLAR-CELLS; SEMICONDUCTOR; PERFORMANCE; GROWTH; FILMS AB Kesterite Cu2ZnSn(S, Se)(4) (CZTSSe) is a sustainable material for thin-film photovoltaics with device efficiencies greater than 12% have been demonstrated. Despite similar crystal structure and polycrystalline film microstructures, there is widespread evidence for larger-amplitude potential and bandgap fluctuations in CZTS than in the analogous Cu(In, Ga)Se-2 (CIGSe) chalcopyrite material. This disorder is believed to account for a sizable part of the larger open-circuit voltage (VOC) deficit in CZTS devices, yet the detailed origins and length scales of these fluctuations have not been fully elucidated. Herein, we present a transmission electron microscopy study focusing on composition variation within bulk multicrystals of CZTS grown by the travelling heater method (THM). In these slow-cooled, solution grown crystals we find direct evidence for spatial composition fluctuations of amplitude < 1 at.% (similar to 5 x 10(20) cm(-3)) and thus, explainable by point defects. However, rather than being homogeneously-distributed we find a characteristic 20 nm length scale for these fluctuations, which sets a definite length scale for band gap and potential fluctuations. At Sigma 3 grain boundaries, we find no evidence of composition variation compared to the bulk. The finding highlights such variations reported at grain boundaries in polycrystalline thin-films are direct consequences of processing methods and not intrinsic properties of CZTS itself. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Aguiar, Jeffery A.; Moutinho, Helio; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Erkan, Mehmet E.; Scarpulla, Michael A.] Univ Utah, Dept Elect & Comp Engn, Salt Lake City, UT 84112 USA. [Pruzan, Dennis S.; Nagaoka, Akira; Scarpulla, Michael A.] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Nagaoka, Akira; Yoshino, Kenji] Miyazaki Univ, Dept Appl Phys & Elect Engn, Miyazaki 8892192, Japan. RP Aguiar, JA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jeffery.aguiar@nrel.gov OI Aguiar, Jeffery/0000-0001-6101-4762 FU National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program within the U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory - U.S. Department of Energy; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, and Engineering [DE-SC0001630]; NSF MRSEC program at the University of Utah [DMR 1121252]; JSPS Research Fellowships for Young Scientists; JSPS Postdoctoral Fellowships for Research Abroad FX The electron microscopy was supported by the National Renewable Energy Laboratory as a part of the Non-Proprietary Partnering Program under Contract No. DE-AC36-08-GO28308 within the U.S. Department of Energy and also in part by the National Renewable Energy Laboratory, where part of the transmission electron microscopy work was performed, which is sponsored by the U.S. Department of Energy. The data analysis and KPFM efforts of M.A.S., M.E.E., and D.S.P were supported in whole by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, and Engineering under Award DE-SC0001630. The TEM instrument was supported by NSF MRSEC program at the University of Utah under Grant No. DMR 1121252. Parts of the electron microscopy were also conducted as part of a user proposal at Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is a Department of Energy Office of Science User Facility. A.N. acknowledges support from JSPS Research Fellowships for Young Scientists and JSPS Postdoctoral Fellowships for Research Abroad. NR 41 TC 2 Z9 2 U1 5 U2 5 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1862-6300 EI 1862-6319 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD SEP PY 2016 VL 213 IS 9 BP 2392 EP 2399 DI 10.1002/pssa.201600060 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA EC7KZ UT WOS:000388318600019 ER PT J AU Velechovsky, J Limpouch, J Liska, R Tikhonchuk, V AF Velechovsky, J. Limpouch, J. Liska, R. Tikhonchuk, V. TI Hydrodynamic modeling of laser interaction with micro-structured targets SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article DE laser; absorption; foam; modeling; multiscale ID EULERIAN COMPUTING METHOD; NEAR-CRITICAL DENSITY; ENERGY-TRANSPORT; FLOW SPEEDS; PLASMA; IMPRINT; FOAMS; FUSION AB A model is developed for numerical simulations of laser absorption in plasmas made of porous materials, with particular interest in low-density foams. Laser absorption is treated on two spatial scales simultaneously. At the microscale, the expansion of a thin solid pore wall is modeled in one dimension and the information obtained is used in the macroscale fluid simulations for the description of the plasma homogenization behind the ionization front. This two-scale laser absorption model is implemented in the arbitrary Lagrangian-Eulerian hydrocode PALE. The numerical simulations of laser penetration into low-density foams compare favorably with published experimental data. C1 [Velechovsky, J.; Limpouch, J.; Liska, R.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague, Czech Republic. [Velechovsky, J.; Tikhonchuk, V.] Univ Bordeaux, Ctr Lasers Intenses & Applicat, 351 Cours Liberat, F-33405 Talence, France. [Velechovsky, J.] Los Alamos Natl Lab, Fluid Dynam & Solid Mech, T-3,MS B216,POB 1663, Los Alamos, NM 87545 USA. RP Limpouch, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, CR-11519 Prague, Czech Republic. EM jiri.limpouch@fjfi.cvut.cz FU Czech Technical University [SGS13/220/OHK4/3T/14]; Ministry of Education, Youth, and Sports of the Czech Repubulic [LD14089]; European Union [633053] FX This research has been supported in parts by the Czech Technical University grant SGS13/220/OHK4/3T/14 and by the Ministry of Education, Youth, and Sports of the Czech Repubulic (project LD14089). This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement number 633053. The authors benefited from the international environment of the COST action MP1208. The authors thank to Dr Natalya Borisenko and Dr Wigen Nazarov for enlightening discussions on the foam microstructure. We thank anonymous reviewers for their constructive comments. NR 33 TC 0 Z9 0 U1 10 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD SEP PY 2016 VL 58 IS 9 AR 095004 DI 10.1088/0741-3335/58/9/095004 PG 8 WC Physics, Fluids & Plasmas SC Physics GA EC9BK UT WOS:000388438300001 ER PT J AU Fremling, C Sollerman, J Taddia, F Ergon, M Fraser, M Karamehmetoglu, E Valenti, S Jerkstrand, A Arcavi, I Bufano, F Rosa, NE Filippenko, AV Fox, D Gal-Yam, A Howell, DA Kotak, R Mazzali, P Milisavljevic, D Nugent, PE Nyholm, A Pian, E Smartt, S AF Fremling, C. Sollerman, J. Taddia, F. Ergon, M. Fraser, M. Karamehmetoglu, E. Valenti, S. Jerkstrand, A. Arcavi, I. Bufano, F. Rosa, N. Elias Filippenko, A. V. Fox, D. Gal-Yam, A. Howell, D. A. Kotak, R. Mazzali, P. Milisavljevic, D. Nugent, P. E. Nyholm, A. Pian, E. Smartt, S. TI PTF12os and iPTF13bvn Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE supernovae: general; supernovae: individual: PTF12os; galaxies: individual: NGC 5806 techniques: image processing; supernovae: individual: iPTF13bvn ID DIGITAL SKY SURVEY; ULTRA-VIOLET/OPTICAL TELESCOPE; CORE-COLLAPSE SUPERNOVAE; LIGHT CURVES; IB SUPERNOVA; SN 2011DH; NITROGEN ABUNDANCES; BINARY PROGENITOR; IIB SUPERNOVAE; STARS AB Context. We investigate two stripped-envelope supernovae (SNe) discovered in the nearby galaxy NGC 5806 by the (intermediate) Palomar Transient Factory [(i) PTF]. These SNe, designated PTF12os/SN 2012P and iPTF13bvn, exploded within similar to 520 days of one another at a similar distance from the host-galaxy center. We classify PTF12os as a Type IIb SN based on our spectral sequence; iPTF13bvn has previously been classified as Type Ib having a likely progenitor with zero age main sequence (ZAMS) mass below similar to 17 M-circle dot. Because of the shared and nearby host, we are presented with a unique opportunity to compare these two SNe. Aims. Our main objective is to constrain the explosion parameters of iPTF12os and iPTF13bvn, and to put constraints on the SN progenitors. We also aim to spatially map the metallicity in the host galaxy, and to investigate the presence of hydrogen in early-time spectra of both SNe. Methods. We present comprehensive datasets collected on PTF12os and iPTF13bvn, and introduce a new automatic referencesubtraction photometry pipeline (FPipe) currently in use by the iPTF. We perform a detailed study of the light curves (LCs) and spectral evolution of the SNe. The bolometric LCs are modeled using the hydrodynamical code hyde. We analyze early spectra of both SNe to investigate the presence of hydrogen; for iPTF13bvn we also investigate the regions of the Paschen lines in infrared spectra. We perform spectral line analysis of helium and iron lines to map the ejecta structure of both SNe. We use nebular models and late-time spectroscopy to constrain the ZAMS mass of the progenitors. We also perform image registration of ground-based images of PTF12os to archival HST images of NGC 5806 to identify a potential progenitor candidate. Results. We find that our nebular spectroscopy of iPTF13bvn remains consistent with a low-mass progenitor, likely having a ZAMS mass of similar to 12 M-circle dot. Our late-time spectroscopy of PTF12os is consistent with a ZAMS mass of similar to 15 M-circle dot. We successfully identify a source in pre-explosion HST images coincident with PTF12os. The colors and absolute magnitude of this object are consistent between pre-explosion and late-time HST images, implying it is a cluster of massive stars. Our hydrodynamical modeling suggests that the progenitor of PTF12os had a compact He core with a mass of 3.25(-0.56)(+0.77) M-circle dot at the time of the explosion, which had a total kinetic energy of 0.54(-0.25)(+0.41) x 10(51) erg and synthesized 0.063(-0.011)(+0.020) M-circle dot of strongly mixed Ni-56. Spectral comparisons to the Type IIb SN 2011dh indicate that the progenitor of PTF12os was surrounded by a thin hydrogen envelope with a mass lower than 0.02 M-circle dot. We also find tentative evidence that the progenitor of iPTF13bvn could have been surrounded by a small amount of hydrogen prior to the explosion. This result is supported by possible weak signals of hydrogen in both optical and infrared spectra. C1 [Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Karamehmetoglu, E.; Nyholm, A.] Stockholm Univ, AlbaNova, Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden. [Fraser, M.] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England. [Valenti, S.; Arcavi, I.] Las Cumbres Observ Global Telescope Network, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Jerkstrand, A.; Kotak, R.; Smartt, S.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Arcavi, I.; Gal-Yam, A.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Bufano, F.] INAF Osservatorio Astrofis Catania, Via Santa Sofia 78, I-95123 Catania, Italy. [Rosa, N. Elias] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy. [Filippenko, A. V.; Nugent, P. E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Fox, D.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Broida Hall, Santa Barbara, CA 93106 USA. [Mazzali, P.] Liverpool John Moores Univ, Astrophys Res Inst, Liverpool L3 5RF, Merseyside, England. [Mazzali, P.] Max Planck Inst Astrophys, Karl Schwarzschild Str 1, D-85748 Garching, Germany. [Milisavljevic, D.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Nugent, P. E.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 50B-4206, Berkeley, CA 94720 USA. [Pian, E.] Inst Space Astrophys & Cosm Phys, INAF, Via P Gobetti 101, I-40129 Bologna, Italy. [Pian, E.] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. RP Fremling, C (reprint author), Stockholm Univ, AlbaNova, Oskar Klein Ctr, Dept Astron, S-10691 Stockholm, Sweden. EM christoffer.fremling@astro.su.se RI Elias-Rosa, Nancy/D-3759-2014; OI Elias-Rosa, Nancy/0000-0002-1381-9125; Kotak, Rubina/0000-0001-5455-3653 FU Knut and Alice Wallenberg Foundation; Swedish Research Council; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; W.M. Keck Foundation; ESO-NTT large programme [184.D-1140]; ESO Telescopes at the La Silla Paranal Observatory [093.D-0199(A)]; EU/FP7 via ERC grant [307260]; Quantum Universe I-Core program by the Israeli Committee for Planning and Budgeting; Minerva grant; ISF grant; Weizmann-UK making connections program; Kimmel award; ARCHES award; NASA/HST grant from the Space Telescope Science Institute [AR-14295]; NASA [NAS5-26555]; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916]; PRIN-INAF with the project: Transient Universe: unveiling new types of stellar explosions with PESSTO; European Union FP7 program though ERC grant [320360]; European Research Council under the European Union's Seventh Framework Programme (FP7)/ERC Grant [291222] FX We gratefully acknowledge support from the Knut and Alice Wallenberg Foundation. The Oskar Klein Centre is funded by the Swedish Research Council. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We acknowledge help from Rob Fesen, Craig Wheeler, and Shazrene Mohamed with the SALT data, as well as Jeffrey Silverman for help with the Keck data. We thank Alastair Bruce for assistance with the WHT observing and data reduction. We especially thank Shri Kulkarni, Mansi Kasliwal, Yi Cao, Anna-Lisa de Cia, Jerod Parrent, Assaf Horesh, Tom Matheson, Melissa Graham, Dan Perley, Eric Bellm, Ofer Yaron, Yen-Chen Pan and Kelsey Clubb for help with observations and/or reductions within the PTF effort. We also acknowledge observers, organizers, and data reducers who participated in the BLP 2012P campaign, in particular Andrea Pastorello, Max Stritzinger, Cosimo Inserra, Flora Cellier-Holzem, Luca Borsato, Valerio Nascimbeni, Stefano Benetti, and Stefan Taubenberger. We thank Doug Leonard for discussions regarding complementary MLO data. This work is partly based on observations obtained with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain. We acknowledge the exceptional support we received from the NOT staff throughout this campaign. Also based in part on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in the island of La Palma. This work is based in part on observations from the LCOGT network. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W.M. Keck Foundation. Research at Lick Observatory is partially supported by a generous gift from Google. CAFOS, AFOSC, and EFOSC2 data were taken within the European supernova collaboration involved in the ESO-NTT large programme 184.D-1140 led by Stefano Benetti. Partially based on observations collected at Copernico telescope (Asiago, Italy) of the INAF - Osservatorio Astronomico di Padova, and the 2.2 m Telescope of the Centro Astronomico Hispano-Aleman, Calar Alto, Spain. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), and Ministerio da Ciencia, Tecnologia e Inovacao (Brazil). The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. Some of the observations reported in this paper were obtained with the Southern African Large Telescope (SALT).; This paper is partly based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Partially based on observations obtained with the Apache Point Observatory 3.5-m telescope, which is owned and operated by the Astrophysical Research Consortium. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Based in part on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme 093.D-0199(A). We are grateful for the assistance of the staff members at all observatories where we obtained data. A.G.-Y. is supported by the EU/FP7 via ERC grant No. 307260, the Quantum Universe I-Core program by the Israeli Committee for Planning and Budgeting; by Minerva and ISF grants; by the Weizmann-UK making connections program; and by Kimmel and ARCHES awards. A.V.F.'s research is supported by NASA/HST grant AR-14295 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555; additional financial assistance was provided by the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. N.E.R. is supported by the PRIN-INAF 2014 with the project: Transient Universe: unveiling new types of stellar explosions with PESSTO. This work was partly supported by the European Union FP7 program though ERC grant number 320360. We acknowledge funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no [291222]. NR 100 TC 4 Z9 4 U1 1 U2 1 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2016 VL 593 AR A68 DI 10.1051/0004-6361/201628275 PG 27 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4HU UT WOS:000385820100054 ER PT J AU Bai, FF Wang, XR Liu, YL Liu, XY Xiang, Y Liu, Y AF Bai, Feifei Wang, Xiaoru Liu, Yilu Liu, Xinyu Xiang, Yue Liu, Yong TI Measurement-based Frequency Dynamic Response Estimation Using Geometric Template Matching and Recurrent Artificial Neural Network SO CSEE JOURNAL OF POWER AND ENERGY SYSTEMS LA English DT Article DE Artificial neural network; clustering; dynamic response estimation; geometric template matching; radial basis function ID VOLTAGE STABILITY ASSESSMENT; STATE ESTIMATION; POWER-SYSTEMS; PREDICTION; GENERATORS; MODEL AB Understanding power system dynamics after an event occurs is essential for the purpose of online stability assessment and control applications. Wide area measurement systems (WAMS) based on synchrophasors make power system dynamics visible to system operators, delivering an accurate picture of overall operating conditions. However, in actual field implementations, some measurements can be inaccessible for various reasons, e.g., most notably communication failure. To reconstruct these inaccessible measurements, in this paper, the radial basis function artificial neural network (RBF-ANN) is used to estimate the system dynamics. In order to find the best input features of the RBF-ANN model, geometric template matching (GeTeM) and quality-threshold (QT) clustering are employed from the time series analysis to compute the similarity of frequency dynamic responses in different locations of the power system. The proposed method is tested and verified on the Eastern Interconnection (EI) transmission system in the United States. The results obtained indicate that the proposed approach provides a compact and efficient RBF-ANN model that accurately estimates the inaccessible frequency dynamic responses under different operating conditions and with fewer inputs. C1 [Bai, Feifei; Wang, Xiaoru; Liu, Xinyu] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Peoples R China. [Liu, Yilu; Liu, Yong] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Liu, Yong] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Xiang, Yue] Sichuan Univ, Sch Elect Engn & Informat, Chengdu 610065, Peoples R China. RP Wang, XR (reprint author), Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 610031, Peoples R China. EM xrwang@home.swjtu.edu.cn NR 46 TC 0 Z9 0 U1 0 U2 0 PU CHINA ELECTRIC POWER RESEARCH INST PI BEIJING PA 15, QINGHE XIAOYING DONG LU, HAIDIAN-QU, BEIJING, 100192, PEOPLES R CHINA SN 2096-0042 J9 CSEE J POWER ENERGY JI CSEE J. Power Energy Syst. PD SEP PY 2016 VL 2 IS 3 BP 10 EP 18 DI 10.17775/CSEEJPES.2016.00030 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA EC0FW UT WOS:000387775000002 ER PT J AU Houghton, JL Foustoukos, DI Flynn, TM Vetriani, C Bradley, AS Fike, DA AF Houghton, J. L. Foustoukos, D. I. Flynn, T. M. Vetriani, C. Bradley, Alexander S. Fike, D. A. TI Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID INORGANIC SULFUR-COMPOUNDS; PARACOCCUS-DENITRIFICANS GB17; C SULFIDE DEHYDROGENASE; SPECIES LIVING TREE; ELEMENTAL SULFUR; THIOBACILLUS-VERSUTUS; CHROMATIUM-VINOSUM; PANTOTROPHUS GB17; HYDROGEN-SULFIDE; MARINE SEDIMENT AB Previous studies of the stoichiometry of thiosulfate oxidation by colorless sulfur bacteria have failed to demonstrate mass balance of sulfur, indicating that unidentified oxidized products must be present. Here the reaction stoichiometry and kinetics under variable pH conditions during the growth of Thiomicrospira thermophila strain EPR85, isolated from diffuse hydrothermal fluids at the East Pacific Rise, is presented. At pH 8.0, thiosulfate was stoichiometrically converted to sulfate. At lower pH, the products of thiosulfate oxidation were extracellular elemental sulfur and sulfate. We were able to replicate previous experiments and identify the missing sulfur as tetrathionate, consistent with previous reports of the activity of thiosulfate dehydrogenase. Tetrathionate was formed under slightly acidic conditions. Genomic DNA from T. thermophila strain EPR85 contains genes homologous to those in the Sox pathway (soxAXYZBCDL), as well as rhodanese and thiosulfate dehydrogenase. No other sulfur oxidizing bacteria containing sox(CD) 2 genes have been reported to produce extracellular elemental sulfur. If the apparent modified Sox pathway we observed in T. thermophila is present in marine Thiobacillus and Thiomicrospira species, production of extracellular elemental sulfur may be biogeochemically important in marine sulfur cycling. C1 [Houghton, J. L.; Bradley, Alexander S.; Fike, D. A.] Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. [Foustoukos, D. I.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Flynn, T. M.] Argonne Natl Lab, Biosci Div, Lemont, IL 60439 USA. [Flynn, T. M.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Vetriani, C.] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08901 USA. [Vetriani, C.] Rutgers State Univ, Inst Earth Ocean & Atmospher Sci, New Brunswick, NJ 08901 USA. RP Houghton, JL (reprint author), Washington Univ, Dept Earth & Planetary Sci, St Louis, MO 63130 USA. EM jhoughton@levee.wustl.edu OI Flynn, Theodore/0000-0002-1838-8942 FU NCI Cancer Center [P30 CA91842]; ICTS/CTSA from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH) [UL1 TR000448]; NIH Roadmap for Medical Research; Subsurface Science Scientific Focus Area at Argonne National Laboratory - Subsurface Biogeochemical Research Program, U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research, under DOE [DE-AC02-06CH11357]; NSF [OCE-1155346, EAR-1124389, OCE 03-27353, MCB 04-56676, OCE 11-36451, OCE 1038114, 1136608, 1155246]; Packard Fellowship FX We thank the Genome Technology Access Center in the Department of Genetics at Washington University School of Medicine for help with genomic analysis. The Center is partially supported by NCI Cancer Center Support Grant #P30 CA91842 to the Siteman Cancer Center and by ICTS/CTSA Grant# UL1 TR000448 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), and NIH Roadmap for Medical Research. This publication is solely the responsibility of the authors and does not necessarily represent the official view of NCRR or NIH. T.M.F. was supported by the Subsurface Science Scientific Focus Area at Argonne National Laboratory supported by the Subsurface Biogeochemical Research Program, U.S. Department of Energy (DOE) Office of Science, Office of Biological and Environmental Research, under DOE contract DE-AC02-06CH11357. We thank an anonymous reviewer for helpful suggestions that improved this manuscript. We also thank Michael Hugler, K. Adam Bohnert and Melitza Crespo-Medina for technical assistance in the enrichment and isolation of strain EPR 85. This research was supported by funding to D.A.F. and J.H.L from NSF (OCE-1155346; EAR-1124389), to C.V. from NSF (OCE 03-27353, MCB 04-56676 and OCE 11-36451), to D.F. from NSF (OCE 1038114, 1136608 and 1155246) and a Packard Fellowship to D.A.F. NR 73 TC 0 Z9 0 U1 4 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD SEP PY 2016 VL 18 IS 9 SI SI BP 3057 EP 3072 DI 10.1111/1462-2920.13232 PG 16 WC Microbiology SC Microbiology GA EB7FB UT WOS:000387550700023 PM 26914243 ER PT J AU Capar, J Zonneveld, J Berg, S Isaksson, J Gagnon, KJ Thomas, KE Ghosh, A AF Capar, Jan Zonneveld, Job Berg, Steffen Isaksson, Johan Gagnon, Kevin J. Thomas, Kolle E. Ghosh, Abhik TI Demetalation of copper undecaarylcorroles: Molecular structures of a free-base undecaarylisocorrole and a gold undecaarylcorrole SO JOURNAL OF INORGANIC BIOCHEMISTRY LA English DT Article DE Isocorrole; Corrole; Gold; Reductive demetalation ID REDUCTIVE DEMETALATION; MESOSUBSTITUTED CORROLES; METAL CORROLES; CHEMISTRY; TRIARYLCORROLES; ISOCORROLES; ABSORPTION AB Copper undecaarylcorroles were found to undergo acid-induced demetalation with unusual ease under both reductive and nonreductive conditions. The resulting free-base undecaarylcorroles were found to be rather reactive, readily photooxygenating to yield 5/10-hydroxyisocorroles and open-chain tetrapyrroles. The use of nonreductive conditions led to 50-75% yields of undecaarylisocorroles, a new class of sterically hindered ligands, of which one proved amenable to single-crystal X-ray structural analysis. In one case, interaction of an undecaarylisocorrole with gold(III) acetate resulted in aromatization of the macrocycle and a gold undecaarylcorrole. The Au complex exhibited Au-N distances of 1.941(3)-1.965(3) angstrom, and no significant non bonded interactions involving the gold. The significant solubility of this complex in organic solvents, compared with the relative insolubility of gold beta-octabromo-meso-triarylcorroles, appears to be related to the lack of aurophilic and metallophilic interactions. (C) 2016 Elsevier Inc. All rights reserved. C1 [Capar, Jan; Zonneveld, Job; Berg, Steffen; Isaksson, Johan; Thomas, Kolle E.; Ghosh, Abhik] Univ Tromso, Dept Chem, N-9037 Tromso, Norway. [Capar, Jan; Zonneveld, Job; Berg, Steffen; Isaksson, Johan; Thomas, Kolle E.; Ghosh, Abhik] Univ Tromso, Ctr Theoret & Computat Chem, N-9037 Tromso, Norway. [Gagnon, Kevin J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Thomas, KE; Ghosh, A (reprint author), Univ Tromso, Dept Chem, N-9037 Tromso, Norway.; Thomas, KE; Ghosh, A (reprint author), Univ Tromso, Ctr Theoret & Computat Chem, N-9037 Tromso, Norway. EM thomas.kolle@uit.no; abhik.ghosh@uit.no OI Ghosh, Abhik/0000-0003-1161-6364 NR 35 TC 2 Z9 2 U1 1 U2 1 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0162-0134 EI 1873-3344 J9 J INORG BIOCHEM JI J. Inorg. Biochem. PD SEP PY 2016 VL 162 BP 146 EP 153 DI 10.1016/j.jinorgbio.2016.06.026 PG 8 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA EC3XE UT WOS:000388059600016 PM 27394061 ER PT J AU Daumann, LJ Werther, P Ziegler, MJ Raymond, KN AF Daumann, Lena J. Werther, Philipp Ziegler, Michael J. Raymond, Kenneth N. TI Siderophore inspired tetra- and octadentate antenna ligands for luminescent Eu(III) and Tb(III) complexes SO JOURNAL OF INORGANIC BIOCHEMISTRY LA English DT Article DE Luminescent lanthanides; Siderophore inspired ligands; Antenna; Europium; Terbium ID RARE-EARTH-ELEMENTS; LANTHANIDE LUMINESCENCE; SEQUESTERING AGENTS; HIGHLY LUMINESCENT; QUANTUM YIELDS; RADIATIVE LIFETIME; ENERGY-TRANSFER; TRIPLET-STATES; EU-III; ACTINIDES AB Following the success of the siderophore-inspired 1,2-hydroxypyridonate (HOPO) and 2-hydroxisophthalamide (IAM) chromophores in Eu(III) and Tb(III) luminescence, we designed three new ligands bearing both chromophores. Syntheses of the octadentate ligands 3,4,3-LI-IAM-1,2-HOPO and 3,4,3-LI-1,2-HOPO-IAM, where the chromophores are attached to different positions in the (LI = linear) spermine backbone, are reported in addition to a tetradentate ligand based on 1,5-diaminopentane. The Gd(III) complexes were prepared and revealed localized triplet states typical for the IAM and HOPO chromophores. Photophysical characterization of the Eu(III) and Tb(III) complexes revealed that the chromophores need to reside at a primary amine of the spermine backbone to be efficient in lanthanide excitation. These systems help us to understand the antenna effect in siderophore inspired chromophores and could be potential targets for sensing and biological imaging applications. (C) 2016 Elsevier Inc. All rights reserved. C1 Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM raymond@socrates.berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231]; Alexander von Humboldt foundation; German Academic Exchange Service (DAAD); NSF [CHE-0233882, CHE-0840505] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. LJD is grateful for a fellowship of the Alexander von Humboldt foundation. PW and MJZ wish to acknowledge PROMOS scholarships of the German Academic Exchange Service (DAAD). The Molecular Graphics and Computation Facility is supported by the NSF CHE-0233882 and CHE-0840505 grants. The authors thank Dr. Nicola Alzakhem for helpful discussions. NR 57 TC 0 Z9 0 U1 16 U2 16 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0162-0134 EI 1873-3344 J9 J INORG BIOCHEM JI J. Inorg. Biochem. PD SEP PY 2016 VL 162 BP 263 EP 273 DI 10.1016/j.jinorgbio.2016.01.006 PG 11 WC Biochemistry & Molecular Biology; Chemistry, Inorganic & Nuclear SC Biochemistry & Molecular Biology; Chemistry GA EC3XE UT WOS:000388059600029 PM 26832605 ER PT J AU Aurisano, A Radovic, A Rocco, D Himmel, A Messier, MD Niner, E Pawloski, G Psihas, F Sousa, A Vahle, P AF Aurisano, A. Radovic, A. Rocco, D. Himmel, A. Messier, M. D. Niner, E. Pawloski, G. Psihas, F. Sousa, A. Vahle, P. TI A convolutional neural network neutrino event classifier SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Particle identification methods; Pattern recognition, cluster finding, calibration and fitting methods; Neutrino detectors; Particle tracking detectors ID HIGH-ENERGY; DETECTOR; PERFORMANCE; DESIGN AB Convolutional neural networks (CNNs) have been widely applied in the computer vision community to solve complex problems in image recognition and analysis. We describe an application of the CNN technology to the problem of identifying particle interactions in sampling calorimeters used commonly in high energy physics and high energy neutrino physics in particular. Following a discussion of the core concepts of CNNs and recent innovations in CNN architectures related to the field of deep learning, we outline a specific application to the NOvA neutrino detector. This algorithm, CVN (Convolutional Visual Network) identifies neutrino interactions based on their topology without the need for detailed reconstruction and outperforms algorithms currently in use by the NOvA collaboration. C1 [Aurisano, A.; Sousa, A.] Univ Cincinnati, Dept Phys, 2600 Clifton Ave, Cincinnati, OH 45220 USA. [Radovic, A.; Vahle, P.] William & Mary, Dept Phys, POB 8795, Williamsburg, VA 23187 USA. [Rocco, D.; Pawloski, G.] Univ Minnesota Twin Cities, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. [Himmel, A.; Niner, E.] Fermilab Natl Accelerator Lab, Neutrino Div, Wilson St & Kirk Rd, Batavia, IL 60510 USA. [Messier, M. D.; Psihas, F.] Indiana Univ, Dept Phys, 107 S Indiana Ave, Bloomington, IN 47405 USA. RP Aurisano, A (reprint author), Univ Cincinnati, Dept Phys, 2600 Clifton Ave, Cincinnati, OH 45220 USA.; Radovic, A (reprint author), William & Mary, Dept Phys, POB 8795, Williamsburg, VA 23187 USA.; Rocco, D (reprint author), Univ Minnesota Twin Cities, Sch Phys & Astron, 116 Church St SE, Minneapolis, MN 55455 USA. EM aurisaam@ucmail.uc.edu; aradovic@wm.edu; rocco@physics.umn.edu FU US Department of Energy; US National Science Foundation; Department of Science and Technology, India; European Research Council; MSMT CR, Czech Republic; RAS, Russia; RMES, Russia; RFBR, Russia; CNPq, Brazil; FAPEG, Brazil; State of Minnesota; US DOE [De-AC02-07CH11359]; University of Minnesota FX This work was supported by the US Department of Energy and the US National Science Foundation. NOvA receives additional support from the Department of Science and Technology, India; the European Research Council; the MSMT CR, Czech Republic; the RAS, RMES, and RFBR, Russia; CNPq and FAPEG, Brazil; and the State and University of Minnesota. We are grateful for the contributions of the staff at the Ash River Laboratory, Argonne National Laboratory, and Fermilab. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the US DOE. NR 56 TC 2 Z9 2 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2016 VL 11 AR P09001 DI 10.1088/1748-0221/11/09/P09001 PG 22 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EC1KB UT WOS:000387862300001 ER PT J AU Kume, N Miyadera, H Morris, CL Bacon, J Borozdin, KN Durham, JM Fuzita, K Guardincerri, E Izumi, M Nakayama, K Saltus, M Sugita, T Takakura, K Yoshioka, K AF Kume, N. Miyadera, H. Morris, C. L. Bacon, J. Borozdin, K. N. Durham, J. M. Fuzita, K. Guardincerri, E. Izumi, M. Nakayama, K. Saltus, M. Sugita, T. Takakura, K. Yoshioka, K. TI Muon trackers for imaging a nuclear reactor SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Detection of defects; Detection of explosives; Radiation monitoring; Search for radioactive and fissile materials ID COSMIC-RAY MUONS; INNER-STRUCTURE; FEASIBILITY; RADIOGRAPHY AB A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2x7.2-m(2) area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-mu Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3m when the core is imaged from outside the reactor building. C1 [Kume, N.; Miyadera, H.; Fuzita, K.; Izumi, M.; Nakayama, K.; Sugita, T.; Takakura, K.; Yoshioka, K.] Toshiba Co Ltd, Isogo Ku, 8 Shinsugita Cho, Yokohama, Kanagawa 2358523, Japan. [Morris, C. L.; Bacon, J.; Durham, J. M.; Guardincerri, E.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Borozdin, K. N.; Saltus, M.] Decis Sci Int Corp, 12345 First Amer Way, Poway, CA 92064 USA. RP Miyadera, H (reprint author), Toshiba Co Ltd, Isogo Ku, 8 Shinsugita Cho, Yokohama, Kanagawa 2358523, Japan. EM haruo.miyadera@toshiba.co.jp FU U.S. Department of Energy [DE-AC5206NA25396]; Toshiba Corporation [NFE-14-0019] FX Part of this work was performed under the auspices of the U.S. Department of Energy under Contract DE-AC5206NA25396 with funding provided by Toshiba Corporation under agreement NFE-14-0019. NR 19 TC 0 Z9 0 U1 7 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2016 VL 11 AR P09008 DI 10.1088/1748-0221/11/09/P09008 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EC1KB UT WOS:000387862300008 ER PT J AU Okamura, M AF Okamura, M. TI Laser ion source for high brightness heavy ion beam SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Conference on Plasma Physics by Laser and Applications (PPLA) CY OCT 05-07, 2015 CL ENEA Res Ctr, Frascati, ITALY HO ENEA Res Ctr DE Ion sources (positive ions, negative ions, electron cyclotron resonance (ECR), electron beam (EBIS)); Accelerator Applications; Accelerator Subsystems and Technologies ID INITIAL VELOCITY; SPACE-CHARGE; CURRENTS AB A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation. C1 [Okamura, M.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Okamura, M (reprint author), Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. EM okamura@bnl.gov NR 17 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2016 VL 11 AR C09004 DI 10.1088/1748-0221/11/09/C09004 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EC1KA UT WOS:000387862200004 ER PT J AU Wang, MH Nosochkov, Y Cai, Y Palmer, M AF Wang, M-H. Nosochkov, Y. Cai, Y. Palmer, M. TI Design of a 6 TeV muon collider SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Beam dynamics; Beam Optics AB A preliminary lattice design of a muon collider ring with the center-of-mass (CM) energy of 6 TeV is presented. The ring circumference is 6.3 km, and the beta function at collision point beta* = 1 cm in each plane. The ring linear optics, a local non-linear chromaticity compensation in the Interaction Region (IR), additional IR non-linear correction knobs, and the effects of non-linear fringe field are discussed. Magnet specifications are based on the maximum pole-tip field of 20 T in dipoles and 15 T in quadrupoles. Careful compensation of the non-linear chromatic and amplitude dependent effects provides a sufficiently large dynamic aperture for the momentum range of up to +/- 0.5% without considering magnet errors. C1 [Wang, M-H.; Nosochkov, Y.; Cai, Y.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Palmer, M.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Wang, MH (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM mhwang@slac.stanford.edu NR 13 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD SEP PY 2016 VL 11 AR P09003 DI 10.1088/1748-0221/11/09/P09003 PG 20 WC Instruments & Instrumentation SC Instruments & Instrumentation GA EC1KB UT WOS:000387862300003 ER PT J AU Seales, M Dilmore, RM Ertekin, T Wang, JY AF Seales, Maxian Dilmore, Robert M. Ertekin, Turgay Wang, John Y. TI Development of a halite dissolution numerical model for hydraulically fractured shale formations (Part I) SO JOURNAL OF UNCONVENTIONAL OIL AND GAS RESOURCES LA English DT Article DE Marcellus shale; Flowback water; Halite dissolution; DPDP ID WATER; ELECTROLYTES AB Gas-shales are gas bearing organic-rich mudstone with extensive natural fractures. Matrix permeability is typically in the region of 10 (4) mD or less, and pore throat sizes are in the vicinity of 100-1000 nm. Consequently, stimulation is required to achieve economic gas recovery rates. Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating such formations. The injected fracture fluid typically contains 1-7% KCL for the purpose of clay stabilization. However chemical analysis of the flowback water shows that it contains 10-20 times more dissolved solids than the injected fluid; total dissolve solids (TDS) can be as high as 197,000 mg/L with chloride levels alone being as much as 1,510,000 mg/L (Haluszczak et al., 2013). This paper outlines the development and validation of a fully implicit fluid transport and halite dissolution numerical model that is used to predict and analyze the ionic compositions of flowback water from hydraulically fractured shale formations. The simulator is designed to predict the concentration of Na+ and Cl , which are the two most predominant ionic species in flowback water. The paper presents a method for numerically simulating halite dissolution using the dual porosity dual permeability paradigm (DPDP) as the foundation for fluid transport in fractured reservoir. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Seales, Maxian; Ertekin, Turgay; Wang, John Y.] Penn State Univ, University Pk, PA 16802 USA. [Dilmore, Robert M.] Natl Energy Technol Lab, Pittsburgh, PA USA. RP Seales, M (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM maxian_seales@yahoo.com; Robert.Dilmore@NETL.DOE.GOV; eur@psu.edu; john.wang@psu.edu NR 25 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-3976 J9 J UNCONV OIL GAS RES JI J. Unconv. Oil Gas Resour. PD SEP PY 2016 VL 15 BP 66 EP 78 DI 10.1016/j.juogr.2016.05.002 PG 13 WC Engineering, Petroleum SC Engineering GA EC3FV UT WOS:000388012300006 ER PT J AU Brady, PV Bryan, CR Thyne, G Li, HN AF Brady, Patrick V. Bryan, Charles R. Thyne, Geoffrey Li, Huina TI Altering wettability to recover more oil from tight formations SO JOURNAL OF UNCONVENTIONAL OIL AND GAS RESOURCES LA English DT Article DE EOR; IOR; Waterflooding; Wettability AB We describe here a method for modifying the bulk composition (pH, salinity, hardness) of fracturing fluids and overflushes to modify wettability and increase oil recovery from tight formations. Oil wetting of tight formations is usually controlled by adhesion to illite, kerogen, or both; adhesion to carbonate minerals may also play a role when clays are minor. Oil-illite adhesion is sensitive to salinity, dissolved divalent cation content, and pH. We measure adhesion between middle Bakken formation oil and core to verify a surface complexation model of reservoir wettability. The agreement between the model and experiments suggests that wettability trends in tight formations can be quantitatively predicted and that the bulk compositions of fracturing fluid and overflush compositions might be individually tailored to increase oil recovery. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Brady, Patrick V.; Bryan, Charles R.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Thyne, Geoffrey] Sci Based Solut, Laramie, WY USA. [Li, Huina] Statoil Gulf Serv LLC, Houston, TX USA. RP Brady, PV (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 26 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-3976 J9 J UNCONV OIL GAS RES JI J. Unconv. Oil Gas Resour. PD SEP PY 2016 VL 15 BP 79 EP 83 DI 10.1016/j.juogr.2016.05.004 PG 5 WC Engineering, Petroleum SC Engineering GA EC3FV UT WOS:000388012300007 ER PT J AU Diaz-Torres, R Menelaou, M Gonzalez-Campo, A Teat, SJ Sanudo, EC Soler, M Aliaga-Alcalde, N AF Diaz-Torres, Raul Menelaou, Melita Gonzalez-Campo, Arantzazu Teat, Simon J. Carolina Sanudo, E. Soler, Monica Aliaga-Alcalde, Nuria TI Comparative Magnetic Studies in the Solid State and Solution of Two Isostructural 1D Coordination Polymers Containing Co-II/Ni-II-Curcuminoid Moieties SO MAGNETOCHEMISTRY LA English DT Article DE curcumin derivatives; curcuminoid; building block; 1D coordination chain; SMM; SCM; slow relaxation of magnetization; paramagnetic NMR; fluorescence; AFM; HOPG surface ID SINGLE-MOLECULE MAGNET; BUILDING-BLOCK; CHAIN MAGNETS; ANISOTROPY; FLUORESCENCE; RELAXATION; COMPLEXES; LIGAND AB Two novel 1D coordination chains containing the curcuminoid (CCMoid) ligand 9Accm have been characterized: [Co-II(9Accm) 2(4,4'-bpy)](n) (1) and [Ni-II(9Accm) 2(4,4'-bpy)](n) (2). The two compounds were synthesized by solvothermal and microwave (MW) assisted techniques, respectively, and crystals of both systems were directly obtained from the mother solutions. Crystal structures of 1 and 2 prove that both systems are isostructural, with the ligands in a trans configuration. The two chains have been magnetically characterized in solution by paramagnetic H-1 NMR, where 1 displayed typical features from Co-II systems, with spread out signals; meanwhile, 2 showed diamagnetic behaviour. The dissociation of the latest in solution and the stability of the "[Ni(9Accm)(2)]" unit were proved by further experiments in C5D5N. Additional UV-Vis absorption and fluorescence studies in solution were performed using exclusively 1. In the solid state chi(MT) vs. T and M/N mu(B) vs. H/T data were collected and fitted for 1 and 2; both systems display Ising plane anisotropy, with significant D values. System 1 presented slow relaxation of the magnetization, displaying frequency dependence in the in-phase/out-phase ac magnetic susceptibility data, when an external dc field of 0.2 T was applied. Finally, 1 was deposited on a HOPG (highly oriented pyrolytic graphite) substrate by spin-coating and analysed by AFM. C1 [Diaz-Torres, Raul; Menelaou, Melita; Carolina Sanudo, E.] Univ Barcelona, Dept Quim Inorgan & Organ, Seccio Inorgan, Diagonal 645, E-08028 Barcelona, Spain. [Diaz-Torres, Raul; Gonzalez-Campo, Arantzazu; Aliaga-Alcalde, Nuria] CSIC, ICMAB Inst Ciencia Dels Mat Barcelona, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain. [Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Carolina Sanudo, E.] Univ Barcelona, Inst Nanociencia & Nanotecnol, Av Diagonal 645, E-08028 Barcelona, Spain. [Soler, Monica] Univ Chile, Dept Ciencia Mat, Fac Ciencias Fis & Matemat, Beaucheff 851, Santiago, Chile. [Aliaga-Alcalde, Nuria] ICREA, Pg Lluis Co 23, Barcelona 08010, Spain. RP Aliaga-Alcalde, N (reprint author), CSIC, ICMAB Inst Ciencia Dels Mat Barcelona, Campus Univ Autonoma Barcelona, Bellaterra 08193, Spain.; Soler, M (reprint author), Univ Chile, Dept Ciencia Mat, Fac Ciencias Fis & Matemat, Beaucheff 851, Santiago, Chile.; Aliaga-Alcalde, N (reprint author), ICREA, Pg Lluis Co 23, Barcelona 08010, Spain. EM rauldiaztor@gmail.com; mmelenaou@qi.ub.es; agonzalez@icmab.es; sjteat@lbl.gov; esanudo@ub.edu; msoler@ing.uchile.cl; nuria.aliaga@icrea.cat RI Gonzalez-Campo, Arantzazu/J-4124-2012; Aliaga-Alcalde, Nuria/H-5886-2011; Soler, Monica/A-6705-2013 OI Gonzalez-Campo, Arantzazu/0000-0002-1209-8119; Aliaga-Alcalde, Nuria/0000-0003-1080-3862; Soler, Monica/0000-0003-2125-6809 NR 40 TC 0 Z9 0 U1 4 U2 4 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2312-7481 J9 MAGNETOCHEMISTRY JI Magnetochemistry PD SEP PY 2016 VL 2 IS 3 AR 29 DI 10.3390/magnetochemistry2030029 PG 13 WC Chemistry, Physical SC Chemistry GA EC4MT UT WOS:000388106300002 ER PT J AU Vaidya, NK Ribeiro, RM Perelson, AS Kumar, A AF Vaidya, Naveen K. Ribeiro, Ruy M. Perelson, Alan S. Kumar, Anil TI Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ENHANCES HIV-INFECTION; RHESUS MACAQUES; DISEASE PROGRESSION; ANTIRETROVIRAL THERAPY; VIRAL DYNAMICS; PLASMA VIRUS; DRUG-USERS; IN-VIVO; EXPRESSION; AIDS AB Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparisonwe also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior to the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addictedmacaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. This study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse. C1 [Vaidya, Naveen K.] Univ Missouri, Dept Math & Stat, Kansas City, MO 64110 USA. [Vaidya, Naveen K.; Kumar, Anil] Univ Missouri, Sch Pharm, Div Pharmacol, Kansas City, MO 64110 USA. [Ribeiro, Ruy M.; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RP Vaidya, NK (reprint author), Univ Missouri, Dept Math & Stat, Kansas City, MO 64110 USA.; Vaidya, NK (reprint author), Univ Missouri, Sch Pharm, Div Pharmacol, Kansas City, MO 64110 USA. EM vaidyan@umkc.edu OI Ribeiro, Ruy/0000-0002-3988-8241 FU UMRB grant from the University of Missouri Research Board [KDA-91]; NSF grant [DMS-1616299]; University of Missouri-Kansas City; US Department of Energy [DE-AC52-06NA25396]; NIH [R01-AI028433, R01-AI104373]; National Center for Research Resources; Office of Research Infrastructure Programs (ORIP) [R01-OD011095]; NIDA [DA015013] FX This work was funded by a UMRB grant KDA-91 (NKV) from the University of Missouri Research Board, the NSF grant DMS-1616299 (NKV), and start-up funds from the University of Missouri-Kansas City (NKV). Portions of this work were done under the auspices of the US Department of Energy under contract DE-AC52-06NA25396 and supported by NIH grants R01-AI028433 and R01-AI104373, and the National Center for Research Resources and the Office of Research Infrastructure Programs (ORIP) through grant R01-OD011095 (ASP). AK acknowledges the support from NIDA (grant number DA015013). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 65 TC 0 Z9 0 U1 0 U2 0 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2016 VL 12 IS 9 AR e1005127 DI 10.1371/journal.pcbi.1005127 PG 20 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA EB8RN UT WOS:000387658600042 PM 27668463 ER PT J AU Washburne, AD Burby, JW Lacker, D AF Washburne, Alex D. Burby, Joshua W. Lacker, Daniel TI Novel Covariance-Based Neutrality Test of Time-Series Data Reveals Asymmetries in Ecological and Economic Systems SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SPECIES ABUNDANCE; HUMAN MICROBIOME; HYPOTHESIS; EVOLUTION; MODELS AB Systems as diverse as the interacting species in a community, alleles at a genetic locus, and companies in a market are characterized by competition (over resources, space, capital, etc) and adaptation. Neutral theory, built around the hypothesis that individual performance is independent of group membership, has found utility across the disciplines of ecology, population genetics, and economics, both because of the success of the neutral hypothesis in predicting system properties and because deviations from these predictions provide information about the underlying dynamics. However, most tests of neutrality are weak, based on static system properties such as species-abundance distributions or the number of singletons in a sample. Time-series data provide a window onto a system's dynamics, and should furnish tests of the neutral hypothesis that are more powerful to detect deviations from neutrality and more informative about to the type of competitive asymmetry that drives the deviation. Here, we present a neutrality test for time-series data. We apply this test to several microbial time-series and financial time-series and find that most of these systems are not neutral. Our test isolates the covariance structure of neutral competition, thus facilitating further exploration of the nature of asymmetry in the covariance structure of competitive systems. Much like neutrality tests from population genetics that use relative abundance distributions have enabled researchers to scan entire genomes for genes under selection, we anticipate our time-series test will be useful for quick significance tests of neutrality across a range of ecological, economic, and sociological systems for which time-series data are available. Future work can use our test to categorize and compare the dynamic fingerprints of particular competitive asymmetries (frequency dependence, volatility smiles, etc) to improve forecasting and management of complex adaptive systems. C1 [Washburne, Alex D.] Duke Univ, Dept Biol, Durham, NC 27708 USA. [Washburne, Alex D.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Burby, Joshua W.] Princeton Univ, Dept Phys, Plasma Phys Lab, Princeton, NJ 08544 USA. [Lacker, Daniel] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA. RP Washburne, AD (reprint author), Duke Univ, Dept Biol, Durham, NC 27708 USA.; Washburne, AD (reprint author), Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. EM alex.d.washburne@gmail.com NR 41 TC 0 Z9 0 U1 1 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2016 VL 12 IS 9 AR e1005124 DI 10.1371/journal.pcbi.1005124 PG 14 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA EB8RN UT WOS:000387658600040 PM 27689714 ER PT J AU Langford, Z Kumar, J Hoffman, FM Norby, RJ Wullschleger, SD Sloan, VL Iversen, CM AF Langford, Zachary Kumar, Jitendra Hoffman, Forrest M. Norby, Richard J. Wullschleger, Stan D. Sloan, Victoria L. Iversen, Colleen M. TI Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets SO REMOTE SENSING LA English DT Article DE Arctic; WorldView-2; plant functional type; interpolation; clustering ID EARTH SYSTEM MODELS; DATA SETS; VEGETATION; TUNDRA; ALASKA; ECOSYSTEMS; PHENOLOGY; PERMAFROST; CLIMATE; FOREST AB Multi-scale modeling of Arctic tundra vegetation requires characterization of the heterogeneous tundra landscape, which includes representation of distinct plant functional types (PFTs). We combined high-resolution multi-spectral remote sensing imagery from the WorldView-2 satellite with light detecting and ranging (LiDAR)-derived digital elevation models (DEM) to characterize the tundra landscape in and around the Barrow Environmental Observatory (BEO), a 3021-hectare research reserve located at the northern edge of the Alaskan Arctic Coastal Plain. Vegetation surveys were conducted during the growing season (June-August) of 2012 from 48 1 m x 1 m plots in the study region for estimating the percent cover of PFTs (i.e., sedges, grasses, forbs, shrubs, lichens and mosses). Statistical relationships were developed between spectral and topographic remote sensing characteristics and PFT fractions at the vegetation plots from field surveys. These derived relationships were employed to statistically upscale PFT fractions for our study region of 586 hectares at 0.25-m resolution around the sampling areas within the BEO, which was bounded by the LiDAR footprint. We employed an unsupervised clustering for stratification of this polygonal tundra landscape and used the clusters for segregating the field data for our upscaling algorithm over our study region, which was an inverse distance weighted (IDW) interpolation. We describe two versions of PFT distribution maps upscaled by IDW from WorldView-2 imagery and LiDAR: (1) a version computed from a single image in the middle of the growing season; and (2) a version computed from multiple images through the growing season. This approach allowed us to quantify the value of phenology for improving PFT distribution estimates. We also evaluated the representativeness of the field surveys by measuring the Euclidean distance between every pixel. This guided the ground-truthing campaign in late July of 2014 for addressing uncertainty based on representativeness analysis by selecting 24 1 m x 1 m plots that were well and poorly represented. Ground-truthing indicated that including phenology had a better accuracy (R-2 = 0.75, RMSE = 9.94) than the single image upscaling (R-2 = 0.63, RMSE = 12.05) predicted from IDW. We also updated our upscaling approach to include the 24 ground-truthing plots, and a second ground-truthing campaign in late August of 2014 indicated a better accuracy for the phenology model (R-2 = 0.61, RMSE = 13.78) than only using the original 48 plots for the phenology model (R-2 = 0.23, RMSE = 17.49). We believe that the cluster-based IDW upscaling approach and the representativeness analysis offer new insights for upscaling high-resolution data in fragmented landscapes. This analysis and approach provides PFT maps needed to inform land surface models in Arctic ecosystems. C1 [Langford, Zachary; Kumar, Jitendra; Norby, Richard J.; Wullschleger, Stan D.; Iversen, Colleen M.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA. [Langford, Zachary; Kumar, Jitendra; Norby, Richard J.; Wullschleger, Stan D.; Iversen, Colleen M.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest M.; Norby, Richard J.; Wullschleger, Stan D.; Iversen, Colleen M.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Hoffman, Forrest M.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Sloan, Victoria L.] Univ Bristol, Dept Civil Engn, Bristol, Avon, England. RP Langford, Z (reprint author), Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA.; Langford, Z (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA.; Langford, Z (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. EM zlangfor@vols.utk.edu; jkumar@climatemodeling.org; forrest@climatemodeling.org; norbyrj@ornl.gov; wullschlegs@ornl.gov; V.L.Sloan@bristol.ac.uk; iversencm@ornl.gov RI Hoffman, Forrest/B-8667-2012; OI Hoffman, Forrest/0000-0001-5802-4134; Kumar, Jitendra/0000-0002-0159-0546 FU Office of Biological and Environmental Research in the DOE Office of Science; UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy FX The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. We thank Craig Tweedie at University of Texas, El Paso, for providing the LiDAR dataset and Chandana Gangodagamage at Los Alamos National Laboratory for LiDAR data processing. We thank Paul Morin at the Polar Geospatial Center for providing the WorldView-2 imagery. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally-sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 51 TC 2 Z9 2 U1 10 U2 10 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD SEP PY 2016 VL 8 IS 9 AR 733 DI 10.3390/rs8090733 PG 24 WC Remote Sensing SC Remote Sensing GA DY9XB UT WOS:000385488000043 ER PT J AU Verma, M Fisher, JB Mallick, K Ryu, Y Kobayashi, H Guillaume, A Moore, G Ramakrishnan, L Hendrix, V Wolf, S Sikka, M Kiely, G Wohlfahrt, G Gielen, B Roupsard, O Toscano, P Arain, A Cescatti, A AF Verma, Manish Fisher, Joshua B. Mallick, Kaniska Ryu, Youngryel Kobayashi, Hideki Guillaume, Alexandre Moore, Gregory Ramakrishnan, Lavanya Hendrix, Valerie Wolf, Sebastian Sikka, Munish Kiely, Gerard Wohlfahrt, Georg Gielen, Bert Roupsard, Olivier Toscano, Piero Arain, Altaf Cescatti, Alessandro TI Global Surface Net-Radiation at 5 km from MODIS Terra SO REMOTE SENSING LA English DT Article DE surface net-radiation; MODIS; FLUXNET; SURFRAD; modeling; validation ID DOWNWELLING LONGWAVE RADIATION; CLEAR-SKY DAYS; HETEROGENEOUS LANDSCAPE; LAND; EVAPOTRANSPIRATION; VALIDATION; ATMOSPHERE; FLUX; ALGORITHMS; PRODUCT AB Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott's index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 +/- 1.8 W.m(-2) in boreal to 72.0 +/- 4.1 W.m(-2) in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1 degrees x 1 degrees) but high temporal resolution gridded net-radiation product from the Clouds and Earth's Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W center dot m(-2) in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth's surface. C1 [Verma, Manish; Fisher, Joshua B.; Guillaume, Alexandre; Moore, Gregory; Sikka, Munish] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Mallick, Kaniska] LIST, Dept Environm Res & Innovat ERIN, L-4422 Belvaux, Luxembourg. [Ryu, Youngryel] Seoul Natl Univ, Dept Landscape Architecture & Rural Syst Engn, Seoul 151921, South Korea. [Kobayashi, Hideki] Japan Agcy Marine Earth Sci & Technol, Yokohama, Kanagawa 2360001, Japan. [Ramakrishnan, Lavanya; Hendrix, Valerie] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Wolf, Sebastian] Swiss Fed Inst Technol, Dept Environm Syst Sci, CH-8092 Zurich, Switzerland. [Kiely, Gerard] Univ Coll, Environm Res Inst, Civil & Environm Engn Dept, Cork T12P2FY, Ireland. [Wohlfahrt, Georg] Univ Innsbruck, Inst Ecol, Sternwartestr 15, A-6020 Innsbruck, Austria. [Gielen, Bert] Univ Antwerp, Dept Biol, Res Grp Plant & Vegetat Ecol, B-2610 Antwerp, Belgium. [Roupsard, Olivier] CIRAD, UMR Eco & Sols Ecol Fonct Biogeochim Sols & Agroe, F-34000 Montpellier, France. [Roupsard, Olivier] CATIE Trop Agr Ctr Res & Higher Educ, Turrialba 937170, Costa Rica. [Toscano, Piero] CNR, Inst Biometeorol IBIMET, Via G Caproni 8, I-50145 Florence, Italy. [Arain, Altaf] McMaster Univ, McMaster Ctr Climate Change, Sch Geog & Earth Sci, 1280 Main St West, Hamilton, ON L8S 4K1, Canada. [Cescatti, Alessandro] European Commiss, Joint Res Ctr, Directorate Sustainable Resources, I-21027 Ispra, Italy. RP Verma, M (reprint author), CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. EM manishve@umich.edu; Joshua.B.Fisher@jpl.nasa.gov; kaniska.mallick@gmail.com; ryuyr77@gmail.com; hkoba@jamstec.go.jp; alexandre.guillaume@jpl.nasa.gov; Gregory.J.Moore@jpl.nasa.gov; LRamakrishnan@lbl.gov; vchendrix@lbl.gov; sewolf@ethz.ch; Munish.Sikka@jpl.nasa.gov; g.kiely@ucc.ie; Georg.Wohlfahrt@uibk.ac.at; bert.gielen@uantwerpen.be; olivier.roupsard@cirad.fr; p.toscano@ibimet.cnr.it; arainm@mcmaster.ca; alessandro.cescatti@jrc.ec.europa.eu RI Wohlfahrt, Georg/D-2409-2009; Wolf, Sebastian/B-4580-2010; OI Wohlfahrt, Georg/0000-0003-3080-6702; Wolf, Sebastian/0000-0001-7717-6993; Toscano, Piero/0000-0001-9184-0707; Mallick, Kaniska/0000-0002-2735-930X; Fisher, Joshua/0000-0003-4734-9085 FU NASA Terrestrial Hydrology Program; Jet Propulsion Laboratory Strategic Research & Technology Development Climate Initiative; U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program [DE-FG02-04ER63917, DE-FG02-04ER63911]; AfriFlux; AsiaFlux; CarboAfrica; CarboEuropeIP; CarboItaly; CarboMont; ChinaFlux; Fluxnet-Canada; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; GreenGrass; KoFlux; LBA; NECC; OzFlux; TCOS-Siberia; USCCC; Australian Research Council [DP0451247, DP0344744, DP0772981, DP130101566]; European Commission [300083] FX Support for this study was provided by the NASA Terrestrial Hydrology Program and Jet Propulsion Laboratory Strategic Research & Technology Development Climate Initiative. The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2015 California Institute of Technology. Government sponsorship acknowledged. This work used net-radiation data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. The authors gratefully acknowledge the efforts of the FLUXNET community to compile and make available the La Thuile data set. Data from AU-Fog-Fogg Dam, AU-How-Howard Springs, AU-Wac-Wallaby Creek was funded by the Australian Research Council (DP0451247, DP0344744, DP0772981 and DP130101566). Support for collection and archiving was provided through the Australia Terrestrial Ecosystem Research Network (TERN) (http://www.tern.org.au). SW was supported by the European Commission with a Marie Curie International Outgoing Fellowship (grant 300083). NR 61 TC 0 Z9 0 U1 7 U2 7 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2072-4292 J9 REMOTE SENS-BASEL JI Remote Sens. PD SEP PY 2016 VL 8 IS 9 AR UNSP 739 DI 10.3390/rs8090739 PG 20 WC Remote Sensing SC Remote Sensing GA DY9XB UT WOS:000385488000049 ER PT J AU Woodroffe, JR Morley, SK Jordanova, VK Henderson, MG Cowee, MM Gjerloev, JG AF Woodroffe, J. R. Morley, S. K. Jordanova, V. K. Henderson, M. G. Cowee, M. M. Gjerloev, J. G. TI The latitudinal variation of geoelectromagnetic disturbances during large (Dst <=-100 nT) geomagnetic storms SO SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS LA English DT Article ID RING CURRENT; FIELD; SYSTEMS; STATISTICS; DEPENDENCE AB Geoelectromagnetic disturbances (GMDs) are an important consequence of space weather that can directly impact many types of terrestrial infrastructure. In this paper, we analyze 30 years of SuperMAG magnetometer data from the range of magnetic latitudes 20 degrees <= lambda <= 75 degrees to derive characteristic latitudinal profiles for median GMD amplitudes. Based on this data, we obtain a parameterization of these latitudinal profiles of different types of GMDs, providing an analytical fit with Dst-dependent parameters. We also obtain probabilistic estimates for the magnitudes of "100 year" GMDs, finding that B = 6.9 (3.60-12.9) nT/s should be expected at 45 degrees <= lambda <= 50 degrees, exceeding the 5 nT/s threshold for dangerous inductive heating. C1 [Woodroffe, J. R.; Morley, S. K.; Jordanova, V. K.; Henderson, M. G.; Cowee, M. M.] Los Alamos Natl Lab, Space Sci & Applicat, Los Alamos, NM 87545 USA. [Gjerloev, J. G.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Gjerloev, J. G.] Univ Bergen, Birkeland Ctr Space Sci, Bergen, Norway. RP Woodroffe, JR (reprint author), Los Alamos Natl Lab, Space Sci & Applicat, Los Alamos, NM 87545 USA. EM jesse.woodroffe@gmail.com RI Morley, Steven/A-8321-2008; Henderson, Michael/A-3948-2011 OI Morley, Steven/0000-0001-8520-0199; Henderson, Michael/0000-0003-4975-9029 FU SHIELDS project, a LANL/Laboratory Directed Research and Development (LDRD) Program - U.S. Department of Energy; Department of Homeland Security; LANL LDRD award [20150127ER] FX We would like to thank Michael Rivera and Scott Backhaus of the Information Systems and Modeling group at Los Alamos National Laboratory for motivating this study as well as for their input and feedback during the preparation of this report. This research was supported by the SHIELDS project, a LANL/Laboratory Directed Research and Development (LDRD) Program funded by the U.S. Department of Energy. In addition, the Department of Homeland Security sponsored the production of this material under the Department of Energy contract for the management and operation of Los Alamos National Laboratory. S.K.M. was partially supported by LANL LDRD award 20150127ER. The Dst geomagnetic index was obtained from the World Data Center C2 for Geomagnetism in Kyoto. Magnetometer data and derived indices were obtained from the SuperMAG collaboration web site, http://supermag.jhuapl.edu. For the ground magnetometer data we gratefully acknowledge Intermagnet; USGS, Jeffrey J. Love; CARISMA, Ian Mann; CANMOS; the S-RAMP database, K. Yumoto, and K. Shiokawa; The SPIDR database; AARI, Oleg Troshichev; the MACCS program, M. Engebretson, Geomagnetism Unit of the Geological Survey of Canada; GIMA; MEASURE, UCLA IGPP, and Florida Institute of Technology; SAMBA, Eftyhia Zesta; 210 Chain, K. Yumoto; SAMNET, Farideh Honary; the institutes who maintain the IMAGE magnetometer array, Eija Tanskanen; PENGUIN; AUTUMN, PI Martin Connors; DTU Space, Juergen Matzka; South Pole and McMurdo Magnetometer, PI's Louis J. Lanzarotti and Alan T. Weatherwax; ICESTAR; RAPIDMAG; PENGUIn; British Artarctic Survey; McMac, Peter Chi; BGS, Susan Macmillan; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN); GFZ, Juergen Matzka; MFGI, B. Heilig; IGFPAS, J. Reda; University of L'Aquila, M. Vellante; and SuperMAG, Jesper W. Gjerloev. Sunspot numbers were obtained from the WDC-SILSO, Royal Observatory of Belgium, Brussels. Analysis of the data presented in this study made use of SpacePy software package, available at http://sourceforge.net/p/spacepy. NR 54 TC 0 Z9 0 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 1542-7390 J9 SPACE WEATHER JI Space Weather PD SEP PY 2016 VL 14 IS 9 BP 668 EP 681 DI 10.1002/2016SW001376 PG 14 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences SC Astronomy & Astrophysics; Geochemistry & Geophysics; Meteorology & Atmospheric Sciences GA EC0PE UT WOS:000387802300004 ER PT J AU Kiviluoma, J Holttinen, H Weir, D Scharff, R Soder, L Menemenlis, N Cutululis, NA Lopez, ID Lannoye, E Estanqueiro, A Gomez-Lazaro, E Zhang, Q Bai, JH Wan, YH Milligan, M AF Kiviluoma, Juha Holttinen, Hannele Weir, David Scharff, Richard Soder, Lennart Menemenlis, Nickie Cutululis, Nicolaos A. Lopez, Irene Danti Lannoye, Eamonn Estanqueiro, Ana Gomez-Lazaro, Emilio Zhang, Qin Bai, Jianhua Wan, Yih-Huei Milligan, Michael TI Variability in large-scale wind power generation SO WIND ENERGY LA English DT Article DE wind power; variability; net load; variable generation; power systems ID DEMAND AB The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1 h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Kiviluoma, Juha; Holttinen, Hannele] VTT Tech Res Ctr Finland, Espoo, Finland. [Weir, David] Norwegian Water Resources & Energy Directorate, Dept Energy, Oslo, Norway. [Scharff, Richard] KTH Royal Inst Technol, Elect Power Syst, Stockholm, Sweden. [Soder, Lennart] Royal Inst Technol, Elect Power Syst, Stockholm, Sweden. [Menemenlis, Nickie] Inst Rech Hydro Quebec, Montreal, PQ, Canada. [Cutululis, Nicolaos A.] DTU, Wind Energy, Roskilde, Denmark. [Lopez, Irene Danti] Univ Coll Dublin, Elect Res Ctr, Dublin, Ireland. [Lannoye, Eamonn] Elect Power Res Inst, Palo Alto, CA USA. [Estanqueiro, Ana] UESEO, LNEG, Lisbon, Spain. [Gomez-Lazaro, Emilio] Castilla La Mancha Univ, Renewable Energy Res Inst, Albacete, Spain. [Gomez-Lazaro, Emilio] Castilla La Mancha Univ, DIEEAC EDII AB, Albacete, Spain. [Zhang, Qin] State Grid Corp China, Beijing, Peoples R China. [Bai, Jianhua] State Grid Energy Res Inst Beijing, Beijing, Peoples R China. [Wan, Yih-Huei; Milligan, Michael] Natl Renewable Energy Lab, Transmiss & Grid Integrat Grp, Golden, CO USA. RP Kiviluoma, J (reprint author), VTT Tech Res Ctr Finland, Espoo, Finland. EM juha.kiviluoma@vtt.fi OI Scharff, Richard/0000-0002-2016-1739; Cutululis, Nicolaos Antonio/0000-0003-2438-1429 NR 25 TC 0 Z9 0 U1 8 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1095-4244 EI 1099-1824 J9 WIND ENERGY JI Wind Energy PD SEP PY 2016 VL 19 IS 9 BP 1649 EP 1665 DI 10.1002/we.1942 PG 17 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA DZ8VB UT WOS:000386148900006 ER PT J AU Lott, M Remillieux, MC Le Bas, PY Ulrich, TJ Garnier, V Payan, C AF Lott, Martin Remillieux, Marcel C. Le Bas, Pierre-Yves Ulrich, T. J. Garnier, Vincent Payan, Cedric TI From local to global measurements of nonclassical nonlinear elastic effects in geomaterials SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID SPECTROSCOPY; RESONANCE AB In this letter, the equivalence between local and global measures of nonclassical nonlinear elasticity is established in a slender resonant bar. Nonlinear effects are first measured globally using nonlinear resonance ultrasound spectroscopy (NRUS), which monitors the relative shift of the resonance frequency as a function of the maximum dynamic strain in the sample. Subsequently, nonlinear effects are measured locally at various positions along the sample using dynamic acousto elasticity testing (DAET). After correcting analytically the DAET data for three-dimensional strain effects and integrating numerically these corrected data along the length of the sample, the NRUS global measures are retrieved almost exactly. (C) 2016 Acoustical Society of America C1 [Lott, Martin; Garnier, Vincent; Payan, Cedric] Aix Marseille Univ, LMA, CNRS, UPR 7051,Cent Marseille, F-13402 Marseille, France. [Remillieux, Marcel C.; Le Bas, Pierre-Yves; Ulrich, T. J.] Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. RP Remillieux, MC (reprint author), Los Alamos Natl Lab, Geophys Grp EES 17, Los Alamos, NM 87545 USA. EM lott@lma.cnrs-mrs.fr; mcr1@lanl.gov; pylb@lanl.gov; tju@lanl.gov; vincent.garnier@univ-amu.fr; cedric.payan@univ-amu.fr OI Payan, Cedric/0000-0002-5736-0766 FU French National Research Agency through the ENDE program [ANR-11 RSNR 0009]; U.S. Department of Energy through the Fossil Energy program FX This work was supported by the French National Research Agency through the ENDE program (Grant No. ANR-11 RSNR 0009) and the U.S. Department of Energy through the Fossil Energy program. The authors thank Dr. Jacques Riviere from Pennsylvania State University for providing the Labview program that was used for the data acquisition in the DAET experiments. NR 13 TC 0 Z9 0 U1 0 U2 0 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 EI 1520-8524 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD SEP PY 2016 VL 140 IS 3 BP EL231 EP EL235 DI 10.1121/1.4962373 PG 5 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA EA9AO UT WOS:000386932500002 PM 27914428 ER PT J AU Han, F Chen, J Hu, L Ren, Y Rong, YC Pan, Z Deng, JX Xing, XR AF Han, Fei Chen, Jun Hu, Lei Ren, Yang Rong, Yangchun Pan, Zhao Deng, Jinxia Xing, Xianran TI The Distortion-Adjusted Change of Thermal Expansion Behavior of Cubic Magnetic Semiconductor (Sc1-xMx)F-3 (M = Al, Fe) SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE conductivity; fluorine/fluorine compounds; thermal expansions; dopants/doping ID PHASE-TRANSITIONS; FERROMAGNETISM; DIFFRACTION AB For the study of negative thermal expansion (NTE) compounds, it is critical to effectively control the thermal expansion. In this letter, a chemical approach has been taken to control the thermal expansion behavior in ScF3 which has a strong NTE. Owing to the difference of radius of substituting ions, local distortion inevitably emerges in the lattice matrix, which is verified by pair distribution function analysis of high-resolution synchrotron X-ray scattering. It is a valuable clue that the thermal expansion behaviors in the ScF3 based systems and other trifluorides are correlated closely to structural distortion of metal-F-metal linkages. In addition, the introduction of 3d transition-metal enables its semiconductor and ferromagnetic characteristics. This study provides important reference opinion for the control of thermal expansion and introduction of multifunctionalization for those NTE compounds with open framework structure. C1 [Han, Fei; Chen, Jun; Hu, Lei; Rong, Yangchun; Pan, Zhao; Deng, Jinxia; Xing, Xianran] Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Chen, J (reprint author), Univ Sci & Technol Beijing, Dept Phys Chem, Beijing 100083, Peoples R China. EM junchen@ustb.edu.cn RI Chen, Jun/M-1669-2015 FU National Natural Science Foundation of China [21322102, 91422301, 21231001, 21590793]; National Program for Support of Top-notch Young Professionals; Changjiang Young Scholars Award; Fundamental Research Funds for the Central Universities, China [FRF-TP-14-012C1]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Natural Science Foundation of China (grant nos. 21322102, 91422301, 21231001, and 21590793), National Program for Support of Top-notch Young Professionals, the Changjiang Young Scholars Award, the Fundamental Research Funds for the Central Universities, China (FRF-TP-14-012C1). The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-AC02-06CH11357). NR 18 TC 2 Z9 2 U1 16 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2016 VL 99 IS 9 BP 2886 EP 2888 DI 10.1111/jace.14399 PG 3 WC Materials Science, Ceramics SC Materials Science GA EB2UL UT WOS:000387218000005 ER PT J AU Xu, K Hrma, P Rice, JA Schweiger, MJ Riley, BJ Overman, NR Kruger, AA AF Xu, Kai Hrma, Pavel Rice, Jarrett A. Schweiger, Michael J. Riley, Brian J. Overman, Nicole R. Kruger, Albert A. TI Conversion of Nuclear Waste to Molten Glass: Cold-Cap Reactions in Crucible Tests SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article DE nuclear waste; glass; reaction path ID MELTER FEED; THERMAL-DIFFUSIVITY; HEAT-CONDUCTIVITY; VITRIFICATION; DISSOLUTION; BATCH; PARTICLES; QUARTZ AB The feed-to-glass conversion, which comprises complex chemical reactions and phase transitions, occurs in the cold cap during nuclear waste vitrification. To investigate the conversion process, we analyzed heat-treated samples of a simulated high-level waste feed using X-ray diffraction, electron probe microanalysis, leaching tests, and residual anion analysis. Feed dehydration, gas evolution, and borate phase formation occurred at temperatures below 700 degrees C before the emerging glass-forming melt was completely connected. Above 700 degrees C, intermediate aluminosilicate phases and quartz particles gradually dissolved in the continuous borosilicate melt, which expanded with transient foam. Knowledge of the chemistry and physics of feed-to-glass conversion will help us control the conversion path by changing the melter feed makeup to maximize the glass production rate. C1 [Xu, Kai; Hrma, Pavel; Rice, Jarrett A.; Schweiger, Michael J.; Riley, Brian J.; Overman, Nicole R.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Kruger, Albert A.] US DOE, Off River Protect, Richland, WA 99352 USA. RP Xu, K; Hrma, P (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM kai.xu@pnnl.gov OI Riley, Brian/0000-0002-7745-6730 FU U.S. Department of Energy (DOE), Waste Treatment and Immobilization Plant; DOE [DE-AC05-76RL01830] FX This work was undertaken with funding authorized by the Federal Project Director William F. Hamel, Jr. of the U.S. Department of Energy (DOE), Waste Treatment and Immobilization Plant. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830. The authors thank Jarrod Crum for quantitative XRD analysis, Clyde Chamberlin for polishing specimens, and Jaehun Chun, Derek Dixon, Seungmin Lee, and Steven A. Luksic for insightful discussions. NR 29 TC 2 Z9 2 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2016 VL 99 IS 9 BP 2964 EP 2970 DI 10.1111/jace.14310 PG 7 WC Materials Science, Ceramics SC Materials Science GA EB2UL UT WOS:000387218000015 ER PT J AU Furst, F Grinberg, V Tomsick, JA Bachetti, M Boggs, SE Brightman, M Christensen, FE Craig, WW Gandhi, P Grefenstette, B Hailey, CJ Harrison, FA Madsen, KK Parker, ML Pottschmidt, K Stern, D Walton, DJ Wilms, J Zhang, WW AF Furst, F. Grinberg, V. Tomsick, J. A. Bachetti, M. Boggs, S. E. Brightman, M. Christensen, F. E. Craig, W. W. Gandhi, P. Grefenstette, B. Hailey, C. J. Harrison, F. A. Madsen, K. K. Parker, M. L. Pottschmidt, K. Stern, D. Walton, D. J. Wilms, J. Zhang, W. W. TI SPECTRO-TIMING STUDY OF GX 339-4 IN A HARD INTERMEDIATE STATE SO ASTROPHYSICAL JOURNAL LA English DT Article DE accretion, accretion disks; stars: black holes; X-rays: binaries; X-rays: individual (GX 339-4) ID QUASI-PERIODIC OSCILLATIONS; X-RAY BINARIES; BLACK-HOLE CANDIDATES; ADVECTION-DOMINATED ACCRETION; RELATIVISTIC PRECESSION MODEL; LENS-THIRRING PRECESSION; NOVA XTE J1550-564; LOW/HARD STATE; CYGNUS X-1; FREQUENCY CORRELATION AB We present an analysis of Nuclear Spectroscopic Telescope Array. observations of a hard intermediate state of the transient. black hole GX 339-4 taken in 2015 January. With. the source softening significantly over the course of the 1.3 day long observation we split the data into 21 sub-sets and find that the spectrum of all of them can be well described by a power-law continuum with an additional relativistically blurred reflection component. The photon index increases from similar to 1.69 to similar to 1.77 over the course of the observation. The accretion disk is truncated at around nine gravitational radii in all spectra. We also perform timing analysis on the same 21 individual data sets, and find a strong type-C quasi-periodic oscillation (QPO), which increases. in frequency from similar to 0.68 to similar to 1.05 Hz with time. The frequency change is well correlated with the softening of the spectrum. We discuss possible scenarios for the production of the QPO and calculate predicted inner radii in the relativistic precession model as well as the global disk mode oscillations model. We find discrepancies with respect to the observed values in both models unless we allow for a black hole mass of similar to 100 M-circle dot, which is highly unlikely. We discuss possible systematic uncertainties, in particular with the measurement of the inner accretion disk radius in the relativistic reflection model. We conclude that the combination of observed QPO frequencies and inner accretion disk radii, as obtained from spectral fitting,. is difficult to reconcile with current models. C1 [Furst, F.; Brightman, M.; Grefenstette, B.; Harrison, F. A.; Madsen, K. K.; Walton, D. J.] CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. [Grinberg, V.] MIT, Kavli Inst Astrophys, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Tomsick, J. A.; Boggs, S. E.; Craig, W. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Bachetti, M.] INAF, Osservatorio Astron Cagliari, I-09047 Selargius, CA, Italy. [Christensen, F. E.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Craig, W. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Gandhi, P.] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England. [Hailey, C. J.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Parker, M. L.] Inst Astron, Cambridge CB3 0HA, England. [Pottschmidt, K.] UMBC, CRESST, Dept Phys, Baltimore, MD 21250 USA. [Pottschmidt, K.] UMBC, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pottschmidt, K.; Zhang, W. W.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Stern, D.; Walton, D. J.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Wilms, J.] Univ Erlangen Nurnberg, Dr Karl Remeis Sternwarte & ECAP, D-96049 Bamberg, Germany. RP Furst, F (reprint author), CALTECH, Cahill Ctr Astron & Astrophys, Pasadena, CA 91125 USA. RI Wilms, Joern/C-8116-2013 OI Wilms, Joern/0000-0003-2065-5410 FU NASA [NNG08FD60C, NAS8-03060]; National Aeronautics and Space Administration; NASA through Smithsonian Astrophysical Observatory (SAO) [SV3-73016] FX We thank the anonymous referee for the constructive and helpful comments. We thank the NuSTAR schedulers and SOC, in particular Karl Forster, for making this observation possible. We thank Javier Garcia and Thomas Dauser for helpful discussions about the reflection models. This work was supported under NASA Contract No. NNG08FD60C, and made use of data from the NuSTAR mission, a project led by the California Institute of Technology, managed by the Jet Propulsion Laboratory, and funded by the National Aeronautics and Space Administration. Support for this work was provided by NASA through the Smithsonian Astrophysical Observatory (SAO) contract SV3-73016 to MIT for Support of the Chandra X-ray Center (CXC) and Science Instruments; CXC is operated by SAO for and on behalf of NASA under contract NAS8-03060. We thank the NuSTAR Operations, Software and Calibration teams for support with the execution and analysis of these observations. This research has made use of the NuSTAR Data Analysis Software (NuSTARDAS) jointly developed by the ASI Science Data Center (ASDC, Italy) and the California Institute of Technology (USA). This research has made use of a collection of ISIS functions (ISISscripts) provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). We would like to thank John E. Davis for the slxfig module, which was used to produce all figures in this work. This research has made use of MAXI data provided by RIKEN, JAXA and the MAXI team. NR 69 TC 3 Z9 3 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2016 VL 828 IS 1 AR 34 DI 10.3847/0004-637X/828/1/34 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA8OE UT WOS:000386894900034 ER PT J AU Hamren, K Beaton, RL Guhathakurta, P Gilbert, KM Tollerud, EJ Boyer, ML Rockosi, CM Smith, GH Majewski, SR Howley, K AF Hamren, Katherine Beaton, Rachael L. Guhathakurta, Puragra Gilbert, Karoline M. Tollerud, Erik J. Boyer, Martha L. Rockosi, Constance M. Smith, Graeme H. Majewski, Steven R. Howley, Kirsten TI CARBON STARS IN THE SATELLITES AND HALO OF M31 SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (M31); stars: AGB and post-AGB; stars: carbon ID ASYMPTOTIC GIANT BRANCH; DIGITAL-SKY-SURVEY; LOCAL GROUP GALAXIES; DWARF SPHEROIDAL GALAXIES; SPITZER-SPACE-TELESCOPE; SURVEY STELLAR SPECTRA; LARGE-MAGELLANIC-CLOUD; AGB STARS; SPLASH SURVEY; METAL-POOR AB We spectroscopically identify a sample of carbon stars in the satellites and halo of M31 using moderate-resolution optical spectroscopy from the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo survey. We present the photometric properties of our sample of 41 stars, including their brightness with respect to the tip of the red giant branch (TRGB) and their distributions in various color-color spaces. This analysis reveals a bluer population of carbon stars fainter than the TRGB and a redder population of carbon stars brighter than the TRGB. We then apply principal component analysis to determine the sample's eigenspectra and eigencoefficients. Correlating the eigencoefficients with various observable properties reveals the spectral features that trace effective temperature and metallicity. Putting the spectroscopic and photometric information together, we find the carbon stars in the satellites and halo of M31 to be minimally impacted by dust and internal dynamics. We also find that while there is evidence to suggest that the sub-TRGB stars are extrinsic in origin, it is also possible that they are are particularly faint members of the asymptotic giant branch. C1 [Hamren, Katherine; Guhathakurta, Puragra; Rockosi, Constance M.; Smith, Graeme H.] Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. [Beaton, Rachael L.] Observ Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Gilbert, Karoline M.; Tollerud, Erik J.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Gilbert, Karoline M.] Johns Hopkins Univ, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Boyer, Martha L.] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA. [Majewski, Steven R.] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Howley, Kirsten] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. RP Hamren, K (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, 1156 High St, Santa Cruz, CA 95064 USA. EM khamren@ucolick.org OI Guhathakurta, Puragra/0000-0001-8867-4234 FU NSF [AST-1010039, AST-1412648, AST-1413269]; NASA [HST-GO-12055]; NSF Graduate Research Fellowship; Giacconi Fellowship FX The authors would like to thank Bernhard Aringer and Leo Girardi for helpful conversations and an early look at the 2016 cool star models. We would also like to thank Marla Geha, James Bullock, and Jason Kalirai for their work on the SPLASH survey over the years. and their willingness to provide data for this paper. P.G. and K.H. acknowledge NSF grants AST-1010039 and AST-1412648 and NASA grant HST-GO-12055. R.L.B. and S.R.M. thank NSF grant AST-1413269. K. H. was supported by an NSF Graduate Research Fellowship, and E.J.T. was supported by a Giacconi Fellowship. We appreciate the very significant cultural role and reverence that the summit of Mauna Kea has always held within the indigenous Hawaiian community. We are most grateful to have had the opportunity to conduct observations from this mountain. NR 100 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2016 VL 828 IS 1 AR 15 DI 10.3847/0004-637X/828/1/15 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA8OE UT WOS:000386894900015 ER PT J AU Li, N Gladders, MD Rangel, EM Florian, MK Bleem, LE Heitmann, K Habib, S Fasel, P AF Li, Nan Gladders, Michael D. Rangel, Esteban M. Florian, Michael K. Bleem, Lindsey E. Heitmann, Katrin Habib, Salman Fasel, Patricia TI PICS: SIMULATIONS OF STRONG GRAVITATIONAL LENSING IN GALAXY CLUSTERS SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: general; gravitational lensing: strong; methods: numerical ID LARGE-SCALE STRUCTURE; LINE-OF-SIGHT; GIANT ARC STATISTICS; PROBE COSMOLOGICAL MODEL; DIGITAL SKY SURVEY; ULTRA DEEP FIELD; DARK-MATTER HALO; LENSED GALAXIES; X-RAY; MILLENNIUM SIMULATION AB Gravitational lensing has become one of the most powerful tools available for investigating the "dark side" of the universe. Cosmological strong gravitational lensing, in particular, probes the properties of the dense cores of dark matter halos over decades in mass and offers the opportunity to study the distant universe at flux levels and spatial resolutions otherwise unavailable. Studies of strongly lensed variable sources offer even further scientific opportunities. One of the challenges in realizing the potential of strong lensing is to understand the statistical context of both the individual systems that receive extensive follow-up study, as well as that of the larger samples of strong lenses that are now emerging from survey efforts. Motivated by these challenges, we have developed an image simulation pipeline, Pipeline for Images of Cosmological Strong lensing (PICS), to generate realistic strong gravitational lensing signals from group-and cluster-scale lenses. PICS uses a low-noise and unbiased density estimator based on (resampled) Delaunay Tessellations to calculate the density field; lensed images are produced by ray-tracing images of actual galaxies from deep Hubble Space Telescope observations. Other galaxies, similarly sampled, are added to fill in the light cone. The pipeline further adds cluster member galaxies and foreground stars into the lensed images. The entire image ensemble is then observed using a realistic point-spread function that includes appropriate detector artifacts for bright stars. Noise is further added, including such non-Gaussian elements as noise window-paning from mosaiced observations, residual bad pixels, and cosmic rays. The aim is to produce simulated images that appear identical-to the eye (expert or otherwise)-to real observations in various imaging surveys. C1 [Li, Nan; Gladders, Michael D.; Florian, Michael K.] Univ Chicago, Dept Astron Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Li, Nan; Rangel, Esteban M.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Li, Nan; Gladders, Michael D.; Florian, Michael K.; Bleem, Lindsey E.; Heitmann, Katrin; Habib, Salman] Univ Chicago, Kavli Inst Cosmol Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA. [Rangel, Esteban M.] Northwestern Univ, Elect Engn & Comp Sci, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Fasel, Patricia] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA. RP Li, N (reprint author), Univ Chicago, Dept Astron Astrophys, 5640 South Ellis Ave, Chicago, IL 60637 USA.; Li, N (reprint author), Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA.; Li, N (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, 5640 South Ellis Ave, Chicago, IL 60637 USA. EM linan7788626@oddjob.uchicago.edu OI Florian, Michael/0000-0001-5097-6755 FU Strategic Collaborative Initiative; U.S. Department of Energy [DE-AC02-06CH11357]; DOE/SC [DE-AC02-06CH11357, DE-AC05-00OR22725]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-1125897] FX This research was funded in part by the Strategic Collaborative Initiative administered by the University of Chicago's Office of the Vice President for Research and for National Laboratories. Argonne National Laboratory's work was supported under the U.S. Department of Energy contract DE-AC02-06CH11357. This research used resources of the ALCF, which is supported by DOE/SC under contract DE-AC02-06CH11357 and resources of the OLCF, which is supported by DOE/SC under contract DE-AC05-00OR22725. Some of the results presented here result from awards of computer time provided by the ASCR Leadership Computing Challenge (ALCC) programs at Argonne and Oak Ridge (ALCF and OLCF). This work was also supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through grant NSF PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. We also thank the South Pole Telescope collaboration for allowing the usage of the SPT cluster follow-up imaging shown in this work. Finally, we enthusiastically thank the referee, Massimo Meneghetti, for a particularly thoughtful and constructive review of this paper, which served to signficantly enhance the quality of the final manuscript. NR 137 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2016 VL 828 IS 1 AR 54 DI 10.3847/0004-637X/828/1/54 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA EA8OE UT WOS:000386894900054 ER PT J AU Chetelat, G Ossenkoppele, R Villemagne, VL Perrotin, A Landeau, B Mezenge, F Jagust, WJ Dore, V Miller, BL Egret, S Seeley, WW van der Flier, WM La Joie, R Ames, D van Berckel, BNM Scheltens, P Barkhof, F Rowe, CC Masters, CL de La Sayette, V Bouwman, F Rabinovici, GD AF Chetelat, Gael Ossenkoppele, Rik Villemagne, Victor L. Perrotin, Audrey Landeau, Brigitte Mezenge, Florence Jagust, William J. Dore, Vincent Miller, Bruce L. Egret, Stephanie Seeley, William W. van der Flier, Wiesje M. La Joie, Renaud Ames, David van Berckel, Bart N. M. Scheltens, Philip Barkhof, Frederik Rowe, Christopher C. Masters, Colin L. de La Sayette, Vincent Bouwman, Femke Rabinovici, Gil D. TI Atrophy, hypometabolism and clinical trajectories in patients with amyloid-negative Alzheimer's disease SO BRAIN LA English DT Article DE amyloid; PET; MRI; Alzheimer's disease; retrosplenial posterior cingulate ID PITTSBURGH COMPOUND-B; POSITRON-EMISSION-TOMOGRAPHY; CEREBROSPINAL-FLUID; NATIONAL INSTITUTE; A-BETA; PIB PET; FDG-PET; DEMENTIA; BIOMARKERS; DIAGNOSIS AB About 15% of patients clinically diagnosed with Alzheimer's disease do not show high tracer retention on amyloid positon emission tomography imaging. The present study investigates clinical and demographic features, patterns of brain atrophy and hypometabolism and longitudinal clinical trajectories of these patients. Forty amyloid-negative patients carrying a pre-scan diagnosis of Alzheimer's disease dementia from four centres were included (11/29 females/males; mean age = 67 +/- 9). Detailed clinical histories, including the clinical diagnoses before and after the amyloid scan and at follow-up, were collected. Patients were classified according to their pre-scan clinical phenotype as amnestic (memory predominant), non-amnestic (predominant language, visuospatial or frontal symptoms), or non-specific (diffuse cognitive deficits). Demographic, clinical, neuropsychological, magnetic resonance imaging and F-18-fluorodeoxyglucose positon emission tomography data were compared to 27 amyloid-positive typical Alzheimer's disease cases (14/13 females/males; mean age = 71 +/- 10) and 29 amyloid-negative controls (15/14 females/males; mean age = 69 +/- 12) matched for age, gender and education. There were 21 amnestic, 12 non-amnestic, and seven non-specific amyloid-negative Alzheimer's disease cases. Amyloid-negative subgroups did not differ in age, gender or education. After the amyloid scan, clinicians altered the diagnosis in 68% of amyloid-negative patients including 48% of amnestic versus 94% of non-amnestic and non-specific cases. Amnestic amyloid-negative cases were most often reclassified as frontotemporal dementia, non-amnestic as frontotemporal dementia or corticobasal degeneration, and non-specific as dementia with Lewy bodies or unknown diagnosis. The longer-term clinical follow-up was consistent with the post-scan diagnosis in most cases (90%), including in amnestic amyloid-negative cases whose post-positon emission tomography diagnosis remained Alzheimer's disease. While the non-amnestic and non-specific amyloid-negative cases usually showed patterns of atrophy and hypometabolism suggestive of another degenerative disorder, the amnestic amyloid-negative cases had subtle atrophy and hypometabolism, restricted to the retrosplenial/posterior cingulate cortex. Patients with a negative amyloid positon emission tomography scan following an initial clinical diagnosis of Alzheimer's disease have heterogeneous clinical presentations and neuroimaging profiles; a majority showed a clinical progression that was consistent with a neurodegenerative condition. In contrast, in the subgroup of amnestic amyloid-negative cases, the clinical presentation and follow-up usually remained consistent with Alzheimer's disease. An alternative diagnosis was not made in about half of the amnestic amyloid-negative cases, highlighting the need for a clinical framework and terminology to define these patients, who may have underlying limbic-predominant, non-amyloid-related pathologies. C1 [Chetelat, Gael; Perrotin, Audrey; Landeau, Brigitte; Mezenge, Florence; Egret, Stephanie; La Joie, Renaud; de La Sayette, Vincent] INSERM, U1077, F-14074 Caen, France. [Chetelat, Gael; Perrotin, Audrey; Landeau, Brigitte; Mezenge, Florence; Egret, Stephanie; La Joie, Renaud; de La Sayette, Vincent] Univ Caen Basse Normandie, UMR S1077, F-14074 Caen, France. [Chetelat, Gael; Perrotin, Audrey; Landeau, Brigitte; Mezenge, Florence; Egret, Stephanie; La Joie, Renaud; de La Sayette, Vincent] Ecole Prat Hautes Etud, UMR S1077, F-14074 Caen, France. [Chetelat, Gael; Perrotin, Audrey; Landeau, Brigitte; Mezenge, Florence; Egret, Stephanie; La Joie, Renaud; de La Sayette, Vincent] CHU Caen, U1077, F-14000 Caen, France. [Ossenkoppele, Rik; Scheltens, Philip; Bouwman, Femke] Vrije Univ Amsterdam, Med Ctr, Dept Neurol, Neurosci Campus Amsterdam, NL-1081 HZ Amsterdam, Netherlands. [Ossenkoppele, Rik; Scheltens, Philip; Bouwman, Femke] Vrije Univ Amsterdam, Alzheimer Ctr, NL-1081 HZ Amsterdam, Netherlands. [Ossenkoppele, Rik; van der Flier, Wiesje M.; van Berckel, Bart N. M.; Barkhof, Frederik] Vrije Univ Amsterdam, Med Ctr, Dept Radiol & Nucl Med, NL-1081 HZ Amsterdam, Netherlands. [Ossenkoppele, Rik; Miller, Bruce L.; Seeley, William W.; Rabinovici, Gil D.] Univ Calif San Francisco, Memory & Aging Ctr, Dept Neurol, San Francisco, CA 94720 USA. [Villemagne, Victor L.; Dore, Vincent; Rowe, Christopher C.] Austin Hlth, Dept Nucl Med, Melbourne, Vic 3084, Australia. [Villemagne, Victor L.; Dore, Vincent; Rowe, Christopher C.] Austin Hlth, Ctr PET, Melbourne, Vic 3084, Australia. [Jagust, William J.; Rabinovici, Gil D.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Jagust, William J.; Rabinovici, Gil D.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Dore, Vincent] CSIRO, Hlth & Biosecur Flagship, Brisbane, Qld 4006, Australia. [van der Flier, Wiesje M.] Vrije Univ Amsterdam, Med Ctr, Dept Epidemiol & Biostat, NL-1081 HZ Amsterdam, Netherlands. [Ames, David] Univ Melbourne, Dept Psychiat, St Vincents Hlth, Acad Unit Psychiat Old Age, Kew, Vic 3101, Australia. [Ames, David] Natl Ageing Res Inst, Parkville, Vic 3052, Australia. [Masters, Colin L.] Mental Hlth, Florey Inst Neurosci & Mental Hlth, Melbourne, Vic 3010, Australia. [de La Sayette, Vincent] CHU Caen, Serv Neurol, F-14000 Caen, France. RP Chetelat, G (reprint author), GIP CYCERON, Unite U1077, Bd Henri Becquerel BP 5229, F-14074 Caen, France. EM chetelat@cyceron.fr RI Chetelat, Gael/G-2316-2015 FU NIA [P01-AG1972403, P50-AG023501]; Alzheimer's Association; State of California DHS [04-33516]; John Douglas French Alzheimer's Foundation; Avid Radiopharmaceticals; NHMRC [1071430]; Marie Curie FP7 International Outgoing Fellowship [628812]; Stichting Alzheimer Nederland; Stichting VUmc fonds; Centre for Translational Molecular Medicine [02N-101]; Internationale Stichting Alzheimer Onderzoek (ISAO) [05512]; American Health Assistance Foundation (AHAF) [A2005-026]; Fondation Plan Alzheimer; Programme Hospitalier de Recherche Clinique; Agence Nationale de la Recherche; Region Basse Normandie; Institut National de la Sante et de la Recherche Medicale (Caen) FX This study was supported by the Fondation Plan Alzheimer, Programme Hospitalier de Recherche Clinique, Agence Nationale de la Recherche, Region Basse Normandie, Institut National de la Sante et de la Recherche Medicale (Caen). This research was also funded by NIA P01-AG1972403 (B.L.M.), and ADRC P50-AG023501 (B.L.M. and G.D.R.), Alzheimer's Association (G.D.R.), State of California DHS 04-33516 (B.L.M.), John Douglas French Alzheimer's Foundation (B.L.M. and G.D.R.), Avid Radiopharmaceticals (G.D.R.), NHMRC project grant 1071430 (V.L.V. and C.C.R.) and Senior Research Fellowship (V.L.V.). In addition, this research was funded by Marie Curie FP7 International Outgoing Fellowship [628812] (R.O.); The donors of [Alzheimer's Disease Research], a program of BrightFocus Foundation (R.O.). Research of the VUmc Alzheimer centre is part of the neurodegeneration research program of the Neuroscience Campus Amsterdam. The VUmc Alzheimer Centre is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. PET scans were performed within the framework of CTMM, the Centre for Translational Molecular Medicine (www.ctmm.nl), project LeARN (grant 02N-101). This work was also financially supported by the Internationale Stichting Alzheimer Onderzoek (ISAO, grant 05512) and the American Health Assistance Foundation (AHAF, grant A2005-026). NR 55 TC 4 Z9 4 U1 7 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0006-8950 EI 1460-2156 J9 BRAIN JI Brain PD SEP PY 2016 VL 139 BP 2528 EP 2539 DI 10.1093/brain/aww159 PN 9 PG 12 WC Clinical Neurology; Neurosciences SC Neurosciences & Neurology GA DW5WX UT WOS:000383719500025 PM 27357349 ER PT J AU Abraha, M Gelfand, I Hamilton, SK Shao, CL Su, YJ Robertson, GP Chen, JQ AF Abraha, Michael Gelfand, Ilya Hamilton, Stephen K. Shao, Changliang Su, Yahn-Jauh Robertson, G. Philip Chen, Jiquan TI Ecosystem Water-Use Efficiency of Annual Corn and Perennial Grasslands: Contributions from Land-Use History and Species Composition SO ECOSYSTEMS LA English DT Article DE ecosystem WUE; intrinsic WUE; eddy covariance; carbon isotope ratio; gross primary production; evapotranspiration; switchgrass; restored prairie; C-3; C-4 ID TALLGRASS PRAIRIE; FLUX MEASUREMENTS; SONIC ANEMOMETER; CARBON-DIOXIDE; GREAT-PLAINS; EXCHANGE; FOREST; HEAT; EVAPOTRANSPIRATION; BIODIVERSITY AB Carbon and water exchanges between vegetated land surfaces and the atmosphere reveal the ecosystem-scale water-use efficiency (WUE) of primary production. We examined the interacting influence of dominant plant functional groups (C-3 and C-4) and land-use history on WUEs of annual corn and perennial (restored prairie, switchgrass and smooth brome grass) grasslands in the US Midwest from 2010 through 2013. To this end, we determined ecosystem-level (eWUE) and intrinsic (iWUE) WUEs using eddy covariance and plant carbon isotope ratios, respectively. Corn, switchgrass, and restored prairie were each planted on lands previously managed as grasslands under the USDA Conservation Reserve Program (CRP), or as corn/soybean rotation under conventional agriculture (AGR), while a field of smooth brome grass remained in CRP management. The iWUEs of individual C-3 plant species varied little across years. Corn had the highest (4.1) and smooth brome grass the lowest (2.3) overall eWUEs (g C kg(-1) H2O) over the 4 years. Corn and switchgrass did not consistently show a significant difference in seasonal eWUE between former CRP and AGR lands, whereas restored prairie had significantly higher seasonal eWUE on former AGR than on former CRP land due to a greater shift from C-3 to C-4 species on the former AGR land following a drought in 2012. Thus, differences in grassland eWUE were largely determined by the relative dominance of C-3 and C-4 species within the plant communities. In this humid temperate climate with common short-term and occasional long-term droughts, it is likely that mixed grasslands will become increasingly dominated by C-4 grasses over time, with higher yields and eWUE than C-3 plants. These results inform models of the interaction between carbon and water cycles in grassland ecosystems under current and future climate and management scenarios. C1 [Abraha, Michael; Shao, Changliang; Su, Yahn-Jauh; Chen, Jiquan] Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA. [Abraha, Michael; Gelfand, Ilya; Hamilton, Stephen K.; Su, Yahn-Jauh; Robertson, G. Philip; Chen, Jiquan] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Abraha, Michael; Gelfand, Ilya; Hamilton, Stephen K.; Robertson, G. Philip] Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. [Gelfand, Ilya; Robertson, G. Philip] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. [Hamilton, Stephen K.] Michigan State Univ, Dept Integrat Biol, E Lansing, MI 48824 USA. [Su, Yahn-Jauh; Chen, Jiquan] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA. RP Abraha, M (reprint author), Michigan State Univ, Ctr Global Change & Earth Observat, E Lansing, MI 48823 USA.; Abraha, M (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.; Abraha, M (reprint author), Michigan State Univ, WK Kellogg Biol Stn, Hickory Corners, MI 49060 USA. EM abraha@msu.edu RI Chen, Jiquan/D-1955-2009 FU US Department of Energy's Great Lakes Bioenergy Research Center (DOE Office of Science) [DE-FC02-07ER64494]; US Department of Energy's Great Lakes Bioenergy Research Center (DOE Office of Energy Efficiency and Renewable Energy) [DE-AC05-76RL01830]; US National Science Foundation LTER Program [DEB 1027253]; MSU AgBioResearch FX This work was supported by the US Department of Energy's Great Lakes Bioenergy Research Center (DOE Office of Science, DE-FC02-07ER64494 and DOE Office of Energy Efficiency and Renewable Energy, DE-AC05-76RL01830), the US National Science Foundation LTER Program (DEB 1027253), and MSU AgBioResearch. We thank T. Zenone, H. Chu, M. Deal, R. John, J. Xu and K. Kahmark for tower-related works, S. Bohm and S. Sippel for data management and S. Vanderwulp, P. Jasrotia, J. Bronson, and J. Simmons for field-related work. We also thank the subject-matter editor Dr. Peter Groffman and the two anonymous reviewers for their constructive comments. NR 52 TC 1 Z9 1 U1 17 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1432-9840 EI 1435-0629 J9 ECOSYSTEMS JI Ecosystems PD SEP PY 2016 VL 19 IS 6 BP 1001 EP 1012 DI 10.1007/s10021-016-9981-2 PG 12 WC Ecology SC Environmental Sciences & Ecology GA EA6BN UT WOS:000386710000004 ER PT J AU Lines, AM Wang, ZM Clark, SB Bryan, SA AF Lines, Amanda M. Wang, Zheming Clark, Sue B. Bryan, Samuel A. TI Electrochemistry and Spectroelectrochemistry of Luminescent Europium Complexes SO ELECTROANALYSIS LA English DT Article DE Spectroelectrochemistry; europium; luminescence ID INTRAMOLECULAR ENERGY-TRANSFER; SINGLE DEVICE; RARE-EARTHS; 2,2'-DIPYRIDYL COMPLEXES; ELECTRODE-REACTION; TRIPLET-STATE; METAL-IONS; LIGAND; SELECTIVITY; 2,2'-BIPYRIDINE AB Fast, cost effective, and robust means of detecting and quantifying lanthanides are needed to support more efficient tracking within the nuclear, medicinal, and industrial fields. Furthermore, methods for isolating lanthanide signal from spectroscopic interferents are also needed. Applying spectroelectrochemistry to the detection of these species can meet those needs. However, application of this technique is limited by the low molar absorptivities and quantum yields of the lanthanides. These limitations can be circumvented by complexing the lanthanides with sensitizing ligands that enhance fluorescence, thereby dropping the limits of detection. Complexation will also cause changes in the electrochemical be havior of the lanthanides. To demonstrate this concept, studies were completed using europium as a model lanthanide in complexes with four different sensitizing ligands, which included 2,2'-bipyridine and related derivatives. Results indicate that all four studied complexes demonstrate quasi-reversible redox couples and improvements in limits of detection where electrochemical and spectroscopic characteristics showed some dependence on attached ligand. All four complexes studied display the necessary characteristics for spectroelectrochemical analysis, which was successfully and reproducibly applied to all Eu complexes. C1 [Lines, Amanda M.; Clark, Sue B.] Washington State Univ, Dept Chem, Pullman, WA 99163 USA. [Lines, Amanda M.; Clark, Sue B.; Bryan, Samuel A.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. [Wang, Zheming] Pacific Northwest Natl Lab, Directorate E, Richland, WA 99352 USA. RP Clark, SB (reprint author), Washington State Univ, Dept Chem, Pullman, WA 99163 USA.; Clark, SB; Bryan, SA (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM sue.clark@pnnl.gov; sam.bryan@pnnl.gov RI Wang, Zheming/E-8244-2010 OI Wang, Zheming/0000-0002-1986-4357 FU U.S. National Nuclear Security Administration (NNSA) Office of Nonproliferation and Arms Control, Next Generation Safeguards Initiative (NGSI) within the U.S. Department of Energy (DOE) [NA-24]; DOE Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-76RL01830]; Defense Threat Reduction Agency [HDTRA1-10-1-0111, HDTRA1-14-1-0069] FX This research was supported in part by the U.S. National Nuclear Security Administration (NNSA) Office of Nonproliferation and Arms Control (NA-24), Next Generation Safeguards Initiative (NGSI) within the U.S. Department of Energy (DOE), and was performed at the Pacific Northwest National Laboratory (PNNL). A portion of this research was conducted at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility supported by the DOE Office of Biological and Environmental Research and located at PNNL. SBC also acknowledges support from the DOE Office of Science (DE-SC-004102) to assist in the design of the experiments conducted at the Environmental Molecular Sciences Laboratory. SBC acknowledges support from PNNL's Nuclear Process Science Initiative for the time to assist in data interpretation and development of this manuscript. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. A. M. L. and S. B. C. acknowledge support from the Defense Threat Reduction Agency, contracts HDTRA1-10-1-0111 and HDTRA1-14-1-0069 for support on the initial synthesis and characterization of ligands and complexes used in this study, which were completed out at Washington State University. NR 34 TC 1 Z9 1 U1 7 U2 7 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1040-0397 EI 1521-4109 J9 ELECTROANAL JI Electroanalysis PD SEP PY 2016 VL 28 IS 9 BP 2109 EP 2117 DI 10.1002/elan.201600034 PG 9 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA EA9AQ UT WOS:000386932800026 ER PT J AU Schroll, CA Chatterjee, S Levitskaia, T Heineman, WR Bryan, SA AF Schroll, Cynthia A. Chatterjee, Sayandev Levitskaia, Tatiana Heineman, William R. Bryan, Samuel A. TI Spectroelectrochemistry of EuCl3 in Four Molten Salt Eutectics; 3 LiCl-NaCl, 3 LiCl-2 KCl, LiCl-RbCl, and 3 LiCl-2 CsCl; at 873 K SO ELECTROANALYSIS LA English DT Article DE Molten salt; pyroprocessing; electrochemistry; spectroelectrochemistry; EuCl3 ID ALKALI CHLORIDE MELTS; THERMODYNAMIC PROPERTIES; ELECTROCHEMICAL-BEHAVIOR; REDOX POTENTIALS; SINGLE DEVICE; ELECTRODE PROCESSES; EUROPIUM CHLORIDES; FUSED CHLORIDES; URANIUM; IONS AB Key electrochemical properties affecting pyroprocessing of nuclear fuel were examined in four eutectic melts using Eu3+/2+ as a representative probe. We report the electrochemical and spectroelectrochemical behavior of EuCl3 in four molten salt eutectics (3 LiCl-NaCl, 3 LiCl-2 KCl, LiCl @ RbCl and 3 LiCl-2 CsCl) at 873 K. Cyclic voltammetry was used to determine the reduction potential for Eu3+/2+ and the applied potentials for spectroelectrochemistry. Single step chronoabsorptometry and thin-layer spectroelectrochemistry were used to obtain the number of electrons transferred, reduction potentials and diffusion coefficients for Eu3+ in each eutectic melt. The reduction potentials determined by thin-layer spectroelectrochemistry were essentially the same as those obtained using cyclic voltammetry. The diffusion coefficient for Eu3+ was the largest in the 3 LiCl-NaCl melt, showed a negative shift in the 3 LiCl-2 KCl melt, and was the smallest in the LiCl-RbCl and 3 LiCl-2 CsCl eutectic melts. The basic one-electron reversible electron transfer for Eu3+/2+ was not affected by melt composition. C1 [Schroll, Cynthia A.; Heineman, William R.] Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA. [Chatterjee, Sayandev; Levitskaia, Tatiana; Bryan, Samuel A.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Heineman, WR (reprint author), Univ Cincinnati, Dept Chem, Cincinnati, OH 45221 USA.; Bryan, SA (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM heinemwr@ucmail.uc.edu; sam.bryan@pnl.gov FU U.S. Department of Energy's Fuel Cycle Research and Development (FCR&D), Separation Campaign (NE); U.S. Department of Energy [DE-AC05-76RL01830] FX This research was supported by the U.S. Department of Energy's Fuel Cycle Research and Development (FCR&D), Separation Campaign (NE) and performed at the Pacific Northwest National Laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 55 TC 1 Z9 1 U1 6 U2 6 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1040-0397 EI 1521-4109 J9 ELECTROANAL JI Electroanalysis PD SEP PY 2016 VL 28 IS 9 BP 2158 EP 2165 DI 10.1002/elan.201600048 PG 8 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA EA9AQ UT WOS:000386932800032 ER PT J AU Jamei, M Stewart, E Peisert, S Scaglione, A McParland, C Roberts, C McEachern, A AF Jamei, Mahdi Stewart, Emma Peisert, Sean Scaglione, Anna McParland, Chuck Roberts, Ciaran McEachern, Alex TI Micro Synchrophasor-Based Intrusion Detection in Automated Distribution Systems Toward Critical Infrastructure Security SO IEEE INTERNET COMPUTING LA English DT Article AB Because electric power distribution systems are undergoing many technological changes, concerns are emerging about additional vulnerabilities that might arise. Resilient cyber-physical systems (CPSs) must leverage state measures and operational models that interlink their physical and cyber assets, to assess their global state. Here, the authors describe a viable process of abstraction to obtain this holistic state exploration tool by analyzing data from micro-phasor measurement units (mu PMUs) and monitoring distribution supervisory control and data acquisition (DSCADA) traffic. To interpret the data, they use semantics that express the system's specific physical and operational constraints in both the cyber and physical realms. C1 [Jamei, Mahdi; Scaglione, Anna] Arizona State Univ, Dept Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Stewart, Emma] Lawrence Berkeley Natl Lab, Grid Integrat, Berkeley, CA USA. [Peisert, Sean; McParland, Chuck; Roberts, Ciaran] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [McEachern, Alex] Power Stand Lab, Alameda, CA USA. RP Jamei, M (reprint author), Arizona State Univ, Dept Elect Comp & Energy Engn, Tempe, AZ 85287 USA. EM mahdi.jamei@asu.edu; estewart@lbl.gov; sppeisert@lbl.gov; anna.scaglione@asu.edu; cpmcparland@lbl.gov; cmroberts@lbl.gov; Alex@PowerStandards.com FU US Department of Energy through its Office of Electricity Delivery and Energy Reliability's Cybersecurity for Energy Delivery Systems program [DE-AC02- 05CH11231] FX This research was supported in part by the US Department of Energy through its Office of Electricity Delivery and Energy Reliability's Cybersecurity for Energy Delivery Systems program under contract DE-AC02- 05CH11231. The opinions and findings expressed in this article are those of the authors and don't necessarily reflect those of the sponsors. NR 12 TC 0 Z9 0 U1 5 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1089-7801 EI 1941-0131 J9 IEEE INTERNET COMPUT JI IEEE Internet Comput. PD SEP-OCT PY 2016 VL 20 IS 5 BP 18 EP 27 PG 10 WC Computer Science, Software Engineering SC Computer Science GA EB0WL UT WOS:000387067100004 ER PT J AU Murphy, CM Tuberville, TD Maerz, JC Andrews, KM AF Murphy, Chris M. Tuberville, Tracey D. Maerz, John C. Andrews, Kimberly M. TI Evaporative Water Loss Rates of Four Species of Aquatic Turtles from the Coastal Plain of the Southeastern United States SO JOURNAL OF HERPETOLOGY LA English DT Article ID CAROLINA BAY WETLANDS; KINOSTERNON-SUBRUBRUM; REPRODUCTIVE SUCCESS; HATCHLING TURTLES; CONSERVATION; HERPETOFAUNA; POPULATIONS; MANAGEMENT; DROUGHT; SNAKES AB Many isolated wetlands in the southeastern United States are naturally ephemeral, productive habitats that can support a high diversity of aquatic reptiles. As wetlands begin to dry, reptile species exhibit different behavioral responses including overland dispersal and terrestrial aestivation. Regardless of strategy, one of the greatest risks to individual survival is desiccation. We measured evaporative water loss rates (EWL; % body mass lost per hour) and total % body mass lost over 24 h in four species of semiaquatic turtles that frequent isolated wetlands in the southeastern United States: Chicken Turtles (Deirochelys reticularia), Eastern Mud Turtles (Kinosternon subrubrum), Common Musk Turtles (Sternotherus odoratus), and Yellow-Bellied Sliders (Trachemys scripta scripta). Mean percent body mass lost over 24 h ranged from 4.44-10.26% among individuals, was negatively correlated with body mass and varied among species, with higher EWL rates occurring in species with reduced shell robustness (the amount of the body covered by the shell). Mean EWL rates were highest in S. odoratus, lowest in K. subrubrum, and intermediate in D. reticularia and T. scripta. The EWL rates corresponded to species' natural history traits and behavioral adaptations to drought. Species with higher EWL rates could be more vulnerable to increased drought duration and frequency resulting from either climate change or anthropogenic modification of wetland hydrology, and easily measured traits such as shell robustness and body mass may be useful in predicting EWL rates and desiccation risk for particular age classes and other species of turtles. C1 [Murphy, Chris M.; Maerz, John C.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. [Tuberville, Tracey D.; Andrews, Kimberly M.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. [Andrews, Kimberly M.] Jekyll Isl Author, Georgia Sea Turtle Ctr, Jekyll Isl, GA USA. RP Murphy, CM (reprint author), Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA. EM chrismurphy618@gmail.com FU Construction Engineering Research Laboratory of the Engineer Research Development Center [W9132T-14-2-009]; Department of Energy Office of Environmental Management [DE-FC09-07SR22506] FX We thank P. Vogrinc, K. Buhlmann, D. Haskins, M. Hamilton, A. Jones, B. Harris, and M. Erickson for providing field and laboratory assistance. Funding was provided by Construction Engineering Research Laboratory of the Engineer Research Development Center to principal investigators TDT and KMA through Agreement #W9132T-14-2-009 and by the Department of Energy Office of Environmental Management under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation. Animals used in this study were collected under permit #04-2014 from the South Carolina Department of Natural Resources (DNR) and permit #29-WJH-14-93 from the Georgia DNR. All animal handling and husbandry activities conformed to Animal Use Procedure #A201405-006-Y1-A01 approved by the University of Georgia. NR 41 TC 0 Z9 0 U1 6 U2 6 PU SOC STUDY AMPHIBIANS REPTILES PI ST LOUIS PA C/O ROBERT D ALDRIDGE, ST LOUIS UNIV, DEPT BIOLOGY, 3507 LACLEDE, ST LOUIS, MO 63103 USA SN 0022-1511 EI 1937-2418 J9 J HERPETOL JI J. Herpetol. PD SEP PY 2016 VL 50 IS 3 BP 457 EP 463 DI 10.1670/15-124 PG 7 WC Zoology SC Zoology GA EA5OF UT WOS:000386669700017 ER PT J AU Bardin, A Primeau, F Lindsay, K Bradley, A AF Bardin, Ann Primeau, Francois Lindsay, Keith Bradley, Andrew TI Evaluation of the accuracy of an offline seasonally-varying matrix transport model for simulating ideal age SO OCEAN MODELLING LA English DT Article DE Implicit solver; Ideal age; Newton-Krylov; Offline; Transport matrix; Global ocean modeling ID OCEAN CIRCULATION MODELS; GLOBAL OCEAN; SOLVER; WATER; LAYER AB Newton-Krylov solvers for ocean tracers have the potential to greatly decrease the computational costs of spinning up deep-ocean tracers, which can take several thousand model years to reach equilibrium with surface processes. One version of the algorithm uses offline tracer transport matrices to simulate an annual cycle of tracer concentrations and applies Newton's method to find concentrations that are periodic in time. Here we present the impact of time-averaging the transport matrices on the equilibrium values of an ideal-age tracer. We compared annually-averaged, monthly-averaged, and 5-day-averaged transport matrices to an online simulation using the ocean component of the Community Earth System Model (CESM) with a nominal horizontal resolution of 1 degrees x 1 degrees and 60 vertical levels. We found that increasing the time resolution of the offline transport model reduced a low age bias from 12% for the annually-averaged transport matrices, to 4% for the monthly-averaged transport matrices, and to less than 2% for the transport matrices constructed from 5-day averages. The largest differences were in areas with strong seasonal changes in the circulation, such as the Northern Indian Ocean. For many applications the relatively small bias obtained using the offline model makes the offline approach attractive because it uses significantly less computer resources and is simpler to set up and run. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Bardin, Ann; Primeau, Francois] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. [Lindsay, Keith] Natl Ctr Atmospher Res, Climate & Global Dynam Div, POB 3000, Boulder, CO 80307 USA. [Bradley, Andrew] Sandia Natl Labs, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA. RP Bardin, A (reprint author), Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA 92697 USA. EM abardin@uci.edu; fprimeau@uci.edu; klindsay@ucar.edu; ambradl@sandia.gov FU Department of Energy, Office of Science, Biological and Environmental Research, under SciDAC at the University of California, Irvine [DE-SC0012550]; Department of Energy, Office of Science, Biological and Environmental Research, under DOE Field Work Proposal at Sandia National Laboratories [SNL 014938]; U. S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Science Foundation FX This work was supported by the Department of Energy, Office of Science, Biological and Environmental Research, under SciDAC award number DE-SC0012550 at the University of California, Irvine, and under DOE Field Work Proposal 2011 SNL 014938 at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Computing resources were provided by the Climate Simulation Laboratory at the National Center for Atmospheric Research's Computational and Information Systems Laboratory, sponsored by the National Science Foundation and other agencies. We thank Weiwei Fu for helpful discussions and support in validating the transport matrix build procedures. We thank two anonymous reviewers for their constructive comments. NR 26 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD SEP PY 2016 VL 105 BP 25 EP 33 DI 10.1016/j.ocemod.2016.07.003 PG 9 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA EA6XG UT WOS:000386771800003 ER PT J AU Young, C Petrosky, J Mann, JM Hunt, EM Turner, D Kelly, T AF Young, Christopher Petrosky, James Mann, J. Matthew Hunt, Eric M. Turner, David Kelly, Tony TI The work function of hydrothermally synthesized UO2 and the implications for semiconductor device fabrication SO PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS LA English DT Article DE work function; single crystals; UO2; X-ray photoemission; electrical contacts ID ELECTRONIC-STRUCTURE; URANIUM-DIOXIDE AB The photoelectric work function of nearly stoichiometric (111) and (100) hydrothermally grown UO2 was measured to be 6.28 +/- 0.36 eV and 5.80 +/- 0.36 eV, respectively. Candidate metals for electrical contacts are identified for both rectifying and non-rectifying contacts based on work function, lattice compatibility, and electrical conductivity. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Young, Christopher; Kelly, Tony] Air Force Inst Technol, Dept Engn Phys, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA. [Petrosky, James; Turner, David] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. [Mann, J. Matthew; Hunt, Eric M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Young, C (reprint author), Air Force Inst Technol, Dept Engn Phys, 2950 Hobson Way, Wright Patterson AFB, OH 45433 USA. EM cyoung@afit.edu; james.petrosky@afit.edu NR 19 TC 0 Z9 0 U1 4 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1862-6254 EI 1862-6270 J9 PHYS STATUS SOLIDI-R JI Phys. Status Solidi-Rapid Res. Lett. PD SEP PY 2016 VL 10 IS 9 BP 687 EP 690 DI 10.1002/pssr.201600203 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA EA4QQ UT WOS:000386599100007 ER PT J AU Abramov, BM Alexeev, PN Borodin, YA Bulychjov, SA Gudima, KK Dukhovskoy, IA Krutenkova, AP Kulikov, VV Martemianov, MA Matsyuk, MA Mashnik, SG Turdakina, EN Khanov, AI AF Abramov, B. M. Alexeev, P. N. Borodin, Yu. A. Bulychjov, S. A. Gudima, K. K. Dukhovskoy, I. A. Krutenkova, A. P. Kulikov, V. V. Martemianov, M. A. Matsyuk, M. A. Mashnik, S. G. Turdakina, E. N. Khanov, A. I. TI Yields of nuclear fragments in the interactions of carbon nuclei with a beryllium target at a projectile energy of 0.6 GeV per nucleon SO PHYSICS OF ATOMIC NUCLEI LA English DT Article ID PROTONS; MODELS AB The yields of long-lived nuclear fragments at an angle of 3.5A degrees that originate fromthe fragmentation of carbon ions with an energy of T (0) = 0.6 GeV per nucleon on a berylliumtarget were measured in the FRAGMexperiment at the ITEP TWA heavy-ion accelerator. The momentum spectra of these fragments cover both the fragmentation-maximum region and the cumulative region. The respective differential cross sections change by about five orders of magnitude. The momentum distributions of fragments in the laboratory frame and their kinetic-energy distributions in the rest frame of the fragmenting nucleus are used to test the predictions of four models of ion-ion interactions: BC, INCL++, LAQGSM03.03, and QMD. C1 [Abramov, B. M.; Alexeev, P. N.; Borodin, Yu. A.; Bulychjov, S. A.; Dukhovskoy, I. A.; Krutenkova, A. P.; Kulikov, V. V.; Martemianov, M. A.; Matsyuk, M. A.; Turdakina, E. N.; Khanov, A. I.] Natl Res Ctr Kurchatov Inst, Inst Theoret & Expt Phys, Bolshaya Cheremuskinskaya Ul 25, Moscow 117218, Russia. [Gudima, K. K.] Moldavian Acad Sci, Inst Appl Phys, Acad Str 5, MD-2028 Kishinev, Moldova. [Mashnik, S. G.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Krutenkova, AP (reprint author), Natl Res Ctr Kurchatov Inst, Inst Theoret & Expt Phys, Bolshaya Cheremuskinskaya Ul 25, Moscow 117218, Russia. EM anna.krutenkova@itep.ru FU Department of Energy (DOE, USA) [DE-AC52-06NA25396]; Russian Foundation for Basic Research [15-02-06308-a] FX Part of this work was performed at LANL and was supported by the Department of Energy (DOE, USA) under contract no. DE-AC52-06NA25396. This work was supported by the Russian Foundation for Basic Research (project no. 15-02-06308-a). NR 22 TC 0 Z9 0 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7788 EI 1562-692X J9 PHYS ATOM NUCL+ JI Phys. Atom. Nuclei PD SEP PY 2016 VL 79 IS 5 BP 700 EP 707 DI 10.1134/S1063778816050033 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA EA4GN UT WOS:000386569100008 ER PT J AU Jacques-Silva, G Zheng, F Debrunner, D Wu, KL Dogaru, V Johnson, E Spicer, M Sariyuce, AE AF Jacques-Silva, Gabriela Zheng, Fang Debrunner, Daniel Wu, Kun-Lung Dogaru, Victor Johnson, Eric Spicer, Michael Sariyuce, Ahmet Erdem TI Consistent Regions: Guaranteed Tuple Processing in IBM Streams SO PROCEEDINGS OF THE VLDB ENDOWMENT LA English DT Article AB Guaranteed tuple processing has become critically important for many streaming applications. This paper describes how we enabled IBM Streams, an enterprise-grade stream processing system, to provide data processing guarantees. Our solution goes from language-level abstractions to a run-time protocol. As a result, with a couple of simple annotations at the source code level, IBM Streams developers can define consistent regions, allowing any subgraph of their streaming application to achieve guaranteed tuple processing. At runtime, a consistent region periodically executes a variation of the Chandy-Lamport snapshot algorithm to establish a consistent global state for that region. The coupling of consistent states with data replay enables guaranteed tuple processing. C1 [Jacques-Silva, Gabriela; Zheng, Fang; Wu, Kun-Lung] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Sariyuce, Ahmet Erdem] Sandia Natl Labs, Livermore, CA 94550 USA. [Jacques-Silva, Gabriela] IBM Corp, RSM, North Castle, NY USA. [Sariyuce, Ahmet Erdem] IBM Corp, North Castle, NY USA. RP Jacques-Silva, G (reprint author), IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 2150-8097 J9 PROC VLDB ENDOW JI Proc. VLDB Endow. PD SEP PY 2016 VL 9 IS 13 BP 1341 EP 1352 PG 12 WC Computer Science, Information Systems SC Computer Science GA EA2NT UT WOS:000386431200009 ER PT J AU McManamay, RA Oigbokie, CO Kao, SC Bevelhimer, MS AF McManamay, R. A. Oigbokie, C. O. Kao, S. -C. Bevelhimer, M. S. TI Classification of US Hydropower Dams by their Modes of Operation SO RIVER RESEARCH AND APPLICATIONS LA English DT Article DE large dams; subdaily hydrology; reservoir operation; dam classification; hydrologic model ID MULTIPURPOSE RESERVOIR SYSTEM; ALTERED FLOW REGIMES; ENVIRONMENTAL FLOWS; RIVER; MANAGEMENT; WATER; BIODIVERSITY AB A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for US hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. We then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewing information for 721 dams and 597 power plants, we developed a two-tier hierarchical classification based on (i) the storage and control of flows to powerplants, and (ii) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (62%), which suggested that accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. This standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation. Copyright (c) 2016 John Wiley & Sons, Ltd. C1 [McManamay, R. A.; Oigbokie, C. O.; Kao, S. -C.; Bevelhimer, M. S.] Oak Ridge Natl Lab, Div Environm Sci, One Bethel Valley Rd,Bldg 1504-19,POB 2008, Oak Ridge, TN 37831 USA. RP McManamay, RA (reprint author), Oak Ridge Natl Lab, Div Environm Sci, One Bethel Valley Rd,Bldg 1504-19,POB 2008, Oak Ridge, TN 37831 USA. EM mcmanamayra@ornl.gov OI Kao, Shih-Chieh/0000-0002-3207-5328 FU Department of Energy through the Instream Flow Project; National Hydropower Asset Assessment Program; US Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Department of Energy through the Instream Flow Project and the National Hydropower Asset Assessment Program. The data generated from this study, as well as other information on the US hydropower resources, are available through Oak Ridge National Laboratory's National Hydropower Asset Assessment Program website (nhaap.ornl.gov/). We are grateful to Allen Mitchnick, who provided assistance with mining FERC e-library, Constantin Scherelis for assistance in reviewing FERC documents, and Mike Schramm for providing editorial suggestions on an earlier version of this manuscript. This paper has been authored by employees of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government's purposes. NR 46 TC 1 Z9 1 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1535-1459 EI 1535-1467 J9 RIVER RES APPL JI River Res. Appl. PD SEP PY 2016 VL 32 IS 7 BP 1450 EP 1468 DI 10.1002/rra.3004 PG 19 WC Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA DW5SF UT WOS:000383706500004 ER PT J AU Lin, YZ O'Malley, D Vesselinov, VV AF Lin, Youzuo O'Malley, Daniel Vesselinov, Velimir V. TI A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses SO WATER RESOURCES RESEARCH LA English DT Article DE hydraulic inverse modeling; Levenberg-Marquardt method; dimensionality reduction; Krylov subspace approximation; subspace recycling; LSQR iterative method ID COMPONENT GEOSTATISTICAL APPROACH; SPARSE LINEAR-EQUATIONS; LEAST-SQUARES; LSQR AB Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of approximate to 101 to approximate to 102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems. C1 [Lin, Youzuo] Los Alamos Natl Lab, Earth & Environm Sci Div, Geophys Grp EES 17, Los Alamos, NM 87544 USA. [O'Malley, Daniel; Vesselinov, Velimir V.] Los Alamos Natl Lab, Earth & Environm Sci Div, Computat Earth Sci Grp EES 16, Los Alamos, NM USA. RP Lin, YZ (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Geophys Grp EES 17, Los Alamos, NM 87544 USA. EM ylin@lanl.gov OI Vesselinov, Velimir/0000-0002-6222-0530; O'Malley, Daniel/0000-0003-0432-3088 FU Los Alamos National Laboratory (LANL) Director's Postdoctoral Fellowship; Los Alamos National Laboratory Environmental Programs Projects; DiaMonD project (An Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions, U.S. Department of Energy Office of Science) [11145687] FX Youzuo Lin and Velimir V. Vesselinov were support by Los Alamos National Laboratory Environmental Programs Projects. Daniel O'Malley was supported by a Los Alamos National Laboratory (LANL) Director's Postdoctoral Fellowship. In addition, Velimir V. Vesselinov was supported by the DiaMonD project (An Integrated Multifaceted Approach to Mathematics at the Interfaces of Data, Models, and Decisions, U.S. Department of Energy Office of Science, grant 11145687). We also thank Jeremy T. White, two anonymous reviewers, and the Associate Editor for their valuable comments that help improve our paper. All the data are available from the authors upon request (ylin@lanl.gov). NR 50 TC 0 Z9 0 U1 6 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD SEP PY 2016 VL 52 IS 9 BP 6948 EP 6977 DI 10.1002/2016WR019028 PG 30 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA EA9QC UT WOS:000386977900014 ER PT J AU Hargreaves-Cormany, HA Patterson, TD AF Hargreaves-Cormany, Holly A. Patterson, Terri D. TI Characteristics of survivors of juvenile sex trafficking: Implications for treatment and intervention initiatives SO AGGRESSION AND VIOLENT BEHAVIOR LA English DT Article DE Sex trafficking; Survivors; Intervention; Complex trauma; Epigenetics AB The Behavioral Analysis Unit (BAU) III of the FBI conducted a study that expands upon a typology of offenders engaging in the sex trafficking of juveniles (STJ) (Hargreaves-Cormany, Patterson and Muirhead, 2016) by developing a STJ Survivor Spectrum of Characteristics. All 179 STJ survivors were included in the latent class analyses (LCAs). Further, a binary logistic regression (BLR) analysis was conducted to examine potential for increase in substance use. Data utilized for the study was derived from protocols developed to obtain demographic information on the offenders and survivors and various aspects of the nature of the criminal act(s) perpetrated by the offender. The second author's expertise and practical knowledge from the field regarding STJ offenders and survivors as well as their interviews were utilized to substantiate the empirical findings. The STJ survivors' age, known increases in substance use, motivation to cooperate/testify and family structure were used as indicators within the LCAs. Three latent classes emerged comprised of different STJ survivor age groups. Results suggested that differences between classes are likely attributed to developmental considerations/maturation. The BLR suggested that age of the STJ survivor was predictive of increase in alcohol use. Qualitative analysis of interviews provided in depth data and a lens into the perspectives of STJ survivors. Results enhance understanding of STJ survivors and inform treatment/intervention initiatives which may result in prevention/reduction of harm to juveniles. (C) 2016 Published by Elsevier Ltd. C1 [Hargreaves-Cormany, Holly A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Patterson, Terri D.] FBI Acad, BAU, Quantico, VA 22135 USA. [Hargreaves-Cormany, Holly A.; Patterson, Terri D.] Fed Bur Invest, Quantico, VA 22135 USA. RP Patterson, TD (reprint author), Fed Bur Invest, Quantico, VA 22135 USA. EM Terri.Patterson@ic.fbi.gov NR 37 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-1789 EI 1873-6335 J9 AGGRESS VIOLENT BEH JI Aggress. Violent Behav. PD SEP-OCT PY 2016 VL 30 SI SI BP 32 EP 39 DI 10.1016/j.avb.2016.06.012 PG 8 WC Criminology & Penology; Psychology, Multidisciplinary SC Criminology & Penology; Psychology GA EA2FS UT WOS:000386408800005 ER PT J AU Hargreaves-Cormany, HA Patterson, TD Muirhead, YE AF Hargreaves-Cormany, Holly A. Patterson, Terri D. Muirhead, Yvonne E. CA Fed Bur Invest TI A Typology of Offenders Engaging in the Sex Trafficking of Juveniles (STJ): Implications for Risk Assessment SO AGGRESSION AND VIOLENT BEHAVIOR LA English DT Article DE Sex trafficking; Risk-assessment; Typology; Psychopathy ID PSYCHOPATHY; RECIDIVISM; METAANALYSIS; PROFILES; SCALE AB Psychopathy is highly prevalent within offenders who engage in the sex trafficking of juveniles (STJ) as 75% (n=27) of offenders with sufficient data to assess the PCL-R (n=36) met the criteria for psychopathy (n=24 with a score of >= 30) and/or were close to the threshold (n =3 with a score of 29.5) and 25% (n = 9; M=26.78) exceeded the average score of North American adult male inmates (Patterson et al., 2013). Latent class analyses (LCAs) were conducted on 117 STJ offenders with data derived from protocols including demographics of the offenders and victims and various aspects of the nature of the criminal act(s) perpetrated by the offender focused upon the STJ offense(s). The LCA indicators were the STJ Scales measuring Criminal History Severity, Violence Severity, Criminal Sophistication and Charismatic Offender Behavioral Style. The second author's expertise from the field and interviews with victims and offenders were utilized to substantiate the findings. Two broad types of STJ offenders emerged: 1- Aggressive/Antisocial and 2- Charismatic/Manipulative with subtypes. The STJ Risk Scale scores suggested that Violent Charismatic/Manipulative STJ Offenders posed the greatest danger to society. Enhanced understanding of STJ offenders especially in regards to risk assessment may result in reduction of harm to juveniles. (C) 2016 Published by Elsevier Ltd. C1 [Hargreaves-Cormany, Holly A.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Patterson, Terri D.; Muirhead, Yvonne E.] FBI Acad, BAU, Quantico, VA 22135 USA. RP Patterson, TD (reprint author), Fed Bur Invest, Quantico, VA 22135 USA. EM Terri.Patterson@ic.fbi.gov FU Oak Ridge Institute for Science and Education FX This research was conducted by members of the Federal Bureau of Investigation's Behavioral Analysis Unit (BAU) from case information obtained by the BAU. Author Holly Hargreaves-Cormany obtained support through the Oak Ridge Institute for Science and Education. The authors would like to thank former and current BAU staff, FBI Interns, ORISE Research Fellows and academic professionals for their suggestions and assistance. NR 45 TC 1 Z9 1 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-1789 EI 1873-6335 J9 AGGRESS VIOLENT BEH JI Aggress. Violent Behav. PD SEP-OCT PY 2016 VL 30 SI SI BP 40 EP 47 DI 10.1016/j.avb.2016.06.011 PG 8 WC Criminology & Penology; Psychology, Multidisciplinary SC Criminology & Penology; Psychology GA EA2FS UT WOS:000386408800006 ER PT J AU Erath, C Taylor, MA Nair, RD AF Erath, Christoph Taylor, Mark A. Nair, Ramachandran D. TI Two conservative multi-tracer efficient semi-Lagrangian schemes for multiple processor systems integrated in a spectral element (climate) dynamical core SO COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS LA English DT Article DE transport scheme; spherical geometry; cubed-sphere grid; conservative semi-Lagrangian; spectral element method; error; parallel scalability; performance ID SHALLOW-WATER MODEL; TRANSPORT SCHEME; CUBED-SPHERE; GRIDS; EQUATIONS AB In today's atmospheric numerical modeling, scalable and highly accurate numerical schemes are of particular interest. To address these issues Galerkin schemes, such as the spectral element method, have received more attention in the last decade. They also provide other state-of-the-art capabilities such as improved conservation. However, the tracer transport of hundreds of tracers, e.g., in the chemistry version of the Community Atmosphere Model, is still a performance bottleneck. Therefore, we consider two conservative semi-Lagrangian schemes. Both are designed to be multi-tracer efficient, third order accurate, and allow significantly longer time steps than explicit Eulerian formulations. We address the difficulties arising on the cubed-sphere projection and on parallel computers and show the high scalability of our approach. Additionally, we use the two schemes for the transport of passive tracers in a dynamical core and compare our results with a current spectral element tracer transport advection used by the High-Order Method Modeling Environment. C1 [Erath, Christoph] Tech Univ Darmstadt, Dept Math, Dolivostr 15, D-64293 Darmstadt, Germany. [Taylor, Mark A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Nair, Ramachandran D.] Natl Ctr Atmospher Res, 1850 Table Mesa Dr, Boulder, CO 80305 USA. RP Erath, C (reprint author), Tech Univ Darmstadt, Dept Math, Dolivostr 15, D-64293 Darmstadt, Germany. EM erath@mathematik.tu-darmstadt.de NR 33 TC 0 Z9 0 U1 0 U2 0 PU DE GRUYTER OPEN LTD PI WARSAW PA BOGUMILA ZUGA 32A ST, 01-811 WARSAW, POLAND SN 2038-0909 J9 COMMUN APPL IND MATH JI Commun. Appl. Ind. Math. PD SEP PY 2016 VL 7 IS 3 SI SI BP 71 EP 95 DI 10.1515/caim-2016-0023 PG 25 WC Mathematics SC Mathematics GA EA0HQ UT WOS:000386267600005 ER PT J AU Bayles, BR Brauman, KA Adkins, JN Allan, BF Ellis, AM Goldberg, TL Golden, CD Grigsby-Toussaint, DS Myers, SS Osofsky, SA Ricketts, TH Ristaino, JB AF Bayles, Brett R. Brauman, Kate A. Adkins, Joshua N. Allan, Brian F. Ellis, Alicia M. Goldberg, Tony L. Golden, Christopher D. Grigsby-Toussaint, Diana S. Myers, Samuel S. Osofsky, Steven A. Ricketts, Taylor H. Ristaino, Jean B. TI Ecosystem Services Connect Environmental Change to Human Health Outcomes SO ECOHEALTH LA English DT Editorial Material ID PUBLIC-HEALTH; DISEASE; CONSERVATION; MANAGEMENT; VALUATION; ENHANCE; MALARIA C1 [Bayles, Brett R.; Brauman, Kate A.] Univ Minnesota Twin Cities, Inst Environm, 1954 Buford Ave, St Paul, MN 55108 USA. [Adkins, Joshua N.] Pacific Northwest Natl Lab, Richland, WA USA. [Allan, Brian F.] Univ Illinois, Dept Entomol, 320 Morrill Hall, Urbana, IL 61801 USA. [Ellis, Alicia M.; Ricketts, Taylor H.] Univ Vermont, Gund Inst Ecol Econ, Burlington, VT USA. [Goldberg, Tony L.] Univ Wisconsin, Global Hlth Inst, Madison, WI USA. [Golden, Christopher D.; Myers, Samuel S.] Harvard Sch Publ Hlth, Dept Environm Hlth, Cambridge, MA USA. [Golden, Christopher D.; Myers, Samuel S.] Harvard Univ, Ctr Environm, Cambridge, MA 02138 USA. [Grigsby-Toussaint, Diana S.] Univ Illinois, Coll Appl Hlth Sci, Urbana, IL 61801 USA. [Golden, Christopher D.; Osofsky, Steven A.] Wildlife Conservat Soc, Wildlife Hlth & Hlth Policy Program, New York, NY USA. [Ristaino, Jean B.] North Carolina State Univ, Dept Plant Pathol, Raleigh, NC USA. RP Bayles, BR (reprint author), Univ Minnesota Twin Cities, Inst Environm, 1954 Buford Ave, St Paul, MN 55108 USA. EM brett.r.bayles@gmail.com OI Ristaino, Jean/0000-0002-9458-0514; Brauman, Kate/0000-0002-8099-285X NR 36 TC 0 Z9 0 U1 10 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1612-9202 EI 1612-9210 J9 ECOHEALTH JI EcoHealth PD SEP PY 2016 VL 13 IS 3 BP 443 EP 449 DI 10.1007/s10393-016-1137-5 PG 7 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA EA1PD UT WOS:000386363400003 PM 27357081 ER PT J AU Kim, SJ Brandizzi, F AF Kim, Sang-Jin Brandizzi, Federica TI The plant secretory pathway for the trafficking of cell wall polysaccharides and glycoproteins SO GLYCOBIOLOGY LA English DT Review DE cellulose; glycosylation; hemicellulose; plant cell wall; mixed-linkage glucan ID GPI-ANCHORED PROTEINS; XYLOGLUCAN-SYNTHESIZING ENZYMES; CELLULOSE SYNTHASE COMPLEXES; RETICULUM EXPORT SITES; MAIZE MIXED-LINKAGE; ENDOPLASMIC-RETICULUM; GOLGI-APPARATUS; ARABIDOPSIS-THALIANA; PLASMA-MEMBRANE; ARABINOGALACTAN-PROTEINS AB Plant endomembranes are required for the biosynthesis and secretion of complex cell wall matrix polysaccharides, glycoproteins and proteoglycans. To define the biochemical roadmap that guides the synthesis and deposition of these cell wall components it is first necessary to outline the localization of the biosynthetic and modifying enzymes involved, as well as the distribution of the intermediate and final constituents of the cell wall. Thus far, a comprehensive understanding of cell wall matrix components has been hampered by the multiplicity of trafficking routes in the secretory pathway, and the diverse biosynthetic roles of the endomembrane organelles, which may exhibit tissue and development specific features. However, the recent identification of protein complexes producing matrix polysaccharides, and those supporting the synthesis and distribution of a grass-specific hemicellulose are advancing our understanding of the functional contribution of the plant secretory pathway in cell wall biosynthesis. In this review, we provide an overview of the plant membrane trafficking routes and report on recent exciting accomplishments in the understanding of the mechanisms underlying secretion with focus on cell wall synthesis in plants. C1 [Kim, Sang-Jin; Brandizzi, Federica] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Kim, Sang-Jin; Brandizzi, Federica] Michigan State Univ, Michigan State Univ DOE Plant Res Lab, E Lansing, MI 48824 USA. [Brandizzi, Federica] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA.; Brandizzi, F (reprint author), Michigan State Univ, Michigan State Univ DOE Plant Res Lab, E Lansing, MI 48824 USA.; Brandizzi, F (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM fb@msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 97 TC 0 Z9 0 U1 13 U2 13 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD SEP PY 2016 VL 26 IS 9 BP 940 EP 949 DI 10.1093/glycob/cww044 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DZ7MH UT WOS:000386049500006 PM 27072815 ER PT J AU Lindemann, SR Bernstein, HC Song, HS Fredrickson, JK Fields, MW Shou, WY Johnson, DR Beliaev, AS AF Lindemann, Stephen R. Bernstein, Hans C. Song, Hyun-Seob Fredrickson, Jim K. Fields, Matthew W. Shou, Wenying Johnson, David R. Beliaev, Alexander S. TI Engineering microbial consortia for controllable outputs SO ISME JOURNAL LA English DT Article ID ESCHERICHIA-COLI; SYNTHETIC BIOLOGY; BACTERIAL CONSORTIUM; MASS-SPECTROMETRY; CURRENT KNOWLEDGE; GENE-EXPRESSION; COMMUNITY; BIODIVERSITY; POPULATIONS; BIOMASS AB Much research has been invested into engineering microorganisms to perform desired biotransformations; nonetheless, these efforts frequently fall short of expected results due to the unforeseen effects of biofeedback regulation and functional incompatibility. In nature, metabolic function is compartmentalized into diverse organisms assembled into robust consortia, in which the division of labor is thought to lead to increased community efficiency and productivity. Here we consider whether and how consortia can be designed to perform bioprocesses of interest beyond the metabolic flexibility limitations of a single organism. Advances in post-genomic analysis of microbial consortia and application of high-resolution global measurements now offer the promise of systems-level understanding of how microbial consortia adapt to changes in environmental variables and inputs of carbon and energy. We argue that, when combined with appropriate modeling frameworks, systems-level knowledge can markedly improve our ability to predict the fate and functioning of consortia. Here we articulate our collective perspective on the current and future state of microbial community engineering and control while placing specific emphasis on ecological principles that promote control over community function and emergent properties. C1 [Lindemann, Stephen R.; Bernstein, Hans C.; Song, Hyun-Seob; Fredrickson, Jim K.; Beliaev, Alexander S.] Pacific Northwest Natl Lab, Biol Sci Div, POB 999,MS P7-50, Richland, WA 99352 USA. [Fields, Matthew W.] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. [Shou, Wenying] Fred Hutchinson Canc Res Ctr, Div Basic Sci, 1124 Columbia St, Seattle, WA 98104 USA. [Johnson, David R.] Swiss Fed Inst Technol ETHZ, Dept Environm Syst Sci, Zurich, Switzerland. RP Beliaev, AS (reprint author), Pacific Northwest Natl Lab, Biol Sci Div, POB 999,MS P7-50, Richland, WA 99352 USA. EM alex.beliaev@pnnl.gov OI Bernstein, Hans/0000-0003-2913-7708 FU US DOE Office of Biological and Environmental Research through the Genomic Science Program; Scientific Focus Area Program at Lawrence Berkeley National Laboratory; Linus Pauling Distinguished Postdoctoral Fellowship - PNNL Laboratory Directed Research and Development Program FX This work was supported by the US DOE Office of Biological and Environmental Research through the Genomic Science Program and is a contribution of PNNL Foundational Scientific Focus Area. MWF is supported by the Scientific Focus Area Program at Lawrence Berkeley National Laboratory. HCB is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship sponsored by the PNNL Laboratory Directed Research and Development Program. Questions posed in this perspective arose during the roundtable session on engineering microbial consortia at the 15th International Symposium on Microbial Ecology held in Seoul, South Korea, on 24-29 August 2014. We thank all the participants of the roundtable session for their role in initiating our development of this manuscript. We would further like to thank Alice Dohnalkova and Cortland Johnson for their help with illustrations. NR 68 TC 5 Z9 6 U1 20 U2 20 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD SEP PY 2016 VL 10 IS 9 BP 2077 EP 2084 DI 10.1038/ismej.2016.26 PG 8 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA EA5MK UT WOS:000386664600001 PM 26967105 ER PT J AU Jewell, TNM Karaoz, U Brodie, EL Williams, KH Beller, HR AF Jewell, Talia N. M. Karaoz, Ulas Brodie, Eoin L. Williams, Kenneth H. Beller, Harry R. TI Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer SO ISME JOURNAL LA English DT Article ID ANAEROBIC AMMONIUM OXIDATION; MICROBIAL COMMUNITIES; ANAMMOX BACTERIUM; HYDROXYLAMINE OXIDOREDUCTASE; THIOBACILLUS-DENITRIFICANS; CONTAMINATED AQUIFER; MOLECULAR-BIOLOGY; GENOME SEQUENCE; IRON OXIDATION; GROUNDWATER AB Groundwater ecosystems are conventionally thought to be fueled by surface-derived allochthonous organic matter and dominated by heterotrophic microbes living under often-oligotrophic conditions. However, in a 2-month study of nitrate amendment to a perennially suboxic aquifer in Rifle (CO), strain-resolved metatranscriptomic analysis revealed pervasive and diverse chemolithoautotrophic bacterial activity relevant to C, S, N and Fe cycling. Before nitrate injection, anaerobic ammonia-oxidizing (anammox) bacteria accounted for 16% of overall microbial community gene expression, whereas during the nitrate injection, two other groups of chemolithoautotrophic bacteria collectively accounted for 80% of the metatranscriptome: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Notably, the proportion of the metatranscriptome accounted for by these three groups was considerably greater than the proportion of the metagenome coverage that they represented. Transcriptional analysis revealed some unexpected metabolic couplings, in particular, putative nitrate-dependent Fe(II) and S oxidation among nominally microaerophilic Gallionellaceae strains, including expression of periplasmic (NapAB) and membrane-bound (NarGHI) nitrate reductases. The three most active groups of chemolithoautotrophic bacteria in this study had overlapping metabolisms that allowed them to occupy different yet related metabolic niches throughout the study. Overall, these results highlight the important role that chemolithoautotrophy can have in aquifer biogeochemical cycling, a finding that has broad implications for understanding terrestrial carbon cycling and is supported by recent studies of geochemically diverse aquifers. C1 [Jewell, Talia N. M.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Beller, Harry R.] Lawrence Berkeley Natl Lab, Earth & Environm Sci, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. RP Beller, HR (reprint author), Lawrence Berkeley Natl Lab, Earth & Environm Sci, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM HRBeller@lbl.gov FU Subsurface Biogeochemical Research Scientific Focus Area - US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; NIH S10 Instrumentation [S10RR029668, S10RR027303] FX We thank Jill Banfield (University of California, Berkeley, CA, USA) for valuable discussions and David M Silberman for technical assistance. This paper is dedicated to the memory of Richard (Dick) Dayvault, whose commitment to supporting scientific research at DOE's Rifle field site was instrumental to the success of this experiment and all those preceding it. This work was supported as part of the Subsurface Biogeochemical Research Scientific Focus Area funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-AC02-05CH11231. This work used the Vincent J Coates Genomics Sequencing Laboratory at UC Berkeley, supported by NIH S10 Instrumentation Grants S10RR029668 and S10RR027303. NR 68 TC 6 Z9 6 U1 17 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD SEP PY 2016 VL 10 IS 9 BP 2106 EP 2117 DI 10.1038/ismej.2016.25 PG 12 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA EA5MK UT WOS:000386664600004 PM 26943628 ER PT J AU Spatafora, JW Chang, Y Benny, GL Lazarus, K Smith, ME Berbee, ML Bonito, G Corradi, N Grigoriev, I Gryganskyi, A James, TY O'Donnell, K Roberson, RW Taylor, TN Uehling, J Vilgalys, R White, MM Stajich, JE AF Spatafora, Joseph W. Chang, Ying Benny, Gerald L. Lazarus, Katy Smith, Matthew E. Berbee, Mary L. Bonito, Gregory Corradi, Nicolas Grigoriev, Igor Gryganskyi, Andrii James, Timothy Y. O'Donnell, Kerry Roberson, Robert W. Taylor, Thomas N. Uehling, Jessie Vilgalys, Rytas White, Merlin M. Stajich, Jason E. TI A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data SO MYCOLOGIA LA English DT Article DE Entomophthoromycotina; fungi; Glomeromycotina; Kickellomycotina; Mortierellomycotina; Mucoromycota; Mucoromycotina; paraphyly; systematics; Zoopagomycota Zoopagomycotina ID ARBUSCULAR MYCORRHIZAL FUNGI; MOLECULAR PHYLOGENY; MULTIGENE-GENEALOGIES; LAND PLANTS; SEX GENES; EVOLUTION; INSIGHTS; REVEALS; SEQUENCE; MORTIERELLALES AB Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that faini a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived Glade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed. C1 [Spatafora, Joseph W.; Chang, Ying] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Benny, Gerald L.; Lazarus, Katy; Smith, Matthew E.] Univ Florida, Dept Plant Pathol, Gainesville, FL 32611 USA. [Berbee, Mary L.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Bonito, Gregory] Michigan State Univ, Dept Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. [Corradi, Nicolas] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada. [Grigoriev, Igor] US DOE, Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [Gryganskyi, Andrii] LF Lambert Spawn Co, Coatesville, PA 19320 USA. [James, Timothy Y.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48103 USA. [O'Donnell, Kerry] NCA UR ARS USDA, Mycotoxin Prevent & Appl Microbiol Res Unit, 1815 N Univ St, Peoria, IL 61604 USA. [Roberson, Robert W.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Taylor, Thomas N.] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA. [Taylor, Thomas N.] Univ Kansas, Nat Hist Museum, Lawrence, KS 66045 USA. [Taylor, Thomas N.] Univ Kansas, Biodivers Res Ctr, Lawrence, KS 66045 USA. [Uehling, Jessie; Vilgalys, Rytas] Duke Univ, Dept Biol, Box 90338, Durham, NC 27708 USA. [White, Merlin M.] Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA. RP Spatafora, JW (reprint author), Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. EM spatafoj@oregonstate.edu FU National Science Foundation [DEB-1441604, DEB-1441715, DEB-1441677, DEB-1441728]; French National Research Agency through the Laboratory of Excellence ARBRE [ANR-11-LBX-0002-01]; Canadian National Science and Engineering Research Council [412318-11, 138427-11] FX This paper is dedicated to our colleague and coauthor Thomas N. Taylor who passed away during the final preparation of this manuscript. The authors thank the following persons for access to unpublished genomes: Santiago Torres Martinez for Mucor circinelloides, Teresa Pawlowska and Stephen Mondo for Rhizopus microsporus var. microsporus, Vincent Bruno for Basidiobolus heterosporus and Saksenaea vasiformis, and Francis Martin for Mortierella elongata. This material is based upon work supported by the National Science Foundation (DEB-1441604 to JWS, DEB-1441715 to JES, DEB-1441677 to TYJ, DEB-1441728 to RWR), the French National Research Agency through the Laboratory of Excellence ARBRE (grant No. ANR-11-LBX-0002-01 to JWS) and the Canadian National Science and Engineering Research Council grants (412318-11 and 138427-11 to MLB). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer. NR 101 TC 6 Z9 6 U1 32 U2 32 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 EI 1557-2536 J9 MYCOLOGIA JI Mycologia PD SEP-OCT PY 2016 VL 108 IS 5 BP 1028 EP 1046 DI 10.3852/16-042 PG 19 WC Mycology SC Mycology GA DZ8EV UT WOS:000386104600018 PM 27738200 ER PT J AU Maswadi, SM Ibey, BL Roth, CC Tsyboulski, DA Beier, HT Glickman, RD Oraevsky, AA AF Maswadi, Saher M. Ibey, Bennett L. Roth, Caleb C. Tsyboulski, Dmitri A. Beier, Hope T. Glickman, Randolph D. Oraevsky, Alexander A. TI All-optical optoacoustic microscopy based on probe beam deflection technique SO PHOTOACOUSTICS LA English DT Article DE Optical resolution photoacoustic imaging; Optoacoustic tomography; Probe beam deflection technique; All optical optoacoustic system; Non-contact acoustic sensor; Backward mode optoacoustic microscopy ID RESOLUTION PHOTOACOUSTIC MICROSCOPY; IN-VIVO; TOMOGRAPHY; INTERFEROMETER; DETECTOR; SENSOR AB Optoacoustic (OA) microscopy using an all-optical system based on the probe beam deflection technique (PBDT) for detection of laser-induced acoustic signals was investigated as an alternative to conventional piezoelectric transducers. PBDT provides a number of advantages for OA microscopy including (i) efficient coupling of laser excitation energy to the samples being imaged through the probing laser beam, (ii) undistorted coupling of acoustic waves to the detector without the need for separation of the optical and acoustic paths, (iii) high sensitivity and (iv) ultrawide bandwidth. Because of the unimpeded optical path in PBDT, diffraction-limited lateral resolution can be readily achieved. The sensitivity of the current PBDT sensor of 22 mV/Pa and its noise equivalent pressure (NEP) of 11.4 Pa are comparable with these parameters of the optical micro-ring resonator and commercial piezoelectric ultrasonic transducers. Benefits of the present prototype OA microscope were demonstrated by successfully resolving micronsize details in histological sections of cardiac muscle. (C) 2016 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). C1 [Maswadi, Saher M.] Oak Ridge Inst Sci & Educ, 4141 Petr Rd, JBSA Fort Sam Houston, TX 78234 USA. [Maswadi, Saher M.] Univ Texas San Antonio, Dept Phys & Astron, One UTSA Circle, San Antonio, TX 78249 USA. [Ibey, Bennett L.] Air Force Res Lab, Human Effectiveness Directorate, Bioeffects Div, Radio Frequency Bioeffects Branch, 711th Human Performance Wing,4141 Petr Rd, JBSA Fort Sam Houston, TX 78234 USA. [Roth, Caleb C.] Univ Texas Hlth Sci Ctr San Antonio, Sch Med, Dept Radiol Sci, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA. [Tsyboulski, Dmitri A.; Oraevsky, Alexander A.] TomoWave Labs, 6550 Mapleridge St, Houston, TX 77081 USA. [Beier, Hope T.] Air Force Res Lab, Human Effectiveness Directorate, Bioeffects Div, Opt Radiat Branch, 711th Human Performance Wing,4141 Petr Rd, JBSA Fort Sam Houston, TX 78234 USA. [Glickman, Randolph D.] Univ Texas Hlth Sci Ctr San Antonio, Sch Med, Dept Ophthalmol, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA. [Maswadi, Saher M.; Glickman, Randolph D.] EchoLase Inc, 5234 Tomas Circle, San Antonio, TX 78240 USA. RP Maswadi, SM (reprint author), EchoLase Inc, 5234 Tomas Circle, San Antonio, TX 78240 USA. EM maswadi@echolase.com FU NIBIB NIH HHS [R43 EB015287] NR 33 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER GMBH, URBAN & FISCHER VERLAG PI JENA PA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY SN 2213-5979 J9 PHOTOACOUSTICS JI Photoacoustics PD SEP PY 2016 VL 4 IS 3 BP 91 EP 101 DI 10.1016/j.pacs.2016.02.001 PG 11 WC Acoustics SC Acoustics GA EA3SO UT WOS:000386525200003 PM 27761408 ER PT J AU Abbey, B Dilanian, RA Darmanin, C Ryan, RA Putkunz, CT Martin, AV Wood, D Streltsov, V Jones, MWM Gaffney, N Hofmann, F Williams, GJ Boutet, S Messerschmidt, M Seibert, MM Williams, S Curwood, E Balaur, E Peele, AG Nugent, KA Quiney, HM AF Abbey, Brian Dilanian, Ruben A. Darmanin, Connie Ryan, Rebecca A. Putkunz, Corey T. Martin, Andrew V. Wood, David Streltsov, Victor Jones, Michael W. M. Gaffney, Naylyn Hofmann, Felix Williams, Garth J. Boutet, Sebastien Messerschmidt, Marc Seibert, M. Marvin Williams, Sophie Curwood, Evan Balaur, Eugeniu Peele, Andrew G. Nugent, Keith A. Quiney, Harry M. TI X-ray laser-induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene SO SCIENCE ADVANCES LA English DT Article ID PHOTOIONIZATION; C-60 AB X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C-60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C-60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C-60 molecular targets with intense x-ray pulses of femtosecond duration. C1 [Abbey, Brian; Darmanin, Connie; Balaur, Eugeniu; Nugent, Keith A.] La Trobe Univ, La Trobe Inst Mol Sci, Dept Chem & Phys, Australian Res Council,Ctr Excellence Adv Mol Ima, Bundoora, Vic 3086, Australia. [Dilanian, Ruben A.; Ryan, Rebecca A.; Putkunz, Corey T.; Martin, Andrew V.; Williams, Sophie; Quiney, Harry M.] Univ Melbourne, Sch Phys, ARC Ctr Excellence Adv Mol Imaging, Parkville, Vic 3010, Australia. [Wood, David] Imperial Coll London, Dept Phys, London SW7 2AZ, England. [Streltsov, Victor] Florey Inst Neurosci & Mental Hlth, 30 Royal Parade, Parkville, Vic 3052, Australia. [Jones, Michael W. M.; Peele, Andrew G.] Australian Synchrotron, 800 Blackburn Rd, Clayton, Vic 3168, Australia. [Gaffney, Naylyn] Swinburne Univ Technol, Melbourne, Vic 3122, Australia. [Hofmann, Felix] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England. [Williams, Garth J.] Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. [Boutet, Sebastien] SLAC Natl Accelerator Lab, Linac Coherent Light Source, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Messerschmidt, Marc] BioXFEL Sci & Technol Ctr, 700 Ellicott St, Buffalo, NY USA. [Seibert, M. Marvin] UppsalaUniversity, Dept Cell andMolecular Biol, Lab Mol Biophys, SE-75124 Uppsala, Sweden. [Curwood, Evan] Florey Inst Neurosci & Mental Hlth, Heidelberg, Vic 3084, Australia. RP Dilanian, RA; Quiney, HM (reprint author), Univ Melbourne, Sch Phys, ARC Ctr Excellence Adv Mol Imaging, Parkville, Vic 3010, Australia. EM rubend@unimelb.edu.au; quiney@unimelb.edu.au OI Nugent, Keith/0000-0002-4281-3478 NR 15 TC 0 Z9 0 U1 5 U2 5 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD SEP PY 2016 VL 2 IS 9 AR e1601186 DI 10.1126/sciadv.1601186 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DW6CQ UT WOS:000383734400030 ER PT J AU Manley, ME Abernathy, DL Sahul, R Parshall, DE Lynn, JW Christianson, AD Stonaha, PJ Specht, ED Budai, JD AF Manley, Michael E. Abernathy, Douglas L. Sahul, Raffi Parshall, Daniel E. Lynn, Jeffrey W. Christianson, Andrew D. Stonaha, Paul J. Specht, Eliot D. Budai, John D. TI Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations SO SCIENCE ADVANCES LA English DT Article ID SINGLE-CRYSTALS; DIELECTRIC-PROPERTIES; DIFFUSE-SCATTERING; LOCALIZATION; BEHAVIOR; GROWTH; ENERGY AB Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 - x)[Pb(Mg1/3Nb2/3)O-3] - xPbTiO(3)} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening. C1 [Manley, Michael E.; Stonaha, Paul J.; Specht, Eliot D.; Budai, John D.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Abernathy, Douglas L.; Christianson, Andrew D.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Sahul, Raffi] TRS Technol, State Coll, PA 16801 USA. [Parshall, Daniel E.; Lynn, Jeffrey W.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Sahul, Raffi] Meggitt Sensing Syst, Irvine, CA 92606 USA. RP Manley, ME (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM manleyme@ornl.gov RI Budai, John/R-9276-2016; Abernathy, Douglas/A-3038-2012 OI Budai, John/0000-0002-7444-1306; Abernathy, Douglas/0000-0002-3533-003X NR 53 TC 2 Z9 2 U1 7 U2 7 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD SEP PY 2016 VL 2 IS 9 AR e1501814 DI 10.1126/sciadv.1501814 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DW6CQ UT WOS:000383734400005 ER PT J AU Tokiwa, Y Piening, B Jeevan, HS Bud'ko, SL Canfield, PC Gegenwart, P AF Tokiwa, Yoshifumi Piening, Boy Jeevan, Hirale S. Bud'ko, Sergey L. Canfield, Paul C. Gegenwart, Philipp TI Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling SO SCIENCE ADVANCES LA English DT Article ID QUANTUM-CRITICAL-POINT; PHYSICS AB Low-temperature refrigeration is of crucial importance in fundamental research of condensedmatter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with He-3 gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb(1-x)ScxCo(2)Zn(20) by partial Sc substitution, with x similar to 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. C1 [Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Gegenwart, Philipp] Univ Gottingen, Inst Phys 1, D-37077 Gottingen, Germany. [Tokiwa, Yoshifumi] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan. [Tokiwa, Yoshifumi; Gegenwart, Philipp] Univ Augsburg, Ctr Elect Correlat & Magnetism, Expt Phys 6, D-86159 Augsburg, Germany. [Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Bud'ko, Sergey L.; Canfield, Paul C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Tokiwa, Y (reprint author), Univ Gottingen, Inst Phys 1, D-37077 Gottingen, Germany.; Tokiwa, Y (reprint author), Kyoto Univ, Dept Phys, Kyoto 6068502, Japan.; Tokiwa, Y (reprint author), Univ Augsburg, Ctr Elect Correlat & Magnetism, Expt Phys 6, D-86159 Augsburg, Germany. EM yoshifumi.tokiwa@physik.uni-augsburg.de RI Gegenwart, Philipp/A-7291-2017 NR 30 TC 1 Z9 1 U1 11 U2 11 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD SEP PY 2016 VL 2 IS 9 AR e1600835 DI 10.1126/sciadv.1600835 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DW6CQ UT WOS:000383734400018 ER PT J AU Gibaud, A Bal, JK Gullikson, EM Wang, C Vignaud, G AF Gibaud, Alain Bal, Jayanta Kumar Gullikson, Eric M. Wang, Cheng Vignaud, Guillaume TI Resonant soft X-ray reflectivity of ultrathin polymer films at the C-edge: A direct approach SO AIP ADVANCES LA English DT Article ID HIGH-RESOLUTION; K-EDGE; SPECTRA; SCATTERING; BEAMLINE AB The use of resonant soft X-ray reflectivity (RSXRR) in s-polarization is presented with the aim to show how far it is possible to go in the understanding the evolution of the refractive index n(E) = 1 - delta(E) - i beta(E) of a ultrathin polystyrene film when the RSXRR is measured through the C-edge. We evidence that a direct fit to the data provides a very good estimation of delta(E) and beta(E) in a large range of energies. Nevertheless, at some specific energy close to C-edge we observe that it is not possible to obtain a satisfactory fit to the data though the same formalism is applied to calculate the reflectivity. We show that even though we take into account the energy resolution of the incident beam, we still end up with a poor fit at these energies. Incorporating the strong contribution of 2nd order photons appeared near C-edge we could not eliminate the discrepancy. Probably the data normalisations have some impacts on such discrepancies at some specific energies. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Gibaud, Alain; Bal, Jayanta Kumar] Univ Maine, LUNAM Univ, UMR CNRS 6283, Fac Sci,IMMM, F-72000 Le Mans 9, France. [Bal, Jayanta Kumar] Univ Calcutta, Ctr Res Nanosci & Nanotechnol, Technol Campus,Block JD2,Sect 3, Kolkata 700098, India. [Gullikson, Eric M.; Wang, Cheng] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Vignaud, Guillaume] Ctr Rech, Lab Ingn MAT Bretagne, Rue St Maude,BP 92116, F-56321 Lorient, France. RP Gibaud, A; Bal, JK (reprint author), Univ Maine, LUNAM Univ, UMR CNRS 6283, Fac Sci,IMMM, F-72000 Le Mans 9, France.; Bal, JK (reprint author), Univ Calcutta, Ctr Res Nanosci & Nanotechnol, Technol Campus,Block JD2,Sect 3, Kolkata 700098, India. EM Alain.Gibaud@univ-lemans.fr; jayanta.bal@gmail.com RI Wang, Cheng/A-9815-2014 FU CEFIPRA/IFCPAR program; Department of Science and Technology (DST), Government of India [IFA13-PH-79] FX We thankfully acknowledge CEFIPRA/IFCPAR program for the financial support. J.K.B thankfully acknowledged to Department of Science and Technology (DST), Government of India, for providing research grant through INSPIRE Faculty Award (IFA13-PH-79). NR 21 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD SEP PY 2016 VL 6 IS 9 AR 095016 DI 10.1063/1.4963295 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DZ2LW UT WOS:000385674300016 ER PT J AU Samudrala, GK Moore, SL Velisavljevic, N Tsoi, GM Baker, PA Vohra, YK AF Samudrala, Gopi K. Moore, Samuel L. Velisavljevic, Nenad Tsoi, Georgiy M. Baker, Paul A. Vohra, Yogesh K. TI Nanocrystalline diamond micro-anvil grown on single crystal diamond as a generator of ultra-high pressures SO AIP ADVANCES LA English DT Article ID STATIC PRESSURES AB By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 mu m in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp(3)-bonded diamond content of 72%. These CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvil cell. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Samudrala, Gopi K.; Moore, Samuel L.; Tsoi, Georgiy M.; Baker, Paul A.; Vohra, Yogesh K.] Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. [Velisavljevic, Nenad] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Vohra, YK (reprint author), Univ Alabama Birmingham, Dept Phys, Birmingham, AL 35294 USA. EM ykvohra@uab.edu FU National Science Foundation (NSF) [DMR-1608682]; Carnegie DOE Alliance Center (CDAC) [DE-NA002006]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775, DE-AC02-06CH11357]; NSF FX We acknowledge support from the National Science Foundation (NSF) under Grant Number DMR-1608682. Samuel Moore is supported by the Carnegie DOE Alliance Center (CDAC) under grant number DE-NA002006. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. We acknowledge valuable assistance from Dr. Jesse Smith from HPCAT at APS. NR 8 TC 0 Z9 0 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD SEP PY 2016 VL 6 IS 9 AR 095027 DI 10.1063/1.4964299 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DZ2LW UT WOS:000385674300027 ER PT J AU Wilkinson, TM Musselman, MA Boatner, LA Diercks, DR Packard, CE AF Wilkinson, Taylor M. Musselman, Matthew A. Boatner, Lynn A. Diercks, David R. Packard, Corinne E. TI Indentation recovery in GdPO4 and observation of deformation twinning SO AIP ADVANCES LA English DT Article ID TRANSFORMATION PLASTICITY; FIBER COATINGS; MONAZITE; ORTHOPHOSPHATES; COMPOSITES; XENOTIME AB A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. The presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO4 is the collapse of deformation twins during unloading. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). C1 [Wilkinson, Taylor M.; Musselman, Matthew A.; Diercks, David R.; Packard, Corinne E.] Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA. [Boatner, Lynn A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Packard, CE (reprint author), Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA. EM cpackard@mines.edu OI Boatner, Lynn/0000-0002-0235-7594; Packard, Corinne/0000-0002-5815-8586 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; National Science Foundation (NSF) [DMR-1352499] FX The researchers wish to acknowledge Dr. Nancy L. Ross at Virginia Polytechnic Institute and State University and the contributions of Zachary McMullen in the synthesis, processing, and sample preparation of the polycrystalline GdPO4. Research at the Oak Ridge National Laboratory for one author (LAB) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. This research was funded by the National Science Foundation (NSF) under Award No.: DMR-1352499. NR 17 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD SEP PY 2016 VL 6 IS 9 AR 095029 DI 10.1063/1.4964356 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DZ2LW UT WOS:000385674300029 ER PT J AU Hwang, S Kim, SY Chung, KY Stach, EA Kim, SM Chang, W AF Hwang, Sooyeon Kim, Se Young Chung, Kyung Yoon Stach, Eric A. Kim, Seung Min Chang, Wonyoung TI Determination of the mechanism and extent of surface degradation in Ni-based cathode materials after repeated electrochemical cycling SO APL MATERIALS LA English DT Article ID LITHIUM-ION BATTERIES; ENERGY-LOSS SPECTROSCOPY; ELECTRON-MICROSCOPY; LI; OXIDES; CAPACITY; LI1.2NI0.2MN0.6O2; RECONSTRUCTION; PERFORMANCE; EVOLUTION AB We take advantage of scanning transmission electron microscopy and electron energy loss spectroscopy to investigate the changes in near-surface electronic structure and quantify the degree of local degradation of Ni-based cathode materials with the layered structure (LiNi0.8Mn0.1Co0.1O2 and LiNi0.4Mn0.3Co0.3O2) after 20 cycles of delithiation and lithiation. Reduction of transition metals occurs in the near-surface region of cathode materials: Mn is the major element to be reduced in the case of relatively Mn-rich composition, while reduction of Ni ions is dominant in Ni-rich materials. The valences of Ni and Mn ions are complementary, i.e., when one is reduced, the other is oxidized in order to maintain charge neutrality. The depth of degradation zone is found to be much deeper in Ni-rich materials. This comparative analysis provides important insights needed for the devising of new cathode materials with high capacity as well as long lifetime. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. C1 [Hwang, Sooyeon; Kim, Se Young; Chung, Kyung Yoon; Chang, Wonyoung] Korea Inst Sci & Technol, Ctr Energy Convergence, Seoul 02792, South Korea. [Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Kim, Seung Min] KIST, Inst Adv Composite Mat, Carbon Composite Mat Res Ctr, Wanju Gun 55324, South Korea. RP Chang, W (reprint author), Korea Inst Sci & Technol, Ctr Energy Convergence, Seoul 02792, South Korea.; Kim, SM (reprint author), KIST, Inst Adv Composite Mat, Carbon Composite Mat Res Ctr, Wanju Gun 55324, South Korea. EM seungmin.kim@kist.re.kr; cwy@kist.re.kr RI Stach, Eric/D-8545-2011; Chung, Kyung Yoon/E-4646-2011 OI Stach, Eric/0000-0002-3366-2153; Chung, Kyung Yoon/0000-0002-1273-746X FU Korea Institute of Science and Technology (KIST) Institutional Program [2Z04670, 2E26292, 2E26330]; Center for Functional Nanomaterials, Brookhaven National Laboratory; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This work was supported by the Korea Institute of Science and Technology (KIST) Institutional Program (Project Nos. 2Z04670, 2E26292, and 2E26330). E.A.S. acknowledges support to the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 26 TC 0 Z9 0 U1 21 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD SEP PY 2016 VL 4 IS 9 AR 096105 DI 10.1063/1.4963723 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DZ0SV UT WOS:000385550900018 ER PT J AU Nicholson, JC Weisman, JA Boyer, CJ Wilson, CG Mills, DK AF Nicholson, James C. Weisman, Jeffery A. Boyer, Christen J. Wilson, Chester G. Mills, David K. TI Dry Sintered Metal Coating of Halloysite Nanotubes SO APPLIED SCIENCES-BASEL LA English DT Article DE 3D printing; filaments; additive manufacturing; halloysite ID SUSTAINED-RELEASE; CLAY NANOTUBES; NANOCOMPOSITES; COMPOSITES; MINERALS; DELIVERY; BEHAVIOR; SYSTEM AB Halloysite nanotubes (HNTs) are a naturally-occurring aluminosilicate whose dimensions measure microns in length and tens of nanometers in diameter. Bonding defects between the alumina and silica lead to net negative and positive charges on the exterior and interior lumen, respectively. HNTs have been shown to enhance the material properties of polymer matrices and enable the sustained release of loaded chemicals, drugs, and growth factors. Due to the net charges, these nanotubes can also be readily coated in layered-depositions using the HNT exterior lumen's net negative charge as the basis for assembly. These coatings are primarily done through wet chemical processes, the majority of which are limited in their use of desired chemicals, due to the polarity of the halloysite. Furthermore, this restriction in the type of chemicals used often requires the use of more toxic chemicals in place of greener options, and typically necessitates the use of a significantly longer chemical process to achieve the desired coating. In this study, we show that HNTs can be coated with metal acetylacetonatescompounds primarily employed in the synthesis of nanoparticles, as metal catalysts, and as NMR shift reagentsthrough a dry sintering process. This method was capable of thermally decaying the metal acetylacetonate, resulting in a free positively-charged metal ion that readily bonded to the negatively-charged HNT exterior, resulting in metallic coatings forming on the HNT surface. Our coating method may enable greater deposition of coated material onto these nanotubes as required for a desired application. Furthermore, the use of chemical processes using toxic chemicals is not required, thus eliminating exposure to toxic chemicals and costs associated with the disposal of the resultant chemical waste. C1 [Nicholson, James C.] Oak Ridge Associated Univ, Adv Characterizat & Proc Grp, Savannah River Natl Lab, Aiken, SC 29803 USA. [Weisman, Jeffery A.; Mills, David K.] Louisiana Tech Univ, Ctr Biomed Engn & Rehabil Sci, Ruston, LA 71272 USA. [Boyer, Christen J.] Louisiana Tech Univ, Mol Sci & Nanotechnol, Ruston, LA 71272 USA. [Wilson, Chester G.] Louisiana Tech Univ, Nanosyst Engn Program, Ruston, LA 71272 USA. RP Mills, DK (reprint author), Louisiana Tech Univ, Ctr Biomed Engn & Rehabil Sci, Ruston, LA 71272 USA. EM james.nicholson@srnl.doe.gov; jeffery.weisman@gmail.com; cjb068@latech.edu; chester@LaTech.edu; dkmills@latech.edu FU Louisiana Governor's Biotechnology Initiative FX The authors would like to thank the Louisiana Governor's Biotechnology Initiative for funding (awarded to David K. Mills) NR 34 TC 0 Z9 0 U1 8 U2 8 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2076-3417 J9 APPL SCI-BASEL JI Appl. Sci.-Basel PD SEP PY 2016 VL 6 IS 9 AR 265 DI 10.3390/app6090265 PG 9 WC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Materials Science; Physics GA DZ0HI UT WOS:000385518000032 ER PT J AU Jensen, MP Petersen, WA Bansemer, A Bharadwaj, N Carey, LD Cecil, DJ Collis, SM Del Genio, AD Dolan, B Gerlach, J Giangrande, SE Heymsfield, A Heymsfield, G Kollias, P Lang, TJ Nesbitt, SW Neumann, A Poellot, M Rutledge, SA Schwaller, M Tokay, A Williams, CR Wolff, DB Xie, S Zipser, EJ AF Jensen, M. P. Petersen, W. A. Bansemer, A. Bharadwaj, N. Carey, L. D. Cecil, D. J. Collis, S. M. Del Genio, A. D. Dolan, B. Gerlach, J. Giangrande, S. E. Heymsfield, A. Heymsfield, G. Kollias, P. Lang, T. J. Nesbitt, S. W. Neumann, A. Poellot, M. Rutledge, S. A. Schwaller, M. Tokay, A. Williams, C. R. Wolff, D. B. Xie, S. Zipser, E. J. TI THE MIDLATITUDE CONTINENTAL CONVECTIVE CLOUDS EXPERIMENT (MC3E) SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID RADIATION MEASUREMENT PROGRAM; ATMOSPHERIC RADIATION; POLARIMETRIC RADAR; WIND PROFILERS; PRECIPITATION; RADIOMETER; RESOLUTION; MESOSCALE; SYSTEMS; GHZ AB The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission, was conducted in south-central Oklahoma during April-May 2011. MC3E science objectives were motivated by the need to improve our understanding of midlatitude continental convective cloud system life cycles, microphysics, and GPM precipitation retrieval algorithms. To achieve these objectives, a multi scale surface- and aircraft-based in situ and remote sensing observing strategy was employed. A variety of cloud and precipitation events were sampled during MC3E, of which results from three deep convective events are highlighted. Vertical structure, air motions, precipitation drop size distributions, and ice properties were retrieved from multiwavelength radar, profiler, and aircraft observations for a mesoscale convective system (MCS) on 11 May. Aircraft observations for another MCS observed on 20 May were used to test agreement between observed radar reflectivities and those calculated with forward-modeled reflectivity and microwave brightness temperatures using in situ particle size distributions and ice water content. Multiplatform observations of a supercell that occurred on 23 May allowed for an integrated analysis of kinematic and microphysical interactions. A core updraft of 25 m supported growth of hail and large raindrops. Data collected during the MC3E campaign are being used in a number of current and ongoing research projects and are available through the ARM and NASA data archives. C1 [Jensen, M. P.; Giangrande, S. E.] Brookhaven Natl Lab, POB 5000,MS 490D, Upton, NY 11973 USA. [Petersen, W. A.; Gerlach, J.; Heymsfield, G.; Schwaller, M.; Tokay, A.; Wolff, D. B.] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA. [Petersen, W. A.; Gerlach, J.; Wolff, D. B.] NASA, Wallops Flight Facil, Wallops Isl, VA USA. [Bansemer, A.; Heymsfield, A.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. [Bharadwaj, N.] Pacific Northwest Natl Lab, Richland, WA USA. [Carey, L. D.] Univ Alabama, Huntsville, AL 35899 USA. [Cecil, D. J.; Lang, T. J.] NASA, Marshall Space Flight Ctr, Huntsville, AL USA. [Collis, S. M.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Del Genio, A. D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Dolan, B.; Rutledge, S. A.] Colorado State Univ, Ft Collins, CO 80523 USA. [Kollias, P.] McGill Univ, Montreal, PQ, Canada. [Nesbitt, S. W.] Univ Illinois, Urbana, IL USA. [Neumann, A.; Poellot, M.] Univ North Dakota, Grand Forks, ND USA. [Tokay, A.] Univ Maryland Baltimore Cty, Baltimore, MD 21228 USA. [Williams, C. R.] Univ Colorado, Boulder, CO 80309 USA. [Xie, S.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Zipser, E. J.] Univ Utah, Salt Lake City, UT USA. RP Jensen, MP (reprint author), Brookhaven Natl Lab, POB 5000,MS 490D, Upton, NY 11973 USA. EM mjensen@bnl.gov RI Xie, Shaocheng/D-2207-2013 OI Xie, Shaocheng/0000-0001-8931-5145 FU U.S. Department of Energy's ARM Program; NASA's Global Precipitation Measurement mission's Ground Validation Program; NASA [NNX10AN38G, NNX10AH67G, NNX14AH06G]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), as part of the Atmospheric System Research (ASR) program; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), as part of the ARM program; DOE [DE-SC0007016]; U.S. Department of Energy [DE-AC02-98CH10886] FX The MC3E field campaign was jointly funded by the U.S. Department of Energy's ARM Program and NASA's Global Precipitation Measurement mission's Ground Validation Program. We acknowledge the important contributions of the ARM SGP site operations staff members for their contributions to the siting, deployment, and maintenance of NASA MC3E and SGP ARM Climate Facility instrumentation. We also acknowledge the UND Citation flight and support crews for their excellent conduct of airborne microphysical sampling, and Offutt AFB and Ponca City Regional Airport for their hosting and field support of the NASA ER-2 and UND Citation, respectively. Operations of the UND Citation aircraft were funded under NASA Grant NNX10AN38G. MJ and SG were funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), as part of the Atmospheric System Research (ASR) and ARM programs. AH and AB were funded by NASA Grant NNX10AH67G. SR and BD were funded by DOE Grant DE-SC0007016 and NASA Grant NNX14AH06G. This paper has been coauthored by employees of Brookhaven Science Associates, LLC, under Contract DE-AC02-98CH10886 with the U.S. Department of Energy. NR 56 TC 10 Z9 10 U1 6 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2016 VL 97 IS 9 BP 1667 EP + DI 10.1175/BAMS-D-14-00228.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ5PG UT WOS:000385913400016 ER PT J AU Wood, R Jensen, MP Wang, J Bretherton, CS Burrows, SM Del Genio, AD Fridlind, AM Ghan, SJ Ghate, VP Kollias, P Krueger, SK McGraw, RL Miller, MA Painemal, D Russell, LM Yuter, SE Zuidema, P AF Wood, Robert Jensen, Michael P. Wang, Jian Bretherton, Christopher S. Burrows, Susannah M. Del Genio, Anthony D. Fridlind, Ann M. Ghan, Steven J. Ghate, Virendra P. Kollias, Pavlos Krueger, Steven K. McGraw, Robert L. Miller, Mark A. Painemal, David Russell, Lynn M. Yuter, Sandra E. Zuidema, Paquita TI PLANNING THE NEXT DECADE OF COORDINATED RESEARCH TO BETTER UNDERSTAND AND SIMULATE MARINE LOW CLOUDS SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Editorial Material ID STRATOCUMULUS C1 [Wood, Robert; Bretherton, Christopher S.] Univ Washington, Seattle, WA 98195 USA. [Jensen, Michael P.; Wang, Jian; McGraw, Robert L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Burrows, Susannah M.; Ghan, Steven J.] Pacific Northwest Natl Lab, Richland, WA USA. [Del Genio, Anthony D.; Fridlind, Ann M.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Ghate, Virendra P.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kollias, Pavlos] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Krueger, Steven K.] Univ Utah, Salt Lake City, UT USA. [Miller, Mark A.] Rutgers State Univ, New Brunswick, NJ USA. [Painemal, David] NASA, Langley Res Ctr, Sci Syst & Applicat Inc, Hampton, VA 23665 USA. [Russell, Lynn M.] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA. [Yuter, Sandra E.] North Carolina State Univ, Raleigh, NC USA. [Zuidema, Paquita] Univ Miami, Miami, FL USA. RP Wood, R (reprint author), Univ Washington, Dept Atmospher Sci, Box 351640, Seattle, WA 98195 USA. EM robwood2@uw.edu RI Ghan, Steven/H-4301-2011; Zuidema, Paquita/C-9659-2013; Wang, Jian/G-9344-2011; Burrows, Susannah/A-7429-2011; Wood, Robert/A-2989-2008 OI Ghan, Steven/0000-0001-8355-8699; Zuidema, Paquita/0000-0003-4719-372X; Burrows, Susannah/0000-0002-0745-7252; Wood, Robert/0000-0002-1401-3828 NR 12 TC 0 Z9 0 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD SEP PY 2016 VL 97 IS 9 BP 1699 EP 1702 DI 10.1175/BAMS-D-16-0160.1 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DZ5PG UT WOS:000385913400018 ER PT J AU Feng, R Gao, MC Lee, C Mathes, M Zuo, TT Chen, SY Hawk, JA Zhang, Y Liaw, PK AF Feng, Rui Gao, Michael C. Lee, Chanho Mathes, Michael Zuo, Tingting Chen, Shuying Hawk, Jeffrey A. Zhang, Yong Liaw, Peter K. TI Design of Light-Weight High-Entropy Alloys SO ENTROPY LA English DT Article DE single-phase solid solutions; intermetallics; phase-formation rules; light-weight HEAs; enthalpy of mixing; entropy of mixing; CALPHAD; excess entropy ID MULTIPLE PRINCIPAL ELEMENTS; V-ZR SYSTEM; MECHANICAL-PROPERTIES; MULTICOMPONENT ALLOYS; LOW-DENSITY; SOLID-SOLUTION; THERMODYNAMIC RULE; PHASE-STABILITY; ATOMIC-SIZE; MICROSTRUCTURE AB High-entropy alloys (HEAs) are a new class of solid-solution alloys that have attracted worldwide attention for their outstanding properties. Owing to the demand from transportation and defense industries, light-weight HEAs have also garnered widespread interest from scientists for use as potential structural materials. Great efforts have been made to study the phase-formation rules of HEAs to accelerate and refine the discovery process. In this paper, many proposed solid-solution phase-formation rules are assessed, based on a series of known and newly-designed light-weight HEAs. The results indicate that these empirical rules work for most compositions but also fail for several alloys. Light-weight HEAs often involve the additions of Al and/or Ti in great amounts, resulting in large negative enthalpies for forming solid-solution phases and/or intermetallic compounds. Accordingly, these empirical rules need to be modified with the new experimental data. In contrast, CALPHAD (acronym of the calculation of phase diagrams) method is demonstrated to be an effective approach to predict the phase formation in HEAs as a function of composition and temperature. Future perspectives on the design of light-weight HEAs are discussed in light of CALPHAD modeling and physical metallurgy principles. C1 [Feng, Rui; Lee, Chanho; Mathes, Michael; Zuo, Tingting; Chen, Shuying; Liaw, Peter K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Gao, Michael C.; Hawk, Jeffrey A.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Gao, Michael C.] AECOM, POB 1959, Albany, OR 97321 USA. [Zuo, Tingting; Zhang, Yong] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China. RP Liaw, PK (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA.; Gao, MC (reprint author), Natl Energy Technol Lab, Albany, OR 97321 USA.; Gao, MC (reprint author), AECOM, POB 1959, Albany, OR 97321 USA. EM rfeng3@vols.utk.edu; michael.gao@netl.doe.gov; clee70@vols.utk.edu; kmathes1@vols.utk.edu; zuott1986.520@163.com; schen38@vols.utk.edu; jeffrey.hawk@netl.doe.gov; rzhangy@ustb.edu.cn; pliaw@utk.edu RI ZHANG, Yong/B-7928-2009 OI ZHANG, Yong/0000-0002-6355-9923 FU U.S. Army Office [W911NF-13-1-0438]; National Science Foundation [CMMI-1100080, DMR-1611180]; Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL)-Strategic Center for Coal; RES [DE-FE-0004000]; National Natural Science Foundation of China (NSFC) [51471025] FX The authors very much appreciate the support from the U.S. Army Office Project (W911NF-13-1-0438) with the program manager, David M. Stepp. Peter K. Liaw would like to acknowledge the Department of Energy (DOE), Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855, DE-FE-0024054, and DE-FE-0011194), with Vito N. Cedro, Richard J. Dunst, and Jessica Mullen as program managers. Peter K. Liaw also thanks the support from the National Science Foundation (CMMI-1100080 and DMR-1611180) with the program director, Clark Cooper and Diana Farkas. The present work was also funded by the Cross-Cutting Technologies Program at the National Energy Technology Laboratory (NETL)-Strategic Center for Coal, managed by Robert Romanosky (Technology Manager) and Charles Miller (Technology Monitor). The Research was executed through NETL's Office of Research and Development's Innovative Process Technologies (IPT) Field Work Proposal. Research performed by the AECOM staff was conducted under the RES contract DE-FE-0004000. Yong Zhang would like to thank the support from National Natural Science Foundation of China (NSFC) (51471025). All authors have read and approved the final manuscript. NR 55 TC 4 Z9 4 U1 40 U2 40 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1099-4300 J9 ENTROPY-SWITZ JI Entropy PD SEP PY 2016 VL 18 IS 9 AR 333 DI 10.3390/e18090333 PG 21 WC Physics, Multidisciplinary SC Physics GA DY9UJ UT WOS:000385480300016 ER PT J AU Pagan, BR Ashfaq, M Rastogi, D Kendall, DR Kao, SC Naz, BS Mei, R Pal, JS AF Pagan, Brianna R. Ashfaq, Moetasim Rastogi, Deeksha Kendall, Donald R. Kao, Shih-Chieh Naz, Bibi S. Mei, Rui Pal, Jeremy S. TI Extreme hydrological changes in the southwestern US drive reductions in water supply to Southern California by mid century SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE climate change; water resources; extreme hydrologic events; hydrology; hydroclimatology ID WESTERN UNITED-STATES; CLIMATE-CHANGE SCENARIOS; JOAQUIN RIVER-BASIN; NORTH-AMERICA; MOUNTAIN SNOWPACK; CHANGE IMPACTS; SIERRA-NEVADA; RESOURCES; COLORADO; MODEL AB The Southwestern United States has a greater vulnerability to climate change impacts on water security due to a reliance on snowmelt driven imported water. The State of California, which is the most populous and agriculturally productive in the United States, depends on an extensive artificial water storage and conveyance system primarily for irrigated agriculture, municipal and industrial supply and hydropower generation. Here we take an integrative high-resolution ensemble modeling approach to examine near term climate change impacts on all imported and local sources of water supply to Southern California. While annual precipitation is projected to remain the same or slightly increase, rising temperatures result in a shift towards more rainfall, reduced cold season snowpack and earlier snowmelt. Associated with these hydrological changes are substantial increases in the frequency and the intensity of both drier conditions and flooding events. The 50 year extreme daily maximum precipitation and runoff events are 1.5-6 times more likely to occur depending on the water supply basin. Simultaneously, a clear deficit in total annual runoff over mountainous snow generating regions like the Sierra Nevada is projected. On one hand, the greater probability of drought decreases imported water supply availability. On the other hand, earlier snowmelt and significantly stronger winter precipitation events pose increased flood risk requiring water releases from control reservoirs, which may potentially decrease water availability outside of the wet season. Lack of timely local water resource expansion coupled with projected climate changes and population increases may leave the area in extended periods of shortages. C1 [Pagan, Brianna R.; Kendall, Donald R.; Pal, Jeremy S.] Loyola Marymount Univ, Dept Civil Engn & Environm Sci, Seaver Coll Sci & Engn, 1 LMU Dr, Los Angeles, CA 90045 USA. [Pagan, Brianna R.; Kendall, Donald R.] Univ Calif Los Angeles, Henry Samueli Sch Engn & Appl Sci, Dept Civil & Environm Engn, 5731 Boelter Hall, Los Angeles, CA 90045 USA. [Ashfaq, Moetasim; Rastogi, Deeksha; Kao, Shih-Chieh; Naz, Bibi S.; Mei, Rui] Oak Ridge Natl Lab, Climate Change Sci Inst, POB 2008, Oak Ridge, TN 37831 USA. [Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui] Oak Ridge Natl Lab, Div Math & Comp Sci, POB 2008, Oak Ridge, TN 37831 USA. [Kao, Shih-Chieh; Naz, Bibi S.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. RP Pal, JS (reprint author), Loyola Marymount Univ, Dept Civil Engn & Environm Sci, Seaver Coll Sci & Engn, 1 LMU Dr, Los Angeles, CA 90045 USA. EM jpal@lmu.edu OI Kao, Shih-Chieh/0000-0002-3207-5328 FU Rosecrans Endowment from Loyola Marymount University; Regional and Global Climate Modeling program of DOE Office of Science; ORNL LDRD project [32112413]; Office of Science of the US Department of Energy (DOE) [DE-AC05-00OR22725]; US Department of Energy [DE-AC05-00OR22725]; DOE Public Access Plan FX This study was funded by the Rosecrans Endowment from Loyola Marymount University, the Regional and Global Climate Modeling program of DOE Office of Science and ORNL LDRD project 32112413. Support for model simulations, data storage and analysis was provided by the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory (ORNL), which is supported by the Office of Science of the US Department of Energy (DOE) under Contract No. DE-AC05-00OR22725. The authors would like to acknowledge Joseph C Reichenberger, Director of Graduate Civil Engineering and Environmental Science at Loyola Marymount University and Richard Atwater, Executive Director of the Southern California Water Committee for their insight and feedback from the water industry on this project. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 73 TC 0 Z9 0 U1 41 U2 41 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD SEP PY 2016 VL 11 IS 9 AR 094026 DI 10.1088/1748-9326/11/9/094026 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DY8PU UT WOS:000385393100014 ER PT J AU Ukkola, AM Keenan, TF Kelley, DI Prentice, IC AF Ukkola, A. M. Keenan, T. F. Kelley, D. I. Prentice, I. C. TI Vegetation plays an important role in mediating future water resources SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE CO2 effect; water resources; climate change; vegetation dynamics; climate projections ID LAND-SURFACE PROCESSES; HYDROLOGICAL EVALUATION; EL-NINO; MODEL; RUNOFF; PLANT; FREQUENCY; DYNAMICS; EVENTS; OCEAN AB Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. Weshow surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmosphericCO(2)) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified byCO(2)-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections. C1 [Ukkola, A. M.; Keenan, T. F.; Kelley, D. I.; Prentice, I. C.] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia. [Ukkola, A. M.] Univ New South Wales, ARC Ctr Excellence Climate Syst Sci, Kensington, NSW 2052, Australia. [Keenan, T. F.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Kelley, D. I.] Univ Reading, Ctr Climate Change, Reading RG6 6AH, Berks, England. [Kelley, D. I.] Univ Reading, Sch Archaeol Geog & Environm Sci, Reading RG6 6AH, Berks, England. [Kelley, D. I.] Ctr Ecol & Hydrol, Maclean Bldg, Wallingford OX10 8BB, Oxon, England. [Prentice, I. C.] Imperial Coll, AXA Chair Biosphere & Climate Impacts, Dept Life Sci, Silwood Pk Campus, Ascot SL5 7PY, Berks, England. [Prentice, I. C.] Imperial Coll, Grantham Inst Climate Change & Environm, Silwood Pk Campus, Ascot SL5 7PY, Berks, England. RP Ukkola, AM (reprint author), Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia.; Ukkola, AM (reprint author), Univ New South Wales, ARC Ctr Excellence Climate Syst Sci, Kensington, NSW 2052, Australia. EM amukkola@gmail.com RI Keenan, Trevor/B-2744-2010 OI Keenan, Trevor/0000-0002-3347-0258 FU iMQRES scholarship from Macquarie University; Australian Research Council Centre of Excellence for Climate System Science [CE110001028]; Macquarie University Research Fellowship FX We thank the CMIP5 project for making future climate simulations publicly available. Patrick Bartlein and Kenji Izumi (University of Oregon) assisted with the production of the future model inputs. AU was supported by an iMQRES scholarship from Macquarie University and currently receives funding from the Australian Research Council Centre of Excellence for Climate System Science (CE110001028). TFK acknowledges support from a Macquarie University Research Fellowship. This work is a contribution to AXA Chair Programme in Biosphere and Climate Impacts and the Grand Challenges in Ecosystems and the Environment initiative at Imperial College London. NR 34 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD SEP PY 2016 VL 11 IS 9 AR 094022 DI 10.1088/1748-9326/11/9/094022 PG 8 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DY8PU UT WOS:000385393100010 ER PT J AU Li, W Mourenas, D Artemyev, AV Bortnik, J Thorne, RM Kletzing, CA Kurth, WS Hospodarsky, GB Reeves, GD Funsten, HO Spence, HE AF Li, W. Mourenas, D. Artemyev, A. V. Bortnik, J. Thorne, R. M. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Reeves, G. D. Funsten, H. O. Spence, H. E. TI Unraveling the excitation mechanisms of highly oblique lower band chorus waves SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE oblique chorus excitation; beam instability; temperature anisotropy; lower band chorus ID WHISTLER-MODE WAVES; ELECTRON ACCELERATION; POYNTING FLUX; GENERATION; PARTICLE; PROPAGATION; SPACECRAFT; FREQUENCY; EMISSIONS AB Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100-500eV in the parallel velocity distribution. The second mechanism corresponds to Landau resonance with a 100-500eV beam. In both cases, a small low-energy beam-like component is necessary for suppressing an otherwise dominating Landau damping. Our new findings suggest that small variations in the electron distribution could have important impacts on energetic electron dynamics. C1 [Li, W.] Boston Univ, Ctr Space Phys, Boston, MA 02215 USA. [Li, W.; Bortnik, J.; Thorne, R. M.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Mourenas, D.] CEA, DAM, DIF, Arpajon, France. [Artemyev, A. V.] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Reeves, G. D.] New Mexico Consortium, Div Space Sci, Los Alamos, NM USA. [Funsten, H. O.] Los Alamos Natl Lab, ISR Div, Los Alamos, NM USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. RP Li, W (reprint author), Boston Univ, Ctr Space Phys, Boston, MA 02215 USA.; Li, W (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM luckymoon761@gmail.com OI Reeves, Geoffrey/0000-0002-7985-8098 FU JHU/APL under NASA [967399, 921647, NAS5-01072]; NASA [NNX15AF61G, NNX14AI18G, NNX13AI61G]; AFOSR [FA9550-15-1-0158]; NSF [PLR1341359, AGS1405054] FX We would like to acknowledge RBSP-ECT and EMFISIS funding provided by JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072. The work at UCLA was supported by NASA grants NNX15AF61G, NNX14AI18G, and NNX13AI61G, AFOSR award FA9550-15-1-0158, and NSF grants PLR1341359 and AGS1405054. Van Allen Probes data from EMFISIS were obtained from https://emfisis.physics.uiowa.edu/data/index, and ECT-HOPE data were from http://www.rbsp-ect.lanl.gov/data_pub/. Approximate fits to the measured electron PSD are provided in the supporting information. NR 42 TC 3 Z9 3 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP PY 2016 VL 43 IS 17 BP 8867 EP 8875 DI 10.1002/2016GL070386 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DY8CX UT WOS:000385357200006 ER PT J AU Xu, SS Mitchell, D Liemohn, M Dong, CF Bougher, S Fillingim, M Lillis, R McFadden, J Mazelle, C Connerney, J Jakosky, B AF Xu, Shaosui Mitchell, David Liemohn, Michael Dong, Chuanfei Bougher, Stephen Fillingim, Matthew Lillis, Robert McFadden, James Mazelle, Christian Connerney, Jack Jakosky, Bruce TI Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE Mars; photoelectrons; nightside ionosphere; magnetic topology; weak crustal fields; MAVEN ID SOLAR-WIND INTERACTION; ELECTRON REFLECTOMETRY; MARS; FIELD; ATMOSPHERE; MODEL; INSTRUMENT; MISSION; FLUXES; ATOMS AB The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission samples the Mars ionosphere down to altitudes of approximate to 150km over a wide range of local times and solar zenith angles. On 5 January 2015 (Orbit 520) when the spacecraft was in darkness at high northern latitudes (solar zenith angle, SZA>120 degrees; latitude>60 degrees), the Solar Wind Electron Analyzer (SWEA) instrument observed photoelectrons at altitudes below 200km. Such observations imply the presence of closed crustal magnetic field loops that cross the terminator and extend thousands of kilometers to the deep nightside. This occurs over the weak northern crustal magnetic source regions, where the magnetic field has been thought to be dominated by draped interplanetary magnetic fields (IMF). Such a day-night magnetic connectivity also provides a source of plasma and energy to the deep nightside. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron fluxes measured by SWEA precipitating onto the nightside atmosphere provide a source of ionization that can account for the O(2)(+)density measured by the Suprathermal and Thermal Ion Composition (STATIC) instrument below 200km. This finding indicates another channel for Martian energy redistribution to the deep nightside and consequently localized ionosphere patches and potentially aurora. C1 [Xu, Shaosui; Mitchell, David; Fillingim, Matthew; Lillis, Robert; McFadden, James] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Xu, Shaosui; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen] Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. [Dong, Chuanfei] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Dong, Chuanfei] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Mazelle, Christian] CNRS, IRAP, Toulouse, France. [Mazelle, Christian] Univ Toulouse 3, Toulouse, France. [Connerney, Jack] GSFC, Greenbelt, MD USA. [Jakosky, Bruce] Univ Colorado, LASP, Boulder, CO 80309 USA. RP Xu, SS (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.; Xu, SS (reprint author), Univ Michigan, Dept Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA. EM shaosui.xu@ssl.berkeley.edu RI Dong, Chuanfei/E-6485-2010; OI Dong, Chuanfei/0000-0002-8990-094X; Xu, Shaosui/0000-0002-5121-600X; connerney, jack/0000-0001-7478-6462 FU NASA; NSF [NNX13AG26G, AST-0908311]; NASA Mars Scout Program; Rackham graduate school of University of Michigan; NASA Living With a Star Jack Eddy Postdoctoral Fellowship Program FX The authors would like to thank NASA and NSF for their support of this project under grants NNX13AG26G and AST-0908311. This work was also supported by the NASA Mars Scout Program. The authors thank the Rackham graduate school of University of Michigan for the research grant that supports S. Xu's visit at SSL, University of California, Berkeley, which makes this study possible. C.F. Dong is supported by the NASA Living With a Star Jack Eddy Postdoctoral Fellowship Program, administered by the University Corporation for Atmospheric Research. The MAVEN data used in this study are available through Planetary Data System. The BATS-R-US code is publicly available from http://csem.engin.umich.edu/tools/swmf. For distribution of the model results used in this study, please contact C. Dong (dcfy@pppl.gov). NR 53 TC 1 Z9 1 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP PY 2016 VL 43 IS 17 BP 8876 EP 8884 DI 10.1002/2016GL070527 PG 9 WC Geosciences, Multidisciplinary SC Geology GA DY8CX UT WOS:000385357200007 ER PT J AU Zelinka, MD Zhou, C Klein, SA AF Zelinka, Mark D. Zhou, Chen Klein, Stephen A. TI Insights from a refined decomposition of cloud feedbacks SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article DE cloud feedback; radiative kernel; CMIP ID GENERAL-CIRCULATION MODEL; ANVIL TEMPERATURE HYPOTHESIS; CENTER CLIMATE MODEL; HADLEY-CENTER; TROPICAL CONVECTION; SURFACE-TEMPERATURE; HIGH-LATITUDES; OPTICAL DEPTH; PART II; SENSITIVITY AB Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloud feedback but its anticorrelation with other components damps overall spread. The ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the null hypothesis climate sensitivity from well-understood and robustly simulated feedbacks are discussed. C1 [Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.] Lawrence Livermore Natl Lab, Cloud Proc Res Grp, Livermore, CA 94550 USA. RP Zelinka, MD (reprint author), Lawrence Livermore Natl Lab, Cloud Proc Res Grp, Livermore, CA 94550 USA. EM zelinka1@llnl.gov RI Klein, Stephen/H-4337-2016; OI Klein, Stephen/0000-0002-5476-858X; Zelinka, Mark/0000-0002-6570-5445 FU Regional and Global Climate Modeling Program of the Office of Science of the U.S. Department of Energy (DOE); U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX All authors were supported by the Regional and Global Climate Modeling Program of the Office of Science of the U.S. Department of Energy (DOE). The work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. IM Release #LLNL-JRNL-693677. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table S1) for producing and making available their model output. For CMIP, the U.S. DOE's Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We thank P. Caldwell, P. Ceppi, A. DeAngelis, A. Hall, K. Taylor, C. Terai, and X. Qu for helpful discussions, Bjorn Stevens for providing feedback values used in the null hypothesis ECS calculation, and two anonymous reviewers for their suggestions for improvement. Code to compute the refined cloud feedback decomposition is provided upon request by MDZ. NR 73 TC 1 Z9 1 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 EI 1944-8007 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD SEP PY 2016 VL 43 IS 17 BP 9259 EP 9269 DI 10.1002/2016GL069917 PG 11 WC Geosciences, Multidisciplinary SC Geology GA DY8CX UT WOS:000385357200053 ER PT J AU Albacete, JL Arleo, F Barnafoldi, GG Barrette, J Deng, WT Dumitru, A Eskola, KJ Ferreiro, EG Fleuret, F Fujii, H Gyulassy, M Harangozo, SM Helenius, I Kang, ZB Kotko, P Kutak, K Lansberg, JP Levai, P Lin, ZW Nara, Y Rakotozafindrabe, A Papp, G Paukkunen, H Peigne, S Petrovici, M Qiu, JW Rezaeian, AH Ru, P Sapeta, S Pop, VT Vitev, I Vogt, R Wang, EK Wang, XN Xing, HX Xu, R Zhang, BW Zhang, WN AF Albacete, Javier L. Arleo, Francois Barnafoldi, Gergely G. Barrette, Jean Deng, Wei-Tian Dumitru, Adrian Eskola, Kari J. Ferreiro, Elena G. Fleuret, Frederic Fujii, Hirotsugu Gyulassy, Miklos Harangozo, Szilveszter Miklos Helenius, Ilkka Kang, Zhong-Bo Kotko, Piotr Kutak, Krzysztof Lansberg, Jean-Philippe Levai, Peter Lin, Zi-Wei Nara, Yasushi Rakotozafindrabe, Andry Papp, Gabor Paukkunen, Hannu Peigne, Stephane Petrovici, Mihai Qiu, Jian-Wei Rezaeian, Amir H. Ru, Peng Sapeta, Sebastian Pop, Vasile Topor Vitev, Ivan Vogt, Ramona Wang, Enke Wang, Xin-Nian Xing, Hongxi Xu, Rong Zhang, Ben-Wei Zhang, Wei-Ning TI Predictions for p plus Pb Collisions at root s(NN)=5TeV: Comparison with Data SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Review DE Perturbative QCD; hard probes of heavy-ion collisions ID HEAVY-ION COLLISIONS; TRANSVERSE-MOMENTUM DEPENDENCE; COLOR GLASS CONDENSATE; GLUON DISTRIBUTION-FUNCTIONS; CHARGED-PARTICLE SPECTRA; PROTON-LEAD COLLISIONS; Z-BOSON PRODUCTION; PPB COLLISIONS; CHARMONIUM SUPPRESSION; NUCLEAR MODIFICATION AB Predictions made in Albacete et al. [Int. J. Mod. Phys. E 22 (2013) 1330007] prior to the LHC p+Pb run at root s(NN) = 5 TeV are compared to currently available data. Some predictions shown here have been updated by including the same experimental cuts as the data. Some additional predictions are also presented, especially for quarkonia, that were provided to the experiments before the data were made public but were too late for the original publication. C1 [Albacete, Javier L.; Lansberg, Jean-Philippe] Univ Paris 11, IPNO, CNRS, IN2P3, F-91406 Orsay, France. [Arleo, Francois; Fleuret, Frederic] Univ Paris Saclay, Lab Leprince Ringuet, Ecole Polytech, CNRS,IN2P3, F-91128 Palaiseau, France. [Barnafoldi, Gergely G.; Gyulassy, Miklos; Harangozo, Szilveszter Miklos; Levai, Peter] Hungarian Acad Sci, Inst Particle & Nucl Phys, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary. [Barrette, Jean; Pop, Vasile Topor] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Deng, Wei-Tian] KEK, IPNS, Ctr Theory, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. [Dumitru, Adrian] CUNY, Dept Nat Sci, Baruch Coll, 17 Lexington Ave, New York, NY 10010 USA. [Dumitru, Adrian] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Eskola, Kari J.; Paukkunen, Hannu] Univ Jyvaskyla, Dept Phys, POB 35, FI-40014 Jyvaskyla, Finland. [Eskola, Kari J.; Paukkunen, Hannu] Univ Helsinki, Helsinki Inst Phys, POB 64, FI-00014 Helsinki, Finland. [Ferreiro, Elena G.] Univ Santiago Compostela, Dept Fis Particulas, Santiago De Compostela 15782, Spain. [Fujii, Hirotsugu] Univ Tokyo, Inst Phys, Tokyo 1538902, Japan. [Gyulassy, Miklos] Columbia Univ, Dept Phys, New York, NY 10027 USA. [Harangozo, Szilveszter Miklos; Papp, Gabor] Eotvos Lorand Univ, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary. [Helenius, Ilkka] Lund Univ, Dept Astron & Theoret Phys, Solvegatan 14A, SE-22362 Lund, Sweden. [Kang, Zhong-Bo; Vitev, Ivan; Xing, Hongxi] Los Alamos Natl Lab, Div Theoret, MS B283, Los Alamos, NM 87545 USA. [Kotko, Piotr] Penn State Univ, Dept Phys, University Pk, PA 16803 USA. [Kutak, Krzysztof] Inst Fiz Jadrowej Henryka Niewodniczanskiego, Radzikowskiego 152, PL-31342 Krakow, Poland. [Lin, Zi-Wei] East Carolina Univ, Dept Phys, C-209 Howell Sci Complex, Greenville, NC 27858 USA. [Nara, Yasushi] Akita Int Univ, Akita 0101292, Japan. [Rakotozafindrabe, Andry] CEA Saclay, IRFU, SPhN, F-91191 Gif Sur Yvette, France. [Paukkunen, Hannu] Univ Santiago Compostela, Dept Fis Particulas, E-15782 Galicia, Spain. [Paukkunen, Hannu] Univ Santiago Compostela, IGFAE, E-15782 Galicia, Spain. [Peigne, Stephane] Univ Nantes, SUBATECH, Ecole Mines Nantes, CNRS,IN2P3, 4 Rue Alfred Kastler, F-44307 Nantes 3, France. [Petrovici, Mihai] Natl Inst Phys & Nucl Engn, R-077125 Bucharest, Romania. [Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Qiu, Jian-Wei] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. [Rezaeian, Amir H.] Univ Tecn Federico Santa Maria, Dept Fis, Avda Espana 1680,Casilla 110-V, Valparaiso, Chile. [Rezaeian, Amir H.] Univ Tecn Federico Santa Maria, CCTVal, Casilla 110-V, Valparaiso, Chile. [Ru, Peng; Zhang, Wei-Ning] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China. [Ru, Peng; Wang, Enke; Wang, Xin-Nian; Xu, Rong; Zhang, Ben-Wei] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China. [Ru, Peng; Wang, Enke; Wang, Xin-Nian; Xu, Rong; Zhang, Ben-Wei] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Sapeta, Sebastian] H Niewodniczanski Inst Nucl Phys PAN, Radzikowskiego 152, PL-31342 Krakow, Poland. [Sapeta, Sebastian] CERN, PH TH, CH-1211 Geneva 23, Switzerland. [Vogt, Ramona] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Vogt, Ramona] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Wang, Xin-Nian] Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 70R0319, Berkeley, CA 94720 USA. RP Wang, XN (reprint author), Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China.; Wang, XN (reprint author), Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China.; Wang, XN (reprint author), Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 70R0319, Berkeley, CA 94720 USA. EM xnwang@lbl.gov RI Ferreiro, Elena/C-3797-2017; Papp, Gabor/D-1851-2012 OI Ferreiro, Elena/0000-0002-4449-2356; FU "Agence Nationale de la Recherche" under grant ANR-PARTONPROP; French CNRS via the GDR QCD; MCnetITN FP7 Marie Curie Initial Training Network [PITN-GA-2012-315877]; French CNRS via the grant FCPPL-Quarkonium4AFTER & Defi Imphyniti-Theorie LHC France; French CNRS via the grant GDR QCD; U. S. Department of Energy [DE-AC52-06NA25396]; Narodowe Centrum Nauki [DEC-2013/10/E/ST2/00656]; DOE [DE-SC-0002145, DE-FG02-93ER40771]; U.S. Department of Energy [DE-AC02-98CH10886, DE-AC02-05CH11231]; European Research Council [HotLHC ERC-2011-StG-279579]; Fondecyt [1110781]; Natural Science Foundation of China [11322546, 11435004, 11221504]; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U. S. Department of Energy, Office of Science, Office of Nuclear Physics (Nuclear Theory) [DE-SC-0004014]; National Natural Science Foundation of China [11221504] FX The JET Collaboration is thanked for support for the initiation of Ref. 1 and the suggestion of a follow up with this work. The work of Arleo and Peigne is funded by "Agence Nationale de la Recherche" under grant ANR-PARTONPROP. The work of Fleuret was supported in part by the French CNRS via the GDR QCD. The work of Helenius has been supported by the MCnetITN FP7 Marie Curie Initial Training Network, contract PITN-GA-2012-315877. The work of Lansberg was supported in part by the French CNRS via the grants FCPPL-Quarkonium4AFTER & Defi Imphyniti-Theorie LHC France and the GDR QCD. The work of Kang, Vitev and Xing is supported by the U. S. Department of Energy under Contract No. DE-AC52-06NA25396. The work of Kutak has been supported by Narodowe Centrum Nauki with Sonata Bis Grant No. DEC-2013/10/E/ST2/00656. Kotko acknowledges the support of DOE Grant Nos. DE-SC-0002145 and DE-FG02-93ER40771. The work of Qiu is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. The work of Paukkunen was supported by the European Research Council Grant No. HotLHC ERC-2011-StG-279579. The work of Rezaeian is supported in part by Fondecyt Grant No. 1110781. The work of Ru, Zhang, E. Wang and Zhang is supported in part by the Natural Science Foundation of China with Project Nos. 11322546, 11435004 and 11221504. The work of Vogt was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics (Nuclear Theory) under contract number DE-SC-0004014. The work of X.-N. Wang was performed under the auspices of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, by the National Natural Science Foundation of China under Grant No. 11221504. NR 151 TC 1 Z9 1 U1 4 U2 4 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD SEP PY 2016 VL 25 IS 9 AR 1630005 DI 10.1142/S0218301316300058 PG 53 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DY9HJ UT WOS:000385444200001 ER PT J AU Barbarino, M Warrens, M Bonasera, A Lattuada, D Bang, W Quevedo, HJ Consoli, F De Angelis, R Andreoli, P Kimura, S Dyer, G Bernstein, AC Hagel, K Barbui, M Schmidt, K Gaul, E Donovan, ME Natowitz, JB Ditmire, T AF Barbarino, M. Warrens, M. Bonasera, A. Lattuada, D. Bang, W. Quevedo, H. J. Consoli, F. De Angelis, R. Andreoli, P. Kimura, S. Dyer, G. Bernstein, A. C. Hagel, K. Barbui, M. Schmidt, K. Gaul, E. Donovan, M. E. Natowitz, J. B. Ditmire, T. TI Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Physics; plasma; laser; fusion; cross-section; S-factor; reactions; laser-plasma ID NUCLEAR-FUSION; EMISSION; DYNAMICS; PULSE; BEAMS AB In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D-2+He-3 and CD4+He-3 cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is "nearly" isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-He-3 reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one. C1 [Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Hagel, K.; Barbui, M.; Natowitz, J. B.] Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. [Warrens, M.] Univ Dallas, Irving, TX 75062 USA. [Bonasera, A.; Lattuada, D.] LNS INFN, Via S Sofia,62, I-95123 Catania, Italy. [Lattuada, D.] Univ Enna Kore, I-94100 Enna, Italy. [Bang, W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bang, W.] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea. [Quevedo, H. J.; Dyer, G.; Bernstein, A. C.; Gaul, E.; Donovan, M. E.; Ditmire, T.] Univ Texas Austin, Ctr High Energy Dens Sci, C1510, Austin, TX 78712 USA. [Consoli, F.; De Angelis, R.; Andreoli, P.] Associaz Euratom ENEA Fus, Via Enrico Fermi 45,CP 65, I-00044 Rome, Italy. [Kimura, S.] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy. [Schmidt, K.] Univ Silesia, Inst Phys, Katowice, Poland. RP Barbarino, M (reprint author), Texas A&M Univ, Inst Cyclotron, College Stn, TX 77843 USA. EM mattimede@tamu.email.edu; wbang@lanl.gov FU NNSA [DE-FC52-08NA28512]; DOE Office of Basic Energy Sciences; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-FG03-93ER40773]; Robert A. Welch Foundation [A0330]; Los Alamos National Laboratory LDRD program; National Science Foundation Graduate Research Fellowship [1263281] FX The experimental work was done at the University of Texas at Austin and was supported by NNSA Cooperative Agreement No. DE-FC52-08NA28512 and the DOE Office of Basic Energy Sciences. The analysis of the data was performed at the Texas A&M University and was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. DE-FG03-93ER40773 and by the Robert A. Welch Foundation under Grant No. A0330. W. B. was supported by the Los Alamos National Laboratory LDRD program. M. W. was supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1263281. NR 49 TC 0 Z9 0 U1 9 U2 9 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD SEP PY 2016 VL 25 IS 9 AR 1650063 DI 10.1142/S0218301316500634 PG 19 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DY9HJ UT WOS:000385444200004 ER PT J AU Huang, Y Zhu, SJ Hamilton, JH Ramayya, AV Wang, EH Liu, YX Sun, Y Hwang, JK Xiao, ZG Li, HJ Luo, YX Rasmussen, JO Ter-Akopian, GM Oganessian, YT AF Huang, Y. Zhu, S. J. Hamilton, J. H. Ramayya, A. V. Wang, E. H. Liu, Y. X. Sun, Y. Hwang, J. K. Xiao, Z. G. Li, H. J. Luo, Y. X. Rasmussen, J. O. Ter-Akopian, G. M. Oganessian, Yu. Ts. TI Reinvestigation of two-phonon gamma-vibrational band in neutron-rich Pd-114 SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Nuclear structure; two-phonon gamma-vibrational band; neutron-rich; triaxial projected shell model ID SHELL-MODEL APPROACH; SPONTANEOUS FISSION; PD ISOTOPES; NUCLEUS; INSIGHTS; RU-112; ARRAYS; MO-106; CF-252; STATES AB The level structure in neutron-rich Pd-114 nucleus has been reinvestigated by measuring prompt. rays emitted in the spontaneous fission of Cf-252. A two-phonon.-vibrational band built on the 1639.3 keV level is observed, which confirms the previous suggestion from a beta-decay experiment. Systematical comparison supports the assignment for a twophonon gamma-vibrational band in Pd-114. Triaxial projected shell model calculations for the multi-phonon. bands of Pd-114 are in good agreement with the experimental data. C1 [Huang, Y.; Zhu, S. J.; Xiao, Z. G.; Li, H. J.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Hamilton, J. H.; Ramayya, A. V.; Wang, E. H.; Hwang, J. K.; Luo, Y. X.] Vanderbilt Univ, Dept Phys, Nashville, TN 37235 USA. [Liu, Y. X.] Huzhou Univ, Dept Phys, Huzhou 313000, Peoples R China. [Sun, Y.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai 200240, Peoples R China. [Luo, Y. X.; Rasmussen, J. O.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ter-Akopian, G. M.; Oganessian, Yu. Ts.] Joint Inst Nucl Res, Flerov Lab Nucl React, Dubna 141980, Russia. RP Zhu, SJ (reprint author), Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. EM h-y12@mails.tsinghua.edu.cn; zhushj@mail.tsinghua.edu.cn RI Sun, Yang/P-2417-2015 NR 29 TC 0 Z9 0 U1 1 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD SEP PY 2016 VL 25 IS 9 AR 1650064 DI 10.1142/S0218301316500646 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DY9HJ UT WOS:000385444200005 ER PT J AU Davis, ES Sturtevant, BT Sinha, DN Pantea, C AF Davis, Eric S. Sturtevant, Blake T. Sinha, Dipen N. Pantea, Cristian TI Resonant Ultrasound Spectroscopy studies of Berea sandstone at high temperature SO JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH LA English DT Article DE Resonant Ultrasound Spectroscopy; Berea sandstone; elastic properties; high temperature ID ROCK; ATTENUATION; BEHAVIOR; VELOCITY; ALPHA AB Resonant Ultrasound Spectroscopy was used to determine the elastic moduli of Berea sandstone from room temperature to 478K. Sandstone is a common component of oil reservoirs, and the temperature range was chosen to be representative of typical downhole conditions, down to about 8km. In agreement with previous works, Berea sandstone was found to be relatively soft with a bulk modulus of approximately 6GPa as compared to 37.5GPa for -quartz at room temperature and pressure. It was found that Berea sandstone undergoes a similar to 17% softening in bulk modulus between room temperature and 385K, followed by an abnormal behavior of similar stiffening between 385K and 478K. C1 [Davis, Eric S.; Sturtevant, Blake T.; Sinha, Dipen N.; Pantea, Cristian] Los Alamos Natl Lab, Mat Phys & Applicat, MPA 11, Los Alamos, NM 87545 USA. RP Pantea, C (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat, MPA 11, Los Alamos, NM 87545 USA. EM pantea@lanl.gov RI Pantea, Cristian/D-4108-2009; OI Pantea, Cristian/0000-0002-0805-8923 FU U.S. Department of Energy FX The authors thank T.J. Ulrich for helpful discussions. This work was partially funded by the U.S. Department of Energy. All data found in section 3 of this paper are available upon request from the corresponding author. NR 30 TC 0 Z9 0 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9313 EI 2169-9356 J9 J GEOPHYS RES-SOL EA JI J. Geophys. Res.-Solid Earth PD SEP PY 2016 VL 121 IS 9 BP 6401 EP 6410 DI 10.1002/2016JB013410 PG 10 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DZ4RA UT WOS:000385845700008 ER PT J AU Zhang, XJ Li, W Thorne, RM Angelopoulos, V Ma, Q Li, J Bortnik, J Nishimura, Y Chen, L Baker, DN Reeves, GD Spence, HE Kletzing, CA Kurth, WS Hospodarsky, GB Blake, JB Fennell, JF AF Zhang, X-J. Li, W. Thorne, R. M. Angelopoulos, V. Ma, Q. Li, J. Bortnik, J. Nishimura, Y. Chen, L. Baker, D. N. Reeves, G. D. Spence, H. E. Kletzing, C. A. Kurth, W. S. Hospodarsky, G. B. Blake, J. B. Fennell, J. F. TI Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE dropouts; relativistic electron loss; drift shell splitting; magnetopause shadowing; outer radiation belt; magnetic storm ID OUTER RADIATION BELT; VAN ALLEN PROBES; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORMS; MAGNETIC STORM; INNER MAGNETOSPHERE; ENERGETIC PARTICLE; PLASMASPHERIC HISS; LOCAL ACCELERATION; FLUX DROPOUTS AB Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (310cm(-3). We identify two outer belts. Outer belt 1 is a stable zone of >3MeV electrons located 1-2R(E) inside the plasmapause. Outer belt 2 is a dynamic zone of <3MeV electrons within 0.5R(E) of the moving plasmapause. Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index F-p, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15-20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5day period). C1 [Goldstein, J.; Jahn, J-M.] Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA. [Goldstein, J.; Jahn, J-M.] Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. [Baker, D. N.; Jaynes, A. N.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Blake, J. B.] Aerosp Corp, POB 92957, Los Angeles, CA 90009 USA. [De Pascuale, S.; Kletzing, C. A.; Kurth, W. S.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Funsten, H. O.; Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Li, W.] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. RP Goldstein, J (reprint author), Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX 78238 USA.; Goldstein, J (reprint author), Univ Texas San Antonio, Dept Phys & Astron, San Antonio, TX 78249 USA. EM jgoldstein@swri.edu FU RBSP-ECT by JHU/APL under NASA [967399, NAS5-01072]; NASA Heliophysics Guest Investigator program [NNX07AG48G]; JHU/APL under NASA [NAS5-01072, 921647]; NASA [NNX15AF61G]; AFOSR [FA9550-15-1-0158] FX Van Allen Probes data (and plasmapause test particle simulations) are publicly accessible via the ECT and EMFISIS links at http://rbspgway.jhuapl.edu/. OMNI solar wind data are accessible via http://cdaweb.gsfc.nasa.gov/. HEO 3 data are available at http://virbo.org/HEO. This work was supported primarily by RBSP-ECT funding provided by JHU/APL contract 967399 under NASA's prime contract NAS5-01072. Development of the Fp index was supported by the NASA Heliophysics Guest Investigator program under NNX07AG48G. The research at University of Iowa was supported by JHU/APL contract 921647 under NASA prime contract NAS5-01072. The analysis at UCLA was supported by NASA grant NNX15AF61G and AFOSR award FA9550-15-1-0158. OMNI 5 min data, provided by J. H. King, N. Patatashvilli at AdnetSystems, NASA GSFC, and CDAWeb, were derived from data sets produced by the Wind and ACE missions. NR 101 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2016 VL 121 IS 9 BP 8392 EP 8416 DI 10.1002/2016JA023046 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4QM UT WOS:000385844000017 ER PT J AU Yu, YQ Jordanova, VK Ridley, AJ Albert, JM Horne, RB Jeffery, CA AF Yu, Yiqun Jordanova, Vania K. Ridley, Aaron J. Albert, Jay M. Horne, Richard B. Jeffery, Christopher A. TI A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE electron precipitation; wave-particle interactions; ionospheric conductivity; MI coupling; diffusion coefficient; electron lifetime ID LINEAR DIFFUSION-COEFFICIENTS; RADIATION BELT ELECTRONS; RING CURRENT; CHORUS WAVES; ENERGETIC ELECTRONS; PLASMASPHERIC HISS; KINETIC-MODEL; PITCH-ANGLE; STORM; SIMULATIONS AB Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use the BATS-R-US (Block Adaptive Tree Scheme-Roe type-Upstream) MHD model coupled with the kinetic ring current model RAM-SCB (Ring current-Atmosphere interaction Model with Self-Consistent Magnetic field (B)) that solves pitch angle-dependent electron distribution functions, to study the global circulation dynamics during the 25-26 January 2013 storm event. Since the electron precipitation loss is mostly governed by wave-particle resonant scattering in the magnetosphere, we further investigate two loss methods of specifying electron precipitation loss associated with wave-particle interactions: (1) using pitch angle diffusion coefficients D(E,) determined from the quasi-linear theory, with wave spectral and plasma density obtained from statistical observations (named as diffusion coefficient method) and (2) using electron lifetimes (E) independent on pitch angles inferred from the above diffusion coefficients (named as lifetime method). We found that both loss methods demonstrate similar temporal evolution of the trapped ring current electrons, indicating that the impact of using different kinds of loss rates is small on the trapped electron population. However, for the precipitated electrons, the lifetime method hardly captures any precipitation in the large Lshell (i.e., 4 < L < 6.5) region, while the diffusion coefficient method produces much better agreement with NOAA/POES measurements, including the spatial distribution and temporal evolution of electron precipitation in the region from the premidnight through the dawn to the dayside. Further comparisons of the precipitation energy flux to DMSP observations indicates that the new physics-based precipitation approach using diffusion coefficients for the ring current electron loss can explain the diffuse electron precipitation in the dawn sector, such as the enhanced precipitation flux at auroral latitudes and flux drop near the subauroral latitudes, but the traditional MHD approach largely overestimates the precipitation flux at lower latitudes. C1 [Yu, Yiqun] Beihang Univ, Space Sci Inst, Sch Space & Environm, Beijing, Peoples R China. [Jordanova, Vania K.; Jeffery, Christopher A.] Los Alamos Natl Lab, Space Sci & Applicat, Los Alamos, NM USA. [Ridley, Aaron J.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Albert, Jay M.] Air Force Res Lab, Kirtland AFB, NM USA. [Horne, Richard B.] British Antarctic Survey, Cambridge, England. RP Yu, YQ (reprint author), Beihang Univ, Space Sci Inst, Sch Space & Environm, Beijing, Peoples R China. EM yiqunyu17@gmail.com RI Yu, Yiqun/E-2710-2012; OI Yu, Yiqun/0000-0002-1013-6505; Jordanova, Vania/0000-0003-0475-8743 FU NSFC [73011501, 41431071]; Fundamental Research Funds for the Central Universities; Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund; U.S. Department of Energy; Los Alamos National Laboratory Directed Research and Development (LDRD) SHIELDS project; NASA [NNH13AW83I, NNH14AX90I, NAS5-01072]; NSF [ATM-1242787]; European Union [606716 SPACESTORM] FX The authors thank the OMNIweb from NASA Goddard Space Flight Center for providing the solar wind/interplanetary data and the Kyoto, Japan World Data Center System for providing the SYM-H index and AE index. The DMSP particle detectors were designed by Dave Hardy of AFRL, and the data are obtained from JHU/APL. The authors are also grateful to NOAA website for providing POES data (http://satdat.ngdc.noaa.gov/sem/poes/). The Van Allen Probes data are obtained from ECT website (http://rbsp-ect.lanl.gov). We also thank Yue Chen for useful discussion on POES observations. This work was supported by the NSFC grants 73011501 and 41431071, by the Fundamental Research Funds for the Central Universities, and by the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase). The work at LANL was conducted under the auspices of the U.S. Department of Energy, with partial support from the Los Alamos National Laboratory Directed Research and Development (LDRD) SHIELDS project, and NASA grants NNH13AW83I, NNH14AX90I, and NAS5-01072. The work at the University of Michigan was supported through NSF grant ATM-1242787. The research leading to these results has received funding in part from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement 606716 SPACESTORM. Part of these simulations were performed on TianHe-2 at National Supercomputer Center in Guangzhou, China. Data used in the study will be made available upon request by contacting the corresponding author. NR 78 TC 0 Z9 0 U1 10 U2 10 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2016 VL 121 IS 9 BP 8554 EP 8575 DI 10.1002/2016JA022585 PG 22 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4QM UT WOS:000385844000026 ER PT J AU Jordanova, VK Tu, W Chen, Y Morley, SK Panaitescu, AD Reeves, GD Kletzing, CA AF Jordanova, V. K. Tu, W. Chen, Y. Morley, S. K. Panaitescu, A. -D. Reeves, G. D. Kletzing, C. A. TI RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 "double-dip" storm SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article DE inner magnetosphere; geomagnetic storms ID VAN ALLEN PROBES; RADIATION-BELT ELECTRONS; LINEAR DIFFUSION-COEFFICIENTS; RING CURRENT; RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; MAGNETIC STORM; ACCELERATION; MAGNETOSPHERE; CHORUS AB Mechanisms for electron injection, trapping, and loss in the near-Earth space environment are investigated during the October 2012 double-dip storm using our ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB). Pitch angle and energy scattering are included for the first time in RAM-SCB using L and magnetic local time (MLT)-dependent event-specific chorus wave models inferred from NOAA Polar-orbiting Operational Environmental Satellites (POES) and Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science observations. The dynamics of the source (approximately tens of keV) and seed (approximately hundreds of keV) populations of the radiation belts simulated with RAM-SCB is compared with Van Allen Probes Magnetic Electron Ion Spectrometer observations in the morning sector and with measurements from NOAA15 satellite in the predawn and afternoon MLT sectors. We find that although the low-energy (E< 100keV) electron fluxes are in good agreement with observations, increasing significantly by magnetospheric convection during both SYM-H dips while decreasing during the intermediate recovery phase, the injection of high-energy electrons is underestimated by this mechanism throughout the storm. Local acceleration by chorus waves intensifies the electron fluxes at E50keV considerably, and RAM-SCB simulations overestimate the observed trapped fluxes by more than an order of magnitude; the precipitating fluxes simulated with RAM-SCB are weaker, and their temporal and spatial evolutions agree well with POES/Medium Energy Proton and Electron Detectors data. C1 [Jordanova, V. K.; Tu, W.; Chen, Y.; Morley, S. K.; Panaitescu, A. -D.; Reeves, G. D.] Los Alamos Natl Lab, Space Sci & Applicat, Los Alamos, NM 87545 USA. [Tu, W.] West Univ Virginia, Dept Phys & Astron, Morgantown, WV USA. [Kletzing, C. A.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. RP Jordanova, VK (reprint author), Los Alamos Natl Lab, Space Sci & Applicat, Los Alamos, NM 87545 USA. EM vania@lanl.gov RI Morley, Steven/A-8321-2008; OI Morley, Steven/0000-0001-8520-0199; Reeves, Geoffrey/0000-0002-7985-8098; Jordanova, Vania/0000-0003-0475-8743 FU U.S. Department of Energy; LDRD SHIELDS project; NASA [NNH14AX90I]; Van Allen Probes ECT; EMFISIS through JHU/APL under NASA [967399, 921647, NAS5-01072]; NSF [IAA1203460, AGS1613081] FX Work at Los Alamos was conducted under the auspices of the U.S. Department of Energy, with partial support from the LDRD SHIELDS project, NASA grant NNH14AX90I, Van Allen Probes ECT and EMFISIS funding through JHU/APL contracts 967399 and 921647 under prime NASA contract NAS5-01072, and NSF grant IAA1203460. The work by W. Tu was supported by NSF grant AGS1613081. We thank the OMNIWeb from NASA Goddard Space Flight Center for providing the solar wind observation data and the AL and SYM-H indices and the NOAA/STP World Data Center for providing the Kp index. The Van Allen Probes and NOAA data are available at NASA's CDAWeb data site. The simulation data are available from the corresponding author upon request. NR 63 TC 0 Z9 0 U1 0 U2 0 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD SEP PY 2016 VL 121 IS 9 BP 8712 EP 8727 DI 10.1002/2016JA022470 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DZ4QM UT WOS:000385844000036 PM 27867801 ER PT J AU Mittelberger, DE Nakamura, K Lehe, R Gonsalves, AJ Benedetti, C Mao, HS Daniels, J Dale, N Venkatakrishnan, SV Swanson, KK Esarey, E Leemans, WP AF Mittelberger, D. E. Nakamura, K. Lehe, R. Gonsalves, A. J. Benedetti, C. Mao, H. -S. Daniels, J. Dale, N. Venkatakrishnan, S. V. Swanson, K. K. Esarey, E. Leemans, W. P. TI Characterization of the spectral phase of an intense laser at focus via ionization blueshift SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS LA English DT Article ID ULTRASHORT OPTICAL PULSES; ACCELERATORS; COMPRESSION; AMPLITUDE; PLASMAS; GAS AB An in situ diagnostic for verifying the spectral phase of an intense laser pulse at focus is presented. This diagnostic relies on measuring the effect of optical compression on ionization-induced blueshifting of the laser spectrum. Experimental results from the Berkeley Lab Laser Accelerator, a laser source rigorously characterized by conventional techniques, are presented and compared with simulations to illustrate the utility of this technique. These simulations show distinguishable effects from second-, third-, and fourth-order spectral phase. (C) 2016 Optical Society of America C1 [Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H. -S.; Daniels, J.; Dale, N.; Venkatakrishnan, S. V.; Swanson, K. K.; Esarey, E.; Leemans, W. P.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mittelberger, D. E.; Dale, N.; Swanson, K. K.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Daniels, J.] Eindhoven Univ Technol, Eindhoven, Netherlands. RP Leemans, WP (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM WPLeemans@lbl.gov FU Office of Science, Office of High Energy Physics, U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; National Science Foundation (NSF) [PHY-1415596] FX Director, Office of Science, Office of High Energy Physics, U.S. Department of Energy (DOE) (DE-AC02-05CH11231); National Science Foundation (NSF) (PHY-1415596). NR 29 TC 0 Z9 0 U1 3 U2 3 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0740-3224 EI 1520-8540 J9 J OPT SOC AM B JI J. Opt. Soc. Am. B-Opt. Phys. PD SEP 1 PY 2016 VL 33 IS 9 BP 1978 EP 1985 DI 10.1364/JOSAB.33.001978 PG 8 WC Optics SC Optics GA DY8ZA UT WOS:000385419900026 ER PT J AU Ahn, S Kim, BJ Lin, YH Ren, F Pearton, SJ Yang, G Kim, J Kravchenko, II AF Ahn, Shihyun Kim, Byung-Jae Lin, Yi-Hsuan Ren, Fan Pearton, Stephen J. Yang, Gwangseok Kim, Jihyun Kravchenko, Ivan I. TI Effect of proton irradiation dose on InAlN/GaN metal-oxide semiconductor high electron mobility transistors with Al2O3 gate oxide SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID FIELD-EFFECT TRANSISTORS; ALGAN/GAN HEMTS; PERFORMANCE; HETEROSTRUCTURES; DEGRADATION; VOLTAGE; LEAKAGE; DEVICES AB The effects of proton irradiation on the dc performance of InAlN/GaN metal-oxide-semiconductor high electron mobility transistors ( MOSHEMTs) with Al2O3 as the gate oxide were investigated. The InAlN/GaN MOSHEMTs were irradiated with doses ranging from 1 x 10(13) to 1 x 10(15) cm(-2) at a fixed energy of 5MeV. There was minimal damage induced in the two dimensional electron gas at the lowest irradiation dose with no measurable increase in sheet resistance, whereas a 9.7% increase of the sheet resistance was observed at the highest irradiation dose. By sharp contrast, all irradiation doses created more severe degradation in the Ohmic metal contacts, with increases of specific contact resistance from 54% to 114% over the range of doses investigated. These resulted in source-drain current-voltage decreases ranging from 96 to 242mA/mm over this dose range. The trap density determined from temperature dependent drain current subthreshold swing measurements increased from 1.6 x 10(13) cm(-2) V-1 for the reference MOSHEMTs to 6.7x10(13) cm(-2) V-1 for devices irradiated with the highest dose. The carrier removal rate was 1287 +/- 64 cm(-1), higher than the authors previously observed in AlGaN/GaN MOSHEMTs for the same proton energy and consistent with the lower average bond energy of the InAlN. (C) 2016 American Vacuum Society. C1 [Ahn, Shihyun; Kim, Byung-Jae; Lin, Yi-Hsuan; Ren, Fan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Pearton, Stephen J.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Yang, Gwangseok; Kim, Jihyun] Korea Univ, Dept Chem & Biol Engn, Seoul 136713, South Korea. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Ren, F (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU U.S. DOD HDTRA Grant [1-11-1-0020] FX The work performed at UF is supported by an U.S. DOD HDTRA Grant No. 1-11-1-0020 monitored by James Reed. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 38 TC 0 Z9 0 U1 8 U2 8 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2016 VL 34 IS 5 AR 051202 DI 10.1116/1.4959786 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA DY9DP UT WOS:000385434100005 ER PT J AU Henry, MD Douglas, EA AF Henry, M. David Douglas, E. A. TI Chemical downstream etching of Ge, Si, and SiNx films SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SILICON; GERMANIUM; MECHANISMS; REMOVAL; PLASMA; OXIDE; VAPOR AB This work reports on selective isotropic dry etching of chemically vapor deposited Ge thin film, release layers using a Shibaura chemical downstream etcher with NF3 and Ar based plasma chemistry. Relative etch rates between Ge, Si, and SiNx are described with etch rate reductions achieved by adjusting plasma chemistry with O-2. Formation of oxides reducing etch rates was measured for both Ge and Si, but nitrides or oxy-nitrides created using direct injection of NO into the process chamber were measured to increase Si and SiNx etch rates while retarding Ge etching. Observation of preferential etching of Ge in the presence of Si and SiNx is also observed with lateral etch rates reaching 19.2 mu m/min for the Ge layers. Results presented here demonstrate the use of Ge as a microelectromechanical systems device dry release layer in the presence of Si and SiNx making it a highly advantageous technology, especially for optical devices. (C) 2016 American Vacuum Society. C1 [Henry, M. David; Douglas, E. A.] Sandia Natl Labs, MESA Fabricat Facil, POB 5800 MS 1084, Albuquerque, NM 87185 USA. RP Henry, MD (reprint author), Sandia Natl Labs, MESA Fabricat Facil, POB 5800 MS 1084, Albuquerque, NM 87185 USA. EM mdhenry@sandia.gov; edougla@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors acknowledge and thank the staff of Sandia's MESA facility dry etch team. NR 20 TC 0 Z9 0 U1 2 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2016 VL 34 IS 5 AR 052003 DI 10.1116/1.4961944 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA DY9DP UT WOS:000385434100023 ER PT J AU Ren, F Pearton, SJ Ahn, S Lin, YH Machuca, F Weiss, R Welsh, A McCartney, MR Smith, DJ Kravchenko, II AF Ren, Fan Pearton, Stephen J. Ahn, Shihyun Lin, Yi-Hsuan Machuca, Francisco Weiss, Robert Welsh, Alex McCartney, Martha R. Smith, David J. Kravchenko, Ivan I. TI Evaluation of AlGaN/GaN high electron mobility transistors grown on ZrTi buffer layers with sapphire substrates SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID HEMTS; PERFORMANCE; MBE; GAN AB AlGaN/GaN high electron mobility transistors ( HEMTs) have been grown on sapphire substrates, using ZrTi buffer layers to provide in-plane lattice-matching to hexagonal GaN. X-ray diffraction ( XRD) as well as cross-section transmission electron microscopy ( TEM) were used to assess the quality of the HEMT structure. The XRD 2h scans showed full-width-at-half-maximum values of 0.16 degrees, 0.07 degrees, and 0.08 degrees for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM studies of the GaN buffer layer and the AlN/ZrTi/AlN stack showed the importance of growing thin AlN buffer layers on the ZrTi layer prior to growth of the GaN buffer layer. The density of threading dislocations in the GaN channel layer of the HEMT structure was estimated to be in the 10(8) cm(-2) range. The HEMT device exhibited a saturation drain current density of 820mA/mm, and the channel of the fabricated HEMTs could be well modulated. A cutoff frequency ( f(T)) of 8.9GHz and a maximum frequency of oscillation ( f(max)) of 17.3GHz were achieved for HEMTs with gate dimensions of 1 x 200 mu m. (C) 2016 American Vacuum Society. C1 [Ren, Fan; Ahn, Shihyun; Lin, Yi-Hsuan] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. [Pearton, Stephen J.] Univ Florida, Dept Mat Sci Engn, Gainesville, FL 32611 USA. [Machuca, Francisco; Weiss, Robert; Welsh, Alex] Triva Corp, Oakland, CA 94606 USA. [McCartney, Martha R.; Smith, David J.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Ren, F (reprint author), Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA. EM fren@che.ufl.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU AFOSR [FA8650-15-M-1912]; Air Force Research Laboratory Sensors Directorate Technical Task [HC1047-05-D-4005] FX The work performed at UF was supported by AFOSR Contract No. FA8650-15-M-1912, monitored by Rafael Pappaterra. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The electron microscopy studies at ASU were supported under contract to Wyle Laboratories as part of Reliability Information Analysis Center Contract No. HC1047-05-D-4005 under the Air Force Research Laboratory Sensors Directorate Technical Task 261 monitored by Christopher Bozada. NR 12 TC 0 Z9 0 U1 6 U2 6 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD SEP PY 2016 VL 34 IS 5 AR 051208 DI 10.1116/1.4963064 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA DY9DP UT WOS:000385434100011 ER PT J AU Kikinzon, E Kuznetsov, Y Liu, Z AF Kikinzon, E. Kuznetsov, Y. Liu, Z. TI Monotonicity in RT0 and PWCF Methods on Triangular and Tetrahedral Meshes SO LOBACHEVSKII JOURNAL OF MATHEMATICS LA English DT Article DE Vector function; triangular mesh; tetrahedral mesh ID DIFFUSION-EQUATIONS; CONSTANT FLUXES; APPROXIMATIONS AB In this paper we derive the monotonicity conditions for condensed-algebraic systems obtained by the discretization of the Poisson's problem by the classical lowest order Raviart-Thomas (RT0) and the piece-wise constant fluxes (PWCF) MFE methods on triangular and tetrahedral meshes. We also establish the correspondence between the condensed system matrices resulting from application of these two methods. C1 [Kikinzon, E.] Los Alamos Natl Lab, Computat Earth Sci, EES 16,MS T003, Los Alamos, NM 87545 USA. [Kuznetsov, Y.; Liu, Z.] Univ Houston, Dept Math, 641 PGH, Houston, TX 77204 USA. RP Kikinzon, E (reprint author), Los Alamos Natl Lab, Computat Earth Sci, EES 16,MS T003, Los Alamos, NM 87545 USA. EM kikinzon@lanl.gov; kuz@math.uh.edu; zhuoliu0920@gmail.com OI Kikinzon, Evgeny/0000-0003-4761-2015 NR 7 TC 0 Z9 0 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1995-0802 EI 1818-9962 J9 LOBACHEVSKII J MATH JI Lobachevskii J. Math. PD SEP PY 2016 VL 37 IS 5 SI SI BP 550 EP 560 DI 10.1134/S1995080216050061 PG 11 WC Mathematics SC Mathematics GA DZ0BS UT WOS:000385502700004 ER PT J AU Hu, ZW Winarski, RP AF Hu, Z. W. Winarski, R. P. TI In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID TAGISH LAKE METEORITE; MOLECULAR-CLOUD MATERIAL; CARBONACEOUS CHONDRITE; ORGANIC-MATTER; COSMIC DUST; COMETARY; MINERALOGY; MICROMETEORITES; DENSITIES; STRENGTH AB Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to similar to 10nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a similar to 10-m-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of similar to 0.3m or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-m grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space. C1 [Hu, Z. W.] XNano Sci Inc, POB 12852, Huntsville, AL 35815 USA. [Winarski, R. P.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Hu, ZW (reprint author), XNano Sci Inc, POB 12852, Huntsville, AL 35815 USA. EM zwhu@xnano.org FU DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NASA [NNX12AP38G] FX Z. W. H. wishes to thank G. J. Flynn, D. E. Brownlee, S. Messenger, L. R. Nittler, and M. E. Zolensky for stimulating discussions; V. Rose for technical assistance; J. Masor and B. Lai for technical discussions; the NASA/JSC cosmic dust curatorial staff for preparing IDPs for this research' and numerous colleagues for their encouragement over the course of this research. Use of the CNM and APS was supported by DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work was funded by NASA grant NNX12AP38G. We are grateful to G. J. Flynn and an anonymous reviewer for their thorough reviews and insightful comments and to associate editor J. M. Trigo-Rodriguez for his recommendations, which have greatly benefited this manuscript. NR 46 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2016 VL 51 IS 9 BP 1632 EP 1642 DI 10.1111/maps.12674 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DW4QX UT WOS:000383629200005 ER PT J AU Bhattacharya, A Skinner, B Khalsa, G Suslov, AV AF Bhattacharya, Anand Skinner, Brian Khalsa, Guru Suslov, Alexey V. TI Spatially inhomogeneous electron state deep in the extreme quantum limit of strontium titanate SO NATURE COMMUNICATIONS LA English DT Article ID FIELD-INDUCED LOCALIZATION; STRONG MAGNETIC-FIELD; METAL-INSULATOR-TRANSITION; WIGNER TRANSITION; PHASE-TRANSITION; GROUND-STATE; DOPED SRTIO3; GAS; INSB; MAGNETORESISTANCE AB When an electronic system is subjected to a sufficiently strong magnetic field that the cyclotron energy is much larger than the Fermi energy, the system enters the extreme quantum limit (EQL) and becomes susceptible to a number of instabilities. Bringing a three-dimensional electronic system deeply into the EQL can be difficult however, since it requires a small Fermi energy, large magnetic field, and low disorder. Here we present an experimental study of the EQL in lightly-doped single crystals of strontium titanate. Our experiments probe deeply into the regime where theory has long predicted an interaction-driven charge density wave or Wigner crystal state. A number of interesting features arise in the transport in this regime, including a striking re-entrant nonlinearity in the current-voltage characteristics. We discuss these features in the context of possible correlated electron states, and present an alternative picture based on magnetic-field induced puddling of electrons. C1 [Bhattacharya, Anand; Skinner, Brian] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Skinner, Brian] MIT, 77 Mass Ave, Cambridge, MA 02139 USA. [Khalsa, Guru] Natl Inst Stand & Technol, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA. [Suslov, Alexey V.] Natl High Magnet Field Lab, 1800 E Paul Dirac Dr, Tallahassee, FL 32310 USA. [Khalsa, Guru] Cornell Univ, Dept Mat Sci & Engn, 126 Bard Hall, Ithaca, NY 14853 USA. RP Bhattacharya, A; Skinner, B (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Skinner, B (reprint author), MIT, 77 Mass Ave, Cambridge, MA 02139 USA. EM anand@anl.gov; skinner1@mit.edu RI Bhattacharya, Anand/G-1645-2011; Suslov, Alexey/M-7511-2014 OI Bhattacharya, Anand/0000-0002-6839-6860; Suslov, Alexey/0000-0002-2224-153X FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division; U.S. DOE, BES [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]; MIT Center for Excitonics, an Energy Frontier Research Center - U.S. DOE, Office of Science, BES [DE-SC0001088]; NSF [DMR-1157490]; State of Florida FX Initial measurements of quantum oscillations in reduced STO samples were carried out at the NHMFL in Los Alamos by A.B. with J. Singleton and F. Balakirev. We are grateful to C. Leighton, P.B. Littlewood, A. Lopez-Bezanilla, B.I. Shklovskii and K.V. Reich for helpful discussions. A.B. acknowledges the support of the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division. The use of facilities at the Center for Nanoscale Materials, was supported by the U.S. DOE, BES under contract no. DE-AC02-06CH11357. Theory work by BS was initially supported at Argonne National Laboratory by the U.S. Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357; subsequent theory work was supported as part of the MIT Center for Excitonics, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science, BES under Award no. DE-SC0001088. The NHMFL is supported by the NSF Cooperative agreement no. DMR-1157490 and the State of Florida. NR 66 TC 0 Z9 0 U1 12 U2 12 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12974 DI 10.1038/ncomms12974 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY8OB UT WOS:000385388600001 PM 27680386 ER PT J AU Guo, PJ Schaller, RD Ocola, LE Diroll, BT Ketterson, JB Chang, RPH AF Guo, Peijun Schaller, Richard D. Ocola, Leonidas E. Diroll, Benjamin T. Ketterson, John B. Chang, Robert P. H. TI Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum SO NATURE COMMUNICATIONS LA English DT Article ID SURFACE-PLASMON RESONANCE; OXIDE; NANOSTRUCTURES; NANOCRYSTALS; DYNAMICS; GOLD; METAMATERIALS; METASURFACES; NANOWIRES; GRAPHENE AB Nonlinear optical responses of materials play a vital role for the development of active nanophotonic and plasmonic devices. Optical nonlinearity induced by intense optical excitation of mobile electrons in metallic nanostructures can provide large-amplitude, dynamic tuning of their electromagnetic response, which is potentially useful for all-optical processing of information and dynamic beam control. Here we report on the sub-picosecond optical nonlinearity of indium tin oxide nanorod arrays (ITO-NRAs) following intraband, on-plasmon-resonance optical pumping, which enables modulation of the full-visible spectrum with large absolute change of transmission, favourable spectral tunability and beam-steering capability. Furthermore, we observe a transient response in the microsecond regime associated with slow lattice cooling, which arises from the large aspect-ratio and low thermal conductivity of ITO-NRAs. Our results demonstrate that all-optical control of light can be achieved by using heavily doped wide-bandgap semiconductors in their transparent regime with speed faster than that of noble metals. C1 [Guo, Peijun; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. [Schaller, Richard D.; Ocola, Leonidas E.; Diroll, Benjamin T.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Lemont, IL 60439 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. RP Chang, RPH (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA.; Schaller, RD (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave, Lemont, IL 60439 USA.; Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM schaller@anl.gov; r-chang@northwestern.edu OI Ocola, Leonidas/0000-0003-4990-1064 FU MRSEC program (NSF) [DMR-1121262]; U.S. Department of Energy, Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357]; Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF) [NNCI-1542205]; International Institute for Nanotechnology (IIN); Keck Foundation; State of Illinois, through the IIN FX The work was funded by the MRSEC program (NSF DMR-1121262) at Northwestern University. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work made use of the EPIC facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. We thank insightful discussions with Prof. Hui Fang, Dr Shi-Qiang Li, Dr Ankun Yang and Mr. Guohua Wei. NR 51 TC 1 Z9 1 U1 27 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12892 DI 10.1038/ncomms12892 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY8NE UT WOS:000385386300007 PM 27682836 ER PT J AU He, Q Freakley, SJ Edwards, JK Carley, AF Borisevich, AY Mineo, Y Haruta, M Hutchings, GJ Kiely, CJ AF He, Qian Freakley, Simon J. Edwards, Jennifer K. Carley, Albert F. Borisevich, Albina Y. Mineo, Yuki Haruta, Masatake Hutchings, Graham J. Kiely, Christopher J. TI Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation SO NATURE COMMUNICATIONS LA English DT Article ID LOW-TEMPERATURE OXIDATION; CO OXIDATION; AU/FEOX CATALYSTS; NANOPARTICLES; SIZE; SUPPORTS; CLUSTERS; HYDROGEN; BEHAVIOR; TITANIA AB The identity of active species in supported gold catalysts for low temperature carbon monoxide oxidation remains an unsettled debate. With large amounts of experimental evidence supporting theories of either gold nanoparticles or sub-nm gold species being active, it was recently proposed that a size-dependent activity hierarchy should exist. Here we study the diverging catalytic behaviours after heat treatment of Au/FeOx materials prepared via co-precipitation and deposition precipitation methods. After ruling out any support effects, the gold particle size distributions in different catalysts are quantitatively studied using aberration corrected scanning transmission electron microscopy (STEM). A counting protocol is developed to reveal the true particle size distribution from HAADF-STEM images, which reliably includes all the gold species present. Correlation of the populations of the various gold species present with catalysis results demonstrate that a size-dependent activity hierarchy must exist in the Au/FeOx catalyst. C1 [He, Qian; Kiely, Christopher J.] Lehigh Univ, Dept Mat Sci & Engn, 5 East Packer Ave, Bethlehem, PA 18015 USA. [He, Qian; Borisevich, Albina Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [He, Qian; Freakley, Simon J.; Edwards, Jennifer K.; Carley, Albert F.; Hutchings, Graham J.] Cardiff Univ, Sch Chem, Cardiff Catalysis Inst, Main Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales. [Borisevich, Albina Y.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Mineo, Yuki; Haruta, Masatake] Tokyo Metropolitan Univ, Grad Sch Urban Environm Sci, Res Ctr Gold Chem, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan. RP Kiely, CJ (reprint author), Lehigh Univ, Dept Mat Sci & Engn, 5 East Packer Ave, Bethlehem, PA 18015 USA.; Hutchings, GJ (reprint author), Cardiff Univ, Sch Chem, Cardiff Catalysis Inst, Main Bldg,Pk Pl, Cardiff CF10 3AT, S Glam, Wales. EM hutch@cardiff.ac.uk; chk5@lehigh.edu RI He, Qian/J-1277-2014; OI Freakley, Simon/0000-0002-6395-6646 FU Japanese Society for the Promotion of Science [PE 10511, PE 11562]; Cardiff University as part of the MaxNet consortium; National Science Foundation Major Research Instrumentation program (GR) [MRI/DMR-1040229]; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; ORNL's Center for Nanophase Materials Sciences; Scientific User Facilities Division, Office of Science, Basic Energy Sciences, US Department of Energy FX We gratefully acknowledge the Japanese Society for the Promotion of Science for fellowships to allow JKE (PE 10511) and SJF (PE 11562) to travel to Tokyo and carry out experiments in the lab of Professor Haruta. We also acknowledge support from Cardiff University as part of the MaxNet consortium. C.J.K. gratefully acknowledges funding from the National Science Foundation Major Research Instrumentation program (GR# MRI/DMR-1040229). Q.H. and A.Y.B. are supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and through a user project supported by ORNL's Center for Nanophase Materials Sciences, sponsored by the Scientific User Facilities Division, Office of Science, Basic Energy Sciences, US Department of Energy. NR 29 TC 0 Z9 0 U1 47 U2 47 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12905 DI 10.1038/ncomms12905 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY8NS UT WOS:000385387700001 PM 27671143 ER PT J AU Liu, ZK Yang, LX Wu, SC Shekhar, C Jiang, J Yang, HF Zhang, Y Mo, SK Hussain, Z Yan, B Felser, C Chen, YL AF Liu, Z. K. Yang, L. X. Wu, S. -C. Shekhar, C. Jiang, J. Yang, H. F. Zhang, Y. Mo, S. -K. Hussain, Z. Yan, B. Felser, C. Chen, Y. L. TI Observation of unusual topological surface states in half-Heusler compounds LnPtBi (Ln = Lu, Y) SO NATURE COMMUNICATIONS LA English DT Article ID DIRAC SEMIMETAL; WEYL SEMIMETAL; AB-INITIO; INSULATORS; SUPERCONDUCTIVITY; PHOTOEMISSION; DISCOVERY; HGTE AB Topological quantum materials represent a new class of matter with both exotic physical phenomena and novel application potentials. Many Heusler compounds, which exhibit rich emergent properties such as unusual magnetism, superconductivity and heavy fermion behaviour, have been predicted to host non-trivial topological electronic structures. The coexistence of topological order and other unusual properties makes Heusler materials ideal platform to search for new topological quantum phases (such as quantum anomalous Hall insulator and topological superconductor). By carrying out angle-resolved photoemission spectroscopy and ab initio calculations on rare-earth half-Heusler compounds LnPtBi (Ln = Lu, Y), we directly observe the unusual topological surface states on these materials, establishing them as first members with non-trivial topological electronic structure in this class of materials. Moreover, as LnPtBi compounds are non-centrosymmetric superconductors, our discovery further highlights them as promising candidates of topological superconductors. C1 [Liu, Z. K.; Jiang, J.; Yan, B.; Chen, Y. L.] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201203, Peoples R China. [Liu, Z. K.; Jiang, J.; Yan, B.; Chen, Y. L.] CAS Shanghai Sci Res Ctr, Shanghai 201203, Peoples R China. [Yang, L. X.; Chen, Y. L.] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Dept Phys, Beijing 100084, Peoples R China. [Yang, L. X.; Chen, Y. L.] Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China. [Wu, S. -C.; Shekhar, C.; Yan, B.; Felser, C.] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany. [Jiang, J.; Zhang, Y.; Mo, S. -K.; Hussain, Z.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yang, H. F.] Chinese Acad Sci, State Key Lab Funct Mat Informat, SIMIT, Shanghai 200050, Peoples R China. [Chen, Y. L.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Chen, YL (reprint author), ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201203, Peoples R China.; Chen, YL (reprint author), CAS Shanghai Sci Res Ctr, Shanghai 201203, Peoples R China.; Chen, YL (reprint author), Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Dept Phys, Beijing 100084, Peoples R China.; Chen, YL (reprint author), Tsinghua Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China.; Chen, YL (reprint author), Univ Oxford, Dept Phys, Oxford OX1 3PU, England. EM Yulin.Chen@physics.ox.ac.uk RI Felser, Claudia/A-5779-2009; Mo, Sung-Kwan/F-3489-2013; Zhang, Yi/J-9025-2013 OI Felser, Claudia/0000-0002-8200-2063; Mo, Sung-Kwan/0000-0003-0711-8514; Zhang, Yi/0000-0003-1204-8717 FU EPSRC [EP/M020517/1]; Hefei Science Center CAS [2015HSC-UE013]; ERC [291472]; NRF, Korea through the SRC Center for Topological Matter [2011-0030787]; Office of Basic Energy Sciences of the U.S. DOE [DE-AC02-05CH11231]; Bureau of Frontier Sciences and Education, Chinese Academy of Sciences FX Y.L.C. acknowledges the support of the EPSRC Platform Grant (Grant No. EP/M020517/1) and Hefei Science Center CAS (2015HSC-UE013). C.F. acknowledges the financial support by the ERC Advanced Grant (No. 291472 'Idea Heusler'). J.J. acknowledges the support of the NRF, Korea through the SRC Center for Topological Matter (No. 2011-0030787). The ALS is supported by the Office of Basic Energy Sciences of the U.S. DOE under Contract No. DE-AC02-05CH11231. H.F.Y. acknowledges the finacial support from the Bureau of Frontier Sciences and Education, Chinese Academy of Sciences. NR 46 TC 1 Z9 1 U1 34 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12924 DI 10.1038/ncomms12924 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY9GK UT WOS:000385441700001 PM 27671444 ER PT J AU Nichols, J Gao, X Lee, S Meyer, TL Freeland, JW Lauter, V Yi, D Liu, J Haskel, D Petrie, JR Guo, EJ Herklotz, A Lee, DK Ward, TZ Eres, G Fitzsimmons, MR Lee, HN AF Nichols, John Gao, Xiang Lee, Shinbuhm Meyer, Tricia L. Freeland, John W. Lauter, Valeria Yi, Di Liu, Jian Haskel, Daniel Petrie, Jonathan R. Guo, Er-Jia Herklotz, Andreas Lee, Dongkyu Ward, Thomas Z. Eres, Gyula Fitzsimmons, Michael R. Lee, Ho Nyung TI Emerging magnetism and anomalous Hall effect in iridate-manganite heterostructures SO NATURE COMMUNICATIONS LA English DT Article ID OXIDE SUPERLATTICES; CRYSTAL-GROWTH; SUPERCONDUCTIVITY; LN AB Strong Coulomb repulsion and spin-orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin-orbit entangled 3d-5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials. C1 [Nichols, John; Gao, Xiang; Lee, Shinbuhm; Meyer, Tricia L.; Petrie, Jonathan R.; Herklotz, Andreas; Lee, Dongkyu; Ward, Thomas Z.; Eres, Gyula; Lee, Ho Nyung] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Freeland, John W.; Haskel, Daniel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Lauter, Valeria; Guo, Er-Jia; Fitzsimmons, Michael R.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Yi, Di] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Liu, Jian] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RP Lee, HN (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov RI Guo, Er-Jia/F-5229-2012; LEE, SHINBUHM/A-9494-2011; Eres, Gyula/C-4656-2017; Liu, Jian/I-6746-2013; OI Guo, Er-Jia/0000-0001-5702-225X; LEE, SHINBUHM/0000-0002-4907-7362; Eres, Gyula/0000-0003-2690-5214; Liu, Jian/0000-0001-7962-2547; Ward, Thomas/0000-0002-1027-9186 FU US Department of Energy (DOE); Office of Science (OS); Basic Energy Sciences (BES); Materials Sciences and Engineering Division; Laboratory Directed Research; Development Program of Oak Ridge National Laboratory; Scientific User Facilities Division; BES; US DOE (PNR); US DOE [DE-AC0206CH11357]; Science Alliance Joint Directed Research; Development Program at the University of Tennessee FX We thank Michael A. McGuire for his experimental assistance as well as Tae-Won Noh, Changhee Sohn, Soyeun Kim, Jun Sung Kim and Satoshi Okamoto for valuable discussions and comments. This work was supported by the US Department of Energy (DOE), Office of Science (OS), Basic Energy Sciences (BES), Materials Sciences and Engineering Division (synthesis, physical property characterization, XAS, XMCD and PNR data analysis), and the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US DOE (PNR data fitting). The research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, BES, US DOE (PNR). Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE, OS by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC0206CH11357 (XAS/XMCD). J.L. was sponsored by the Science Alliance Joint Directed Research and Development Program at the University of Tennessee. NR 42 TC 1 Z9 1 U1 38 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12721 DI 10.1038/ncomms12721 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY7BY UT WOS:000385285400003 PM 27596572 ER PT J AU Peter, M Kohler, A Ohm, RA Kuo, A Krutzmann, J Morin, E Arend, M Barry, KW Binder, M Choi, C Clum, A Copeland, A Grisel, N Haridas, S Kipfer, T LaButti, K Lindquist, E Lipzen, A Maire, R Meier, B Mihaltcheva, S Molinier, V Murat, C Poggeler, S Quandt, CA Sperisen, C Tritt, A Tisserant, E Crous, PW Henrissat, B Nehls, U Egli, S Spatafora, JW Grigoriev, IV Martin, FM AF Peter, Martina Kohler, Annegret Ohm, Robin A. Kuo, Alan Kruetzmann, Jennifer Morin, Emmanuelle Arend, Matthias Barry, Kerrie W. Binder, Manfred Choi, Cindy Clum, Alicia Copeland, Alex Grisel, Nadine Haridas, Sajeet Kipfer, Tabea LaButti, Kurt Lindquist, Erika Lipzen, Anna Maire, Renaud Meier, Barbara Mihaltcheva, Sirma Molinier, Virginie Murat, Claude Poeggeler, Stefanie Quandt, C. Alisha Sperisen, Christoph Tritt, Andrew Tisserant, Emilie Crous, Pedro W. Henrissat, Bernard Nehls, Uwe Egli, Simon Spatafora, Joseph W. Grigoriev, Igor V. Martin, Francis M. TI Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum SO NATURE COMMUNICATIONS LA English DT Article ID MYCORRHIZAL SYMBIOSIS; EXPRESSION ANALYSIS; SPECIES COMPLEX; SEQUENCE DATA; GENE FAMILY; WEB SERVER; PLANT; EVOLUTION; DROUGHT; MECHANISMS AB The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidiomycetes are also present in C. geophilum with symbiosis-induced, taxon-specific genes of unknown function and reduced numbers of plant cell wall-degrading enzymes. C. geophilum still holds a significant set of genes in categories known to be involved in pathogenesis and shows an increased genome size due to transposable elements proliferation. Transcript profiling revealed a striking upregulation of membrane transporters, including aquaporin water channels and sugar transporters, and mycorrhiza-induced small secreted proteins (MiSSPs) in ectomycorrhiza compared with free-living mycelium. The frequency with which this symbiont is found on tree roots and its possible role in water and nutrient transport in symbiosis calls for further studies on mechanisms of host and environmental adaptation. C1 [Peter, Martina; Arend, Matthias; Grisel, Nadine; Kipfer, Tabea; Maire, Renaud; Meier, Barbara; Molinier, Virginie; Sperisen, Christoph; Egli, Simon] Swiss Fed Res Inst WSL, Forest Dynam, Zuercherstr 111, CH-8903 Birmensdorf, Switzerland. [Kohler, Annegret; Morin, Emmanuelle; Murat, Claude; Tisserant, Emilie; Martin, Francis M.] Univ Lorraine, INRA Nancy, Lab Excellence ARBRE, INRA,UMR INRA,Interact Arbres Microorganismes, F-54280 Seichamps, France. [Ohm, Robin A.; Kuo, Alan; Barry, Kerrie W.; Choi, Cindy; Clum, Alicia; Copeland, Alex; Haridas, Sajeet; LaButti, Kurt; Lindquist, Erika; Lipzen, Anna; Mihaltcheva, Sirma; Tritt, Andrew; Grigoriev, Igor V.] US DOE, JGI, Walnut Creek, CA 94598 USA. [Ohm, Robin A.] Univ Utrecht, Dept Biol, Microbiol, NL-3508 TB Utrecht, Netherlands. [Kruetzmann, Jennifer; Nehls, Uwe] Univ Bremen, Bot, Leobenerstr 2, D-28359 Bremen, Germany. [Binder, Manfred; Crous, Pedro W.] CBS KNAW Fungal Biodivers Ctr, Uppsalalaan 8, NL-3584 CT Utrecht, Netherlands. [Poeggeler, Stefanie] Univ Gottingen, Dept Genet Eukaryot Microorganisms, Inst Microbiol & Genet, D-37077 Gottingen, Germany. [Poeggeler, Stefanie] Univ Gottingen, Gottingen Ctr Mol Biosci GZMB, D-37077 Gottingen, Germany. [Quandt, C. Alisha] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA. [Henrissat, Bernard] CNRS, UMR 7257, F-13288 Marseille, France. [Henrissat, Bernard] Aix Marseille Univ, Architecture & Fonct Macromol Biol, F-13288 Marseille, France. [Henrissat, Bernard] INRA, USC AFMB 1408, F-13288 Marseille, France. [Henrissat, Bernard] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21589, Saudi Arabia. [Spatafora, Joseph W.] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. RP Peter, M (reprint author), Swiss Fed Res Inst WSL, Forest Dynam, Zuercherstr 111, CH-8903 Birmensdorf, Switzerland.; Martin, FM (reprint author), Univ Lorraine, INRA Nancy, Lab Excellence ARBRE, INRA,UMR INRA,Interact Arbres Microorganismes, F-54280 Seichamps, France. EM martina.peter@wsl.ch; fmartin@nancy.inra.fr RI Arend, Matthias/L-7795-2013; Fac Sci, KAU, Biol Sci Dept/L-4228-2013 FU US Department of Energy Joint Genome Institute, DOE Office of Science User Facility [DE-AC02-05CH11231]; Laboratory of Excellence ARBRE [ANR-11-LABX-0002-01]; ARBRE-WSL joint project BLACK-SECRET; Genomic Science Program (Plant-Microbe Interactions project) - US Department of Energy, Office of Science, Biological and Environmental Research [DE-AC05-00OR22725]; Lorraine Region Council; US National Science Foundation [DEB-0732993]; EC [GOCE-016322] FX We thank Dr David Hibbett and our colleagues from the Mycorrhizal Genomics Initiative consortium for helpful discussions. We thank WSL-staff Raphael Appenzeller, Rosmarie Eppenberger and Sylvia Hutter for technical assistance and Terence Menard for microscopic cuttings. We are indebted to Dr Annette Peter and Annette Hintelmann (University of Bremen) for providing Xenopus oocytes and technical support, Nicolas Cichocki and Maira de Freitas Pereira (INRA-Nancy) for support in RNA extractions and microscopic pictures. This material is based on work conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, under contract no. DE-AC02-05CH11231. It was supported by the Laboratory of Excellence ARBRE (ANR-11-LABX-0002-01), the ARBRE-WSL joint project BLACK-SECRET, the Genomic Science Program (Plant-Microbe Interactions project) funded by the US Department of Energy, Office of Science, Biological and Environmental Research (contract DE-AC05-00OR22725), and the Lorraine Region Council (to F.M.M.), the US National Science Foundation (DEB-0732993 to J.W.S.) and the EC-supported Network of Excellence Evoltree (GOCE-016322 to M.P.). NR 68 TC 2 Z9 2 U1 19 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12662 DI 10.1038/ncomms12662 PG 15 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY8FR UT WOS:000385364700001 PM 27601008 ER PT J AU Philippe, S Goldston, RJ Glaser, A d'Errico, F AF Philippe, Sebastien Goldston, Robert J. Glaser, Alexander d'Errico, Francesco TI A physical zero- knowledge object- comparison system for nuclear warhead verification SO NATURE COMMUNICATIONS LA English DT Article ID PROOF AB Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications. C1 [Philippe, Sebastien; Glaser, Alexander] Princeton Univ, Dept Mech & Aerosp Engn, Olden St, Princeton, NJ 08544 USA. [Goldston, Robert J.] Princeton Univ, Princeton Plasma Phys Lab, POB 451,MS 41, Princeton, NJ 08540 USA. [d'Errico, Francesco] Univ Pisa, Sch Engn, Largo Lazzarino 1, I-56126 Pisa, Italy. [d'Errico, Francesco] Yale Univ, Sch Med, 300 Cedar St, New Haven, CT 06520 USA. RP Philippe, S (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Olden St, Princeton, NJ 08544 USA. EM sp6@princeton.edu OI Philippe, Sebastien/0000-0002-7282-7520 FU Princeton University, Yale University; Princeton Plasma Physics Laboratory [DE-NA-0002534]; John D. and Catherine T. MacArthur Foundation; Carnegie Corporation of New York FX Princeton University, Yale University and the Princeton Plasma Physics Laboratory received support for this research through DOE/NNSA's Consortium for Verification Technology, DE-NA-0002534. Financial support was also provided by the John D. and Catherine T. MacArthur Foundation and the Carnegie Corporation of New York. We thank B. Barak for his advice on the protocol construction and assumptions, A. Carpe and the Health Physics team of the Princeton Plasma Physics Laboratory for their aid during the conduct of the experiments, M. Gattas-Sethi (Yale University) for manufacturing the detectors, Z. Mian, M. Kutt and three reviewers for providing helpful comments on the manuscript. All simulations were run on Princeton University's High Performance Cluster. NR 24 TC 0 Z9 0 U1 3 U2 3 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12890 DI 10.1038/ncomms12890 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY8NE UT WOS:000385386300005 PM 27649477 ER PT J AU Pugh, TAM Muller, C Elliott, J Deryng, D Folberth, C Olin, S Schmid, E Arneth, A AF Pugh, T. A. M. Mueller, C. Elliott, J. Deryng, D. Folberth, C. Olin, S. Schmid, E. Arneth, A. TI Climate analogues suggest limited potential for intensification of production on current croplands under climate change SO NATURE COMMUNICATIONS LA English DT Article ID RISING CO2 CONCENTRATIONS; CROP YIELD; IMPACTS; FOOD; AGRICULTURE; MANAGEMENT; MODEL AB Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand. C1 [Pugh, T. A. M.; Arneth, A.] Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany. [Pugh, T. A. M.] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England. [Pugh, T. A. M.] Univ Birmingham, Birmingham Inst Forest Res, Birmingham B15 2TT, W Midlands, England. [Mueller, C.] Potsdam Inst Climate Impact Res, POB 60 12 03, D-14412 Potsdam, Germany. [Elliott, J.; Deryng, D.] Univ Chicago, Chicago, IL 60637 USA. [Elliott, J.; Deryng, D.] Argonne Natl Lab, Computat Inst, Chicago, IL 60637 USA. [Deryng, D.] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA. [Deryng, D.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Folberth, C.] Int Inst Appl Syst Anal, Ecosyst Serv & Management Program, A-2361 Laxenburg, Austria. [Folberth, C.] Univ Munich, Dept Geog, D-80333 Munich, Germany. [Olin, S.] Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden. [Schmid, E.] Univ Nat Resources & Life Sci, Dept Econ & Social Sci, Feistmantelstr 4, A-1180 Vienna, Austria. RP Pugh, TAM (reprint author), Karlsruhe Inst Technol, Inst Meteorol & Climate Res Atmospher Environm Re, Kreuzeckbahnstr 19, D-82467 Garmisch Partenkirchen, Germany. EM t.a.m.pugh@bham.ac.uk RI Deryng, Delphine/F-7417-2010; Pugh, Thomas/A-3790-2010; OI Deryng, Delphine/0000-0001-6214-7241; Pugh, Thomas/0000-0002-6242-7371; Schmid, Erwin/0000-0003-4783-9666; Muller, Christoph/0000-0002-9491-3550 FU European Commission [603542 (LUC4C)]; German Federal Ministry of Education and Research (BMBF), through the Helmholtz Association; MACMIT project - BMBF [01LN1317A]; Research Fellowship of Ludwig Maximilian University Munich; Global Gridded Crop Model Intercomparison project (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP) FX T.A.M.P. and A.A. were funded by the European Commission's 7th Framework Programme, under Grant Agreement number 603542 (LUC4C). This work was supported, in part, by the German Federal Ministry of Education and Research (BMBF), through the Helmholtz Association and its research program ATMO. C.M. acknowledges financial support from the MACMIT project (01LN1317A) funded through the BMBF. C.F. was supported by a Research Fellowship of Ludwig Maximilian University Munich. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. The Global Gridded Crop Model Intercomparison project (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP) is thanked for funding travel to workshops where the ideas in this manuscript were developed. This is paper number 17 of the Birmingham Institute of Forest Research. NR 34 TC 0 Z9 0 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12608 DI 10.1038/ncomms12608 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY7BH UT WOS:000385283700001 PM 27646707 ER PT J AU Seo, H Falk, AL Klimov, PV Miao, KC Galli, G Awschalom, DD AF Seo, Hosung Falk, Abram L. Klimov, Paul V. Miao, Kevin C. Galli, Giulia Awschalom, David D. TI Quantum decoherence dynamics of divacancy spins in silicon carbide SO NATURE COMMUNICATIONS LA English DT Article ID ROOM-TEMPERATURE; COHERENT CONTROL; DEFECT SPINS; QUBITS; DIAMOND; ELECTRON; CENTERS; STATE; TECHNOLOGIES; FIELD AB Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest Hahn-echo coherence times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (30mT and above), the Si-29 and C-13 paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbour spin pairs. Longer neighbour distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer coherence time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state. C1 [Seo, Hosung; Falk, Abram L.; Klimov, Paul V.; Miao, Kevin C.; Galli, Giulia; Awschalom, David D.] Univ Chicago, Inst Mol Engn, Chicago, IL 60615 USA. [Falk, Abram L.] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. [Galli, Giulia] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP Awschalom, DD (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60615 USA. EM awsch@uchicago.edu FU National Science Foundation (NSF) through the University of Chicago MRSEC [DMR-1420709]; DOE [DE-FG02-06ER46262]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; University of Chicago Research Computing Center; Air Force Office of Scientific Research (AFOSR); AFOSR-MURI; Army Research Office (ARO); NSF; NSF-MRSEC FX H.S. thank Nan Zhao and Setrak Balian for helpful discussions. H.S. is primarily supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under award number DMR-1420709. G.G. is supported by DOE grant No. DE-FG02-06ER46262. D.D.A. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. We acknowledge the University of Chicago Research Computing Center for support of this work. This work was supported by Air Force Office of Scientific Research (AFOSR), AFOSR-MURI, Army Research Office (ARO), NSF and NSF-MRSEC. NR 62 TC 3 Z9 3 U1 17 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12935 DI 10.1038/ncomms12935 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY8NY UT WOS:000385388300001 PM 27679936 ER PT J AU Shahani, AJ Xiao, XH Voorhees, PW AF Shahani, Ashwin J. Xiao, Xianghui Voorhees, Peter W. TI The mechanism of eutectic growth in highly anisotropic materials SO NATURE COMMUNICATIONS LA English DT Article ID IN-SITU; AL-SI; GERMANIUM DENDRITES; CRYSTAL-GROWTH; SILICON; ALLOYS; MORPHOLOGY AB In the past 50 years, there has been increasing interest-both theoretically and experimentally-in the problem of pattern formation of a moving boundary, such as a solidification front. One example of pattern formation is that of irregular eutectic solidification, in which the solid-liquid interface is non-isothermal and the interphase spacing varies in ways that are poorly understood. Here, we identify the growth mode of irregular eutectics, using reconstructions from four-dimensional (that is, time and space resolved) X-ray microtomography. Our results show that the eutectic growth process can be markedly different from that seen in previously used model systems and theories based on the ex situ analysis of microstructure. In light of our experimental findings, we present a coherent growth model of irregular eutectic solidification. C1 [Shahani, Ashwin J.; Voorhees, Peter W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Xiao, Xianghui] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. RP Shahani, AJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM shahani@u.northwestern.edu FU Multidisciplinary University Research Initiative (MURI) [AFOSR FA9550-12-1-0458]; NSF [DGE-1324585]; DOE [DE-FG02-99ER45782]; Office of the Provost; Office for Research; Northwestern University Information Technology FX This work was supported by the Multidisciplinary University Research Initiative (MURI) under award AFOSR FA9550-12-1-0458. Additional support was provided for A.J.S. by NSF Graduate Research Fellowship under grant no. DGE-1324585. The sample preparation and data acquisition were supported by the DOE under contract no. DE-FG02-99ER45782. We thank J. Sundwall and T. Bui from the Northwestern University instrument shop for machining the Al-Ge samples and the B-N crucibles. We are also grateful for helpful discussions with K.A. Mohan, E.B. Gulsoy and S.O. Poulsen. This research utilized the Quest high-performance computing facility, which is jointly supported by the Office of the Provost, the Office for Research and Northwestern University Information Technology. NR 34 TC 0 Z9 0 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12953 DI 10.1038/ncomms12953 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY9HK UT WOS:000385444300005 PM 27671764 ER PT J AU Douglas, EA Mahony, P Starbuck, A Pomerene, A Trotter, DC DeRose, CT AF Douglas, E. A. Mahony, Patrick Starbuck, Andrew Pomerene, Andy Trotter, Douglas C. DeRose, Christopher T. TI Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides SO OPTICAL MATERIALS EXPRESS LA English DT Article ID SILICON-NITRIDE FILMS; REFRACTIVE-INDEX; HYDROGEN CONTENT; THIN-FILMS; SURFACE PASSIVATION; OPTICAL-PROPERTIES; PECVD; FABRICATION; DIELECTRICS; MECHANISM AB This work investigates the role of precursor gas chemistry, SiH4/NH3/N-2, on hydrogen incorporation into PECVD H: SiNx for optical applications. The largest reduction in of N-H bond density is shown to respond from SiH4 flow, indicating that all precursor gases must be optimized for low loss waveguides. A linear correlation of N-H bond density with propagation losses in SiNx waveguides is observed, allowing for a propagation loss to be estimated by N-H bond density without waveguide fabrication. With proper optimization of process parameters, we are able to obtain propagation losses as low as -1.6 dB/cm at 1550 nm without a thermal anneal. (C)2016 Optical Society of America C1 [Douglas, E. A.; Mahony, Patrick; Starbuck, Andrew; Pomerene, Andy; Trotter, Douglas C.; DeRose, Christopher T.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Douglas, EA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM edougla@sandia.gov FU Office of Naval Research; Air Force Research Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge funding from Dr. Peter Craig at the Office of Naval Research and Dr. Nicholas G. Usechak at Air Force Research Laboratory.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 24 TC 0 Z9 0 U1 2 U2 2 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD SEP 1 PY 2016 VL 6 IS 9 AR UNSP 267007 DI 10.1364/OME.6.002892 PG 12 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA DY8VE UT WOS:000385408800018 ER PT J AU Boedo, JA deGrassie, JS Grierson, B Stoltzfus-Dueck, T Battaglia, DJ Rudakov, DL Belli, EA Groebner, RJ Hollmann, E Lasnier, C Solomon, WM Unterberg, EA Watkins, J AF Boedo, J. A. deGrassie, J. S. Grierson, B. Stoltzfus-Dueck, T. Battaglia, D. J. Rudakov, D. L. Belli, E. A. Groebner, R. J. Hollmann, E. Lasnier, C. Solomon, W. M. Unterberg, E. A. Watkins, J. CA DIII-D Team TI Experimental evidence of edge intrinsic momentum source driven by kinetic ion loss and edge radial electric fields in tokamaks SO PHYSICS OF PLASMAS LA English DT Article ID TOROIDAL PLASMA ROTATION; SCRAPE-OFF-LAYER; ALCATOR C-MOD; OHMIC H-MODE; DIII-D; POWER THRESHOLD; TCV TOKAMAK; ICRF; FLOW; CONFINEMENT AB Bulk ion toroidal velocity profiles, V-parallel to(D+), peaking at 40-60 km/s are observed with Mach probes in a narrow edge region of DIII-D discharges without external momentum input. This intrinsic rotation can be well reproduced by a first principle, collisionless kinetic loss model of thermal ion loss that predicts the existence of a loss-cone distribution in velocity space resulting in a co-Ip directed velocity. We consider two kinetic models, one of which includes turbulence-enhanced momentum transport, as well as the Pfirsch-Schluter (P-S) fluid mechanism. We measure a fine structure of the boundary radial electric field, E-r, insofar ignored, featuring large (10-20 kV/m) positive peaks in the scrape off layer (SOL) at, or slightly inside, the last closed flux surface of these low power L- and H-mode discharges in DIII-D. The Er structure significantly affects the ion-loss model, extended to account for a non-uniform electric field. We also find that V-parallel to(D+) is reduced when the magnetic topology is changed from lower single null to upper single null. The kinetic ion loss model containing turbulence-enhanced momentum transport can explain the reduction, as we find that the potential fluctuations decay with radius, while we need to invoke a topology-enhanced collisionality on the simpler kinetic model. The P-S mechanism fails to reproduce the damping. We show a clear correlation between the near core V-parallel to(C6+) velocity and the peak edge V-parallel to(D+) in discharges with no external torque, further supporting the hypothesis that ion loss is the source for intrinsic torque in the present tokamaks. However, we also show that when external torque is injected in the core, it can complete with, and eventually overwhelm, the edge source, thus determining the near SOL flows. Finally, we show some additional evidence that the ion/electron distribution in the SOL is non-Maxwellian. Published by AIP Publishing. C1 [Boedo, J. A.; Rudakov, D. L.; Hollmann, E.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. [deGrassie, J. S.; Belli, E. A.; Groebner, R. J.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Grierson, B.; Stoltzfus-Dueck, T.; Battaglia, D. J.; Solomon, W. M.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Lasnier, C.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Unterberg, E. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Watkins, J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Boedo, JA (reprint author), Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA. EM boedo@fusion.gat.com OI deGrassie, John/0000-0002-6012-7404; Solomon, Wayne/0000-0002-0902-9876 FU U.S. Department of Energy [DE-FG02-07ER54917, DE-AC02-09CH11466, DE-FG02-95ER54309, DE-FC02-04ER54698, DE-AC04-94AL85000, DE-AC52-07NA27344]; Max-Planck/Princeton Center for Plasma Physics; [DE-AC05-00OR22725] FX This work was supported by the U.S. Department of Energy under DE-FG02-07ER54917, DE-AC02-09CH11466, DE-FG02-95ER54309, DE-FC02-04ER54698, DE-AC04-94AL85000, DE-AC52-07NA27344, the Max-Planck/Princeton Center for Plasma Physics and DE-AC05-00OR22725. The contribution of A. Polevoi and R. Pitts with ITER calculations is gratefully acknowledged. The technical contributions of L. Chousal and R. Hernandez are gratefully acknowledged. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP. NR 72 TC 0 Z9 0 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 092506 DI 10.1063/1.4962683 PG 13 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200039 ER PT J AU Cobble, JA Palaniyappan, S Johnson, RP Shimada, T Huang, C Gautier, DC Clark, DD Falk, K Jung, D AF Cobble, J. A. Palaniyappan, S. Johnson, R. P. Shimada, T. Huang, C. Gautier, D. C. Clark, D. D. Falk, K. Jung, D. TI Laser-driven micro-Coulomb charge movement and energy conversion to relativistic electrons SO PHYSICS OF PLASMAS LA English DT Article ID X-RAY APPLICATIONS; IGNITION; PLASMA; FUSION; GAIN; IONIZATION; TARGET AB Development of robust instrumentation has shown evidence for a multi-mu C expulsion of relativistic electrons from a sub-mu m-thick foil, laser illuminated with 60-70 J on target at 2 x 10 20 W/cm(2). From previous work and with electron spectroscopy, it is seen that an exponential electron energy distribution is accurate enough to calculate the emitted electron charge and energy content. The 5-10-mu C charge for the >100-TW Trident Laser represents the first active measurement of the >50% laser-light-to-electron conversion efficiency. By shorting out the TV/m electric field usually associated with accelerating multi-MeV ions from such targets, one finds that this charge is representative of a multi-MA current of relativistic electrons for diverse applications from electron fast ignition to advanced radiography concepts. Included with the details of the discoveries of this research, shortcomings of the diagnostics and means of improving their fidelity are discussed. Published by AIP Publishing. C1 [Cobble, J. A.; Palaniyappan, S.; Johnson, R. P.; Shimada, T.; Huang, C.; Gautier, D. C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Clark, D. D.] Sigma Labs Inc, Santa Fe, NM 87507 USA. [Falk, K.] ASCR, Inst Phys, Na Slovance 2, Prague 18221 8, Czech Republic. [Jung, D.] Queens Univ Belfast, Belfast BT7 1NN, Antrim, North Ireland. RP Cobble, JA (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RI Falk, Katerina/D-2369-2017; OI Falk, Katerina/0000-0001-5975-776X; Huang, Chengkun/0000-0002-3176-8042; Palaniyappan, sasi/0000-0001-6377-1206 FU United States Department of Energy [DE-AC52-06NA25396] FX We acknowledge the Trident Laser operators for their integrated efforts in providing quality laser shots. This work has been performed under the auspices of the United States Department of Energy, Contract No. DE-AC52-06NA25396. NR 45 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 093113 DI 10.1063/1.4962518 PG 12 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200075 ER PT J AU He, Y Sun, YJ Qin, H Liu, J AF He, Yang Sun, Yajuan Qin, Hong Liu, Jian TI Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations SO PHYSICS OF PLASMAS LA English DT Article ID ALGORITHMS; DYNAMICS AB In this paper, we study the Vlasov-Maxwell equations based on the Morrison-Marsden-Weinstein bracket. We develop Hamiltonian particle-in-cell methods for this system by employing finite element methods in space and splitting methods in time. In order to derive the semi-discrete system that possesses a discrete non-canonical Poisson structure, we present a criterion for choosing the appropriate finite element spaces. It is confirmed that some conforming elements, e.g., Nedelec's mixed elements, satisfy this requirement. When the Hamiltonian splitting method is used to discretize this semi-discrete system in time, the resulting algorithm is explicit and preserves the discrete Poisson structure. The structure-preserving nature of the algorithm ensures accuracy and fidelity of the numerical simulations over long time. Published by AIP Publishing. C1 [He, Yang] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China. [Sun, Yajuan] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, POB 2719, Beijing 100190, Peoples R China. [Sun, Yajuan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Qin, Hong; Liu, Jian] Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China. [Qin, Hong; Liu, Jian] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Liu, Jian] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. RP Qin, H (reprint author), Univ Sci & Technol China, Sch Nucl Sci & Technol, Hefei 230026, Anhui, Peoples R China.; Qin, H (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hongqin@ustc.edu.cn OI Liu, Jian/0000-0001-7484-401X FU ITER-China Program [2015GB111003, 2014GB124005]; JSPS-NRF-NSFC [NSFC-11261140328]; National Science Foundation of China [11271357, 11575186, 11575185, 11505185, 11505186]; Foundation for Innovative Research Groups of the NNSFC [11321061]; Geo-Algorithmic Plasma Simulator (GAPS) Project; U.S. Department of Energy [DEAC02-09CH11466] FX This research was supported by the ITER-China Program (2015GB111003, 2014GB124005), the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328), the National Science Foundation of China (11271357, 11575186, 11575185, 11505185, and 11505186), the Foundation for Innovative Research Groups of the NNSFC (11321061), the Geo-Algorithmic Plasma Simulator (GAPS) Project, and the U.S. Department of Energy (DEAC02-09CH11466). NR 31 TC 2 Z9 2 U1 10 U2 10 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 092108 DI 10.1063/1.4962573 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200013 ER PT J AU He, Y Sun, YJ Zhang, RL Wang, YL Liu, J Qin, H AF He, Yang Sun, Yajuan Zhang, Ruili Wang, Yulei Liu, Jian Qin, Hong TI High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields SO PHYSICS OF PLASMAS LA English DT Article ID DIFFERENTIAL-EQUATIONS; SYMPLECTIC INTEGRATORS; DYNAMICAL-SYSTEMS AB We construct high order symmetric volume-preserving methods for the relativistic dynamics of a charged particle by the splitting technique with processing. By expanding the phase space to include the time t, we give a more general construction of volume-preserving methods that can be applied to systems with time-dependent electromagnetic fields. The newly derived methods provide numerical solutions with good accuracy and conservative properties over long time of simulation. Furthermore, because of the use of an accuracy-enhancing processing technique, the explicit methods obtain high-order accuracy and are more efficient than the methods derived from standard compositions. The results are verified by the numerical experiments. Linear stability analysis of the methods shows that the high order processed method allows larger time step size in numerical integrations. Published by AIP Publishing. C1 [He, Yang] Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China. [Sun, Yajuan] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, POB 2719, Beijing 100190, Peoples R China. [Sun, Yajuan] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. [Zhang, Ruili; Wang, Yulei; Liu, Jian; Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Zhang, Ruili; Wang, Yulei; Liu, Jian; Qin, Hong] Univ Sci & Technol China, Collaborat Innovat Ctr Adv Fus Energy & Plasma Sc, Hefei 230026, Anhui, Peoples R China. [Zhang, Ruili; Wang, Yulei; Liu, Jian] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Qin, Hong] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP He, Y (reprint author), Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China. OI Liu, Jian/0000-0001-7484-401X; Wang, Yulei/0000-0001-9863-5917 FU ITER-China Program [2015GB111003, 2014GB124005]; JSPS-NRF-NSFC [NSFC-11261140328]; National Science Foundation of China [11271357, 11575186, 11575185, 11505185, 11505186]; Foundation for Innovative Research Groups of the NNSFC [11321061]; Fundamental Research Funds for the Central Universities [WK2030040057] FX This research was supported by the ITER-China Program (2015GB111003, 2014GB124005), the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328), the National Science Foundation of China (11271357, 11575186, 11575185, 11505185, and 11505186), the Foundation for Innovative Research Groups of the NNSFC (11321061), and the Fundamental Research Funds for the Central Universities (WK2030040057). NR 31 TC 1 Z9 1 U1 8 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 092109 DI 10.1063/1.4962677 PG 8 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200014 ER PT J AU Hirvijoki, E AF Hirvijoki, Eero TI Action principle for Coulomb collisions in plasmas SO PHYSICS OF PLASMAS LA English DT Article ID VLASOV EQUATION; VARIATIONAL INTEGRATORS AB An action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles. Published by AIP Publishing. C1 [Hirvijoki, Eero] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Hirvijoki, E (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ehirvijo@pppl.gov FU Department of Energy [DE-AC02-09CH11466] FX The author is grateful for comments from the anonymous referee's and for the discussions with Manasvi Lingam and Michael Kraus. This research was supported by the Department of Energy Contract No. DE-AC02-09CH11466. NR 19 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 094502 DI 10.1063/1.4962506 PG 4 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200116 ER PT J AU Hohenberger, M Shvydky, A Marozas, JA Fiksel, G Bonino, MJ Canning, D Collins, TJB Dorrer, C Kessler, TJ Kruschwitz, BE McKenty, PW Meyerhofer, DD Regan, SP Sangster, TC Zuegel, JD AF Hohenberger, M. Shvydky, A. Marozas, J. A. Fiksel, G. Bonino, M. J. Canning, D. Collins, T. J. B. Dorrer, C. Kessler, T. J. Kruschwitz, B. E. McKenty, P. W. Meyerhofer, D. D. Regan, S. P. Sangster, T. C. Zuegel, J. D. TI Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion SO PHYSICS OF PLASMAS LA English DT Article ID NATIONAL-IGNITION-FACILITY; PHASE PLATES; FUSION; PERFORMANCE; COMPRESSION; IMPLOSIONS; UNIFORMITY; IRRADIANCE; SYSTEM; LIGHT AB Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh-Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels by similar to 50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD. Published by AIP Publishing. C1 [Hohenberger, M.; Shvydky, A.; Marozas, J. A.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Zuegel, J. D.] Univ Rochester, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA. [Fiksel, G.] Univ Michigan, NERS, Ann Arbor, MI 48109 USA. [Meyerhofer, D. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meyerhofer, D. D.] Laser Energet Lab, Rochester, NY USA. RP Hohenberger, M (reprint author), Univ Rochester, Laser Energet Lab, 250 East River Rd, Rochester, NY 14623 USA. EM mhoh@lle.rochester.edu FU Department of Energy National Nuclear Security Administration [DE-NA0001944]; University of Rochester; New York State Energy Research and Development Authority FX This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. NR 31 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 092702 DI 10.1063/1.4962185 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200048 ER PT J AU Kemp, AJ Divol, L AF Kemp, A. J. Divol, L. TI What is the surface temperature of a solid irradiated by a Petawatt laser? SO PHYSICS OF PLASMAS LA English DT Article ID PLASMA; CONDUCTIVITY; ABSORPTION; SCATTERING; LIGHT AB When a solid target is irradiated by a Petawatt laser pulse, its surface is heated to tens of millions of degrees within a few femtoseconds, facilitating a diffusive heat wave and the acceleration of electrons to MeV energies into the target. Using numerically converged collisional particle-in-cell simulations, we observe a competition between two surface heating mechanisms-inverse bremsstrahlung in solid density on the one hand and electron scattering on turbulent electric fields on the other. Collisionless heating effectively dominates above the relativistic intensity threshold. Our numerical results show that a high-contrast 40 fs, f/5 laser pulse with 1 J energy will heat the skin layer to 5 keV, and the inside of the target over several microns deep to bulk temperatures in the range of 10-100 eV at solid density. Published by AIP Publishing. C1 [Kemp, A. J.; Divol, L.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Kemp, AJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM kemp7@llnl.gov FU Office of Science of the Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research used resources of the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract No. DE-AC05-00OR22725, and from the LLNL Institutional Computing Grand Challenge program. Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 27 TC 0 Z9 0 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 090703 DI 10.1063/1.4963334 PG 4 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200003 ER PT J AU Moradi, S del-Castillo-Negrete, D Anderson, J AF Moradi, Sara del-Castillo-Negrete, Diego Anderson, Johan TI Charged particle dynamics in the presence of non-Gaussian Levy electrostatic fluctuations SO PHYSICS OF PLASMAS LA English DT Article ID FRACTIONAL DYNAMICS; NONLOCAL TRANSPORT; PLASMA EDGE; TURBULENCE; DIFFUSION AB Full orbit dynamics of charged particles in a 3-dimensional helical magnetic field in the presence of alpha-stable Levy electrostatic fluctuations and linear friction modeling collisional Coulomb drag is studied via Monte Carlo numerical simulations. The Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space resulting from intermittent electrostatic turbulence. The probability distribution functions of energy, particle displacements, and Larmor radii are computed and showed to exhibit a transition from exponential decay, in the case of Gaussian fluctuations, to power law decay in the case of Levy fluctuations. The absolute value of the power law decay exponents is linearly proportional to the Levy index alpha. The observed anomalous non-Gaussian statistics of the particles' Larmor radii (resulting from outlier transport events) indicate that, when electrostatic turbulent fluctuations exhibit non-Gaussian Levy statistics, gyro-averaging and guiding centre approximations might face limitations and full particle orbit effects should be taken into account. Published by AIP Publishing. C1 [Moradi, Sara; Anderson, Johan] Univ Libre Bruxelles, Fluid & Plasma Dynam, B-1050 Brussels, Belgium. [del-Castillo-Negrete, Diego] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Anderson, Johan] Chalmers, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden. RP Moradi, S (reprint author), Univ Libre Bruxelles, Fluid & Plasma Dynam, B-1050 Brussels, Belgium. OI del-Castillo-Negrete, Diego/0000-0001-7183-801X; Moradi, Sara/0000-0002-0190-1412 FU Belgian Federal Science Policy Office; MSCA of the European Commission [246540]; Office of Fusion Energy Sciences of the U.S. Department of Energy at Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX S.M. has benefited from a mobility grant funded by the Belgian Federal Science Policy Office and the MSCA of the European Commission (FP7-PEOPLE-COFUND-2008 n 246540). D.d.C.N. acknowledges support from the Office of Fusion Energy Sciences of the U.S. Department of Energy at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 32 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 090704 DI 10.1063/1.4963394 PG 5 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200004 ER PT J AU Scullard, CR Belt, AP Fennell, SC Jankovic, MR Ng, N Serna, S Graziani, FR AF Scullard, Christian R. Belt, Andrew P. Fennell, Susan C. Jankovic, Marija R. Ng, Nathan Serna, Susana Graziani, Frank R. TI Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma SO PHYSICS OF PLASMAS LA English DT Article ID FOKKER-PLANCK EQUATION; CARRIER-CARRIER SCATTERING; THERMAL-CONDUCTIVITIES; KINETIC-EQUATIONS; IONIZED-GAS; COLLISIONS; SEMICONDUCTORS; IMPLICIT; SCHEME AB We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and kinetic energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation and a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomogeneity and velocity anisotropy. Published by AIP Publishing. C1 [Scullard, Christian R.; Graziani, Frank R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Belt, Andrew P.; Fennell, Susan C.; Jankovic, Marija R.; Ng, Nathan] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA. [Serna, Susana] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain. [Belt, Andrew P.] Univ Tennessee, Knoxville, TN 37996 USA. [Fennell, Susan C.] Univ Limerick, Limerick, Ireland. [Jankovic, Marija R.] Univ Belgrade, Studentski Trg 12, Belgrade 11000, Serbia. [Ng, Nathan] Univ Maryland, College Pk, MD 20742 USA. RP Scullard, CR (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM scullard1@llnl.gov FU National Science Foundation; Spanish MINECO [MTM2014-56218-C2-2-P]; U.S. Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We are grateful to David Michta for providing data for comparison with the Landau solution and to Lorin Benedict, Michael Murillo, Antoine Cerfon, and Cory Hauck for useful discussions. Part of this research was performed while the authors were visiting the Institute for Pure and Applied Mathematics (IPAM), which is supported by the National Science Foundation. Susana Serna was supported by Spanish MINECO Grant No. MTM2014-56218-C2-2-P. This work was performed under the auspices of the U.S. Department of Energy at the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 36 TC 0 Z9 0 U1 5 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD SEP PY 2016 VL 23 IS 9 AR 092119 DI 10.1063/1.4963254 PG 19 WC Physics, Fluids & Plasmas SC Physics GA DZ1WU UT WOS:000385633200024 ER PT J AU Walker, DA Breen, AL Druckenmiller, LA Wirth, LW Fisher, W Raynolds, MK Sibik, J Walker, MD Hennekens, S Boggs, K Boucher, T Buchhorn, M Bultmann, H Cooper, DJ Daniels, FJA Davidson, SJ Ebersole, JJ Elmendorf, SC Epstein, HE Gould, WA Hollister, RD Iversen, CM Jorgenson, MT Kade, A Lee, MT MacKenzie, WH Peet, RK Peirce, JL Schickhoff, U Sloan, VL Talbot, SS Tweedie, CE Villarreal, S Webber, PJ Zona, D AF Walker, Donald A. Breen, Amy L. Druckenmiller, Lisa A. Wirth, Lisa W. Fisher, Will Raynolds, Martha K. Sibik, Jozef Walker, Marilyn D. Hennekens, Stephan Boggs, Keith Boucher, Tina Buchhorn, Marcel Bueltmann, Helga Cooper, David J. Daniels, Fred J. A. Davidson, Scott J. Ebersole, James J. Elmendorf, Sara C. Epstein, Howard E. Gould, William A. Hollister, Robert D. Iversen, Colleen M. Jorgenson, M. Torre Kade, Anja Lee, Michael T. MacKenzie, William H. Peet, Robert K. Peirce, Jana L. Schickhoff, Udo Sloan, Victoria L. Talbot, Stephen S. Tweedie, Craig E. Villarreal, Sandra Webber, Patrick J. Zona, Donatella TI The Alaska Arctic Vegetation Archive (AVA-AK) SO PHYTOCOENOLOGIA LA English DT Article DE Circumpolar; cluster analysis; database; tundra; Turboveg; vegetation classification AB The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and provides access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. We present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis. C1 [Walker, Donald A.; Breen, Amy L.; Druckenmiller, Lisa A.; Raynolds, Martha K.; Buchhorn, Marcel; Kade, Anja; Peirce, Jana L.] Univ Alaska Fairbanks, Inst Arctic Biol, Alaska Geobot Ctr, Fairbanks, AK 99775 USA. [Breen, Amy L.] Univ Alaska, Int Arctic Res Ctr, Fairbanks, AK 99775 USA. [Wirth, Lisa W.; Fisher, Will] Univ Alaska Fairbanks, Inst Geophys, Geog Informat Network Alaska, Fairbanks, AK 99775 USA. [Sibik, Jozef] Slovak Acad Sci, Inst Bot, Dept Geobot, Dubravska Cesta 9, Bratislava 84523, Slovakia. [Walker, Marilyn D.] HOMER Energy, 1790 30th St Boulder, Boulder, CO 80301 USA. [Hennekens, Stephan] Alterra, Box 47, NL-6700 PB Wageningen, Netherlands. [Boggs, Keith; Boucher, Tina] Univ Alaska Anchorage, Alaska Ctr Conservat Sci, Alaska Nat Heritage Program, 3211 Providence Dr, Anchorage, AK 99508 USA. [Buchhorn, Marcel] Univ Alaska Fairbanks, Inst Geophys, HyLab, Fairbanks, AK 99775 USA. [Bueltmann, Helga] Univ Munster, Inst Plant Ecol, Schlosspl 8, D-48143 Munster, Germany. [Cooper, David J.] Colorado State Univ, Dept Forest & Rangeland Stewardship, Ft Collins, CO 80523 USA. [Davidson, Scott J.; Zona, Donatella] Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England. [Ebersole, James J.] Colorado Coll, Dept Biol, Colorado Springs, CO 80903 USA. [Elmendorf, Sara C.] NEON Inc, 1685 38th St, Boulder, CO 80301 USA. [Epstein, Howard E.] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA. [Gould, William A.] US Forest Serv, Int Inst Trop Forestry, Jardin Bot Sur, Rio Piedras, PR 00926 USA. [Hollister, Robert D.] Grand Valley State Univ, Dept Biol, Allendale, MI 49401 USA. [Iversen, Colleen M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Jorgenson, M. Torre] Alaska Ecosci, 2332 Cordes Way, Fairbanks, AK 99709 USA. [Lee, Michael T.; Peet, Robert K.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA. [MacKenzie, William H.] BC Minist Forests Lands & Nat Resources, Bag 6000, Smithers, BC, Canada. [Schickhoff, Udo] Univ Hamburg, Inst Geog, Bundesstr 55, D-20146 Hamburg, Germany. [Sloan, Victoria L.] Fac Engn, Queens Bldg, Clifton BS8 1TR, Avon, England. [Talbot, Stephen S.; Tweedie, Craig E.; Villarreal, Sandra] US Fish & Wildlife Serv, 1011 E Tudor Rd, Anchorage, AK 99503 USA. [Webber, Patrick J.] Univ Texas El Paso, Dept Biol Sci, Syst Ecol Lab, El Paso, TX 79902 USA. [Zona, Donatella] Michigan State Univ, Dept Plant Biol, Ann Arbor, MI 48824 USA. [Zona, Donatella] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. RP Walker, DA (reprint author), Univ Alaska Fairbanks, Inst Arctic Biol, Alaska Geobot Ctr, Fairbanks, AK 99775 USA.; Walker, DA (reprint author), Univ Alaska Fairbanks, Dept Biol & Wildlife, Fairbanks, AK 99775 USA. EM dawalker@alaska.edu; albreen@alaska.edu; ladruckenmiller@alaska.edu; lisa@gina.alaska.edu; will@alaska.edu; mkraynolds@alaska.edu; jozef.sibik@savba.sk; marilyn@homerenergy.com; stephan.hennekens@wur.nl; kwboggs@uaa.alaska.edu; tboucher@uaa.alaska.edu; mbuchhorn@alaska.edu; bultman@uni-muenster.de; David.Cooper@colostate.edu; daniels@uni-muenster.de; sjdavidsonl@sheffield.ac.uk; jebersole@ColoradoCollege.edu; selmendorf@neoninc.org; hee2b@virginia.edu; wgould@fs.fed.us; hollistr@gvsu.edu; ecoscience@alaska.net; ankade@alaska.edu; michael.lee@unc.edu; will.mackenzie@gov.bc.ca; peet@unc.edu; jlpeirce@alaska.edu; Udo.Schickhoff@t-online.de; v.l.sloan@bristol.ac.uk; stephen_talbot@fws.gov; ctweedie@utep.edu; svillarreal51@gmail.com; webber@msu.edu; D.zona@sheffield.ac.uk RI Zona, Donatella/G-4039-2010; OI Gould, William/0000-0002-3720-9735 FU NASA Arctic-Boreal Vulnerability Experiment (ABoVE) initiative [NNX13AM20G]; NASA Land Cover and Land-Use Change program [NNX14AD0G]; NSF Arctic Science Engineering and Education for Sustainability (ArcSEES) inititiative [1233854] FX Funding for the AVA-AK came from the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) initiative (Grant No. NNX13AM20G). The project was conceived and endorsed by the Flora Working Group of the Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council. Other funding came from the NASA Land Cover and Land-Use Change program (Award No. NNX14AD0G) and the NSF Arctic Science Engineering and Education for Sustainability (ArcSEES) inititiative (Award No. 1233854). NR 26 TC 0 Z9 0 U1 7 U2 7 PU GEBRUDER BORNTRAEGER PI STUTTGART PA JOHANNESSTR 3A, D-70176 STUTTGART, GERMANY SN 0340-269X J9 PHYTOCOENOLOGIA JI Phytocoenologia PD SEP PY 2016 VL 46 IS 2 BP 221 EP 229 DI 10.1127/phyto/2016/0128 PG 9 WC Plant Sciences; Ecology SC Plant Sciences; Environmental Sciences & Ecology GA DY7VO UT WOS:000385337600006 ER PT J AU Carrillo, LR Froehlich, JE Cruz, JA Savage, LJ Kramer, DM AF Carrillo, L. Ruby Froehlich, John E. Cruz, Jeffrey A. Savage, Linda J. Kramer, David M. TI Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance SO PLANT JOURNAL LA English DT Article DE ATP synthase; NADPH thioredoxin reductase C; photosynthesis; redox regulation; proton motive force; Arabidopsis thaliana ID PHOTOSYNTHETIC ELECTRON-TRANSPORT; COUPLING FACTOR REDUCTION; ADENINE-NUCLEOTIDE LEVELS; ARABIDOPSIS-THALIANA; STARCH SYNTHESIS; DELTA-PH; IN-VIVO; THIOL MODULATION; PHOTOSYSTEM-I; GAMMA-SUBUNIT AB The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the -subunit through the ferredoxin-thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild-type levels as irradiance was increased. This effect was caused by an altered redox state of the -subunit under low, but not high, light. The low light-specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non-photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin-thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions. Significance Statement ATP synthase acts as a key regulator of photosynthesis in response to light and electron flow. Whereas the canonical thioredoxin-based system of redox regulation of ATP synthase functions at higher light, we show here that NADPH thioredoxin reductase (NTRC) modulates ATP synthase under low and fluctuating light. C1 [Carrillo, L. Ruby; Froehlich, John E.; Kramer, David M.] Michigan State Univ, Biochem & Mol Biol, 612 Wilson Rd,Rm 106, E Lansing, MI 48824 USA. [Carrillo, L. Ruby; Froehlich, John E.; Cruz, Jeffrey A.; Savage, Linda J.; Kramer, David M.] Michigan State Univ, MSU DOE Plant Res Lab, 612 Wilson Rd,Rm 106, E Lansing, MI 48824 USA. RP Kramer, DM (reprint author), Michigan State Univ, Biochem & Mol Biol, 612 Wilson Rd,Rm 106, E Lansing, MI 48824 USA.; Kramer, DM (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, 612 Wilson Rd,Rm 106, E Lansing, MI 48824 USA. EM kramerd8@msu.edu FU US Department of Energy (DOE), Office of Science and Basic Energy Sciences (BES) [DE-FG02-91ER20021] FX The authors would like to thank Dr Nicholas Fisher for helpful discussions, and Dolores M. Alvarez for maintenance and technical assistance. This work was supported by the US Department of Energy (DOE), Office of Science, and Basic Energy Sciences (BES) under Award number DE-FG02-91ER20021, with additional support for phenotyping instrumentations and analyses provided by the MSU Center for Advanced Algal and Plant Phenotyping (CAAPP). NR 60 TC 3 Z9 3 U1 11 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD SEP PY 2016 VL 87 IS 6 BP 654 EP 663 DI 10.1111/tpj.13226 PG 10 WC Plant Sciences SC Plant Sciences GA DY8IK UT WOS:000385372900011 PM 27233821 ER PT J AU Policicchio, BB Xu, CL Brocca-Cofano, E Raehtz, KD He, TY Ma, DZ Li, H Sivanandham, R Haret-Richter, GS Dunsmore, T Trichel, A Mellors, JW Hahn, BH Shaw, GM Ribeiro, RM Pandrea, I Apetrei, C AF Policicchio, Benjamin B. Xu, Cuiling Brocca-Cofano, Egidio Raehtz, Kevin D. He, Tianyu Ma, Dongzhu Li, Hui Sivanandham, Ranjit Haret-Richter, George S. Dunsmore, Tammy Trichel, Anita Mellors, John W. Hahn, Beatrice H. Shaw, George M. Ribeiro, Ruy M. Pandrea, Ivona Apetrei, Cristian TI Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers SO PLOS PATHOGENS LA English DT Article ID CD4(+) T-CELLS; SUBEROYLANILIDE HYDROXAMIC ACID; HISTONE DEACETYLASE INHIBITORS; IMMUNODEFICIENCY-VIRUS TYPE-1; LATENT HIV-1 INFECTION; AFRICAN-GREEN MONKEYS; IN-VIVO; TREATMENT INTERRUPTION; VIRAL RESERVOIR; COMBINATION THERAPY AB Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the "shock and kill" strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to similar to 10(6) copies/mL was followed by a decline to <10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35-50 days, followed by in vivo experimental depletion of CD8(+) cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (similar to 10(4) copies/ml) peaking at 5-12 days post-treatment. CD8(+) cell depletion resulted in a more robust viral rebound (10(7) copies/ml) that was controlled upon CD8(+) T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8(+) cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus. C1 [Policicchio, Benjamin B.; Xu, Cuiling; Brocca-Cofano, Egidio; Raehtz, Kevin D.; He, Tianyu; Ma, Dongzhu; Sivanandham, Ranjit; Haret-Richter, George S.; Dunsmore, Tammy; Pandrea, Ivona; Apetrei, Cristian] Univ Pittsburgh, Ctr Vaccine Res, Pittsburgh, PA 15260 USA. [Policicchio, Benjamin B.; Pandrea, Ivona; Apetrei, Cristian] Univ Pittsburgh, Grad Sch Publ Hlth, Dept Infect Dis & Microbiol, Pittsburgh, PA 15261 USA. [Xu, Cuiling; Brocca-Cofano, Egidio; He, Tianyu; Sivanandham, Ranjit; Pandrea, Ivona] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA 15260 USA. [Raehtz, Kevin D.; Ma, Dongzhu; Apetrei, Cristian] Univ Pittsburgh, Sch Med, Dept Microbiol & Mol Genet, Pittsburgh, PA 15260 USA. [Li, Hui; Hahn, Beatrice H.; Shaw, George M.] Univ Penn, Dept Med, Perelman Sch Med, Philadelphia, PA 19104 USA. [Trichel, Anita] Univ Pittsburgh, Sch Med, Div Lab Anim Resources, Pittsburgh, PA 15260 USA. [Mellors, John W.] Univ Pittsburgh, Sch Med, Dept Med, Pittsburgh, PA 15213 USA. [Ribeiro, Ruy M.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RP Apetrei, C (reprint author), Univ Pittsburgh, Ctr Vaccine Res, Pittsburgh, PA 15260 USA.; Apetrei, C (reprint author), Univ Pittsburgh, Grad Sch Publ Hlth, Dept Infect Dis & Microbiol, Pittsburgh, PA 15261 USA.; Apetrei, C (reprint author), Univ Pittsburgh, Sch Med, Dept Microbiol & Mol Genet, Pittsburgh, PA 15260 USA. EM apetreic@pitt.edu OI Sivanandham, Ranjit/0000-0001-7431-8415; Ribeiro, Ruy/0000-0002-3988-8241 FU NIH/NIAID/NCRR/NHLBI [R01 AI119346, P01 AI088564, R01 RR025781, R01 AI104373, R01 HL117715] FX This research was funded through NIH/NIAID/NCRR/NHLBI grants R01 AI119346 (CA), P01 AI088564 (to CA, IP, GMS and BHH) R01 RR025781 (CA and IP), R01 AI104373 (RMR), and R01 HL117715 (IP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 115 TC 1 Z9 1 U1 1 U2 1 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD SEP PY 2016 VL 12 IS 9 AR e1005879 DI 10.1371/journal.ppat.1005879 PG 35 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA DZ1TB UT WOS:000385621900041 PM 27632364 ER PT J AU Ehlers, G Podlesnyak, AA Kolesnikov, AI AF Ehlers, G. Podlesnyak, A. A. Kolesnikov, A. I. TI The cold neutron chopper spectrometer at the Spallation Neutron Source-A review of the first 8 years of operation SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID HIGH-PRESSURE; PHONON-DISPERSION; SCATTERING; DYNAMICS; SUPERCONDUCTIVITY; EXCITATIONS; RIGIDITY; PROTEIN; WATER; HEMIMORPHITE AB The first eight years of operation of the Cold Neutron Chopper Spectrometer (CNCS) at the Spallation Neutron Source in Oak Ridge is being reviewed. The instrument has been part of the facility user program since 2009, and more than 250 individual user experiments have been performed to date. CNCS is an extremely powerful and versatile instrument and offers leading edge performance in terms of beam intensity, energy resolution, and flexibility to trade one for another. Experiments are being routinely performed with the sample at extreme conditions: T less than or similar to 0.05 K, p greater than or similar to 2 GPa, and B = 8 T can be achieved individually or in combination. In particular, CNCS is in a position to advance the state of the art with inelastic neutron scattering under pressure, and some of the recent accomplishments in this area will be presented in more detail. Published by AIP Publishing. C1 [Ehlers, G.; Podlesnyak, A. A.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Kolesnikov, A. I.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Ehlers, G (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RI Ehlers, Georg/B-5412-2008; Podlesnyak, Andrey/A-5593-2013; OI Ehlers, Georg/0000-0003-3513-508X; Podlesnyak, Andrey/0000-0001-9366-6319; Kolesnikov, Alexander/0000-0003-1940-4649 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX Research at ORNL's Spallation Neutron Source is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The authors would like to thank E. Iverson for help with the beam image and the technical staff at SNS, S. Elorfi, C. Fletcher, C. Redmon, for their support with sample environment equipment operation. Special thanks are due to H. Ambaye, E. Brophy, J. Carruth, M. Everett, L. Jones, J. Niedziela, and A. Parizzi for their help with the instrument operation.; This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 84 TC 1 Z9 1 U1 11 U2 11 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2016 VL 87 IS 9 AR 093902 DI 10.1063/1.4962024 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DZ1XF UT WOS:000385634500040 PM 27782573 ER PT J AU Essinger-Hileman, T Kusaka, A Appel, JW Choi, SK Crowley, K Ho, SP Jarosik, N Page, LA Parker, LP Raghunathan, S Simon, SM Staggs, ST Visnjic, K AF Essinger-Hileman, T. Kusaka, A. Appel, J. W. Choi, S. K. Crowley, K. Ho, S. P. Jarosik, N. Page, L. A. Parker, L. P. Raghunathan, S. Simon, S. M. Staggs, S. T. Visnjic, K. TI Systematic effects from an ambient-temperature, continuously rotating half-wave plate SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID MICROWAVE BACKGROUND POLARIZATION; ANGULAR SCALE; POLARIMETRY; PROBE AB We present an evaluation of systematic effects associated with a continuously rotating, ambient-temperature half-wave plate (HWP) based on two seasons of data from the Atacama B-Mode Search (ABS) experiment located in the Atacama Desert of Chile. The ABS experiment is a microwave telescope sensitive at 145 GHz. Here we present our in-field evaluation of celestial (Cosmic Microwave Background (CMB) plus galactic foreground) temperature-to-polarization leakage. We decompose the leakage into scalar, dipole, and quadrupole leakage terms. We report a scalar leakage of similar to 0.01%, consistent with model expectations and an order of magnitude smaller than other CMB experiments have been reported. No significant dipole or quadrupole terms are detected; we constrain each to be <0.07% (95% confidence), limited by statistical uncertainty in our measurement. Dipole and quadrupole leakage at this level lead to systematic error on r less than or similar to 0.01 before any mitigation due to scan cross-linking or boresight rotation. The measured scalar leakage and the theoretical level of dipole and quadrupole leakage produce systematic error of r < 0.001 for the ABS survey and focal-plane layout before any data correction such as so-called deprojection. This demonstrates that ABS achieves significant beam systematic error mitigation from its HWP and shows the promise of continuously rotating HWPs for future experiments. Published by AIP Publishing. C1 [Essinger-Hileman, T.; Kusaka, A.; Appel, J. W.; Choi, S. K.; Crowley, K.; Ho, S. P.; Jarosik, N.; Page, L. A.; Parker, L. P.; Simon, S. M.; Staggs, S. T.; Visnjic, K.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Essinger-Hileman, T.; Appel, J. W.; Parker, L. P.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Kusaka, A.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Raghunathan, S.] Univ Chile, Dept Astron, Santiago, Chile. [Raghunathan, S.] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia. RP Kusaka, A (reprint author), Princeton Univ, Dept Phys, Princeton, NJ 08544 USA.; Kusaka, A (reprint author), Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. EM akusaka@lbl.gov FU U.S. National Science Foundation [PHY-0355328, PHY-085587]; U.S. National Aeronautics and Space Administration (NASA) [NNX08AE03G]; Wilkinson Fund; NIST Innovations in Measurement Science program; U.S. Department of Energy, Office of Science, Office of High Energy Physics [DE-AC02-05CH11231]; Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); Canada Foundation of Innovation of Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; National Defense Science and Engineering Graduate Fellowship; National Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship; Dicke Fellowship; NASA Office of the Chief Technologist's Space Technology Research Fellowship; NASA Earth and Space Sciences Fellowship; CONICYT Ph.D. studentship; CONICYT Anillo project [ACT 1122]; Australian Research Council [DP150103208] FX Work at Princeton University is supported by the U.S. National Science Foundation through Award Nos. PHY-0355328 and PHY-085587, the U.S. National Aeronautics and Space Administration (NASA) through Award No. NNX08AE03G, the Wilkinson Fund, and the Mishrahi Gift. Work at NIST is supported by the NIST Innovations in Measurement Science program. Work at LBNL is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231. ABS operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). PWV measurements were provided by the Atacama Pathfinder Experiment (APEX). Some of the analyses were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the Canada Foundation of Innovation under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence, and the University of Toronto. We would like to acknowledge the following for their assistance in the instrument design, construction, operation, and data analysis: G. Atkinson, J. Beall, F. Beroz, S. M. Cho, B. Dix, T. Evans, J. Fowler, M. Halpern, B. Harrop, M. Hasselfield, J. Hubmayr, T. Marriage, J. McMahon, M. Niemack, S. Pufu, M. Uehara, and K. W. Yoon. We also thank the reviewers for several suggestions for improving the clarity of the paper. T. E.-H. was supported by a National Defense Science and Engineering Graduate Fellowship, as well as a National Science Foundation Astronomy and Astrophysics Postdoctoral Fellowship. A. K. acknowledges the Dicke Fellowship. S. M. S. and K.C. are supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship. L.P.P. acknowledges the NASA Earth and Space Sciences Fellowship. S.R. was supported by a CONICYT Ph.D. studentship. S.R. acknowledges partial support from CONICYT Anillo project (ACT 1122) and Australian Research Council's Discovery Projects scheme (DP150103208). NR 45 TC 3 Z9 3 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2016 VL 87 IS 9 AR 094503 DI 10.1063/1.4962023 PG 11 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DZ1XF UT WOS:000385634500048 PM 27782567 ER PT J AU Xin, T Brutus, JC Belomestnykh, SA Ben-Zvi, I Boulware, CH Grimm, TL Hayes, T Litvinenko, VN Mernick, K Narayan, G Orfin, P Pinayev, I Rao, T Severino, F Skaritka, J Smith, K Than, R Tuozzolo, J Wang, E Xiao, B Xie, H Zaltsman, A AF Xin, T. Brutus, J. C. Belomestnykh, Sergey A. Ben-Zvi, I. Boulware, C. H. Grimm, T. L. Hayes, T. Litvinenko, Vladimir N. Mernick, K. Narayan, G. Orfin, P. Pinayev, I. Rao, T. Severino, F. Skaritka, J. Smith, K. Than, R. Tuozzolo, J. Wang, E. Xiao, B. Xie, H. Zaltsman, A. TI Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons. (C) 2016 Author(s). C1 [Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Zaltsman, A.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Xin, T.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Litvinenko, Vladimir N.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Boulware, C. H.; Grimm, T. L.] Niowave Inc, Lansing, MI 48906 USA. [Xie, H.] Peking Univ, Beijing, Peoples R China. [Belomestnykh, Sergey A.] POB 500 MS 316, Batavia, IL 60510 USA. RP Belomestnykh, SA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Belomestnykh, SA (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA.; Belomestnykh, SA (reprint author), POB 500 MS 316, Batavia, IL 60510 USA. EM sbelomes@fnal.gov FU DOE Office of Nuclear Physics, Facilities and Project Management Division, "Research and Development for Next Generation Nuclear Physics Accelerator Facilities Program" FOA [DE-FOA-0000632]; National Science Foundation [PHY-1415252] FX The authors acknowledge financial support from the DOE Office of Nuclear Physics, Facilities and Project Management Division, "Research and Development for Next Generation Nuclear Physics Accelerator Facilities Program" FOA (No. DE-FOA-0000632) and from National Science Foundation (Award No. PHY-1415252). NR 25 TC 1 Z9 1 U1 6 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD SEP PY 2016 VL 87 IS 9 AR 093303 DI 10.1063/1.4962682 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DZ1XF UT WOS:000385634500019 PM 27782552 ER PT J AU Herrmann, DL Shuster, WD Mayer, AL Garmestani, AS AF Herrmann, Dustin L. Shuster, William D. Mayer, Audrey L. Garmestani, Ahjond S. TI Sustainability for Shrinking Cities SO SUSTAINABILITY LA English DT Editorial Material DE shrinking cities; panarchy; sustainable city; urban systems ID UNITED-STATES; CITY; PERSPECTIVES; URBANISM; SYSTEMS; SIZE AB Shrinking cities are widespread throughout the world despite the rapidly increasing global urban population. These cities are attempting to transition to sustainable trajectories to improve the health and well-being of urban residents, to build their capacity to adapt to changing conditions and to cope with major events. The dynamics of shrinking cities are different than the dynamics of growing cities, and therefore intentional research and planning around creating sustainable cities is needed for shrinking cities. We propose research that can be applied to shrinking cities by identifying parallel challenges in growing cities and translating urban research and planning that is specific to each city's dynamics. In addition, we offer applications of panarchy concepts to this problem. The contributions to this Special Issue take on this forward-looking planning task through drawing lessons for urban sustainability from shrinking cities, or translating general lessons from urban research to the context of shrinking cities. C1 [Herrmann, Dustin L.] US EPA, Oak Ridge Inst Sci & Educ, Res Participant Program, Cincinnati, OH 45268 USA. [Shuster, William D.; Garmestani, Ahjond S.] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. [Mayer, Audrey L.] Michigan Technol Univ, Dept Social Sci, Houghton, MI 49931 USA. [Mayer, Audrey L.] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. RP Herrmann, DL (reprint author), US EPA, Oak Ridge Inst Sci & Educ, Res Participant Program, Cincinnati, OH 45268 USA. EM herrmann.dustin@epa.gov; shuster.william@epa.gov; almayer@mtu.edu; garmestani.ahjond@epa.gov OI Herrmann, Dustin/0000-0002-4227-8196; Mayer, Audrey/0000-0003-3278-1182 FU Oak Ridge Institute for Science and Education through the US Department of Energy; US Environmental Protection Agency FX Partial support was provided to D.L. Herrmann through an appointment to the research participation program with the Oak Ridge Institute for Science and Education through the US Department of Energy and US Environmental Protection Agency. The views expressed in this article are strictly the opinions of the authors and in no manner represent or reflect current or planned policy by the US Environmental Protection Agency or other Federal agencies. NR 51 TC 0 Z9 0 U1 14 U2 14 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2071-1050 J9 SUSTAINABILITY-BASEL JI Sustainability PD SEP PY 2016 VL 8 IS 9 AR 911 DI 10.3390/su8090911 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Environmental Sciences; Environmental Studies SC Science & Technology - Other Topics; Environmental Sciences & Ecology GA DZ0LC UT WOS:000385529400083 ER PT J AU Wu, WZ Henao, CA Maravelias, CT AF Wu, WenZhao Henao, Carlos A. Maravelias, Christos T. TI A Superstructure Representation, Generation, and Modeling Framework for Chemical Process Synthesis SO AICHE JOURNAL LA English DT Article DE optimization; mixed-integer nonlinear programming ID PROCESS FLOWSHEET SUPERSTRUCTURES; INTEGER NONLINEAR PROGRAMS; GLOBAL OPTIMIZATION; DISTILLATION SEQUENCES; MINLP OPTIMIZATION; REACTOR NETWORKS; STRUCTURAL MULTIPLICITY; BOUND ALGORITHM; BRANCH; INTEGRATION AB We present a framework for the efficient representation, generation, and modeling of superstructures for process synthesis. First, we develop a new representation based on three basic elements: units, ports, and conditioning streams. Second, we present four rules based on "minimal" and "feasible" component sets for the generation of simple superstructures containing all feasible embedded processes. Third, in terms of modeling, we develop a modular approach, and formulate models for each basic element. We also present a canonical form of element models using input/output variables and constrained/free variables. The proposed methods provide a coherent framework for superstructure-based process synthesis, allowing efficient model generation and modification. (C) 2016 American Institute of Chemical Engineers C1 [Maravelias, Christos T.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Maravelias, CT (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM christos.maravelias@wisc.edu RI Maravelias, Christos/B-1376-2009 OI Maravelias, Christos/0000-0002-4929-1748 FU National Science Foundation through Emerging Frontiers in Research and Innovation program [EFRI-1240268]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494] FX This work was funded by National Science Foundation through the Emerging Frontiers in Research and Innovation program (EFRI-1240268), and the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 82 TC 4 Z9 4 U1 5 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0001-1541 EI 1547-5905 J9 AICHE J JI AICHE J. PD SEP PY 2016 VL 62 IS 9 BP 3199 EP 3214 DI 10.1002/aic.15300 PG 16 WC Engineering, Chemical SC Engineering GA DV5RV UT WOS:000382987000019 ER PT J AU Yang, YI Labbe, J Muchero, W Yang, XH Jawdy, SS Kennedy, M Johnson, J Sreedasyam, A Schmutz, J Tuskan, GA Chen, JG AF Yang, Yongil Labbe, Jessy Muchero, Wellington Yang, Xiaohan Jawdy, Sara S. Kennedy, Megan Johnson, Jenifer Sreedasyam, Avinash Schmutz, Jeremy Tuskan, Gerald A. Chen, Jin-Gui TI Genome-wide analysis of lectin receptor-like kinases in Populus SO BMC GENOMICS LA English DT Article DE Lectin domain; Lectin receptor-like kinase (LecRLK); Populus; Perennial woody plant; Receptor like-kinase (RLK); Transmembrane kinase ID PROTEIN FAMILIES DATABASE; SELF-INCOMPATIBILITY; PHYTOPHTHORA-RESISTANCE; EXTRACELLULAR DOMAIN; MOLECULAR-CLONING; PLANT RECEPTOR; GENE FAMILY; ARABIDOPSIS; BRASSICA; LOCUS AB Background: Receptor-like kinases (RLKs) belong to a large protein family with over 600 members in Arabidopsis and over 1000 in rice. Among RLKs, the lectin receptor-like kinases (LecRLKs) possess a characteristic extracellular carbohydrate-binding lectin domain and play important roles in plant development and innate immunity. There are 75 and 173 LecRLKs in Arabidopsis and rice, respectively. However, little is known about LecRLKs in perennial woody plants. Results: Here we report the genome-wide analysis of classification, domain architecture and expression of LecRLKs in the perennial woody model plant Populus. We found that the LecRLK family has expanded in Populus to a total of 231, including 180 G-type, 50 L-type and 1 C-type LecRLKs. Expansion of the Populus LecRLKs (PtLecRLKs) occurred partially through tandem duplication. Based on domain architecture and orientation features, we classified PtLecRLKs into eight different classes. RNA-seq-based transcriptomics analysis revealed diverse expression patterns of PtLecRLK genes among leaves, stems, roots, buds and reproductive tissues and organs. Conclusions: This study offers a comprehensive view of LecRLKs in the perennial woody model plant Populus and provides a foundation for functional characterization of this important family of receptor-like kinases. C1 [Yang, Yongil; Labbe, Jessy; Muchero, Wellington; Yang, Xiaohan; Jawdy, Sara S.; Tuskan, Gerald A.; Chen, Jin-Gui] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Kennedy, Megan; Johnson, Jenifer; Schmutz, Jeremy] Joint Genome Inst, US Dept Energy, Walnut Creek, CA 94598 USA. [Sreedasyam, Avinash; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. RP Chen, JG (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM chenj@ornl.gov RI Tuskan, Gerald/A-6225-2011; Labbe, Jessy/G-9532-2011; Yang, Xiaohan/A-6975-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Labbe, Jessy/0000-0003-0368-2054; Yang, Xiaohan/0000-0001-5207-4210; muchero, wellington/0000-0002-0200-9856 FU Plant-Microbe Interfaces Scientific Focus Area in the Genomic Science Program, the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science; U.S. Department of Energy [DE-AC05-00OR22725]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Plant-Microbe Interfaces Scientific Focus Area in the Genomic Science Program, the Office of Biological and Environmental Research in the U.S. Department of Energy Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. NR 46 TC 0 Z9 0 U1 11 U2 11 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD SEP 1 PY 2016 VL 17 AR 699 DI 10.1186/s12864-016-3026-2 PG 16 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA DW2JB UT WOS:000383467600001 PM 27580945 ER PT J AU Sridharan, DM Enerio, S Chen, J Narasimhan, R Wong, J Wang, C Pluth, JM AF Sridharan, D. M. Enerio, S. Chen, J. Narasimhan, R. Wong, J. Wang, C. Pluth, J. M. TI Age and Radiation-Quality Dependent Alterations in Protein Expression and Relationship to Genomic Instability and Stem Cell Changes. SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 47th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society CY SEP 24-28, 2016 CL Kansas City, MO SP Environm Mutagenesis & Genom Soc C1 [Sridharan, D. M.; Enerio, S.; Chen, J.; Narasimhan, R.; Wong, J.; Wang, C.; Pluth, J. M.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2016 VL 57 SU 1 MA XB-58 BP S62 EP S62 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA DW4BQ UT WOS:000383587400089 ER PT J AU Trego, KS Zhao, W Tsai, MS Sarker, AH Sung, P Cooper, PK AF Trego, K. S. Zhao, W. Tsai, M. S. Sarker, A. H. Sung, P. Cooper, P. K. TI Role of XPG in Genome Stability through Direct Interactions with BRCA1 and BRCA2 in Homologous Recombination. SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 47th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society CY SEP 24-28, 2016 CL Kansas City, MO SP Environm Mutagenesis & Genom Soc C1 [Trego, K. S.; Tsai, M. S.; Sarker, A. H.; Cooper, P. K.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Zhao, W.; Sung, P.] Yale Univ, Sch Med, New Haven, CT USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2016 VL 57 SU 1 MA S21 BP S44 EP S44 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA DW4BQ UT WOS:000383587400027 ER PT J AU Zavala, J Krug, JD Warren, SH Krantz, QT King, C Gavett, SH Lewandowski, M Lonneman, WA Kleindienst, TE Meier, M Higuchi, M Gilmour, MI DeMarini, DM AF Zavala, J. Krug, J. D. Warren, S. H. Krantz, Q. T. King, C. Gavett, S. H. Lewandowski, M. Lonneman, W. A. Kleindienst, T. E. Meier, M. Higuchi, M. Gilmour, M., I DeMarini, D. M. TI Two Simulated Urban Smog Atmospheres with Different Chemical Compositions Produce Similar Mutation Spectra and Mutagenic Potencies in Salmonella. SO ENVIRONMENTAL AND MOLECULAR MUTAGENESIS LA English DT Meeting Abstract CT 47th Annual Meeting of the Environmental-Mutagenesis-and-Genomics-Society CY SEP 24-28, 2016 CL Kansas City, MO SP Environm Mutagenesis & Genom Soc C1 [Zavala, J.] US EPA, ORISE, Res Triangle Pk, NC 27711 USA. [Krug, J. D.; Lewandowski, M.; Lonneman, W. A.; Kleindienst, T. E.] US EPA, NERL, Res Triangle Pk, NC 27711 USA. [Warren, S. H.; Krantz, Q. T.; King, C.; Gavett, S. H.; Higuchi, M.; Gilmour, M., I; DeMarini, D. M.] US EPA, NHEERL, Res Triangle Pk, NC 27711 USA. [Meier, M.] Carleton Univ, Dept Biol, Ottawa, ON, Canada. NR 0 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0893-6692 EI 1098-2280 J9 ENVIRON MOL MUTAGEN JI Environ. Mol. Mutagen. PD SEP PY 2016 VL 57 SU 1 MA XB-61 BP S76 EP S76 PG 1 WC Environmental Sciences; Genetics & Heredity; Toxicology SC Environmental Sciences & Ecology; Genetics & Heredity; Toxicology GA DW4BQ UT WOS:000383587400140 ER PT J AU Mezrag, C Moutarde, H Rodriguez-Quintero, J AF Mezrag, C. Moutarde, H. Rodriguez-Quintero, J. TI From Bethe-Salpeter Wave functions to Generalised Parton Distributions SO FEW-BODY SYSTEMS LA English DT Review ID VIRTUAL COMPTON-SCATTERING; TO-LEADING ORDER; HARD EXCLUSIVE ELECTROPRODUCTION; VECTOR-MESON ELECTROPRODUCTION; IMPACT PARAMETER SPACE; CHIRAL QUARK MODELS; PION FORM-FACTOR; QUANTUM CHROMODYNAMICS; EVOLUTION KERNELS; GLUON DISTRIBUTIONS AB We review recent works on the modelling of generalised parton distributions within the Dyson-Schwinger formalism. We highlight how covariant computations, using the impulse approximation, allows one to fulfil most of the theoretical constraints of the GPDs. Specific attention is brought to chiral properties and especially the so-called soft pion theorem, and its link with the Axial-Vector Ward-Takahashi identity. The limitation of the impulse approximation are also explained. Beyond impulse approximation computations are reviewed in the forward case. Finally, we stress the advantages of the overlap of lightcone wave functions, and possible ways to construct covariant GPD models within this framework, in a two-body approximation. C1 [Mezrag, C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Moutarde, H.] CEA Saclay, Irfu SPhN, F-91191 Gif Sur Yvette, France. [Rodriguez-Quintero, J.] Univ Huelva, Dept Fis Aplicada, Fac Ciencias Expt, Huelva 21071, Spain. RP Mezrag, C (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM cmezrag@anl.gov RI Rodriguez-Quintero, Jose/L-3229-2014 OI Rodriguez-Quintero, Jose/0000-0002-1651-5717 FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; Commissariat a l'Energie Atomique; [ANR-12-MONU-0008-01]; [FPA2014-53631-C2-2-P] FX The authors would like to thank L. Chang, C.D. Roberts, F. Sabatie, S.M. Schmidt and P. Tandy with whom parts of the results described here have been derived. They are also grateful to L. Chang, I. Cloet, M. Defurne, J-F. Mathiot, B. Pasquini, B. Pire, C.D. Roberts, F. Sabatie, L. Szymanowski, J. Wagner and S. Wallon for their valuable discussions and comments. The authors are also thankful for the chance to participate in the workshops "Non-Perturbative QCD 2012", Matalascanas, Spain, where this project originated, "Many Manifestations of Nonperturbative QCD under the Southern Cross", Ubatuba, Sao Paulo, where significant parts of this work were first presented and improvements discussed, as well as "Non-Pertubative QCD 2014", Punta Umbria, Spain, where the overlap representation project started being discussed. This work is partly supported by U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, by the Commissariat a l'Energie Atomique, the ANR-12-MONU-0008-01 "PARTONS" and the Spanish ministry Research Project FPA2014-53631-C2-2-P. NR 173 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD SEP PY 2016 VL 57 IS 9 BP 729 EP 772 DI 10.1007/s00601-016-1119-8 PG 44 WC Physics, Multidisciplinary SC Physics GA DY1VN UT WOS:000384882600001 ER PT J AU Papadimitriou, G AF Papadimitriou, G. TI Calculation of Expectation Values of Operators in the Complex Scaling Method SO FEW-BODY SYSTEMS LA English DT Article ID CONTINUUM LEVEL DENSITY; CHANNELS CALCULATIONS; RESONANT STATES; SCATTERING; ENERGY; ROTATION; SPECTRUM; MATRIX; GAMOW; POTENTIALS AB The complex scaling method (CSM) provides with a way to obtain resonance parameters of particle unstable states by rotating the coordinates and momenta of the original Hamiltonian. It is convenient to use an L-2 integrable basis to resolve the complex rotated or complex scaled Hamiltonian H-theta, with theta being the angle of rotation in the complex energy plane. Within the CSM, resonance and scattering solutions have fall-off asymptotics. One of the consequences is that, expectation values of operators in a resonance or scattering complex scaled solution are calculated by complex rotating the operators. In this work we are exploring applications of the CSM on calculations of expectation values of quantum mechanical operators by using the regularized backrotation technique and calculating hence the expectation value using the unrotated operator. The test cases involve a schematic two-body Gaussian model and also applications using realistic interactions. C1 [Papadimitriou, G.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. RP Papadimitriou, G (reprint author), Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. EM papadimitrio1@llnl.gov FU LLNL [DE-AC52-07NA27344]; U.S. Department of Energy, Office of Science, Office of Nuclear Physics [SCW0498-59806, DE-FG02-96ER40985]; US DOE [DESC0008485, DE-FG02- 87ER40371] FX This work was prepared by LLNL under Contract No. DE-AC52-07NA27344. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Work Proposal No. SCW0498-59806 and Award Number DE-FG02-96ER40985. This work was also supported in part by the US DOE under Grants No. DESC0008485 (SciDAC/NUCLEI) and DE-FG02- 87ER40371. We would like to thank A. T. Kruppa, W. Nazarewicz, M. Hjorth-Jensen, J. P. Vary and R. Lazauskas for discussions on the topic and also J. P. Vary for sharing his realistic NN interaction code. We would like to thank A. T. Kruppa who pointed out the posibility of using the Tikhonov method for the backrotation task and T. Vertse for his assistance with the code GAMOW. Part of this work originated and completed during the workshops "International Collaborations in Nuclear Theory: Theory for open-shell nuclei near the limits of stability" and "Computational Advances in Nuclear and Hadron Physics" that took place at Michigan State University and the Yukawa Institute for Theoretical Physics respectively. We would like to thank the organizers for the hospitality. NR 93 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0177-7963 EI 1432-5411 J9 FEW-BODY SYST JI Few-Body Syst. PD SEP PY 2016 VL 57 IS 9 BP 833 EP 849 DI 10.1007/s00601-016-1126-9 PG 17 WC Physics, Multidisciplinary SC Physics GA DY1VN UT WOS:000384882600006 ER PT J AU Rubin, BE Wetmore, KM Price, MN Diamond, S Shultzaberger, RK Welkie, DG Simkovsky, R Ota, M Lowe, LC Curtin, G Arkin, AP Deutschbauer, A Golden, SS AF Rubin, B. E. Wetmore, K. M. Price, M. N. Diamond, S. Shultzaberger, R. K. Welkie, D. G. Simkovsky, R. Ota, M. Lowe, L. C. Curtin, G. Arkin, A. P. Deutschbauer, A. Golden, S. S. TI Massive Mutant Screens to Develop a Photosynthetic Bioproduction Platform SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT LA English DT Meeting Abstract CT World Congress on In Vitro Biology CY JUN 11-15, 2016 CL San Diego, CA SP Soc In Vitro Biol, Japanese Tissue Culture Assoc, Japanese Assoc Anim Cell Technol C1 [Rubin, B. E.; Diamond, S.; Shultzaberger, R. K.; Welkie, D. G.; Simkovsky, R.; Ota, M.; Lowe, L. C.; Curtin, G.; Golden, S. S.] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA. [Wetmore, K. M.; Price, M. N.; Arkin, A. P.; Deutschbauer, A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM Benemeryrubin@gmail.com RI Diamond, Spencer/A-9122-2017 OI Diamond, Spencer/0000-0003-4131-341X NR 0 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1054-5476 EI 1475-2689 J9 IN VITRO CELL DEV-PL JI In Vitro Cell. Dev. Biol.-Plant PD SEP PY 2016 VL 52 IS 4 MA P-38 BP 441 EP 441 PG 1 WC Plant Sciences; Cell Biology; Developmental Biology SC Plant Sciences; Cell Biology; Developmental Biology GA DY5YG UT WOS:000385180100012 ER PT J AU Palla, KJ Yang, XH AF Palla, Kaitlin J. Yang, Xiaohan TI In Vitro Establishment and Micropropagation of Two Clusia Species SO IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT LA English DT Meeting Abstract CT World Congress on In Vitro Biology CY JUN 11-15, 2016 CL San Diego, CA SP Soc In Vitro Biol, Japanese Tissue Culture Assoc, Japanese Assoc Anim Cell Technol C1 [Palla, Kaitlin J.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. [Yang, Xiaohan] Oak Ridge Natl Lab, Knoxville, TN USA. EM kpalla@vols.utk.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1054-5476 EI 1475-2689 J9 IN VITRO CELL DEV-PL JI In Vitro Cell. Dev. Biol.-Plant PD SEP PY 2016 VL 52 IS 4 MA P-3027 BP 452 EP 453 PG 2 WC Plant Sciences; Cell Biology; Developmental Biology SC Plant Sciences; Cell Biology; Developmental Biology GA DY5YG UT WOS:000385180100041 ER PT J AU Veeramany, A Unwin, SD Coles, GA Dagle, JE Millard, DW Yao, J Glantz, CS Gourisetti, NG AF Veeramany, Arun Unwin, Stephen D. Coles, Garill A. Dagle, Jeffery E. Millard, David W. Yao, Juan Glantz, Cliff S. Gourisetti, N. G. TI Framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions SO INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION LA English DT Article DE Cyber; Cyclones; Earthquakes; Hurricanes; Power grids; Risk analysis; Terrorism; Risk management ID SYSTEM RELIABILITY EVALUATION; EXPERT JUDGMENT; PERFORMANCE; SIMULATION; TERRORISM; WEATHER AB Natural and man-made hazardous events resulting in loss of grid infrastructure assets challenge the security and resilience of the electric power grid. However, the planning and allocation of appropriate contingency resources for such events requires an understanding of their likelihood and the extent of their potential impact. Where these events are of low likelihood, a risk-informed perspective on planning can be difficult, as the statistical basis needed to directly estimate the probabilities and consequences of their occurrence does not exist. Because risk-informed decisions rely on such knowledge, a basis for modeling the risk associated with high-impact, low-frequency events (HILFs) is essential. Insights from such a model indicate where resources are most rationally and effectively expended. A risk-informed realization of designing and maintaining a grid resilient to HILFs will demand consideration of a spectrum of hazards/threats to infrastructure integrity, an understanding of their likelihoods of occurrence, treatment of the fragilities of critical assets to the stressors induced by such events, and through modeling grid network topology, the extent of damage associated with these scenarios. The model resulting from integration of these elements will allow sensitivity assessments based on optional risk management strategies, such as alternative pooling, staging and logistic strategies, and emergency contingency planning. This study is focused on the development of an end-to-end HILF risk-assessment framework. Such a framework is intended to provide the conceptual and overarching technical basis for the development of HILF risk models that can inform decision-makers across numerous stakeholder groups in directing resources optimally towards the management of risks to operational continuity. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Veeramany, Arun; Unwin, Stephen D.; Coles, Garill A.; Dagle, Jeffery E.; Millard, David W.; Yao, Juan; Glantz, Cliff S.; Gourisetti, N. G.] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. RP Veeramany, A (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. EM arun.veeramany@pnnl.gov FU U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability under the Contract DE-AC05-76RL01830. NR 64 TC 1 Z9 1 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2212-4209 J9 INT J DISAST RISK RE JI Int. J. Disaster Risk Reduct. PD SEP PY 2016 VL 18 BP 125 EP 137 DI 10.1016/j.ijdrr.2016.06.008 PG 13 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Water Resources SC Geology; Meteorology & Atmospheric Sciences; Water Resources GA DY1EK UT WOS:000384837500014 ER PT J AU Rencoret, J del Rio, JC Nierop, KGJ Gutierrez, A Ralph, J AF Rencoret, Jorge Carlos del Rio, Jose Nierop, Klaas G. J. Gutierrez, Ana Ralph, John TI Rapid Py-GC/MS assessment of the structural alterations of lignins in genetically modified plants SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article DE Pyrolysis; Lignin; Whole cell-walls; Transgenic plants; Woody; Non-woody ID O-METHYLTRANSFERASE ACTIVITY; PINUS-RADIATA; DOWN-REGULATION; ANALYTICAL PYROLYSIS; TRANSGENIC POPLARS; NATIVE LIGNIN; UNITS; LIGNIFICATION; ARABIDOPSIS; SUPPRESSION AB Genetic modifications for perturbing the lignin pathway in three different species of angiosperm plants, including non-woody (Arabidopsis and alfalfa) and woody (poplar) plants, were readily evaluated by analytical pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS). Pyrolysis showed that the composition of Arabidopsis plants was severely altered when the expression of the gene encoding the enzyme caffeic acid O-methyltransferase (COMT) was downregulated, resulting in a lignin largely enriched in guaiacyl (G) units (88%). Alfalfa plants in which lignin biosynthesis was modified by down-regulation of the p-coumarate 3-hydroxylase (OH) gene, showed extremely high proportions of p-hydroxyphenyl (H) units (71%) relative to the naturally prevailing guaiacyl (G) and syringyl (S) units. Finally, Py-GC/MS analyses indicated that overexpression in poplar of the gene that encodes the enzyme ferulate 5-hydroxylase (F5H) resulted in a lignin with a higher content of syringyl lignin units (88%) compared to the wild-type control (71%). In conclusion, Py-GC/MS is a useful and convenient tool for the rapid evaluation of compositional changes in lignin from genetically modified plants. (C) 2016 Elsevier B.V. All rights reserved. C1 [Rencoret, Jorge; Carlos del Rio, Jose; Gutierrez, Ana] CSIC, Inst Recursos Nat & Agrobiol Sevilla, Seville 41012, Spain. [Nierop, Klaas G. J.] Univ Utrecht, Fac Geosci, Dept Earth Sci Organ Geochem, NL-3584 CS Utrecht, Netherlands. [Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53726 USA. [Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biol Syst Engn, Madison, WI 53726 USA. [Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Rencoret, J (reprint author), CSIC, Inst Recursos Nat & Agrobiol Sevilla, Seville 41012, Spain. EM jrencoret@irnase.csic.es RI RENCORET, JORGE/E-1747-2013; OI RENCORET, JORGE/0000-0003-2728-7331; del Rio, Jose C./0000-0002-3040-6787 FU FEDER [CTQ2014-60764-JIN, AGL2014-53730-R]; CSIC [2014-40E-097]; EU-project INDOX [KBBE-2013-7-613549]; DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FCO2-07ER64494] FX This study has been funded by the Spanish projects CTQ2014-60764-JIN and AGL2014-53730-R (co-financed by FEDER funds), the CSIC project 2014-40E-097 and the EU-project INDOX (KBBE-2013-7-613549. John Ralph was funded through the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). We are grateful to various labs for samples that had been used in prior studies: WT alfalfa and C3H-downregulated transgenics [10] from R.A. Dixon, U. North Texas, USA; WT Arabidopsis and comt and comt C4H:F5H1 chs mutants from W. Boerjan, Ghent University, Belgium; and for WT and F5H-overexpressed high-S poplar [22] from S. Mansfield, UBC, Canada, and Clint Chapple, U. Purdue, USA. NR 45 TC 0 Z9 0 U1 12 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 EI 1873-250X J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD SEP PY 2016 VL 121 BP 155 EP 164 DI 10.1016/j.jaap.2016.07.016 PG 10 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA DY1JO UT WOS:000384851500018 ER PT J AU Travers, TS Harlow, L Rosas, IO Gochuico, BR Mikuls, TR Bhattacharya, SK Camacho, CJ Ascherman, DP AF Travers, Timothy S. Harlow, Lisa Rosas, Ivan O. Gochuico, Bernadette R. Mikuls, Ted R. Bhattacharya, Sanjoy K. Camacho, Carlos J. Ascherman, Dana P. TI Extensive Citrullination Promotes Immunogenicity of HSP90 through Protein Unfolding and Exposure of Cryptic Epitopes SO JOURNAL OF IMMUNOLOGY LA English DT Article ID INTERSTITIAL LUNG-DISEASE; MOLECULAR-DYNAMICS SIMULATIONS; PARTICLE MESH EWALD; RHEUMATOID-ARTHRITIS; PEPTIDE ANTIBODY; EXTRAARTICULAR MANIFESTATIONS; AUTOIMMUNITY; ASSOCIATION; MECHANISMS; MORTALITY AB Post-translational protein modifications such as citrullination have been linked to the breach of immune tolerance and clinical autoimmunity. Previous studies from our laboratory support this concept, demonstrating that autoantibodies targeting citrullinated isoforms of heat shock protein 90 (HSP90) are associated with rheumatoid arthritis complicated by interstitial lung disease. To further explore the relationship between citrullination and structural determinants of HSP90 immunogenicity, we employed a combination of ELISA-based epitope profiling, computational modeling, and mass-spectrometric sequencing of peptidylarginine deiminase (PAD)-modified protein. Remarkably, ELISAs involving selected citrullinated HSP90 beta/alpha peptides identified a key epitope corresponding to an internal Arg residue (R502 [HSP90 beta]/R510 [HSP90 alpha]) that is normally buried within the crystal structure of native/unmodified HSP90. In vitro time/dose-response experiments reveal an ordered pattern of PAD-mediated deimination events culminating in citrullination of R502/R510. Conventional as well as scaled molecular dynamics simulations further demonstrate that citrullination of selected Arg residues leads to progressive disruption of HSP90 tertiary structure, promoting exposure of R502/R510 to PAD modification and subsequent autoantibody binding. Consistent with this process, ELISAs incorporating variably deiminated HSP90 as substrate Ag indicate a direct relationship between the degree of citrullination and the level of ex vivo Ab recognition. Overall, these data support a novel structural paradigm whereby citrullination-induced shifts in protein structure generate cryptic epitopes capable of bypassing B cell tolerance in the appropriate genetic context. C1 [Travers, Timothy S.; Camacho, Carlos J.] Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Suite 3064,Biomed Sci Tower 3,3501 5th Ave, Pittsburgh, PA 15213 USA. [Harlow, Lisa; Ascherman, Dana P.] Univ Miami, Miller Sch Med, Dept Med, Div Rheumatol, Rosenstiel Med Sci Bldg 7152,1600 NW 10th Ave, Miami, FL 33136 USA. [Rosas, Ivan O.] Brigham & Womens Hosp, Dept Med, Div Pulm & Crit Care Med, 75 Francis St, Boston, MA 02115 USA. [Gochuico, Bernadette R.] NHGRI, Med Genet Branch, NIH, Bethesda, MD 20892 USA. [Mikuls, Ted R.] Univ Nebraska Med Ctr, Dept Med, Div Rheumatol, Omaha, NE 68198 USA. [Bhattacharya, Sanjoy K.] Univ Miami, Dept Ophthalmol, Miller Sch Med, Miami, FL 33136 USA. [Travers, Timothy S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. RP Camacho, CJ (reprint author), Univ Pittsburgh, Sch Med, Dept Computat & Syst Biol, Suite 3064,Biomed Sci Tower 3,3501 5th Ave, Pittsburgh, PA 15213 USA.; Ascherman, DP (reprint author), Univ Miami, Miller Sch Med, Dept Med, Div Rheumatol, Rosenstiel Med Sci Bldg 7152,1600 NW 10th Ave, Miami, FL 33136 USA. EM CCamacho@pitt.edu; DAscherman@med.miami.edu FU BLRD VA [I01 BX000788]; NIGMS NIH HHS [R01 GM097082] NR 58 TC 0 Z9 0 U1 3 U2 3 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 EI 1550-6606 J9 J IMMUNOL JI J. Immunol. PD SEP 1 PY 2016 VL 197 IS 5 BP 1926 EP 1936 DI 10.4049/jimmunol.1600162 PG 11 WC Immunology SC Immunology GA DY3OA UT WOS:000385002300040 PM 27448590 ER PT J AU Tchekhovskoy, A Bromberg, O AF Tchekhovskoy, Alexander Bromberg, Omer TI Three-dimensional relativistic MHD simulations of active galactic nuclei jets: magnetic kink instability and Fanaroff-Riley dichotomy SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE instabilities; magnetic fields; MHD; galaxies: active; galaxies: jets ID EXTRAGALACTIC RADIO-SOURCES; HUBBLE-SPACE-TELESCOPE; MAGNETOHYDRODYNAMIC SIMULATIONS; BLACK-HOLE; M87 JET; NUMERICAL SCHEME; HIGH-RESOLUTION; ABELL CLUSTERS; GALAXY 3C-31; DRIVEN JETS AB Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes that couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically hot plasma. Jets above the critical power stably escape the core and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations. C1 [Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Astron, Theoret Astrophys Ctr, 601 Campbell Hall, Berkeley, CA 94720 USA. [Tchekhovskoy, Alexander] Univ Calif Berkeley, Dept Phys, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Tchekhovskoy, Alexander] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Bromberg, Omer] Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. RP Tchekhovskoy, A (reprint author), Univ Calif Berkeley, Dept Astron, Theoret Astrophys Ctr, 601 Campbell Hall, Berkeley, CA 94720 USA.; Tchekhovskoy, A (reprint author), Univ Calif Berkeley, Dept Phys, Theoret Astrophys Ctr, Berkeley, CA 94720 USA.; Tchekhovskoy, A (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Bromberg, O (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. EM atchekho@berkeley.edu; omerb@astro.princeton.edu FU NASA through Einstein Postdoctoral Fellowship - Chandra X-ray Center [PF3-140115]; NASA [NAS8-03060]; NSF [TG-AST100040]; Lyman Spitzer Jr Fellowship - Department of Astrophysical Sciences at Princeton University; Max-Planck/Princeton Center for Plasma Physics FX We thank S. Phinney, R. Laing, S. Markoff, A. Konigl, D. Giannios, R. Barniol Duran, Ashley King, B. McNamara, M. Hardcastle, T. Piran, A. Spitkovsky and the anonymous referee for discussions and helpful comments. AT was supported by NASA through Einstein Postdoctoral Fellowship grant number PF3-140115 awarded by the Chandra X-ray Center, operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060, and NSF through an XSEDE computational time allocation TG-AST100040 on TACC Stampede, Maverick, and Ranch, and NICS Darter. The simulations presented in this work also used the Savio cluster provided by UCB. AT thanks Skyhouse for hospitality. OB was supported by the Lyman Spitzer Jr Fellowship, awarded by the Department of Astrophysical Sciences at Princeton University and the Max-Planck/Princeton Center for Plasma Physics. NR 57 TC 3 Z9 3 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2016 VL 461 IS 1 BP L46 EP L50 DI 10.1093/mnrasl/slw064 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9OE UT WOS:000383269900010 ER PT J AU Abouimrane, A Cui, YJ Chen, ZH Belharouak, I Yahia, HB Wu, HM Assary, R Curtiss, LA Amine, K AF Abouimrane, Ali Cui, Yanjie Chen, Zonghai Belharouak, Ilias Yahia, Hamdi B. Wu, Huiming Assary, Rajeev Curtiss, Larry A. Amine, Khalil TI Enabling high energy density Li-ion batteries through Li2O activation SO NANO ENERGY LA English DT Article DE Li2O activation; High energy composite cathode material; First cycle irreversibility ID SITU X-RAY; CATHODE MATERIAL; ANODE MATERIAL; LITHIUM; CAPACITY; MECHANISM; LI1.20MN0.54CO0.13NI0.13O2; PARTICIPATION; PERFORMANCE; ELECTRODES AB Lithium oxide (Li2O) is activated in the presence of a layered composite cathode material (HEM) significantly increasing the energy density of lithium-ion batteries. The degree of activation depends on the current rate, electrolyte salt, and anode type. In full-cell tests, the Li2O was used as a lithium source to counter the first-cycle irreversibility of high-capacity composite alloy anodes. When Li2O is mixed with HEM to serve as a cathode, the electrochemical performance was improved in a full cell having an SiO-SnCoC composite as an anode. The mechanism behind the Li2O activation could also explain the first charge plateau and the abnormal high capacity associated with these high energy cathode materials. Published by Elsevier Ltd. C1 [Abouimrane, Ali; Belharouak, Ilias; Yahia, Hamdi B.] Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, POB 5825, Doha, Qatar. [Abouimrane, Ali; Cui, Yanjie; Chen, Zonghai; Wu, Huiming; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Assary, Rajeev; Curtiss, Larry A.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM aabouimrance@qf.org.qa; amine@anl.gov FU US Department of Energy from Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy under contract DE-AC02-06CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy. We thank Dr. Ren for part of the high energy XRD data collection, and Polzin and Trask from Argonne Cell Fabrication Facility for providing LTO electrodes. NR 22 TC 2 Z9 2 U1 32 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD SEP PY 2016 VL 27 BP 196 EP 201 DI 10.1016/j.nanoen.2016.06.050 PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DY2GG UT WOS:000384910500023 ER PT J AU Casimir, A Zhang, HG Ogoke, O Amine, JC Lu, J Wu, G AF Casimir, Anix Zhang, Hanguang Ogoke, Ogechi Amine, Joseph C. Lu, Jun Wu, Gang TI Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation SO NANO ENERGY LA English DT Review DE Li-ion battery; Silicon anode; Nano structure; Binder; Carbon composite ID CARBON-COATED SILICON; HIGH-CAPACITY ANODES; GRAPHENE SHEETS; ENERGY-STORAGE; PROPYLENE CARBONATE; BINDER-FREE; ELECTROCHEMICAL PERFORMANCE; NANOSTRUCTURED SILICON; NEGATIVE ELECTRODES; SURFACE-CHEMISTRY AB Lithium-ion batteries are widely used throughout the world for portable electronic devices and mobile phones and show great potential for more demanding applications like electric vehicles. Unfortunately, lithium-ion batteries still lack the required level of energy storage to completely meet the demands of such applications as electric vehicles. Among advanced materials being studied, silicon nanoparticles have demonstrated great potential as an anode material to replace the commonly used graphite. Silicon has been shown to have a high theoretical gravimetric capacity, approximately 4200 mA h/g, compared to only 372 mA h/g for graphite. Though silicon nanoparticles have remarkably high capacity, they suffer from rapid degradation with each cycle due to electrode volume expansion of approximately 400% during lithiation, placing a large strain on the material. With each cycle that strain creates cracks in the electrode particles and causes them to break down into smaller particles, which create void spaces between the particles and lead to poor contact as reflected in poor conductivity. In this review, we discuss exciting new research on silicon-based anodes conducted during the past couple of years. Besides stressing the importance of well-designed nanostructures of Si, we focus on optimization of the Si electrode and resulting performance enhancement by properly selecting binders and synergistically integrating them with various carbon materials during electrode design and fabrication. Importantly, although each improvement strategy has its own advantage, appropriate combination of them will yield much higher anode performance. We summarize the core issues in developing the silicon anode and effective strategies in yielding more promising results. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Casimir, Anix; Zhang, Hanguang; Ogoke, Ogechi; Wu, Gang] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA. [Amine, Joseph C.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Wu, G (reprint author), SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM junlu@anl.gov; gangwu@buffalo.edu RI Wu, Gang/E-8536-2010 OI Wu, Gang/0000-0003-4956-5208 FU University at Buffalo; National Science Foundation [CBET-1511528]; U.S. Department of Energy from Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) [DE-AC0206CH11357] FX G. Wu. acknowledges the financial support from the start-up funds of University at Buffalo along with National Science Foundation (CBET-1511528). This work was also partially supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 from the Vehicle Technologies Office, Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE). NR 113 TC 5 Z9 5 U1 299 U2 299 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD SEP PY 2016 VL 27 BP 359 EP 376 DI 10.1016/j.nanoen.2016.07.023 PG 18 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DY2GG UT WOS:000384910500041 ER PT J AU Xia, WW Xu, F Zhu, CY Xin, HLL Xu, QY Sun, PP Sun, LT AF Xia, Weiwei Xu, Feng Zhu, Chongyang Xin, Huolin L. Xu, Qingyu Sun, Pingping Sun, Litao TI Probing microstructure and phase evolution of alpha-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy SO NANO ENERGY LA English DT Article DE Sodium-ion batteries; In situ TEM; MoO3; Sodiation/desodiation; Multi-step phase transformation ID BLACK PHOSPHORUS; LITHIUM BATTERY; ANODE MATERIAL; PERFORMANCE; NANOWIRES; LITHIATION; MECHANISM; SILICON; STORAGE; MOO3 AB The fundamental electrochemical reaction mechanisms and the phase transformation pathways of layer structured alpha-MoO3 nanobelt during the sodiation/desodiation process to date remain largely unknown. To observe the real-time sodiation/desodiaton behaviors of alpha-MoO3 during electrochemical cycling, we construct a MoO3 anode sodium-ion battery inside a transmission electron microscope (TEM). Utilizing in situ TEM and electron diffraction pattern (EDP) observation, alpha-MoO3 nanobelts are found to undergo a unique multi-step phase transformation. Upon the first sodiation, alpha-MoO3 nanobelts initially form amorphous NaxMoO3 phase and are subsequently sodiated into intermediate phase of crystalline NaMoO2, finally resulting in the crystallized Mo nanograins embedded within the Na2O matrix. During the first desodiation process, Mo nanograins are firstly re-oxidized into intermediate phase NaMoO2 that is further transformed into amorphous Na2MoO3, resulting in an irreversible phase transformation. Upon subsequent sodiation/desodiation cycles, however, a stable and reversible phase transformation between crystalline Mo and amorphous Na2MoO3 phases has been revealed. Our work provides an in-deepth understanding of the phase transformation pathways of alpha-MoO3 nanobelts upon electrochemical sodiation/desodiation processes, with the hope of assistance in designing sodium-ion batteries with enhanced performance. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xia, Weiwei; Xu, Feng; Zhu, Chongyang; Sun, Litao] Southeast Univ, SEU FEI Nanopico Ctr, Key Lab MEMS, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China. [Xin, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Xu, Qingyu; Sun, Pingping] Southeast Univ, Dept Phys, Key Lab MEMS, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China. [Sun, Litao] Joint Res Inst Southeast Univ & Monash Univ, Ctr Adv Mat & Mfg, Suzhou 215123, Peoples R China. RP Xu, F; Sun, LT (reprint author), Southeast Univ, SEU FEI Nanopico Ctr, Key Lab MEMS, Minist Educ, Nanjing 210096, Jiangsu, Peoples R China.; Xin, HLL (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM fxu@scu.edu.cn; hxin@bnl.gov; slt@seu.edu.cn FU National Basic Research Program of China (973 Program) [2015CB352106]; National Natural Science Foundation of China (NSFC) [61574034, 51372039]; Science and Technology Support Program of Jiangsu Province [BK20141118]; China Postdoctoral Science Foundation [2014M550259, 2015T80480]; Center for Functional Nanomaterials, U.S. DOE Office of Science Facility at Brookhaven National Laboratory [DE-SC00127041] FX F. Xu thanks Lijun Wu from Brookhaven National Laboratory for his help in confirming the crystal structure. This work was supported by the National Basic Research Program of China (973 Program, Grant no. 2015CB352106), the National Natural Science Foundation of China (NSFC, Grant nos. 61574034, 51372039), the Science and Technology Support Program of Jiangsu Province (Grant no. BK20141118), China Postdoctoral Science Foundation Funded Project (Grant nos. 2014M550259 and 2015T80480). Huolin L. Xin. is supported by the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract no. DE-SC00127041. NR 32 TC 1 Z9 2 U1 77 U2 77 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD SEP PY 2016 VL 27 BP 447 EP 456 DI 10.1016/j.nanoen.2016.07.017 PG 10 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DY2GG UT WOS:000384910500049 ER PT J AU Liang, J Xi, K Tan, GQ Chen, S Zhao, T Coxon, PR Kim, HK Ding, SJ Yang, Y Kumar, RV Lu, J AF Liang, Jin Xi, Kai Tan, Guoqiang Chen, Sheng Zhao, Teng Coxon, Paul R. Kim, Hyun-Kyung Ding, Shujiang Yang, Yuan Kumar, R. Vasant Lu, Jun TI Sea urchin-like NiCoO2@C nanocomposites for Li-ion batteries and supercapacitors SO NANO ENERGY LA English DT Article DE NiCoO2; Hollow concave carbon; Electrochemistry; Lithium ion battery; Supercapacitor ID HIGH-PERFORMANCE SUPERCAPACITORS; REVERSIBLE LITHIUM STORAGE; ATOMIC LAYER DEPOSITION; NICKEL COBALTITE; CARBON NANOTUBES; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; HALLOYSITE NANOTUBES; GRAPHENE NANOSHEETS; HOLLOW PARTICLES AB The rational construction of battery electrode architecture that offers both high energy and power densities on a gravimetric and volumetric basis is a critical concern but achieving this aim is beset by many fundamental and practical challenges. Here we report a new sea urchin-like NiCoO2@C composite electrode architecture composed of NiCoO2 nanosheets grown on hollow concave carbon disks. Such a unique structural design not only preserves all the advantages of hollow structures but also increases the packing density of the active materials. NiCoO2 nanosheets grown on carbon disks promote a high utilization of active materials in redox reactions by reducing the path length for ions and for electron transfer. Meanwhile, the hollow concave carbon not only reduces the volume change, but also improves the volumetric energy density of the entire composite electrode. As a result, the nanocomposites exhibit superior electrochemical performance measured in terms of high capacity/capacitance, stable cycling performance and good rate capability in both Li-ion battery and supercapacitor applications. Such nanostructured composite electrode may also have great potential for application in other electrochemical devices. (C) 2016 Published by Elsevier Ltd. C1 [Liang, Jin; Chen, Sheng; Ding, Shujiang] Xi An Jiao Tong Univ, Sch Sci, Dept Appl Chem, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Xi, Kai; Zhao, Teng; Coxon, Paul R.; Kim, Hyun-Kyung; Kumar, R. Vasant] Univ Cambridge, Dept Mat Sci & Met, Cambridge CB3 0FS, England. [Tan, Guoqiang; Lu, Jun] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Yang, Yuan] Columbia Univ, Dept Appl Phys & Appl Math, Mat Sci & Engn, New York, NY 10027 USA. RP Ding, SJ (reprint author), Xi An Jiao Tong Univ, Sch Sci, Dept Appl Chem, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China.; Lu, J (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM dingsj@mail.xjtu.edu.cn; junlu@anl.gov FU National Natural Science Foundation of China [51273158, 21303131]; Natural Science Basis Research Plan in Shaanxi Province of China [2012JQ6003]; Program for New Century Excellent Talents in University [NCET-13-0449]; U.S. Department of Energy [DE-AC0206CH11357]; Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) FX This work was supported by the National Natural Science Foundation of China (No. 51273158 and 21303131), Natural Science Basis Research Plan in Shaanxi Province of China (No. 2012JQ6003), and Program for New Century Excellent Talents in University (NCET-13-0449). This work was also supported by the U.S. Department of Energy under Contract DE-AC0206CH11357 with the support provided by the Vehicle Technologies Office, Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE). NR 56 TC 1 Z9 1 U1 118 U2 118 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD SEP PY 2016 VL 27 BP 457 EP 465 DI 10.1016/j.nanoen.2016.06.032 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DY2GG UT WOS:000384910500050 ER PT J AU Liu, SF Xiao, WP Wang, J Zhu, J Wu, ZX Xin, HL Wang, DL AF Liu, Sufen Xiao, Weiping Wang, Jie Zhu, Jing Wu, Zexing Xin, Huolin Wang, Deli TI Ultralow content of Pt on Pd-Co-CuiC ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction SO NANO ENERGY LA English DT Article DE Fuel cells; Oxygen reduction reaction; Pd6CoCu/C nanoparticles; Electrocatalysis; Core-shell; Pt monolayer ID EFFICIENT CATALYSTS; SHELL NANOPARTICLES; FUEL-CELLS; MONOLAYER; STABILITY; PLATINUM; DECORATION; ALLOYS AB Optimizing the utilization of Pt to catalyze the sluggish kinetics of the oxygen reduction reaction (ORR) is of vital importance in proton exchange membrane fuel cells. One of the strategies is to spread Pt atoms over the surface of a substrate to increase the surface area. Here we report a facile method to synthesize Pd6CoCu@Pt/C core-shell nanoparticles with an ultralow amount of Pt. It was found that Pt-coated layer on Pd6CoCu cores plays a vital role in enhancing the ORR activity and the cycling stability. The half-wave potential of Pd6CoCu@Pt/C positively shifts about 50 mV and 17 mV relative to (PdCoCu)-Co-6/C and Pt/C, respectively. The Pt mass activity on Pd6CoCu@Pt/C was calculated to be about 27 times higher than that on Pt/C catalysts at 0.9 V. Moreover, the Pd6CoCu@Pt/C nanoparticles exhibit superior stability with almost no decay for the ORR polarization curves during 10,000 potential cycles and the core-shell structure remains with only a slight increase in the thickness of the Pt overlayer. These findings provide a methodology for synthesizing highly efficient catalytic materials for the cathodic application in fuel cells. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Liu, Sufen; Xiao, Weiping; Wang, Jie; Zhu, Jing; Wu, Zexing; Wang, Deli] Huazhong Univ Sci & Technol, Hubei Key Lab Mat Chem & Serv Failure, Key Lab Mat Chem Energy Convers & Storage, Sch Chem & Chem Engn,Minist Educ, Wuhan 430074, Peoples R China. [Xin, Huolin] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Wang, DL (reprint author), Huazhong Univ Sci & Technol, Hubei Key Lab Mat Chem & Serv Failure, Key Lab Mat Chem Energy Convers & Storage, Sch Chem & Chem Engn,Minist Educ, Wuhan 430074, Peoples R China. RI Wang, Jie/H-3638-2015; Wang, Deli/K-5029-2012 OI Wang, Jie/0000-0002-7188-3053; FU National Natural Science Foundation [21306060, 21573083]; Program for New Century Excellent Talents in Universities of China [NCET-13-0237]; Doctoral Fund of Ministry of Education of China [20130142120039]; Fundamental Research Funds for the Central University [2013TS136, 2014YQ009]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This work was supported by the National Natural Science Foundation (21306060, 21573083), the Program for New Century Excellent Talents in Universities of China (NCET-13-0237), the Doctoral Fund of Ministry of Education of China (20130142120039), the Fundamental Research Funds for the Central University (2013TS136, 2014YQ009). We thank Analytical and Testing Center of Huazhong University of Science and Technology for allowing us to use its facilities. S/TEM work was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 28 TC 0 Z9 0 U1 39 U2 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD SEP PY 2016 VL 27 BP 475 EP 481 DI 10.1016/j.nanoen.2016.07.038 PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DY2GG UT WOS:000384910500052 ER PT J AU Li, XL Yan, PF Engelhard, MH Crawford, AJ Viswanathan, VV Wang, CM Liu, J Sprenkle, VL AF Li, Xiaolin Yan, Pengfei Engelhard, Mark H. Crawford, Alasdair J. Viswanathan, Vilayanur V. Wang, Chongmin Liu, Jun Sprenkle, Vincent L. TI The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries SO NANO ENERGY LA English DT Article DE Na-ion battery full cell; Long cycle stability; Solid electrolyte interphase ID HIGH-CAPACITY; CATHODE MATERIAL; ENERGY-STORAGE; NEGATIVE ELECTRODE; RATE CAPABILITY; DENSITY SODIUM; ANODE MATERIAL; LOW-COST; INSERTION; LI AB Na-ion battery, as an alternative high-efficiency and low-cost energy storage device to Li-ion battery, has attracted wide interest for electrical grid and vehicle applications. However, demonstration of a full-cell battery with high energy and long cycle life remains a significant challenge. Here, we investigated the role of solid electrolyte interphase (SEI) formation on both cathodes and anodes and revealed a potential way to achieve long-term stability for Na-ion battery full-cells. Pre-cycling of cathodes and anodes leads to preformation of SEI, and hence mitigates the consumption of Na ions in full-cells. The example full-cell of Na0.44MnO2-hard carbon with pre-cycled and capacity-matched electrodes can deliver a specific capacity of 116 mAh/g based on Na0.44MnO2 at 1 C rate (1 C=120 mA/g). The corresponding specific energy is 313 Wh/kg based on the cathode. Excellent cycling stability with similar to 77% capacity retention over 2000 cycles was demonstrated at 2 C rate. Our work represents a leap forward in Na-ion battery development. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Xiaolin; Crawford, Alasdair J.; Viswanathan, Vilayanur V.; Liu, Jun; Sprenkle, Vincent L.] Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. [Yan, Pengfei; Engelhard, Mark H.; Wang, Chongmin] Pacific Northwest Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Li, XL (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. EM xiaolin.li@pnnl.gov RI yan, pengfei/E-4784-2016 OI yan, pengfei/0000-0001-6387-7502 FU U.S. Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability [57558]; DOE Office of Biological and Environmental Research FX The authors would like to acknowledge financial support from the U.S. Department of Energy's (DOE's) Office of Electricity Delivery & Energy Reliability (under Contract No. 57558). A portion of the research was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 56 TC 1 Z9 1 U1 51 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD SEP PY 2016 VL 27 BP 664 EP 672 DI 10.1016/j.nanoen.2016.07.030 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DY2GG UT WOS:000384910500074 ER PT J AU Farhan, A Scholl, A Petersen, CF Anghinolfi, L Wuth, C Dhuey, S Chopdekar, RV Mellado, P Alava, MJ van Dijken, S AF Farhan, Alan Scholl, Andreas Petersen, Charlotte F. Anghinolfi, Luca Wuth, Clemens Dhuey, Scott Chopdekar, Rajesh V. Mellado, Paula Alava, Mikko J. van Dijken, Sebastiaan TI Thermodynamics of emergent magnetic charge screening in artificial spin ice SO NATURE COMMUNICATIONS LA English DT Article ID LIQUIDS; SYSTEMS; RULE AB Electric charge screening is a fundamental principle governing the behaviour in a variety of systems in nature. Through reconfiguration of the local environment, the Coulomb attraction between electric charges is decreased, leading, for example, to the creation of polaron states in solids or hydration shells around proteins in water. Here, we directly visualize the real-time creation and decay of screened magnetic charge configurations in a two-dimensional artificial spin ice system, the dipolar dice lattice. By comparing the temperature dependent occurrence of screened and unscreened emergent magnetic charge defects, we determine that screened magnetic charges are indeed a result of local energy reduction and appear as a transient minimum energy state before the system relaxes towards the predicted ground state. These results highlight the important role of emergent magnetic charges in artificial spin ice, giving rise to screened charge excitations and the emergence of exotic low-temperature configurations. C1 [Farhan, Alan; Scholl, Andreas; Wuth, Clemens] Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Farhan, Alan; van Dijken, Sebastiaan] Aalto Univ Sch Sci, Dept Appl Phys, NanoSpin, POB 15100, FI-00076 Aalto, Finland. [Petersen, Charlotte F.; Alava, Mikko J.] Aalto Univ, Dept Appl Phys, COMP Ctr Excellence, POB 11100, FI-00076 Espoo, Finland. [Anghinolfi, Luca] Univ Genoa, Dipartimento Fis, Via Dodecaneso 33, I-16146 Genoa, Italy. [Wuth, Clemens] Daegu Gyeongbuk Inst Sci & Technol, Dept Emerging Mat Sci, Daegu 711873, South Korea. [Dhuey, Scott] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Chopdekar, Rajesh V.] Univ Calif Davis, Dept Mat Sci & Engn, Davis, CA 95616 USA. [Mellado, Paula] Adolfo Ibanez Univ, Sch Sci & Engn, Santiago 2640, Chile. RP Farhan, A; Scholl, A (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA.; Farhan, A; van Dijken, S (reprint author), Aalto Univ Sch Sci, Dept Appl Phys, NanoSpin, POB 15100, FI-00076 Aalto, Finland. EM afarhan@lbl.gov; a_scholl@lbl.gov; sebastiaan.van.dijken@aalto.fi RI Alava, Mikko/G-2202-2013; van Dijken, Sebastiaan/E-8326-2012; OI Alava, Mikko/0000-0001-9249-5079; van Dijken, Sebastiaan/0000-0001-6372-2252; Farhan, Alan/0000-0002-2384-2249; Chopdekar, Rajesh/0000-0001-6727-6501 FU U.S. Department of Energy [DE-AC02-05CH11231]; Academy of Finland through its Centres of Excellence Programme [251748]; FiDiPro program [13282993]; Swiss National Science Foundation FX We would like to thank Laura J. Heyderman and Frithjof Nolting for their support. This project was funded by the Swiss National Science Foundation and part of this work was performed at the ALS, Lawrence Berkeley National Laboratory, 94720 Berkeley, USA. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. C.F.P. and M.J.A. are supported by the Academy of Finland through its Centres of Excellence Programme (2012-2017) under project no. 251748 and the FiDiPro program, project 13282993. They acknowledge the computational resources provided by the Aalto University School of Science 'Science-IT' project. NR 30 TC 1 Z9 1 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12635 DI 10.1038/ncomms12635 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY3CS UT WOS:000384969000001 PM 27581972 ER PT J AU Fierce, L Bond, TC Bauer, SE Mena, F Riemer, N AF Fierce, Laura Bond, Tami C. Bauer, Susanne E. Mena, Francisco Riemer, Nicole TI Black carbon absorption at the global scale is affected by particle-scale diversity in composition SO NATURE COMMUNICATIONS LA English DT Article ID MIXING STATE; SIZE DISTRIBUTIONS; OPTICAL-PROPERTIES; LIGHT-ABSORPTION; BROWN CARBON; AEROSOL; SOOT; MODEL; CLIMATE; AMPLIFICATION AB Atmospheric black carbon (BC) exerts a strong, but uncertain, warming effect on the climate. BC that is coated with non-absorbing material absorbs more strongly than the same amount of BC in an uncoated particle, but the magnitude of this absorption enhancement (E-abs) is not well constrained. Modelling studies and laboratory measurements have found stronger absorption enhancement than has been observed in the atmosphere. Here, using a particle-resolved aerosol model to simulate diverse BC populations, we show that absorption is overestimated by as much as a factor of two if diversity is neglected and population-averaged composition is assumed across all BC-containing particles. If, instead, composition diversity is resolved, we find E-abs=1-1.5 at low relative humidity, consistent with ambient observations. This study offers not only an explanation for the discrepancy between modelled and observed absorption enhancement, but also demonstrates how particle-scale simulations can be used to develop relationships for global-scale models. C1 [Fierce, Laura] Brookhaven Natl Lab, Dept Environm & Climate Sci, Upton, NY 11973 USA. [Fierce, Laura] Univ Corp Atmospheric Res, Visiting Scientists Program, Boulder, CO 80307 USA. [Bond, Tami C.; Mena, Francisco] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Bauer, Susanne E.] NASA, Goddard Inst Space Studies, New York, NY 10025 USA. [Bauer, Susanne E.] Columbia Univ, Earth Inst, New York, NY 10025 USA. [Riemer, Nicole] Univ Illinois, Dept Atmospher Sci, Urbana, IL 61801 USA. RP Fierce, L (reprint author), Brookhaven Natl Lab, Dept Environm & Climate Sci, Upton, NY 11973 USA.; Fierce, L (reprint author), Univ Corp Atmospheric Res, Visiting Scientists Program, Boulder, CO 80307 USA. EM lfierce@bnl.gov FU US Environmental Protection Agency [R83504201]; NASA [NNX09AK66G]; Department of Energy [DE-FG02-08ER64533]; Fulbright-Chile CONICYT fellowship; NOAA Climate & Global Change Postdoctoral Fellowship through the University Corporation for Atmospheric Research Visiting Scientists Program FX This work was supported by the US Environmental Protection Agency (R83504201) and by NASA (NNX09AK66G). F. Mena was funded by the Department of Energy under DE-FG02-08ER64533 and by a Fulbright-Chile CONICYT fellowship. L. Fierce is funded by a NOAA Climate & Global Change Postdoctoral Fellowship through the University Corporation for Atmospheric Research Visiting Scientists Program. NR 49 TC 3 Z9 3 U1 31 U2 32 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12361 DI 10.1038/ncomms12361 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY3CG UT WOS:000384967800001 PM 27580627 ER PT J AU Kothapalli, K Bohmer, AE Jayasekara, WT Ueland, BG Das, P Sapkota, A Taufour, V Xiao, Y Alp, E Bud'ko, SL Canfield, PC Kreyssig, A Goldman, AI AF Kothapalli, K. Bohmer, A. E. Jayasekara, W. T. Ueland, B. G. Das, P. Sapkota, A. Taufour, V. Xiao, Y. Alp, E. Bud'ko, S. L. Canfield, P. C. Kreyssig, A. Goldman, A. I. TI Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; NUCLEAR RESONANT SCATTERING; IRON PNICTIDES; CHALCOGENIDES AB A hallmark of the iron-based superconductors is the strong coupling between magnetic, structural and electronic degrees of freedom. However, a universal picture of the normal state properties of these compounds has been confounded by recent investigations of FeSe where the nematic (structural) and magnetic transitions appear to be decoupled. Here, using synchrotron-based high-energy x-ray diffraction and time-domain Mossbauer spectroscopy, we show that nematicity and magnetism in FeSe under applied pressure are indeed strongly coupled. Distinct structural and magnetic transitions are observed for pressures between 1.0 and 1.7 GPa and merge into a single first-order transition for pressures greater than or similar to 1.7 GPa, reminiscent of what has been found for the evolution of these transitions in the prototypical system Ba(Fe1 - xCox)(2)As-2. Our results are consistent with a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the normal state properties of the iron-based superconductors. C1 [Kothapalli, K.; Bohmer, A. E.; Jayasekara, W. T.; Ueland, B. G.; Das, P.; Sapkota, A.; Taufour, V.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA. [Kothapalli, K.; Jayasekara, W. T.; Ueland, B. G.; Das, P.; Sapkota, A.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Xiao, Y.] Carnegie Inst Sci, HPCAT, Argonne, IL 60439 USA. [Alp, E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Kreyssig, A; Goldman, AI (reprint author), Iowa State Univ, US DOE, Ames Lab, Div Mat Sci & Engn, Ames, IA 50011 USA.; Kreyssig, A; Goldman, AI (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM kreyssig@ameslab.gov; goldman@ameslab.gov RI Ueland, Benjamin/B-2312-2008 OI Ueland, Benjamin/0000-0001-9784-6595 FU Department of Energy, Basic Energy Sciences, Division of Materials Sciences Engineering [DE-AC02-07CH11358]; Helmholtz Association [PD-226]; DOE Office of Science [DE-AC02-06CH11357]; DOE-NNSA [DE-NA0001974]; DOE-BES [DE-FG02-99ER45775]; NSF; COMPRES under NSF [EAR 11-57758]; GSECARS through NSF [EAR-1128799]; DOE [DE-FG02-94ER14466] FX The authors would like to acknowledge the assistance of D.S. Robinson, C. Benson, S. Tkachev, S.G. Sinogeikin and M. Baldini, and helpful discussions with R.J. McQueeney and R.M. Fernandes. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, Division of Materials Sciences & Engineering, under Contract No. DE-AC02-07CH11358. AEB acknowledges support from the Helmholtz Association via PD-226. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF grant EAR-1128799 and DOE grant DE-FG02-94ER14466. NR 37 TC 6 Z9 6 U1 33 U2 33 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12728 DI 10.1038/ncomms12728 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY3EQ UT WOS:000384974000001 PM 27582003 ER PT J AU Kuo, CY Hu, Z Yang, JC Liao, SC Huang, YL Vasudevan, RK Okatan, MB Jesse, S Kalinin, SV Li, L Liu, HJ Lai, CH Pi, TW Agrestini, S Chen, K Ohresser, P Tanaka, A Tjeng, LH Chu, YH AF Kuo, C. -Y. Hu, Z. Yang, J. C. Liao, S. -C. Huang, Y. L. Vasudevan, R. K. Okatan, M. B. Jesse, S. Kalinin, S. V. Li, L. Liu, H. J. Lai, C. -H. Pi, T. W. Agrestini, S. Chen, K. Ohresser, P. Tanaka, A. Tjeng, L. H. Chu, Y. H. TI Single-domain multiferroic BiFeO3 films SO NATURE COMMUNICATIONS LA English DT Article ID ELECTRIC-FIELD CONTROL; X-RAY-ABSORPTION; ROOM-TEMPERATURE; WEAK FERROMAGNETISM; THIN-FILMS; PHOTOEMISSION; DICHROISM; DEVICES; OXIDES AB The strong coupling between antiferromagnetism and ferroelectricity at room temperature found in BiFeO3 generates high expectations for the design and development of technological devices with novel functionalities. However, the multi-domain nature of the material tends to nullify the properties of interest and complicates the thorough understanding of the mechanisms that are responsible for those properties. Here we report the realization of a BiFeO3 material in thin film form with single-domain behaviour in both its magnetism and ferroelectricity: the entire film shows its antiferromagnetic axis aligned along the crystallographic b axis and its ferroelectric polarization along the c axis. With this we are able to reveal that the canted ferromagnetic moment due to the Dzyaloshinskii-Moriya interaction is parallel to the a axis. Furthermore, by fabricating a Co/BiFeO3 heterostructure, we demonstrate that the ferromagnetic moment of the Co film does couple directly to the canted moment of BiFeO3. C1 [Kuo, C. -Y.; Hu, Z.; Yang, J. C.; Agrestini, S.; Tjeng, L. H.] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany. [Yang, J. C.; Lai, C. -H.] Natl Tsing Hua Univ, Dept Mat Sci & Engn, Hsinchu 30013, Taiwan. [Huang, Y. L.; Liu, H. J.; Chu, Y. H.] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Vasudevan, R. K.; Okatan, M. B.; Jesse, S.; Kalinin, S. V.; Li, L.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Li, L.] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Multidisciplinary Mat Res Ctr, Xian 710049, Shaanxi, Peoples R China. [Pi, T. W.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Chen, K.; Ohresser, P.] Synchrotron SOLEIL Orme Merisiers, St Aubin BP 48, F-91192 Gif Sur Yvette, France. [Tanaka, A.] Hiroshima Univ, ADSM, Dept Quantum Matter, Higashihiroshima 7398530, Japan. [Chu, Y. H.] Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan. [Chu, Y. H.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RP Chu, YH (reprint author), Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan.; Chu, YH (reprint author), Natl Chiao Tung Univ, Dept Electrophys, Hsinchu 30010, Taiwan.; Chu, YH (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. EM yhc@nctu.edu.tw RI li, linglong/F-5756-2013; Ying-Hao, Chu/A-4204-2008; Okatan, M. Baris/E-1913-2016; OI Ying-Hao, Chu/0000-0002-3435-9084; Okatan, M. Baris/0000-0002-9421-7846; Kalinin, Sergei/0000-0001-5354-6152 FU Division of Materials Sciences and Engineering, BES, DOE; Ministry of Science and Technology, R.O.C. [MOST 103-2119-M-009-003-MY3]; Center for Interdisciplinary Science of National Chiao Tung University, Ministry of Education [MOE-ATU 101W961]; Center for Nanophase Materials Sciences FX This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE (R.K.V. and S.V.K.). Research was conducted at the Center for Nanophase Materials Sciences, which also provided support (M.B.O. and S.J.) and is a DOE Office of Science User Facility. Prof. Ying-Hao Chu acknowledges supports from Ministry of Science and Technology, R.O.C. (MOST 103-2119-M-009-003-MY3), and Center for Interdisciplinary Science of National Chiao Tung University, Ministry of Education (MOE-ATU 101W961). NR 43 TC 0 Z9 0 U1 43 U2 45 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12712 DI 10.1038/ncomms12712 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY3EL UT WOS:000384973500001 PM 27581797 ER PT J AU Li, P Liu, T Chang, HC Kalitsov, A Zhang, W Csaba, G Li, W Richardson, D DeMann, A Rimal, G Dey, H Jiang, J Porod, W Field, SB Tang, JK Marconi, MC Hoffmann, A Mryasov, O Wu, MZ AF Li, Peng Liu, Tao Chang, Houchen Kalitsov, Alan Zhang, Wei Csaba, Gyorgy Li, Wei Richardson, Daniel DeMann, August Rimal, Gaurab Dey, Himadri Jiang, J. S. Porod, Wolfgang Field, Stuart B. Tang, Jinke Marconi, Mario C. Hoffmann, Axel Mryasov, Oleg Wu, Mingzhong TI Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy SO NATURE COMMUNICATIONS LA English DT Article ID TOPOLOGICAL INSULATOR; OSCILLATOR DRIVEN; CO/CU/CO PILLARS AB As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field. C1 [Li, Peng; Liu, Tao; Chang, Houchen; Richardson, Daniel; DeMann, August; Field, Stuart B.; Wu, Mingzhong] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Kalitsov, Alan; Mryasov, Oleg] Univ Alabama, MINT Ctr, Tuscaloosa, AL 35401 USA. [Zhang, Wei; Jiang, J. S.; Hoffmann, Axel] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Csaba, Gyorgy; Dey, Himadri; Porod, Wolfgang] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA. [Li, Wei; Marconi, Mario C.] Colorado State Univ, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. [Li, Wei; Marconi, Mario C.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Rimal, Gaurab; Tang, Jinke] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82071 USA. RP Wu, MZ (reprint author), Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. EM mwu@colostate.edu RI Rimal, Gaurab/C-5269-2017 OI Rimal, Gaurab/0000-0002-7991-7772 FU C-SPIN, one of the SRC STARnet Centers - MARCO; DARPA; SHINES, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [SC0012670]; U.S. National Science Foundation [ECCS-1231598]; U.S. Army Research Office [W911NF-14-1-0501]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [SC0008482]; U.S. Department of Energy, Office of Science, Materials Science and Engineering Division FX This work was primarily supported by the C-SPIN, one of the SRC STARnet Centers sponsored by MARCO and DARPA. In addition, it is also supported in part by the SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award SC0012670, the U.S. National Science Foundation under Award ECCS-1231598, the U.S. Army Research Office under Award W911NF-14-1-0501 and the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award SC0008482. Work at Argonne was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. The authors also gratefully acknowledge discussions with Drs Ilya Krivorotov, Igor Barsukov, Qilin Dai, Xin Fan, Weigang Wang, Satoru Emori, Andrei Slavin, James Neilson, Kristen Buchanan, Jose de la Venta, Wanjun Jiang, Yabin Fan, David Ellsworth, and Praveen Janantha. NR 51 TC 1 Z9 1 U1 53 U2 53 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12688 DI 10.1038/ncomms12688 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY3EB UT WOS:000384972500001 PM 27581060 ER PT J AU Singh, D Sternberg, SH Fei, JY Doudna, JA Ha, T AF Singh, Digvijay Sternberg, Samuel H. Fei, Jingyi Doudna, Jennifer A. Ha, Taekjip TI Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9 SO NATURE COMMUNICATIONS LA English DT Article ID CRISPR/CAS9 OFF-TARGETS; SINGLE-MOLECULE FRET; GENOME-WIDE ANALYSIS; HUMAN-CELLS; TRANSCRIPTIONAL ACTIVATORS; ESCHERICHIA-COLI; SGRNA DESIGN; CRISPR-CAS9; SPECIFICITY; NUCLEASES AB Binding specificity of Cas9-guide RNA complexes to DNA is important for genome-engineering applications; however, how mismatches influence target recognition/rejection kinetics is not well understood. Here we used single-molecule FRET to probe real-time interactions between Cas9-RNA and DNA targets. The bimolecular association rate is only weakly dependent on sequence; however, the dissociation rate greatly increases from o0.006 s(-1) to 42 s(-1) upon introduction of mismatches proximal to protospacer-adjacent motif (PAM), demonstrating that mismatches encountered early during heteroduplex formation induce rapid rejection of off-target DNA. In contrast, PAM-distal mismatches up to 11 base pairs in length, which prevent DNA cleavage, still allow formation of a stable complex (dissociation rate o0.006 s(-1)), suggesting that extremely slow rejection could sequester Cas9-RNA, increasing the Cas9 expression level necessary for genome-editing, thereby aggravating off-target effects. We also observed at least two different bound FRET states that may represent distinct steps in target search and proofreading. C1 [Singh, Digvijay; Ha, Taekjip] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA. [Sternberg, Samuel H.; Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Fei, Jingyi; Ha, Taekjip] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Fei, Jingyi; Ha, Taekjip] Univ Illinois, Ctr Phys Living Cells, Urbana, IL 61801 USA. [Fei, Jingyi; Ha, Taekjip] Howard Hughes Med Inst, Baltimore, MD 21205 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA. [Singh, Digvijay; Ha, Taekjip] Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA. [Singh, Digvijay; Ha, Taekjip] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21205 USA. [Singh, Digvijay; Ha, Taekjip] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA. [Fei, Jingyi] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. RP Ha, T (reprint author), Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Ha, T (reprint author), Univ Illinois, Dept Phys, Urbana, IL 61801 USA.; Ha, T (reprint author), Univ Illinois, Ctr Phys Living Cells, Urbana, IL 61801 USA.; Ha, T (reprint author), Howard Hughes Med Inst, Baltimore, MD 21205 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Innovat Genom Initiat, Berkeley, CA 94720 USA.; Ha, T (reprint author), Johns Hopkins Univ, Sch Med, Dept Biophys & Biophys Chem, Baltimore, MD 21205 USA.; Ha, T (reprint author), Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21205 USA.; Ha, T (reprint author), Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA. EM doudna@berkeley.edu; tjha@jhu.edu FU National Science Foundation [PHY-1430124, 1244557]; National Institutes of Health [GM065367, GM112659] FX We thank current and past members of the Ha and Doudna group for various suggestions. The project was supported by grants from the National Science Foundation (PHY-1430124 to T.H. and 1244557 to J.A.D.) and National Institutes of Health (GM065367; GM112659 to T.H.); T.H. and J.A.D. are investigators with the Howard Hughes Medical Institute. NR 66 TC 1 Z9 1 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2016 VL 7 AR 12778 DI 10.1038/ncomms12778 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DY6RU UT WOS:000385256500008 PM 27624851 ER PT J AU Preheim, SP Olesen, SW Spencer, SJ Materna, A Varadharajan, C Blackburn, M Friedman, J Rodriguez, J Hemond, H Alm, EJ AF Preheim, Sarah P. Olesen, Scott W. Spencer, Sarah J. Materna, Arne Varadharajan, Charuleka Blackburn, Matthew Friedman, Jonathan Rodriguez, Jorge Hemond, Harold Alm, Eric J. TI Surveys, simulation and single-cell assays relate function and phylogeny in a lake ecosystem SO NATURE MICROBIOLOGY LA English DT Article ID SULFATE-REDUCING PROKARYOTES; MARINE-SEDIMENT; RIBOSOMAL-RNA; MICROORGANISMS; COMMUNITIES; SEQUENCES; GENES; IDENTIFICATION; DIVERSITY; NETWORKS AB Much remains unknown about what drives microbial community structure and diversity. Highly structured environments might offer clues. For example, it may be possible to identify metabolically similar species as groups of organisms that correlate spatially with the geochemical processes they carry out. Here, we use a 16S ribosomal RNA gene survey in a lake that has chemical gradients across its depth to identify groups of spatially correlated but phylogenetically diverse organisms. Some groups had distributions across depth that aligned with the distributions of metabolic processes predicted by a biogeochemical model, suggesting that these groups performed biogeochemical functions. A single-cell genetic assay showed, however, that the groups associated with one biogeochemical process, sulfate reduction, contained only a few organisms that have the genes required to reduce sulfate. These results raise the possibility that some of these spatially correlated groups are consortia of phylogenetically diverse and metabolically different microbes that cooperate to carry out geochemical functions. C1 [Preheim, Sarah P.; Olesen, Scott W.; Spencer, Sarah J.; Alm, Eric J.] MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Preheim, Sarah P.] Johns Hopkins Univ, Dept Geog & Environm Engn, Baltimore, MD 21218 USA. [Materna, Arne] Qiagen Corp, DK-8000 Aarhus, Denmark. [Varadharajan, Charuleka] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Blackburn, Matthew] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Friedman, Jonathan] MIT, Dept Phys, Cambridge, MA 02139 USA. [Rodriguez, Jorge] Masdar Inst Sci & Technol, Inst Ctr Water & Environm iWater, POB 54224, Abu Dhabi, U Arab Emirates. [Hemond, Harold] MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Alm, EJ (reprint author), MIT, Dept Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM ejalm@mit.edu OI Spencer, Sarah/0000-0002-2744-8994; Rodriguez, Jorge/0000-0002-5936-9676 FU National Science Foundation Graduate Research Fellowship [1122374]; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-SC0008743] FX This material is based on work supported by the National Science Foundation Graduate Research Fellowship (grant no. 1122374) and by the US Department of Energy, Office of Science, Office of Biological and Environmental Research (award no. DE-SC0008743). NR 53 TC 0 Z9 0 U1 8 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 2058-5276 J9 NAT MICROBIOL JI NAT. MICROBIOL PD SEP PY 2016 VL 1 IS 9 AR 16130 DI 10.1038/NMICROBIOL.2016.130 PG 9 WC Microbiology SC Microbiology GA DW4KB UT WOS:000383610500006 PM 27562262 ER PT J AU Michaletz, ST Weiser, MD McDowell, NG Zhou, JZ Kaspari, M Helliker, BR Enquist, BJ AF Michaletz, Sean T. Weiser, Michael D. McDowell, Nate G. Zhou, Jizhong Kaspari, Michael Helliker, Brent R. Enquist, Brian J. TI The energetic and carbon economic origins of leaf thermoregulation SO NATURE PLANTS LA English DT Article ID OXYGEN-ISOTOPE RATIOS; GLOBAL LAND AREAS; LIMITED HOMEOTHERMY; ECOSYSTEM-SCALES; TEMPERATURE; PLANTS; CONVERGENCE; CLIMATE; PHOTOSYNTHESIS; FORESTS AB Leaf thermoregulation has been documented in a handful of studies, but the generality and origins of this pattern are unclear. We suggest that leaf thermoregulation is widespread in both space and time, and originates from the optimization of leaf traits to maximize leaf carbon gain across and within variable environments. Here we use global data for leaf temperatures, traits and photosynthesis to evaluate predictions from a novel theory of thermoregulation that synthesizes energy budget and carbon economics theories. Our results reveal that variation in leaf temperatures and physiological performance are tightly linked to leaf traits and carbon economics. The theory, parameterized with global averaged leaf traits and microclimate, predicts a moderate level of leaf thermoregulation across a broad air temperature gradient. These predictions are supported by independent data for diverse taxa spanning a global air temperature range of similar to 60 degrees C. Moreover, our theory predicts that net carbon assimilation can be maximized by means of a trade-off between leaf thermal stability and photosynthetic stability. This prediction is supported by globally distributed data for leaf thermal and photosynthetic traits. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate Earth system models. C1 [Michaletz, Sean T.; McDowell, Nate G.] Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87545 USA. [Michaletz, Sean T.; Enquist, Brian J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Weiser, Michael D.; Kaspari, Michael] Univ Oklahoma, EEB Grad Program, Dept Biol, Norman, OK 73069 USA. [Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Lab Environm Simulat & Pollut Control, Beijing 100084, Peoples R China. [Zhou, Jizhong] Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94270 USA. [Kaspari, Michael] Smithsonian Trop Res Inst, Balboa, Panama. [Helliker, Brent R.] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA. [Enquist, Brian J.] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA. [Enquist, Brian J.] iPlant Collaborat, Thomas W Keating Biores Bldg,1657 East Helen St, Tucson, AZ 85721 USA. [Enquist, Brian J.] Aspen Ctr Environm Studies, 100 Puppy Smith St, Aspen, CO 81611 USA. RP Michaletz, ST (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, MS J495, Los Alamos, NM 87545 USA.; Michaletz, ST (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. EM michaletz@lanl.gov OI Weiser, Michael/0000-0001-9080-0834 FU Los Alamos National Laboratory; NSF MacroSystems award [1065861, 1241873]; NSF award [IOS-0950998]; SUMO; NGEE-Tropics support from Department of Energy, Office of Science; Aspen Center for Environmental Studies FX This paper is dedicated to the memory of Dr David M. Gates, who began studying the thermoregulation and energy budgets of leaves more than a half century ago. The authors thank B. Blonder for providing thoughtful comments on an earlier version of the paper, L. Stockton for helping collect leaf trait and gas exchange data, H. Adams, A. Collins, T. Dickman, C. Grossiord, A. Henderson, J. Reithel and S. Sevanto for providing meteorological and phenological data, and J. Finch and J. Draper for supplying the Brachypodium distachyon image used in Fig. 1. S.T.M. was supported by a Director's Fellowship from the Los Alamos National Laboratory. S.T.M., M.D.W., J.Z., M.K. and B.J.E. were supported by NSF MacroSystems award 1065861. B.R.H. was supported under NSF award IOS-0950998 and NSF MacroSystems award 1241873. N.G.M. was supported by SUMO and NGEE-Tropics support from the Department of Energy, Office of Science. B.J.E. was supported by a fellowship from the Aspen Center for Environmental Studies. NR 56 TC 1 Z9 1 U1 18 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2055-026X EI 2055-0278 J9 NAT PLANTS JI Nat. Plants PD SEP PY 2016 VL 2 IS 9 AR 16129 DI 10.1038/NPLANTS.2016.129 PG 8 WC Plant Sciences SC Plant Sciences GA DY3RL UT WOS:000385011300005 PM 27548589 ER PT J AU Wang, HO Hawkes, ER Chen, JH AF Wang, Haiou Hawkes, Evatt R. Chen, Jacqueline H. TI Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame SO PHYSICS OF FLUIDS LA English DT Article ID HOMOGENEOUS TURBULENCE; BURNING VELOCITY; SCALAR GRADIENT; STRAIN-RATES; COMBUSTION; VORTICITY; ALIGNMENT; FLOWS; DISTRIBUTIONS; SIMULATIONS AB In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector. and the principal strain rate eigenvectors e(i) are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, beta, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n,. and e(i), which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e(3), in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e(2), the contribution of the most extensive strain rate, e(1), to vortex stretching is comparable with that of the intermediate strain rate, e(2). This is because the eigenvalue of the most extensive strain rate, lambda(1), is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing to the dominance of cylindrical curvature of the flame front. Finally, the effect of heat release on the turbulence-flame interactions is examined. It is found that heat release has only limited impact on the statistics due to the minor role played by the strain rate induced by heat release rate in the current high Ka flame. Published by AIP Publishing. C1 [Wang, Haiou; Hawkes, Evatt R.] Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia. [Hawkes, Evatt R.] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia. [Chen, Jacqueline H.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Wang, HO (reprint author), Univ New South Wales, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia. EM haiou.wang@unsw.edu.au RI Hawkes, Evatt/C-5307-2012 OI Hawkes, Evatt/0000-0003-0539-7951 FU Australian Research Council; Australian Government; Government of Western Australia; US Department of Energy [De-AC04-94-AL85000]; National Computational Merit Allocation Scheme FX This work was supported by the Australian Research Council. This research used resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia. The research was also supported by computational resources at Pawsey awarded through the National Computational Merit Allocation Scheme. The work at Sandia National Laboratories was supported by the Division of Chemical Sciences, Geosciences and Biosciences, the Office of Basic Energy Sciences, the US Department of Energy (DOE). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under Contract No. De-AC04-94-AL85000. NR 59 TC 2 Z9 2 U1 7 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD SEP PY 2016 VL 28 IS 9 AR 095107 DI 10.1063/1.4962501 PG 20 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DY1UC UT WOS:000384878900031 ER PT J AU Hardie, SML McKinley, IG Lomperski, S Kawamura, H Beattie, TM AF Hardie, Susie M. L. McKinley, Ian G. Lomperski, Steve Kawamura, Hideki Beattie, Tara M. TI Management options for Fukushima corium SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Fukushima Dai-ichi; Nuclear accident; Core meltdown; Corium characterisation; Damaged fuel; Diagnostics; Severe accident codes ID ACCIDENT ANALYSIS; REACTOR CORE; TESTS; WATER AB The loss of core cooling for units 1-3 during the accident at Fukushima Dai-ichi caused major fuel damage. Although full details are not yet available, fuel melting produced corium within the reactor pressure vessels that has, to an unknown degree, melted through into the primary containment. The present priority is cooling the damaged reactors and managing contaminated water, but planning of longer term decommissioning has already begun. Management of highly damaged fuel and corium will be of primary concern, with the main options being recovery for reprocessing or packaging for direct disposal. Although the latter option may have significant cost advantages, it presents some novel safety challenges for both operational and post-closure phases. Concerns include criticality management and modelling of long-term dissolution of materials having highly variable composition. Further R&D is required to fill knowledge gaps - of which the most sensitive may involve determination of the extent to which small "hot particles" of corium have been produced. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Hardie, Susie M. L.; McKinley, Ian G.] MCM Consulting, Tafernstr 11, CH-5405 Baden, Switzerland. [Lomperski, Steve] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kawamura, Hideki] Obayashi Corp, Nucl Facil Div, Inter City B, Minato Ku, Konan 2-15-2, Tokyo 1088502, Japan. [Beattie, Tara M.] MCM Consulting, Orchard St Business Ctr, 13-14 Orchard St, Bristol BS1 5EH, Avon, England. RP Hardie, SML (reprint author), MCM Consulting, Tafernstr 11, CH-5405 Baden, Switzerland. EM susie.hardie@mcm-international.ch NR 37 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD SEP PY 2016 VL 92 BP 260 EP 266 DI 10.1016/j.pnucene.2015.07.017 PG 7 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DY0KT UT WOS:000384786400030 ER PT J AU Cervantes-Cota, JL Galindo-Uribarri, S Smoot, GF AF Cervantes-Cota, Jorge L. Galindo-Uribarri, Salvador Smoot, George F. TI A Brief History of Gravitational Waves SO UNIVERSE LA English DT Review DE gravitational waves; General Relativity; LIGO; Einstein; strong-field gravity; binary black holes ID RADIATION EXPERIMENTS; GENERAL-RELATIVITY; ANISOTROPY; DETECTOR; LIMIT AB This review describes the discovery of gravitational waves. We recount the journey of predicting and finding those waves, since its beginning in the early twentieth century, their prediction by Einstein in 1916, theoretical and experimental blunders, efforts towards their detection, and finally the subsequent successful discovery. C1 [Cervantes-Cota, Jorge L.; Galindo-Uribarri, Salvador] Natl Inst Nucl Res, Dept Phys, Km 36-5 Carretera Mexico Toluca, Mexico City 52750, DF, Mexico. [Smoot, George F.] Hong Kong Univ Sci & Technol, Inst Adv Study, Large, Kowloon 999077, Hong Kong, Peoples R China. [Smoot, George F.] Univ Paris Diderot, Lab APC PCCP, Univ Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France. [Smoot, George F.] Univ Calif Berkeley, Dept Phys, MS Bldg 50-5505 LBNL,1 Cyclotron Rd, Berkeley, CA 94720 USA. [Smoot, George F.] Univ Calif Berkeley, LBNL, MS Bldg 50-5505 LBNL,1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Smoot, GF (reprint author), Hong Kong Univ Sci & Technol, Inst Adv Study, Large, Kowloon 999077, Hong Kong, Peoples R China.; Smoot, GF (reprint author), Univ Paris Diderot, Lab APC PCCP, Univ Sorbonne Paris Cite, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France.; Smoot, GF (reprint author), Univ Calif Berkeley, Dept Phys, MS Bldg 50-5505 LBNL,1 Cyclotron Rd, Berkeley, CA 94720 USA.; Smoot, GF (reprint author), Univ Calif Berkeley, LBNL, MS Bldg 50-5505 LBNL,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jorge.cervantes@inin.gob.mx; salvador.galindo@inin.gob.mx; gfsmoot@lbl.gov NR 59 TC 2 Z9 2 U1 17 U2 17 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2218-1997 J9 UNIVERSE JI Universe PD SEP PY 2016 VL 2 IS 3 AR UNSP 22 DI 10.3390/universe2030022 PG 30 WC Physics, Particles & Fields SC Physics GA DY2PT UT WOS:000384935200009 ER PT J AU He, QM Narayanan, S Wu, DT Foster, MD AF He, Qiming Narayanan, Suresh Wu, David T. Foster, Mark D. TI Confinement Effects with Molten Thin Cyclic Polystyrene Films SO ACS MACRO LETTERS LA English DT Article ID X-RAY-SCATTERING; POLYMER-FILMS; DYNAMICS; SURFACE; MOBILITY; BEHAVIOR; MELTS AB The surface fluctuations of a melt film of a low molecular weight cyclic polystyrene (CPS) manifest confinement effects for a film thickness (14R(g)) much larger than that for which a melt film of the linear chain analog manifests confinement. This is true both in terms of absolute thickness and thickness relative to chain size, R-g. In fact, the linear analog polymer does not manifest confinement effects even at a thickness of 7R(g). Both types of films have a strongly adsorbed layer at the substrate that plays a role in slowing the surface fluctuations for the thinnest films. This layer is 70% thicker for the cyclic chains than for the linear chains. At the interface with the substrate the packing of the cyclic chains is perturbed much more strongly than is the packing of the linear chains. C1 [He, Qiming; Foster, Mark D.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Narayanan, Suresh] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wu, David T.] Colorado Sch Mines, Dept Chem Engn, Golden, CO 80401 USA. [Wu, David T.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. RP Foster, MD (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. EM mfoster@uakron.edu FU University of Akron Research Foundation FX We thank Caleb Tomey for assistance with the analysis of the immobile layer thickness and The University of Akron Research Foundation for funding. NR 37 TC 2 Z9 2 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD SEP PY 2016 VL 5 IS 9 BP 999 EP 1003 DI 10.1021/acsmacrolett.6b00497 PG 5 WC Polymer Science SC Polymer Science GA DX0GZ UT WOS:000384041100002 ER PT J AU Liu, CY Chen, HL Do, C Hong, K AF Liu, Chih-Ying Chen, Hsin-Lung Do, Changwoo Hong, Kunlun TI Spatial Distributions of Guest Molecule and Hydration Level in Dendrimer-Based Guest-Host Complex SO ACS MACRO LETTERS LA English DT Article ID ELECTRON-PARAMAGNETIC-RESONANCE; ANGLE NEUTRON-SCATTERING; DRUG-DELIVERY; STARBURST DENDRIMERS; PAMAM DENDRIMERS; SURFACTANT; INSIGHTS; POLY(AMIDOAMINE); ARCHITECTURE AB Using the electrostatic complex of G4 poly-(amidoamine) (PAMAM) dendrimer with an amphiphilic surfactant as a model system, contrast variation small angle neutron scattering (SANS) is implemented to resolve the key structural characteristics of dendrimer-based guest host system. Quantifications of the radial distributions of the scattering length density and the hydration level within the complex molecule reveal that the surfactant is embedded in the peripheral region of dendrimer and the steric crowding in this region increases the backfolding of the dendritic segments, thereby reducing the hydration level throughout the complex molecule. The insights into the spatial location of the guest molecules as well as the perturbations of dendrimer conformation and hydration level deduced here are crucial for the delicate design of dendrimer-based guest-host system for biomedical applications. C1 [Liu, Chih-Ying; Chen, Hsin-Lung] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan. [Liu, Chih-Ying; Chen, Hsin-Lung] Natl Tsing Hua Univ, Frontier Res Ctr Fundamental & Appl Sci Matters, Hsinchu 30013, Taiwan. [Do, Changwoo] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Div Mat Sci, Ctr Nanophase, Oak Ridge, TN 37831 USA. RP Chen, HL (reprint author), Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan.; Chen, HL (reprint author), Natl Tsing Hua Univ, Frontier Res Ctr Fundamental & Appl Sci Matters, Hsinchu 30013, Taiwan. EM hlchen@che.nthu.edu.tw RI Hong, Kunlun/E-9787-2015 OI Hong, Kunlun/0000-0002-2852-5111 FU Ministry of Science and Technology (MOST) [MOST 102-2221-E-007-136-MY3, MOST 105-2221-E-007-137-MY3]; Neutron Program of the National Synchrotron Radiation Research Center (NSRRC) [N-2015-2-027]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work is supported by the Ministry of Science and Technology (MOST) under Grant Nos. MOST 102-2221-E-007-136-MY3 and MOST 105-2221-E-007-137-MY3 and the Neutron Program of the National Synchrotron Radiation Research Center (NSRRC) under Grant No. N-2015-2-027. The authors appreciate the SANS beamtime of EQ-SANS provided by SNS, ORNL. The research performed in BL-6 (EQ-SANS) at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 31 TC 0 Z9 0 U1 14 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD SEP PY 2016 VL 5 IS 9 BP 1004 EP 1008 DI 10.1021/acsmacrolett.6b00526 PG 5 WC Polymer Science SC Polymer Science GA DX0GZ UT WOS:000384041100003 ER PT J AU Durfee, PN Lin, YS Dunphy, DR Muniz, AJ Butler, KS Humphrey, KR Lokke, AJ Agola, JO Chou, SS Chen, IM Wharton, W Townson, JL Willman, CL Brinker, CJ AF Durfee, Paul N. Lin, Yu-Shen Dunphy, Darren R. Muniz, Ane J. Butler, Kimberly S. Humphrey, Kevin R. Lokke, Amanda J. Agola, Jacob O. Chou, Stanley S. Chen, I-Ming Wharton, Walker Townson, Jason L. Willman, Cheryl L. Brinker, C. Jeffrey TI Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells SO ACS NANO LA English DT Article DE mesoporous silica nanoparticle; supported lipid bilayer; colloidal stability; chorioallantoic membrane; leukemia cell targeting ID DRUG-DELIVERY; IN-VIVO; CANCER-CELLS; PHOSPHOLIPID-BILAYERS; PANCREATIC-CANCER; VESICLE ADSORPTION; HEMOLYTIC-ACTIVITY; SIZE; THERAPY; SYSTEMS AB Many nanocarrier cancer therapeutics currently under development, as well as those used in the clinical setting, rely upon the enhanced permeability and retention (EPR) effect to passively accumulate in the tumor micro environment and kill cancer cells. In leukemia, where leukemogenic stem cells and their progeny circulate within the peripheral blood or bone marrow, the EPR effect may not be operative. Thus, for leukemia therapeutics, it is essential to target and bind individual circulating cells. Here, we investigate mesoporous silica nanoparticle (MSN)-supported lipid bilayers (protocells), an emerging class of nanocarriers, and establish the synthesis conditions and lipid bilayer composition needed to achieve highly monodisperse protocells that remain stable in complex media as assessed in vitro by dynamic light scattering and cryo-electron microscopy and ex ovo by direct imaging within a chick chorioallantoic membrane (CAM) model. We show that for vesicle fusion conditions where the lipid surface area exceeds the external surface area of the MSN and the ionic strength exceeds 20 mM, we form monosized protocells (polydispersity index <0.1) on MSN cores with varying size, shape, and pore size, whose conformal zwitterionic supported lipid bilayer confers excellent stability as judged by circulation in the CAM and minimal opsonization in vivo in a mouse model. Having established protocell formulations that are stable colloids, we further modified them with anti-EGFR antibodies as targeting agents and reverified their monodispersity and stability. Then, using intravital imaging in the CAM, we directly observed in real time the progression of selective targeting of individual leukemia cells (using the established REH leukemia cell line transduced with EGER) and delivery of a model cargo. Overall, we have established the effectiveness of the protocell platform for individual cell targeting and delivery needed for leukemia and other disseminated disease. C1 [Durfee, Paul N.; Brinker, C. Jeffrey] Univ New Mexico, Chem & Biol Engn, 210 Univ Blvd NE, Albuquerque, NM 87131 USA. [Durfee, Paul N.; Dunphy, Darren R.; Butler, Kimberly S.; Agola, Jacob O.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Microengn Mat, Adv Mat Lab, MSC04 2790,1001 Univ Blvd SE,Suite 103, Albuquerque, NM 87106 USA. [Lin, Yu-Shen; Townson, Jason L.] Univ New Mexico, Internal Med, MSC10 5550,1 Univ New Mexico, Albuquerque, NM 87131 USA. [Lin, Yu-Shen; Townson, Jason L.] Oncothyreon Inc, 2601 Fourth Ave, Seattle, WA 98121 USA. [Muniz, Ane J.; Lokke, Amanda J.] Univ New Mexico, Hlth Sci Ctr, Biochem & Mol Biol, MSC08 4670,1 Univ New Mexico, Albuquerque, NM 87131 USA. [Humphrey, Kevin R.] Vanderbilt Univ, Biomed Engn, 2301 Vanderbilt Pl, Nashville, TN 37235 USA. [Chou, Stanley S.; Brinker, C. Jeffrey] Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE,Suite 100, Albuquerque, NM 87106 USA. [Chen, I-Ming; Wharton, Walker; Willman, Cheryl L.] Univ New Mexico, Dept Pathol, MSC08 4640,1 Univ New Mexico, Albuquerque, NM 87131 USA. [Chen, I-Ming; Wharton, Walker; Willman, Cheryl L.; Brinker, C. Jeffrey] Univ New Mexico, Ctr Comprehens Canc, MSC07 4025,1 Univ New Mexico, Albuquerque, NM 87131 USA. RP Brinker, CJ (reprint author), Univ New Mexico, Chem & Biol Engn, 210 Univ Blvd NE, Albuquerque, NM 87131 USA.; Brinker, CJ (reprint author), Univ New Mexico, Ctr Microengn Mat, Adv Mat Lab, MSC04 2790,1001 Univ Blvd SE,Suite 103, Albuquerque, NM 87106 USA.; Lin, YS (reprint author), Univ New Mexico, Internal Med, MSC10 5550,1 Univ New Mexico, Albuquerque, NM 87131 USA.; Lin, YS (reprint author), Oncothyreon Inc, 2601 Fourth Ave, Seattle, WA 98121 USA.; Brinker, CJ (reprint author), Sandia Natl Labs, Adv Mat Lab, 1001 Univ Blvd SE,Suite 100, Albuquerque, NM 87106 USA.; Brinker, CJ (reprint author), Univ New Mexico, Ctr Comprehens Canc, MSC07 4025,1 Univ New Mexico, Albuquerque, NM 87131 USA. EM linxx484@umn.edu; cjbrink@sandia.gov FU NIH National Cancer Institute (NCI) [UO1 CA151792-01]; Leukemia and Lymphoma Society (LLS) Specialized Center of Research (SCOR) [7010-14]; Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program; New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC); George D. Montoya Research Scholarship; Edmund J. and Thelma W. Evans Charitable Trust Scholarship; Charlotte and William Kraft Graduate Fellowship; Gabrielle's Angel Foundation; UNM Science, Technology, Engineering, and Mathematics (STEM) Talent Expansion Program; National Institute of General Medical Sciences [T34GM008751]; UNM NSMS Research Experience for Undergraduates Program; U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering; Air Force Office of Scientific Research [FA 9550-1-14-066]; National Science Foundation [1344298]; University of California's Center for Environmental Implications of Nanotechnology (CEIN) grant [DBI-1266377]; NCI [P30 CA118110] FX We thank Dr. David F. Stern, Department of Pathology, Yale University for the gift of the EGFR retroviral construct and Dr. Darryl Y. Sasaki, Biotechnology and Bioengineering Department, Sandia National Laboratories, and Dr. Atul N. Parikh, Department of Biomedical Engineering, The University of California Davis for useful comments and discussions. CryoTEM images of EISA protocells were carried out at Baylor College of Medicine (Houston, TX) by C. Jia-Yin Fu, H. Khant, and W. Chiu. This work was supported by the NIH National Cancer Institute (NCI) Grant UO1 CA151792-01, the Leukemia and Lymphoma Society (LLS) Specialized Center of Research (SCOR) Award 7010-14, and the Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. P.N.D. and Y.S.L. were funded by a fellowship from the New Mexico Cancer Nanoscience and Microsystems Training Center (CNTC). P.N.D. was also supported by the George D. Montoya Research Scholarship, Edmund J. and Thelma W. Evans Charitable Trust Scholarship, and the Charlotte and William Kraft Graduate Fellowship. J.L.T. was supported by a Young Investigators Award from Gabrielle's Angel Foundation. A.J.L. was supported by the UNM Science, Technology, Engineering, and Mathematics (STEM) Talent Expansion Program. A.J.M. was supported by a grant from the National Institute of General Medical Sciences award no. T34GM008751. K.R.H. was supported by the UNM NSMS Research Experience for Undergraduates Program. C.J.B. and S.C. acknowledge the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, for support of fundamental structure property relationship studies. C.J.B. further acknowledges the Air Force Office of Scientific Research grant FA 9550-1-14-066, the National Science Foundation Grant no. 1344298, and the University of California's Center for Environmental Implications of Nanotechnology (CEIN) grant no. DBI-1266377. This research also utilized critical Shared Resources in the UNM Comprehensive Cancer Center (Fluorescence Microscopy and Cell Imaging; Biostatistics; Flow Cytometry and High Throughput Screening) supported by NCI P30 CA118110. NR 100 TC 3 Z9 3 U1 81 U2 82 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8325 EP 8345 DI 10.1021/acsnano.6b02819 PG 21 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300024 PM 27419663 ER PT J AU Hartmann, NF Velizhanin, KA Haroz, EH Kim, M Ma, XD Wang, YH Htoon, H Doorn, SK AF Hartmann, Nicolai F. Velizhanin, Kirill A. Haroz, Erik H. Kim, Mijin Ma, Xuedan Wang, YuHuang Htoon, Han Doorn, Stephen K. TI Photoluminescence Dynamics of Aryl sp(3) Defect States in Single-Walled Carbon Nanotubes SO ACS NANO LA English DT Article DE carbon nanotubes; doping; exciton localization; photoluminescence; time-correlated single photon counting; diazonium salts ID ELECTRONIC-STRUCTURE; OPTICAL-SPECTRA; EXCITONS; TEMPERATURE; EMITTERS; WSE2 AB Photoluminescent defect states introduced by sp(3) functionalization of semiconducting carbon nanotubes are rapidly emerging as important routes for boosting emission quantum yields and introducing new functionality. Knowledge of the relaxation dynamics of these states is required for understanding how functionalizing agents (molecular dopants) may be designed to access specific behaviors. We measure photoluminescence (PL) decay dynamics of sp3 defect states introduced by aryl functionalization of the carbon nanotube surface. Results are given for five different nanotube chiralities, each doped with a range of aryl functionality. We find that the PL decays of these sp3 defect states are biexponential, with both components relaxing on time scales of similar to 100 ps. Exciton trapping at defects is found to increases PL lifetimes by a factor of 5-10, in comparison to those for the free exciton. A significant chirality dependence is observed in the decay times, ranging from 77 ps for (7,5) nanotubes to >600 ps for (5,4) structures. The strong correlation of time constants with emission energy indicates relaxation occurs via multiphonon decay processes, with close agreement to theoretical expectations. Variation of the aryl dopant further modulates decay times by 10-15%. The aryl defects also affect PL lifetimes of the free E-11 exciton. Shortening of the E-11 bright state lifetime as defect density increases provides further confirmation that defects act as exciton traps. A similar shortening of the E-11 dark exciton lifetime is found as defect density increases, providing strong experimental evidence that dark excitons are also trapped at such defect sites. C1 [Hartmann, Nicolai F.; Haroz, Erik H.; Ma, Xuedan; Htoon, Han; Doorn, Stephen K.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Velizhanin, Kirill A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kim, Mijin; Wang, YuHuang] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. RP Doorn, SK (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. EM skdoom@lanl.gov RI Velizhanin, Kirill/C-4835-2008; OI Hartmann, Nicolai/0000-0002-4174-532X; Htoon, Han/0000-0003-3696-2896 FU LANL; LANL LDRD; National Science Foundation [CHE-1507974] FX E.H.H. acknowledges support of a LANL Director's Post-doctoral Fellowship. This work was supported in part by LANL LDRD funding and was performed at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science user facility. Y.H.W. acknowledges support from the National Science Foundation (Grant No. CHE-1507974). NR 48 TC 1 Z9 1 U1 16 U2 16 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8355 EP 8365 DI 10.1021/acsnano.6b02986 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300026 PM 27529740 ER PT J AU Yoon, K Rahnamoun, A Swett, JL Iberi, V Cullen, DA Vlassiouk, IV Belianinov, A Jesse, S Sang, XH Ovchinnikova, OS Rondinone, AJ Unocic, RR van Duin, ACT AF Yoon, Kichul Rahnamoun, Ali Swett, Jacob L. Iberi, Vighter Cullen, David A. Vlassiouk, Ivan V. Belianinov, Alex Jesse, Stephen Sang, Xiahan Ovchinnikova, Olga S. Rondinone, Adam J. Unocic, Raymond R. van Duin, Adri C. T. TI Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation SO ACS NANO LA English DT Article DE atomistic analysis of graphene; ion irradiation; ReaxFF; graphene defects; aberration-corrected STEM ID SINGLE-LAYER GRAPHENE; REACTIVE FORCE-FIELD; THERMAL-CONDUCTIVITY; SUSPENDED GRAPHENE; RAMAN-SPECTROSCOPY; HYDROCARBONS; TRANSPORT; REAXFF; NANORIBBONS; BEHAVIOR AB Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation with a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. Additionally, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He+ irradiation and monovacancy (MV) defects for all other ion irradiations. C1 [Yoon, Kichul; Rahnamoun, Ali; van Duin, Adri C. T.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Swett, Jacob L.] Lockheed Martin Space Syst Co, Adv Technol Ctr, Palo Alto, CA 94304 USA. [Iberi, Vighter] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Iberi, Vighter; Belianinov, Alex; Jesse, Stephen; Sang, Xiahan; Ovchinnikova, Olga S.; Rondinone, Adam J.; Unocic, Raymond R.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Belianinov, Alex; Jesse, Stephen; Ovchinnikova, Olga S.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. RP van Duin, ACT (reprint author), Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. EM acv13@psu.edu RI Vlassiouk, Ivan/F-9587-2010; Sang, Xiahan/R-8229-2016; OI Vlassiouk, Ivan/0000-0002-5494-0386; Sang, Xiahan/0000-0002-2861-6814; Cullen, David/0000-0002-2593-7866 NR 57 TC 2 Z9 2 U1 35 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8376 EP 8384 DI 10.1021/acsnano.6b03036 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300028 PM 27532882 ER PT J AU Levy, ES Tajon, CA Bischof, TS Iafrati, P Fernandez-Bravo, A Garfield, DJ Chamanzar, M Maharbiz, MM Sohal, VS Schuck, PJ Cohen, BE Chan, EM AF Levy, Elizabeth S. Tajon, Cheryl A. Bischof, Thomas S. Iafrati, Pan Fernandez-Bravo, Angel Garfield, David J. Chamanzar, Maysamreza Maharbiz, Michel M. Sohal, Vikaas S. Schuck, P. James Cohen, Bruce E. Chan, Emory M. TI Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging SO ACS NANO LA English DT Article DE energy looping; photon avalanche; upconversion; nanocrystals; nanoparticles; near-infrared; imaging ID UP-CONVERSION NANOPARTICLES; CORE-SHELL NANOPARTICLES; DOPED SILICA FIBERS; UPCONVERTING NANOPARTICLES; PHOTON AVALANCHE; OPTICAL-PROPERTIES; LASER; NANOCRYSTALS; LUMINESCENCE; CELLS AB Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm3+-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 nun imaging depths and 2 pm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue. C1 [Levy, Elizabeth S.; Tajon, Cheryl A.; Bischof, Thomas S.; Fernandez-Bravo, Angel; Garfield, David J.; Schuck, P. James; Cohen, Bruce E.; Chan, Emory M.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Iafrati, Pan; Sohal, Vikaas S.] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA. [Garfield, David J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Chamanzar, Maysamreza; Maharbiz, Michel M.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Chamanzar, Maysamreza] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA. RP Chan, EM (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM EMChan@lbl.gov RI Sohal, Vikaas/M-9327-2016 OI Sohal, Vikaas/0000-0002-2238-4186 NR 52 TC 0 Z9 0 U1 42 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8423 EP 8433 DI 10.1021/acsnano.6b03288 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300033 PM 27603228 ER PT J AU Ueltzhoffer, T Streubel, R Koch, I Holzinger, D Makarov, D Schmidt, OG Ehresmann, A AF Ueltzhoeffer, Timo Streubel, Robert Koch, Iris Holzinger, Dennis Makarov, Denys Schmidt, Oliver G. Ehresmann, Arno TI Magnetically Patterned Rolled-Up Exchange Bias Tubes: A Paternoster for Superparamagnetic Beads SO ACS NANO LA English DT Article DE rolled-up tube; exchange bias; ion bombardment induced magnetic patterning; particle transport; superparamagnetic beads; lab-in-a-tube; lab-on-a-chip ID PARTICLE-TRANSPORT; BIOSENSING APPLICATIONS; SENSING APPLICATIONS; ION-BOMBARDMENT; LAYER SYSTEMS; JANUS MOTORS; NANOMEMBRANES; MANIPULATION; FIELD; CELLS AB We realized a deterministic transport system for super paramagnetic microbeads through micrometer-sized tubes acting as channels. Beads are moved stepwise in a paternoster-like manner through the tube and back on top of it by weak magnetic field pulses without changing the field pulse polarity and taking advantage of the magnetic stray field emerging from the tubular structures. The microtubes are engineered by rolling up exchange bias layer systems, magnetically patterned into parallel stripe magnetic domains. In this way, the tubes possess distinct azimuthally aligned magnetic domain patterns. This transport mechanism features high step velocities and remote control of not only the direction and trajectory but also the velocity of the transport without the need of fuel or catalytic material. Therefore, this approach has the potential to impact several fields of 3D applications in biotechnology, including, particle transport related phenomena in lab-on-a-chip and. lab-in-a-tube devices. C1 [Ueltzhoeffer, Timo; Koch, Iris; Holzinger, Dennis; Ehresmann, Arno] Univ Kassel, Inst Phys, Heinrich Plett Str 40, D-34132 Kassel, Germany. [Ueltzhoeffer, Timo; Koch, Iris; Holzinger, Dennis; Ehresmann, Arno] Univ Kassel, Ctr Interdisciplinary Nanostruct Sci & Technol CI, Heinrich Plett Str 40, D-34132 Kassel, Germany. [Streubel, Robert; Makarov, Denys; Schmidt, Oliver G.] Leibniz Inst Solid State & Mat Res Dresden IFW Dr, Inst Integrat Nanosci, Helmholtzstr 20, D-01069 Dresden, Germany. [Streubel, Robert] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Makarov, Denys] Helmholtz Zentrum Dresden Rossendorf eV, Inst Ion Beam Phys & Mat Res, Bautzner Landstr 400, D-01328 Dresden, Germany. [Schmidt, Oliver G.] Tech Univ Chemnitz, Mat Syst Nanoelect, Str Nationen 62, D-09111 Chemnitz, Germany. RP Ueltzhoffer, T (reprint author), Univ Kassel, Inst Phys, Heinrich Plett Str 40, D-34132 Kassel, Germany.; Ueltzhoffer, T (reprint author), Univ Kassel, Ctr Interdisciplinary Nanostruct Sci & Technol CI, Heinrich Plett Str 40, D-34132 Kassel, Germany. EM timo.ueltzhoeffer@physik.uni-kassel.de RI Makarov, Denys/G-1025-2011; Ehresmann, Arno/E-6853-2010 OI Ehresmann, Arno/0000-0002-0981-2289 FU European Research Council under the European Union [306277]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231] FX This work is financed in part via the European Research Council under the European Union's Seventh Framework program (FP7/2007-2013)/ERC grant agreement no. 306277. R.S. acknowledges financial support by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 in the Nonequilibrium Magnetic Materials program. NR 52 TC 1 Z9 1 U1 13 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8491 EP 8498 DI 10.1021/acsnano.6b03566 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300041 PM 27529182 ER PT J AU Lee, MS Wynn, TA Folven, E Chopdekar, RV Scholl, A Young, AT Retterer, ST Grepstad, JK Takamura, Y AF Lee, Michael S. Wynn, Thomas A. Folven, Erik Chopdekar, Rajesh V. Scholl, Andreas Young, Anthony T. Retterer, Scott T. Grepstad, Jostein K. Takamura, Yayoi TI Tailoring Spin Textures in Complex Oxide Micromagnets SO ACS NANO LA English DT Article DE complex oxides; micromagnetics; magnetic anisotropy; X-ray photoemission electron microscopy ID MAGNETIC-ANISOTROPY; THIN-FILMS; COLOSSAL MAGNETORESISTANCE; NANOSTRUCTURES; SKYRMION; STRAIN; TEMPERATURE; RACETRACK; DYNAMICS; MEMORY AB Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micro magnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magnetic parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films. C1 [Lee, Michael S.; Wynn, Thomas A.; Chopdekar, Rajesh V.; Takamura, Yayoi] Univ Calif Davis, Dept Mat Sci & Engn, One Shields Ave, Davis, CA 95616 USA. [Folven, Erik; Grepstad, Jostein K.] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway. [Scholl, Andreas; Young, Anthony T.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94703 USA. [Retterer, Scott T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Takamura, Y (reprint author), Univ Calif Davis, Dept Mat Sci & Engn, One Shields Ave, Davis, CA 95616 USA. EM ytakamura@ucdavis.edu RI Folven, Erik/D-5218-2013; OI Folven, Erik/0000-0003-4036-0505; Chopdekar, Rajesh/0000-0001-6727-6501 FU National Science Foundation [DMR 0747896, 1411250]; Research Council of Norway [190086/S10]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX Funding for these experiments was obtained from the National Science Foundation (DMR 0747896 and 1411250) and the Research Council of Norway (Contract No. 190086/S10). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Patterning of the micromagnets was carried out at the Center for Nanophase Materials Sciences, which is a U.S. DOE Office of Science User Facility. NR 39 TC 0 Z9 0 U1 14 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8545 EP 8551 DI 10.1021/acsnano.6b03770 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300047 PM 27615151 ER PT J AU Bedford, NM Showalter, AR Woehl, TJ Hughes, ZE Lee, S Reinhart, B Ertem, SP Coughlin, EB Ren, Y Walsh, TR Bunker, BA AF Bedford, Nicholas M. Showalter, Allison R. Woehl, Taylor J. Hughes, Zak E. Lee, Sungsik Reinhart, Benjamin Ertem, S. Piril Coughlin, E. Bryan Ren, Yang Walsh, Tiffany R. Bunker, Bruce A. TI Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials SO ACS NANO LA English DT Article DE peptide-enabled nanoparticles; bimetallic nanoparticles; atomic pair distribution function analysis; X-ray absorption spectroscopy; electrocatalysis ID X-RAY-DIFFRACTION; CORE-SHELL NANOPARTICLES; ANION-EXCHANGE MEMBRANES; MONTE-CARLO-SIMULATION; GOLD NANOPARTICLES; METHANOL OXIDATION; PHASE-STRUCTURE; FUEL-CELL; AU; PALLADIUM AB Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and. structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesized with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy, and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods was then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence dependence in both surface structure and surface composition. Replica exchange with solute tempering molecular dynamics simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are dearly observed in materials with identical bimetallic composition. Taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be leveraged for rational bimetallic nanoparticle design using peptide-enabled approaches. C1 [Bedford, Nicholas M.; Woehl, Taylor J.] NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA. [Showalter, Allison R.; Bunker, Bruce A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Hughes, Zak E.; Walsh, Tiffany R.] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3216, Australia. [Lee, Sungsik; Reinhart, Benjamin; Ren, Yang] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Ertem, S. Piril; Coughlin, E. Bryan] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. RP Bedford, NM (reprint author), NIST, Appl Chem & Mat Div, Boulder, CO 80305 USA. EM nicholas.bedford@nist.gov RI Walsh, Tiffany/C-2667-2009; Hughes, Zak/B-9835-2017; OI Walsh, Tiffany/0000-0002-0233-9484; Hughes, Zak/0000-0003-2166-9822; Ertem, S. Piril/0000-0001-5742-8831 FU U.S. Department of Energy (DOE) Office of Science User Facility [DE-AC02-06CH11357]; Royal Society of Chemistry (RSC); Australian Government; veski; Air Force Office for Scientific Research [FA9550-12-620 1-0226]; Army Research Office through a MURI award [W911NF-10-1-0520]; NSF FX The use of beamlines 11-ID-C and 12-BM of the Advanced Photon Source is supported by the U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Z.E.H. thanks the Royal Society of Chemistry (RSC) for travel funds made available under the Journal Grants for International Authors scheme to assist in facilitating the reported research. This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government. T.R.W. thanks veski for an Innovation Fellowship. This work was partially supported by the Air Force Office for Scientific Research (T.R.W., Grant No. FA9550-12-620 1-0226). S.P.E. and E.B.C. gratefully acknowledge financial support from the Army Research Office through a MURI award, W911NF-10-1-0520, and the central analytical facilities supported by the NSF-Sponsored MRSEC at UMass Amherst. We would like to thank Prof. Brian Gorman of the Colorado School of Mines with assistance with EDS mapping experiments. NR 92 TC 0 Z9 0 U1 44 U2 44 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8645 EP 8659 DI 10.1021/acsnano.6b03963 PG 15 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300057 PM 27583654 ER PT J AU Shin, Y Tao, JH Arey, BW Wang, CM Exarhos, GJ De Yoreo, JJ Sushko, ML Liu, J AF Shin, Yongsoon Tao, Jinhui Arey, Bruce W. Wang, Chongmin Exarhos, Gregory J. De Yoreo, James J. Sushko, Maria L. Liu, Jun TI Double Epitaxy as a Paradigm for Templated Growth of Highly Ordered Three-Dimensional Mesophase Crystals SO ACS NANO LA English DT Article DE crystal growth; epitaxy; self-assembly; porous materials ID PERIODIC MESOPOROUS ORGANOSILICAS; GENERALIZED GRADIENT APPROXIMATION; MOLECULAR-SCALE PERIODICITY; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HETERO-NANOSTRUCTURES; RAMAN-SPECTRA; BASIS-SET; PHASE; SYSTEMS AB Molecular templating and self-assembly are fundamental mechanisms for controlling the morphology of biominerals, while in synthetic two-dimensional layered materials similar levels of control over materials structure can be achieved through the epitaxial relationship with the substrate. In this study these two concepts are combined to provide an approach for the nucleation and growth of three-dimensional ordered mesophases on solid surfaces. A combined experimental and theoretical study revealed how atomic ordering of the substrate controls the structure of surfactant template and the orientation and morphology of the epitaxially grown inorganic material. This dual epitaxial relationship between the substrate, surfactant template, and inorganic mesophase gives rise to a highly ordered porous mesophase with a well-defined cubic lattice of pores. The level of control over the material's three-dimensional architecture achieved in this one-step synthesis is reminiscent of that in biomineralization. C1 [Shin, Yongsoon; Tao, Jinhui; Arey, Bruce W.; Wang, Chongmin; Exarhos, Gregory J.; De Yoreo, James J.; Sushko, Maria L.; Liu, Jun] Pacific Northwest Natl Lab, Richland, WA 99352 USA. RP Sushko, ML; Liu, J (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM maria.sushko@pnnl.gov; jun.liu@pnnl.gov FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy [KCO20105-FWP12152]; DOE's Office of Biological and Environmental Research FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under Award KCO20105-FWP12152. The TEM and SEM studies were conducted at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). Simulations were performed using PNNL Institutional Computing resources. PNNL is a multiprogram national laboratory operated by Battelle for the DOE. NR 56 TC 0 Z9 0 U1 19 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8670 EP 8675 DI 10.1021/acsnano.6b03999 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300059 PM 27576108 ER PT J AU Huang, SX Tatsumi, Y Ling, X Guo, HH Wang, ZQ Watson, G Puretzky, AA Geohegan, DB Kong, J Li, J Yang, T Saito, R Dresselhaus, MS AF Huang, Shengxi Tatsumi, Yuki Ling, Xi Guo, Huaihong Wang, Ziqiang Watson, Garrett Puretzky, Alexander A. Geohegan, David B. Kong, Jing Li, Ju Yang, Teng Saito, Riichiro Dresselhaus, Mildred S. TI In-Plane Optical Anisotropy of Layered Gallium Telluride SO ACS NANO LA English DT Article DE light-matter interaction; electron-photon interaction; polarization-dependent Raman spectroscopy; polarization-dependent optical extinction; group theory; optical transition selection rules ID BLACK PHOSPHORUS; THERMAL-CONDUCTIVITY; RAMAN-SPECTROSCOPY; ABSORPTION-EDGE; SINGLE-CRYSTALS; ATOMIC LAYERS; GATE; RES2; PHONONS; SEMICONDUCTORS AB Layered gallium telluride (GaTe) has attracted much attention recently, due to its extremely high photoresponsivity, short response time, and promising thermoelectric performance. Different from most commonly studied two-dimensional (2D) materials, GaTe has in-plane anisotropy and a low symmetry with the C-2h(3) space group. Investigating the in-plane optical anisotropy, including the electron photon and electron phonon interactions of GaTe is essential in realizing its applications in optoelectronics and thermoelectrics. In this work, the anisotropic light-matter interactions in the low-symmetry material GaTe are studied using anisotropic optical extinction and Raman spectroscopies as probes. Our polarized optical extinction spectroscopy reveals the weak anisotropy in optical extinction spectra for visible light of multilayer GaTe. Polarized Raman spectroscopy proves to be sensitive to the crystalline orientation of GaTe, and shows the intricate dependences of Raman anisotropy on flake thickness, photon and phonon energies. Such intricate dependences can be explained by theoretical analyses employing first-principles calculations and group theory. These studies are a crucial step toward the applications of GaTe especially in optoelectronics and thermoelectrics, and provide a general methodology for the study of the anisotropy of light-matter interactions in 2D layered materials with in-plane anisotropy. C1 [Huang, Shengxi; Ling, Xi; Kong, Jing; Dresselhaus, Mildred S.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Tatsumi, Yuki; Yang, Teng; Saito, Riichiro] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Guo, Huaihong] Liaoning Shihua Univ, Coll Sci, Fushun 113001, Peoples R China. [Wang, Ziqiang; Li, Ju] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Watson, Garrett; Dresselhaus, Mildred S.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Puretzky, Alexander A.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Yang, Teng] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. RP Ling, X; Dresselhaus, MS (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.; Dresselhaus, MS (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM xiling@mit.edu; millie@mgm.mit.edu RI Li, Ju/A-2993-2008; Saito, Riichiro/B-1132-2008; Yang, Teng/C-1651-2013 OI Li, Ju/0000-0002-7841-8058; NR 56 TC 4 Z9 4 U1 53 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2016 VL 10 IS 9 BP 8964 EP 8972 DI 10.1021/acsnano.6b05002 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX5DF UT WOS:000384399300095 PM 27529802 ER PT J AU Herklotz, A Guo, HW Wong, AT Lee, HN Rack, PD Ward, TZ AF Herklotz, Andreas Guo, Hangwen Wong, Anthony T. Lee, Ho Nyung Rack, Philip D. Ward, Thomas Z. TI Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials SO ADVANCED ELECTRONIC MATERIALS LA English DT Article ID MANGANITE; FILMS C1 [Herklotz, Andreas; Guo, Hangwen; Wong, Anthony T.; Lee, Ho Nyung; Ward, Thomas Z.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Guo, Hangwen] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Wong, Anthony T.; Rack, Philip D.] Univ Tennessee, Mat Sci & Engn, Knoxville, TN 37996 USA. [Rack, Philip D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ward, TZ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM wardtz@ornl.gov OI Ward, Thomas/0000-0002-1027-9186 FU US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under US DOE [DE-SC0002136] FX This effort was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (A.H., H.N.L., T.Z.W.), and under US DOE grant DE-SC0002136 (A.T.W., H.W.G., P.D.R.). Some measurements were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. NR 29 TC 0 Z9 0 U1 6 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD SEP PY 2016 VL 2 IS 9 AR 1600189 DI 10.1002/aelm.201600189 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DX5XK UT WOS:000384455800013 ER PT J AU Zheng, W Lin, JH Feng, W Xiao, K Qiu, YF Chen, XS Liu, GB Cao, WW Pantelides, ST Zhou, W Hu, PA AF Zheng, Wei Lin, Junhao Feng, Wei Xiao, Kai Qiu, Yunfeng Chen, XiaoShuang Liu, Guangbo Cao, Wenwu Pantelides, Sokrates T. Zhou, Wu Hu, PingAn TI Patterned Growth of P-Type MoS2 Atomic Layers Using Sol-Gel as Precursor SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILM TRANSISTORS; MONOLAYER MOS2; LARGE-AREA; MOLYBDENUM-DISULFIDE; GRAIN-BOUNDARY; PHASE GROWTH; PHOTOLUMINESCENCE; SCATTERING; MOBILITY AB 2D layered MoS2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS2 layers in large scale by using Mo-containing sol-gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS2 film due to the incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS2 atomic layers. The Mo containing sol-gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Furthermore, an atomically thin p-n junction is fabricated by the as-prepared MoS2, which shows strong rectifying behavior. C1 [Zheng, Wei; Feng, Wei; Qiu, Yunfeng; Chen, XiaoShuang; Liu, Guangbo; Hu, PingAn] Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150080, Peoples R China. [Zheng, Wei; Feng, Wei; Hu, PingAn] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150080, Peoples R China. [Lin, Junhao; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lin, Junhao; Pantelides, Sokrates T.; Zhou, Wu] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Xiao, Kai; Cao, Wenwu] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Hu, PA (reprint author), Harbin Inst Technol, Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150080, Peoples R China.; Hu, PA (reprint author), Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150080, Peoples R China.; Zhou, W (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM wu.zhou.stem@gmail.com; hupa@hit.edu.cn RI Cao, Wenwu/F-6091-2012; Zhou, Wu/D-8526-2011; Hu, Ping'an/C-1289-2013; Lin, Junhao/D-7980-2015 OI Cao, Wenwu/0000-0002-2447-1486; Zhou, Wu/0000-0002-6803-1095; Lin, Junhao/0000-0002-2195-2823 FU National Natural Science Foundation of China (NSFC) [61172001, 21373068]; National Key Basic Research Program of China (973 Program) [2013CB632900]; U.S. DOE [DE-FG02-09ER46554]; Department of Energy Office of Science, Basic Energy Sciences, Materials Science and Engineering Directorate; ORNL's Center for Nanophase Materials Sciences (CNMS); Scientific User Facilities Division, Office of Basic Energy Sciences of U.S. Department of Energy; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX W.Z. and J.L. contributed equally to this work. This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 61172001 and 21373068), the National Key Basic Research Program of China (973 Program) under Grant No. 2013CB632900. J.L. and S.T.P. acknowledge the support from U.S. DOE Grant DE-FG02-09ER46554. W.Z. acknowledges support by the Department of Energy Office of Science, Basic Energy Sciences, Materials Science and Engineering Directorate. The STEM characterization was supported in part through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences of U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which was supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 0 Z9 0 U1 45 U2 45 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD SEP PY 2016 VL 26 IS 35 BP 6371 EP 6379 DI 10.1002/adfm.201602494 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DY0TM UT WOS:000384809100016 ER PT J AU Lan, LY Chen, ZM Hu, Q Ying, L Zhu, R Liu, F Russell, TP Huang, F Cao, Y AF Lan, Liuyuan Chen, Zhiming Hu, Qin Ying, Lei Zhu, Rui Liu, Feng Russell, Thomas P. Huang, Fei Cao, Yong TI High-Performance Polymer Solar Cells Based on a Wide-Bandgap Polymer Containing Pyrrolo[3,4-f]benzotriazole-5,7-dione with a Power Conversion Efficiency of 8.63% SO ADVANCED SCIENCE LA English DT Article ID GAP CONJUGATED POLYMERS; OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC PROPERTIES; MORPHOLOGY CONTROL; MOLECULAR DESIGN; COPOLYMERS; SINGLE; BENZODITHIOPHENE; BENZOTHIADIAZOLE; AGGREGATION AB A novel donor-acceptor type conjugated polymer based on a building block of 4,8-di(thien-2-yl)-6-octyl-2-octyl-5 H-pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione (TZBI) as the acceptor unit and 4,8-bis(5-(2-ethylhexyl) thiophen-2-yl)benzo[1,2-b : 4,5-b']dithiophene as the donor unit, named as PTZBIBDT, is developed and used as an electron-donating material in bulk-heterojunction polymer solar cells. The resulting copolymer exhibits a wide bandgap of 1.81 eV along with relatively deep highest occupied molecular orbital energy level of -5.34 eV. Based on the optimized processing conditions, including thermal annealing, and the use of a water/alcohol cathode interlayer, the single-junction polymer solar cell based on PTZBIBDT: PC71BM ([6,6]-phenyl-C-71-butyric acid methyl ester) blend film affords a power conversion efficiency of 8.63% with an open-circuit voltage of 0.87 V, a short circuit current of 13.50 mA cm(-2), and a fill factor of 73.95%, which is among the highest values reported for wide-bandgap polymers-based single-junction organic solar cells. The morphology studies on the PTZBIBDT: PC71BM blend film indicate that a fibrillar network can be formed and the extent of phase separation can be manipulated by thermal annealing. These results indicate that the TZBI unit is a very promising building block for the synthesis of wide-bandgap polymers for high-performance single-junction and tandem (or multijunction) organic solar cells. C1 [Lan, Liuyuan; Chen, Zhiming; Ying, Lei; Huang, Fei; Cao, Yong] South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China. [Hu, Qin; Zhu, Rui] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Beijing 100871, Peoples R China. [Liu, Feng; Russell, Thomas P.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Ying, L; Huang, F (reprint author), South China Univ Technol, State Key Lab Luminescent Mat & Devices, Inst Polymer Optoelect Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China.; Liu, F; Russell, TP (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM msleiying@scut.edu.cn; iamfengliu@gmail.com; russell@mail.pse.edu; msfhuang@scut.edu.cn RI Hu, Qin/N-3493-2014; Zhu, Rui/E-7572-2010; Zhu, Rui/F-5244-2011; Liu, Feng/J-4361-2014; OI Hu, Qin/0000-0003-3089-1070; Zhu, Rui/0000-0001-7631-3589; Zhu, Rui/0000-0001-7631-3589; Liu, Feng/0000-0002-5572-8512; Ying, Lei/0000-0003-1137-2355 FU Ministry of Science and Technology [2014CB643501]; Natural Science Foundation of China [51303056, 21520102006, 51521002, 21490573]; Guangdong Natural Science Foundation [S2012030006232]; U.S. Office of Naval Research [N00014-15-1-2244]; DOE, Office of Science, and Office of Basic Energy Sciences FX The work was financially supported by the Ministry of Science and Technology (Grant No. 2014CB643501), the Natural Science Foundation of China (Grant Nos. 51303056, 21520102006, 51521002, and 21490573) and Guangdong Natural Science Foundation (Grant No. S2012030006232). F.L. and T.P.R. were supported by the U.S. Office of Naval Research under contract N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, and Molecular Foundry, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences. NR 58 TC 3 Z9 3 U1 40 U2 40 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2198-3844 J9 ADV SCI JI Adv. Sci. PD SEP PY 2016 VL 3 IS 9 AR 1600032 DI 10.1002/advs.201600032 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX9RH UT WOS:000384732300007 PM 27711267 ER PT J AU Liu, T Meng, D Cai, YH Sun, XB Li, Y Huo, LJ Liu, F Wang, ZH Russell, TP Sun, YM AF Liu, Tao Meng, Dong Cai, Yunhao Sun, Xiaobo Li, Yan Huo, Lijun Liu, Feng Wang, Zhaohui Russell, Thomas P. Sun, Yanming TI High-Performance Non-Fullerene Organic Solar Cells Based on a Selenium-Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor SO ADVANCED SCIENCE LA English DT Article ID ELECTRON-ACCEPTORS; ABSORPTION; EFFICIENCY; SEMICONDUCTORS; DIIMIDE; PHOTOVOLTAICS AB A novel polymer donor (PBDTS-Se) is designed to match with a non-fullerene acceptor (SdiPBI-S). The corresponding solar cells show a high efficiency of 8.22%, which result from synergetic improvements of light harvesting, charge carrier transport and collection, and morphology. The results indicate that rational design of novel donor materials is important for non-fullerene organic solar cells. C1 [Liu, Tao; Cai, Yunhao; Sun, Xiaobo; Huo, Lijun; Sun, Yanming] Beihang Univ, Sch Chem & Environm, Heeger Beijing Res & Dev Ctr, Beijing 100191, Peoples R China. [Meng, Dong; Li, Yan; Wang, Zhaohui] Chinese Acad Sci, Inst Chem, Key Lab Organ Solids, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China. [Liu, Feng] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Russell, Thomas P.] Univ Massachusetts, Polymer Sci & Engn Dept, Amherst, MA 01003 USA. RP Huo, LJ; Sun, YM (reprint author), Beihang Univ, Sch Chem & Environm, Heeger Beijing Res & Dev Ctr, Beijing 100191, Peoples R China.; Liu, F (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM huolijun@iccas.ac.cn; iamfengliu@gmail.com; sunym@buaa.edu.cn RI Wang, Zhaohui/E-2326-2012; sun, yanming/G-3941-2011; Liu, Feng/J-4361-2014 OI Wang, Zhaohui/0000-0001-5786-5660; Liu, Feng/0000-0002-5572-8512 FU National Natural Science Foundation of China (NSFC) [51473009, 51273203, 51261160496]; International Science and Technology Cooperation Program of China [2014DFA52820]; 111 project [B14009]; U.S. Office of Naval Research [N00014-15-1-2244]; Department of Energy (DOE), Office of Science, and Office of Basic Energy Sciences FX This work was financially supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51473009, 51273203, and 51261160496), the International Science and Technology Cooperation Program of China (Grant No. 2014DFA52820), and the 111 project (B14009). T.P.R. and F.L. was supported by the U.S. Office of Naval Research under Contract No. N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, and Molecular Foundry, Lawrence Berkeley National Laboratory, which was supported by the Department of Energy (DOE), Office of Science, and Office of Basic Energy Sciences. NR 37 TC 10 Z9 10 U1 58 U2 58 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2198-3844 J9 ADV SCI JI Adv. Sci. PD SEP PY 2016 VL 3 IS 9 AR 1600117 DI 10.1002/advs.201600117 PG 7 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DX9RH UT WOS:000384732300013 PM 27711261 ER PT J AU Wang, Z Daemen, LL Cheng, YQ Mamontov, E Bonnesen, PV Hong, KL Ramirez-Cuesta, AJ Yin, PC AF Wang, Zhe Daemen, Luke L. Cheng, Yongqiang Mamontov, Eugene Bonnesen, Peter V. Hong, Kunlun Ramirez-Cuesta, Anibal J. Yin, Panchao TI Nanoconfinement Inside Molecular Metal Oxide Clusters: Dynamics and Modified Encapsulation Behavior SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE confinement; dynamics; encapsulation; neutron scattering; polyoxometaltes ID SINGLE-PARTICLE DYNAMICS; NEUTRON-SCATTERING; SUPERCOOLED WATER; BUILDING-BLOCKS; POROUS CAPSULE; FLEXIBLE PORES; CONFINEMENT; TEMPERATURES; CHEMISTRY; CATALYSIS AB Encapsulation behavior, as well as the presence of internal catalytically active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo-132} as an encapsulation host and a nanoreactor. Due to its well-defined and tunable cluster structures, and nanoscaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under nanoconfinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton of the internal ligands. NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation. C1 [Wang, Zhe; Yin, Panchao] Oak Ridge Natl Lab, Shull Wollan Ctr, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Daemen, Luke L.; Cheng, Yongqiang; Mamontov, Eugene; Ramirez-Cuesta, Anibal J.; Yin, Panchao] Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Bonnesen, Peter V.; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Wang, Zhe] Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP Yin, PC (reprint author), Oak Ridge Natl Lab, Shull Wollan Ctr, Neutron Sci Directorate, Oak Ridge, TN 37831 USA.; Yin, PC (reprint author), Oak Ridge Natl Lab, Chem & Engn Mat Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM yinp@ornl.gov RI Yin, Panchao/J-3322-2013; Mamontov, Eugene/Q-1003-2015; Hong, Kunlun/E-9787-2015; OI Yin, Panchao/0000-0003-2902-8376; Mamontov, Eugene/0000-0002-5684-2675; Hong, Kunlun/0000-0002-2852-5111; Ramirez-Cuesta, Anibal /0000-0003-1231-0068 NR 57 TC 0 Z9 1 U1 4 U2 4 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD SEP PY 2016 VL 22 IS 40 BP 14131 EP 14136 DI 10.1002/chem.201603239 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA DX9FE UT WOS:000384698200038 PM 27464027 ER PT J AU Newton, GN Hoshino, N Matsumoto, T Shiga, T Nakano, M Nojiri, H Wernsdorfer, W Furukawa, Y Oshio, H AF Newton, Graham N. Hoshino, Norihisa Matsumoto, Takuto Shiga, Takuya Nakano, Motohiro Nojiri, Hiroyuki Wernsdorfer, Wolfgang Furukawa, Yuji Oshio, Hiroki TI Studies on the Magnetic Ground State of a Spin Mobius Strip SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE cluster compounds; cyclodextrins; macrocyclic ligands; magnetic properties; vanadium ID SINGLE-MOLECULE MAGNETS; WEAK FERROMAGNETISM; LIQUID-CRYSTALS; METAL; EPR; IDENTIFICATION; TRANSITION; COMPLEXES; WHEELS; RINGS AB Here we report the synthesis, structure and detailed characterisation of three n-membered oxovanadium rings, Na-n[(V=O)(n)Na-n(H2O)(n)(alpha,beta, or gamma-CD)(2)]center dot mH(2)O (n = 6, 7, or 8), prepared by the reactions of (V=O)SO4 center dot xH(2)O with alpha, beta, or gamma-cyclodextrins (CDs) and NaOH in water. Their alternating heterometallic vanadium/sodium cyclic core structures were sandwiched between two CD moieties such that O-Na-O groups separated the neighbouring vanadyl ions. Antiferromagnetic interactions between the S = 1/2 vanadyl ions led to S = 0 ground states for the even-membered rings, but to two quasi-degenerate S = 1/2 states for the spin-frustrated heptanuclear cluster. C1 [Newton, Graham N.; Hoshino, Norihisa; Matsumoto, Takuto; Shiga, Takuya; Oshio, Hiroki] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tennodai 1-1-1, Tsukuba, Ibaraki 3058571, Japan. [Newton, Graham N.] Univ Nottingham, Sch Chem, Nottingham NG7 2RD, England. [Nakano, Motohiro] Osaka Univ, Grad Sch Sci, Res Ctr Struct Thermodynam, Machikaneyama 1-1, Toyonaka, Osaka 5600043, Japan. [Nojiri, Hiroyuki] Tohoku Univ, Inst Mat Res, Aoba Ku, Katahira 2-1-1, Sendai, Miyagi 9808577, Japan. [Wernsdorfer, Wolfgang] Univ Grenoble Alpes, CNRS, Inst NEEL, F-38000 Grenoble, France. [Furukawa, Yuji] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Furukawa, Yuji] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Oshio, H (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tennodai 1-1-1, Tsukuba, Ibaraki 3058571, Japan. EM oshio@chem.tsukuba.ac.jp RI Wernsdorfer, Wolfgang/M-2280-2016; Newton, Graham/A-3667-2013; Nojiri, Hiroyuki/B-3688-2011 OI Wernsdorfer, Wolfgang/0000-0003-4602-5257; Newton, Graham/0000-0003-2246-4466; FU Ministry of Education, Culture, Sports, Science and Technology, Japan; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energyby Iowa State University [DE-AC02-07CH11358] FX This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. A part of this research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the U.S. Department of Energyby Iowa State University under Contract No. DE-AC02-07CH11358. This work was also partly performed under the Inter-University Cooperative Research Program of the Institute for Materials Research, Tohoku University. NR 44 TC 0 Z9 0 U1 13 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD SEP PY 2016 VL 22 IS 40 BP 14205 EP 14212 DI 10.1002/chem.201602439 PG 8 WC Chemistry, Multidisciplinary SC Chemistry GA DX9FE UT WOS:000384698200017 PM 27546317 ER PT J AU Wong-Ng, W Culp, JT Chen, YS AF Wong-Ng, Winnie Culp, Jeffrey T. Chen, Yu-Sheng TI Crystallography of Representative MOFs Based on Pillared Cyanonickelate (PICNIC) Architecture SO CRYSTALS LA English DT Article DE MOFs; Flexible Ni(CN)(4)-based metal-organic frameworks; crystallography; structure and adsorption properties ID METAL-ORGANIC FRAMEWORK; POROUS COORDINATION POLYMER; SELECTIVE CO2 CAPTURE; CARBON-DIOXIDE CAPTURE; RAY-POWDER DIFFRACTION; SYNCHROTRON X-RAY; IN-SITU; CRYSTAL-STRUCTURES; HYBRID FRAMEWORKS; MOLECULAR-SIEVE AB The pillared layer motif is a commonly used route to porous coordination polymers or metal organic frameworks (MOFs). Materials based on the pillared cyano-bridged architecture, [Ni'(L) Ni(CN)(4)](n) (L = pillar organic ligands), also known as PICNICs, have been shown to be especially diverse where pore size and pore functionality can be varied by the choice of pillar organic ligand. In addition, a number of PICNICs form soft porous structures that show reversible structure transitions during the adsorption and desorption of guests. The structural flexibility in these materials can be affected by relatively minor differences in ligand design, and the physical driving force for variations in host-guest behavior in these materials is still not known. One key to understanding this diversity is a detailed investigation of the crystal structures of both rigid and flexible PICNIC derivatives. This article gives a brief review of flexible MOFs. It also reports the crystal structures of five PICNICS from our laboratories including three 3-D porous frameworks (Ni-Bpene, NI-BpyMe, Ni-BpyNH(2)), one 2-D layer (Ni-Bpy), and one 1-D chain (Ni-Naph) compound. The sorption data of BpyMe for CO2, CH4 and N-2 is described. The important role of NH3 (from the solvent of crystallization) as blocking ligands which prevent the polymerization of the 1-D chains and 2-D layers to become 3D porous frameworks in the Ni-Bpy and Ni-Naph compounds is also addressed. C1 [Wong-Ng, Winnie] NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. [Culp, Jeffrey T.] US DOE, Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. [Culp, Jeffrey T.] AECOM, South Pk, PA 15219 USA. [Chen, Yu-Sheng] Univ Chicago, ChemMatCARS, Argonne, IL 60439 USA. RP Wong-Ng, W (reprint author), NIST, Mat Measurement Sci Div, Gaithersburg, MD 20899 USA. EM winnie.wong-ng@nist.gov; jeffrey.culp@netl.doe.gov; yschen@cars.uchicago.edu FU National Energy Technology [DE-FE0004000]; National Science Foundation/Department of Energy [NSF/CHE-1346572]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This technical effort was performed in support of the National Energy Technology's ongoing research in CO2 capture under the Research Contract DE-FE0004000. The authors gratefully acknowledge ChemMatCARS Sector 15 which is principally supported by the National Science Foundation/Department of Energy under grant number NSF/CHE-1346572. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 101 TC 0 Z9 0 U1 7 U2 7 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 2073-4352 J9 CRYSTALS JI Crystals PD SEP PY 2016 VL 6 IS 9 AR 108 DI 10.3390/cryst6090108 PG 27 WC Crystallography; Materials Science, Multidisciplinary SC Crystallography; Materials Science GA DX6XQ UT WOS:000384529800008 ER PT J AU Storey, JME Bunce, MP Clarke, EM Edmonds, JW Findlay, RH Ritchie, SMC Eyers, L McMurry, ZA Smoot, JC AF Storey, John M. E. Bunce, Michael P. Clarke, Edwina M. Edmonds, Jennifer W. Findlay, Robert H. Ritchie, Stephen M. C. Eyers, Laurent McMurry, Zackery A. Smoot, James C. TI Pollutant emissions and environmental assessment of ethyl 3-ethoxybutyrate, a potential renewable fuel SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Poly-3-hydroxybutyrate (PHB); Biofuels; Criteria pollutants; Fuel oxygenates; Dynamometer; Multimedia analysis; Environmental persistence ID VEHICLE EXHAUST EMISSIONS; PARTICULATE MATTER; GASOLINE; ETHANOL; ISOBUTANOL; ADDITIVES; COMPONENT; IMPACT; ENGINE; SHOCKS AB Renewable and bio-based transportation fuel sources can lower the life-cycle greenhouse gas emissions from vehicles. We present an initial assessment of ethyl 3-ethoxybutyrate (EEB) as a biofuel in terms of its performance as a fuel oxygenate and its persistence in the environment. EEB can be produced from ethanol and poly-3-hydroxybutyrate, a bacterial storage polymer that can be produced from non-food biomass and other organic feedstocks. Physicochemical properties of EEB and fuel-relevant properties of EEB-gasoline blends were measured, emissions of criteria pollutants from EEB as a gasoline additive in a production vehicle were evaluated, and fate and persistence of EEB in the environment were estimated. EEB solubility in water was 25.8 g/L, its K-ow was 1.8, and its Henry's Law constant was 1.04 x 10(-5) atm-m(3)/mole. The anti-knock index values for 5 and 20 % v/v EEB-gasoline blends were 91.6 and 91.9, respectively. Reductions in fuel economy were consistent with the level of oxygenation, and criteria emissions were met by the vehicle operated over the urban dynamometer driving cycle (FTP 75). Predicted environmental persistence ranged from 15 to 30 days which indicates that EEB is not likely to be a persistent organic pollutant. In combination, these results suggest a high potential for the use of EEB as a renewable fuel source. C1 [Storey, John M. E.; Bunce, Michael P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. [Bunce, Michael P.] MAHLE Powertrain LLC, Farmington Hills, MI 48337 USA. [Clarke, Edwina M.; Edmonds, Jennifer W.; Findlay, Robert H.] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA. [Clarke, Edwina M.] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA. [Edmonds, Jennifer W.] Nevada State Coll, Phys & Life Sci, Henderson, NV 89002 USA. [Ritchie, Stephen M. C.] Univ Alabama, Dept Chem & Biol Engn, Tuscaloosa, AL 35487 USA. [Eyers, Laurent; McMurry, Zackery A.; Smoot, James C.] Ce Solut Inc, Woodland, CA 95695 USA. [McMurry, Zackery A.] Vitruvian Energy SPC, Seattle, WA 98107 USA. RP Smoot, JC (reprint author), Ce Solut Inc, Woodland, CA 95695 USA. EM jc_smoot@yahoo.com FU National Science Foundation [IIP-1013100] FX We thank J. Brown for technical assistance provided during EEB synthesis and purification and the FEERC technical support staff for assistance provided during vehicle testing. C/e- Solutions, Inc. received financial support from the National Science Foundation (grant no. IIP-1013100). The sponsor had no involvement in the design, execution, or publication of the work reported here. C/e- Solutions, Inc. personnel were involved in all aspects of the work. NR 39 TC 0 Z9 0 U1 2 U2 2 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD SEP PY 2016 VL 23 IS 18 BP 18575 EP 18584 DI 10.1007/s11356-016-7052-z PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA DX5QH UT WOS:000384435800064 PM 27296930 ER PT J AU Lestinsky, M Andrianov, V Aurand, B Bagnoud, V Bernhardt, D Beyer, H Bishop, S Blaum, K Bleile, A Borovik, A Bosch, F Bostock, CJ Brandau, C Brauning-Demian, A Bray, I Davinson, T Ebinger, B Echler, A Egelhof, P Ehresmann, A Engstrom, M Enss, C Ferreira, N Fischer, D Fleischmann, A Forster, E Fritzsche, S Geithner, R Geyer, S Glorius, J Gobel, K Gorda, O Goullon, J Grabitz, P Grisenti, R Gumberidze, A Hagmann, S Heil, M Heinz, A Herfurth, F Hess, R Hillenbrand, PM Hubele, R Indelicato, P Kallberg, A Kester, O Kiselev, O Knie, A Kozhuharov, C Kraft-Bermuth, S Kuhl, T Lane, G Litvinov, YA Liesen, D Ma, XW Martin, R Moshammer, R Muller, A Namba, S Neumeyer, P Nilsson, T Nortershauser, W Paulus, G Petridis, N Reed, M Reifarth, R Reiss, P Rothhardt, J Sanchez, R Sanjari, MS Schippers, S Schmidt, HT Schneider, D Scholz, P Schuch, R Schulz, M Shabaev, V Simonsson, A Sjoholm, J Skeppstedt, O Sonnabend, K Spillmann, U Stiebing, K Steck, M Stohlker, T Surzhykov, A Torilov, S Trabert, E Trassinelli, M Trotsenko, S Tu, XL Uschmann, I Walker, PM Weber, G Winters, DFA Woods, PJ Zhao, HY Zhang, YH AF Lestinsky, M. Andrianov, V. Aurand, B. Bagnoud, V. Bernhardt, D. Beyer, H. Bishop, S. Blaum, K. Bleile, A. Borovik, At., Jr. Bosch, F. Bostock, C. J. Brandau, C. Braeuning-Demian, A. Bray, I. Davinson, T. Ebinger, B. Echler, A. Egelhof, P. Ehresmann, A. Engstroem, M. Enss, C. Ferreira, N. Fischer, D. Fleischmann, A. Foerster, E. Fritzsche, S. Geithner, R. Geyer, S. Glorius, J. Goebel, K. Gorda, O. Goullon, J. Grabitz, P. Grisenti, R. Gumberidze, A. Hagmann, S. Heil, M. Heinz, A. Herfurth, F. Hess, R. Hillenbrand, P. -M. Hubele, R. Indelicato, P. Kaellberg, A. Kester, O. Kiselev, O. Knie, A. Kozhuharov, C. Kraft-Bermuth, S. Kuehl, T. Lane, G. Litvinov, Yu. A. Liesen, D. Ma, X. W. Maertin, R. Moshammer, R. Mueller, A. Namba, S. Neumeyer, P. Nilsson, T. Noertershaeuser, W. Paulus, G. Petridis, N. Reed, M. Reifarth, R. Reiss, P. Rothhardt, J. Sanchez, R. Sanjari, M. S. Schippers, S. Schmidt, H. T. Schneider, D. Scholz, P. Schuch, R. Schulz, M. Shabaev, V. Simonsson, A. Sjoholm, J. Skeppstedt, O. Sonnabend, K. Spillmann, U. Stiebing, K. Steck, M. Stohlker, T. Surzhykov, A. Torilov, S. Trabert, E. Trassinelli, M. Trotsenko, S. Tu, X. L. Uschmann, I. Walker, P. M. Weber, G. Winters, D. F. A. Woods, P. J. Zhao, H. Y. Zhang, Y. H. CA CRYRING ESR Res Community TI Physics book: CRYRING@ESR SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Review ID ELECTRON-IMPACT IONIZATION; HIGHLY-CHARGED IONS; X-RAY SPECTROSCOPY; DIFFERENTIAL CROSS-SECTIONS; LAMB SHIFT MEASUREMENTS; VERY-LOW ENERGIES; REVERSED PHOTOIONIZATION PROCESS; ABSOLUTE FREQUENCY MEASUREMENTS; RECOMBINATION RATE COEFFICIENTS; COPLANAR ASYMMETRIC GEOMETRY C1 [Lestinsky, M.; Andrianov, V.; Aurand, B.; Bagnoud, V.; Beyer, H.; Bleile, A.; Bosch, F.; Brandau, C.; Braeuning-Demian, A.; Echler, A.; Egelhof, P.; Gorda, O.; Grabitz, P.; Grisenti, R.; Gumberidze, A.; Hagmann, S.; Heil, M.; Herfurth, F.; Hess, R.; Hillenbrand, P. -M.; Kester, O.; Kiselev, O.; Kozhuharov, C.; Litvinov, Yu. A.; Liesen, D.; Petridis, N.; Reifarth, R.; Sanchez, R.; Sanjari, M. S.; Sonnabend, K.; Spillmann, U.; Steck, M.; Stohlker, T.; Trotsenko, S.; Tu, X. L.; Weber, G.; Winters, D. F. A.] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. [Andrianov, V.] Lomonosov Moscow State Univ, Inst Nucl Phys, Moscow, Russia. [Andrianov, V.; Bernhardt, D.; Echler, A.; Kraft-Bermuth, S.; Mueller, A.; Scholz, P.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Bishop, S.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Blaum, K.; Ferreira, N.; Fischer, D.; Goullon, J.; Hubele, R.; Litvinov, Yu. A.; Moshammer, R.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Borovik, At., Jr.; Brandau, C.; Ebinger, B.; Schippers, S.; Scholz, P.] Univ Giessen, Inst Phys 1, D-35392 Giessen, Germany. [Bostock, C. J.; Bray, I.] Curtin Univ Technol, Inst Theoret Phys, Perth, WA, Australia. [Davinson, T.; Woods, P. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Ehresmann, A.; Knie, A.; Reiss, P.] Univ Kassel, Inst Phys, D-34132 Kassel, Germany. [Ehresmann, A.; Knie, A.; Reiss, P.] Univ Kassel, CINSaT, D-34132 Kassel, Germany. [Engstroem, M.; Kaellberg, A.; Schmidt, H. T.; Schuch, R.; Simonsson, A.; Sjoholm, J.; Skeppstedt, O.] Stockholm Univ, Fysikum, S-10691 Stockholm, Sweden. [Enss, C.; Fleischmann, A.] Heidelberg Univ, Kirchhoff Inst Phys, D-69120 Heidelberg, Germany. [Foerster, E.; Fritzsche, S.; Maertin, R.; Paulus, G.; Rothhardt, J.; Stohlker, T.; Trotsenko, S.; Uschmann, I.; Weber, G.] Helmholtz Inst Jena, D-07743 Jena, Germany. [Indelicato, P.] Univ Paris 06, CNRS, Ecole Normale Super, Lab Kastler Brossel, F-75252 Paris 05, France. [Geyer, S.; Glorius, J.; Goebel, K.; Kester, O.; Reifarth, R.; Schulz, M.; Sonnabend, K.; Stiebing, K.] Goethe Univ Frankfurt, D-60438 Frankfurt, Germany. [Lane, G.; Reed, M.] Australian Natl Univ, RSPE, Dept Nucl Phys, Acton, ACT 2601, Australia. [Ma, X. W.; Tu, X. L.; Zhao, H. Y.; Zhang, Y. H.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Namba, S.] Hiroshima Univ, Grad Sch Engn, Hiroshima 7398527, Japan. [Neumeyer, P.] ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Heinz, A.; Nilsson, T.] Chalmers, Dept Phys, S-41296 Gothenburg, Sweden. [Kuehl, T.; Noertershaeuser, W.] Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Schneider, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Schulz, M.] Missouri Univ Sci & Technol, Dept Phys, Rolla, MO 65409 USA. [Schulz, M.] Missouri Univ Sci & Technol, LAMOR, Rolla, MO USA. [Shabaev, V.; Torilov, S.] Sankt Petersburg State Univ, Dept Phys, St Petersburg 198504, Russia. [Surzhykov, A.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Trabert, E.] Ruhr Univ Bochum, Astron Inst, D-44780 Bochum, Germany. [Trassinelli, M.] CNRS, UMR7588, Inst NanoSci Paris, F-75015 Paris, France. [Trassinelli, M.] Univ Paris 06, F-75015 Paris, France. [Walker, P. M.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. RP Lestinsky, M (reprint author), GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany. RI Bray, Igor/B-8586-2009; Muller, Alfred/A-3548-2009; Torilov, Sergey/I-6325-2013; Rothhardt, Jan/J-5365-2016; Nilsson, Thomas/B-7705-2009; Shabaev, Vladimir/J-7400-2013; Schippers, Stefan/A-7786-2008; Nortershauser, Wilfried/A-6671-2013; Gobel, Kathrin/B-8531-2016; Ehresmann, Arno/E-6853-2010; Indelicato, Paul/D-7636-2011; Heinz, Andreas/E-3191-2014 OI Sanjari, Shahab/0000-0001-7321-0429; Bray, Igor/0000-0001-7554-8044; Muller, Alfred/0000-0002-0030-6929; Torilov, Sergey/0000-0001-6566-7525; Nilsson, Thomas/0000-0002-6990-947X; Shabaev, Vladimir/0000-0002-2769-6891; Schippers, Stefan/0000-0002-6166-7138; Nortershauser, Wilfried/0000-0001-7432-3687; Gobel, Kathrin/0000-0003-2832-8465; Ehresmann, Arno/0000-0002-0981-2289; Indelicato, Paul/0000-0003-4668-8958; FU Hesse-State Initiative for Development of Scientific and Economic Excellence (LOEWE) in the LOEWE-Research Cluster Electron dynamics of CHiral systems (ELCH); Helmholtz-CAS Joint Research Group [HCJRG-108]; European Research Council (ERC) under the European Union [682841 "ASTRUm"] FX This work was supported in part by the Hesse-State Initiative for Development of Scientific and Economic Excellence (LOEWE) in the LOEWE-Research Cluster Electron dynamics of CHiral systems (ELCH), the Helmholtz-CAS Joint Research Group (HCJRG-108), and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 682841 "ASTRUm"). NR 337 TC 0 Z9 0 U1 20 U2 20 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 EI 1951-6401 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD SEP PY 2016 VL 225 IS 5 BP 797 EP 882 DI 10.1140/epjst/e2016-02643-6 PG 86 WC Physics, Multidisciplinary SC Physics GA DX8YA UT WOS:000384676700001 ER PT J AU Chen, YK Zhang, D Jin, ZY Chen, XH Zu, SH Huang, WL Gan, SW AF Chen, Yangkang Zhang, Dong Jin, Zhaoyu Chen, Xiaohong Zu, Shaohuan Huang, Weilin Gan, Shuwei TI Simultaneous denoising and reconstruction of 5-D seismic data via damped rank-reduction method SO GEOPHYSICAL JOURNAL INTERNATIONAL LA English DT Article DE Time-series analysis; Image processing; Fourier analysis; Inverse theory ID SINGULAR-VALUE DECOMPOSITION; NUCLEAR NORM MINIMIZATION; RANDOM NOISE ATTENUATION; DATA INTERPOLATION; SEISLET TRANSFORM; SHAPING REGULARIZATION; TRACE INTERPOLATION; DATA RECOVERY; DOMAIN; COMPLETION AB The Cadzow rank-reduction method can be effectively utilized in simultaneously denoising and reconstructing 5-D seismic data that depend on four spatial dimensions. The classic version of Cadzow rank-reduction method arranges the 4-D spatial data into a level-four block Hankel/Toeplitz matrix and then applies truncated singular value decomposition (TSVD) for rank reduction. When the observed data are extremely noisy, which is often the feature of real seismic data, traditional TSVD cannot be adequate for attenuating the noise and reconstructing the signals. The reconstructed data tend to contain a significant amount of residual noise using the traditional TSVD method, which can be explained by the fact that the reconstructed data space is a mixture of both signal subspace and noise subspace. In order to better decompose the block Hankel matrix into signal and noise components, we introduced a damping operator into the traditional TSVD formula, which we call the damped rank-reduction method. The damped rank-reduction method can obtain a perfect reconstruction performance even when the observed data have extremely low signal-to-noise ratio. The feasibility of the improved 5-D seismic data reconstruction method was validated via both 5-D synthetic and field data examples. We presented comprehensive analysis of the data examples and obtained valuable experience and guidelines in better utilizing the proposed method in practice. Since the proposed method is convenient to implement and can achieve immediate improvement, we suggest its wide application in the industry. C1 [Chen, Yangkang] Univ Texas Austin, Bur Econ Geol, John A & Katherine G Jackson Sch Geosci, Univ Stn, Box 10, Austin, TX 78713 USA. [Zhang, Dong; Chen, Xiaohong; Zu, Shaohuan; Huang, Weilin; Gan, Shuwei] China Univ Petr, State Key Lab Petr Resources & Prospecting, Fuxue Rd 18th, Beijing 102200, Peoples R China. [Jin, Zhaoyu] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JW, Midlothian, Scotland. [Chen, Yangkang] Oak Ridge Natl Lab, Natl Ctr Computat Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Chen, YK (reprint author), Univ Texas Austin, Bur Econ Geol, John A & Katherine G Jackson Sch Geosci, Univ Stn, Box 10, Austin, TX 78713 USA.; Chen, YK (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, One Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM chenyk2016@gmail.com FU National Natural Science Foundation of China [U1262207, 41274137]; National Basic Research Program of China [2013 CB228602]; National Science and Technology of Major Projects of China [2011ZX05019-006]; National Engineering Laboratory of Offshore Oil Exploration; Texas Consortium for Computational Seismology (TCCS) FX We would like to thank Shan Qu, Jiang Yuan, Mauricio Sacchi, Jean Virieux and Aaron Stanton for constructive suggestions that improved the manuscript greatly. The paper is reproducible within the Madagascar open-source platform (Fomel et al. 2013). We are grateful to developers of the Madagascar software package for providing corresponding codes for testing the algorithms and preparing the figures. This work is mainly supported by National Natural Science Foundation of China (Grant No. U1262207) and partially supported by National Basic Research Program of China (Grant No. 2013 CB228602), National Natural Science Foundation of China (Grant No. 41274137), National Science and Technology of Major Projects of China (Grant No. 2011ZX05019-006), National Engineering Laboratory of Offshore Oil Exploration and the Texas Consortium for Computational Seismology (TCCS). NR 47 TC 5 Z9 5 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0956-540X EI 1365-246X J9 GEOPHYS J INT JI Geophys. J. Int. PD SEP PY 2016 VL 206 IS 3 BP 1695 EP 1717 DI 10.1093/gji/ggw230 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DX8PG UT WOS:000384650400019 ER PT J AU Nagayama, T Bailey, JE Mancini, RC Iglesias, CA Hansen, SB Blancard, C Chung, HK Colgan, J Cosse, P Faussurier, G Florido, R Fontes, CJ Gilleron, F Golovkin, IE Kilcrease, DP Loisel, G MacFarlane, JJ Pain, JC Rochau, GA Sherrill, ME Lee, RW AF Nagayama, T. Bailey, J. E. Mancini, R. C. Iglesias, C. A. Hansen, S. B. Blancard, C. Chung, H. K. Colgan, J. Cosse, Ph. Faussurier, G. Florido, R. Fontes, C. J. Gilleron, F. Golovkin, I. E. Kilcrease, D. P. Loisel, G. MacFarlane, J. J. Pain, J. -C. Rochau, G. A. Sherrill, M. E. Lee, R. W. TI Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE X-ray spectroscopy; Plasma diagnostics; LTE; Opacity; Diagnostics uncertainty; Line shape ID INERTIAL CONFINEMENT FUSION; PROFILE CALCULATIONS; OPACITY CALCULATIONS; LINE-SHAPES; PLASMAS; IONS AB Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, n(e), and electron temperature, T-e, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by +/- 20-30% in n(e) and +/- 2-4% in T-e depending on the choice of spectral model. Also, we find that half of the T-e uncertainty comes from n(e) uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred n(e) and T-e model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies. (C) 2016 Elsevier B.V. All rights reserved. C1 [Nagayama, T.; Bailey, J. E.; Hansen, S. B.; Loisel, G.; Rochau, G. A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Mancini, R. C.] Univ Nevada, Reno, NV 89557 USA. [Iglesias, C. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Blancard, C.; Cosse, Ph.; Faussurier, G.; Gilleron, F.; Pain, J. -C.] Commissarat Energoe Atom CEA & Energies Alterna, F-91297 Arpajon, France. [Chung, H. K.] IAEA, A-1400 Vienna, Austria. [Colgan, J.; Fontes, C. J.; Kilcrease, D. P.; Sherrill, M. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Florido, R.] Univ Las Palmas Gran Canaria, Dept Fis, Las Palmas Gran Canaria 35017, Spain. [Golovkin, I. E.; MacFarlane, J. J.] Prism Computat Sci, Madison, WI 53703 USA. [Lee, R. W.] Univ Calif Berkeley, Inst Mat Dynam Extreme Condit, Berkeley, CA 94720 USA. RP Nagayama, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tnnagay@sandia.gov RI Florido, Ricardo/H-5513-2015; OI Florido, Ricardo/0000-0001-7428-6273; Pain, Jean-Christophe/0000-0002-7825-1315; Kilcrease, David/0000-0002-2319-5934 FU U.S. Department of Energy [DE-AC04-94AL85000]; U.S. DOE [DE-AC5206NA25396]; EUROfusion Consortium Task Agreement, WPENR: Enabling Research IFE [AWP15-ENR-01/CEA-02] FX We thank the Z-facility teams for their invaluable and dedicated technical assistance. T. N. thanks R. E. Falcon for his careful reading and refinement of the manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the NNSA of the U.S. DOE under Contract No. DE-AC5206NA25396. R. F. is partially supported by the EUROfusion Consortium Task Agreement, WPENR: Enabling Research IFE, Project No. AWP15-ENR-01/CEA-02. NR 36 TC 1 Z9 1 U1 10 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2016 VL 20 BP 17 EP 22 DI 10.1016/j.hedp.2016.05.001 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DY0QX UT WOS:000384802400003 ER PT J AU Moore, AS Prisbrey, S Baker, KL Celliers, PM Fry, J Dittrich, TR Wu, KJJ Kervin, ML Schoff, ME Farrell, M Nikroo, A Hurricane, OA AF Moore, Alastair S. Prisbrey, Shon Baker, Kevin L. Celliers, Peter M. Fry, Jonathan Dittrich, Thomas R. Wu, Kuang-Jen J. Kervin, Margaret L. Schoff, Michael E. Farrell, Mike Nikroo, Abbas Hurricane, Omar A. TI A simulation-based and analytic analysis of the off-Hugoniot response of alternative inertial confinement fusion ablator materials SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Inertial confinement fusion; Ablation; Plasmas; Shock waves; Experiment; Equation-of-state ID NATIONAL IGNITION FACILITY; SYSTEM AB The attainment of self-propagating fusion burn in an inertial confinement target at the National Ignition Facility will require the use of an ablator with high rocket-efficiency and ablation pressure. The ablation material used during the National Ignition Campaign (Lindl et al. 2014) [1], a glow-discharge polymer (GDP), does not couple as efficiently as simulations indicated to the multiple-shock inducing radiation drive environment created by laser power profile (Robey et al., 2012). We investigate the performance of two other ablators, boron carbide (B4C) and high-density carbon (HDC) compared to the performance of GDP under the same hohlraum conditions. Ablation performance is determined through measurement of the shock speed produced in planar samples of the ablator material subjected to the identical multiple-shock inducing radiation drive environments that are similar to a generic three-shock ignition drive. Simulations are in better agreement with the off-Hugoniot performance of B4C than either HDC or GDP, and analytic estimations of the ablation pressure indicate that while the pressure produced by B4C and GDP is similar when the ablator is allowed to release, the pressure reached by B4C seems to exceed that of HDC when backed by a Au/quartz layer. (C) 2016 Published by Elsevier B.V. C1 [Moore, Alastair S.; Prisbrey, Shon; Baker, Kevin L.; Celliers, Peter M.; Fry, Jonathan; Dittrich, Thomas R.; Wu, Kuang-Jen J.; Kervin, Margaret L.; Nikroo, Abbas; Hurricane, Omar A.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Schoff, Michael E.; Farrell, Mike] Gen Atom, San Diego, CA 92121 USA. RP Moore, AS (reprint author), Lawrence Livermore Natl Lab, NIF & Photon Sci, POB 808,7000 East Ave, Livermore, CA 94551 USA. EM alastair.moore@physics.org FU UK Ministry of Defence; Lawrence Livermore National Laboratory [DE-AC52-07NA273444 (LLNL-JRNL-690540)] FX We are grateful to the dedication of the NIF operation team, and for very helpful discussions with O.L. Landen. This work was supported by the UK Ministry of Defence and performed under the auspices of Lawrence Livermore National Laboratory under contract DE-AC52-07NA273444 (LLNL-JRNL-690540). NR 22 TC 0 Z9 0 U1 6 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 EI 1878-0563 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2016 VL 20 BP 23 EP 28 DI 10.1016/j.hedp.2016.06.002 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DY0QX UT WOS:000384802400004 ER PT J AU Sanfilippo, A Dowling, C Abbar, S AF Sanfilippo, Antonio Dowling, Chase Abbar, Sofiane TI Do International Students Displace US Students in the Pursuit of Higher Degrees in Science and Engineering? A Forecasting Analysis SO HIGHER EDUCATION POLICY LA English DT Article DE scientific workforce; diversity; time series analysis; graduate student enrolment; foreign student impact ID IMMIGRATION; INNOVATION AB The impact of international graduate students on the enrolment of US students in advanced degree programmes has been the subject of intense debate in the last decade. Overall, arguments pro and against the view that international graduate students displace US students in the pursuit of higher degrees in science and engineering have been based on opinion or retrospective analysis. While these studies offer useful insights, ultimately they fall short of supporting decision making in educational policymaking because they do not provide a prospective analysis. The goal of this paper is to address this gap through the development of forecasting models of foreign and domestic student enrolment in advanced degree programmes. The results of our study suggest that current foreign student enrolment rates may be optimal and educational policies aimed at strengthening the participation of US students in graduate programmes science and engineering needs to consider measures other than reducing international students' enrolment rates. C1 [Sanfilippo, Antonio] Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, POB 5825, Doha, Qatar. [Dowling, Chase] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA. [Abbar, Sofiane] Hamad Bin Khalifa Univ, Qatar Comp Res Inst, POB 5825, Doha, Qatar. RP Sanfilippo, A (reprint author), Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, POB 5825, Doha, Qatar. EM asanfilippo@qf.org.qa; chase.dowling@pnnl.gov; sabbar@qf.org.qa RI Sanfilippo, Antonio/B-6743-2016; OI Sanfilippo, Antonio/0000-0001-7097-4562; abbar, sofiane/0000-0002-2819-8691 FU NIH/NIGMS grant [U01GM098913] FX The research described in this paper was supported under NIH/NIGMS grant U01GM098913. The authors are grateful to Irene Eckstrand, Howard Garrison, Josh Hawley, Courtney Corley, Meg Blume-Kohout, Michael Larsen, Navid Ghaffarzadegan, Richard Larson, Marlene Lee, Dowman Varn, Katy Borner, and an anonymous reviewer for comments on previous version of this study. NR 24 TC 0 Z9 0 U1 3 U2 3 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 0952-8733 EI 1740-3863 J9 HIGH EDUC POLICY JI High Educ. Policy PD SEP PY 2016 VL 29 IS 3 BP 335 EP 354 DI 10.1057/hep.2016.2 PG 20 WC Education & Educational Research SC Education & Educational Research GA DY0QY UT WOS:000384802500003 ER PT J AU Luo, J Simon, MG Jiang, AYL Nelson, EL Lee, AP Li, GP Bachman, M AF Luo, Jason Simon, Melinda G. Jiang, Alan Y. L. Nelson, Edward L. Lee, Abraham P. Li, Guann-Pyng Bachman, Mark TI 3-D In-Bi-Sn Electrodes for Lab-on-PCB Cell Sorting SO IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY LA English DT Article DE Dielectrophoresis (DEP); microelectrode; microfluidic ID CIRCUIT BOARD DEVICE; STEM-CELLS; SEPARATION; DIELECTROPHORESIS; BLOOD AB We present a microfluidic lab-on-printed circuit board (PCB) device containing alloy vertical electrodes for sorting microparticles using dielectrophoresis. The device consists of a hydrodynamic prefocuser and an electronic sorting region. Lining the two sidewalls of the electronic sorting region are regularly spaced rectangular metal electrodes reaching from the floor to the ceiling of the flow channel that bridge electric field lines laterally across the channel. The size and distribution of these vertical electrodes are arranged asymmetrically such that the resultant electric field forms sharp electric field gradients across the channel; specific geometries were optimized using finite element methods. Particles entering the device are initially focused on a single stream as they pass through the prefocuser. Subsequently, they are exposed to the lateral electric field gradient and separate into streams based on their size and dielectric properties. Validation was performed by dielectrophoretically separating live cells from dead cells. Importantly, the system presented can be readily integrated with various external sensors and actuators using commercially available components owing to the device's integration into a PCB. C1 [Luo, Jason; Jiang, Alan Y. L.; Lee, Abraham P.] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA. [Simon, Melinda G.] Univ Calif Irvine, Irvine, CA 92697 USA. [Simon, Melinda G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Nelson, Edward L.] Univ Calif Irvine, Dept Med, Inst Immunol, Irvine, CA 92697 USA. [Li, Guann-Pyng; Bachman, Mark] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. RP Luo, J (reprint author), Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA. EM jtluo@uci.edu; simon27@lllnl.gov; yljiang@uci.edu; enelson@uci.edu; aplee@uci.edu; gpli@uci.edu; mbachman@uci.edu FU National Science Foundation through the IGERT Program [0549479]; National Cancer Institute within the National Institutes of Health [P30CA062203]; California Institute of Regenerative Medicine [TG201152]; ARCS Foundation, Orange County chapter FX This work was supported in part by the National Science Foundation through the IGERT Program under Grant 0549479 and in part by the National Cancer Institute within the National Institutes of Health under Grant P30CA062203. The work of the author M. G. Simon was supported in part by the California Institute of Regenerative Medicine under Grant TG201152 and in part by the ARCS Foundation, Orange County chapter. Recommended for publication by Associate Editor R. Mahajan upon evaluation of reviewers' comments. (Jason Luo and Melinda G. Simon contributed equally to this work.) NR 25 TC 0 Z9 0 U1 10 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-3950 EI 2156-3985 J9 IEEE T COMP PACK MAN JI IEEE Trans. Compon. Pack. Manuf. Technol. PD SEP PY 2016 VL 6 IS 9 DI 10.1109/TCPMT.2016.2573161 PG 6 WC Engineering, Manufacturing; Engineering, Electrical & Electronic; Materials Science, Multidisciplinary SC Engineering; Materials Science GA DX8OA UT WOS:000384647200001 ER PT J AU Qian, P Guo, HB Yue, YF Wang, L Yang, XH Guo, H AF Qian, Ping Guo, Hao-Bo Yue, Yufei Wang, Liang Yang, Xiaohan Guo, Hong TI Understanding the Catalytic Mechanism of Xanthosine Methyltransferase in Caffeine Biosynthesis from QM/MM Molecular Dynamics and Free Energy Simulations SO JOURNAL OF CHEMICAL INFORMATION AND MODELING LA English DT Article ID PROTEIN LYSINE METHYLTRANSFERASES; PRODUCT SPECIFICITY; N-METHYLTRANSFERASES; METHYLATION; RELEVANCE; SET7/9; MD AB S-Adenosyl-L-methionine (SAM) dependent xanthosine methyltransferase (XMT) is the key enzyme that catalyzes the first methyl transfer in the caffeine biosynthesis pathway to produce the intermediate 7-methylxanthosine (7mXR). Although XMT has been a subject of extensive discussions, the catalytic mechanism and nature of the substrate involved in the catalysis are still unclear. In this paper, quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (potential of mean force or PMF) simulations are undertaken to determine the catalytic mechanism of the XMT-catalyzed reaction. Both xanthosine and its monoanionic form with N3 deprotonated are used as the substrates for the methylation. It is found that while the methyl group( can be transferred to the monoanionic form of Xanthosine with a reasonable free energy barrier (about 17 kcal/mol), that is not the case for the neutral xanthosine. The results suggest that the substrate for the first methylation step in the caffeine biosynthesis pathway is likely to be the monoanionic form of xanthosine rather than the neutral form as widely adopted. This conclusion is supported by the pK(a) value on N3 of xanthosine both measured in aqueous phase and calculated in the enzymatic-environment. The structural and dynamics information from-both the X-ray structure and MD simulations is also consistent with the monoanionic xanthosine scenario. The implications of this conclusion for caffeine biosynthesis are discussed. C1 [Qian, Ping; Guo, Hao-Bo; Yue, Yufei; Guo, Hong] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Qian, Ping; Yue, Yufei; Guo, Hong] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA. [Qian, Ping; Wang, Liang] Shandong Agr Univ, Chem & Mat Sci Fac, Tai An 271018, Shandong, Peoples R China. [Yang, Xiaohan] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Qian, P; Guo, H (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA.; Qian, P; Guo, H (reprint author), Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN 37830 USA.; Qian, P (reprint author), Shandong Agr Univ, Chem & Mat Sci Fac, Tai An 271018, Shandong, Peoples R China. EM qianp@sdau.edu.cn; hguo1@utk.edu RI Yang, Xiaohan/A-6975-2011 OI Yang, Xiaohan/0000-0001-5207-4210 FU National Science Foundation [0817940, ACI-1053575]; U.S. Department of Energy [DE-AC05-00OR22725]; National Nature Science Foundation of China [20903063]; Postdoctoral Foundation of Shandong Agricultural University in China [76335]; China Scholarship Council [201408370020] FX This work was supported in part by grants 0817940 from the National Science Foundation (H.G.). Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract number DE-AC05-00OR22725. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. The research has been aided by the National Nature Science Foundation of China (No. 20903063 to P.Q), the grant from the Postdoctoral Foundation of Shandong Agricultural University in China (No. 76335 to P.Q) and China Scholarship Council (No. 201408370020 to P.Q). NR 28 TC 1 Z9 1 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9596 EI 1549-960X J9 J CHEM INF MODEL JI J. Chem Inf. Model. PD SEP PY 2016 VL 56 IS 9 BP 1755 EP 1761 DI 10.1021/acs.jcim.6b00153 PG 7 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Computer Science, Information Systems; Computer Science, Interdisciplinary Applications SC Pharmacology & Pharmacy; Chemistry; Computer Science GA DX3KG UT WOS:000384271400014 PM 27482605 ER PT J AU Lehtola, S Jonsson, EO Jonsson, H AF Lehtola, Susi Jonsson, Elvar O. Jonsson, Hannes TI Effect of Complex-Valued Optimal Orbitals on Atomization Energies with the Perdew-Zunger Self-Interaction Correction to Density Functional Theory SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID GENERALIZED GRADIENT APPROXIMATION; INTERACTION ERROR; MOLECULAR CALCULATIONS; ELECTRON-AFFINITIES; EXCHANGE-ENERGY; ACCURATE; ATOMS; THERMOCHEMISTRY; DISSOCIATION; BREAKING AB The spurious interaction of an electron with itself self-interaction error-is one of the biggest problems in modern density-functional theory. Some of its most glaring effects, such as qualitatively incorrect charge separation upon dissociation, can be removed by an approximate self-interaction correction due to Perdew and Zunger (PZ) (Perdew, J.; Zunger, A. Phys. Rev. B 1981, 23, 5048). However, the correction introduces an explicit dependence on the occupied orbital densities, which makes proper minimization of the functional difficult. Previous work (Vydrov et al., J. Chem. Phys. 2006, 124, 094108) has suggested that the application of the PZ correction results in worse atomization energies than those obtained with the uncorrected parent functional. But, it has only recently been found that the correct minimization of the PZ energy functional requires complex-valued orbitals, which have not been used in previous work on atomization energies. Here, we study the effect of the proper use of complex-valued orbitals on the atomization energies of molecules in the W4-11 data set (Karton, A.; Daon, S.; Martin, J. M. Chem. Phys. Lett. 2001, 510, 165). We find that the correction has a tendency to weaken the binding of molecules. The correction using complex-valued orbitals is invariably found to yield better atomization energies than the correction with real valued orbitals. The correction applied to the PBEsol exchange-correlation functional results in a functional that is more accurate than the (uncorrected) PBE functional. C1 [Lehtola, Susi; Jonsson, Elvar O.; Jonsson, Hannes] Aalto Univ, Sch Sci, COMP Ctr Excellence, POB 11000, FI-00076 Espoo, Finland. [Lehtola, Susi; Jonsson, Elvar O.; Jonsson, Hannes] Aalto Univ, Sch Sci, Dept Appl Phys, POB 11000, FI-00076 Espoo, Finland. [Jonsson, Elvar O.] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Jonsson, Hannes] Univ Iceland, Fac Phys Sci, IS-107 Reykjavik, Iceland. RP Lehtola, S (reprint author), Aalto Univ, Sch Sci, COMP Ctr Excellence, POB 11000, FI-00076 Espoo, Finland.; Lehtola, S (reprint author), Aalto Univ, Sch Sci, Dept Appl Phys, POB 11000, FI-00076 Espoo, Finland. EM susi.lehtola@alumni.helsinki.fi RI Jonsson, Hannes/G-2267-2013; Lehtola, Susi/H-1828-2013 OI Jonsson, Hannes/0000-0001-8285-5421; Lehtola, Susi/0000-0001-6296-8103 FU Academy of Finland through its Centres of Excellence [251748]; Academy of Finland through its FiDiPro Programme [263294] FX S.L. thanks Narbe Mardirossian for discussions and comments on the manuscript. The computer time spent on the calculations were provided by CSC - IT Center for Science, Ltd. (Espoo, Finland) and the University of Iceland Computer Services (RH), which are gratefully acknowledged. This work was funded by the Academy of Finland through its Centres of Excellence Programme (2012-2017) under Project No. 251748 and through its FiDiPro Programme under Project No. 263294. NR 75 TC 0 Z9 0 U1 2 U2 2 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2016 VL 12 IS 9 BP 4296 EP 4302 DI 10.1021/acs.jctc.6b00622 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DW0FG UT WOS:000383315700012 PM 27467900 ER PT J AU Mardirossian, N Head-Gordon, M AF Mardirossian, Narbe Head-Gordon, Martin TI How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements? SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID GAUSSIAN-BASIS SETS; GENERALIZED GRADIENT APPROXIMATION; CONSISTENT BASIS-SETS; ZETA-VALENCE QUALITY; ELECTRONIC-STRUCTURE CALCULATIONS; BENCHMARK INTERACTION ENERGIES; RARE-GAS ATOMS; WATER CLUSTERS; LONG-RANGE; BINDING-ENERGIES AB The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies of noncovalent dimers. Additionally, the sensitivity of the Minnesota density functionals to the choice of basis set and integration grid is explored for both noncovalent interactions and thermochemistty. Overall, the-main strength of the hybrid Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., M06-2X), barrier heights (e.g., M08-HX, M08-SO, MN15), and systems heavily characterized by self interaction error (e.g., M06-2X) M08-HX, M08-SO, MN15), while the main weakness is that none of them ate state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies (although M06-2X is recommended from the 10 hybrid Minnesota functionals). Similarly, the main strength of the local Minnesota density functionals is that the best ones provide very good performance for thermochemistry (e.g., MN15-1), barrier heights (e.g., MN12-L), and systems heavily characterized by self-interaction error (e.g., MN12-L and MN15-L), while the main weakness is that none of them are state-of-the-art for the full spectrum of noncovalent interactions and isomerization energies; (although M06-L is clearly the best from the four local Minnesota functionals). As an overall guide, M06-2X and MN15 are perhaps the most broadly useful hybrid Minnesota functionals, while M06-L and MN15-L are perhaps the most :broadly useful local Minnesota functionals, although each has different strengths and weaknesses. C1 [Mardirossian, Narbe] Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA. [Head-Gordon, Martin] Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Head-Gordon, M (reprint author), Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM mhg@cchem.berkeley.edu FU Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy [DE-AC0376SF00098]; SciDac Program FX This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract DE-AC0376SF00098, and by a grant from the SciDac Program. NR 134 TC 7 Z9 7 U1 24 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2016 VL 12 IS 9 BP 4303 EP 4325 DI 10.1021/acs.jctc.6b00637 PG 23 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DW0FG UT WOS:000383315700013 PM 27537680 ER PT J AU Wang, L Jakowski, J Garashchuk, S Sumpter, BG AF Wang, Lei Jakowski, Jacek Garashchuk, Sophya Sumpter, Bobby G. TI Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; ORGANIC SEMICONDUCTORS; GROUND-STATE; SOLAR-CELLS; DYNAMICS; ENERGY; SIMULATIONS; POLYMERS; DEUTERATION; SEPARATION AB The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene) (P3HT) and 16,6]-phenyl-C61-butyric acid methyl ester (PCBM; Nat. Camrkai. 2014, 5, 3180) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. The protonic and deuteronic wave functions for the H/D isotopologues of the hexyl side chains are described within a quantum, trajectory/electronic structure approach where the dynamics is performed with newly developed nonlinear corrections: to the quantum forces, necessary to describe the nuclear wave functions; the classical forces are generated with a density functional tight,bifiding method. The resulting protonic and deuteronic time-dependent wave functions are used to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. While the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap-between the charge transfer and charge separated states due to nuclear wave functions may account for experimental trends by promoting charge transfer in P3HT:PCRM and increasing charge recombination on the donor in the deuterium substituted P3HT:CB1v1. C1 [Wang, Lei; Garashchuk, Sophya] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Jakowski, Jacek; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Jakowski, Jacek; Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Garashchuk, S (reprint author), Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA.; Jakowski, J (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA.; Jakowski, J (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM jakowskij@ornl.gov; garashchuk@sc.edu RI Sumpter, Bobby/C-9459-2013; OI Sumpter, Bobby/0000-0001-6341-0355; Garashchuk, Sophya/0000-0003-2452-7379 FU National Science Foundation [CHE-1056188, CHE-1048629] FX This material is based upon work partially supported by the National Science Foundation under grant no. CHE-1056188 (S.G.). The work regading P3HT was conducted at the Center for Nanophase Materials Sciences, a U.S. Department of Energy Office of Science User Facility. An XSEDE allocation TG-DMR110037 and use of the USC HPC cluster was funded by the National Science Foundation under Grant No. CHE-1048629. NR 45 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2016 VL 12 IS 9 BP 4487 EP 4500 DI 10.1021/acs.jctc.6b00126 PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DW0FG UT WOS:000383315700028 PM 27504981 ER PT J AU Qu, XH Persson, KA AF Qu, Xiaohui Persson, Kristin A. TI Toward Accurate Modeling of the Effect of Ion-Pair Formation on Solute Redox Potential SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID AB-INITIO CALCULATIONS; ELECTROCHEMICAL WINDOWS; BATTERY ELECTROLYTES; MOLECULAR-DYNAMICS; SOLVATION MODELS; LIQUIDS; REDUCTION; STABILITY; MAGNESIUM; DISCOVERY AB A scheme to model the dependence of a solute redox potential on the supporting electrolyte is proposed, and the results are compared to experimental observations and other reported theoretical models. An improved agreement with experiment is exhibited if the effect of the supporting electrolyte on the redox potential is modeled through a concentration change induced via ion pair formation with the salt, rather than by only considering the direct impact on the redox potential of the solute itself. To exemplify the approach, the scheme is applied to the concentration-dependent redox potential of select molecules proposed for nonaqueous flow batteries. However, the methodology is general and enables rational computational electrolyte design through tuning of the operating window of electrochemical systems by shifting the redox potential of its solutes; including potentially both salts as well as redox active molecules. C1 [Qu, Xiaohui; Persson, Kristin A.] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA. RP Persson, KA (reprint author), Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA. EM kapersson@lbl.gov FU U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Materials Project (BES DOE Grant) [EDCBEE] FX Support for this work came from the U.S. Department of Energy, Basic Energy Science, Joint Center for Energy Storage Research under Contract No. DE-AC02-06CH11357. The calculations were performed using the computational resource's of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The Materials Project (BES DOE Grant No. EDCBEE) is acknowledged for infrastructure and algorithmic support. NR 53 TC 1 Z9 1 U1 14 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2016 VL 12 IS 9 BP 4501 EP 4508 DI 10.1021/acs.jctc.6b00289 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DW0FG UT WOS:000383315700029 PM 27500744 ER PT J AU Ashfaq, M Rastogi, D Mei, R Kao, SC Gangrade, S Naz, BS Touma, D AF Ashfaq, Moetasim Rastogi, Deeksha Mei, Rui Kao, Shih-Chieh Gangrade, Sudershan Naz, Bibi S. Touma, Danielle TI High-resolution ensemble projections of near-term regional climate over the continental United States SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article DE regional climate change; United States; hydrological cycle; Regional Climate Modeling; future projections ID PRECIPITATION EXTREMES; NORTH-AMERICA; MODEL; SIMULATIONS; TEMPERATURES; SCALE; GENERATION; CALIFORNIA; CHARACTER; RESPONSES AB We present high-resolution near-term ensemble projections of hydroclimatic changes over the contiguous U.S. using a regional climate model (RegCM4) that dynamically downscales 11 global climate models from the fifth phase of Coupled Model Intercomparison Project at 18km horizontal grid spacing. All model integrations span 41years in the historical period (1965-2005) and 41years in the near-term future period (2010-2050) under Representative Concentration Pathway 8.5 and cover a domain that includes the contiguous U.S. and parts of Canada and Mexico. Should emissions continue to rise, surface temperatures in every region within the U.S. will reach a new climate norm well before mid 21st century regardless of the magnitudes of regional warming. Significant warming will likely intensify the regional hydrological cycle through the acceleration of the historical trends in cold, warm, and wet extremes. The future temperature response will be partly regulated by changes in snow hydrology over the regions that historically receive a major portion of cold season precipitation in the form of snow. Our results indicate the existence of the Clausius-Clapeyron scaling at regional scales where per degree centigrade rise in surface temperature will lead to a 7.4% increase in precipitation from extremes. More importantly, both winter (snow) and summer (liquid) extremes are projected to increase across the U.S. These changes in precipitation characteristics will be driven by a shift toward shorter and wetter seasons. Overall, projected changes in the regional hydroclimate can have substantial impacts on the natural and human systems across the U.S. C1 [Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Ashfaq, Moetasim; Rastogi, Deeksha; Mei, Rui; Kao, Shih-Chieh; Gangrade, Sudershan; Naz, Bibi S.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Kao, Shih-Chieh; Gangrade, Sudershan; Naz, Bibi S.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Touma, Danielle] Stanford Univ, Dept Earth Syst Sci, Stanford, CA 94305 USA. RP Ashfaq, M (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA.; Ashfaq, M (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. EM mashfaq@ornl.gov RI Kao, Shih-Chieh/B-9428-2012; OI Naz, Bibi/0000-0001-9888-1384; Kao, Shih-Chieh/0000-0002-3207-5328; Touma, Danielle/0000-0003-1992-9904 FU Regional and Global Climate Modeling Program within the Office of Science; Wind and Water Power Technologies Office within Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy (DOE); Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development Program; UT Battelle, LLC [DE-AC05-00OR22725] FX We thank three anonymous reviewers for their constructive and insightful comments. This study was funded by the Regional and Global Climate Modeling Program within the Office of Science and the Wind and Water Power Technologies Office within Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy (DOE), and also the Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development Program. This paper was authored by employees of the ORNL, managed by UT Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. DOE. Accordingly, the publisher, by accepting the article for publication, acknowledges that the United States government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes. Support for RegCM4 simulations, data storage, and analysis is provided by the Oak Ridge Leadership Computing Facility, and this data can be obtained by contacting M. Ashfaq (mashfaq@ornl.gov) at ORNL Climate Change Science Institute. We also thank U.S. DOE's Program for Climate Model Diagnosis and Intercomparison for providing coordinating support and leading development of software infrastructure in partnership with the Global Organization for Earth System Science Portals for CMIP. NR 65 TC 2 Z9 2 U1 9 U2 9 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X EI 2169-8996 J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD SEP PY 2016 VL 121 IS 17 BP 9943 EP 9963 DI 10.1002/2016JD025285 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DY0YV UT WOS:000384823000026 ER PT J AU Lee, J Park, S AF Lee, Jisung Park, Sungkyun TI Systematic determination of the thickness of a thin oxide layer on a multilayered structure by using an X-ray reflectivity analysis SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE X-ray reflectivity; Interface; Oxidation; Multilayer ID REFINEMENT; SURFACES AB X-ray reflectometry was used to determine the chemical structure of oxidized Permalloy films grown at different oxidation times. The oxidation time-dependent thickness, roughness and chemical density of each layer were examined simultaneously using the Parratt formalism. With increasing oxidation time, the Permalloy thickness decreased while forming a new oxide layer. After oxidation for 40 sec, the Permalloy film's thickness remained the same for further oxidation, indicating the formation of an oxidation barrier with a scattering length density much lower than that of the Permalloy. The interfacial roughness between the interface layer and the top protective layer remained the same regardless of the oxidation time. C1 [Lee, Jisung; Park, Sungkyun] Pusan Natl Univ, Dept Phys, Busan 46241, South Korea. [Park, Sungkyun] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Park, S (reprint author), Pusan Natl Univ, Dept Phys, Busan 46241, South Korea.; Park, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM psk@pusan.ac.kr FU Industrial Strategic Technology Development Program - Ministry of Trade, industry & Energy (MI, Korea) [10062130]; Korea Atomic Energy Research Institute; U.S. Department of Energy's Office of Basic Energy Science; DOE [DE-AC52-06NA25396] FX This work was supported by the Industrial Strategic Technology Development Program (10062130) funded by the Ministry of Trade, industry & Energy (MI, Korea) and the Korea Atomic Energy Research Institute. One of us (S. Park) thanks Dr. M.R. Fitzsimmons and Dr. T.J. Silva for valuable discussions. This work benefited from the use of the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center funded by the U.S. Department of Energy's Office of Basic Energy Science. The Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 17 TC 0 Z9 0 U1 2 U2 2 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 EI 1976-8524 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD SEP PY 2016 VL 69 IS 5 BP 789 EP 792 DI 10.3938/jkps.69.789 PG 4 WC Physics, Multidisciplinary SC Physics GA DX7EU UT WOS:000384550200016 ER PT J AU Chan, EAW Buckley, B Farraj, AK Thompson, LC AF Chan, Elizabeth A. W. Buckley, Barbara Farraj, Aimen K. Thompson, Leslie C. TI The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction SO PHARMACOLOGY & THERAPEUTICS LA English DT Review DE Cardiac dysfunction; Particulate matter; Air pollution; Endothelin-1; Heart; Autocrine/paracrine signaling ID LONG-TERM EXPOSURE; SPONTANEOUSLY HYPERTENSIVE-RATS; SMOOTH-MUSCLE-CELLS; AIR-POLLUTION EXPOSURE; HARVARD 6 CITIES; CONCENTRATED AMBIENT PARTICLES; ACUTE MYOCARDIAL-INFARCTION; STIMULATES PHOSPHOLIPASE-C; MESSENGER-RNA EXPRESSION; NITRIC-OXIDE SYNTHESIS AB Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease have been explored, although linkage with specific factors or genes remains limited. These, hypotheses may or may not also lead to particulate matter-induced cardiac dysfunction. Evidence pointing to autocrine/paracrine signaling systems as-modulators of cardiac dysfunction has increased interest in the emerging role of endothelins as mediators of cardiac function following particulate matter exposure. Endothelin-1, a well-described small peptide expressed in the pulmonary and cardiovascular systems, is best known for its ability to constrict blood vessels, although it can also induce extravascular effects. Research on the role of endothelins in the context of air pollution has largely focused on vascular effects, with limited investigation of responses resulting from the direct effects of endothelins on cardiac tissue. This represents a significant knowledge gap in air pollution health effects research, given the abundance of endothelin receptors found on cardiac tissue and the ability of endothelin-1 to modulate cardiac contractility, heart rate, and rhythm. The plausibility of endothelin-1 as a mediator of particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility, of certain endothelin receptor antagonists. The present review examines the possibility that endothelin-1 release caused by exposure to PM directly modulates extravascular effects on the heart, deleteriously altering cardiac function. Published by Elsevier Inc. C1 [Chan, Elizabeth A. W.] US EPA, ORISE, Res Triangle Pk, NC 27711 USA. [Chan, Elizabeth A. W.; Buckley, Barbara] US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA. [Farraj, Aimen K.; Thompson, Leslie C.] US EPA, Environm Publ Hlth Div, Res Triangle Pk, NC 27711 USA. RP Thompson, LC (reprint author), US EPA, Environm Publ Hlth Div, Res Triangle Pk, NC 27711 USA.; Thompson, LC (reprint author), US EPA, 109 TW Alexander Dr,Mail Code B105-02, Res Triangle Pk, NC 27709 USA. EM thompson.leslie@epa.gov NR 240 TC 0 Z9 0 U1 4 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0163-7258 J9 PHARMACOL THERAPEUT JI Pharmacol. Ther. PD SEP PY 2016 VL 165 BP 63 EP 78 DI 10.1016/j.pharmthera.2016.05.006 PG 16 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA DW7GH UT WOS:000383818700006 PM 27222357 ER PT J AU Malinska, M Dauter, M Dauter, Z AF Malinska, Maura Dauter, Miroslawa Dauter, Zbigniew TI Geometry of guanidinium groups in arginines SO PROTEIN SCIENCE LA English DT Article DE X-ray crystal structures; stereochemical restrains; structure validation; guanidinium geometry; arginine residues ID STRUCTURE REFINEMENT; PROTEIN AB The restraints in common usage today have been obtained based on small molecule X-ray crystal structures available 25 years ago and recent reports have shown that the values of bond lengths and valence angles can be, in fact, significantly different from those stored in libraries, for example for the peptide bond or the histidine ring geometry. We showed that almost 50% of outliers found in protein validation reports released in the Protein Data Bank on 23 March 2016 come from geometry of guanidine groups in arginines. Therefore, structures of small molecules and atomic resolution protein crystal structures have been used to derive new target values for the geometry of this group. The most significant difference was found for NE-CZ-NH1 and NE-CZ-NH2 angles, showing that the guanidinium group is not symmetric. The NE-CZ-NH1 angle is larger, 121.5(10), than NE-CZ-NH2, 119.2(10), due to the repulsive interaction between NH1 and CD1 atom. C1 [Malinska, Maura; Dauter, Zbigniew] Argonne Natl Lab, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Natl Canc Inst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Malinska, Maura] Univ Warsaw, Fac Chem, PL-02093 Warsaw, Poland. [Dauter, Miroslawa] Argonne Natl Lab, Leidos Biomed Res Inc, Basic Sci Program, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Dauter, Z (reprint author), Argonne Natl Lab, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Natl Canc Inst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dauter@anl.gov OI Malinska, Maura/0000-0002-7138-7041 FU Intramural Research Program of the National Cancer Institute, Center for Cancer Research; National Cancer Institute, National Institutes of Health [HHSN261200800E] FX Grant sponsor: Intramural Research Program of the National Cancer Institute, Center for Cancer Research and with Federal funds from the National Cancer Institute, National Institutes of Health; Grant number: HHSN261200800E. NR 13 TC 1 Z9 1 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD SEP PY 2016 VL 25 IS 9 BP 1753 EP 1756 DI 10.1002/pro.2970 PG 4 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DW4NE UT WOS:000383619100018 PM 27326702 ER PT J AU Carmo, D Colauto, F de Andrade, AMH Oliveira, AAM Ortiz, WA Johansen, TH AF Carmo, D. Colauto, F. de Andrade, A. M. H. Oliveira, A. A. M. Ortiz, W. A. Johansen, T. H. TI Controllable injector for local flux entry into superconducting films SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article DE flux dynamics; flux avalanches; thermomagnetic instabilities ID YBA2CU3O7-X FILMS; MGB2 FILMS; THIN-FILMS; INSTABILITY; PENETRATION; STABILITY; GROWTH AB A superconducting flux injector (SFI) has been designed to allow for controlled injections of magnetic flux into a superconducting film from a predefined location along the edge. The SFI is activated by an external current pulse, here chosen to be 200 ms long, and it is demonstrated on films of Nb that the amount of injected flux is controlled by the pulse height. Examples of injections at two different temperatures where the flux enters by stimulated flux-flow and by triggered thermomagnetic avalanches are presented. The boundary between the two types of injection is determined and discussed. The SFI opens up for active use of phenomena which up to now have been considered hazardous for a safe operation of superconducting devices. C1 [Carmo, D.; Colauto, F.; Ortiz, W. A.] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil. [Colauto, F.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [de Andrade, A. M. H.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [de Andrade, A. M. H.] ICMAB CSIC, Inst Ciencia Mat Barcelona, Campus UAB, E-08193 Bellaterra, Spain. [Oliveira, A. A. M.] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Campus Sao Carlos, BR-13565905 Sao Carlos, SP, Brazil. [Johansen, T. H.] Univ Oslo, Dept Phys, POB 1048 Blindern, NO-0316 Oslo, Norway. [Johansen, T. H.] Univ Wollongong, Inst Superconducting & Elect Mat, Northfields Ave, Wollongong, NSW 2522, Australia. RP Colauto, F (reprint author), Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.; Colauto, F (reprint author), Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. EM fcolauto@df.ufscar.br FU Sao Paulo Research Foundation (FAPESP) Grant [2013/16.097-3]; Brazilian National Council for Scientific and Technological Development (CNPq); Brazilian program Science without Borders; [CAPES-SIU-2013/10046] FX The Nb film was grown in Laboratorio de Conformacao Nanometrica (LCN-IF-UFRGS), and the lithography was done in Laboratorio de Microfabricacao (LMF/LNNano/CNPEM). The work was partially supported by the Sao Paulo Research Foundation (FAPESP) Grant No. 2013/16.097-3, the Brazilian National Council for Scientific and Technological Development (CNPq), the Brazilian program Science without Borders, as well as the CAPES-SIU-2013/10046 project Complex fluids in confined environments. NR 21 TC 0 Z9 0 U1 6 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD SEP PY 2016 VL 29 IS 9 AR 095003 DI 10.1088/0953-2048/29/9/095003 PG 5 WC Physics, Applied; Physics, Condensed Matter SC Physics GA DW9MG UT WOS:000383983500011 ER PT J AU Schlichting, PE Fritts, SR Mayer, JJ Gipson, PS Dabbert, CB AF Schlichting, Peter E. Fritts, Sarah R. Mayer, John J. Gipson, Philip S. Dabbert, C. Brad TI Determinants of variation in home range of wild pigs SO WILDLIFE SOCIETY BULLETIN LA English DT Article DE home range; invasive species; Sus scrofa; wild pigs ID NAMADGI-NATIONAL-PARK; BOAR SUS-SCROFA; NEW-SOUTH-WALES; FERAL PIGS; HABITAT USE; SEMIARID ENVIRONMENT; ACTIVITY PATTERNS; MOVEMENTS; SIZE; HOGS AB Home range is expected to vary with ecological conditions to minimize size while still meeting the biological needs of the individual animal. Understanding the determinants of variation in home range size can be important when trying to manage or control an invasive species. Wild pigs (Sus scrofa) have been introduced throughout the globe and cause notable damage to native ecosystems. We quantified relationships of wild pig home range with environmental conditions across varying spatial and temporal scales to better understand population space use in areas invaded by wild pigs during March 2011 to August 2012 in Kent County, Texas, USA. We used mixed-effects linear-regression models to assess how allometric effects of body size and environmental variables (temp, elevation, latitude, and rainfall) could be used to predict home range size at a local scale. We then used general linear models with published data from 31 studies from the species' global distribution to investigate the efficacy of environmental parameters as home range predictors. On account of either temporal or incomplete variables, home range was not well-predicted at a local scale. Across their global distribution, the top ranked model included all 4 variables with home range positively associated with temperature, elevation, and latitude, but negatively associated with rainfall. Use of the global model represents a cost-efficient way to estimate home ranges to control or eradicate wild pig populations. This information can be valuable for management of both established and newly introduced populations for population estimation and trapping density. (c) 2016 The Wildlife Society. C1 [Schlichting, Peter E.; Fritts, Sarah R.; Gipson, Philip S.; Dabbert, C. Brad] Texas Tech Univ, Dept Nat Resources Management, Lubbock, TX 79409 USA. [Mayer, John J.] Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. [Schlichting, Peter E.] Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. RP Schlichting, PE (reprint author), Texas Tech Univ, Dept Nat Resources Management, Lubbock, TX 79409 USA.; Schlichting, PE (reprint author), Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM peter.schlichting@srel.uga.edu FU Bromberg Charitable Trust Fund; Houston Livestock Show and Rodeo; U.S. Army Construction Engineering Research Laboratory FX We thank the Bromberg Charitable Trust Fund, the Houston Livestock Show and Rodeo, and the U.S. Army Construction Engineering Research Laboratory for funding. Capture and field work was also performed by B. Chandler. Constructive comments on this manuscript were provided by M. Murphy, R. Strauss, and G. Sorensen. In addition, we thank D. Haukos, E. Kalies, J. Wallace, T. Boal, and two anonymous reviewers for their contributions to the publication of this manuscript. NR 75 TC 0 Z9 0 U1 21 U2 21 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1938-5463 J9 WILDLIFE SOC B JI Wildl. Soc. Bull. PD SEP PY 2016 VL 40 IS 3 BP 487 EP 493 DI 10.1002/wsb.662 PG 7 WC Biodiversity Conservation SC Biodiversity & Conservation GA DY0XG UT WOS:000384818900011 ER PT J AU Dalir, H Xia, Y Wang, Y Zhang, X AF Dalir, Hamed Xia, Yang Wang, Yuan Zhang, Xiang TI Athermal Broadband Graphene Optical Modulator with 35 GHz Speed SO ACS PHOTONICS LA English DT Article DE graphene modulator; broadband; athermal operation; ultrahigh speed; double-layer ID SILICON; INTERCONNECTS; DEVICES; LIGHT AB Optical modulators with ultrahigh speed, small footprint, large bandwidth, robust athermal operation, and complementary metal-oxide semiconductor (CMOS) compatibility are important devices for optical communication and computing applications. Compared to the conventional optical modulators, graphene modulators have attracted great interest due to their large optical bandwidth with an ultracompact footprint. However, their practical applications are limited by the trade-off between speed and optical bandwidth, with a critical issue of temperature tolerance. In this work, we experimentally demonstrate an athermal graphene optical modulator with a 140 nm bandwidth in the entire optical communication regime (1500-1640 nm), with robust high-temperature operation. The device is based on a planar structure with double-layer graphene, leading to the high modulation speed, up to 35 GHz through reduction of the total resistance, and capacitance (9 fF). We observe speed stability in a wide range of temperatures (25-145 degrees C). The ultracompact footprint (18 mu m(2)) of the device promises the next generation of on-chip optical interconnections for efficient communication. C1 [Dalir, Hamed; Xia, Yang; Wang, Yuan; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. [Zhang, Xiang] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, 3112 Etcheverry Hall, Berkeley, CA 94720 USA.; Zhang, X (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Zhang, X (reprint author), King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. EM xiang@berkeley.edu RI Wang, Yuan/F-7211-2011 FU Office of Naval Research (ONR) MURI program [N00014-13-1-0678]; 'Light-Material Interactions in Energy Conversion' Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-05CH11231] FX The experiment of this research was supported by the Office of Naval Research (ONR) MURI program under Grant No. N00014-13-1-0678; the simulation was supported by the 'Light-Material Interactions in Energy Conversion' Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC02-05CH11231. NR 24 TC 2 Z9 2 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD SEP PY 2016 VL 3 IS 9 BP 1564 EP 1568 DI 10.1021/acsphotonics.6600398 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DX0GX UT WOS:000384040900007 ER PT J AU Morichetti, F Grillanda, S Manandhar, S Shutthanandan, V Kemerling, L Melloni, A Agarwal, AM AF Morichetti, Francesco Grillanda, Stefano Manandhar, Sandeep Shutthanandan, Vaithiyalingam Kemerling, Lionel Melloni, Andrea Agarwal, Anuradha M. TI Alpha Radiation Effects on Silicon Oxynitride Waveguides SO ACS PHOTONICS LA English DT Article DE integrated photonics; high-energy radiation; silicon oxynitride waveguides; alpha particles ID INDUCED SOFT ERRORS; LASER COMMUNICATIONS; GAMMA-IRRADIATION; INTEGRATED-OPTICS; NITRIDE AB Photonic technologies are today of great interest for use in harsh environments, such as outer space, where they can potentially replace current communication systems based on radiofrequency components. However, akin to electronic devices, the behavior of optical materials and circuits can be strongly altered by high-energy and high-dose ionizing radiation. Here, we investigate the effects of alpha (alpha) radiation with MeV-range energy on silicon oxynitride (SiON) optical waveguides in the 1550 nm wavelength range. Irradiation with a dose of 5 X 10(15) cm(-2) increases the refractive index of the SiON core by nearly 10(-2), twice as much as that of the surrounding silica cladding, leading to a significant increase of the refractive index contrast of the waveguide. The higher mode confinement induced by alpha-radiation reduces the loss of tightly bent waveguides. We show that this increases the quality factor of microring resonators by 20%, with values larger than 105 after irradiation. C1 [Morichetti, Francesco; Grillanda, Stefano; Melloni, Andrea] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy. [Manandhar, Sandeep; Shutthanandan, Vaithiyalingam] Pacific Northwest Natl Lab, EMSL, Richland, WA 99352 USA. [Kemerling, Lionel] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Agarwal, Anuradha M.] MIT, Ctr Mat Proc, Cambridge, MA 02139 USA. RP Morichetti, F (reprint author), Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy. EM francesco.morichetti@polimi.it OI Manandhar, Sandeep/0000-0001-8613-5317 FU Defense Threat Reduction Agency [HDTRA1-13-1-0001]; Progetto Rocca Foundation; Department of Energy's Office of Biological and Environmental Research FX This work was funded by the Defense Threat Reduction Agency Grant No. HDTRA1-13-1-0001 and Progetto Rocca Foundation. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 28 TC 1 Z9 1 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD SEP PY 2016 VL 3 IS 9 BP 1569 EP 1574 DI 10.1021/acsphotonics.6b00431 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DX0GX UT WOS:000384040900008 ER PT J AU Smith, MJ Francis, MB AF Smith, Matthew J. Francis, Matthew B. TI A Designed A. vinelandii-S. elongatus Coculture for Chemical Photoproduction from Air, Water, Phosphate, and Trace Metals SO ACS SYNTHETIC BIOLOGY LA English DT Article DE engineered coculture; metabolic syntrophy; cyanobacteria; diazotroph ID POLY-BETA-HYDROXYBUTYRATE; AZOTOBACTER-VINELANDII; PCC-7942; SEQUENCE; CULTURE; CYANOBACTERIUM; MICROALGAE; CYTOKININS; AMMONIUM; ALGINATE AB Microbial mutualisms play critical roles in a diverse number of ecosystems and have the potential to improve the efficiency of bioproduction for desirable chemicals. We investigate the growth of a photosynthetic cyanobacterium, Synechococcus elongatus PCC 7942, and a diazotroph, Azotobacter vinelandii, in coculture. From initial studies of the coculture grown in media with glutamate, we proposed a model of cross-feeding between these organisms. We then engineer a new microbial mutualism between Azotobacter vinelandii AV3 and cscB Synechococcus elongatus that grows in the absence of fixed carbon or nitrogen. The coculture cannot grow in the absence of a sucrose-exporting S. elongatus, and neither organism can grow alone without fixed carbon or nitrogen. This new system has the potential to produce industrially relevant products, such as polyhydroxybutyrate (PHB) and alginate, from air, water, phosphate, trace metals, and sunlight. We demonstrate the ability of the coculture to produce PHB in this work. C1 [Smith, Matthew J.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Francis, Matthew B.] Lawrence Berkeley Natl Labs, Mol Foundry, Div Mat Sci, Berkeley, CA 94720 USA. RP Francis, MB (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Francis, MB (reprint author), Lawrence Berkeley Natl Labs, Mol Foundry, Div Mat Sci, Berkeley, CA 94720 USA. EM mbfrancis@berkeley.edu FU NSF SAGE IGERT fellowship; Synthetic Biology Institute at UC Berkeley; Berkeley Chemical Biology Graduate Program (NRSA Training Grant) [1 T32 GMO66698] FX This work was supported by an NSF SAGE IGERT fellowship, the Synthetic Biology Institute at UC Berkeley and the Berkeley Chemical Biology Graduate Program (NRSA Training Grant 1 T32 GMO66698). We also would like to acknowledge Professor David Savage for providing us with S. elongatus transformation vectors and for helpful discussion. Additionally, we would like to acknowledge Professor Leonardo Curatti for generously providing the Delta nif L A. vinelandii strain. NR 35 TC 3 Z9 3 U1 5 U2 5 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD SEP PY 2016 VL 5 IS 9 BP 955 EP 961 DI 10.1021/acssynbio.6b00107 PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA DW4VP UT WOS:000383641400007 PM 27232890 ER PT J AU Janowski, PA Moriarty, NW Kelley, BP Case, DA York, DM Adams, PD Warren, GL AF Janowski, Pawel A. Moriarty, Nigel W. Kelley, Brian P. Case, David A. York, Darrin M. Adams, Paul D. Warren, Gregory L. TI Improved ligand geometries in crystallographic refinement using AFITT in PHENIX SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE macromolecular refinement; ligands; geometry restraints; PHENIX; AFITT ID MOLECULAR-FORCE FIELD; PROTEIN-STRUCTURE REFINEMENT; CONFORMATIONAL ENERGIES; CRYSTAL-STRUCTURES; QUANTUM-MECHANICS; NUMERICAL ERRORS; DATA-BANK; MMFF94; RESTRAINTS; VALIDATION AB Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows. PHENIX-AFITT refinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentially difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows. PHENIX-AFITT refinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combining AFITT and the PHENIX software suite on a data set of 189 protein-ligand PDB structures are presented. Refinements using PHENIX-AFITT significantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. For the data presented, PHENIX-AFITT refinements result in more chemically accurate models for small-molecule ligands. C1 [Janowski, Pawel A.; Case, David A.; York, Darrin M.] Rutgers State Univ, Ctr Integrat Prote Res, BioMaPs Inst, Piscataway, NJ 08854 USA. [Janowski, Pawel A.; Case, David A.; York, Darrin M.] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Moriarty, Nigel W.; Adams, Paul D.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Kelley, Brian P.] Novartis Inst BioMed Res Inc, Cambridge, MA 02139 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Warren, Gregory L.] OpenEye Sci Software, Santa Fe, NM 87508 USA. RP Warren, GL (reprint author), OpenEye Sci Software, Santa Fe, NM 87508 USA. EM greg@eyesopen.com FU OpenEye Scientific Software Summer Intern Program; NIH [1P01 GM063210]; Phenix Industrial Consortium; US Department of Energy [DE-AC02-05CH11231] FX The authors would like to acknowledge the funding provided by the OpenEye Scientific Software Summer Intern Program, which supported, in part, the work performed by PAJ. PHENIX was supported by the NIH (Project 1P01 GM063210), the Phenix Industrial Consortium and in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. For those interested in accessing the data described in this paper, all of the data are available for download at the following link: http://www.phenix-online.org/phenix_data/Phenix_AFITT/. AFITT is software provided by OpenEye Scientific Software and can be obtained and used by academic users through a no-cost academic license at http://www.eyesopen.com/academic. Lastly, the authors would like to thank the editor and reviewers. Their dedication and excellent suggestions were vital and the work presented here was improved by their input. NR 54 TC 0 Z9 0 U1 3 U2 3 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD SEP PY 2016 VL 72 BP 1062 EP 1072 DI 10.1107/S2059798316012225 PN 9 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DW9RA UT WOS:000383998200008 PM 27599738 ER PT J AU Urzhumtsev, A Afonine, PV Van Benschoten, AH Fraser, JS Adams, PD AF Urzhumtsev, Alexandre Afonine, Pavel V. Van Benschoten, Andrew H. Fraser, James S. Adams, Paul D. TI From deep TLS validation to ensembles of atomic models built from elemental motions (vol 71, pg 1668, 2015) SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Correction DE TLS model; TLS matrices; ensemble of atomic models; atomic displacement matrices; model validation; addenda and corrigendum C1 [Urzhumtsev, Alexandre] Inst Genet & Biol Mol & Cellulaire, Ctr Integrat Biol, 1 Rue Laurent Fries,BP 10142, F-67404 Illkirch Graffenstaden, France. [Urzhumtsev, Alexandre] Univ Lorraine, Fac Sci & Technol, BP 239, F-54506 Vandoeuvre Les Nancy, France. [Afonine, Pavel V.; Adams, Paul D.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA USA. [Van Benschoten, Andrew H.; Fraser, James S.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. [Adams, Paul D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Urzhumtsev, A (reprint author), Inst Genet & Biol Mol & Cellulaire, Ctr Integrat Biol, 1 Rue Laurent Fries,BP 10142, F-67404 Illkirch Graffenstaden, France.; Urzhumtsev, A (reprint author), Univ Lorraine, Fac Sci & Technol, BP 239, F-54506 Vandoeuvre Les Nancy, France. EM sacha@igbmc.fr FU NIGMS NIH HHS [P01 GM063210, T32 GM008284] NR 5 TC 0 Z9 0 U1 1 U2 1 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD SEP PY 2016 VL 72 BP 1073 EP 1075 DI 10.1107/S2059798316013048 PN 9 PG 3 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DW9RA UT WOS:000383998200009 PM 27599739 ER PT J AU Smedley, D Schubach, M Jacobsen, JOB Kohler, S Zemojtel, T Spielmann, M Jager, M Hochheiser, H Washington, NL McMurry, JA Haendel, MA Mungall, CJ Lewis, SE Groza, T Valentini, G Robinson, PN AF Smedley, Damian Schubach, Max Jacobsen, Julius O. B. Koehler, Sebastian Zemojtel, Tomasz Spielmann, Malte Jaeger, Marten Hochheiser, Harry Washington, Nicole L. McMurry, Julie A. Haendel, Melissa A. Mungall, Christopher J. Lewis, Suzanna E. Groza, Tudor Valentini, Giorgio Robinson, Peter N. TI A Whole-Genome Analysis Framework for Effective Identification of Pathogenic Regulatory Variants in Mendelian Disease SO AMERICAN JOURNAL OF HUMAN GENETICS LA English DT Article ID SEVERE INTELLECTUAL DISABILITY; SEQUENCE VARIATION; GENETIC-VARIATION; STRUCTURAL VARIATION; NONCODING VARIANTS; HUMAN PHENOTYPE; MODEL ORGANISM; DNA-SEQUENCE; EXOME; DISORDERS AB The interpretation of non-coding variants still constitutes a major challenge in the application of whole-genome sequencing in Mendelian disease, especially for single-nucleotide and other small non-coding variants. Here we present Genomiser, an analysis framework that is able not only to score the relevance of variation in the non-coding genome, but also to associate regulatory variants to specific Mendelian diseases. Genomiser scores variants through either existing methods such as CADD or a bespoke machine learning method and combines these with allele frequency, regulatory sequences, chromosomal topological domains, and phenotypic relevance to discover variants associated to specific Mendelian disorders. Overall, Genomiser is able to identify causal regulatory variants as the top candidate in 77% of simulated whole genomes, allowing effective detection and discovery of regulatory variants in Mendelian disease. C1 [Smedley, Damian] Queen Mary Univ London, London E1 4NS, England. [Smedley, Damian] Genom England Ltd, London EC1M 6BQ, England. [Schubach, Max; Koehler, Sebastian; Zemojtel, Tomasz; Spielmann, Malte; Jaeger, Marten; Robinson, Peter N.] Charite, Inst Med & Human Genet, Augustenburger Pl 1, D-13353 Berlin, Germany. [Jacobsen, Julius O. B.] Wellcome Trust Sanger Inst, Skarnes Fac Grp, Hinxton CB10 1SA, England. [Zemojtel, Tomasz] Polish Acad Sci, Inst Bioorgan Chem, PL-61704 Poznan, Poland. [Spielmann, Malte; Robinson, Peter N.] Max Planck Inst Mol Genet, Ihnestr 63-73, D-14195 Berlin, Germany. [Jaeger, Marten; Robinson, Peter N.] Charite, Berlin Brandenburg Ctr Regenerat Therapies BCRT, Augustenburger Pl 1, D-13353 Berlin, Germany. [Hochheiser, Harry] Univ Pittsburgh, Dept Biomed Informat, Pittsburgh, PA 15206 USA. [Hochheiser, Harry] Univ Pittsburgh, Intelligent Syst Program, Pittsburgh, PA 15206 USA. [Washington, Nicole L.; Mungall, Christopher J.; Lewis, Suzanna E.] Lawrence Berkeley Natl Lab, Div Environm Genom & Syst Biol, Berkeley, CA 94720 USA. [McMurry, Julie A.; Haendel, Melissa A.] Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Portland, OR 97239 USA. [Groza, Tudor] Garvan Inst Med Res, Kinghorn Ctr Clin Genom, Darlinghurst, NSW 2010, Australia. [Groza, Tudor] Univ New South Wales, St Vincents Clin Sch, Fac Med, Darlinghurst, NSW 2010, Australia. [Valentini, Giorgio] Univ Milan, Anadeto Lab, Dept Comp Sci, Via Comel, I-20135 Milan, Italy. [Robinson, Peter N.] Free Univ Berlin, Inst Bioinformat, Dept Math & Comp Sci, D-14195 Berlin, Germany. [Robinson, Peter N.] Jackson Lab Genom Med, 10 Discovery Dr, Farmington, CT 06032 USA. RP Robinson, PN (reprint author), Charite, Inst Med & Human Genet, Augustenburger Pl 1, D-13353 Berlin, Germany.; Robinson, PN (reprint author), Max Planck Inst Mol Genet, Ihnestr 63-73, D-14195 Berlin, Germany.; Robinson, PN (reprint author), Charite, Berlin Brandenburg Ctr Regenerat Therapies BCRT, Augustenburger Pl 1, D-13353 Berlin, Germany.; Robinson, PN (reprint author), Free Univ Berlin, Inst Bioinformat, Dept Math & Comp Sci, D-14195 Berlin, Germany.; Robinson, PN (reprint author), Jackson Lab Genom Med, 10 Discovery Dr, Farmington, CT 06032 USA. EM peter.robinson@jax.org OI Valentini, Giorgio/0000-0002-5694-3919; McMurry, Julie/0000-0002-9353-5498 FU European Union [602300]; NIH [1 U54 HG006370-01]; NIH Office of the Director [5R24OD011883]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Bundesministerium fur Bildung and Forschung (BMBF) [0313911, 01EC1402B]; Deutsche Forschungsgemeinschaft [DFG SP1532/2-1]; DAAD Funding programme Research Stays for University Academics and Scientists [57210259] FX This work was supported by grants from the European Union Seventh Framework Programme (FP7/2007-2013) ("SYBIL" grant No. 602300), NIH (1 U54 HG006370-01), the NIH Office of the Director (#5R24OD011883), the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231), the Bundesministerium fur Bildung and Forschung (BMBF project numbers 0313911 and 01EC1402B), the Deutsche Forschungsgemeinschaft (DFG SP1532/2-1), and the DAAD Funding programme Research Stays for University Academics and Scientists (ID 57210259). NR 75 TC 3 Z9 3 U1 10 U2 10 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0002-9297 EI 1537-6605 J9 AM J HUM GENET JI Am. J. Hum. Genet. PD SEP 1 PY 2016 VL 99 IS 3 BP 595 EP 606 DI 10.1016/j.ajhg.2016.07.005 PG 12 WC Genetics & Heredity SC Genetics & Heredity GA DV7KM UT WOS:000383114800006 PM 27569544 ER PT J AU Hecker, SS AF Hecker, Siegfried S. TI Questions for the presidential candidates on nuclear terrorism, proliferation, weapons policy, and energy SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE Presidential elections; nuclear terrorism; nuclear proliferation; nuclear weapons; nuclear energy; candidate questions AB Stanford expert Siegfried Hecker proposes a series of nuclear weapons and energy questions that journalists and citizens should consider asking the 2016 presidential candidates. C1 [Hecker, Siegfried S.] Stanford Univ, CISAC, Stanford, CA 94305 USA. [Hecker, Siegfried S.] Stanford Univ, Freeman Spogli Inst Int Studies, Stanford, CA 94305 USA. [Hecker, Siegfried S.] Stanford, Dept Management Sci & Engn, Stanford, CA USA. [Hecker, Siegfried S.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Hecker, SS (reprint author), Stanford Univ, CISAC, Stanford, CA 94305 USA.; Hecker, SS (reprint author), Stanford Univ, Freeman Spogli Inst Int Studies, Stanford, CA 94305 USA. EM shecker@stanford.edu NR 0 TC 0 Z9 0 U1 8 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 EI 1938-3282 J9 B ATOM SCI JI Bull. Atom. Scient. PD SEP PY 2016 VL 72 IS 5 BP 276 EP 277 DI 10.1080/00963402.2016.1216498 PG 2 WC International Relations; Social Issues SC International Relations; Social Issues GA DX0OW UT WOS:000384063800004 ER PT J AU DeBenedictis, E AF DeBenedictis, Erik TI PERSPECTIVE: NEXT-GENERATION COMPUTING PARADIGMS AND THE INFORMATION REVOLUTION SO COMPUTER LA English DT Editorial Material C1 [DeBenedictis, Erik] Sandia Natl Labs, Nonconvent Comp Technol Dept, Livermore, CA 94550 USA. RP DeBenedictis, E (reprint author), Sandia Natl Labs, Nonconvent Comp Technol Dept, Livermore, CA 94550 USA. EM epdeben@sandia.gov NR 1 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD SEP PY 2016 VL 49 IS 9 BP 16 EP 17 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA DX1MX UT WOS:000384132600003 ER PT J AU Lewis, A Smith, R Williams, B AF Lewis, Allison Smith, Ralph Williams, Brian TI Gradient free active subspace construction using Morris screening elementary effects SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE Active subspace construction; Reduced-order modeling; Morris screening ID SENSITIVITY-ANALYSIS; MODELS AB Among multivariate functions with high-dimensional input spaces, it is common for functions to vary more strongly in a few dominant directions related to a small number of highly influential parameters. In such cases, the input dimension may be greatly reduced by constructing a low-dimensional response space that is aligned with the directions of strongest dominance; this is the basis behind active subspace methods. Until recently, gradient-based methods have been employed to construct the active subspace. We introduce a gradient-free active subspace construction method that avoids the need to sample from the gradient, which may not be available, via construction of a coarse approximation to the gradient matrix by employing the concept of "elementary effects" from Morris screening procedures. In addition, we introduce the use of adaptive step sizes and directions, when constructing these elementary effects, to allow for more accuracy in locally sensitive regions while still covering a substantial amount of the input space. This increases algorithmic efficiency by avoiding function evaluations in directions in which the gradient is relatively flat. To demonstrate the method, we use an elliptic PDE example with two correlation lengths to illustrate the effects of differing rates of singular value decay. The gradient-free active subspace method is compared to a local sensitivity analysis using coordinate reduction. This problem is then modified to contain a clearly defined 10-dimensional active subspace for verification of our method on a more complex example. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lewis, Allison; Smith, Ralph] North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA. [Williams, Brian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lewis, A (reprint author), North Carolina State Univ, Dept Math, Box 8205, Raleigh, NC 27695 USA. EM lewis.allison10@gmail.com; rsmith@ncsu.edu; brianw@lanl.gov FU Consortium for Advanced Simulation of Light Water Reactors; Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under US Department of Energy [DE-AC05-00OR22725] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under US Department of Energy Contract No. DE-AC05-00OR22725. North Carolina State University (NCSU) and Los Alamos National Laboratory (LANL) are core CASL partners. NR 20 TC 0 Z9 0 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 EI 1873-7668 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD SEP PY 2016 VL 72 IS 6 BP 1603 EP 1615 DI 10.1016/j.camwa.2016.07.022 PG 13 WC Mathematics, Applied SC Mathematics GA DX4WM UT WOS:000384381800011 ER PT J AU Lee, D Williams, DJ Vogel, SC Proffen, T Thompson, JD Daemen, LL Park, S AF Lee, Dooyong Williams, D. J. Vogel, S. C. Proffen, Th Thompson, J. D. Daemen, L. L. Park, Sungkyun TI Tailoring structure and magnetic properties of NixCo1-x(N(CN)(2))(2) molecular magnets SO CURRENT APPLIED PHYSICS LA English DT Article DE Molecular magnets; Transition metal dicyanamide; Neutron diffraction ID ORGANIC-BASED MAGNETS; DICYANAMIDE; FERROMAGNETISM; DIFFRACTOMETER; HIPPO; NI; CO AB A series of transition metal NixCo1-x(N(CN)(2))(2) dicyanamide molecular magnet, 0 <= x <= 1, was chemically synthesized. Structure and magnetic properties were investigated by IR spectroscopy, neutron powder diffraction and temperature-dependent magnetization measurement. The neutron powder diffraction measurement established that all samples showed the rutile structure with Pnnm space group. The detailed Rietveld refinement results revealed a systematic decrease of unit-cell volume with increasing Ni content. We also observed a concurrent increase of the Curie temperature with Ni content due to the increase of superexchange interaction. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lee, Dooyong; Park, Sungkyun] Pusan Natl Univ, Dept Phys, Busan 46421, South Korea. [Williams, D. J.; Vogel, S. C.; Proffen, Th; Thompson, J. D.; Daemen, L. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Proffen, Th] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Park, S (reprint author), Pusan Natl Univ, Dept Phys, Busan 46421, South Korea. EM psk@pusan.ac.kr RI Proffen, Thomas/B-3585-2009 OI Proffen, Thomas/0000-0002-1408-6031 FU NRF Korea [NRF-2011-0031933, NRF-2015R1D1A1A01058672]; Korea Atomic Energy Research Institute; U.S. Department of Energy's Office of Basic Energy Science; DOE [DE-AC52-06NA25396] FX This study is supported in part by NRF Korea (NRF-2011-0031933, NRF-2015R1D1A1A01058672) and Korea Atomic Energy Research Institute. The Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center is funded by the U.S. Department of Energy's Office of Basic Energy Science. The Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under the DOE Contract DE-AC52-06NA25396. NR 34 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 EI 1878-1675 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD SEP PY 2016 VL 16 IS 9 BP 1100 EP 1104 DI 10.1016/j.cap.2016.06.015 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DX1MN UT WOS:000384131600029 ER PT J AU Hao, N Ben, HX Yoo, CG Adhikari, S Ragauskas, AJ AF Hao, Naijia Ben, Haoxi Yoo, Chang Geun Adhikari, Sushi Ragauskas, Arthur J. TI Review of NMR Characterization of Pyrolysis Oils SO ENERGY & FUELS LA English DT Review ID BIOMASS FAST PYROLYSIS; FLUIDIZED-BED REACTOR; BIO-OIL; CATALYTIC PYROLYSIS; MAGNETIC-RESONANCE; P-31 NMR; CHEMICAL-CHARACTERIZATION; LIGNOCELLULOSIC BIOMASS; REACTION TEMPERATURE; FUEL CHARACTERISTICS AB Pyrolysis of renewable biomass has been developed as a method to produce green fuels and chemicals in response to energy security concerns as well as to alleviate environmental issues incurred with fossil fuel usage. However, pyrolysis oils still have limited commercial application, mainly because unprocessed oils cannot be readily blended with current petroleum-based transportation fuels. To better understand these challenges, researchers have applied diverse characterization techniques in the development of bio-oil studies. In particular, nuclear magnetic resonance (NMR) is a key spectroscopic characterization method through analysis of bio-oil components. This review highlights the NMR strategies for pyrolysis oil characterization and critically discusses the applications of H-1, C-13, P-31, F-19, and two-dimensional (2-D NMR) analyses such as heteronuclear single quantum correlation (HSQC) in representative pyrolysis oil studies. C1 [Hao, Naijia; Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Ben, Haoxi] Southeast Univ, Sch Energy & Environm, Minist Educ, Key Lab Energy Thermal Convers & Control, Nanjing 210096, Jiangsu, Peoples R China. [Yoo, Chang Geun; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Adhikari, Sushi] Auburn Univ, Dept Biosyst Engn, Auburn, AL 36849 USA. [Ragauskas, Arthur J.] Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. RP Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.; Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. EM aragausk@utk.edu FU National Science Foundation [NSF A15-0097] FX We acknowledge the support through National Science Foundation Grant NSF A15-0097 titled "Effect of Thermal Treatment on Biomass and Hydrocarbons Production using Catalytic Pyrolysis Process". NR 133 TC 1 Z9 1 U1 45 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2016 VL 30 IS 9 BP 6863 EP 6880 DI 10.1021/acs.energyfuels.6b01002 PG 18 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DW4VL UT WOS:000383641000001 ER PT J AU Pomerantz, AE Doan, TVL Craddock, PR Bake, KD Kleinberg, RL Burnham, AK Wu, QH Zare, RN Brodnik, G Lo, WCH Grayson, M Mitra-Kirtley, S Bolin, TB Wu, TP AF Pomerantz, Andrew E. Doan, Tuong Van Le Craddock, Paul R. Bake, Kyle D. Kleinberg, Robert L. Burnham, Alan K. Wu, Qinghao Zare, Richard N. Brodnik, Grant Lo, William Chung Hei Grayson, Michael Mitra-Kirtley, Sudipa Bolin, Trudy B. Wu, Tianpin TI Impact of Laboratory-Induced Thermal Maturity on Asphaltene Molecular Structure SO ENERGY & FUELS LA English DT Article ID RAY-ABSORPTION-SPECTROSCOPY; NUCLEAR-MAGNETIC-RESONANCE; EQUATION-OF-STATE; POLYCYCLIC AROMATIC-HYDROCARBONS; LASER MASS-SPECTROMETRY; NEAR-EDGE STRUCTURE; YEN-MULLINS MODEL; X-RAY; PETROLEUM ASPHALTENES; ORGANIC-MATTER AB The structure of asphaltenes of various maturities prepared by semiopen pyrolysis of Green River Shale is measured by elemental analysis, laser desorption laser ionization mass spectrometry ((LMS)-M-2), surface assisted laser desorption ionization (SALDI) mass spectrometry, sulfur X-ray absorption near edge structure (XANES) spectroscopy, and infrared (IR) spectroscopy. These measurements demonstrate systematic changes in the composition of asphaltenes during thermal maturation. At low maturities, the evolution of asphaltene composition is dominated by changes in the heteroatoms: total sulfur as well as carbon oxygen, sulfur oxygen (sulfoxide), and aliphatic carbon sulfur (sulfide) bonds are lost, while the molecular weight increases. At high maturities, the sulfur content and speciation as well as molecular weight are relatively constant while the evolution in composition is dominated by changes in the carbon backbone: the abundance of aromatic relative to aliphatic carbon increases, the length of aliphatic chains shortens, and the abundance of aromatic C-H bonds increases greatly. The distribution of different carbon oxygen functional groups is relatively unchanged over the entire maturity range. These changes sometimes mirror and sometimes oppose compositional changes in the bitumen, suggesting that the composition of the asphaltene and maltene fractions of bitumen evolve differently. The observed changes in asphaltene structure are not fully independent of one another, as the composition of asphaltenes is constrained to maintain a balance of the strength of intermolecular forces to ensure solubility in aromatic solvent and insolubility in aliphatic solvent (the definition of asphaltenes). That constraint leads to a decrease in sulfoxide content (weakening intermolecular forces by reducing dipole interactions) concurrent with an increase in molecular weight (strengthening intermolecular forces). These trends in asphaltene composition with maturity are expected to occur in naturally occurring source rocks, such as some tight-oil formations, but not necessarily in conventional reservoir rocks where the asphaltenes escape from the source rock and enter the reservoir during maturation. C1 [Pomerantz, Andrew E.; Doan, Tuong Van Le; Craddock, Paul R.; Bake, Kyle D.; Kleinberg, Robert L.] Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. [Burnham, Alan K.] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA. [Wu, Qinghao; Zare, Richard N.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Brodnik, Grant; Lo, William Chung Hei; Grayson, Michael; Mitra-Kirtley, Sudipa] Rose Hulman Inst Technol, Terre Haute, IN 47803 USA. [Bolin, Trudy B.; Wu, Tianpin] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Bolin, Trudy B.] Colorado State Univ, Ft Collins, CO 80521 USA. RP Pomerantz, AE (reprint author), Schlumberger Doll Res Ctr, Cambridge, MA 02139 USA. EM apomerantz@slb.com FU DOE [DE-AC02-06CH11357] FX The authors would like to thank Total S. A. and Schlumberger for their support of this work and Pierre Allix of Total in particular. The Total support came both by providing AMSO oil shale samples and through the Stanford-Total Enhanced Modeling of Source Rocks (STEMS) project. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory, was supported by DOE under Contract No. DE-AC02-06CH11357. We thank Andrew Judd of Schlumberger for assistance in preparing Figure 3. NR 99 TC 1 Z9 1 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2016 VL 30 IS 9 BP 7025 EP 7036 DI 10.1021/acs.energyfuels.6b01238 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DW4VL UT WOS:000383641000017 ER PT J AU Zhang, KW Glarborg, P Zhou, XY Zhang, LD Ye, LL Dayma, G AF Zhang, Kuiwen Glarborg, Peter Zhou, Xueyao Zhang, Lidong Ye, Lili Dayma, Guillaume TI Experimental and Kinetic Modeling Study of Nitroethane Pyrolysis at a Low Pressure: Competition Reactions in the Primary Decomposition SO ENERGY & FUELS LA English DT Article ID THERMAL-DECOMPOSITION; SIMPLIFIED MECHANISM; NITROMETHANE; DISSOCIATION; PHOTOIONIZATION; COMBUSTION; FLAMES; NITROCOMPOUNDS AB The pyrolysis of nitroethane has been investigated over the temperature range of 682-1423 K in a plug flow reactor at a low pressure. The major species in the pyrolysis process have been identified and quantified using tunable synchrotron vacuum ultraviolet photoionization mass spectrometry and molecular beam sampling techniques. The rate constants for the primary pyrolysis of nitroethane as well as those for the decomposition of the secondary product CH3CHNO2 have been obtained via ab initio calculations. These results have been adopted in a detailed chemical kinetic model, which contains 95 species and 737 reactions. The model was validated against the experimental results with satisfactory agreement for most of the identified and quantified species. Further analysis on the results indicates that both the concerted molecular elimination and C-N bond rupture are significant in the primary pyrolysis of nitroethane, with the latter channel being more important at high temperatures. The adoption of new decomposition pathways of CH3CHNO2 has resulted in reasonable predictions for relevant intermediates. C1 [Zhang, Kuiwen] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [Glarborg, Peter] Tech Univ Denmark, Dept Chem & Biochem Engn, DK-2800 Lyngby, Denmark. [Zhou, Xueyao; Zhang, Lidong] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China. [Ye, Lili] Shanghai Jiao Tong Univ, Sch Mech Engn, Shanghai 200240, Peoples R China. [Dayma, Guillaume] CNRS, Inst Sci Ingn & Syst INSIS, 1C Ave Rech Sci, F-45071 Orleans 2, France. RP Zhang, KW (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM zhang45@llnl.gov FU National Basic Research Program of China (973 Program) [2013CB834602]; National Key Scientific Instruments and Equipment Development Program of China [2012YQ22011305]; Natural Science Foundation of China [21373193]; Chinese Academy of Sciences FX The authors thank the funding support from the National Basic Research Program of China (973 Program) (2013CB834602), the National Key Scientific Instruments and Equipment Development Program of China (2012YQ22011305), the Natural Science Foundation of China (21373193), and the Chinese Academy of Sciences. NR 42 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2016 VL 30 IS 9 BP 7738 EP 7745 DI 10.1021/acs.energyfuels.6b01348 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DW4VL UT WOS:000383641000093 ER PT J AU Hokr, M Shao, H Gardner, WP Balvin, A Kunz, H Wang, Y Vencl, M AF Hokr, M. Shao, H. Gardner, W. P. Balvin, A. Kunz, H. Wang, Y. Vencl, M. TI Real-case benchmark for flow and tracer transport in the fractured rock SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Numerical model; Tunnel inflow; Natural tracer; Transit time; Multidimensional; Code comparison ID DOMAINS AB The paper is intended to define a benchmark problem related to groundwater flow and natural tracer transport using observations of discharge and isotopic tracers in fractured, crystalline rock. Three numerical simulators: Flow123d, OpenGeoSys, and PFLOTRAN are compared. The data utilized in the project were collected in a water-supply tunnel in granite of the Jizera Mountains, Bedrichov, Czech Republic. The problem configuration combines subdomains of different dimensions, 3D continuum for hard-rock blocks or matrix and 2D features for fractures or fault zones, together with realistic boundary conditions for tunnel-controlled drainage. Steady-state and transient flow and a pulse injection tracer transport problem are solved. The results confirm mostly consistent behavior of the codes. Both the codes Flow123d and OpenGeoSys with 3D-2D coupling implemented differ by several percent in most cases, which is appropriate to, e.g., effects of discrete unknown placing in the mesh. Some of the PFLOTRAN results differ more, which can be explained by effects of the dispersion tensor evaluation scheme and of the numerical diffusion. The phenomenon can get stronger with fracture/matrix coupling and with parameter magnitude contrasts. Although the study was not aimed on inverse solution, the models were fit to the measured data approximately, demonstrating the intended real-case relevance of the benchmark. C1 [Hokr, M.; Balvin, A.] Tech Univ Liberec, Studentska 2, Liberec 46117, Czech Republic. [Shao, H.; Kunz, H.] Fed Inst Geosci & Nat Resources, Stilleweg 2, D-30655 Hannover, Germany. [Gardner, W. P.] Univ Montana, Dept Geosci, 32 Campus Dr 1296, Missoula, MT 59812 USA. [Gardner, W. P.; Wang, Y.] Sandia Natl Labs, 1515 Eubank Blvd SE, Albuquerque, NM USA. [Vencl, M.] Radioact Waste Repository Author SURAO, Dlazdena 6, Prague 11000 1, Czech Republic. RP Hokr, M (reprint author), Tech Univ Liberec, Studentska 2, Liberec 46117, Czech Republic. EM milan.hokr@tul.cz FU Radioactive Waste Repository Authority of the Czech Republic (SURAO) [SO2013-077]; Ministry of Education of the Czech Republic (MSMT) [LO1201]; OPR&DI project Centre for Nanomaterials, Advanced Technologies and Innovation [CZ.1.05/2.1.00/01.0005]; BMWi (Bundesministerium fur Wirtschaft und Energie, Berlin); DOE Used Fuel Disposition Campaign; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The work described in this paper was conducted within the context of the international DECOVALEX-2015 project. The authors are grateful to the funding organizations who supported the work. The views expressed in the paper are, however, those of the authors and are not necessarily those of the funding organizations. Technical University of Liberec (TUL) has been supported by the Radioactive Waste Repository Authority of the Czech Republic (SURAO), under contract no. SO2013-077. The results of the TUL authors were also obtained through the financial support of the Ministry of Education of the Czech Republic (MSMT) in the project LO1201 in the framework of the targeted support of the "National Programme for Sustainability I" and the OPR&DI project Centre for Nanomaterials, Advanced Technologies and Innovation CZ.1.05/2.1.00/01.0005. BGR's work was supported by the BMWi (Bundesministerium fur Wirtschaft und Energie, Berlin). Sandia National Laboratory was supported under the DOE Used Fuel Disposition Campaign. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 1 Z9 1 U1 5 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD SEP PY 2016 VL 75 IS 18 AR 1273 DI 10.1007/s12665-016-6061-z PG 17 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DX4EC UT WOS:000384333000040 ER PT J AU Tidwell, V Moreland, B AF Tidwell, Vincent Moreland, Barbie TI Mapping water consumption for energy production around the Pacific Rim SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE energy-water nexus; thermoelectric power; energy fuels; water stress; Asia-Pacific ID US AB World energy demand is projected to increase by more than a third by 2035 and with it the use of water to extract and process fuels and generate electricity. Management of this energy-water nexus requires a clear understanding of the inter-related demands of these resources as well as their regional distribution. Toward this need the fresh water consumed for energy production was mapped for almost 12 000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Fresh water consumption was estimated for ten different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; energy processing including oil and biofuels; and biofuel feedstock irrigation. These measures of water consumption were put in context by drawing comparison with published measures of water risk. In total 791 watersheds (32%) of the 2511 watersheds where energy related water consumption occurred were also characterized by high to extreme water risk, these watersheds were designated as being at energy-water risk. For six economies watersheds at energy-water risk represented half or more of all basins where energy related water consumption occurred, while four additional economies exceeded 30%. C1 [Tidwell, Vincent] Sandia Natl Labs, POB 5800,MS1137, Albuquerque, NM 87185 USA. [Moreland, Barbie] AIS, 6501 Amer Pkwy NE,Suite 400, Albuquerque, NM 87110 USA. RP Tidwell, V (reprint author), Sandia Natl Labs, POB 5800,MS1137, Albuquerque, NM 87185 USA. EM vctidwe@sandia.gov OI Tidwell, Vincent/0000-0002-4954-897X FU United States Department of Energy's Office of International Affairs [EWG 03 2014S]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge the very helpful comments of two anonymous reviewers. The work described in this article was funded by the United States Department of Energy's Office of International Affairs under a project for the Asia-Pacific Economic Cooperation's Energy Working Group (project number: EWG 03 2014S, APEC publication #: 216-RE-01.7, February 2016). The authors wish to recognize the support of Professors Huibin Du, Zhu Li, Jamie Pittock and Karen Hussey. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 34 TC 0 Z9 0 U1 8 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD SEP PY 2016 VL 11 IS 9 AR 094008 DI 10.1088/1748-9326/11/9/094008 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DX1CP UT WOS:000384103400001 ER PT J AU Ramage, JG Prentice, KW DePalma, L Venkateswaran, KS Chivukula, S Chapman, C Bell, M Datta, S Singh, A Hoffmaster, A Sarwar, J Parameswaran, N Joshi, M Thirunavkkarasu, N Krishnan, V Morse, S Avila, JR Sharma, S Estacio, PL Stanker, L Hodge, DR Pillai, SP AF Ramage, Jason G. Prentice, Kristin W. DePalma, Lindsay Venkateswaran, Kodumudi S. Chivukula, Sruti Chapman, Carol Bell, Melissa Datta, Shomik Singh, Ajay Hoffmaster, Alex Sarwar, Jawad Parameswaran, Nishanth Joshi, Mrinmayi Thirunavkkarasu, Nagarajan Krishnan, Viswanathan Morse, Stephen Avila, Julie R. Sharma, Shashi Estacio, Peter L. Stanker, Larry Hodge, David R. Pillai, Segaran P. TI Comprehensive Laboratory Evaluation of a Highly Specific Lateral Flow Assay for the Presumptive Identification of Bacillus anthracis Spores in Suspicious White Powders and Environmental Samples SO HEALTH SECURITY LA English DT Article ID INHALATIONAL ANTHRAX; INFECTION; IMMUNOASSAY; AGENTS; THURINGIENSIS; PERFORMANCE; ANTIGEN; CEREUS AB We conducted a comprehensive, multiphase laboratory evaluation of the Anthrax BioThreat Alert((R)) test strip, a lateral flow immunoassay (LFA) for the rapid detection of Bacillus anthracis spores. The study, conducted at 2 sites, evaluated this assay for the detection of spores from the Ames and Sterne strains of B. anthracis, as well as those from an additional 22 strains. Phylogenetic near neighbors, environmental background organisms, white powders, and environmental samples were also tested. The Anthrax LFA demonstrated a limit of detection of about 10(6) spores/mL (ca. 1.5x10(5) spores/assay). In this study, overall sensitivity of the LFA was 99.3%, and the specificity was 98.6%. The results indicated that the specificity, sensitivity, limit of detection, dynamic range, and repeatability of the assay support its use in the field for the purpose of qualitatively evaluating suspicious white powders and environmental samples for the presumptive presence of B. anthracis spores. C1 [Ramage, Jason G.] BAI Inc, Washington, DC USA. [Prentice, Kristin W.] Sci Technol Directorate, DHS, Washington, DC USA. [DePalma, Lindsay; Chivukula, Sruti] Booz Allen Hamilton, Mclean, VA USA. [Venkateswaran, Kodumudi S.; Sarwar, Jawad; Parameswaran, Nishanth; Joshi, Mrinmayi] Omni Array Biotechnol, Rockville, MD USA. [Chivukula, Sruti] DHS, Washington, DC USA. [Chapman, Carol] Geneva Fdn, Silver Spring, MD USA. [Chapman, Carol] Naval Med Res Ctr, Silver Spring, MD USA. [Bell, Melissa; Hoffmaster, Alex] Ctr Dis Control & Prevent, CDC, Bacterial Special Pathogens Branch, Atlanta, GA USA. [Datta, Shomik] Vorsight, Washington, DC USA. [Singh, Ajay] Laulima Govt Solut, Aberdeen Proving Ground, MD USA. [Singh, Ajay] USAMRICD Neurobiol Toxicol Branch, Analyt Toxicol Div, Aberdeen Proving Ground, MD USA. [Thirunavkkarasu, Nagarajan] US FDA, Ctr Food Safety & Appl Nutr, College Pk, MD USA. [Sharma, Shashi] US FDA, Select Agents & Environm Pathogens, Mol Methods & Subtyping Branch, Ctr Food Safety & Appl Nutr, College Pk, MD USA. [Krishnan, Viswanathan] Calif State Univ Fresno, Phys Chem, Fresno, CA 93740 USA. [Morse, Stephen] CDC, Div Select Agents & Toxins, Atlanta, GA USA. [Avila, Julie R.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA USA. [Estacio, Peter L.] Lawrence Berkeley Natl Lab, Hlth Serv, Berkeley, CA USA. [Stanker, Larry] USDA ARS, Foodborne Toxin Detect & Prevent Unit, Albany, CA USA. [Hodge, David R.] DHS S&T Chem & Biol Def Div, Washington, DC USA. [Pillai, Segaran P.] US FDA, Off Lab Sci & Safety, Silver Spring, MD 20993 USA. RP Pillai, SP (reprint author), US FDA, Off Lab Sci & Safety, Silver Spring, MD 20993 USA. EM Segaran.Pillai@fda.hhs.gov FU Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Homeland Security Research Projects Agency [HSHQDC-12-C-00071] FX The authors wish to acknowledge the important contributions to this manuscript of Dr. Douglas L. Anders, Hazardous Materials Response Unit, Federal Bureau of Investigation Laboratory, Quantico, Virginia, and Dr. Sally Hojvat, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, for subject matter expert advice and consultation. We express our thanks and appreciation for their assistance in the preparation and execution of this project. This work was funded by Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Homeland Security Research Projects Agency, Contract #HSHQDC-12-C-00071. The views expressed here are those of the authors and do not necessarily represent the position of DHS. NR 54 TC 0 Z9 0 U1 2 U2 2 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 2326-5094 EI 2326-5108 J9 HEALTH SECUR JI Health Secur. PD SEP-OCT PY 2016 VL 14 IS 5 BP 351 EP 365 DI 10.1089/hs.2016.0041 PG 15 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DX7BU UT WOS:000384541800008 PM 27661796 ER PT J AU Marathe, A Harris, R Lowenthal, DK de Supinski, BR Rountree, B Schulz, M AF Marathe, Aniruddha Harris, Rachel Lowenthal, David K. de Supinski, Bronis R. Rountree, Barry Schulz, Martin TI Exploiting Redundancy and Application Scalability for Cost-Effective, Time-Constrained Execution of HPC Applications on Amazon EC2 SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Fault tolerance; reliability; cloud computing; resource provisioning; cost optimization AB The use of clouds to execute high-performance computing (HPC) applications has greatly increased recently. Clouds provide several potential advantages over traditional supercomputers and in-house clusters. The most popular cloud is currently Amazon EC2, which provides fixed-cost and variable-cost, auction-based options. The auction market trades lower cost for potential interruptions that necessitate checkpointing; if the market price exceeds the bid price, a node is taken away from the user without warning. We explore techniques to maximize performance per dollar given a time constraint within which an application must complete. Specifically, we design and implement multiple techniques to reduce expected cost by exploiting redundancy in the EC2 auction market. We then design an adaptive algorithm that selects a scheduling algorithm and determines the bid price. We show that our adaptive algorithm executes programs up to seven times cheaper than using the on-demand market and up to 44 percent cheaper than the best non-redundant, auction-market algorithm. We extend our adaptive algorithm to incorporate application scalability characteristics for further cost savings. We show that the adaptive algorithm informed with scalability characteristics of applications achieves up to 56 percent cost savings compared to the expected cost for the base adaptive algorithmrun at a fixed, user-defined scale. C1 [Lowenthal, David K.] Univ Arizona, Dept Comp Sci, Tucson, AZ 85721 USA. [Marathe, Aniruddha; de Supinski, Bronis R.; Rountree, Barry; Schulz, Martin] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Harris, Rachel] Google Corp, Mountain View, CA USA. RP Marathe, A (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM marathe1@llnl.gov; raharris@email.arizona.edu; dkl@cs.arizona.edu; bronis@llnl.gov; rountree4@llnl.gov; schulzm@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-676899]; National Science Foundation [1216829] FX Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-676899). This material is based upon work supported by the National Science Foundation under Grant No. 1216829. We also thank Amazon for a grant for time on EC2. Finally, we thank the anonymous reviewers for comments that improved the quality of this paper. NR 26 TC 0 Z9 0 U1 2 U2 2 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD SEP 1 PY 2016 VL 27 IS 9 BP 2574 EP 2588 DI 10.1109/TPDS.2015.2508457 PG 15 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DX2XW UT WOS:000384238000008 ER PT J AU Allain, JP Ruzic, DN Nieto, M Baylor, L Ribeiro, C AF Allain, Jean Paul Ruzic, David N. Nieto, Martin Baylor, Larry Ribeiro, Celso TI Special Issue on Symposium on Fusion Engineering SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Editorial Material C1 [Allain, Jean Paul; Ruzic, David N.] Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. [Nieto, Martin] Inst Politecn Nacl, CICATA Queretaro, Queretaro, Mexico. [Baylor, Larry] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Ribeiro, Celso] Univ Costa Rica, San Jose, Costa Rica. RP Allain, JP (reprint author), Univ Illinois, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA. OI Allain, Jean Paul/0000-0003-1348-262X NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2016 VL 44 IS 9 SI SI BP 1463 EP 1465 DI 10.1109/TPS.2016.2599661 PN 1 PG 3 WC Physics, Fluids & Plasmas SC Physics GA DX2VX UT WOS:000384231500001 ER PT J AU Baylor, LR Combs, SK Duckworth, RC Lyttle, MS Meitner, SJ Rasmussen, DA Maruyama, S AF Baylor, L. R. Combs, S. K. Duckworth, R. C. Lyttle, M. S. Meitner, S. J. Rasmussen, D. A. Maruyama, S. TI Pellet Injection Technology and Its Applications on ITER SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT 26th Symposium on Fusion Engineering (SOFE) colocated with the 20th Pulsed Power Conference CY MAY 31-JUN 04, 2015 CL Austin, TX DE Disruption mitigation; fuel cycle; fueling ID MITIGATION AB Cryogenic pellet injectors for use in fusion research have been under development at Oak Ridge National Laboratory for over 30 years. The original application of the technology was to add fuel to magnetically confined plasmas to replace D-T ions that are consumed in the fusion reactions or lost due to transport out of the confining magnetic fields. This application is still the primary use for pellet injection and is planned for implementation on the ITER burning plasma experiment. More recently, there have been additional applications for the injection of cryogenic pellets in the areas of disruption and edge-localized mode mitigation. Injectors for these applications are also being implemented for ITER, which require refinements of the technology for production and shattering of very large pellets and production of very small high repetition rate pellets, respectively. Details of these applications and injection system designs are presented. C1 [Baylor, L. R.; Combs, S. K.; Duckworth, R. C.; Lyttle, M. S.; Meitner, S. J.; Rasmussen, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Maruyama, S.] ITER Org, F-13115 St Paul Les Durance, France. RP Baylor, LR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM baylorlr@ornl.gov; combssk@ornl.gov; duckworthrc@ornl.gov; lyttlems@ornl.gov; meitnersj@ornl.gov; rasmussenda@ornl.gov; so.maruyama@iter.org NR 18 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2016 VL 44 IS 9 SI SI BP 1489 EP 1495 DI 10.1109/TPS.2016.2550419 PN 1 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DX2VX UT WOS:000384231500005 ER PT J AU Combs, SK Meitner, SJ Gebhart, TE Baylor, LR Caughman, JBO Fehling, DT Foust, CR Ha, T Lyttle, MS Fisher, JT Younkin, TR AF Combs, S. K. Meitner, S. J. Gebhart, T. E. Baylor, L. R. Caughman, J. B. O. Fehling, D. T. Foust, C. R. Ha, T. Lyttle, M. S. Fisher, J. T. Younkin, T. R. TI Solidification and Acceleration of Large Cryogenic Pellets Relevant for Plasma Disruption Mitigation SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT 26th Symposium on Fusion Engineering (SOFE) colocated with the 20th Pulsed Power Conference CY MAY 31-JUN 04, 2015 CL Austin, TX DE Argon; cryogenic pellet; deuterium; disruption mitigation; neon; plasma; shattered ID VALVE AB The technology for producing, accelerating, and shattering large pellets (before injection into plasmas) for disruption mitigation has been under development at the Oak Ridge National Laboratory for several years, including a system on DIII-D that has been used to provide some significant experimental results. The original proof-of-principle testing was carried out using a pipe gun injector cooled by a cryogenic refrigerator (temperatures similar to 8-20 K) and equipped with a stainless steel tube to produce 16.5-mm pellets composed of either pure D-2, pure Ne, or a dual layer with a thin outer shell of D-2 and core of Ne. Recently, significant progress has been made in the laboratory using that same pipe gun and a new injector that is an ITER test apparatus cooled with liquid helium. The new injector operates at similar to 5-8 K, which is similar to temperatures expected with cooling provided by the flow of supercritical helium on ITER. An alternative technique for producing/solidifying large pellets directly from a premixed gas has now been successfully tested in the laboratory. Also, two additional pellet sizes have been tested recently (nominal 24.4 and 34.0 mm diameters). With larger pellets, the number of injectors required for ITER disruption mitigation can be reduced, resulting in less cost and a smaller footprint for the hardware. An attractive option is longer pellets, and 24.4-mm pellets with a length/diameter ratio of similar to 3 have been successfully tested. Since pellet speed is the key parameter in determining the response time of a shattered pellet system to a plasma disruption event, recent tests have concentrated on documenting the speeds with different hardware configurations and operating parameters; speeds of similar to 100-800 m/s have been recorded. The data and results from laboratory testing are presented and discussed, and a simple model for the pellet solidification process is described. C1 [Combs, S. K.; Meitner, S. J.; Baylor, L. R.; Caughman, J. B. O.; Fehling, D. T.; Foust, C. R.; Ha, T.; Lyttle, M. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Gebhart, T. E.] Univ Florida, Gainesville, FL 32611 USA. [Fisher, J. T.] Washington State Univ, Pullman, WA 99164 USA. [Younkin, T. R.] Univ Tennessee, Knoxville, TN 37996 USA. RP Combs, SK (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM combssk@ornl.gov; meitnersj@ornl.gov; tgebhart@vt.edu; baylorlr@ornl.gov; caughmanjb@ornl.gov; fehlingdt@ornl.gov; foustcr@ornl.gov; hatt@ornl.gov; lyttlems@ornl.gov; jake.fisher@email.wsu.edu; tyounkin@utk.edu RI Caughman, John/R-4889-2016; OI Caughman, John/0000-0002-0609-1164; Combs, Stephen/0000-0001-9298-2221; Gebhart, Trey/0000-0001-8259-6095 NR 14 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2016 VL 44 IS 9 SI SI BP 1506 EP 1513 DI 10.1109/TPS.2016.2578461 PN 1 PG 8 WC Physics, Fluids & Plasmas SC Physics GA DX2VX UT WOS:000384231500007 ER PT J AU Lumsdaine, A Bjorholm, T Harris, J McGinnis, D Lore, JD Boscary, J Tretter, J Clark, E Ekici, K Fellinger, J Holbe, H Neilson, H Titus, P Wurden, GA AF Lumsdaine, A. Bjorholm, T. Harris, J. McGinnis, D. Lore, J. D. Boscary, J. Tretter, J. Clark, E. Ekici, K. Fellinger, J. Hoelbe, H. Neilson, H. Titus, P. Wurden, G. A. TI Overview of Design and Analysis Activities for the W7-X Scraper Element SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT 26th Symposium on Fusion Engineering (SOFE) colocated with the 20th Pulsed Power Conference CY MAY 31-JUN 04, 2015 CL Austin, TX DE Divertor; high heat flux; modeling and simulation; Wendelstein 7X (W7-X) ID STELLARATOR; EQUILIBRIA; COMPONENTS AB The Wendelstein 7-X stellarator is in final stages of commissioning, and will begin operation in late 2015. In the first phase, the machine will operate with a limiter, and will be restricted to low power and short pulse. But in 2019, plans are for an actively cooled divertor to be installed, and the machine will operate in steady state at full power. Recently, plasma simulations have indicated that, in this final operational phase, a bootstrap current will evolve in certain scenarios. This will cause the sensitive ends of the divertor target to be overloaded beyond their qualified limit. A high heat flux scraper element (HHF-SE) has been proposed in order to take up some of the convective flux and reduce the load on the divertor. In order to examine whether the HHF-SE will be able to effectively reduce the plasma flux in the divertor region of concern, and to determine how the pumping effectiveness will be affected by such a component, it is planned to include a test divertor unit scraper element (TDU-SE) in 2017 during an earlier operational phase. Several U.S. fusion energy science laboratories have been involved in the design, analysis (structural and thermal finite element, as well as computational fluid dynamics), plasma simulation, planning, prototyping, and diagnostic development around the scraper element program (both TDU-SE and HHF-SE). This paper presents an overview of all of these activities and their current status. C1 [Lumsdaine, A.; Bjorholm, T.; Harris, J.; McGinnis, D.; Lore, J. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Boscary, J.; Tretter, J.] Max Planck Inst Plasma Phys, D-85748 Garching, Germany. [Clark, E.; Ekici, K.] Univ Tennessee, Knoxville, TN 37996 USA. [Fellinger, J.; Hoelbe, H.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Neilson, H.; Titus, P.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Wurden, G. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lumsdaine, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM lumsdainea@ornl.gov; bjorholmtp@ornl.gov; harrisjh@ornl.gov; mcginniswd@ornl.gov; lorejd@ornl.gov; jean.boscary@ipp.mpg.de; joerg.tretter@ipp.mpg.de; ebuckman@vols.utk.edu; ekici@utk.edu; joris.fellinger@ipp.mpg.de; hauke.hoelbe@ipp.mpg.de; hneilson@pppl.g; ptitus@pppl.gov; wurden@lanl.gov RI Wurden, Glen/A-1921-2017 OI Wurden, Glen/0000-0003-2991-1484 NR 21 TC 0 Z9 0 U1 6 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD SEP PY 2016 VL 44 IS 9 SI SI BP 1738 EP 1744 DI 10.1109/TPS.2016.2598486 PN 1 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DX2VX UT WOS:000384231500043 ER PT J AU Zeni, L Gevorgian, V Wallen, R Bech, J Sorensen, PE Hesselbaek, B AF Zeni, Lorenzo Gevorgian, Vahan Wallen, Robb Bech, John Sorensen, Poul Ejnar Hesselbaek, Bo TI Utilisation of real-scale renewable energy test facility for validation of generic wind turbine and wind power plant controller models SO IET RENEWABLE POWER GENERATION LA English DT Article DE wind turbines; wind power plants; test facilities; power generation control; real-scale renewable energy test facility; generic wind turbine; wind power plant controller models; power system; dynamic simulation models; frequency control; power oscillation damping AB This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements. C1 [Zeni, Lorenzo; Hesselbaek, Bo] DONG Energy Wind Power AS, Fredericia, Denmark. [Gevorgian, Vahan; Wallen, Robb] Natl Renewable Energy Lab, Golden, CO USA. [Bech, John] Siemens Wind Power AS, Brande, Denmark. [Sorensen, Poul Ejnar] Tech Univ Denmark, Dept Wind Energy, Roskilde, Denmark. RP Zeni, L (reprint author), DONG Energy Wind Power AS, Fredericia, Denmark. EM lorze@dongenergy.dk RI Sorensen, Poul/C-6263-2008 OI Sorensen, Poul/0000-0001-5612-6284 FU Nordic Energy Research through OffshoreDC project FX The authors thank the Nordic Energy Research who, through the OffshoreDC project (www.offshoredc.dk), partly funded the work conducted to produce this paper. NR 12 TC 0 Z9 0 U1 3 U2 3 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1752-1416 EI 1752-1424 J9 IET RENEW POWER GEN JI IET Renew. Power Gener. PD SEP PY 2016 VL 10 IS 8 BP 1123 EP 1131 DI 10.1049/iet-rpg.2015.0478 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DW9XM UT WOS:000384016100010 ER PT J AU Ahmed, F Schumacher, C Feng, Z Hagos, S AF Ahmed, Fiaz Schumacher, Courtney Feng, Zhe Hagos, Samson TI A Retrieval of Tropical Latent Heating Using the 3D Structure of Precipitation Features SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID MADDEN-JULIAN OSCILLATION; MESOSCALE CONVECTIVE SYSTEMS; CLOUD CLUSTERS; STRATIFORM PRECIPITATION; RAINFALL PRODUCTION; RADAR REFLECTIVITY; MOISTURE BUDGETS; ANVIL CLOUDS; SQUALL-LINE; TOGA COARE AB Radar-based latent heating retrievals typically apply a lookup table (LUT) derived from model output to surface rain amounts and rain type to determine the vertical structure of heating. In this study, a method has been developed that uses the size characteristics of precipitating systems (i.e., area and mean echo-top height) instead of rain amount to estimate latent heating profiles from radar observations. This technique [named the convective-stratiform area (CSA) algorithm] leverages the relationship between the organization of convective systems and the structure of latent heating profiles and avoids pitfalls associated with retrieving accurate rainfall information from radars and models. The CSA LUTs are based on a high-resolution regional model simulation over the equatorial Indian Ocean. The CSA LUTs show that convective latent heating increases in magnitude and height as area and echo-top heights grow, with a congestus signature of midlevel cooling for less vertically extensive convective systems. Stratiform latent heating varies weakly in vertical structure, but its magnitude is strongly linked to area and mean echo-top heights. The CSA LUT was applied to radar observations collected during the DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/ARM MJO Investigation Experiment (AMIE) field campaign, and the CSA heating retrieval was generally consistent with other measures of heating profiles. The impact of resolution and spatial mismatch between the model and radar grids is addressed, and unrealistic latent heating profiles in the stratiform LUT, namely, a low-level heating peak, an elevated melting layer, and net column cooling, were identified. These issues highlight the need for accurate convective-stratiform separations and improvement in PBL and microphysical parameterizations. C1 [Ahmed, Fiaz; Schumacher, Courtney] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. [Feng, Zhe; Hagos, Samson] Pacific Northwest Natl Lab, Richland, WA USA. RP Ahmed, F (reprint author), Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA. EM fiaz.500@tamu.edu RI Feng, Zhe/E-1877-2015; Schumacher, Courtney/B-8968-2011 OI Feng, Zhe/0000-0002-7540-9017; Schumacher, Courtney/0000-0003-3612-485X FU NSF [AGS-1062217]; DOE [DE-SC0000798]; Biological and Environmental Research of the DOE Office of Science as part of the Regional and Global Climate Modeling Program and Atmospheric System Research Program; Battelle Memorial Institute [DE-AC05-76RL01830] FX The DYNAMO field campaign data used in this paper are available at NCAR's Earth Observing Laboratory's DYNAMO Data Catalogue https://www.eol.ucar.edu/field_projects/dynamo. The dataset names are S-PolKa Radar, fully corrected, merged, final moments data in cfRadial format. This research was supported by NSF Grant AGS-1062217 and DOE Grant DE-SC0000798 to Texas A&M University. It is also based on work supported by the Biological and Environmental Research of the DOE Office of Science as part of the Regional and Global Climate Modeling Program and Atmospheric System Research Program. Computing resources for the simulations were provided by the National Energy Research Scientific Computing Center (NERSC). The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under Contract DE-AC05-76RL01830. The authors thank the three anonymous reviewers whose observations and suggestions lent lucidity and greatly improved the quality of this work. NR 76 TC 1 Z9 1 U1 7 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 EI 1558-8432 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD SEP PY 2016 VL 55 IS 9 BP 1965 EP 1982 DI 10.1175/JAMC-D-15-0038.1 PG 18 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DX1QM UT WOS:000384142100007 ER PT J AU Sarowar, S Hu, OJ Werneburg, GT Thanassi, DG Li, HL AF Sarowar, Samema Hu, Olivia J. Werneburg, Glenn T. Thanassi, David G. Li, Huilin TI The Escherichia coli P and Type 1 Pilus Assembly Chaperones PapD and FimC Are Monomeric in Solution SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BACTERIAL OUTER-MEMBRANE; DRIVES FIBER FORMATION; STRUCTURAL BASIS; SUBUNIT RECOGNITION; CRYSTAL-STRUCTURE; ADHESIN FIMH; BIOGENESIS; USHER; PATHWAY; PROTEIN AB The chaperone/usher pathway is used by Gram-negative bacteria to assemble adhesive surface structures known as pili or fimbriae. Uropathogenic strains of Escherichia coli use this pathway to assemble P and type 1 pili, which facilitate colonization of the kidney and bladder, respectively. Pilus assembly requires a periplasmic chaperone and outer membrane protein termed the usher. The chaperone allows folding of pilus subunits and escorts the subunits to the usher for polymerization into pili and secretion to the cell surface. Based on previous structures of mutant versions of the P pilus chaperone PapD, it was suggested that the chaperone dimerizes in the periplasm as a self-capping mechanism. Such dimerization is counterintuitive because the chaperone G1 strand, important for chaperone-subunit interaction, is buried at the dimer interface. Here, we show that the wild-type PapD chaperone also forms a dimer in the crystal lattice; however, the dimer interface is different from the previously solved structures. In contrast to the crystal structures, we found that both PapD and the type 1 pilus chaperone, FimC, are monomeric in solution. Our findings indicate that pilus chaperones do not sequester their G1 beta-strand by forming a dimer. Instead, the chaperones may expose their G1 strand for facile interaction with pilus subunits. We also found that the type 1 pilus adhesin, FimH, is flexible in solution while in complex with its chaperone, whereas the P pilus adhesin, PapGII, is rigid. Our study clarifies a crucial step in pilus biogenesis and reveals pilus-specific differences that may relate to biological function. IMPORTANCE Pili are critical virulence factors for many bacterial pathogens. Uropathogenic E. coli relies on P and type 1 pili assembled by the chaperone/usher pathway to adhere to the urinary tract and establish infection. Studying pilus assembly is important for understanding mechanisms of protein secretion, as well as for identifying points for therapeutic intervention. Pilus biogenesis is a multistep process. This work investigates the oligomeric state of the pilus chaperone in the periplasm, which is important for understanding early assembly events. Our work unambiguously demonstrates that both PapD and FimC chaperones are monomeric in solution. We further demonstrate that the solution behavior of the FimH and PapGII adhesins differ, which may be related to functional differences between the two pilus systems. C1 [Sarowar, Samema; Hu, Olivia J.; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Sarowar, Samema; Hu, Olivia J.; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Stony Brook, NY 11794 USA. [Werneburg, Glenn T.; Thanassi, David G.] SUNY Stony Brook, Dept Mol Genet & Microbiol, Stony Brook, NY USA. [Werneburg, Glenn T.; Thanassi, David G.] SUNY Stony Brook, Ctr Infect Dis, Stony Brook, NY USA. RP Li, HL (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. EM hli@bnl.gov FU NIH [T32 GM008468, R01 GM062987] FX This work was supported by NIH grants T32 GM008468 (to S.S.) and R01 GM062987 (to D.G.T. and H.L.). NR 48 TC 1 Z9 1 U1 3 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2016 VL 198 IS 17 BP 2360 EP 2369 DI 10.1128/JB.00366-16 PG 10 WC Microbiology SC Microbiology GA DX4FD UT WOS:000384335700010 PM 27353649 ER PT J AU Steeb, JL Graczyk, DG Tsai, YF Mertz, CJ Kimberlin, A Chamberlain, DB AF Steeb, Jennifer L. Graczyk, Donald G. Tsai, Yifen Mertz, Carol J. Kimberlin, Ashleigh Chamberlain, David B. TI Age-dating methodology for Cs-137 ceramic sources SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Extraction chromatography; EDTA; Age dating; Nuclear forensics; Cs-137 ceramic; RDD ID CESIUM; SPECTROMETRY; SEPARATION; EXCHANGE; BARIUM AB Age-dating of Cs-137 ceramic sources is shown to be a viable technology for nuclear forensics investigations. The Cs-137 age-dating method in general, however, could be substantially improved by using radiometric rather than ICP-MS measurement of the Cs-137 isotope and by refining the Cs/Ba separation process. With these improvements, uncertainty in the age of a 60-year-old source decreases from 1.35 to 0.68 y. C1 [Steeb, Jennifer L.; Graczyk, Donald G.; Tsai, Yifen; Mertz, Carol J.; Chamberlain, David B.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Kimberlin, Ashleigh] Washington State Univ, Dept Chem, POB 641024, Pullman, WA 99164 USA. RP Steeb, JL (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM steeb@anl.gov FU U.S. Department of Homeland Security; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Argonne National Laboratory's work was funded by the U.S. Department of Homeland Security. The submitted manuscript includes information created by UChicago Argonne, LLC, operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and display publicly, by or on behalf of the Government. NR 25 TC 0 Z9 0 U1 6 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD SEP PY 2016 VL 309 IS 3 BP 999 EP 1019 DI 10.1007/s10967-016-4712-x PG 21 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DU3VG UT WOS:000382139700007 ER PT J AU Riddle, C Czerwinski, K Kim, E Paviet, P Weck, P Poineau, F Conradson, S AF Riddle, Catherine Czerwinski, Kenneth Kim, Eunja Paviet, Patricia Weck, Philippe Poineau, Frederic Conradson, Steven TI Characterization of pentavalent and hexavalent americium complexes in nitric acid using X-ray absorption fine structure spectroscopy and first-principles modeling SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Americium; Higher oxidation states; XAFS; DFT; Acidic solution ID OXIDATION-STATES; NP; PU; LANTHANIDES; BISMUTHATE; POTENTIALS; MOLECULES; WATER; IONS; AM AB The speciation of pentavalent and hexavalent americium (Am) complexes in nitric acid have been studied by X-ray absorption fine structure spectroscopy, UV-visible spectroscopy, and density functional theory. Calculated bond distances for the Am(VI) complex are in reasonable agreement with EXAFS data and suggest the presence of a mixture of AmO2 (+) and AmO2 (2+) as well as a slightly higher kinetic stability for Am(VI) compared to Am(V). C1 [Riddle, Catherine] Idaho Natl Lab, POB 1625,MS 6150, Idaho Falls, ID 83415 USA. [Czerwinski, Kenneth; Poineau, Frederic] Univ Nevada, Dept Chem, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA. [Kim, Eunja] Univ Nevada, Dept Phys & Astron, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA. [Paviet, Patricia] Dept Energy, 1000 Independence Ave SW, Washington, DC 20585 USA. [Weck, Philippe] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Conradson, Steven] Synchrotron Soleil Lab, F-91190 Lorme Des Merisiers, Saint Aubin, France. RP Riddle, C (reprint author), Idaho Natl Lab, POB 1625,MS 6150, Idaho Falls, ID 83415 USA. EM catherine.riddle@inl.gov OI , Philippe/0000-0002-7610-2893; Riddle, Catherine/0000-0002-9667-7707 FU U.S. Department of Energy, Office of Nuclear Energy, Science and Technology under DOE Idaho Operations Office [DE-AC07-99ID13727]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully acknowledge the support from the faculty and staff of the Stanford Synchrotron Radiation Lightsource at Stanford University for their assistance with this work. This research was sponsored by the U.S. Department of Energy, Office of Nuclear Energy, Science and Technology under DOE Idaho Operations Office contract DE-AC07-99ID13727. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 39 TC 0 Z9 0 U1 9 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD SEP PY 2016 VL 309 IS 3 BP 1087 EP 1095 DI 10.1007/s10967-016-4704-x PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DU3VG UT WOS:000382139700015 ER PT J AU Orrell, JL Aalseth, CE Arnquist, IJ Eggemeyer, TA Glasgow, BD Hoppe, EW Keillor, ME Morley, SM Myers, AW Overman, CT Shaff, SM Thommasson, KS AF Orrell, John L. Aalseth, Craig E. Arnquist, Isaac J. Eggemeyer, Tere A. Glasgow, Brian D. Hoppe, Eric W. Keillor, Martin E. Morley, Shannon M. Myers, Allan W. Overman, Cory T. Shaff, Sarah M. Thommasson, Kimbrelle S. TI Assay methods for U-238, Th-232, and Pb-210 in lead and calibration of Bi-210 bremsstrahlung emission from lead SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Lead assay; U-238; Th-232; Pb-210; Inductively coupled plasma mass spectrometry (ICP-MS); alpha-spectroscopy; gamma-ray spectroscopy ID GAMMA-RAY SPECTROMETER; BETA-DECAY; RADIOACTIVITY AB Methods for measuring U-238, Th-232, and Pb-210 in refined lead are presented. The U-238 and Th-232 concentrations are determined using isotope dilution inductively coupled plasma mass spectrometry after anion exchange column separation of dissolved lead samples. The Pb-210 concentration is inferred through alpha-spectroscopy of a daughter isotope, Po-210, after precipitation separation of dissolved lead samples. Subsequent to the Po-210 alpha-spectroscopy measurement, a method for evaluating Pb-210 concentrations was developed via measurement of bremsstrahlung radiation from beta-decay of a daughter isotope, Bi-210, using a 14-crystal array of high purity germanium detectors. Ten sources of refined lead were assayed and results are presented. C1 [Orrell, John L.; Aalseth, Craig E.; Arnquist, Isaac J.; Eggemeyer, Tere A.; Glasgow, Brian D.; Hoppe, Eric W.; Keillor, Martin E.; Morley, Shannon M.; Myers, Allan W.; Overman, Cory T.; Shaff, Sarah M.; Thommasson, Kimbrelle S.] Pacific Northwest Natl Lab, Natl Secur Directorate, 902 Battelle Blvd,POB 999,MSIN J4-65, Richland, WA 99352 USA. RP Orrell, JL (reprint author), Pacific Northwest Natl Lab, Natl Secur Directorate, 902 Battelle Blvd,POB 999,MSIN J4-65, Richland, WA 99352 USA. EM john.orrell@pnnl.gov RI Orrell, John/E-9313-2015 OI Orrell, John/0000-0001-7968-4051 FU Ultra Sensitive Nuclear Measurements Initiative; LDRD project FX The three radiochemical assay measurements for 238U, 232Th, and 210 Po described in this article were supported by the Ultra Sensitive Nuclear Measurements Initiative, conducted under the Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest National Laboratory, a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy. In particular, the LDRD project supporting this assay development effort is presented in Ref. [16], which describes the shielding design of a low-background liquid scintillation counting (LSC) system. In that LSC system the projected background from bremsstrahlung from the lead was the second largest background contributor, assuming a 2-inch thick, inner layer of 3 Bq kg-1 lead surrounded by 60 Bq kg-1 outer lead. From the survey of the ten lots of lead provided by this assay development effort, it was decided to employ a lead shield for the LSC system using three layers of lead having similar to 2 Bq kg-1 (purchased separately), similar to 30 Bq kg-1 (lots for samples #2 and #4), and similar to 70 Bq kg-1 (lot for sample #1), from the inner most layer to the outer most layer, respectively. NR 23 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD SEP PY 2016 VL 309 IS 3 BP 1271 EP 1281 DI 10.1007/s10967-016-4732-6 PG 11 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DU3VG UT WOS:000382139700035 ER PT J AU Guimond, SR Heymsfield, GM Reasor, PD Didlake, AC AF Guimond, Stephen R. Heymsfield, Gerald M. Reasor, Paul D. Didlake, Anthony C., Jr. TI The Rapid Intensification of Hurricane Karl (2010): New Remote Sensing Observations of Convective Bursts from the Global Hawk Platform SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID TROPICAL CYCLONE INTENSIFICATION; HIGH-RESOLUTION SIMULATION; INNER-CORE; PART I; 3-DIMENSIONAL PERTURBATIONS; DOPPLER RADAR; BONNIE 1998; EVOLUTION; EYEWALL; EYE AB The evolution of rapidly intensifying Hurricane Karl (2010) is examined from a suite of remote sensing observations during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment. The novelties of this study are in the analysis of data from the airborne Doppler radar High-Altitude Imaging Wind and Rain Airborne Profiler (HI WRAP) and the new Global Hawk airborne platform that allows long endurance sampling of hurricanes. Supporting data from the High-Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR) microwave sounder coincident with HIWRAP and coordinated flights with the NOAA WP-3D aircraft help to provide a comprehensive understanding of the storm. The focus of the analysis is on documenting and understanding the structure, evolution, and role of small-scale deep convective forcing in the storm intensification process. Deep convective bursts are sporadically initiated in the downshear quadrants of the storm and rotate into the upshear quadrants for a period of similar to 12 h during the rapid intensification. The aircraft data analysis indicates that the bursts are being formed and maintained through a combination of two main processes: 1) convergence generated from counterrotating mesovortex circulations and the larger vortex-scale flow and 2) the turbulent (scales of similar to 25 km) transport of anomalously warm, buoyant air from the eye to the eyewall at low levels. The turbulent mixing across the eyewall interface and forced convective descent adjacent to the bursts assists in carving out the eye of Karl, which leads to an asymmetric enhancement of the warm core. The mesovortices play a key role in the evolution of the features described above. The Global Hawk aircraft allowed an examination of the vortex response and axisymmetrization period in addition to the burst pulsing phase. A pronounced axisymmetric development of the vortex is observed following the pulsing phase that includes a sloped eyewall structure and formation of a clear, wide eye. C1 [Guimond, Stephen R.] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Guimond, Stephen R.; Heymsfield, Gerald M.; Didlake, Anthony C., Jr.] NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. [Reasor, Paul D.] NOAA, Atlantic Oceanog & Meteorol Lab, Hurricane Res Div, Miami, FL 33149 USA. [Didlake, Anthony C., Jr.] Oak Ridge Associated Univ, Oak Ridge, TN USA. RP Guimond, SR (reprint author), NASA, Goddard Space Flight Ctr, Code 612, Greenbelt, MD 20771 USA. EM stephen.guimond@nasa.gov RI Reasor, Paul/B-2932-2014 OI Reasor, Paul/0000-0001-6407-017X FU Heymsfield's NASA GRIP through NASA; Heymsfield's NASA HS3 through NASA; NOAA; NASA; Institute of Geophysics and Planetary Physics (IGPP) at Los Alamos National Laboratory FX We thank Dr. Lihua Li, Matt McLinden, Martin Perrine, and Jaime Cervantes for their engineering efforts on HIWRAP during GRIP. We also thank the JPL HAMSR team for providing level 1B data used in this study, which was obtained from NASA Global Hydrology Resource Center in Huntsville, Alabama. Discussions with Dr. Scott Braun were useful and helped to clarify the presentation of the data. Dr. Lin Tian helped with early HIWRAP data processing. Author Guimond and coauthors Heymsfield and Didlake were funded under Heymsfield's NASA GRIP and HS3 funding, through NASA headquarters Program Manager Dr. Ramesh Kakar. Coauthor Reasor was funded through NOAA base funds. The NASA weather program under Dr. Ramesh Kakar supported GRIP. The first author was also partially supported by the Institute of Geophysics and Planetary Physics (IGPP) at Los Alamos National Laboratory. The first author thanks Robert Kilgore for his work on the conceptual diagram. Finally, we thank Rob Rogers and two anonymous reviewers for their very helpful comments. NR 47 TC 1 Z9 1 U1 5 U2 5 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2016 VL 73 IS 9 BP 3617 EP 3639 DI 10.1175/JAS-D-16-0026.1 PG 23 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DW8RP UT WOS:000383923500016 ER PT J AU Lin, Y Wang, Y Pan, BW Hu, JX Liu, YG Zhang, RY AF Lin, Yun Wang, Yuan Pan, Bowen Hu, Jiaxi Liu, Yangang Zhang, Renyi TI Distinct Impacts of Aerosols on an Evolving Continental Cloud Complex during the RACORO Field Campaign SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID DEEP CONVECTIVE CLOUDS; FINE PARTICULATE MATTER; LONG-TERM IMPACTS; ANTHROPOGENIC AEROSOLS; SHALLOW CUMULUS; MICROPHYSICS PARAMETERIZATION; STRATOCUMULUS CLOUDS; ABSORBING AEROSOLS; RESOLVING MODEL; CLIMATE MODELS AB A continental cloud complex, consisting of shallow cumuli, a deep convective cloud (DCC), and stratus, is simulated by a cloud-resolving Weather Research and Forecasting Model to investigate the aerosol micro physical effect (AME) and aerosol radiative effect (ARE) on the various cloud regimes and their transitions during the Department of Energy Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) campaign. Under an elevated aerosol loading with AME only, a reduced cloudiness for the shallow cumuli and stratus resulted from more droplet evaporation competing with suppressed precipitation, but an enhanced cloudiness for the DCC is attributed to more condensation. With the inclusion of ARE, the shallow cumuli are suppressed owing to the thermodynamic effects of light-absorbing aerosols. The responses of DCC and stratus to aerosols are monotonic with AME only but nonmonotonic with both AME and ARE. The DCC is invigorated because of favorable convection and moisture conditions at night induced by daytime ARE, via the so-called aerosol-enhanced conditional instability mechanism. The results reveal that the overall aerosol effects on the cloud complex are distinct from the individual cloud types, highlighting that the aerosol cloud interactions for diverse cloud regimes and their transitions need to be evaluated to assess the regional and global climatic impacts. C1 [Lin, Yun; Pan, Bowen; Hu, Jiaxi; Zhang, Renyi] Texas A&M Univ, College Stn, TX USA. [Wang, Yuan] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Liu, Yangang] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Zhang, RY (reprint author), Texas A&M Univ, Dept Atmospher Sci, Oceanog & Meteorol Bldg,Room 1108,MS 3150, College Stn, TX 77843 USA. EM renyi-zhang@tamu.edu OI Lin, Yun/0000-0001-8222-0346 FU DOE's Earth System Modeling (ESM) Program via the FASTER project [DOE-DE-AC02-98CH10886]; NASA [ROSES14-ACMAP, 105357-281945.02.31.03.24] FX This research is supported by DOE's Earth System Modeling (ESM) Program via the FASTER project (www.bnl.gov/faster), under Grant DOE-DE-AC02-98CH10886. The RACORO field campaign was supported by DOE's ARM program. We are grateful for discussions on RACORO with Dr. Andrew Vogelmann at BNL and on aerosol microphysics effects on various clouds with Dr. Jonathan H. Jiang at JPL. The data from the RACORO field campaign, utilized only for education and research, are open to public after registration and application. Supercomputing computational facilities were provided by the Texas A&M University. Yuan Wang's contribution to this work was sponsored by NASA ROSES14-ACMAP and was carried at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA (Grant 105357-281945.02.31.03.24). NR 93 TC 0 Z9 0 U1 9 U2 9 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2016 VL 73 IS 9 BP 3681 EP 3700 DI 10.1175/JAS-D-15-0361.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DW8RP UT WOS:000383923500019 ER PT J AU Romps, DM AF Romps, David M. TI Clausius-Clapeyron Scaling of CAPE from Analytical Solutions to RCE SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID RADIATIVE-CONVECTIVE EQUILIBRIUM; TORNADO FORECAST PARAMETERS; CLOUD-RESOLVING MODEL; SEVERE THUNDERSTORM; ENTROPY BUDGET; PRECIPITATION EFFICIENCY; FRICTIONAL DISSIPATION; TOGA COARE; ATMOSPHERE; ENVIRONMENTS AB By deriving analytical solutions to radiative-convective equilibrium (RCE), it is shown mathematically that convective available potential energy (CAPE) exhibits Clausius-Clapeyron (CC) scaling over a wide range of surface temperatures up to 310 K. Above 310 K, CAPE deviates from CC scaling and even decreases with warming at very high surface temperatures. At the surface temperature of the current tropics, the analytical solutions predict that CAPE increases at a rate of about 6%-7% per kelvin of surface warming. The analytical solutions also provide insight on how the tropopause height and stratospheric humidity change with warming. Changes in the tropopause height exhibit CC scaling, with the tropopause rising by about 400 m per kelvin of surface warming at current tropical temperatures and by about 1-2 km K-1 at surface temperatures in the range of 320-340 K. The specific humidity of the stratosphere exhibits super-CC scaling at temperatures moderately warmer than the current tropics. With a surface temperature of the current tropics, the stratospheric specific humidity increases by about 6% per kelvin of surface warming, but the rate of increase is as high as 30% K-1 at warmer surface temperatures. C1 [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Romps, David M.] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA. RP Romps, DM (reprint author), Univ Calif Berkeley, 307 McCone Hall, Berkeley, CA 94720 USA. EM romps@berkeley.edu FU Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research under Contract DE-AC02-05CH11231. The author is grateful to Jacob Seeley, Martin Singh, and two anonymous reviewers for helpful comments on the manuscript. NR 41 TC 0 Z9 0 U1 8 U2 8 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 EI 1520-0469 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2016 VL 73 IS 9 BP 3719 EP 3737 DI 10.1175/JAS-D-15-0327.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DW8RP UT WOS:000383923500021 ER PT J AU Osgood, RM Giardini, S Carlson, J Periasamy, P Guthrey, H O'Hayre, R Chin, M Nichols, B Dubey, M Fernandes, G Kim, JH Xu, J Parilla, P Berry, J Ginley, D AF Osgood, Richard M., III Giardini, Stephen Carlson, Joel Periasamy, Prakash Guthrey, Harvey O'Hayre, Ryan Chin, Matthew Nichols, Barbara Dubey, Madan Fernandes, Gustavo Kim, Jin Ho Xu, Jimmy Parilla, Philip Berry, Joseph Ginley, David TI Conduction and rectification in NbOx- and NiO-based metal-insulator-metal diodes SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID TUNNEL-JUNCTION; WAVELENGTHS; MICROWAVE; RADIATION; BARRIERS; FILM AB Conduction and rectification in nanoantenna-coupled NbOx- and NiO-based metal-insulator-metal (MIM) diodes ("nanorectennas") are studied by comparing new theoretical predictions with the measured response of nanorectenna arrays. A new quantum mechanical model is reported and agrees with measurements of current-voltage (I-V) curves, over 10 orders of magnitude in current density, from [NbOx(native)-Nb2O5]- and NiO-based samples with oxide thicknesses in the range of 5-36 nm. The model, which introduces new physics and features, including temperature, electron effective mass, and image potential effects using the pseudobarrier technique, improves upon widely used earlier models, calculates the MIM diode's I-V curve, and predicts quantitatively the rectification responsivity of high frequency voltages generated in a coupled nanoantenna array by visible/near-infrared light. The model applies both at the higher frequencies, when high-energy photons are incident, and at lower frequencies, when the formula for classical rectification, involving derivatives of the I-V curve, may be used. The rectified low-frequency direct current is well-predicted in this work's model, but not by fitting the experimentally measured I-V curve with a polynomial or by using the older Simmons model (as shown herein). By fitting the measured I-V curves with our model, the barrier heights in Nb-(NbOx(native)-Nb2O5)-Pt and Ni-NiO-Ti/Ag diodes are found to be 0.41/0.77 and 0.38/0.39 eV, respectively, similar to literature reports, but with effective mass much lower than the free space value. The NbOx (native)-Nb2O5 dielectric properties improve, and the effective Pt-Nb2O5 barrier height increases as the oxide thickness increases. An observation of direct current of similar to 4 nA for normally incident, focused 514 nm continuous wave laser beams are reported, similar in magnitude to recent reports. This measured direct current is compared to the prediction for rectified direct current, given by the rectification responsivity, calculated from the I-V curve times input power. (C) 2016 American Vacuum Society. C1 [Osgood, Richard M., III; Giardini, Stephen; Carlson, Joel] US Army Natick Soldier Res Dev & Engn Ctr NSRDEC, 15 Gen Greene Ave, Natick, MA 01760 USA. [Periasamy, Prakash; Guthrey, Harvey; O'Hayre, Ryan] Colorado Sch Mines, Dept Met & Mat Engn, Golden, CO 80401 USA. [Chin, Matthew; Nichols, Barbara; Dubey, Madan] US Army Res Lab, RF & Elect Div, Adelphi, MD 20783 USA. [Fernandes, Gustavo; Kim, Jin Ho; Xu, Jimmy] Brown Univ, Div Engn, Box D, Providence, RI 02912 USA. [Parilla, Philip; Berry, Joseph; Ginley, David] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Periasamy, Prakash] GlobalFoundries, Essex Jct, VT 05451 USA. RP Osgood, RM (reprint author), US Army Natick Soldier Res Dev & Engn Ctr NSRDEC, 15 Gen Greene Ave, Natick, MA 01760 USA. EM richard.m.osgood.civ@mail.mil NR 25 TC 0 Z9 0 U1 7 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2016 VL 34 IS 5 AR 051514 DI 10.1116/1.4960962 PG 13 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA DX3HH UT WOS:000384263700030 ER PT J AU Miao, C Sundaram, BM Huang, L Tippur, HV AF Miao, C. Sundaram, B. M. Huang, L. Tippur, H. V. TI Surface profile and stress field evaluation using digital gradient sensing method SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE optical metrology; speckle correlation; surface slopes; stress gradients; surface topography; stress evaluation ID TRANSIENT DEFORMATIONS; SLOPE; RECONSTRUCTION; SOLIDS; SHAPE AB Shape and surface topography evaluation from measured orthogonal slope/gradient data is of considerable engineering significance since many full-field optical sensors and interferometers readily output such a data accurately. This has applications ranging from metrology of optical and electronic elements (lenses, silicon wafers, thin film coatings), surface profile estimation, wave front and shape reconstruction, to name a few. In this context, a new methodology for surface profile and stress field determination based on a recently introduced non-contact, full-field optical method called digital gradient sensing (DGS) capable of measuring small angular deflections of light rays coupled with a robust finite-difference-based least-squares integration (HFLI) scheme in the Southwell configuration is advanced here. The method is demonstrated by evaluating (a) surface profiles of mechanically warped silicon wafers and (b) stress gradients near growing cracks in planar phase objects. C1 [Miao, C.; Sundaram, B. M.; Tippur, H. V.] Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. [Huang, L.] Brookhaven Natl Labs, Upton, NY 11973 USA. RP Tippur, HV (reprint author), Auburn Univ, Dept Mech Engn, Auburn, AL 36849 USA. EM tippuhv@auburn.edu FU Department of Defense [W31P4Q-14-C-0049, ARMY-W911NF-16-1-0093] FX The corresponding author acknowledges partial support of this research through Department of Defense grants W31P4Q-14-C-0049 and ARMY-W911NF-16-1-0093. NR 30 TC 0 Z9 0 U1 3 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD SEP PY 2016 VL 27 IS 9 AR 095203 DI 10.1088/0957-0233/27/9/095203 PG 16 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA DX0AF UT WOS:000384023200027 ER PT J AU Liu, WY Halverson, J Tian, Y Tkachenko, AV Gang, O AF Liu, Wenyan Halverson, Jonathan Tian, Ye Tkachenko, Alexei V. Gang, Oleg TI Self-organized architectures from assorted DNA-framed nanoparticles SO NATURE CHEMISTRY LA English DT Article ID BUILDING-BLOCKS; RATIONAL DESIGN; CRYSTALLIZATION; SUPERLATTICES; PARTICLES; LATTICE; ARRAYS; NANOCLUSTERS; ASSEMBLIES; CRYSTALS AB The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it is possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci's Vitruvian Man, can be self-assembled successfully. C1 [Liu, Wenyan; Halverson, Jonathan; Tian, Ye; Tkachenko, Alexei V.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 51 TC 4 Z9 4 U1 51 U2 55 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD SEP PY 2016 VL 8 IS 9 BP 867 EP 873 DI 10.1038/NCHEM.2540 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA DX5HQ UT WOS:000384411700013 PM 27554413 ER PT J AU Joo, E Hussain, MZ Zeri, M Masters, MD Miller, JN Gomez-Casanovas, N DeLucia, EH Bernacchi, CJ AF Joo, Eva Hussain, Mir Zaman Zeri, Marcelo Masters, Michael D. Miller, Jesse N. Gomez-Casanovas, Nuria DeLucia, Evan H. Bernacchi, Carl J. TI The influence of drought and heat stress on long-term carbon fluxes of bioenergy crops grown in the Midwestern USA SO PLANT CELL AND ENVIRONMENT LA English DT Article DE maize; miscanthus; switchgrass; carbon balance; ecosystem development; eddy covariance; gross primary production; net ecosystem exchange; prairie ID MISCANTHUS-X-GIGANTEUS; NET ECOSYSTEM CARBON; WATER-USE EFFICIENCY; ENERGY-BALANCE CLOSURE; EDDY-COVARIANCE; DIOXIDE EXCHANGE; UNITED-STATES; NO-TILL; PANICUM-VIRGATUM; CENTRAL ILLINOIS AB Perennial grasses are promising feedstocks for bioenergy production in the Midwestern USA. Few experiments have addressed how drought influences their carbon fluxes and storage. This study provides a direct comparison of ecosystem-scale measurements of carbon fluxes associated with miscanthus (Miscanthusxgiganteus), switchgrass (Panicum virgatum), restored native prairie and maize (Zea mays)/soybean (Glycine max) ecosystems. The main objective of this study was to assess the influence of a naturally occurring drought during 2012 on key components of the carbon cycle and plant development relative to non-extreme years. The perennials reached full maturity 3-5years after establishment. Miscanthus had the highest gross primary production (GPP) and lowest net ecosystem exchange (NEE) in 2012 followed by similar values for switchgrass and prairie, and the row crops had the lowest GPP and highest NEE. A post-drought effect was observed for miscanthus. Over the duration of the experiment, perennial ecosystems were carbon sinks, as indicated by negative net ecosystem carbon balance (NECB), while maize/soybean was a net carbon source. Our observations suggest that perennial ecosystems, and in particular miscanthus, can provide a high yield and a large potential for CO2 fixation even during drought, although drought may negatively influence carbon uptake in the following year, questioning the long-term consequence of its maintained productivity. Perennial grasses have been identified as being, in many ways, ideal feedstocks for bioenergy production. Yet side-by-side comparisons of key carbon fluxes and pools, particularly in response to climate extremes, for perennial grasses compared with the traditional row crops that they replace are needed. This research represents a long-term eddy covariance experiment, encompassing a severe drought, where three perennial ecosystems are compared with traditional row crops. The results show that perennial ecosystems are more resilient to drought than row crops in terms of both carbon uptake and storage and that a post-drought effect may be more likely in a perennial relative to annual ecosystem. C1 [Joo, Eva; Miller, Jesse N.; Gomez-Casanovas, Nuria; DeLucia, Evan H.; Bernacchi, Carl J.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. [Joo, Eva; Masters, Michael D.; Miller, Jesse N.; Gomez-Casanovas, Nuria; DeLucia, Evan H.; Bernacchi, Carl J.] Univ Illinois, Carl R Woese Inst Genom Biol, Energy Biosci Inst, Urbana, IL 61801 USA. [Hussain, Mir Zaman] Michigan State Univ, WK Kellogg Biol Stn, Great Lakes Bioenergy Res Ctr, Hickory Corner, MI 49060 USA. [Zeri, Marcelo] Natl Ctr Monitoring & Early Warning Nat Disasters, BR-12247016 Sao Jose Dos Campos, SP, Brazil. [Bernacchi, Carl J.] ARS, USDA, Global Change & Photosynth Res Unit, Urbana, IL 61801 USA. RP Bernacchi, CJ (reprint author), Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA.; Bernacchi, CJ (reprint author), Univ Illinois, Carl R Woese Inst Genom Biol, Energy Biosci Inst, Urbana, IL 61801 USA.; Bernacchi, CJ (reprint author), ARS, USDA, Global Change & Photosynth Res Unit, Urbana, IL 61801 USA. EM bernacch@illinois.edu FU Energy Biosciences Institute FX The authors are grateful to Timothy A. Mies and his crew for the non-stop management, maintenance and farm work at the field site. We acknowledge the intensive work of undergraduate assistance throughout the study. This research was funded by the Energy Biosciences Institute. NR 73 TC 0 Z9 0 U1 18 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD SEP PY 2016 VL 39 IS 9 BP 1928 EP 1940 DI 10.1111/pce.12751 PG 13 WC Plant Sciences SC Plant Sciences GA DV5PW UT WOS:000382981100007 PM 27043723 ER PT J AU Sack, L Ball, MC Brodersen, C Davis, SD Des Marais, DL Donovan, LA Givnish, TJ Hacke, UG Huxman, T Jansen, S Jacobsen, AL Johnson, DM Koch, GW Maurel, C McCulloh, KA McDowell, NG McElrone, A Meinzer, FC Melcher, PJ North, G Pellegrini, M Pockman, WT Pratt, RB Sala, A Santiago, LS Savage, JA Scoffoni, C Sevanto, S Sperry, J Tyerman, SD Way, D Holbrook, NM AF Sack, Lawren Ball, Marilyn C. Brodersen, Craig Davis, Stephen D. Des Marais, David L. Donovan, Lisa A. Givnish, Thomas J. Hacke, Uwe G. Huxman, Travis Jansen, Steven Jacobsen, Anna L. Johnson, Daniel M. Koch, George W. Maurel, Christophe McCulloh, Katherine A. McDowell, Nate G. McElrone, Andrew Meinzer, Frederick C. Melcher, Peter J. North, Gretchen Pellegrini, Matteo Pockman, William T. Pratt, R. Brandon Sala, Anna Santiago, Louis S. Savage, Jessica A. Scoffoni, Christine Sevanto, Sanna Sperry, John Tyerman, Stephen D. Way, Danielle Holbrook, N. Michele TI Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for 'Emerging Frontiers in Plant Hydraulics' (Washington, DC, May 2015) SO PLANT CELL AND ENVIRONMENT LA English DT Article DE cavitation; drought; embolism; genomics; phloem; stomata; vascular pathogens; vascular transport; xylem ID X-RAY MICROTOMOGRAPHY; DROUGHT-INDUCED EMBOLISM; PINYON-JUNIPER WOODLAND; ACID METABOLISM CAM; WATER RELATIONS; CLIMATE-CHANGE; PHYSIOLOGICAL-RESPONSES; CARBOHYDRATE DYNAMICS; CURRENT CONTROVERSIES; VEGETATION MORTALITY AB Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts. Plant hydraulics is increasingly recognized as a central hub relating fields within plant biology, ecology, evolution, palaeobiology and agriculture, essential to grand challenges such as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply. A workshop entitled Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015. We summarize the discussions, including controversies regarding measurements and analyses, the emerging frontiers of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between research in plant hydraulics, that in allied fields and global modelling efforts. C1 [Sack, Lawren; Scoffoni, Christine] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, 621 Charles E Young Dr South, Los Angeles, CA 90095 USA. [Ball, Marilyn C.] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia. [Brodersen, Craig] Yale Univ, Sch Forestry & Environm Studies, 195 Prospect St, New Haven, CT 06511 USA. [Davis, Stephen D.] Pepperdine Univ, Div Nat Sci, Malibu, CA 90263 USA. [Des Marais, David L.; Savage, Jessica A.] Harvard Univ, Arnold Arboretum, Cambridge, MA 02131 USA. [Des Marais, David L.; Savage, Jessica A.; Holbrook, N. Michele] Harvard Univ, Dept Organism & Evolutionary Biol, Boston, MA 02138 USA. [Donovan, Lisa A.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Givnish, Thomas J.; McCulloh, Katherine A.] Univ Wisconsin Madison, Dept Bot, Madison, WI 53706 USA. [Hacke, Uwe G.] Univ Alberta, Dept Renewable Resources, Edmonton, AB T6G 2E3, Canada. [Huxman, Travis] Univ Calif Irvine, Ecol & Evolutionary Biol, Irvine, CA 92697 USA. [Huxman, Travis] Univ Calif Irvine, Ctr Environm Biol, Irvine, CA 92697 USA. [Jansen, Steven] Univ Ulm, Inst Systemat Bot & Ecol, Albert Einstein Allee 11, D-89081 Ulm, Germany. [Jacobsen, Anna L.; Pratt, R. Brandon] Calif State Coll Bakersfield, Dept Biol, Bakersfield, CA 93311 USA. [Johnson, Daniel M.] Univ Idaho, Dept Forest Rangeland & Fire Sci, Moscow, ID 83844 USA. [Koch, George W.] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ 86011 USA. [Koch, George W.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Maurel, Christophe] Univ Montpellier, Biochim & Physiol Mol Plantes, Sup Agro, UMR 5004,INRA,CNRS, 2 Pl Viala, F-34060 Montpellier, France. [McDowell, Nate G.; Sevanto, Sanna] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [McElrone, Andrew] Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA. [McElrone, Andrew] USDA ARS, Davis, CA 95616 USA. [Meinzer, Frederick C.] US Forest Serv, Pacific Northwest Res Stn, USDA, Corvallis, OR 97331 USA. [Melcher, Peter J.] Ithaca Coll, Dept Biol, Ithaca, NY 14850 USA. [North, Gretchen] Occidental Coll, Dept Biol, Los Angeles, CA 90041 USA. [Pellegrini, Matteo] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, 621 Charles E Young Dr South, Los Angeles, CA 90095 USA. [Pockman, William T.] Univ New Mexico, Dept Biol, MSC03 2020, Albuquerque, NM 87131 USA. [Sala, Anna] Univ Montana, Div Biol Sci, Missoula, MT 59812 USA. [Santiago, Louis S.] Univ Calif Riverside, Bot & Plant Sci, Riverside, CA 92521 USA. [Sperry, John] Univ Utah, Dept Biol, 257 South 1400 East, Salt Lake City, UT 84112 USA. [Tyerman, Stephen D.] Univ Adelaide, ARC Ctr Excellence Plant Energy Biol, Sch Agr Food & Wine, Waite Res Precinct, PMB 1, Glen Osmond, SA 5064, Australia. [Way, Danielle] Western Univ, Dept Biol, 1151 Richmond St, London, ON N6A 5B7, Canada. RP Sack, L (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, 621 Charles E Young Dr South, Los Angeles, CA 90095 USA. EM lawrensack@ucla.edu RI Pockman, William/D-4086-2014; Jansen, Steven/A-9868-2012; Johnson, Daniel/E-6789-2011; Sack, Lawren/A-5492-2008 OI Pockman, William/0000-0002-3286-0457; Jansen, Steven/0000-0002-4476-5334; Johnson, Daniel/0000-0001-5890-3147; Sack, Lawren/0000-0002-7009-7202 FU National Science Foundation [IOS-1445238] FX We are grateful to additional participants Leo De La Fuente, Barb Lachenbruch, Tony Rockwell, Jochen Schenk, Rachel Spicer, Abe Stroock, Paul Verslues and Maciej Zwieniecki. We are especially grateful to Irwin Forseth and the National Science Foundation Grant IOS-1445238 that made the workshop possible. NR 106 TC 2 Z9 2 U1 31 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD SEP PY 2016 VL 39 IS 9 BP 2085 EP 2094 DI 10.1111/pce.12732 PG 10 WC Plant Sciences SC Plant Sciences GA DV5PW UT WOS:000382981100019 PM 27037757 ER PT J AU Edmondson, DA Karski, EE Kohlgruber, A Koneru, H Matthay, KK Allen, S Hartmann, CL Peterson, LE DuBois, SG Coleman, MA AF Edmondson, David A. Karski, Erin E. Kohlgruber, Ayano Koneru, Harsha Matthay, Katherine K. Allen, Shelly Hartmann, Christine L. Peterson, Leif E. DuBois, Steven G. Coleman, Matthew A. TI Transcript Analysis for Internal Biodosimetry Using Peripheral Blood from Neuroblastoma Patients Treated with I-131-mIBG, a Targeted Radionuclide SO RADIATION RESEARCH LA English DT Article ID GENE-EXPRESSION PROFILE; WHOLE-BODY DOSIMETRY; IONIZING-RADIATION; REFRACTORY NEUROBLASTOMA; LYMPHOBLASTOID-CELLS; ABSORBED RADIATION; GENOTOXIC STRESS; GAMMA-RAYS; PHASE-I; EXPOSURE AB Calculating internal dose from therapeutic radionuclides currently relies on estimates made from multiple radiation exposure measurements, converted to absorbed dose in specific organs using the Medical Internal Radiation Dose (MIRD) schema. As an alternative biodosimetric approach, we utilized gene expression analysis of whole blood from patients receiving targeted radiotherapy. Collected blood from patients with relapsed or refractory neuroblastoma who received I-131-labeled metaiodobenzylguanidine (I-131-mIBG) at the University of California San Francisco (UCSF) was used to compare calculated internal dose with the modulation of chosen gene expression. A total of 40 patients, median age 9 years, had blood drawn at baseline, 72 and 96 h after (131)ImIBG infusion. Whole-body absorbed dose was calculated for each patient based on the cumulated activity determined from injected mIBG activity and patient-specific time-activity curves combined with I-131 whole-body S factors. We then assessed transcripts that were the most significant for describing the mixed therapeutic treatments over time using real-time polymerase chain reaction (RT-PCR). Modulation was evaluated statistically using multiple regression analysis for data at 0, 72 and 96 h. A total of 10 genes were analyzed across 40 patients: CDKN1A; FDXR; GADD45A; BCLXL; STAT5B; BAX; BCL2; DDB2; XPC; and MDM2. Six genes were significantly modulated upon exposure to I-131-mIBG at 72 h, as well as at 96 h. Four genes varied significantly with absorbed dose when controlling for time. A gene expression biodosimetry model was developed to predict absorbed dose based on modulation of gene transcripts within whole blood. Three transcripts explained over 98% of the variance in the modulation of gene expression over the 96 h (CDKN1A, BAX and DDB2). To our knowledge, this is a novel study, which uses whole blood collected from patients treated with a radiopharmaceutical, to characterize biomarkers that may be useful for biodosimetry. Our data indicate that transcripts, which have been previously identified as biomarkers of external exposures in ex vivo whole blood and in vivo radiotherapy patients, are also good early indicators of internal exposure. However, for internal sources of radiation, the biokinetics and physical decay of the radionuclide strongly influence the gene expression. (c) 2016 by Radiation Research Society C1 [Edmondson, David A.] Purdue Univ, Sch Hlth Sci, W Lafayette, IN 47907 USA. [Karski, Erin E.; Matthay, Katherine K.; Allen, Shelly; DuBois, Steven G.] Univ Calif San Francisco, Dept Pediat, Sch Med, San Francisco, CA 94143 USA. [Kohlgruber, Ayano; Koneru, Harsha; Hartmann, Christine L.; Coleman, Matthew A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Peterson, Leif E.] Houston Methodist Res Inst, Ctr Biostat, Houston, TX 77030 USA. [Coleman, Matthew A.] Univ Calif Davis, Dept Radiat Oncol, Sch Med, Davis, CA 95817 USA. RP Coleman, MA (reprint author), Univ Calif Davis, Sch Med, Dept Radiat Oncol, Sacramento, CA 95817 USA. EM mcoleman@ucdavis.edu FU National Institutes of Health/National Cancer Institute [R01CA172067]; U.S. Department of Energy [DE-AC52-07NA27344]; U.S. DOE Low Dose Radiation Research Program [KP110202]; NIH [5T32CA128583-05]; Campini Foundation, Alex's Lemonade Stand Foundation (MIBG Infrastructure Grant); NIH/NCRR UCSF-CTSI [UL 1 TR000004]; Columbia University NIH/NIAID [U19 AI067773] FX We would like to thank Angela Evans for technical help with sample processing. This project was supported by the National Institutes of Health/National Cancer Institute (grant no. R01CA172067). Funding was also provided by the U.S. Department of Energy under contract no. DE-AC52-07NA27344, with funding from the U.S. DOE Low Dose Radiation Research Program, grant no. KP110202. In addition, support was provided by NIH T32 grant no. 5T32CA128583-05 awarded to UCSF Benioff Children's Hospital, and by the Campini Foundation, Alex's Lemonade Stand Foundation (MIBG Infrastructure Grant) and NIH/NCRR UCSF-CTSI grant no. UL 1 TR000004 and Columbia University NIH/NIAID pilot grant U19 AI067773. NR 51 TC 0 Z9 0 U1 1 U2 1 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD SEP PY 2016 VL 186 IS 3 BP 235 EP 244 DI 10.1667/RR14263.1 PG 10 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA DX4LF UT WOS:000384352000002 PM 27556353 ER PT J AU Kim, H Eggert, RG Carlsen, BW Dixon, BW AF Kim, Haeyeon Eggert, Roderick G. Carlsen, Brett W. Dixon, Brent W. TI Potential uranium supply from phosphoric acid: A US analysis comparing solvent extraction and Ion exchange recovery SO RESOURCES POLICY LA English DT Article DE Uranium; Unconventional resources; Phosphoric acid, by-product AB Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. This study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and what the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U3O8 could have been recovered, which is more than domestic U.S. mine production in the same year (4.9 million pounds U3O8). In comparison, uranium demand from U.S. nuclear plants in the same year was 53 million pounds U3O8 of which nearly 10% could have been met by uranium from phosphoric acid production. Annualized costs for a hypothetical uranium recovery plant are US$44-61 per pound U3O8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U3O8. These results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. For this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kim, Haeyeon; Eggert, Roderick G.] Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. [Carlsen, Brett W.; Dixon, Brent W.] Idaho Natl Lab, Idaho Falls, ID USA. RP Kim, H (reprint author), Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. EM hakim@mines.edu FU U.S. Department of Energy FX We gratefully acknowledge financial support from the U.S. Department of Energy for project funding. We also thank Tom Pool, Brian Frame, James Davidson, Laurent Cohen, Erich Schneider and Susan Hall, as well as an anonymous reviewer, for their valuable comments. NR 48 TC 2 Z9 2 U1 8 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4207 EI 1873-7641 J9 RESOUR POLICY JI Resour. Policy PD SEP PY 2016 VL 49 BP 222 EP 231 DI 10.1016/j.resourpol.2016.06.004 PG 10 WC Environmental Studies SC Environmental Sciences & Ecology GA DX4XX UT WOS:000384385500023 ER PT J AU Levin, EM Cui, JF Schmidt-Rohr, K AF Levin, E. M. Cui, J. -F. Schmidt-Rohr, K. TI Sub-millisecond Te-125 NMR spin-lattice relaxation times and large Knight shifts in complex tellurides: Validation of a quadratic relation across the spectrum SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE Complex tellurides; Te-125 NMR; Knight shift; Spin-lattice relaxation; Korringa relation ID PHASE-CHANGE MATERIALS; GERMANIUM TELLURIDE; ALLOYS; GETE AB Te-125 NMR spectra and spin-lattice relaxation times, T-1, have been measured for several GeTe-based materials with Te excess. The spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T-1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T-1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T-1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excess of Te, about 15% of the material exhibits a Knight shift of >= 4500 ppm and a T-1 of only 0.3 ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials. (C) 2016 Elsevier Inc. All rights reserved. C1 [Levin, E. M.; Schmidt-Rohr, K.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Levin, E. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Cui, J. -F.; Schmidt-Rohr, K.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Schmidt-Rohr, K.] Brandeis Univ, Dept Chem, Waltham, MA 02453 USA. RP Levin, EM; Schmidt-Rohr, K (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA.; Schmidt-Rohr, K (reprint author), Brandeis Univ, Dept Chem, Waltham, MA 02453 USA. EM levin@iastate.edu; srohr@brandeis.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy [DE-AC02-07CH11358] FX The authors wish to thank L.L. Jones and H. Sailsbury (Materials Preparation Center at the Ames Laboratory U.S. Department of Energy) for materials synthesis. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No DE-AC02-07CH11358. NR 24 TC 0 Z9 0 U1 3 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 EI 1527-3326 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD SEP PY 2016 VL 78 BP 40 EP 44 DI 10.1016/j.ssnmr.2016.07.003 PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA DX6UJ UT WOS:000384518300007 PM 27455192 ER PT J AU Kim, W Edri, E Frei, H AF Kim, Wooyul Edri, Eran Frei, Heinz TI Hierarchical Inorganic Assemblies for Artificial Photosynthesis SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID METAL CHARGE-TRANSFER; CARBON-DIOXIDE REDUCTION; MESOPOROUS SILICA; WATER OXIDATION; VISIBLE-LIGHT; CO2 REDUCTION; MOLECULAR WIRES; ELECTROCHEMICAL REDUCTION; TRANSFER CHROMOPHORE; CATALYST AB Artificial photosynthesis is an attractive approach for renewable fuel generation because it offers the prospect of a technology suitable for deployment on highly abundant, non-arable land. Recent leaps forward in the development of efficient and durable light absorbers and catalysts for oxygen evolution and the growing attention to catalysts for carbon dioxide activation brings into focus the tasks of hierarchically integrating the components into assemblies for closing of the photosynthetic cycle. A particular challenge is the efficient coupling of the multi-electron processes of CO2 reduction and H2O oxidation. Among the most important requirements for a complete integrated system are catalytic rates that match the solar flux, efficient charge transport between the various components, and scalability of the photosynthetic assembly on the unprecedented scale of terawatts in order to have impact on fuel consumption. To address these challenges, we have developed a heterogeneous inorganic materials approach with molecularly precise control of light absorption and charge transport pathways. Oxo-bridged heterobinuclear units with metal-to-metal charge-transfer transitions absorbing deep in the visible act as single photon, single charge transfer pumps for driving multi-electron catalysts. A photodeposition method has been introduced for the spatially directed assembly of nanoparticle catalysts for selective coupling to the donor or acceptor metal of the light absorber. For CO2 reduction, a Cu oxide cluster is coupled to the Zr center of a ZrOCo light absorber, while coupling of an Ir nanoparticle catalyst for water oxidation to the Co donor affords closing of the photosynthetic cycle of CO2 conversion by H2O to CO and O-2. Optical, vibrational, and X-ray spectroscopy provide detailed structural knowledge of the polynuclear assemblies. Time resolved visible and rapid-scan FT-IR studies reveal charge transfer mechanisms and transient surface intermediates under photocatalytic conditions for guiding performance improvements. Separation of the water oxidation and carbon dioxide reduction half reactions by a membrane is essential for efficient photoreduction of CO2 by H2O to liquid fuel products. A concept of a macroscale artificial photosystem consisting of arrays of Co oxidesilica coreshell nanotubes is introduced in which each tube operates as a complete, independent photosynthetic unit with built-in membrane separation. The ultrathin amorphous silica shell with embedded molecular wires functions as a proton conducting, molecule impermeable membrane. Photoelectrochemical and transient optical measurements confirm tight control of charge transport through the membrane by the orbital energetics of the wire molecules. Hierarchical arrangement of the components is accomplished by a combination of photodeposition, controlled anchoring, and atomic layer deposition methods. C1 [Kim, Wooyul; Edri, Eran; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Kim, Wooyul] Sookmyung Womens Univ, Dept Chem & Biol Engn, Seoul 04310, South Korea. RP Frei, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. EM HMFrei@lbl.gov RI Edri, Eran/Q-9801-2016 OI Edri, Eran/0000-0003-4593-6489 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical, Geological and Biosciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this work were performed as a User Project at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences. NR 43 TC 1 Z9 1 U1 128 U2 132 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD SEP PY 2016 VL 49 IS 9 BP 1634 EP 1645 DI 10.1021/acs.accounts.6b00182 PG 12 WC Chemistry, Multidisciplinary SC Chemistry GA DX0GA UT WOS:000384038600006 PM 27575376 ER PT J AU Durham, JL Poyraz, AS Takeuchi, ES Marschilok, AC Takeuchi, KJ AF Durham, Jessica L. Poyraz, Altug S. Takeuchi, Esther S. Marschilok, Amy C. Takeuchi, Kenneth J. TI Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry SO ACCOUNTS OF CHEMICAL RESEARCH LA English DT Review ID SILVER VANADIUM-OXIDE; X-RAY-DIFFRACTION; RECHARGEABLE LI BATTERIES; CRYSTALLITE SIZE CONTROL; PHOSPHORUS OXIDE; ION BATTERIES; METAL-OXIDES; ABSORPTION SPECTROSCOPY; MECHANISTIC INSIGHTS; COPPER BIRNESSITE AB Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and mass of the final system. Material multifunctionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cations can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multimechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM'O) or phosphorus oxides (MM'PO) where M = Ag and M' = V or Fe. One discharge process can be described as reduction-displacement where Ag+ is reduced to Ag-0 and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the kinetically and thermodynamically preferred reduction processes at various states of discharge is critical to elucidating the mechanism. Specific advanced in situ and ex situ characterization techniques are conducive to gaining insight regarding the electrochemical behavior of these multifunctional materials over multiple length scales. At the material level, optical microscopy, scanning electron microscopy, and local conductivity measurement via a nanoprobe can track the discharge mechanism of an isolated single particle. At the mesoscale electrode level, in situ data from synchrotron based energy dispersive X-ray diffraction (EDXRD) within fully intact steel batteries can be used to spatially map the distribution of silver metal generated through reduction displacement as a function of discharge depth and discharge rate. As illustrated here, appropriate design of materials with multiple electrochemically active metal centers and properties tuned through strategically conceptualized materials synthesis may provide a path toward the next generation of high energy content electroactive materials and systems. Full understanding of the multiple electrochemical mechanisms can be achieved only by utilizing advanced characterization tools over multiple length scales. C1 [Durham, Jessica L.; Takeuchi, Esther S.; Marschilok, Amy C.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Takeuchi, Esther S.; Marschilok, Amy C.; Takeuchi, Kenneth J.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Poyraz, Altug S.; Takeuchi, Esther S.] Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. RP Takeuchi, ES; Marschilok, AC; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Takeuchi, ES; Marschilok, AC; Takeuchi, KJ (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.; Takeuchi, ES (reprint author), Brookhaven Natl Lab, Energy Sci Directorate, Upton, NY 11973 USA. EM esther.takeuchi@stonybrook.edu; amy.marschilok@stonybrook.edu; kenneth.takeuchi.1@stonybrook.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012673]; US DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; DOE [DE-AC02-98CH10886] FX The authors acknowledge the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award #DE-SC0012673 for financial support. The authors commend the Department of Energy for the vision to create Energy Frontier Research Centers which enable multi-disciplinary research over multiple length scales. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Use of the National Synchrotron Light Source beamline X17B1 was supported by DOE Contract DE-AC02-98CH10886. NR 54 TC 1 Z9 1 U1 43 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0001-4842 EI 1520-4898 J9 ACCOUNTS CHEM RES JI Accounts Chem. Res. PD SEP PY 2016 VL 49 IS 9 BP 1864 EP 1872 DI 10.1021/acs.accounts.6b00318 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA DX0GA UT WOS:000384038600028 PM 27564839 ER PT J AU Ceze, MA Fidkowski, KJ AF Ceze, Marco A. Fidkowski, Krzysztof J. TI High-Order Output-Based Adaptive Simulations of Turbulent Flow in Two Dimensions SO AIAA JOURNAL LA English DT Article ID NAVIER-STOKES EQUATIONS; DISCONTINUOUS GALERKIN DISCRETIZATIONS; MESH ADAPTATION; FLUID-DYNAMICS; PREDICTION AB Output-based high-order adaptive results are presented for several benchmark two-dimensional turbulent-flow simulations. The discretization is a high-order discontinuous Galerkin finite element method, and the equations solved are compressible Navier-Stokes, Reynolds-averaged with a modified version of the Spalart-Allmaras one-equation model. Mesh refinement requirements are studied through automated output-based adaptation in which a discrete adjoint solution associated with an output (e.g., the drag coefficient) weights a fine-space residual and automatically selects the elements that need more resolution. The roles of high-order and mesh anisotropy are also investigated. Finally, differences are investigated between two mesh refinement strategies: hanging-node refinement of structured meshes versus metric-based remeshing of unstructured triangles. C1 [Ceze, Marco A.] NASA Ames Res Ctr, Moffett Field, CA USA. [Fidkowski, Krzysztof J.] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA. [Ceze, Marco A.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. RP Ceze, MA (reprint author), NASA Ames Res Ctr, Moffett Field, CA USA.; Ceze, MA (reprint author), Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. EM marco.a.ceze@nasa.gov FU U.S. Air Force Office of Scientific Research [FA9550-11-1-0081] FX The authors acknowledge support from the U.S. Air Force Office of Scientific Research under grant FA9550-11-1-0081. NR 23 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD SEP PY 2016 VL 54 IS 9 BP 2611 EP 2625 DI 10.2514/1.J054517 PG 15 WC Engineering, Aerospace SC Engineering GA DV8GN UT WOS:000383175600004 ER PT J AU Hafeznezami, S Lam, JR Xiang, Y Reynolds, MD Davis, JA Lin, T Jay, JA AF Hafeznezami, Saeedreza Lam, Jacquelyn R. Xiang, Yang Reynolds, Matthew D. Davis, James A. Lin, Tiffany Jay, Jennifer A. TI Arsenic mobilization in an oxidizing alkaline groundwater: Experimental studies, comparison and optimization of geochemical modeling parameters SO APPLIED GEOCHEMISTRY LA English DT Article DE Arsenic; Mobilization; Groundwater contamination; Remediation; Geochemical modeling; Surface complexation modeling; Acidification; Adsorption; Natural attenuation; PHREEQC; FITEQL ID RED-RIVER FLOODPLAIN; SURFACE COMPLEXATION; ORGANIC-MATTER; CONTAMINATED SOILS; ALLUVIAL AQUIFERS; OXIDE MINERALS; DRINKING-WATER; UNITED-STATES; WEST-BENGAL; NEW-ENGLAND AB Arsenic (As) mobilization and contamination of groundwater affects millions of people worldwide. Progress in developing effective in-situ remediation schemes requires the incorporation of data from laboratory experiments and field samples into calibrated geochemical models. In an oxidizing aquifer where leaching of high pH industrial waste from unlined surface impoundments led to mobilization of naturally occurring As up to 2 mg L-1, sequential extractions of solid phase As as well as, batch sediment microcosm experiments were conducted to understand As partitioning and solid-phase sorptive and buffering capacity. These data were combined with field data to create a series of geochemical models of the system with modeling programs PHREEQC and FITEQL. Different surface complexation modeling approaches, including component additivity (CA), generalized composite (GC), and a hybrid method were developed, compared and fitted to data from batch acidification experiments to simulate potential remediation scenarios. Several parameters strongly influence the concentration of dissolved As including pH, presence of competing ions (particularly phosphate) and the number of available sorption sites on the aquifer solids. Lowering the pH of groundwater to 7 was found to have a variable, but limited impact (<63%) on decreasing the concentration of dissolved As. The models indicate that in addition to lowering pH, decreasing the concentration of dissolved phosphate and/or increasing the number of available sorption sites could significantly decrease the As solubility to levels below 10 mu g L-1. The hybrid and GC modeling results fit the experimental data well (NRMSE<10%) with reasonable effort and can be implemented in further studies for validation. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Hafeznezami, Saeedreza; Lam, Jacquelyn R.; Lin, Tiffany; Jay, Jennifer A.] Univ Calif Los Angeles, Dept Civil & Environm Engn, 5732 Boelter Hall,Box 951593, Los Angeles, CA 90095 USA. [Xiang, Yang] Xiamen Univ, State Key Lab Marine Environm Sci, 422 Siming S Rd, Xiamen 361006, Fujian, Peoples R China. [Reynolds, Matthew D.] Drumlin Environm LLC, 97 India St, Portland, ME 04101 USA. [Davis, James A.] Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Hafeznezami, S (reprint author), Univ Calif Los Angeles, Dept Civil & Environm Engn, 5732 Boelter Hall,Box 951593, Los Angeles, CA 90095 USA. EM saeedreza@ucla.edu RI Davis, James/G-2788-2015 FU Drumlin Environmental, LLC; National Science Foundation [0963183]; American Recovery and Reinvestment Act (ARRA) FX We gratefully acknowledge support from Drumlin Environmental, LLC for conducting this work. This material is based upon research performed in a renovated collaboratory by the National Science Foundation under Grant No. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009 (ARRA). NR 74 TC 0 Z9 0 U1 23 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD SEP PY 2016 VL 72 BP 97 EP 112 DI 10.1016/j.apgeochem.2016.07.011 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DW3DI UT WOS:000383521900010 ER PT J AU Areizaga-Martinez, HI Kravchenko, I Lavrik, NV Sepaniak, MJ Hernandez-Rivera, SP De Jesus, MA AF Areizaga-Martinez, Hector I. Kravchenko, Ivan Lavrik, Nickolay V. Sepaniak, Michael J. Hernandez-Rivera, Samuel P. De Jesus, Marco A. TI Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates SO APPLIED SPECTROSCOPY LA English DT Article DE Bio-inspired nanostructures; lithography; surface-enhanced spectroscopy; Fibonacci sequence ID MULTIBEAM LITHOGRAPHY TOOL; LARGE-AREA; NANOPARTICLES; SILVER; SPECTROSCOPY; NANOPILLARS; ARRAYS; NANOCOMPOSITES; FABRICATION; LOCALIZATION AB The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 mu mx40 mu m bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. C1 [Areizaga-Martinez, Hector I.; Hernandez-Rivera, Samuel P.; De Jesus, Marco A.] Univ Puerto Rico, Dept Chem, POB 9000, Mayaguez, PR 00681 USA. [Kravchenko, Ivan; Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Sepaniak, Michael J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP De Jesus, MA (reprint author), Univ Puerto Rico, Dept Chem, POB 9000, Mayaguez, PR 00681 USA. EM marco.dejesus@upr.edu RI Kravchenko, Ivan/K-3022-2015 OI Kravchenko, Ivan/0000-0003-4999-5822 FU Center for Education and Training in Agriculture and Related Sciences (CETARS) [NIFA/USDA 2012-01252] FX This research was supported by the Center for Education and Training in Agriculture and Related Sciences (CETARS) (grant number NIFA/USDA 2012-01252). NR 72 TC 0 Z9 0 U1 15 U2 20 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0003-7028 EI 1943-3530 J9 APPL SPECTROSC JI Appl. Spectrosc. PD SEP PY 2016 VL 70 IS 9 BP 1432 EP 1445 DI 10.1177/0003702816662596 PG 14 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA DW1YZ UT WOS:000383441400003 PM 27566257 ER PT J AU Misra, AK Acosta-Maeda, TE Sharma, SK Mckay, CP Gasda, PJ Taylor, GJ Lucey, PG Flynn, L Abedin, MN Clegg, SM Wiens, R AF Misra, Anupam K. Acosta-Maeda, Tayro E. Sharma, Shiv K. Mckay, Christopher P. Gasda, Patrick J. Taylor, G. Jeffrey Lucey, Paul G. Flynn, Luke Abedin, M. Nurul Clegg, Samuel M. Wiens, Roger TI "Standoff Biofinder" for Fast, Noncontact, Nondestructive, Large-Area Detection of Biological Materials for Planetary Exploration SO ASTROBIOLOGY LA English DT Article DE Standoff Biofinder; Luminescence; Time-resolved fluorescence; Biofluorescence; Planetary exploration; Planetary protection; Noncontact nondestructive biodetection ID LASER-INDUCED FLUORESCENCE; TIME-RESOLVED FLUORESCENCE; CHEMCAM INSTRUMENT SUITE; REMOTE RAMAN; ULTRAVIOLET FLUORESCENCE; SPECTROSCOPIC DETECTION; ROOM-TEMPERATURE; NUCLEIC-ACIDS; STEADY-STATE; EXCITATION AB We developed a prototype instrument called the Standoff Biofinder, which can quickly locate biological material in a 500 cm(2) area from a 2 m standoff distance with a detection time of 0.1 s. All biogenic materials give strong fluorescence signals when excited with UV and visible lasers. In addition, the luminescence decay time of biogenic compounds is much shorter (<100 ns) than the micro-to millisecond decay time of transition metal ions and rare-earth ions in minerals and rocks. The Standoff Biofinder takes advantage of the short lifetime of biofluorescent materials to obtain real-time fluorescence images that show the locations of biological materials among luminescent minerals in a geological context. The Standoff Biofinder instrument will be useful for locating biological material during future NASA rover, lander, and crewed missions. Additionally, the instrument can be used for nondestructive detection of biological materials in unique samples, such as those obtained by sample return missions from the outer planets and asteroids. The Standoff Biofinder also has the capacity to detect microbes and bacteria on space instruments for planetary protection purposes. C1 [Misra, Anupam K.; Acosta-Maeda, Tayro E.; Sharma, Shiv K.; Taylor, G. Jeffrey; Lucey, Paul G.; Flynn, Luke] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Mckay, Christopher P.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gasda, Patrick J.; Clegg, Samuel M.; Wiens, Roger] Los Alamos Natl Lab, Los Alamos, NM USA. [Abedin, M. Nurul] NASA, Langley Res Ctr, Hampton, VA 23665 USA. RP Misra, AK (reprint author), Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Sch Ocean & Earth Sci & Technol, 1680 East West Rd,POST 602, Honolulu, HI 96822 USA. EM anupam@hawaii.edu OI Gasda, Patrick/0000-0003-0895-1153; Clegg, Sam/0000-0002-0338-0948 FU NASA EPSCoR grant [NNX13AM98A] FX This work has been supported by NASA EPSCoR grant NNX13AM98A. The authors would like to thank Nancy Hulbirt and May Izumi for their valuable help with figures and editing. Authors would like to thank the reviewers for their valuable time in providing critical review and constructive comments, which greatly helped improve the manuscript. NR 83 TC 0 Z9 0 U1 6 U2 6 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1531-1074 EI 1557-8070 J9 ASTROBIOLOGY JI Astrobiology PD SEP PY 2016 VL 16 IS 9 BP 715 EP 729 DI 10.1089/ast.2015.1400 PG 15 WC Astronomy & Astrophysics; Biology; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Life Sciences & Biomedicine - Other Topics; Geology GA DW9IK UT WOS:000383971100005 PM 27623200 ER PT J AU Ragauskas, AJ AF Ragauskas, Arthur J. TI Challenging/interesting lignin times SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Editorial Material C1 [Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Bimolecular Engn, Knoxville, TN 37996 USA. [Ragauskas, Arthur J.] Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Knoxville, TN 37996 USA. [Ragauskas, Arthur J.] Oak Ridge Natl Lab, Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN 37831 USA. RP Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Bimolecular Engn, Knoxville, TN 37996 USA.; Ragauskas, AJ (reprint author), Univ Tennessee, Inst Agr, Ctr Renewable Carbon, Knoxville, TN 37996 USA.; Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN 37831 USA. EM aragausk@utk.edu NR 8 TC 1 Z9 1 U1 9 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2016 VL 10 IS 5 BP 489 EP 491 DI 10.1002/bbb.1714 PG 3 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DW1XW UT WOS:000383438000001 ER PT J AU Ferrell, JR Olarte, MV Christensen, ED Padmaperuma, AB Connatser, RM Stankovikj, F Meier, D Paasikallio, V AF Ferrell, Jack R., III Olarte, Mariefel V. Christensen, Earl D. Padmaperuma, Asanga B. Connatser, Raynella M. Stankovikj, Filip Meier, Dietrich Paasikallio, Ville TI Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE bio-oil; analysis; analytical; titration; round robin; pyrolysis ID ROUND-ROBIN; P-31 NMR; BIOMASS; WOOD; PERSPECTIVE AB In this perspective, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. Here, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 degrees C), P-31 NMR for determination of hydroxyl groups, and a quantitative gas chromatography-mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. P-31 NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Finally, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils. (c) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Ferrell, Jack R., III] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO USA. [Olarte, Mariefel V.] PNNL, Chem & Biol Proc Dev Grp, Energy & Environm Directorate, Richland, WA USA. [Christensen, Earl D.] NREL, Fuels Performance Grp, Golden, CO USA. [Padmaperuma, Asanga B.] PNNL, Energy & Efficiency Div, Richland, WA USA. [Connatser, Raynella M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Stankovikj, Filip] Washington State Univ, Dept Biol Syst Engn, Pullman, WA 99164 USA. [Meier, Dietrich] Thunen Inst Wood Res TI, Hamburg, Germany. [Paasikallio, Ville] VTT Tech Res Ctr Finland Ltd VTT, Espoo, Finland. RP Ferrell, JR (reprint author), Natl Renewable Energy Lab, 16253 Denver W Pkwy, Golden, CO 80401 USA. EM jack.ferrell@nrel.gov FU Department of Energy's Bioenergy Technology Office [DE-AC36-08-GO28308, DE-AC06-76RLO 1830] FX This work was supported by the Department of Energy's Bioenergy Technology Office under Contract nos. DE-AC36-08-GO28308 and DE-AC06-76RLO 1830. The authors gratefully acknowledge help from the following people: NREL: Stuart Black and Haoxi Ben; ORNL: James R. Keiser, Samuel A. Lewis Sr., and Edward W. Hagaman; PNNL: Teresa L. Lemmon, Marie S. Swita, Heather M. Job, Sarah D. Burton, and Douglas C. Elliot; WSU: Manuel Garcia-Perez; TI: Silke Radtke, Ingrid Fortmann and Bernhard Ziegler; and VTT: Jaana Korhonen, Sami Alakurtti, and Pia Willberg-Keyrilainen. NR 31 TC 4 Z9 4 U1 13 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2016 VL 10 IS 5 BP 496 EP 507 DI 10.1002/bbb.1661 PG 12 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DW1XW UT WOS:000383438000010 ER PT J AU Jacobson, RA Keefe, RF Smith, AMS Metlen, S Saul, DA Newman, SM Laninga, TJ Inman, D AF Jacobson, Ryan A. Keefe, Robert F. Smith, Alistair M. S. Metlen, Scott Saul, Darin A. Newman, Soren M. Laninga, Tamara J. Inman, Daniel TI Multi-spatial analysis of forest residue utilization for bioenergy SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE bioenergy; supply chain analysis; catalytic pyrolysis; modeling; Inland Northwest ID SIMULATION-MODEL; DECISION-SUPPORT; SUPPLY CHAIN; BIOMASS; PELLETS; SYSTEM AB The alternative energy sector is expanding quickly in the USA since passage of the Energy Policy Act of 2005 and the Energy Independence and Security Act of 2007. Increased interest in wood-based bioenergy has led to the need for robust modeling methods to analyze woody biomass operations at landscape scales. However, analyzing woody biomass operations in regions like the US Inland Northwest is difficult due to highly variable terrain and wood characteristics. We developed the Forest Residue Economic Assessment Model (FREAM) to better integrate with Geographical Information Systems and overcome analytical modeling limitations. FREAM analyzes wood-based bioenergy logistics systems and provides a modeling platform that can be readily modified to analyze additional study locations. We evaluated three scenarios to test the FREAM's utility: a local-scale scenario in which a catalytic pyrolysis process produces gasoline from 181 437 Mg yr(-1) of forest residues, a regional-scale scenario that assumes a biochemical process to create aviation fuel from 725 748 Mg yr(-1) of forest residues, and an international scenario that assumes a pellet mill producing pellets for international markets from 272 155 Mg yr(-1) of forest residues. The local scenario produced gasoline for a modeled cost of $22.33 GJ(-1*), the regional scenario produced aviation fuel for a modeled cost of $35.83 GJ(-1) and the international scenario produced pellets for a modeled cost of $10.51 GJ(-1). Results show that incorporating input from knowledgeable stakeholders in the designing of a model yields positive results. (c) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Jacobson, Ryan A.] Univ British Columbia, Chem & Biol Engn Dept, Vancouver, BC, Canada. [Keefe, Robert F.] Univ Idaho, Coll Nat Resources, Expt Forest, Moscow, ID 83843 USA. [Smith, Alistair M. S.] Univ Idaho, Coll Nat Resources, Moscow, ID 83843 USA. [Metlen, Scott] Univ Idaho, Prod Operat Management, Moscow, ID 83843 USA. [Saul, Darin A.; Newman, Soren M.] Univ Idaho, Coll Agr & Life Sci, Off Grant & Project Dev, Moscow, ID 83843 USA. [Laninga, Tamara J.] Western Washington Univ, Environm Studies, Bellingham, WA 98225 USA. [Inman, Daniel] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Technol Syst & Sustainabil Anal Grp, Golden, CO USA. RP Jacobson, RA (reprint author), Univ British Columbia, Chem & Biol Engn, Vancouver, BC V6T 1Z4, Canada. EM rjacobso@chbe.ubc.ca NR 42 TC 1 Z9 1 U1 10 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2016 VL 10 IS 5 BP 560 EP 575 DI 10.1002/bbb.1659 PG 16 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DW1XW UT WOS:000383438000015 ER PT J AU Bhatt, A Zhang, YM Davis, R Eberle, A Heath, G AF Bhatt, Arpit Zhang, Yimin Davis, Ryan Eberle, Annika Heath, Garvin TI Economic implications of incorporating emission controls to mitigate air pollutants emitted from a modeled hydrocarbon-fuel biorefinery in the United States SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE hydrocarbon biofuel; air pollutant emissions; minimum fuel selling price; air regulations; permitting; emission controls; techno-economic analysis ID BIOFUELS; ETHANOL; HEALTH AB The implementation of the US Renewable Fuel Standard is expected to increase the construction and operation of new biofuel facilities. Allowing this industry to grow without adversely affecting air quality is an important sustainability goal sought by multiple stakeholders. However, little is known about how the emission controls potentially required to comply with air quality regulations might impact biorefinery cost and deployment strategies such as siting and sizing. In this study, we use a baseline design for a lignocellulosic hydrocarbon biofuel production process to assess how the integration of emission controls impacts the minimum fuel selling price (MFSP) of the biofuel produced. We evaluate the change in MFSP for two cases as compared to the baseline design by incorporating (i) emission controls that ensure compliance with applicable federal air regulations and (ii) advanced control options that could be used to achieve potential best available control technology (BACT) emission limits. Our results indicate that compliance with federal air regulations can be achieved with minimal impact on biofuel cost (similar to$0.02 per gasoline gallon equivalent (GGE) higher than the baseline price of $5.10 GGE(-1)). However, if air emissions must be further reduced to meet potential BACT emission limits, the cost could increase nontrivially. For example, the MFSP could increase to $5.50 GGE(-1) by adopting advanced emission controls to meet potential boiler BACT limits. Given tradeoffs among emission control costs, permitting requirements, and economies of scale, these results could help inform decisions about biorefinery siting and sizing and mitigate risks associated with air permitting. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Biofuels, Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd. C1 [Bhatt, Arpit; Zhang, Yimin; Heath, Garvin] Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA. [Davis, Ryan] Natl Renewable Energy Lab, Biorefinery Anal Sect, Golden, CO USA. [Eberle, Annika] Natl Renewable Energy Lab, Technol Syst & Sustainabil Anal Grp, Golden, CO USA. RP Zhang, YM (reprint author), Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA. EM yimin.zhang@nrel.gov FU US Department of Energy's Bioenergy Technologies Office [22588] FX Funding for this project was provided by the US Department of Energy's Bioenergy Technologies Office through agreement number 22588. The authors would like to thank the technical support of Bob Sidner, Mae Thomas, and Jason Renzaglia of Eastern Research Group. The authors also appreciate the contributions and comments from David Humbird (DWH Process Consulting) and Daniel Inman (National Renewable Energy Laboratory). The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 38 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2016 VL 10 IS 5 BP 603 EP 622 DI 10.1002/bbb.1666 PG 20 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DW1XW UT WOS:000383438000018 ER PT J AU Bezerra, TL Ragauskas, AJ AF Bezerra, Tais Lacerda Ragauskas, Art J. TI A review of sugarcane bagasse for second-generation bioethanol and biopower production SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Review DE sugarcane bagasse; bioethanol; biopower; second-generation ID STEAM EXPLOSION PRETREATMENT; ETHANOL-PRODUCTION; ENZYMATIC-HYDROLYSIS; BIOREFINERY CONCEPT; ACID PRETREATMENT; IONIC LIQUID; STRUCTURAL-CHARACTERIZATION; LIGNOCELLULOSIC BIOMASS; CELLULOSE HYDROLYSIS; CHEMICAL-COMPOSITION AB Sugarcane bagasse is a large-volume agriculture residue that is generated on a similar to 540 million metric tons per year basis globally(1,2) with the top-three producing countries in Latin America being Brazil (similar to 181 million metric ton yr(-1)),(3) Mexico (?15 million metric ton yr(-1)),(4) and Colombia (?7 million metric ton yr(-1)),(5) respectively.(6) Given sustainability concerns and the need to maximize the utilization of bioresources, the use of sugarcane bagasse is receiving significant attention in biorefining applications, as it is a promising resource for the conversion to biofuels and biopower. This review provides a comprehensive review of bagasse and its chemical constituents and on-going research into its utilization as a feedstock for cellulosic ethanol and electricity generation. (c) 2016 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Bezerra, Tais Lacerda; Ragauskas, Art J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37219 USA. [Ragauskas, Art J.] Oak Ridge Natl Lab, Joint Inst Biol Sci, Biosci Div, Oak Ridge, TN USA. RP Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37219 USA. EM aragausk@utk.edu FU NSF [NSF-CBET-1449404] FX The authors would like to acknowledge support of these studies through an NSF sponsored program titled 'Effect of Thermal Treatment on Biomass and Hydrocarbons Production using Catalytic Pyrolysis Process/ NSF-CBET-1449404. NR 104 TC 1 Z9 1 U1 34 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2016 VL 10 IS 5 BP 634 EP 647 DI 10.1002/bbb.1662 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA DW1XW UT WOS:000383438000020 ER PT J AU Hanson, PJ Gill, AL Xu, X Phillips, JR Weston, DJ Kolka, RK Riggs, JS Hook, LA AF Hanson, P. J. Gill, A. L. Xu, X. Phillips, J. R. Weston, D. J. Kolka, R. K. Riggs, J. S. Hook, L. A. TI Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context SO BIOGEOCHEMISTRY LA English DT Article DE Carbon budget; Carbon dioxide; Methane; Peat; Picea; Sphagnum ID METHANE EMISSIONS; NORTHERN PEATLAND; BIOGEOCHEMISTRY MODEL; CARBON ACCUMULATION; TERRESTRIAL ECOSYSTEMS; RETROSPECTIVE ANALYSIS; OMBROTROPHIC PEATLAND; EUROPEAN PEATLANDS; CLIMATE-CHANGE; BLANKET BOG AB Peatland measurements of CO2 and CH4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path analyzers over an area of 1.13 m(2) in daylight and dark conditions along with associated peat temperatures, water table height, hummock moisture, atmospheric pressure and incident radiation data. Observations from August 2011 through December 2014 demonstrated seasonal trends correlated with temperature as the dominant apparent driving variable. The S1-Bog for the SPRUCE study was found to be representative of temperate peatlands in terms of CO2 and CH4 flux. Maximum net CO2 flux in midsummer showed similar rates of C uptake and loss: daytime surface uptake was -5 to -6 A mu mol m(-2) s(-1) and dark period loss rates were 4-5 A mu mol m(-2) s(-1) (positive values are carbon lost to the atmosphere). Maximum midsummer CH4-C flux ranged from 0.4 to 0.5 A mu mol m(-2) s(-1) and was a factor of 10 lower than dark CO2-C efflux rates. Midwinter conditions produced near-zero flux for both CO2 and CH4 with frozen surfaces. Integrating temperature-dependent models across annual periods showed dark CO2-C and CH4-C flux to be 894 +/- 34 and 16 +/- 2 gC m(-2) y(-1), respectively. Net ecosystem exchange of carbon from the shrub-forb-Sphagnum-microbial community (excluding tree contributions) ranged from -3.1 gCO(2)-C m(-2) y(-1) in 2013, to C losses from 21 to 65 gCO(2)-C m(-2) y(-1) for the other years. C1 [Hanson, P. J.; Phillips, J. R.; Weston, D. J.; Riggs, J. S.; Hook, L. A.] Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Hanson, P. J.; Phillips, J. R.; Weston, D. J.; Riggs, J. S.; Hook, L. A.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. [Gill, A. L.] Boston Univ, Boston, MA 02215 USA. [Xu, X.] San Diego State Univ, San Diego, CA 92182 USA. [Kolka, R. K.] US Forest Serv, Forestry Sci Lab, USDA, Northern Res Stn, Grand Rapids, MN 55744 USA. RP Hanson, PJ (reprint author), Oak Ridge Natl Lab, Climate Change Sci Inst, Oak Ridge, TN 37831 USA.; Hanson, PJ (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM hansonpj@ornl.gov RI Hanson, Paul J./D-8069-2011; Xu, Xiaofeng/B-2391-2008 OI Hanson, Paul J./0000-0001-7293-3561; Xu, Xiaofeng/0000-0002-6553-6514 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC05-06OR23100]; U.S. Department of Energy [DE-AC05-00OR22725] FX The S1-Bog CO2 and CH4 flux data (Hanson et al. 2014a) and the environmental measurement data referenced in this paper are archived at, and available from, the SPRUCE long-term repository (http://www.mnspruce.ornl.gov). This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, and Graduate Fellowship Program (DE-AC05-06OR23100 to A.L.G.). Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. The authors appreciate fieldwork participation of W. Robert Nettles and Cassandra Ott, and would like to thank Scott Bridgham, Jeff Chanton, Steve Sebestyen, Nigel Roulet and Tim Moore for their comments on earlier versions of this manuscript. We also thank Terry Pfeiffer for her editorial assistance. NR 65 TC 1 Z9 1 U1 17 U2 17 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 EI 1573-515X J9 BIOGEOCHEMISTRY JI Biogeochemistry PD SEP PY 2016 VL 129 IS 3 BP 255 EP 272 DI 10.1007/s10533-016-0230-8 PG 18 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DV7GP UT WOS:000383104700001 ER PT J AU Lee, JP Kassianidou, E MacDonald, JI Francis, MB Kumar, S AF Lee, Jessica P. Kassianidou, Elena MacDonald, James I. Francis, Matthew B. Kumar, Sanjay TI N-terminal specific conjugation of extracellular matrix proteins to 2-pyridinecarboxaldehyde functionalized polyacrylamide hydrogels SO BIOMATERIALS LA English DT Article ID TUMOR-CELL MIGRATION; NEURAL STEM-CELLS; STIFFNESS; COLLAGEN; SUBSTRATE; DIFFERENTIATION; IMMOBILIZATION; PROLIFERATION; CONFINEMENT; STABILITY AB Polyacrylamide hydrogels have been used extensively to study cell responses to the mechanical and biochemical properties of extracellular matrix substrates. A key step in fabricating these substrates is the conjugation of cell adhesion proteins to the polyacrylamide surfaces, which typically involves nonspecifically anchoring these proteins via side-chain functional groups. This can result in a loss of presentation control and altered bioactivity. Here, we describe a new functionalization strategy in which we anchor full-length extracellular matrix proteins to polyacrylamide substrates using 2-pyridinecarboxaldehyde, which can be co-polymerized into polyacrylamide gels and used to immobilize proteins by their N-termini. This one-step reaction proceeds under mild aqueous conditions and does not require additional reagents. We demonstrate that these substrates can readily conjugate to various extracellular matrix proteins, as well as promote cell adhesion and spreading. Notably, this chemistry supports the assembly and cellular remodeling of large collagen fibers, which is not observed using conventional side-chain amine-conjugation chemistry. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lee, Jessica P.; MacDonald, James I.; Francis, Matthew B.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Francis, Matthew B.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lee, Jessica P.; Kassianidou, Elena; Kumar, Sanjay] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Kassianidou, Elena; Kumar, Sanjay] UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA 94720 USA. [Kumar, Sanjay] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. RP Kumar, S (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM skumar@berkeley.edu FU DOD [W911NF-09-1-0507]; NIH [R21EB016359, R21CA174573]; NSF [CMMI 1105539, CHE 1413666]; Berkeley Chemical Biology Graduate Program (NIH) [1 T32 GMO66698]; Croucher Foundation Scholarship; Howard Hughes Medical Institute International Student Fellowship FX SIC acknowledges the support of the DOD (W911NF-09-1-0507), the NIH (R21EB016359, R21CA174573), and the NSF (CMMI 1105539). MBF acknowledges the NSF (CHE 1413666) for research support. JPL and JIM were supported by the Berkeley Chemical Biology Graduate Program (NIH Training Grant 1 T32 GMO66698). JPL was supported by the Croucher Foundation Scholarship. EK was supported by the Howard Hughes Medical Institute International Student Fellowship. The authors acknowledge D.V. Schaffer for reagent and equipment sharing, as well as the CIRM/QB3 Stem Cell Shared Facility for confocal microscopy access. NR 39 TC 1 Z9 1 U1 9 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 EI 1878-5905 J9 BIOMATERIALS JI Biomaterials PD SEP PY 2016 VL 102 BP 268 EP 276 DI 10.1016/j.biomaterials.2016.06.022 PG 9 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA DS2PJ UT WOS:000380625700024 PM 27348850 ER PT J AU Pinto, CL Mansouri, K Judson, R Browne, P AF Pinto, Caroline L. Mansouri, Kamel Judson, Richard Browne, Patience TI Prediction of Estrogenic Bioactivity of Environmental Chemical Metabolites SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID RAT-LIVER MICROSOMES; YEAST 2-HYBRID ASSAY; REPORTER GENE ASSAY; POLYCYCLIC AROMATIC-HYDROCARBONS; ENDOCRINE-DISRUPTING ACTIVITY; ANTI-ANDROGENIC ACTIVITIES; FOOD CONTACT PLASTICS; IN-VITRO METABOLISM; RECEPTOR-ALPHA; CELL-LINES AB The US Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) is using in vitro data generated from ToxCast/Tox21 high-throughput screening assays to assess the endocrine activity of environmental chemicals. Considering that in vitro assays may have limited metabolic capacity, inactive chemicals that are biotransformed into metabolites with endocrine bioactivity may be missed for further screening and testing. Therefore, there is a value in developing novel approaches to account for metabolism and endocrine activity of both parent chemicals and their associated metabolites. We used commercially available software to predict metabolites of SO parent compounds, out of which 38 chemicals are known to have estrogenic. metabolites, and 12 compounds and their metabolites are negative for estrogenic activity. Three ER QSAR models were used to determine potential estrogen bioactivity of the parent compounds and predicted metabolites, the outputs of the models were averaged, and the chemicals were then ranked based on the total estrogenicity of the parent chemical and metabolites. The metabolite prediction software correctly identified known estrogenic metabolites for 26 out of 27 parent chemicals with associated metabolite data, and 39 out of 46 estrogenic metabolites were predicted as potential biotransformation products derived from the parent chemical. The QSAR models estimated stronger estrogenic activity for the majority of the known estrogenic metabolites compared to their parent chemicals. Finally, the three models identified a similar set of parent compounds as top ranked chemicals based on the. estrogenicity of putative metabolites. This proposed in silico approach is an inexpensive and rapid strategy for the detection of chemicals with estrogenic metabolites and may reduce potential false negative results from in vitro assays. C1 [Pinto, Caroline L.; Browne, Patience] US EPA, Off Chem Safety & Pollut Prevent, 1200 Penn Ave NW, Washington, DC 20460 USA. [Pinto, Caroline L.; Mansouri, Kamel] Oak Ridge Inst Sci & Educ, MC 100-44,POB 117, Oak Ridge, TN 37831 USA. [Mansouri, Kamel; Judson, Richard] US EPA, Off Res & Dev, Res Triangle Pk, NC 27711 USA. RP Pinto, CL (reprint author), US EPA, Off Chem Safety & Pollut Prevent, 1200 Penn Ave NW, Washington, DC 20460 USA.; Pinto, CL (reprint author), Oak Ridge Inst Sci & Educ, MC 100-44,POB 117, Oak Ridge, TN 37831 USA. EM pinto.caroline@epa.gov OI Mansouri, Kamel/0000-0002-6426-8036 NR 71 TC 1 Z9 1 U1 17 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X EI 1520-5010 J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD SEP PY 2016 VL 29 IS 9 BP 1410 EP 1427 DI 10.1021/acs.chemrestox.6b00079 PG 18 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA DW6CF UT WOS:000383733300006 PM 27509301 ER PT J AU Cai, ZQ Cao, SH Falgout, R AF Cai, Zhiqiang Cao, Shuhao Falgout, Rob TI Robust a posteriori error estimation for finite element approximation to H(curl) problem SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Maxwell's equations; Nedelec finite elements; A posteriori error estimation; Interface problem; Flux recovery; Duality error estimation ID MAXWELLS EQUATIONS; INTERFACE PROBLEMS; PART II; SPACE; CONVERGENCE; TRACES AB In this paper, we introduce a novel a posteriori error estimator for the conforming finite element approximation to the H(curl) problem with inhomogeneous media and with the right-hand side only in L-2. The estimator is of the recovery type. Independent with the current approximation to the primary variable (the electric field), an auxiliary variable (the magnetizing field) is recovered in parallel by solving a similar H(curl) problem. An alternate way of recovery is presented as well by localizing of the error flux. The estimator is then defined as the sum of the modified element residual and the residual of the constitutive equation defining the auxiliary variable. It is proved that the estimator is approximately equal to the true error in the energy norm without the quasi-monotonicity assumption. Finally, we present numerical results for several H(curl) interface problems. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cai, Zhiqiang] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA. [Cao, Shuhao] Penn State Univ, Dept Math, State Coll, PA 16802 USA. [Falgout, Rob] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Cao, SH (reprint author), Penn State Univ, Dept Math, State Coll, PA 16802 USA. EM zcai@math.purdue.edu; scao@psu.edu; falgout2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-645325]; National Science Foundation [DMS-1217081, DMS-1320608, DMS-1418934, DMS-1522707] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-645325). This work was supported in part by the National Science Foundation under grants DMS-1217081, DMS-1320608, DMS-1418934, and DMS-1522707. NR 33 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD SEP 1 PY 2016 VL 309 BP 182 EP 201 DI 10.1016/j.cma.2016.06.007 PG 20 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA DW7KA UT WOS:000383828400008 ER PT J AU Ren, DN Ruan, QC Tao, JH Lo, J Nutt, S Moradian-Oldak, J AF Ren, Dongni Ruan, Qichao Tao, Jinhui Lo, Jonathan Nutt, Steven Moradian-Oldak, Janet TI Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite SO CRYSTAL GROWTH & DESIGN LA English DT Article ID DICALCIUM PHOSPHATE DIHYDRATE; MECHANICAL-PROPERTIES; MOUSE AMELOGENINS; DENTAL ENAMEL; BONE CEMENTS; HYDROXYAPATITE; CAHPO4; GROWTH; CAHPO4-CENTER-DOT-2H(2)O; MICROSTRUCTURE AB Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4 center dot 2H(2)O), one of the precursors of hydroxyapatite mineralization in vitro, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of the enamel protein amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto the surface of brushite, leading to the formation of layered morphology on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cells. Changes to the crystal morphology mediated by amelogenin continued even after the phase transformation from brushite to monetite, leading to the formation of organized platelets with an interlocked structure. This effect of amelogenin on brushite morphology and the phase transformation to monetite could provide a new approach to developing biomimetic materials. C1 [Ren, Dongni; Ruan, Qichao; Moradian-Oldak, Janet] Univ Southern Calif, Herman Ostrow Sch Dent, Ctr Craniofacial Mol Biol, Los Angeles, CA 90033 USA. [Tao, Jinhui] Pacific Northwest Natl Lab, Div Phys Sci, Richland, WA 99352 USA. [Lo, Jonathan; Nutt, Steven] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA. RP Moradian-Oldak, J (reprint author), Univ Southern Calif, Herman Ostrow Sch Dent, Ctr Craniofacial Mol Biol, Los Angeles, CA 90033 USA. EM joldak@usc.edu FU NIH-NIDCR [DE-013414, DE-020099]; US DOE [DE-AC05-76RL01830] FX This research was supported by NIH-NIDCR Grants DE-013414 and DE-020099. The authors would like to thank the Center for Electron Microscopy and Microanalysis (CEMMA) at USC for electron microscopy. The AFM and Raman measurements were performed at Pacific Northwest National Laboratory, which is a multiprogram national laboratory operated by Battelle for the US DOE under Contract DE-AC05-76RL01830. Karthik Balakrishna Chandrababu and Saumya Prajapati contributed to the protein preparation in this work. We thank Yunpeng Zhang for his help with the TGA and FTIR experiments. NR 63 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2016 VL 16 IS 9 BP 4981 EP 4990 DI 10.1021/acs.cgd.6b00569 PG 10 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DV4NN UT WOS:000382902400026 ER PT J AU Wang, PL Kostina, SS Meng, F Kontsevoi, OY Liu, ZF Chen, P Peters, JA Hanson, M He, YH Chung, DY Freeman, AJ Wessels, BW Kanatzidis, MG AF Wang, Peng L. Kostina, Svetlana S. Meng, Fang Kontsevoi, Oleg Y. Liu, Zhifu Chen, Pice Peters, John A. Hanson, Micah He, Yihui Chung, Duck Young Freeman, Arthur J. Wessels, Bruce W. Kanatzidis, Mercouri G. TI Refined Synthesis and Crystal Growth of Pb2P2Se6 for Hard Radiation Detectors SO CRYSTAL GROWTH & DESIGN LA English DT Article ID GAMMA-RAY DETECTION; DIMENSIONAL REDUCTION; SEMICONDUCTOR; SE; TE; CHALCOHALIDES; PRESSURE; A(2)Q AB The refined synthesis and optimized crystal growth of high quality Pb2P2Se6 single crystals are reported. Improved experimental procedures were implemented to reduce the oxygen contamination and improve the stoichiometry of the single crystal samples. The impact of oxygen contamination and the nature of the stoichiometry deviation in the Pb2P2Se6 system were studied by first-principles density functional theory (DFT) electronic structure calculations as well as experimental methods. The DFT calculations indicated that the presence of interstitial oxygen atoms (O-int) leads to the formation of a deep level located near the middle of the gap, as well as a shallow acceptor level near the valence band maximum. In addition, total energy calculations of the heat of formation of Pb2P2Se6 suggest that the region of thermodynamic stability is sufficiently wide. By refining the preparative procedures, high quality Pb2P2Se6 single crystal samples were reproducibly obtained. These Pb2P2Se6 single crystals exhibited excellent optical transparency, electrical resistivity in the range of 10(11) Omega.cm, and a significant increase in photoconductivity. Infrared photoluminescence of the Pb2P2Se6 single crystals was observed over the temperature range of 15-75 K. Detectors fabricated from boules yielded a clear spectroscopic response to both Ag K alpha X-ray and Co-57 gamma-ray radiation. The electron and hole mobility lifetime product (mu tau) of the current Pb2P2Se6 detectors were estimated to be 3.1 x 10(-4) and 4.8 X 10(-5) cm(2)/V, respectively. C1 [Wang, Peng L.; He, Yihui; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Kostina, Svetlana S.; Liu, Zhifu; Chen, Pice; Peters, John A.; Hanson, Micah; Wessels, Bruce W.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Kontsevoi, Oleg Y.; Freeman, Arthur J.] Northwestern Univ, Dept Phys & Astron, Evanston, IL USA. [Meng, Fang; Chung, Duck Young] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu OI Chen, Pice/0000-0003-4401-5637 FU Department of Homeland Security ARI Program [2014-DN-077-ARI086-01]; MRSEC program of the National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262]; NCI CCSG [P30 CA060553]; Office of Nonproliferation and Verification Research and Development under National Nuclear Security Administration of the U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Department of Homeland Security ARI Program with Grant 2014-DN-077-ARI086-01. Optical transmission microscope observations were performed with the help of Dr. Shichao Wang and Prof. Kenneth Poeppelmeier. This work made use of the Materials Processing and Microfabrication Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. UV vis transmittance experiments were done using Keck Biophysics Facility, supported in part by NCI CCSG P30 CA060553 grant awarded to the Robert H. Lurie Comprehensive Cancer Center. At Argonne work is supported by the Office of Nonproliferation and Verification Research and Development under National Nuclear Security Administration of the U.S. Department of Energy under contract No. DE-AC02-06CH11357. NR 42 TC 1 Z9 1 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2016 VL 16 IS 9 BP 5100 EP 5109 DI 10.1021/acs.cgd.6b00684 PG 10 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DV4NN UT WOS:000382902400040 ER PT J AU Chu, MH Tian, L Chaker, A Cantelli, V Ouled, T Boichot, R Crisci, A Lay, S Richard, MI Thomas, O Deschanvres, JL Renevier, H Fong, DD Ciatto, G AF Chu, Manh Hung Tian, Liang Chaker, Ahmad Cantelli, Valentina Ouled, Toufik Boichot, Raphael Crisci, Alexandre Lay, Sabine Richard, Marie-Ingrid Thomas, Olivier Deschanvres, Jean-Luc Renevier, Hubert Fong, Dillon D. Ciatto, Gianluca TI An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ABSORPTION FINE-STRUCTURE; CO-DOPED ZNO; LAYER DEPOSITION; THIN-FILMS; GRAIN-BOUNDARIES; SPECTRA; OXYGEN; EXAFS; MODE; SPECTROSCOPY AB The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. In this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stages of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these specttoscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. The approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures. C1 [Chu, Manh Hung; Ciatto, Gianluca] LOrme Merisiers, Synchrotron SOLEIL Beamline SIRIUS, F-91192 Gif Sur Yvette, France. [Tian, Liang; Chaker, Ahmad; Cantelli, Valentina; Deschanvres, Jean-Luc; Renevier, Hubert] Univ Grenoble Alpes, LMGP, F-38000 Grenoble, France. [Tian, Liang; Chaker, Ahmad; Cantelli, Valentina; Deschanvres, Jean-Luc; Renevier, Hubert] CNRS, LMGP, F-38000 Grenoble, France. [Ouled, Toufik; Richard, Marie-Ingrid; Thomas, Olivier] Univ Toulon & Var, Aix Marseille Univ, CNRS, UMR 7334,IM2NP, F-13397 Marseille, France. [Boichot, Raphael; Crisci, Alexandre; Lay, Sabine] Univ Grenoble Alpes, SIMAP, F-38000 Grenoble, France. [Boichot, Raphael; Crisci, Alexandre; Lay, Sabine] CNRS, SIMAP, F-38000 Grenoble, France. [Fong, Dillon D.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chu, Manh Hung] Hanoi Univ Sci & Technol, Int Training Inst Mat Sci, 1 Dai Co Viet, Hanoi, Vietnam. RP Chu, MH; Ciatto, G (reprint author), LOrme Merisiers, Synchrotron SOLEIL Beamline SIRIUS, F-91192 Gif Sur Yvette, France.; Chu, MH (reprint author), Hanoi Univ Sci & Technol, Int Training Inst Mat Sci, 1 Dai Co Viet, Hanoi, Vietnam. EM manh-hung.chu@synchrotron-soleil.fr; gianluca.ciatto@synchrotron-soleil.fr RI Richard, Marie-Ingrid/F-6693-2012; OI Richard, Marie-Ingrid/0000-0002-8172-3141; deschanvres, jean-luc/0000-0003-4668-8501 FU ANR Moon [ANR-11-NANO-0014]; Nanosciences Foundation [FCSN-2011-03CE]; Nanosciences Foundation; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX We thank Synchrotron SOLEIL for general facilities placed at our disposal and in particular N. Aubert and P. Fontaine (SIRIUS beamline) for the help with the experimental setup and software, respectively. Financial support for this work by ANR Moon (ANR-11-NANO-0014) is gratefully acknowledged. V.C. was supported by the Nanosciences Foundation (FCSN-2011-03CE), and D.D.F. was supported by an award from the Nanosciences Foundation and the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The experiment at the SIRIUS beamline benefited from the SOLEIL beam time allocation No. 20131343. NR 55 TC 0 Z9 0 U1 13 U2 14 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2016 VL 16 IS 9 BP 5339 EP 5348 DI 10.1021/acs.cgd.6b00844 PG 10 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DV4NN UT WOS:000382902400067 ER PT J AU Kim, D Lee, B Thomopoulos, S Jun, YS AF Kim, Doyoon Lee, Byeongdu Thomopoulos, Stavros Jun, Young-Shin TI In Situ Evaluation of Calcium Phosphate Nucleation Kinetics and Pathways during Intra- and Extrafibrillar Mineralization of Collagen Matrices SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SMALL-ANGLE SCATTERING; X-RAY-SCATTERING; ELECTRON-MICROSCOPY; APATITE FORMATION; BONE APATITE; PILP PROCESS; TOMOGRAPHY; CRYSTALS; GROWTH; TISSUE AB We revealed that nucleation sites within collagen fibrils determined pathways for calcium phosphate (CaP) nucleation and its transformation, from amorphous species to crystalline plates, during the biomineralization process. Using in situ small-angle X-ray scattering (SAXS), we examined the nucleation and growth of CaP within collagen matrices and elucidated how a nucleation inhibitor, polyaspartic acid (pAsp), governs mineralization kinetics and pathways at multiple length scales. Mineralization without pAsp led initially to spherical aggregates of CaP in the entire extrafibrillar spaces. With time, the spherical aggregates transformed into plates at the outermost surface of the collagen matrix, preventing intrafibrillar mineralization inside. However, mineralization with pAsp led directly to the formation of intrafibrillar CaP plates with a spatial distribution gradient through the depth of the matrix. The results illuminate mineral nucleation kinetics and real-time nanoparticle distributions within organic matrices in solutions containing body fluid components. Because the macroscale mechanical properties of collagen matrices depend on their mineral content, phase, and arrangement at the nanoscale, this study contributes to better design and fabrication of biomaterials for regenerative medicine. C1 [Kim, Doyoon; Jun, Young-Shin] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. [Lee, Byeongdu] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Thomopoulos, Stavros] Columbia Univ, Dept Orthoped Surg, New York, NY 10032 USA. RP Jun, YS (reprint author), Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO 63130 USA. EM ysjun@seas.wustl.edu FU Y.S.J.'s faculty startup fund at Washington University; National Science Foundation [DMR-1608545, DMR-1608554]; National Institutes of Health [U01 EB016422]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors acknowledge the Biomineralization discussion group at Washington University in St. Louis, consisting of J. D. Pasteris, G. Genin, T. Daulton, A. Deymier, A. G. Schwartz, J. Lipner, and J. Boyle for helpful discussions. We thank J. Ballard for carefully reviewing the manuscript. The project was mainly supported by Y.S.J.'s faculty startup fund at Washington University and partially supported by the National Science Foundation (DMR-1608545 and DMR-1608554) and the National Institutes of Health (U01 EB016422). The Nano Research Facility, Institute of Materials Science & Engineering, Molecular Microbiology Imaging Facility, Confocal Microscopy Facility, and Soft Nanomaterials Laboratory at Washington University in St. Louis provided their facilities for the experiments. Use of the Advanced Photon Source (sector 12 ID-B and 11ID-B) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 49 TC 0 Z9 0 U1 19 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2016 VL 16 IS 9 BP 5359 EP 5366 DI 10.1021/acs.cgd.6b00864 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DV4NN UT WOS:000382902400069 PM 27891066 ER PT J AU Hill, DP D'Eustachio, P Berardini, TZ Mungall, CJ Renedo, N Blake, JA AF Hill, David P. D'Eustachio, Peter Berardini, Tanya Z. Mungall, Christopher J. Renedo, Nikolai Blake, Judith A. TI Modeling biochemical pathways in the gene ontology SO DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION LA English DT Article ID ESCHERICHIA-COLI; DATABASE; INTEGRATION; BIOLOGY; TOOL AB The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes in the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis. C1 [Hill, David P.; Renedo, Nikolai; Blake, Judith A.] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA. [D'Eustachio, Peter] NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA. [Berardini, Tanya Z.] Phoenix Bioinformat, Arabidopsis Informat Resource, Redwood City, CA 94063 USA. [Mungall, Christopher J.] Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. RP D'Eustachio, P (reprint author), NYU, Sch Med, Dept Biochem & Mol Pharmacol, New York, NY 10016 USA. EM deustp01@med.nyu.edu OI D'Eustachio, Peter/0000-0002-5494-626X FU National Institute for Human Genome Research at the National Institutes of Health [U41HG 002273, U41HG 003751, R25HG 007053]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; [U41 HG 002273]; [U41 HG 003751] FX This work was supported by the National Institute for Human Genome Research at the National Institutes of Health (grant U41HG 002273 (Gene Ontology Consortium), U41HG 003751 (Reactome Knowledgebase), and R25HG 007053 (Diversity Action Plan for Mouse Genome Database)). C.J. Mungall was additionally supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Funding for open access charge: U41 HG 002273 and U41 HG 003751. NR 29 TC 0 Z9 0 U1 2 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1758-0463 J9 DATABASE-OXFORD JI Database PD SEP 1 PY 2016 AR baw126 DI 10.1093/database/baw126 PG 10 WC Mathematical & Computational Biology SC Mathematical & Computational Biology GA DW7MA UT WOS:000383833600001 ER PT J AU Weir, SM Scott, DE Salice, CJ Lance, SL AF Weir, Scott M. Scott, David E. Salice, Christopher J. Lance, Stacey L. TI Integrating copper toxicity and climate change to understand extinction risk to two species of pond-breeding anurans SO ECOLOGICAL APPLICATIONS LA English DT Article DE amphibian declines; multiple stressors; population modeling; risk assessment; southern leopard frog (Lithobates sphenocephalus); southern toad (Anaxyrus terrestris) ID AMPHIBIAN POPULATION DECLINES; COMPLEX LIFE-CYCLES; DENSITY-DEPENDENT ASPECTS; COAL COMBUSTION WASTE; MULTIPLE STRESSORS; SOUTHERN TOADS; ANAXYRUS-TERRESTRIS; BUFO-TERRESTRIS; UNITED-STATES; GROWTH-RATE AB Chemical contamination is often suggested as an important contributing factor to amphibian population declines, but direct links are rarely reported. Population modeling provides a quantitative method to integrate toxicity data with demographic data to understand the long-term effects of contaminants on population persistence. In this study we use laboratory-derived embryo and larval toxicity data for two anuran species to investigate the potential for toxicity to contribute to population declines. We use the southern toad (Anaxyrus terrestris) and the southern leopard frog (Lithobates sphenocephalus) as model species to investigate copper (Cu) toxicity. We use matrix models to project populations through time and quantify extinction risk (the probability of quasi-extinction in 35 yr). Life-history parameters for toads and frogs were obtained from previously published literature or unpublished data from a long-term (>35 yr) data set. In addition to Cu toxicity, we investigate the role of climate change on amphibian populations by including the probability of early pond drying that results in catastrophic reproductive failure (CRF, i.e., complete mortality of all larval individuals). Our models indicate that CRF is an important parameter for both species as both were unable to persist when CRF probability was >50% for toads or 40% for frogs. Copper toxicity alone did not result in significant effects on extinction risk unless toxicity was very high (>50% reduction in survival parameters). For toads, Cu toxicity and high probability of CRF both resulted in high extinction risk but no synergistic (or greater than additive) effects between the two stressors occurred. For leopard frogs, in the absence of CRF survival was high even under Cu toxicity, but with CRF Cu toxicity increased extinction risk. Our analyses highlight the importance of considering multiple stressors as well as species differences in response to those stressors. Our models were consistently most sensitive to juvenile and adult survival, further suggesting the importance of terrestrial stages to population persistence. Future models will incorporate multiple wetlands with different combinations of stressors to understand if our results for a single wetland result in a population sink within the landscape. C1 [Weir, Scott M.; Scott, David E.; Lance, Stacey L.] Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. [Salice, Christopher J.] Towson Univ, Environm Sci & Studies, Towson, MD 21252 USA. [Weir, Scott M.] Queens Univ Charlotte, Dept Biol, Charlotte, NC 28274 USA. RP Weir, SM (reprint author), Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA.; Weir, SM (reprint author), Queens Univ Charlotte, Dept Biol, Charlotte, NC 28274 USA. EM weirs@queens.edu FU U. S. Department of Energy [DE-FC09-07SR22506]; DOE National Nuclear Security Administration FX R.W. Flynn, C. Rumrill, C. Love, R. Beasley, A. Coleman, and J. O'Bryhim provided valuable comments on earlier versions of the manuscript. We thank two anonymous reviewers whose suggestions greatly improved this manuscript. This research was partially supported by U. S. Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation, and was also made possible by the status of the SRS as a National Environmental Research Park (NERP), as well as the protection of research wetlands in the SRS Set-Aside Program. Project funding was provided by the DOE National Nuclear Security Administration. NR 67 TC 0 Z9 0 U1 21 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1051-0761 EI 1939-5582 J9 ECOL APPL JI Ecol. Appl. PD SEP PY 2016 VL 26 IS 6 BP 1721 EP 1732 DI 10.1890/15-1082 PG 12 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA DW0UJ UT WOS:000383358000010 PM 27755699 ER PT J AU Kierepka, EM Anderson, SJ Swihart, RK Rhodes, OE AF Kierepka, Elizabeth M. Anderson, Sara J. Swihart, Robert K. Rhodes, Olin E., Jr. TI Evaluating the influence of life-history characteristics on genetic structure: a comparison of small mammals inhabiting complex agricultural landscapes SO ECOLOGY AND EVOLUTION LA English DT Article DE Comparative landscape genetics; ecological specialization; fragmentation; Upper Wabash Valley ID WHITE-FOOTED MICE; MOUSE PEROMYSCUS-LEUCOPUS; SEX-BIASED DISPERSAL; HABITAT FRAGMENTATION; BODY-SIZE; SPATIAL AUTOCORRELATION; POPULATION-STRUCTURE; ENVIRONMENTAL-CONDITIONS; RESISTANCE SURFACES; SPECIES RESPONSES AB Conversion of formerly continuous native habitats into highly fragmented landscapes can lead to numerous negative demographic and genetic impacts on native taxa that ultimately reduce population viability. In response to concerns over biodiversity loss, numerous investigators have proposed that traits such as body size and ecological specialization influence the sensitivity of species to habitat fragmentation. In this study, we examined how differences in body size and ecological specialization of two rodents (eastern chipmunk; Tamias striatus and white-footed mouse; Peromyscus leucopus) impact their genetic connectivity within the highly fragmented landscape of the Upper Wabash River Basin (UWB), Indiana, and evaluated whether landscape configuration and complexity influenced patterns of genetic structure similarly between these two species. The more specialized chipmunk exhibited dramatically more genetic structure across the UWB than white-footed mice, with genetic differentiation being correlated with geographic distance, configuration of intervening habitats, and complexity of forested habitats within sampling sites. In contrast, the generalist white-footed mouse resembled a panmictic population across the UWB, and no landscape factors were found to influence gene flow. Despite the extensive previous work in abundance and occupancy within the UWB, no landscape factor that influenced occupancy or abundance was correlated with genetic differentiation in either species. The difference in predictors of occupancy, abundance, and gene flow suggests that species-specific responses to fragmentation are scale dependent. C1 [Kierepka, Elizabeth M.; Rhodes, Olin E., Jr.] Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. [Anderson, Sara J.] Minnesota State Univ Moorhead, Biosci Dept, 1104 7th Ave, Moorhead, MN 56563 USA. [Swihart, Robert K.] Purdue Univ, Dept Forestry & Nat Resources, 715 W State St, W Lafayette, IN 47907 USA. RP Kierepka, EM (reprint author), Univ Georgia, Savannah River Ecol Lab, PO Drawer E, Aiken, SC 29802 USA. EM liz.kierepka@gmail.com FU John S. Wright Fund, Office of Environmental Management [DE-FC09-07SR22506]; Cooperative State Research, Education, and Extension Service [2000-04649]; U.S. Department of Education FX John S. Wright Fund, Office of Environmental Management (Grant/Award Number: "DE-FC09-07SR22506") Cooperative State Research, Education, and Extension Service (Grant/Award Number: "2000-04649") U.S. Department of Education (Grant/Award Number: "Graduate Assistance in Areas of National Need Award"). NR 133 TC 0 Z9 0 U1 13 U2 13 PU WILEY PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2045-7758 J9 ECOL EVOL JI Ecol. Evol. PD SEP PY 2016 VL 6 IS 17 BP 6376 EP 6396 DI 10.1002/ece3.2269 PG 21 WC Ecology; Evolutionary Biology SC Environmental Sciences & Ecology; Evolutionary Biology GA DW0WC UT WOS:000383362700029 PM 27648250 ER PT J AU Cho, Y Lee, C Hur, K Kang, YC Muljadi, E Park, SH Choy, YD Yoon, GG AF Cho, Youngho Lee, Choongman Hur, Kyeon Kang, Yong Cheol Muljadi, Eduard Park, Sang-Ho Choy, Young-Do Yoon, Gi-Gab TI A Framework to Analyze the Stochastic Harmonics and Resonance of Wind Energy Grid Interconnection SO ENERGIES LA English DT Article DE wind power plant (WPP); harmonics; resonance; statistical modeling ID TIME-VARYING HARMONICS; POWER-SYSTEM; PROPAGATION; TURBINES; GENERATION AB This paper addresses a modeling and analysis methodology for investigating the stochastic harmonics and resonance concerns of wind power plants (WPPs). Wideband harmonics from modern wind turbines (WTs) are observed to be stochastic, associated with real power production, and they may adversely interact with the grid impedance and cause unexpected harmonic resonance, if not comprehensively addressed in the planning and commissioning of the WPPs. These issues should become more critical as wind penetration levels increase. We thus propose a planning study framework comprising the following functional steps: First, the best fitted probability density functions (PDFs) of the harmonic components of interest in the frequency domain are determined. In operations planning, maximum likelihood estimations (MLEs) followed by a chi-square test are used once field measurements or manufacturers' data are available. Second, harmonic currents from the WPP are represented by randomly-generating harmonic components based on their PDFs (frequency spectrum) and then synthesized for time domain simulations via inverse Fourier transform. Finally, we conduct a comprehensive assessment by including the impacts of feeder configurations, harmonic filters and the variability of parameters. We demonstrate the efficacy of the proposed study approach for a 100-MW offshore WPP consisting of 20 units of 5-MW full converter turbines, a realistic benchmark system adapted from a WPP under development in Korea and discuss lessons learned through this research. C1 [Cho, Youngho; Lee, Choongman; Hur, Kyeon] Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, Jeonju 54896, South Korea. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Park, Sang-Ho; Choy, Young-Do; Yoon, Gi-Gab] Korea Elect Power Res Inst, Daejeon 34056, South Korea. RP Hur, K (reprint author), Yonsei Univ, Sch Elect & Elect Engn, Seoul 03722, South Korea. EM sglab@yonsei.ac.kr; your2cm@gmail.com; khur@yonsei.ac.kr; yckang@jbnu.ac.kr; eduard.muljadi@nrel.gov; alegole73@kepco.co.kr; zeroway73@kepco.co.kr; bosco@kepco.co.kr OI Cho, Youngho/0000-0002-8879-0232; Hur, Kyeon/0000-0003-3726-7545 FU National Research Foundation of Korea (NRF) - Korea government (MSIP) [2010-0028509]; Korea Electric Power Corporation through Korea Electrical Engineering & Science Research Institute [R15XA03-28] FX This research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2010-0028509). This research was supported by Korea Electric Power Corporation through Korea Electrical Engineering & Science Research Institute. [grant number : R15XA03-28] NR 31 TC 1 Z9 1 U1 3 U2 3 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD SEP PY 2016 VL 9 IS 9 AR 700 DI 10.3390/en9090700 PG 16 WC Energy & Fuels SC Energy & Fuels GA DW3NI UT WOS:000383547900037 ER PT J AU Siefert, NS Narburgh, S Chen, Y AF Siefert, Nicholas S. Narburgh, Sarah Chen, Yang TI Comprehensive Exergy Analysis of Three IGCC Power Plant Configurations with CO2 Capture SO ENERGIES LA English DT Article DE exergy analysis; coal gasification; precombustion CO2 capture; process system modeling ID GASIFICATION COMBINED-CYCLE; IONIC LIQUID-MEMBRANES; COAL-GASIFICATION; IGFC-CCS; SEPARATION; ENERGY; COMBUSTION AB We have conducted comprehensive exergy analyses of three integrated gasification combined cycle with carbon capture and storage (IGCC-CCS) power plant configurations: (1) a baseline model using Selexol (TM) for H2S/CO2 removal; (2) a modified version that adds a H-2-selective membrane before the Selexol (TM) acid gas removal system; and (3) a modified baseline version that uses a CO2-selective membrane before the Selexol (TM) acid gas removal system. While holding the coal input flow rate and the CO2 captured flow rates constant, it was determined that the H-2-selective membrane case had a higher net power output (584 MW) compared to the baseline (564 MW) and compared to the CO2-selective membrane case (550 MW). Interestingly, the CO2-selective membrane case destroyed the least amount of exergy within the power plant (967 MW), compared with the Baseline case (999 MW) and the H-2-membrane case (972 MW). The main problem with the CO2-selective membrane case was the large amount of H-2 (48 MW worth of H-2 chemical exergy) remaining within the supercritical CO2 that exits the power plant. Regardless of the CO2 capture process used, the majority of the exergy destruction occurred in the gasifier (305 MW) and gas turbine (similar to 380 MW) subsystems, suggesting that these two areas should be key areas of focus of future improvements. C1 [Siefert, Nicholas S.; Narburgh, Sarah; Chen, Yang] USA Dev Energy, Natl Energy Technol Lab, Pittsburgh, PA 15025 USA. RP Siefert, NS (reprint author), USA Dev Energy, Natl Energy Technol Lab, Pittsburgh, PA 15025 USA. EM nicholas.siefert@netl.doe.gov; snarburgh11@gmail.com; Yang.Chen@netl.doe.gov NR 36 TC 1 Z9 1 U1 22 U2 22 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD SEP PY 2016 VL 9 IS 9 AR 669 DI 10.3390/en9090669 PG 19 WC Energy & Fuels SC Energy & Fuels GA DW3NI UT WOS:000383547900006 ER PT J AU Yang, SH Wang, W Wei, H Van Wychen, S Pienkos, PT Zhang, M Himmel, ME AF Yang, Shihui Wang, Wei Wei, Hui Van Wychen, Stefanie Pienkos, Philip T. Zhang, Min Himmel, Michael E. TI Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species SO ENERGIES LA English DT Article DE advanced biofuel; lipids; nitrogen depletion; nitrogen repletion; Trichoderma reesei; Yarrowia lipolytica ID YARROWIA-LIPOLYTICA; TRICHODERMA-REESEI; OLEAGINOUS MICROORGANISMS; TRICHOSPORON-FERMENTANS; ASPERGILLUS-NIDULANS; BAGASSE HYDROLYSATE; BIOFUEL PRODUCTION; HYPOCREA-JECORINA; EXPRESSION; ACCUMULATION AB Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP) candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG) biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME) profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on lipid production improvement will facilitate strain engineering to boost lipid production under more optimal conditions for productivity than those required for nitrogen depletion. C1 [Yang, Shihui; Van Wychen, Stefanie; Pienkos, Philip T.; Zhang, Min] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Wang, Wei; Wei, Hui; Himmel, Michael E.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Yang, Shihui] Hubei Univ, Coll Life Sci, Hubei Key Lab Ind Biotechnol, Hubei Collaborat Innovat Ctr Green Transformat Bi, Wuhan 430062, Peoples R China. RP Yang, SH (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA.; Wang, W (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA.; Yang, SH (reprint author), Hubei Univ, Coll Life Sci, Hubei Key Lab Ind Biotechnol, Hubei Collaborat Innovat Ctr Green Transformat Bi, Wuhan 430062, Peoples R China. EM shhyoung@hotmail.com; Wei.Wang@nrel.gov; Hui.Wei@nrel.gov; Stefanie.VanWychen@nrel.gov; Philip.Pienkos@nrel.gov; Min.Zhang@nrel.gov; Mike.Himmel@nrel.gov FU U.S. Department of Energy's Bioenergy Technology Office (DOE-BETO) [DE-AC36-08-GO28308]; National Renewable Energy Laboratory (NREL) FX This work was funded by the U.S. Department of Energy's Bioenergy Technology Office (DOE-BETO) under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory (NREL). We thank Megan Krysiak for her assistance in editing the manuscript. NR 65 TC 0 Z9 0 U1 10 U2 10 PU MDPI AG PI BASEL PA ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD SEP PY 2016 VL 9 IS 9 AR 685 DI 10.3390/en9090685 PG 12 WC Energy & Fuels SC Energy & Fuels GA DW3NI UT WOS:000383547900022 ER PT J AU Tsang, YP Infante, DM Stewart, J Wang, LZ Tingly, RW Thornbrugh, D Cooper, AR Daniel, WM AF Tsang, Yin-Phan Infante, Dana M. Stewart, Jana Wang, Lizhu Tingly, Ralph W., III Thornbrugh, Darren Cooper, Arthur R. Daniel, Wesley M. TI StreamThermal: A Software Package for Calculating Thermal Metrics from Stream Temperature Data SO FISHERIES LA English DT Article ID FISH ASSEMBLAGES; REGIME AB Improving quality and better availability of continuous stream temperature data allow natural resource managers, particularly in fisheries, to understand associations between different characteristics of stream thermal regimes and stream fishes. However, there is no convenient tool to efficiently characterize multiple metrics reflecting stream thermal regimes with the increasing amount of data from continuously recording data loggers. This article describes a software program packaged as a library in R to facilitate this process. With this freely available package, users will be able to quickly summarize metrics that describe five categories of stream thermal regimes: magnitude, variability, frequency, timing, and rate of change. The installation and usage instruction of this package, the definition of calculated thermal metrics, as well as the output format from the package are described, along with an application showing the utility for multiple metrics. We believe that this package can be widely utilized by interested stakeholders and can greatly assist future fisheries studies. Mejorar la calidad y disponibilidad de datos continuos de temperatura en los rios permite a manejadores de recursos naturales, particularmente en pesquerias, entender la relacion entre diferentes caracteristicas de regimenes termicos en los rios y los peces que los habitan. No obstante, no existe una herramienta conveniente para caracterizar de forma eficiente diferente metricas que reflejen regimenes termicos fluviales mediante la creciente cantidad de datos provenientes de dispositivos de registro continuo. En este articulo se describe un software programado en lenguaje R con el fin de facilitar dicho proceso. Con este software de acceso gratuito, los usuarios seran capaces de resumir rapidamente las metricas que describen cinco categorias de regimenes termicos en rios: magnitud, variabilidad, frecuencia, sincronizacion y tasa de cambio. Se describe la instalacion e instrucciones de uso, la definicion de las metricas utilizadas y el formato de salida de los archivos del programa; asi mismo se ofrece una aplicacion que muestra la utilidad de diferentes metricas. Creemos que este paquete puede ser ampliamente utilizado por usuarios interesados y puede ser de ayuda en un futuro para estudios de pesquerias. L'amelioration de la qualite et une meilleure disponibilite des donnees en continu de la temperature des cours d'eau permet aux gestionnaires de ressources naturelles, en particulier dans les pecheries, de comprendre les associations entre les differentes caracteristiques des regimes thermiques des cours d'eau et les poissons de ruisseaux. Cependant, il n'existe pas d'outil pratique pour caracteriser efficacement plusieurs parametres refletant les regimes thermiques des cours d'eau avec une quantite croissante de donnees provenant d'enregistreurs de donnees en continu. Cet article decrit un logiciel conditionne en package sous R pour faciliter ce processus. Avec ce package, disponible gratuitement, les utilisateurs seront en mesure de resumer rapidement les parametres decrivant cinq categories de regimes thermiques des cours d'eau: l'amplitude, la variabilite, la frequence, le temps, et le taux de changement. Les instructions d'installation et d'utilisation de ce package, la definition des parametres thermiques calcules, ainsi que le format de sortie du package sont decrits, et une application montre l'utilite de plusieurs parametres. Nous croyons que ce package peut etre largement utilise par les parties interessees et peut grandement aider les futures etudes sur les peches. C1 [Tsang, Yin-Phan; Infante, Dana M.; Tingly, Ralph W., III; Cooper, Arthur R.; Daniel, Wesley M.] Michigan State Univ, Dept Fisheries & Wildlife, 1405 S Harrison Rd,Suite 318, E Lansing, MI 48823 USA. [Stewart, Jana] US Geol Survey, Wisconsin Water Sci Ctr, Middleton, WI USA. [Wang, Lizhu] Int Joint Commiss, Great Lakes Reg Off, Windsor, ON, Canada. [Thornbrugh, Darren] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Thornbrugh, Darren] US EPA, Natl Hlth & Environm Effects Res Lab, Western Ecol Div, Corvallis, OR USA. [Tsang, Yin-Phan] Univ Hawaii Manoa, Dept Nat Resources & Environm Management, 1910 East West Rd,Sherman 243, Honolulu, HI 96822 USA. RP Tsang, YP (reprint author), Michigan State Univ, Dept Fisheries & Wildlife, 1405 S Harrison Rd,Suite 318, E Lansing, MI 48823 USA.; Tsang, YP (reprint author), Univ Hawaii Manoa, Dept Nat Resources & Environm Management, 1910 East West Rd,Sherman 243, Honolulu, HI 96822 USA. EM tsangy@hawaii.edu FU U.S. Geological Survey National Climate Change and Wildlife Science Center; U.S. Department of Interior Northeast Climate Science Center FX This product was developed with support from the U.S. Geological Survey National Climate Change and Wildlife Science Center and was also supported by the U.S. Department of Interior Northeast Climate Science Center. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. NR 11 TC 0 Z9 0 U1 3 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0363-2415 EI 1548-8446 J9 FISHERIES JI Fisheries PD SEP PY 2016 VL 41 IS 9 BP 548 EP 554 DI 10.1080/03632415.2016.1210517 PG 7 WC Fisheries SC Fisheries GA DW1NH UT WOS:000383409400013 ER PT J AU Huang, X Uffelman, E Cossairt, O Walton, M Katsaggelos, AK AF Huang, Xiang Uffelman, Erich Cossairt, Oliver Walton, Marc Katsaggelos, Aggelos K. TI Computational Imaging for Cultural Heritage Recent developments in spectral imaging, 3-D surface measurement, image relighting, and X-ray mapping SO IEEE SIGNAL PROCESSING MAGAZINE LA English DT Article ID PAINTINGS; SPECTROSCOPY C1 [Huang, Xiang] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Uffelman, Erich] Washington & Lee W&L Univ, Chem, Lexington, VA USA. [Uffelman, Erich] Stanford, Stanford, CA USA. [Cossairt, Oliver; Katsaggelos, Aggelos K.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Cossairt, Oliver] Computat Photog Lab, Evanston, IL USA. [Walton, Marc] Northwestern Univ, Art Inst, Chicago Ctr Sci Studies Arts, Evanston, IL 60208 USA. [Walton, Marc] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Huang, X (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. EM xianghuang@gmail.com; uffelmane@wlu.edu; ollie@eecs.northwestern.edu; marc.walton@northwestern.edu; aggk@eecs.northwestern.edu NR 30 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1053-5888 EI 1558-0792 J9 IEEE SIGNAL PROC MAG JI IEEE Signal Process. Mag. PD SEP PY 2016 VL 33 IS 5 BP 130 EP 138 DI 10.1109/MSP.2016.2581847 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA DW9XP UT WOS:000384016400013 ER PT J AU Campbell, J Franzen, A Van Landingham, C Lumpkin, M Crowell, S Meredith, C Loccisano, A Gentry, R Clewell, H AF Campbell, Jerry Franzen, Allison Van Landingham, Cynthia Lumpkin, Michael Crowell, Susan Meredith, Clive Loccisano, Anne Gentry, Robinan Clewell, Harvey TI Predicting lung dosimetry of inhaled particleborne benzo[a]pyrene using physiologically based pharmacokinetic modeling SO INHALATION TOXICOLOGY LA English DT Article DE Benzo[a]pyrene; human dosimetry; lung deposition; particle inhalation; physiologically based pharmacokinetic model ID POLYCYCLIC AROMATIC-HYDROCARBONS; WATER PARTITION-COEFFICIENT; IN-VITRO; METABOLIC-FATE; RATS; BENZO(A)PYRENE; INHALATION; EXPOSURE; CLEARANCE; RETENTION AB Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities. C1 [Campbell, Jerry; Clewell, Harvey] Ramboll Environ, Res Triangle Pk, NC USA. [Franzen, Allison; Van Landingham, Cynthia; Gentry, Robinan] Ramboll Environ, Monroe, LA USA. [Lumpkin, Michael] ENVIRON Int Corp, Monroe, LA USA. [Crowell, Susan] Pacific Northwest Natl Lab, Richland, WA USA. [Meredith, Clive] British Amer Tobacco, GR&D, Southampton, Hants, England. [Loccisano, Anne] RJ Reynolds Tobacco Co, Alexandria, VA USA. RP Franzen, A (reprint author), Ramboll Environ, 6 Davis Dr, Res Triangle Pk, NC 32709 USA. EM afranzen@ramboll.com FU British American Tobacco (Investments) Ltd; RJ Reynolds Tobacco Company FX The authors with the exception of Dr. Crowell are either current/former employees of British American Tobacco or RJ Reynolds Tobacco Company or are contractors to the aforementioned companies. All work was funded by British American Tobacco (Investments) Ltd and RJ Reynolds Tobacco Company. The Authors declare that no financial or personal conflicts of interest exist with regard to the submission of this manuscript. NR 54 TC 0 Z9 0 U1 3 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0895-8378 EI 1091-7691 J9 INHAL TOXICOL JI Inhal. Toxicol. PD SEP PY 2016 VL 28 IS 11 BP 520 EP 535 DI 10.1080/08958378.2016.1214768 PG 16 WC Toxicology SC Toxicology GA DW1XM UT WOS:000383436900006 PM 27569524 ER PT J AU Kamath, C AF Kamath, Chandrika TI Data mining and statistical inference in selective laser melting SO INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY LA English DT Article DE Additive manufacturing; Selective laser melting; Design of experiments; Sampling; Feature selection; Code surrogates; Uncertainty analysis ID POWDER-BED FUSION; SIMULATION; PARTS; MODEL AB Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations and experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting. C1 [Kamath, Chandrika] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. RP Kamath, C (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM kamath2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LDRD Program at LLNL [13-SI-002] FX The author acknowledges the contributions of Wayne King (implementation and execution of the Eagar-Tsai model), John W. Gibbs (implementation of the Verhaeghe model), Paul Alexander (operation of the Concept Laser M2), and Mark Pearson and Cheryl Evans (metallographic preparation and measurement). We also thank the Sheffield Machine Learning group for making the Gaussian process freely available at http://sheffieldml.github.io/GPy/.LLNL-JRNL-680063: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the LDRD Program at LLNL under project tracking code 13-SI-002. NR 34 TC 2 Z9 2 U1 22 U2 22 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0268-3768 EI 1433-3015 J9 INT J ADV MANUF TECH JI Int. J. Adv. Manuf. Technol. PD SEP PY 2016 VL 86 IS 5-8 BP 1659 EP 1677 DI 10.1007/s00170-015-8289-2 PG 19 WC Automation & Control Systems; Engineering, Manufacturing SC Automation & Control Systems; Engineering GA DV6YZ UT WOS:000383084300043 ER PT J AU Li, YL Sun, X AF Li, Yulan Sun, Xin TI Mesoscale Phase Field Modeling of Glass Strengthening Under Triaxial Compression SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID CONFINED BOROSILICATE; DAMAGE DEVELOPMENT AB Recent hydraulic bomb and confined sleeve tests on transparent armor glass materials such as borosilicate glass and soda-lime glass showed that the glass strength was a function of confinement pressure. The measured stress-strain relation is not a straight line as most brittle materials behave under little or no confinement. Moreover, borosilicate glass exhibited a stronger compressive strength when compared to soda-lime glass, even though soda-lime has higher bulk and shear moduli as well as apparent yield strength. To better understand these experimental findings, a mesoscale phase field model is developed to simulate the nonlinear stress versus strain behaviors under confinement by considering heterogeneity formation under triaxial compression and the energy barrier of a micro shear banding event (referred to as pseudo-slip hereafter) in the amorphous glass. With calibrated modeling parameters, the simulation results demonstrate that the developed phase field model can quantitatively predict the pressure-dependent strength, and it can also explain the difference between the two types of glasses from the perspective of energy barrier associated with a pseudo-slip event. C1 [Li, Yulan; Sun, Xin] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Li, YL (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM yulan.li@pnnl.gov FU TAR-DEC through the "Purdue Project" in Pacific Northwest National Laboratory (PNNL) [DE-AC05-76RL01830] FX This research was financially supported by TAR-DEC through the "Purdue Project" in Pacific Northwest National Laboratory (PNNL), which is operated by Battelle Memorial Institute for the US Department of Energy under Contract No DE-AC05-76RL01830. NR 18 TC 0 Z9 0 U1 1 U2 1 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 EI 2041-1294 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD SEP PY 2016 VL 7 IS 3 BP 384 EP 393 DI 10.1111/ijag.12173 PG 10 WC Materials Science, Ceramics SC Materials Science GA DW6KZ UT WOS:000383761100015 ER PT J AU Aggarwal, M Kovalevsky, AY Velazquez, H Fisher, SZ Smith, JC McKenna, R AF Aggarwal, Mayank Kovalevsky, Andrey Y. Velazquez, Hector Fisher, S. Zoe Smith, Jeremy C. McKenna, Robert TI Neutron structure of human carbonic anhydrase II in complex with methazolamide: mapping the solvent and hydrogen-bonding patterns of an effective clinical drug SO IUCRJ LA English DT Article DE human carbonic anhydrase; acetazolamide; methazolamide; neutron structure; drug binding ID X-RAY; BIOLOGICAL MACROMOLECULES; PROTON-TRANSFER; DIFFRACTION; CRYSTALLOGRAPHY; PROGRAM; BINDING; MODELS; ENZYME AB Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO2 and HCO3-, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 angstrom with an R-cryst of similar to 16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (K-i) for both of the drugs against hCA II is similar (similar to 10 nM). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II-MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site. C1 [Aggarwal, Mayank; Kovalevsky, Andrey Y.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Velazquez, Hector; Smith, Jeremy C.] Oak Ridge Natl Lab, Ctr Mol Biophys, Oak Ridge, TN 37831 USA. [Velazquez, Hector; Smith, Jeremy C.] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN 37996 USA. [Fisher, S. Zoe] European Spallat Source, Sci Act Div, S-22100 Lund, Sweden. [McKenna, Robert] Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. RP Aggarwal, M (reprint author), Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA.; McKenna, R (reprint author), Univ Florida, Coll Med, Dept Biochem & Mol Biol, Gainesville, FL 32610 USA. EM aggarwalm@ornl.gov; rmckenna@ufl.edu RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Kovalevsky, Andrey/0000-0003-4459-9142 FU Shull Fellowship; US Department of Energy's (DOE) Office of Basic Energy Sciences, Scientific User Facilities Division; National Science Foundation [0922719]; US Department of Energy [DE-AC05-00OR22725] FX This work has been funded by the Shull Fellowship awarded to MA at ORNL and is sponsored by the US Department of Energy's (DOE) Office of Basic Energy Sciences, Scientific User Facilities Division. The IMAGINE Project was partially supported by the National Science Foundation (Grant 0922719). This manuscript has been authored by UT-Battelle LLC under DOE Contract No. DE-AC05-00OR22725 with the US Department of Energy. NR 31 TC 2 Z9 2 U1 7 U2 7 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD SEP PY 2016 VL 3 BP 319 EP 325 DI 10.1107/S2052252516010514 PN 5 PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DV9GT UT WOS:000383249400006 ER PT J AU Woodall, CH Christensen, J Skelton, JM Hatcher, LE Parlett, A Raithby, PR Walsh, A Parker, SC Beavers, CM Teat, SJ Intissar, M Reber, C Allan, DR AF Woodall, Christopher H. Christensen, Jeppe Skelton, Jonathan M. Hatcher, Lauren E. Parlett, Andrew Raithby, Paul R. Walsh, Aron Parker, Stephen C. Beavers, Christine M. Teat, Simon J. Intissar, Mourad Reber, Christian Allan, David R. TI Observation of a re-entrant phase transition in the molecular complex tris(mu(2)-3,5-diisopropyl-1,2,4-triazolato-kappa N-2(1):N-2)trigold(I) under high pressure SO IUCRJ LA English DT Article DE re-entrant phase transitions; high-pressure crystallography; gold(I); luminescence spectroscopy; DFT calculations ID AUGMENTED-WAVE METHOD; ENERGETIC MATERIALS; CRYSTAL-STRUCTURE; SPIN-CROSSOVER; ROCHELLE SALT; GOLD(I); SOLVOLUMINESCENCE; MALONONITRILE; LUMINESCENCE; DYNAMICS AB We report a molecular crystal that exhibits four successive phase transitions under hydrostatic pressure, driven by aurophilic interactions, with the ground-state structure re-emerging at high pressure. The effect of pressure on two polytypes of tris(mu(2)-3,5-diisopropyl-1,2,4-triazolato-kappa N-2(1):N-2)trigold(I) (denoted Form-I and Form-II) has been analysed using luminescence spectroscopy, single-crystal X-ray diffraction and first-principles computation. A unique phase behaviour was observed in Form-I, with a complex sequence of phase transitions between 1 and 3.5 GPa. The ambient C2/c mother cell transforms to a P2(1)/n phase above 1 GPa, followed by a P2(1)/a phase above 2 GPa and a large-volume C2/c supercell at 2.70 GPa, with the previously observed P2(1)/n phase then reappearing at higher pressure. The observation of crystallographically identical low-and high-pressure P2(1)/n phases makes this a rare example of a re-entrant phase transformation. The phase behaviour has been characterized using detailed crystallographic theory and modelling, and rationalized in terms of molecular structural distortions. The dramatic changes in conformation are correlated with shifts of the luminescence maxima, from a band maximum at 14040 cm(-1) at 2.40 GPa, decreasing steeply to 13550 cm(-1) at 3 GPa. A similar study of Form-II displays more conventional crystallographic behaviour, indicating that the complex behaviour observed in Form-I is likely to be a direct consequence of the differences in crystal packing between the two polytypes. C1 [Woodall, Christopher H.; Skelton, Jonathan M.; Hatcher, Lauren E.; Parlett, Andrew; Raithby, Paul R.; Walsh, Aron; Parker, Stephen C.] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England. [Christensen, Jeppe; Raithby, Paul R.] Rutherford Appleton Lab, Res Complex Harwell, Didcot OX11 0FA, Oxon, England. [Beavers, Christine M.; Teat, Simon J.] Lawrence Berkeley Natl Lab, Adv Light Source, Stn 11-3-1, Berkeley, CA 94720 USA. [Intissar, Mourad; Reber, Christian] Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada. [Allan, David R.] Diamond Light Source, Stn I19, Didcot OX11 0QX, Oxon, England. RP Raithby, PR (reprint author), Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England.; Raithby, PR (reprint author), Rutherford Appleton Lab, Res Complex Harwell, Didcot OX11 0FA, Oxon, England. EM p.r.raithby@bath.ac.uk RI Beavers, Christine/C-3539-2009; Walsh, Aron/A-7843-2008; Christensen, Jeppe/B-3019-2009 OI Beavers, Christine/0000-0001-8653-5513; Walsh, Aron/0000-0001-5460-7033; FU EPSRC [EP/K012576/1, EP/K004956/1, EP/F021151/1, EP/L000202]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada FX We are grateful to the EPSRC for financial support of the project (EP/K012576/1 and EP/K004956/1) and for studentship funding for CHW (EP/F021151/1). JMS gratefully acknowledges funding from the EPSRC Programme (grant No. EP/K004956/1). Parts of this work were carried out using the HeCTOR and ARCHER supercomputers through membership of the UK HPC Materials Chemistry Consortium, which is funded by EPSRC grant No. EP/L000202. We would like to thank the ALS, LBNL, for the beamtime to perform these measurements. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Additional thanks go to COMPRES, the consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 11-57758. CR gratefully acknowledges funding from the Natural Sciences and Engineering Research Council of Canada. NR 51 TC 0 Z9 0 U1 10 U2 13 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2052-2525 J9 IUCRJ JI IUCrJ PD SEP PY 2016 VL 3 BP 367 EP 376 DI 10.1107/S2052252516013129 PN 5 PG 10 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DV9GT UT WOS:000383249400010 ER PT J AU Tchoua, RB Qin, J Audus, DJ Chard, K Foster, IT de Pablo, J AF Tchoua, Roselyne B. Qin, Jian Audus, Debra J. Chard, Kyle Foster, Ian T. de Pablo, Juan TI Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Polymer Chemistry; Physical Properties; Materials Science; Computer-Based Learning; Collaborative/Cooperative Learning; Curriculum; First-Year Undergraduate; General Public ID INFORMATION LITERACY; ORGANIC-CHEMISTRY; METHACRYLATE); KNOWLEDGE AB Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database. C1 [Tchoua, Roselyne B.; Foster, Ian T.] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. [Qin, Jian] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Audus, Debra J.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [de Pablo, Juan] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Chard, Kyle; Foster, Ian T.; de Pablo, Juan] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Foster, Ian T.] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA. [de Pablo, Juan] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. RP de Pablo, J (reprint author), Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA.; de Pablo, J (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA.; de Pablo, J (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM depablo@uchicago.edu FU NIST through Center for Hierarchical Materials Design (CHiMaD) FX We thank Jack F. Douglas of the National Institute of Standards and Technology, as well as Karl F. Freed and Jacek Dudowicz of the University of Chicago, for their comments. This work was supported by the NIST through the Center for Hierarchical Materials Design (CHiMaD). NR 27 TC 0 Z9 0 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD SEP PY 2016 VL 93 IS 9 BP 1561 EP 1568 DI 10.1021/acs.jchemed.5b01032 PG 8 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA DW7KD UT WOS:000383828700011 PM 27795574 ER PT J AU Zhao, Y Chu, RS Grigoropoulos, CP Dubon, OD Majumdar, A AF Zhao, Yang Chu, Rong-Shiuan Grigoropoulos, Costas P. Dubon, Oscar D. Majumdar, Arun TI Array Volume Fraction-Dependent Thermal Transport Properties of Vertically Aligned Carbon Nanotube Arrays SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article ID INTERFACE MATERIALS; HEAT-FLOW; DENSITY; WATER; NANOCOMPOSITES; CONDUCTIVITY; CONDUCTANCE; SUSPENSIONS; COMPOSITES; GROWTH AB Vertically aligned carbon nanotube (CNT) arrays are promising candidates for advanced thermal interface materials (TIMs) since they possess high mechanical compliance and high intrinsic thermal conductivity. However, the overall thermal performance of CNT arrays often falls short of expectations when used as TIMs, and the underlying reasons have yet to be fully understood. In this work, the volume fraction of CNT arrays is demonstrated to be the key factor in determining the CNT array thermal transport properties. By increasing the array volume fraction, both the CNT array effective thermal conductivity and the CNT array-glass thermal contact conductance were experimentally found to increase monotonically. One interesting phenomenon is that the increasing rate of thermal conductivity is larger than that of array volume fraction. Compressive experiments verified that the CNT arrays with lower volume fractions suffer from severe buckling, which results in a further decreasing trend. By understanding the underlying reasons behind this trend, the overall thermal performance of vertically aligned CNT arrays can be further increased. C1 [Zhao, Yang] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China. [Zhao, Yang; Grigoropoulos, Costas P.; Majumdar, Arun] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Chu, Rong-Shiuan; Grigoropoulos, Costas P.; Dubon, Oscar D.; Majumdar, Arun] Univ Calif Berkeley, Appl Sci & Technol Grad Grp, Berkeley, CA 94720 USA. [Dubon, Oscar D.; Majumdar, Arun] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Dubon, Oscar D.; Majumdar, Arun] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Zhao, Y (reprint author), Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230026, Anhui, Peoples R China.; Zhao, Y (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. FU Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) Program; Chinese Thousand Young Talent Program FX We thank Professor Pamela M. Norris and Justin L. Smoyer in the Department of Mechanical and Aerospace Engineering, University of Virginia for their valuable discussions regarding this paper. We thank Dr. David J. Hwang for providing the facility of high-resolution SEM in the National Center for Electron Microscope (NCEM), Lawrence Berkeley National Laboratory (LBNL) and taking the SEM image of catalyst nanoparticles in Figs. 1(a)-1(c) and 2(a). We thank Molecular Foundry in LBNL for providing the facilities of CNT CVD furnace and SEM. We thank UC Berkeley Microlab for providing the facilities of thin-film deposition systems, flip chip bonder. We also thank Electron Microscope Laboratory in UC Berkeley for providing TEM. This work was supported by the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) Program and Chinese Thousand Young Talent Program. NR 31 TC 0 Z9 0 U1 20 U2 20 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD SEP PY 2016 VL 138 IS 9 AR 092401 DI 10.1115/1.4033538 PG 7 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA DW6TS UT WOS:000383784700018 ER PT J AU Carson, CG Levine, JS AF Carson, Cantwell G. Levine, Jonathan S. TI The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application SO JOURNAL OF MICROSCOPY LA English DT Article DE Delaunay triangulation; finite body triangulation; image analysis; homogeneity analysis; minimum spanning tree; relative neighbourhood graph ID RELATIVE NEIGHBORHOOD GRAPH; MINIMUM SPANNING-TREES; QUANTITATIVE DESCRIPTION; PYTHON; MICROSTRUCTURE; CONNECTIVITY; COMPOSITES; MORPHOLOGY; SET AB The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. C1 [Carson, Cantwell G.; Levine, Jonathan S.] Natl Energy Technol Lab, 626 Cochran Mill Rd, Pittsburgh, PA 15236 USA. RP Carson, CG (reprint author), Natl Energy Technol Lab, 626 Cochran Mill Rd, Pittsburgh, PA 15236 USA. EM cantwell.carson@netl.doe.gov FU U.S. Department of Energy FX We would like to thank Dustin Crandall, Igor Haljasmaa, Barbara Kutchko, Alison Mergaman and the NEIL X-ray CT and foamed cement research groups for providing the X-ray CT image and helpful discussions. This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. NR 38 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0022-2720 EI 1365-2818 J9 J MICROSC-OXFORD JI J. Microsc.. PD SEP PY 2016 VL 263 IS 3 BP 268 EP 279 DI 10.1111/jmi.12388 PG 12 WC Microscopy SC Microscopy GA DW2EU UT WOS:000383456500005 PM 26917441 ER PT J AU Gershman, S Raitses, Y AF Gershman, Sophia Raitses, Yevgeny TI Unstable behavior of anodic arc discharge for synthesis of nanomaterials SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article DE plasma instabilities; arc discharge; arc instabilities; atmospheric pressure arc; nano materials; nanotubes; arc synthesis ID ATMOSPHERIC-PRESSURE ARC; CARBON NANOTUBES; INSTABILITIES; PLASMA; MODEL AB A short carbon arc operating with a high ablation rate of the graphite anode exhibits a combined motion of the arc and the arc attachment to the anode. A characteristic time scale of this motion is in a 10(-3) s range. The arc exhibits a negative differential resistance before the arc motion occurs. Thermal processes in the arc plasma region interacting with the ablating anode are considered as possible causes of this unstable arc behavior. It is also hypothesized that the arc motion could potentially cause mixing of the various nanoparticles synthesized in the arc in the high ablation regime. C1 [Gershman, Sophia; Raitses, Yevgeny] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Gershman, S (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM sgershma@pppl.gov FU US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors wish to thank Drs Valerian Nemchinsky, Vlad Vekselman and Mikhail Shneider for fruitful discussions of the experimental results and to Mr Alex Merzhevskiy and Mr Yao-Wen Yeh for their assistance with experiments. The authors also wish to thank Drs Igor Kaganovich and Brent Stratton for fruitful discussions of this research. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 34 TC 0 Z9 0 U1 5 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 EI 1361-6463 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD SEP 1 PY 2016 VL 49 IS 34 AR 345201 DI 10.1088/0022-3727/49/34/345201 PG 9 WC Physics, Applied SC Physics GA DX0JY UT WOS:000384048800011 ER PT J AU Guo, Y Huang, JW Xiao, F Yin, XL Chun, J Um, W Neeves, KB Wu, N AF Guo, Yang Huang, Jingwei Xiao, Feng Yin, Xiaolong Chun, Jaehun Um, Wooyong Neeves, Keith B. Wu, Ning TI Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport SO LANGMUIR LA English DT Article ID POROUS-MEDIA; STOKESIAN DYNAMICS; MODEL; MIGRATION; FLOW; VISUALIZATION; MICROMODELS; SIMULATION; DEPOSITION; DISPERSION AB Mobile colloids can act as carriers for low solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of Our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment. C1 [Guo, Yang; Neeves, Keith B.; Wu, Ning] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. [Huang, Jingwei; Xiao, Feng; Yin, Xiaolong] Colorado Sch Mines, Dept Petr Engn, Golden, CO 80401 USA. [Chun, Jaehun; Um, Wooyong] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. RP Neeves, KB; Wu, N (reprint author), Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. EM kneeves@mines.edu; ningwu@mines.edu FU Department of Energy NEUP program [DE-NE0000719]; National Science Foundation CAREER award [CBET-1351672] FX This work is supported by the Department of Energy NEUP program via Grant DE-NE0000719 and a National Science Foundation CAREER award (CBET-1351672, K.B.N.). The authors thank Drs. Aditya Kasukurti, Sijia Wang, Adam Wufsus, Joanna Sylman, Kuldeepsinh Rana, and Marcus Lehmann for technical assistance. NR 58 TC 0 Z9 0 U1 18 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD SEP PY 2016 VL 32 IS 36 BP 9342 EP 9350 DI 10.1021/acs.langmuir.6b02184 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA DW0GE UT WOS:000383318100027 PM 27548505 ER PT J AU Veach, AM Stegen, JC Brown, SP Dodds, WK Jumpponen, A AF Veach, Allison M. Stegen, James C. Brown, Shawn P. Dodds, Walter K. Jumpponen, Ari TI Spatial and successional dynamics of microbial biofilm communities in a grassland stream ecosystem SO MOLECULAR ECOLOGY LA English DT Article DE algae; bacteria; community ecology; DNA barcoding; microbial biology ID STOCHASTIC-PROCESSES; ASSEMBLY PROCESSES; PRAIRIE STREAMS; ECOLOGY; DIVERSITY; DENITRIFICATION; SOILS; MECHANISMS; REGRESSION; SYSTEMS AB Biofilms represent a metabolically active and structurally complex component of freshwater ecosystems. Ephemeral prairie streams are hydrologically harsh and prone to frequent perturbation. Elucidating both functional and structural community changes over time within prairie streams provides a general understanding of microbial responses to environmental disturbance. We examined microbial succession of biofilm communities at three sites in a third-order stream at Konza Prairie over a 2- to 64-day period. Microbial abundance (bacterial abundance, chlorophyll a concentrations) increased and never plateaued during the experiment. Net primary productivity (net balance of oxygen consumption and production) of the developing biofilms did not differ statistically from zero until 64 days suggesting a balance of the use of autochthonous and allochthonous energy sources until late succession. Bacterial communities (MiSeq analyses of the V4 region of 16S rRNA) established quickly. Bacterial richness, diversity and evenness were high after 2 days and increased over time. Several dominant bacterial phyla (Beta-, Alphaproteobacteria, Bacteroidetes, Gemmatimonadetes, Acidobacteria, Chloroflexi) and genera (Luteolibacter, Flavobacterium, Gemmatimonas, Hydrogenophaga) differed in relative abundance over space and time. Bacterial community composition differed across both space and successional time. Pairwise comparisons of phylogenetic turnover in bacterial community composition indicated that early-stage succession (<= 16 days) was driven by stochastic processes, whereas later stages were driven by deterministic selection regardless of site. Our data suggest that microbial biofilms predictably develop both functionally and structurally indicating distinct successional trajectories of bacterial communities in this ecosystem. C1 [Veach, Allison M.; Brown, Shawn P.; Dodds, Walter K.; Jumpponen, Ari] Kansas State Univ, Div Biol, Manhattan, KS 66502 USA. [Veach, Allison M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Stegen, James C.] Pacific Northwest Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Brown, Shawn P.] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA. RP Veach, AM (reprint author), Kansas State Univ, Div Biol, Manhattan, KS 66502 USA.; Veach, AM (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM veacham@ornl.gov RI Stegen, James/Q-3078-2016 OI Stegen, James/0000-0001-9135-7424 FU National Science Foundation [DEB - 0823341]; U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER); DOE [DE-AC06-76RLO 1830] FX This research was supported by the National Science Foundation's Konza Prairie Long Term Ecological Research programme (DEB - 0823341) awarded to W.K.D. We thank John Brant and Matt Troia for assistance in the laboratory and field; Alina Akhunova and Hanquan Liang with MiSeq sequencing assistance; and Matt Troia and Lydia Zeglin for helpful comments which improved this manuscript. This is contribution no. 17-062-J from the Kansas Agricultural Experiment Station. J.C.S. was supported by the U.S. Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of the Subsurface Biogeochemical Research Program's Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830. A portion of the research was performed using Institutional Computing at PNNL. The authors declare no conflict of interest related to this work. NR 72 TC 0 Z9 0 U1 24 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0962-1083 EI 1365-294X J9 MOL ECOL JI Mol. Ecol. PD SEP PY 2016 VL 25 IS 18 BP 4674 EP 4688 DI 10.1111/mec.13784 PG 15 WC Biochemistry & Molecular Biology; Ecology; Evolutionary Biology SC Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology GA DW0PX UT WOS:000383344400019 PM 27481285 ER PT J AU Archambault, S Archer, A Barnacka, A Behera, B Beilicke, M Benbow, W Berger, K Bird, R Bottcher, M Buckley, JH Bugaev, V Cardenzana, JV Cerruti, M Chen, X Christiansen, JL Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Dickinson, HJ Dumm, J Eisch, JD Errando, M Falcone, A Federici, S Feng, Q Finley, JP Fleischhack, H Fortson, L Furniss, A Gillanders, GH Godambe, S Griffin, S Griffiths, ST Grube, J Gyuk, G Hakansson, N Hanna, D Holder, J Hughes, G Johnson, CA Kaaret, P Kar, P Kertzman, M Khassen, Y Kieda, D Krawczynski, H Kumar, S Lang, MJ Madhavan, AS Maier, G McArthur, S McCann, A Meagher, K Millis, J Moriarty, P Nelson, T Nieto, D de Bhroithe, AO Ong, RA Otte, AN Park, N Perkins, JS Pohl, M Popkow, A Prokoph, H Pueschel, E Quinn, J Ragan, K Rajotte, J Reyes, LC Reynolds, PT Richards, GT Roache, E Sembroski, GH Shahinyan, K Smith, AW Staszak, D Sweeney, K Telezhinsky, I Tucci, JV Tyler, J Varlotta, A Vassiliev, VV Wakely, SP Welsing, R Wilhelm, A Williams, DA Zitzer, B AF Archambault, S. Archer, A. Barnacka, A. Behera, B. Beilicke, M. Benbow, W. Berger, K. Bird, R. Bottcher, M. Buckley, J. H. Bugaev, V. Cardenzana, J. V. Cerruti, M. Chen, X. Christiansen, J. L. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Dickinson, H. J. Dumm, J. Eisch, J. D. Errando, M. Falcone, A. Federici, S. Feng, Q. Finley, J. P. Fleischhack, H. Fortson, L. Furniss, A. Gillanders, G. H. Godambe, S. Griffin, S. Griffiths, S. T. Grube, J. Gyuk, G. Hakansson, N. Hanna, D. Holder, J. Hughes, G. Johnson, C. A. Kaaret, P. Kar, P. Kertzman, M. Khassen, Y. Kieda, D. Krawczynski, H. Kumar, S. Lang, M. J. Madhavan, A. S. Maier, G. McArthur, S. McCann, A. Meagher, K. Millis, J. Moriarty, P. Nelson, T. Nieto, D. de Bhroithe, A. O'Faolain Ong, R. A. Otte, A. N. Park, N. Perkins, J. S. Pohl, M. Popkow, A. Prokoph, H. Pueschel, E. Quinn, J. Ragan, K. Rajotte, J. Reyes, L. C. Reynolds, P. T. Richards, G. T. Roache, E. Sembroski, G. H. Shahinyan, K. Smith, A. W. Staszak, D. Sweeney, K. Telezhinsky, I. Tucci, J. V. Tyler, J. Varlotta, A. Vassiliev, V. V. Wakely, S. P. Welsing, R. Wilhelm, A. Williams, D. A. Zitzer, B. TI Discovery of very high energy gamma rays from 1ES 1440+122 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE BL Lacertae objects: general; gamma-rays: general ID BL-LACERTAE OBJECTS; LARGE-AREA TELESCOPE; EXTRAGALACTIC BACKGROUND LIGHT; INTERGALACTIC MAGNETIC-FIELD; ACTIVE GALACTIC NUCLEI; EINSTEIN SLEW SURVEY; TEV BLAZARS; MULTIWAVELENGTH OBSERVATIONS; BRIGHT BLAZARS; SOURCE CATALOG AB The BL Lacertae object 1ES 1440+ 122 was observed in the energy range from 85 GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes. The observations, taken between 2008 May and 2010 June and totalling 53 h, resulted in the discovery of gamma-ray emission from the blazar, which has a redshift z = 0.163. 1ES 1440+ 122 is detected at a statistical significance of 5.5 standard deviations above the background with an integral flux of (2.8 +/- 0.7(stat) +/- 0.8sys) x 10(-12) cm(-2) s(-1) (1.2 per cent of the Crab Nebula's flux) above 200 GeV. The measured spectrum is described well by a power law from 0.2 to 1.3 TeV with a photon index of 3.1 +/- 0.4(stat) +/- 0.2(sys). Quasi-simultaneous multiwavelength data from the Fermi Large Area Telescope (0.3-300 GeV) and the Swift X-ray Telescope (0.2-10 keV) are additionally used to model the properties of the emission region. A synchrotron self-Compton model produces a good representation of the multiwavelength data. Adding an external-Compton or a hadronic component also adequately describes the data. C1 [Archambault, S.; Griffin, S.; Hanna, D.; Ragan, K.; Rajotte, J.; Staszak, D.; Tyler, J.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Archer, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Krawczynski, H.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Barnacka, A.] Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Behera, B.; Chen, X.; Federici, S.; Fleischhack, H.; Hughes, G.; Maier, G.; de Bhroithe, A. O'Faolain; Pohl, M.; Prokoph, H.; Telezhinsky, I.; Welsing, R.; Wilhelm, A.] DESY, Platanenallee 6, D-15738 Zeuthen, Germany. [Benbow, W.; Cerruti, M.; Roache, E.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Berger, K.; Holder, J.; Kumar, S.] Univ Delaware, Dept Phys & Astron, Bartol Res Inst, Newark, DE 19716 USA. [Bird, R.; Collins-Hughes, E.; Khassen, Y.; Pueschel, E.; Quinn, J.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Bottcher, M.] North West Univ, Ctr Space Res, ZA-2520 Potchefstroom, South Africa. [Cardenzana, J. V.; Dickinson, H. J.; Eisch, J. D.; Madhavan, A. S.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Chen, X.; Federici, S.; Hakansson, N.; Pohl, M.; Telezhinsky, I.; Wilhelm, A.] Univ Potsdam, Inst Phys & Astron, D-14476 Golm, Germany. [Christiansen, J. L.; Reyes, L. C.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Connolly, M. P.; Gillanders, G. H.; Lang, M. J.; Moriarty, P.] Natl Univ Ireland Galway, Sch Phys, Univ Rd, Galway, Ireland. [Cui, W.; Feng, Q.; Finley, J. P.; Sembroski, G. H.; Tucci, J. V.; Varlotta, A.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Dumm, J.; Fortson, L.; Nelson, T.; Shahinyan, K.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Errando, M.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Furniss, A.; Johnson, C. A.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Godambe, S.] Bhabha Atom Res Ctr, Astrophys Sci Div, Bombay 400085, Maharashtra, India. [Griffiths, S. T.; Kaaret, P.] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA. [Kar, P.; Kieda, D.; Smith, A. W.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [McArthur, S.; Park, N.; Wakely, S. P.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [McCann, A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Sch Phys, 837 State St NW, Atlanta, GA 30332 USA. [Meagher, K.; Otte, A. N.; Richards, G. T.] Georgia Inst Technol, Ctr Relativist Astrophys, 837 State St NW, Atlanta, GA 30332 USA. [Millis, J.] Anderson Univ, Dept Phys, 1100 East 5th St, Anderson, IN 46012 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Dublin Rd, Dublin, Ireland. [Nieto, D.] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA. [Ong, R. A.; Popkow, A.; Vassiliev, V. V.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Perkins, J. S.] NASA, Goddard Space Flight Ctr, Code 661, Greenbelt, MD 20771 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Sci, Cork, Ireland. [Sweeney, K.] Ohio Univ, Dept Phys & Astron, Clippinger Res Lab 251B, Athens, OH 45701 USA. [Zitzer, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Dumm, J (reprint author), Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. EM dumm@physics.umn.edu FU US Department of Energy Office of Science; US National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland [SFI 10/RFP/AST2748]; STFC in the UK; South African Department of Science and Technology through the National Research Foundation under NRF SARChI Chair [64789] FX This research is supported by grants from the US Department of Energy Office of Science, the US National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and by STFC in the UK. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. M. Bottcher acknowledges support by the South African Department of Science and Technology through the National Research Foundation under NRF SARChI Chair grant no. 64789. The VERITAS Collaboration is grateful to Trevor Weekes for his seminal contributions and leadership in the field of VHE gamma-ray astrophysics, which made this study possible. NR 59 TC 1 Z9 1 U1 5 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2016 VL 461 IS 1 BP 202 EP 208 DI 10.1093/mnras/stw1319 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PE UT WOS:000383272500017 ER PT J AU Bhat, P Subramanian, K Brandenburg, A AF Bhat, Pallavi Subramanian, Kandaswamy Brandenburg, Axel TI A unified large/small-scale dynamo in helical turbulence SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE dynamo; magnetic fields; MHD; turbulence; Sun: general; galaxies: magnetic fields ID GALACTIC MAGNETIC-FIELD; FARADAY-ROTATION; HYDROMAGNETIC TURBULENCE; II ABSORBERS; SIMULATIONS; GALAXIES AB We use high resolution direct numerical simulations (DNS) to show that helical turbulence can generate significant large-scale fields even in the presence of strong small-scale dynamo action. During the kinematic stage, the unified large/ small-scale dynamo grows fields with a shapeinvariant eigenfunction, with most power peaked at small scales or large k, as in Subramanian & Brandenburg. Nevertheless, the large-scale field can be clearly detected as an excess power at small k in the negatively polarized component of the energy spectrum for a forcing with positively polarized waves. Its strength (B) over bar, relative to the total rms field Brms, decreases with increasing magnetic Reynolds number, Re-M. However, as the Lorentz force becomes important, the field generated by the unified dynamo orders itself by saturating on successively larger scales. The magnetic integral scale for the positively polarized waves, characterizing the smallscale field, increases significantly from the kinematic stage to saturation. This implies that the small-scale field becomes as coherent as possible for a given forcing scale, which averts the Re-M-dependent quenching of (B) over bar /B-rms. These results are obtained for 1024(3) DNS with magnetic Prandtl numbers of PrM = 0.1 and 10. For PrM = 0.1, B/ Brms grows from about 0.04 to about 0.4 at saturation, aided in the final stages by helicity dissipation. For Pr-M = 10, (B) over bar /B-rms grows from much less than 0.01 to values of the order the 0.2. Our results confirm that there is a unified large/ small-scale dynamo in helical turbulence. C1 [Bhat, Pallavi; Subramanian, Kandaswamy] Inter Univ Ctr Astron & Astrophys, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India. [Bhat, Pallavi] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA. [Bhat, Pallavi] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Brandenburg, Axel] KTH Royal Inst Technol, Nordita, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden. [Brandenburg, Axel] Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden. [Brandenburg, Axel] Stockholm Univ, AlbaNova Univ Ctr, Dept Astron, SE-10691 Stockholm, Sweden. [Brandenburg, Axel] Univ Colorado, JILA, Boulder, CO 80303 USA. [Brandenburg, Axel] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80303 USA. [Brandenburg, Axel] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80303 USA. RP Bhat, P (reprint author), Inter Univ Ctr Astron & Astrophys, Post Bag 4,Pune Univ Campus, Pune 411007, Maharashtra, India.; Bhat, P (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08540 USA.; Bhat, P (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. EM pbhat@princeton.edu RI Brandenburg, Axel/I-6668-2013 OI Brandenburg, Axel/0000-0002-7304-021X FU CSIR, India; DOE at Princeton, USA [DE-FG02-12ER55142]; Swedish Research Council [621-2011-5076, 2012-5797]; Research Council of Norway under the FRINATEK grant [231444] FX We acknowledge the usage of the high performance computing facility at IUCAA. PB acknowledges SRF support from CSIR, India and currently from DOE, DE-FG02-12ER55142, at Princeton, USA. This work was supported in part by the Swedish Research Council grants No. 621-2011-5076 and 2012-5797, as well as the Research Council of Norway under the FRINATEK grant 231444. NR 33 TC 2 Z9 2 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2016 VL 461 IS 1 BP 240 EP 247 DI 10.1093/mnras/stw1257 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PE UT WOS:000383272500021 ER PT J AU Foley, RJ Jha, SW Pan, YC Zheng, WK Bildsten, L Filippenko, AV Kasen, D AF Foley, Ryan J. Jha, Saurabh W. Pan, Yen-Chen Zheng, WeiKang Bildsten, Lars Filippenko, Alexei V. Kasen, Daniel TI Late-time spectroscopy of Type Iax Supernovae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE supernovae: general; supernovae: individual: PTF09ego, PTF09eiy, PTF10bvr, SN 2002cx, SN 2004cs, SN 2005P, SN 2005hk, SN 2007J, SN 2008A, SN 2008ge, SN 2008ha, SN 2010ae, SN 2011ay, SN 2011ce, SN 2012Z, SN 2014dt ID HUBBLE-SPACE-TELESCOPE; SN 2005HK; SPECTRAL DIVERSITY; PROGENITOR SYSTEM; II SUPERNOVAE; WHITE-DWARFS; LOW-VELOCITY; EXPLOSION; REDSHIFT; 2008HA AB We examine the late-time (t greater than or similar to 200 d after peak brightness) spectra of Type Iax supernovae (SNe Iax), a low-luminosity, low-energy class of thermonuclear stellar explosions observationally similar to, but distinct from, Type Ia supernovae. We present new spectra of SN 2014dt, resulting in the most complete late-time spectral sequence of an SN Iax. At late times, SNe Iax have generally similar spectra, all with a similar continuum shape and strong forbiddenline emission. However, there is also significant diversity where some SN Iax spectra display narrow P-Cygni features from permitted lines and a continuum indicative of a photosphere at late times in addition to strong narrow (FWHM < 3500 km s(-1)) forbidden lines, others have no obvious P-Cygni features, strong broad (FWHM > 6000 km s(-1)) forbidden lines, and weak narrow forbidden lines, and some SNe Iax have spectra intermediate to these two varieties. We find that SNe Iax with strong broad forbidden lines are more luminous and have higher velocity ejecta at peak brightness. We estimate blackbody and kinematic radii of the late-time photosphere, finding the latter significantly larger than the former. We propose a two-component model that solves this discrepancy and explains the diversity of the late-time spectra of SNe Iax. In this model, the broad forbidden lines originate from the SN ejecta, while the photosphere, P-Cygni lines, and narrow forbidden lines originate from a wind launched from the remnant of the progenitor white dwarf and is driven by the radioactive decay of newly synthesized material left in the remnant. The relative strength of the two components accounts for the diversity of late-time SN Iax spectra. This model also solves the puzzle of a long-lived photosphere and the slow late-time decline of SNe Iax. C1 [Foley, Ryan J.; Pan, Yen-Chen] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Foley, Ryan J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, 136 Frelinghuysen Rd, Piscataway, NJ 08854 USA. [Zheng, WeiKang; Filippenko, Alexei V.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Kohn Hall, Santa Barbara, CA 93106 USA. [Bildsten, Lars] Univ Calif Santa Barbara, Dept Phys, Kohn Hall, Santa Barbara, CA 93106 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Kasen, Daniel] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [Kasen, Daniel] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Foley, RJ (reprint author), Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA.; Foley, RJ (reprint author), Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. EM rfoley@illinois.edu FU NSF [AST-1518052, PHY 11-25915, AST 11-09174, AST-1211916, PHY-1066293]; Alfred P. Sloan Foundation; NASA/HST [GO-12913, GO-12973]; TABASGO Foundation; Christopher R. Redlich Fund; Google; W.M. Keck Foundation FX RJF gratefully acknowledges support from NSF grant AST-1518052 and the Alfred P. Sloan Foundation. SN Iax research at Rutgers University is supported by NASA/HST grants GO-12913 and GO-12973 to SWJ. This work was supported by the NSF under grants PHY 11-25915 and AST 11-09174. AVF's research was funded by NSF grant AST-1211916, the TABASGO Foundation, and the Christopher R. Redlich Fund.; We thank the participants of the 'Fast and Furious: Understanding Exotic Astrophysical Transients' workshop at the Aspen Center for Physics, which is supported in part by the NSF under grant PHY-1066293. Some of the work presented in this manuscript was initiated there during discussions with L. Bildsten and D. Kasen. Portions of this manuscript were also written during the Aspen Center for Physics workshop, 'The Dynamic Universe: Understanding ExaScale Astronomical Synoptic Surveys'. We are grateful to the Aspen Center for Physics for its hospitality during the 'Fast and Furious' and 'Dynamic Universe' workshops in 2014 June and 2015 May, respectively.; This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). Based in part on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministerio da Ciencia, Tecnologia, e Inovacao (MCTI) da Republica Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU). KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia&Jim Katzman Foundation, and the TABASGO Foundation. Research at Lick Observatory is partially supported by a generous gift from Google. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W.M. Keck Foundation. This research has made use of the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Observatory and the NASA Exoplanet Science Institute (NExScI), under contract with NASA. We thank the staffs of the various observatories and telescopes (SOAR, Keck, SALT, Lick) where data were obtained, as well as observers who helped obtain some of the data (see Table A2). NR 65 TC 1 Z9 1 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2016 VL 461 IS 1 BP 433 EP 457 DI 10.1093/mnras/stw1320 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PE UT WOS:000383272500036 ER PT J AU Pieres, A Santiago, B Balbinot, E Luque, E Queiroz, A da Costa, LN Maia, MAG Drlica-Wagner, A Roodman, A Abbott, TMC Allam, S Benoit-Levy, A Bertin, E Brooks, D Buckley-Geer, E Burke, DL Rosell, AC Kind, MC Carretero, J Cunha, CE Desai, S Diehl, HT Eifler, TF Finley, DA Flaugher, B Fosalba, P Frieman, J Gerdes, DW Gruen, D Gruendl, RA Gutierrez, G Honscheid, K James, DJ Kuehn, K Kuropatkin, N Lahav, O Li, TS Marshall, L Martini, P Miller, CJ Miquel, R Nichol, RC Nord, B Ogando, R Plazas, AA Romer, AK Sanchez, E Scarpine, V Schubnell, M Sevilla-Noarbe, I Smith, RC Soares-Santos, M Sobreira, F Suchyta, E Swanson, MEC Tarle, G Thaler, J Thomas, D Tucker, DL Walker, AR AF Pieres, A. Santiago, B. Balbinot, E. Luque, E. Queiroz, A. da Costa, L. N. Maia, M. A. G. Drlica-Wagner, A. Roodman, A. Abbott, T. M. C. Allam, S. Benoit-Levy, A. Bertin, E. Brooks, D. Buckley-Geer, E. Burke, D. L. Rosell, A. Carnero Kind, M. Carrasco Carretero, J. Cunha, C. E. Desai, S. Diehl, H. T. Eifler, T. F. Finley, D. A. Flaugher, B. Fosalba, P. Frieman, J. Gerdes, D. W. Gruen, D. Gruendl, R. A. Gutierrez, G. Honscheid, K. James, D. J. Kuehn, K. Kuropatkin, N. Lahav, O. Li, T. S. Marshall, L. Martini, P. Miller, C. J. Miquel, R. Nichol, R. C. Nord, B. Ogando, R. Plazas, A. A. Romer, A. K. Sanchez, E. Scarpine, V. Schubnell, M. Sevilla-Noarbe, I. Smith, R. C. Soares-Santos, M. Sobreira, F. Suchyta, E. Swanson, M. E. C. Tarle, G. Thaler, J. Thomas, D. Tucker, D. L. Walker, A. R. TI Physical properties of star clusters in the outer LMC as observed by the DES SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: statistical; Magellanic Cloud; galaxies: star clusters: general ID LARGE-MAGELLANIC-CLOUD; COLOR-MAGNITUDE DIAGRAMS; CHEMICAL ENRICHMENT HISTORY; SIMPLE STELLAR POPULATIONS; STRUCTURAL PARAMETERS; METALLICITY RELATION; PHOTOMETRIC SYSTEMS; SOURCE EXTRACTION; AGE DISTRIBUTION; RED CLUMP AB The Large Magellanic Cloud (LMC) harbours a rich and diverse system of star clusters, whose ages, chemical abundances and positions provide information about the LMC history of star formation. We use Science Verification imaging data from the Dark Energy Survey (DES) to increase the census of known star clusters in the outer LMC and to derive physical parameters for a large sample of such objects using a spatially and photometrically homogeneous data set. Our sample contains 255 visually identified cluster candidates, of which 109 were not listed in any previous catalogue. We quantify the crowding effect for the stellar sample produced by the DES Data Management pipeline and conclude that the stellar completeness is < 10 per cent inside typical LMC cluster cores. We therefore reanalysed the DES co-add images around each candidate cluster and remeasured positions and magnitudes for their stars. We also implement a maximum-likelihood method to fit individual density profiles and colour-magnitude diagrams. For 117 (from a total of 255) of the cluster candidates (28 uncatalogued clusters), we obtain reliable ages, metallicities, distance moduli and structural parameters, confirming their nature as physical systems. The distribution of cluster metallicities shows a radial dependence, with no clusters more metal rich than [Fe/H] similar or equal to -0.7 beyond 8 kpc from the LMC centre. The age distribution has two peaks at similar or equal to 1.2 and similar or equal to 2.7 Gyr. C1 [Pieres, A.; Santiago, B.; Luque, E.; Queiroz, A.] Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil. [Pieres, A.; Santiago, B.; Luque, E.; Queiroz, A.; da Costa, L. N.; Maia, M. A. G.; Rosell, A. Carnero; Ogando, R.; Sobreira, F.] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Balbinot, E.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [da Costa, L. N.; Maia, M. A. G.; Rosell, A. Carnero; Ogando, R.] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. [Drlica-Wagner, A.; Allam, S.; Buckley-Geer, E.; Diehl, H. T.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gutierrez, G.; Kuropatkin, N.; Nord, B.; Scarpine, V.; Soares-Santos, M.; Tucker, D. L.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Roodman, A.; Burke, D. L.; Cunha, C. E.; Frieman, J.; Gruen, D.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA. [Roodman, A.; Burke, D. L.; Gruen, D.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Abbott, T. M. C.; James, D. J.; Smith, R. C.; Walker, A. R.] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile. [Benoit-Levy, A.; Bertin, E.] CNRS, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Benoit-Levy, A.; Brooks, D.; Lahav, O.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Benoit-Levy, A.; Bertin, E.] Univ Paris 06, Sorbonne Univ, UMR 7095, Inst Astrophys Paris, F-75014 Paris, France. [Kind, M. Carrasco; Gruendl, R. A.] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA. [Kind, M. Carrasco; Gruendl, R. A.; Swanson, M. E. C.] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA. [Carretero, J.; Fosalba, P.] IEEC CSIC, Inst Ciencies Espai, Campus UAB,Carrer Can Magrans,S-N, E-08193 Barcelona, Spain. [Carretero, J.; Miquel, R.] Barcelona Inst Sci & Technol, IFAE, Campus UAB, E-08193 Barcelona, Spain. [Desai, S.] Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Desai, S.] Univ Munich, Fac Phys, Scheinerstr 1, D-81679 Munich, Germany. [Eifler, T. F.; Plazas, A. A.] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Gerdes, D. W.; Miller, C. J.; Schubnell, M.; Tarle, G.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Honscheid, K.; Martini, P.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Honscheid, K.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Kuehn, K.] Australian Astron Observ, N Ryde, NSW 2113, Australia. [Li, T. S.; Marshall, L.] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, T. S.; Marshall, L.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Martini, P.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Miller, C. J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Nichol, R. C.; Thomas, D.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Romer, A. K.] Univ Sussex, Dept Phys & Astron, Pevensey Bldg, Brighton BN1 9QH, E Sussex, England. [Sanchez, E.; Sevilla-Noarbe, I.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Sobreira, F.] Univ Estadual Paulista, ICTP South Amer Inst Fundamental Res, Inst Fis Teor, Sao Paulo, Brazil. [Suchyta, E.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Thaler, J.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. RP Pieres, A (reprint author), Univ Fed Rio Grande do Sul, Inst Fis, Caixa Postal 15051, BR-91501970 Porto Alegre, RS, Brazil.; Pieres, A (reprint author), Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil. EM adriano.pieres@ufrgs.br; basilio.santiago@ufrgs.br; e.balbinot@surrey.ac.uk RI Ogando, Ricardo/A-1747-2010; OI Ogando, Ricardo/0000-0003-2120-1154; Sobreira, Flavia/0000-0002-7822-0658 FU Brazilian Institution CNPq; European Research Council [ERC-StG-335936]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478] FX AdP acknowledges financial support from the Brazilian Institution CNPq. EdB acknowledges financial support from the European Research Council (ERC-StG-335936, CLUSTERS).; Funding for the DES Projects has been provided by the US Department of Energy, the US National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.; The DES data management system is supported by the National Science Foundation under Grant Number AST-1138766. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2012-39559, ESP2013-48274, FPA2013-47986 and Centro de Excelencia Severo Ochoa SEV-2012-0234. Research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) including ERC grant agreements 240672, 291329 and 306478. NR 67 TC 2 Z9 2 U1 5 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2016 VL 461 IS 1 BP 519 EP 541 DI 10.1093/mnras/stw1260 PG 23 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PE UT WOS:000383272500041 ER PT J AU Le Cras, C Maraston, C Thomas, D York, DG AF Le Cras, Claire Maraston, Claudia Thomas, Daniel York, Donald G. TI Modelling the UV spectrum of SDSS-III/BOSS galaxies: hints towards the detection of the UV upturn at high-z SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: stellar content; ultraviolet: galaxies ID OSCILLATION SPECTROSCOPIC SURVEY; STAR-FORMING GALAXIES; STELLAR POPULATION-MODELS; FAR-ULTRAVIOLET EMISSION; ABSORPTION-LINE INDEXES; DIGITAL SKY SURVEY; ELLIPTIC GALAXIES; FORMATION HISTORIES; HORIZONTAL-BRANCH; GLOBULAR-CLUSTERS AB We exploit stellar population models of absorption line indices in the ultraviolet (from 2000 to 3200 angstrom) to study the spectra of massive galaxies. Our central aim is to investigate the occurrence at high redshift of the UV upturn, i.e. the increased UV emission due to old stars observed inmassive galaxies and spiral bulges in the local Universe. We use a large (similar to 275 000) sample of z similar to 0.6 massive (M*/M-circle dot > 11.5) galaxies using both individual spectra and stacks and employ a suite of models including a UV contribution from old populations, spanning various effective temperatures, fuel consumptions and metallicities. We find that a subset of our indices; Mg I, FeI, and BL3096, are able to differentiate between old and young UV ages. We find evidence for old stars contributing to the UV in massive galaxies, rather than star formation. The data favour models with low/medium upturn temperatures (10 000-25 000 K) consistent with local galaxies, depending on the assumed metallicity, and with a larger fuel (f similar to 6.5 x 10(-2) M-circle dot). Models with one typical temperature are favoured over models with a temperature range, which would be typical of an extended horizontal branch. Old UV-bright populations are found in the whole galaxy sample (92 per cent), with a mass fraction peaking around 20-30 per cent. Upturn galaxies are massive and have redder colours, in agreement with findings in the local Universe. We find that the upturn phenomenon appears at z similar to 1 and its frequency increases towards lower redshift, as expected by stellar evolution of low-mass stars. Our findings will help constrain stellar evolution in the exotic UV upturn phase. C1 [Le Cras, Claire; Maraston, Claudia; Thomas, Daniel] Univ Portsmouth, ICG, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, 5640 South Ellis Ave, Chicago, IL 60615 USA. [York, Donald G.] Univ Chicago, Fermi Inst, 5640 South Ellis Ave, Chicago, IL 60615 USA. RP Le Cras, C (reprint author), Univ Portsmouth, ICG, Dennis Sciama Bldg,Burnaby Rd, Portsmouth PO1 3FX, Hants, England. EM claire.lecras@port.ac.uk; claudia.maraston@port.ac.uk; daniel.thomas@port.ac.uk FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX We acknowledge discussion with Tom Brown. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 60 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2016 VL 461 IS 1 BP 766 EP 793 DI 10.1093/mnras/stw1024 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PE UT WOS:000383272500058 ER PT J AU Lloyd-Ronning, NM Dolence, JC Fryer, CL AF Lloyd-Ronning, Nicole M. Dolence, Joshua C. Fryer, Christopher L. TI A MAD model for gamma-ray burst variability SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gamma-ray burst: general ID MAGNETIC PRANDTL NUMBER; POWER-DENSITY SPECTRUM; NEUTRON-STAR MERGERS; ACCRETION DISKS; BLACK-HOLES; QUIESCENT TIMES; CENTRAL ENGINE; MAGNETOHYDRODYNAMIC SIMULATIONS; INTERCHANGE INSTABILITY; LIGHT CURVES AB We present a model for the temporal variability of long gamma-ray bursts (GRBs) during the prompt phase (the highly variable first 100 s or so), in the context of a magnetically arrested disc (MAD) around a black hole. In this state, sufficient magnetic flux is held on to the black hole such that it stalls the accretion near the inner region of the disc. The system transitions in and out of the MAD state, which we relate to the variable luminosity of the GRB during the prompt phase, with a characteristic time-scale defined by the free-fall time in the region over which the accretion is arrested. We present simple analytic estimates of the relevant energetics and time-scales, and compare them to GRB observations. In particular, we show how this model can reproduce the characteristic one second time-scale that emerges from various analyses of the prompt emission light curve. We also discuss how our model can accommodate the potentially physically important correlation between a burst quiescent time and the duration of its subsequent pulse. C1 [Lloyd-Ronning, Nicole M.; Dolence, Joshua C.; Fryer, Christopher L.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Lloyd-Ronning, Nicole M.; Dolence, Joshua C.; Fryer, Christopher L.] Los Alamos Natl Lab, Ctr Theoret Astrophys, Los Alamos, NM 87545 USA. RP Lloyd-Ronning, NM (reprint author), Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA.; Lloyd-Ronning, NM (reprint author), Los Alamos Natl Lab, Ctr Theoret Astrophys, Los Alamos, NM 87545 USA. EM lloyd-ronning@lanl.gov OI Dolence, Joshua/0000-0003-4353-8751 FU M. Hildred Blewett Fellowship of the American Physical Society; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [LA-UR-15-29635] FX We gratefully acknowledge the anonymous referee for helpful comments that improved this manuscript. We thank Raffaella Margutti for useful discussions and for providing her thesis, and additional references. We also thank Ben Ryan and Enrico Ramirez-Ruiz for helpful comments and discussions. This work is supported in part by the M. Hildred Blewett Fellowship of the American Physical Society, www.aps.org. Work at LANL was done under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory, LA-UR-15-29635. NR 81 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP 1 PY 2016 VL 461 IS 1 BP 1045 EP 1052 DI 10.1093/mnras/stw1366 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DV9PE UT WOS:000383272500079 ER PT J AU Zettl, T Mathew, RS Seifer, S Doniach, S Harbury, PAB Lipfert, J AF Zettl, Thomas Mathew, Rebecca S. Seifer, Sonke Doniach, Sebastian Harbury, Pehr A. B. Lipfert, Jan TI Absolute Intramolecular Distance Measurements with Angstrom-Resolution Using Anomalous Small-Angle X-ray Scattering SO NANO LETTERS LA English DT Article DE Intramolecular distances; Molecular ruler; anomalous small-angle X-ray scattering; SAXS; gold nanocrystals; DNA ID SINGLE DNA-MOLECULES; ELASTICITY; RANGE; DISTRIBUTIONS; TRANSITION; DISPERSION; ENSEMBLE AB Accurate determination of molecular distances is fundamental to understanding the structure, dynamics, and conformational ensembles of biological macro-molecules. Here we present a method to determine the full,distance,distribution between small (similar to 7 angstrom radius) gold labels attached to macromolecules with very high-precision(<= 1 angstrom) and on an absolute distance scale.,Our method uses anomalous small-angle X-ray scattering close to a gold absorption edge to separate the gold-gold interference pattern from other scattering contributions. Results for 10-30 bp DNA constructs achieve excellent signal-to-noise and are in good agreement with previous results obtained by single-energy,SAXS measurements without requiring the preparation and measurement of single labeled and unlabeled samples. The use of small gold labels in combination with ASAXS read out provides an attractive approach to determining molecular distance distributions that will be applicable to a broad range of macromolecular systems. C1 [Zettl, Thomas; Lipfert, Jan] Ludwig Maximilians Univ Munchen, Dept Phys, Nanosyst Initiat Munich, Amalienstr 54, D-80799 Munich, Germany. [Zettl, Thomas; Lipfert, Jan] Ludwig Maximilians Univ Munchen, Ctr Nanosci, Amalienstr 54, D-80799 Munich, Germany. [Mathew, Rebecca S.] Harvard Med Sch, Dept Cell Biol, Boston, MA 02115 USA. [Seifer, Sonke] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Harbury, Pehr A. B.] Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. [Doniach, Sebastian] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Doniach, Sebastian] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. RP Lipfert, J (reprint author), Ludwig Maximilians Univ Munchen, Dept Phys, Nanosyst Initiat Munich, Amalienstr 54, D-80799 Munich, Germany.; Lipfert, J (reprint author), Ludwig Maximilians Univ Munchen, Ctr Nanosci, Amalienstr 54, D-80799 Munich, Germany.; Harbury, PAB (reprint author), Stanford Univ, Dept Biochem, Stanford, CA 94305 USA. EM harbury@stanford.edu; Jan.Lipfert@linu.de FU Nanosystems Initiative Munich; NIH [T32-GM008294]; National Institutes of Health [DP-OD000429]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX We acknowledge funding from the Nanosystems Initiative Munich (J.L.), NIH Training Grant T32-GM008294 (Molecular Biophysics), and National Institutes of Health grant DP-OD000429 (P.B.H.). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 26 TC 0 Z9 0 U1 12 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5353 EP 5357 DI 10.1021/acs.nanolett.6b01160 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100006 PM 27244097 ER PT J AU Ai, G Dai, YL Mao, WF Zhao, H Fu, YB Song, XY En, YF Battaglia, VS Srinivasan, V Liu, G AF Ai, Guo Dai, Yiling Mao, Wenfeng Zhao, Hui Fu, Yanbao Song, Xiangyun En, Yunfei Battaglia, Vincent S. Srinivasan, Venkat Liu, Gao TI Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries SO NANO LETTERS LA English DT Article DE Li-S,battery; biomimetic; ant-nest structure; high sulfur radio ID LI-S BATTERIES; HIGH-ENERGY DENSITY; RATE CAPABILITY; POLYSULFIDE; GRAPHENE; CATHODES; DISCHARGE; NETWORKS; HYBRID; BINDER AB The lithium sulfur,(Li-S) rechargeable bat-tery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing friendly steps, which include slurry :ball-milling, doctor-blade based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg.cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure C1 [Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; Battaglia, Vincent S.; Srinivasan, Venkat; Liu, Gao] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Technol Area, Berkeley, CA 94720 USA. [Ai, Guo; En, Yunfei] Minist Ind & Informat Technol, Elect Res Inst 5, Sci & Technol Reliabil Phys & Applicat Elect Comp, Guangzhou 510610, Guangdong, Peoples R China. [Mao, Wenfeng] Guangzhou Automobile Grp Co Ltd, Guangzhou 511434, Guangdong, Peoples R China. RP Liu, G (reprint author), Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Energy Technol Area, Berkeley, CA 94720 USA. EM gliu@lbl.gov FU Advanced Battery Materials Research (BMR) program from U.S. Department of Energy (U.S. DOE) FX Funding was provided through the Advanced Battery Materials Research (BMR) program from U.S. Department of Energy (U.S. DOE). NR 44 TC 2 Z9 2 U1 68 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5365 EP 5372 DI 10.1021/acs.nanolett.6b01434 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100008 PM 27501313 ER PT J AU Liu, S Sinclair, MB Saravi, S Keeler, GA Yang, YM Reno, J Peake, GM Setzpfandt, F Staude, I Pertsch, T Brener, I AF Liu, Sheng Sinclair, Michael B. Saravi, Sina Keeler, Gordon A. Yang, Yuanmu Reno, John Peake, Gregory M. Setzpfandt, Frank Staude, Isabelle Pertsch, Thomas Brener, Igal TI Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces SO NANO LETTERS LA English DT Article DE Second-harmonic generation; resonantly enhanced; dielectric metasurfaces; GaAs; III-V semiconductors; monolithic ID WAVE-FRONT CONTROL; 3RD-HARMONIC GENERATION; MAGNETIC METAMATERIALS; LIGHT WAVES; SILICON; SUBSTRATE; STRAIN; NANOANTENNAS; FILMS; MODE AB Nonlinear optical phenomena in nanostructured materials have been challenging our perceptions of nonlinear optical processes that have been explored since the invention of lasers. For example, the ability to control optical field confinement, enhancement, and scattering almost independently allows nonlinear frequency conversion efficiencies to be enhanced by many orders of magnitude compared to bulk materials. Also, the subwavelength length scale renders phase matching issues irrelevant. Compared with plasmonic nanostructures, dielectric resonator metamaterials show great promise for enhanced nonlinear optical processes due to their larger mode volumes. Here, we present, for the first time, resonantly enhanced second-harmonic generation (SHG) using gallium arsenide (GaAs) based dielectric metasurfaces. Using arrays of cylindrical resonators we observe SHG enhancement factors as large as 104 relative to unpatterned GaAs. At the magnetic dipole resonance, we measure an absolute nonlinear conversion efficiency of similar to 2 X 10(-5) with similar to 3.4 GW/cm(2) pump intensity. The polarization properties of the SHG reveal that both bulk and surface nonlinearities play important roles in the observed nonlinear process. C1 [Liu, Sheng; Sinclair, Michael B.; Keeler, Gordon A.; Yang, Yuanmu; Reno, John; Peake, Gregory M.; Brener, Igal] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Yang, Yuanmu; Reno, John; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. [Saravi, Sina; Setzpfandt, Frank; Staude, Isabelle; Pertsch, Thomas] Univ Jena, Abbe Ctr Photon, Inst Appl Phys, Max Wien Pl 1, D-07743 Jena, Germany. RP Liu, S; Brener, I (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA.; Brener, I (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM snliu@sandia.gov; ibrener@sandia.gov RI Setzpfandt, Frank/N-2243-2015; Pertsch, Thomas/M-2876-2015; Saravi, Sina/A-3343-2017 OI Setzpfandt, Frank/0000-0002-7919-8181; Pertsch, Thomas/0000-0003-4889-0869; FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Parts of this work were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and performed in part at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 44 TC 9 Z9 9 U1 27 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5426 EP 5432 DI 10.1021/acs.nanolett.6b01816 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100017 PM 27501472 ER PT J AU Hsu, SC Chuang, YC Sneed, BT Cullen, DA Chiu, TW Kuo, CH AF Hsu, Shih-Cheng Chuang, Yu-Chun Sneed, Brian T. Cullen, David A. Chiu, Te-Wei Kuo, Chun-Hong TI Turning the Halide Switch in the Synthesis of Au-Pd Alloy and Core-Shell Nanoicosahedra with Terraced Shells: Performance in Electrochemical and Plasmon-Enhanced Catalysis SO NANO LETTERS LA English DT Article DE Gold; palladium; icosahedral; nanocrystal; catalysis ID OXYGEN REDUCTION REACTION; ELECTROCATALYTIC ACTIVITY; HYDROGEN-PRODUCTION; SINGLE-PARTICLE; LATTICE-STRAIN; NANOPARTICLES; NANOCRYSTALS; PALLADIUM; GOLD; NANORODS AB Au-Pd nanocrystals are an intriguing system to study the integrated functions of localized surface plasmon resonance (LSPR) and heterogeneous catalysis. Gold is both durable and can harness incident light energy to enhance the catalytic activity of another metal, such as Pd, via the SPR effect in bimetallic nanocrystals. Despite the superior catalytic performance of icosahedral (IH) nanocrystals compared to alternate morphologies, the controlled synthesis of alloy and core-shell IH is still greatly challenged by the disparate reduction rates of metal precursors and lack of continuous epigrowth on multiply twinned boundaries of such surfaces. Herein, we demonstrate a one-step strategy for the controlled growth of monodisperse Au-Pd alloy and core-shell IH with terraced shells by turning an ionic switch between [Br-]/[Cl-] in the coreduction process. The coreshell IH nanocrystals contain AuPd alloy cores and ultrathin Pd shells (<2 nm). They not only display more than double the activity of the commercial Pd catalysts in ethanol electrooxidation attributed to monatomic step terraces but also show SPR-enhanced conversion of 4-nitrophenol. This strategy holds promise toward the development of alternate bimetallic IH nanocrystals for electrochemical and plasmon-enhanced catalysis. C1 [Hsu, Shih-Cheng; Kuo, Chun-Hong] Acad Sinica, Inst Chem, Taipei 11529, Taiwan. [Chuang, Yu-Chun] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Sneed, Brian T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Cullen, David A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Hsu, Shih-Cheng; Chiu, Te-Wei] Natl Taipei Univ Technol, Dept Mat & Mineral Resources Engn, Taipei 10608, Taiwan. RP Kuo, CH (reprint author), Acad Sinica, Inst Chem, Taipei 11529, Taiwan. EM chunhong@gate.sinica.edu.tw RI Sneed, Brian/C-4079-2012; Kuo, Chun-Hong/D-8902-2015; OI Sneed, Brian/0000-0002-5656-6180; Kuo, Chun-Hong/0000-0001-6633-8985; Cullen, David/0000-0002-2593-7866 FU Ministry of Science and Technology, Taiwan [MOST 104-2113-M-001-007-MY2]; Academia Sinica, Taiwan [2393] FX We are grateful for the technical support from NanoCore, the Core Facilities for Nanoscience and Nanotechnology at Academia Sinica in Taiwan. A portion of the electron microscopy was performed as part of a user project through Oak Ridge National Laboratory's Center for Nanophase Materials Sciences, which is a U.S. Department of Energy (DOE) Office of Science User Facility and using instrumentation provided by the U.S. DOE Office of Nuclear Energy, Fuel Cycle R&D Program, and the Nuclear Science User Facilities. We especially thank Ms. Mei-Ying Chung, the technician in the Institute of Chemistry at Academia Sinica in Taiwan, for carrying out SEM analyses and measurements of ICP-OES. This work is financially supported by the Ministry of Science and Technology, Taiwan (MOST 104-2113-M-001-007-MY2), and Academia Sinica, Taiwan (Program of Nanotechnology No. 2393). NR 51 TC 1 Z9 1 U1 71 U2 72 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5514 EP 5520 DI 10.1021/acs.nanolett.6b02005 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100030 PM 27575057 ER PT J AU Cao, T Li, ZL Qiu, DY Louie, SG AF Cao, Ting Li, Zhenglu Qiu, Diana Y. Louie, Steven G. TI Gate Switchable Transport and Optical Anisotropy in 90 degrees Twisted Bilayer Black Phosphorus SO NANO LETTERS LA English DT Article DE 2D materials; black phosphorus; gate switchable anisotropy; electron transport; optical dichroism ID TRANSITION-METAL DICHALCOGENIDES; MOLYBDENUM-DISULFIDE; QUASI-PARTICLE; GRAPHENE; OPTOELECTRONICS; ELECTRONICS; EXCITONS; SPIN AB Anisotropy describes the directional dependence of a material's properties such as transport and optical response. In conventional bulk materials, anisotropy is intrinsically related to the crystal structure and thus not tunable by the gating techniques used in modern electronics. Here we show that, in bilayer black phosphorus with an interlayer twist angle of 90 degrees, the anisotropy of its electronic structure and optical transitions is tunable by gating. Using first-principles calculations, we predict that a laboratory-accessible gate voltage can induce a hole effective mass that is 30 times larger along one Cartesian axis than along the other axis, and the two axes can be exchanged by flipping the sign of the gate voltage. This gate-controllable band structure also leads to a switchable optical linear dichroism, where the polarization of the lowest-energy optical transitions (absorption or luminescence) is tunable by gating. Thus, anisotropy is a tunable degree of freedom in twisted bilayer black phosphorus. C1 [Cao, Ting; Li, Zhenglu; Qiu, Diana Y.; Louie, Steven G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Cao, Ting; Li, Zhenglu; Qiu, Diana Y.; Louie, Steven G.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Louie, SG (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Louie, SG (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM sglouie@berkeley.edu FU Theory of Materials Program at the Lawrence Berkeley National Lab through the Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [DMR-1508412, ACI-1053575] FX This research was supported by the Theory of Materials Program at the Lawrence Berkeley National Lab through the Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 which provided the calculations on quasiparticle band structures and optical transitions, and by the National Science Foundation under Grant No. DMR-1508412 which provided for the study of switchable anisotropy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. NR 27 TC 2 Z9 2 U1 31 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5542 EP 5546 DI 10.1021/acs.nanolett.6b02084 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100034 PM 27556685 ER PT J AU Gan, SY Liang, YF Spataru, CD Yang, L AF Gan, Shiyuan Liang, Yufeng Spataru, Catalin D. Yang, Li TI Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors SO NANO LETTERS LA English DT Article DE Exciton; 2D material; doping dynamical effects; Bethe-Salpeter equation ID METAL DICHALCOGENIDE SEMICONDUCTOR; QUASI-PARTICLE; ELECTRON-GAS; OPTICAL-SPECTRA; QUANTUM-WELLS; CHARGED EXCITONS; MONOLAYER; ABSORPTION; TRANSITION; RENORMALIZATION AB It is well-known that excitonic effects can dominate the optical properties of two-dimensional materials. These effects, however, can be substantially modified by doping free carriers. We investigate these doping effects by solving the first-principles BetheSalpeter equation. Dynamical screening effects, included via the sum-rule preserving generalized plasmon-pole model, are found to be important in the doped system. Using monolayer MoS2 as an example, we find that upon moderate doping, the exciton binding energy can be tuned by a few hundred millielectronvolts, while the exciton peak position stays nearly constant due to a cancellation with the quasiparticle band gap renormalization. At higher doping densities, the exciton peak position increases linearly in energy and gradually merges into a Fermi-edge singularity. Our results are crucial for the quantitative interpretation of optical properties of two-dimensional materials and the further development of ab initio theories of studying charged excitations such as trions. C1 [Gan, Shiyuan; Yang, Li] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Liang, Yufeng] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Spataru, Catalin D.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Yang, L (reprint author), Washington Univ, Dept Phys, St Louis, MO 63130 USA.; Spataru, CD (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM cdspata@sandia.gov; lyang@physics.wustl.edu FU National Science Foundation (NSF) CAREER Grant [DMR-1455346]; NSF [EFRI-2DARE-1542815]; Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the fruitful discussions with Vy Tran, Ruixiang Fei, Giovanni Vignale, and Willem H. Dickhoff. S.G. and L.Y. are supported by the National Science Foundation (NSF) CAREER Grant DMR-1455346 and NSF EFRI-2DARE-1542815. This work is also supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. S.G. thanks James Bartz for the internship opportunity at SNL. The computational resources have been provided by the Stampede of Teragrid at the Texas Advanced Computing Center (TACC) through XSEDE. NR 64 TC 0 Z9 0 U1 31 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5568 EP 5573 DI 10.1021/acs.nanolett.6b02118 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100038 ER PT J AU Vasudevan, RK Ziatdinov, M Jesse, S Kalinin, SV AF Vasudevan, Rama K. Ziatdinov, Maxim Jesse, Stephen Kalinin, Sergei V. TI Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis SO NANO LETTERS LA English DT Article DE Unmixing crystallography; atomic scale imaging Fourier transform; scanning tunneling microscopy; scanning transmission electron-microscopy ID CRYSTAL-STRUCTURE; GRAPHENE; OXIDE; CRYSTALLOGRAPHY; NANOSTRUCTURES; SUPERLATTICES; RIBOSOME; DEFECTS; STATES; ORDER AB Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with similar to 1-10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. This method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure-property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters. C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Ziatdinov, Maxim/L-1991-2016 OI Ziatdinov, Maxim/0000-0003-2570-4592 FU Division of Materials Sciences and Engineering, BES, US DOE; Center for Nanophase Materials Sciences; US DOE Office of Science User Facility FX We thank A. Borisevich (ORNL) and Q. He (ORNL) for permission to use the STEM image published previously for this manuscript.36 This research was sponsored by the Division of Materials Sciences and Engineering, BES, US DOE (RKV, MZ, SVK). Research was conducted at the Center for Nanophase Materials Sciences, which also provided support (S.J.) and which is a US DOE Office of Science User Facility. NR 45 TC 0 Z9 0 U1 8 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5574 EP 5581 DI 10.1021/acs.nanolett.6b02130 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100039 PM 27517608 ER PT J AU Gao, P Wang, LP Zhang, YY Huang, Y Liao, L Sutter, P Liu, KH Yu, DP Wang, EG AF Gao, Peng Wang, Liping Zhang, Yu-Yang Huang, Yuan Liao, Lei Sutter, Peter Liu, Kaihui Yu, Dapeng Wang, En-Ge TI High-Resolution Tracking Asymmetric Lithium Insertion and Extraction and Local Structure Ordering in SnS2 SO NANO LETTERS LA English DT Article DE Lithitim ion battery; in situ TEM; first-principles calculation; intermediate phase; electrochemistry dynamics ID CONVERSION ELECTRODE MATERIALS; IN-SITU OBSERVATION; ELECTROCHEMICAL LITHIATION; ION BATTERIES; HIGH-CAPACITY; LIFEPO4; INTERCALATION; HYSTERESIS; COMPOSITE; MECHANISM AB In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 14 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials. C1 [Gao, Peng] Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China. [Gao, Peng; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China. [Wang, Liping] Univ Elect Sci & Technol China, State Key Lab Elect Thin Films & Integrated Devic, Chengdu 610054, Peoples R China. [Zhang, Yu-Yang] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Huang, Yuan] Brookhaven Natl Lab, Upton, NY 11973 USA. [Liao, Lei] Wuhan Univ, Dept Phys, Wuhan 430072, Peoples R China. [Liao, Lei] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Peoples R China. [Sutter, Peter] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. [Liu, Kaihui; Yu, Dapeng] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China. [Wang, En-Ge] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China. RP Gao, P (reprint author), Peking Univ, Sch Phys, Electron Microscopy Lab, Beijing 100871, Peoples R China.; Gao, P (reprint author), Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China.; Zhang, YY (reprint author), Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. EM p-gao@pku.edu.cn; yyzhang@iphy.ac.cn RI Zhang, Yu-Yang/F-2078-2011; Liu, Kaihui/A-9938-2014; Gao, Peng/B-4675-2012 OI Zhang, Yu-Yang/0000-0002-9548-0021; FU National Natural Science Foundation of China [51502007, 51502032, 51522201]; National Basic Research Program of China [2016YFA0300903]; National Program for Thousand Young Talents of China; Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter; National Science Foundation [ACT-1053575] FX This work was supported by the National Natural Science Foundation of China (51502007, 51502032, 51522201), National Basic Research Program of China (2016YFA0300903), the National Program for Thousand Young Talents of China, and "2011 Program" Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter. Computational resources (Y.Y.Z.) were provided by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACT-1053575. NR 48 TC 2 Z9 2 U1 62 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5582 EP 5588 DI 10.1021/acs.nanolett.6b02136 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100040 PM 27504584 ER PT J AU Wang, S Sina, M Parikh, P Uekert, T Shahbazian, B Devaraj, A Meng, YS AF Wang, Shen Sina, Mahsa Parikh, Pritesh Uekert, Taylor Shahbazian, Brian Devaraj, Arun Meng, Ying Shirley TI Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells SO NANO LETTERS LA English DT Article DE Perovskite solar cells; hole transport layer; transmission electron microscopy; focused ion beam; Fourier transform infrared spectroscopy; atom probe tomography ID DEVICE PERFORMANCE; LITHIUM-SALTS; SPIRO-OMETAD; MECHANISM; DEPOSITION; STABILITY; CONTACTS; IMPACT; MEOTAD; ENERGY AB Hybrid organic inorganic materials for high-efficiency, low-cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-Butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for a re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long-term effects, over 1000 h, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process, and thus this study highlights the need for additive materials with higher boiling point for consistent long-term performance of PSCs. C1 [Wang, Shen; Sina, Mahsa; Parikh, Pritesh; Uekert, Taylor; Shahbazian, Brian; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Devaraj, Arun] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. RP Meng, YS (reprint author), Univ Calif San Diego, Dept NanoEngn, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM shirleymeng@ucsd.edu FU Sustainable Power and Energy Center (SPEC) under Frontier of Innovation Award at University of California San Diego; Jacobs Graduate Fellowship by Jacobs School of Engineering at UC San Diego; Qualcomm Mentor Fellowship; National Science Foundation [ECCS-1542148]; Office of Biological and Environmental Research; Pacific Northwest National Laboratory FX This work is supported by the seed funding from Sustainable Power and Energy Center (SPEC) under Frontier of Innovation Award by Vice Chancellor of Research at University of California San Diego. S. Wang gratefully acknowledges the Jacobs Graduate Fellowship by Jacobs School of Engineering at UC San Diego. P. Parikh acknowledges financial support from the Qualcomm Mentor Fellowship. This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI), a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (Grant ECCS-1542148). The EF-TEM images were performed with an approval of the National Center for Electron Microscopy at Lawrence Berkeley National Laboratory. Sample preparation and analysis for atom probe tomography was performed using EMSL, a DOE National User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 39 TC 2 Z9 2 U1 48 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5594 EP 5600 DI 10.1021/acs.nanolett.6b02158 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100042 PM 27547991 ER PT J AU Guo, PJ Schaller, RD Ocola, LE Ketterson, JB Chang, RPH AF Guo, Peijun Schaller, Richard D. Ocola, Leonidas E. Ketterson, John B. Chang, Robert P. H. TI Gigahertz Acoustic Vibrations of Elastically Anisotropic Indium-Tin-Oxide Nanorod Arrays SO NANO LETTERS LA English DT Article DE Indium-tin-oxide; nanorod; acoustic phonon; ultrafast spectroscopy; elasticity; single crystalline ID YTTRIA-STABILIZED ZIRCONIA; SURFACE-PLASMON RESONANCE; METAL NANOPARTICLES; GOLD NANORODS; REFRACTORY PLASMONICS; THIN-FILMS; ULTRAFAST; ELECTRON; DYNAMICS; NANOSTRUCTURES AB Active control of light is important for photonic integrated circuits, optical switches,. and telecommunications. Coupling light with acoustic vibrations in nanoscale optical resonators offers optical modulation capabilities with high bandwidth and Small footprint Instead of using noble metals, here we introduce indium tin-oxide nanorod arrays (ITO-NRAs) as the operating media;and demonstrate optical modulation covering the visible spectral range (from 360 to 700 nm), with similar to 20 GHz bandwidth through the excitation of coherent acoustic vibrations in ITO-NRAs. This broadband modulation results from the collective optical diffraction by the dielectric ITO-NRAs, and a high differential transmission modulation up to 10% is achieved through efficient near-infrared, on-plasmon-resonance pumping. By combining the frequency signatures Of the vibrational modes with finite-element simulations, we,further determine the anisotropic elastic constants for single-crystalline ITO, which are not known-for the bulk phase., This technique to determine elastic constants using Coherent acoustic vibrations of uniform nanostructures can be generalized to the study of other inorganic materials. C1 [Guo, Peijun; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. [Schaller, Richard D.; Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave,Bldg 440, Lemont, IL 60439 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. RP Chang, RPH (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA.; Schaller, RD (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave,Bldg 440, Lemont, IL 60439 USA.; Schaller, RD (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM schaller@anl.gov; r-chang@northwestern.edu OI Ocola, Leonidas/0000-0003-4990-1064 FU MRSEC program at Northwestern University [NSF DMR-1121262]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; MRSEC program at the Materials Research Center [NSF DMR-1121262]; Ultrafast Initiative of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, through Argonne National Laboratory [DE-AC02-06CH11357] FX The work was funded by the MRSEC program (NSF DMR-1121262) at Northwestern University. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center, the International Institute for Nanotechnology (IIN) and the State of Illinois through the IIN. We acknowledge support from the Ultrafast Initiative of the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, through Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The work also utilized the Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is supported by the State of Illinois and Northwestern University. NR 60 TC 0 Z9 0 U1 18 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5639 EP 5646 DI 10.1021/acs.nanolett.6b02217 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100048 PM 27526053 ER PT J AU Grutter, AJ Vailionis, A Borchers, JA Kirby, BJ Flint, CL He, C Arenholz, E Suzuki, Y AF Grutter, A. J. Vailionis, A. Borchers, J. A. Kirby, B. J. Flint, C. L. He, C. Arenholz, E. Suzuki, Y. TI Interfacial Symmetry Control of Emergent Ferromagnetism at the Nanoscale SO NANO LETTERS LA English DT Article DE Magnetism; perovskite; interfacial properties; superlattice; charge transfer; interfacial symmetry ID OXIDE SUPERLATTICES; HETEROSTRUCTURES; MAGNETISM AB The emergence Of complex new ground states at interfaces has :been identified as one of the most promising routes to-highly tunable nanoscale materials. Despite recent progress, isolating and,controlling the underlying mechanisms behind these emergent properties remains among the most challenging materials physics problems to date. In-particular, generating ferromagnetism localized at the interface of two nonferromagnetic materials:lis :of fundamental and,tethnological interest. Moreover, the ability to turn the ferromagnetism on and off would shed light on the origin of such emergent phenomena and is promising for spintronic applications. We demonstrate that ferromagnetism confined within one unit cell at the interface of CaRuO3 and CaMnO3 can be switched on and off by changing the symmetry of the oxygen octahedra connectivity at the boundary., Interfaces that are symmetry-matched across the boundary exhibit interfacial CaMnO3 ferromagnetism:while the ferromagnetism at symmetry-mismatched interfaces is suppressed: We attribute the suppression of ferromagnetic order to a reduction in charge transfer at symmetry-mismatched interfaces, where frustrated bonding weakens the orbital overlap: Thus, interfacial symmetry is a. new route-to :control emergent ferromagnetism in materials such as CaMnO3,that exhibit antiferromagnetism bulk form. C1 [Grutter, A. J.; Vailionis, A.; Flint, C. L.; Suzuki, Y.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Grutter, A. J.; Borchers, J. A.; Kirby, B. J.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Grutter, A. J.; He, C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Flint, C. L.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Arenholz, E.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Suzuki, Y.] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. RP Grutter, AJ (reprint author), Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA.; Grutter, AJ (reprint author), NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA.; Grutter, AJ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM alexander.grutter@nist.gov RI Vailionis, Arturas/C-5202-2008 OI Vailionis, Arturas/0000-0001-5878-1864 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DESC0008505]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DESC0008505. Use of the Stanford Synchrotron Radiation Light source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Polarized neutron reflectivity and neutron diffraction was performed at the NIST Center for Neutron Research (supported by the U.S. Department of Commerce). We thank Dr. L. Harriger, Dr. W. Ratcliff II, Dr. D. Parshall, Dr. S. Watson, Dr. R. Erwin, and Dr. W. Chen for assistance with the neutron diffraction and Dr. M. Stiles for fruitful discussions. NR 25 TC 2 Z9 2 U1 30 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5647 EP 5651 DI 10.1021/acs.nanolett.6b02255 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100049 PM 27472285 ER PT J AU Kong, Q Kim, D Liu, C Yu, Y Su, YD Li, YF Yang, PD AF Kong, Qao Kim, Dohyung Liu, Chong Yu, Yi Su, Yude Li, Yifan Yang, Peidong TI Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction SO NANO LETTERS LA English DT Article DE nanowires; nanoparticle catalyst; nanoparticle assembly; artificial photosynthesis; carbon dioxide reduction ID ARTIFICIAL PHOTOSYNTHESIS; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; SEMICONDUCTOR NANOWIRES; PHOTOCATHODES; CONVERSION; SYNGAS; LIGHT; EFFICIENT; METHANOL AB Reducing carbon dioxide with a inulticomponent artificial photosynthetic system, closely mimicking nature, represents a promising approach for energy storage. Previous works have focused on exploiting light-harvesting semiconductor nanowires (NW) for photoelectrochemical water splitting. With the newly developed CO2 reduction nanoparticle (NP) catalysts, direct interfacing of these nanocatalysts with NW light absorbers for photoelectrochemical reduction of CO2 becomes feasible. Here, we demonstrate a directed assembly of NP catalysts on vertical NW substrates for CO2-to-CO conversion under illumination. Guided by the one-dimensional geometry, well-dispersed assembly of Au3Cu NPs On the surface of Si NW arrays was achieved with facile coverage tunability. Such Au3Cu NP decorated Si NW arrays can readily serve as effective CO2 reduction photoelectrodes, exhibiting high CO2-to-CO selectivity dose to 80% at 0.20 V vs RHE with suppressed hydrogen evolution. A reduction of 120 mV overpotential compared to the planar (PL) counterpart was observed resulting, from the optimized spatial arrangement of NP catalysts; on the high surface area NW arrays. In addition, this system showed consistent photoelectrochemical CO2 reduction capability up to 18 11: This;simple photoelectrode assembly process will lead to further progress in artificial photosynthesis, by allowing the combination of developments in each subfield to create an efficient light-driven system generating carbon-based fuels. C1 [Kong, Qao; Liu, Chong; Yu, Yi; Su, Yude; Li, Yifan; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kim, Dohyung; Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Liu, Chong; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yang, Peidong] Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yang, PD (reprint author), Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu OI Liu, Chong/0000-0001-5546-3852 FU U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Suzhou Industrial Park Fellowship; Samsung Scholarship FX This work was supported by U.S. Department of Energy (contract no. DE-AC02-05CH11231, PChem). We thank the nanofabrication facilities in Marvell Nanofabrication Laboratory, imaging facilities at the Molecular Foundry, and the NMR facility, College of Chemistry, University of California, Berkeley. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Q.K. acknowledges support from Suzhou Industrial Park Fellowship. D.K. acknowledges support from Samsung Scholarship. NR 35 TC 0 Z9 0 U1 116 U2 120 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5675 EP 5680 DI 10.1021/acs.nanolett.6b02321 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100053 PM 27494433 ER PT J AU Lu, XJ Chen, AP Luo, YK Lu, P Dai, YM Enriquez, E Dowden, P Xu, HW Kotula, PG Azad, AK Yarotski, DA Prasankumar, RP Taylor, AJ Thompson, JD Jia, QX AF Lu, Xujie Chen, Aiping Luo, Yongkang Lu, Ping Dai, Yaomin Enriquez, Erik Dowden, Paul Xu, Hongwu Kotula, Paul G. Azad, Abul K. Yarotski, Dmitry A. Prasankumar, Rohit P. Taylor, Antoinette J. Thompson, Joe D. Jia, Quanxi TI Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2 SO NANO LETTERS LA English DT Article DE Black TiO2; thin films; oxide interfaces; interfacial engineering; metallic conduction; enhanced electron transport ID SOLAR-ENERGY UTILIZATION; ELECTRON-TRANSPORT; NANOPARTICLES; PHOTOCATALYSIS; MOBILITY; TITANIA; RUTILE AB Black TiO2 nanoparticles with a crystalline core and amorphous-shell structure exhibit superior optoelectronic, properties. in comparison with pristine TiO2. The fundamental mechanisms underlying these enhancements, however, remain, unclear; largely due to the inherent complexities, and limitations of powder materials. Here, we fabricate TiO2 homojunction films, consisting of an oxygen-deficient amorphous layer on top Of a, highly crystalline layer, to simulate the structural/functional, configuration of black TiO2 nanoparticles. Metallic conduction is achieved at the crystalline amorphous homointerface via electronic interface reconstruction, which we show to be the: main reason for the enhanced electron transport of black TiO2. This work riot only achieves an unprecedented understanding of black TiO2 but also provides new perspective or investigating carnet generation and transport, behavior at oxide interfaces;, which are of tremendous fundamental and technological interest. C1 [Lu, Xujie; Chen, Aiping; Luo, Yongkang; Dai, Yaomin; Enriquez, Erik; Dowden, Paul; Azad, Abul K.; Yarotski, Dmitry A.; Prasankumar, Rohit P.; Taylor, Antoinette J.; Thompson, Joe D.; Jia, Quanxi] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Lu, Xujie; Xu, Hongwu] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Lu, Ping; Kotula, Paul G.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Lu, XJ; Jia, QX (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA.; Lu, XJ; Xu, HW (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. EM xujie@lanl.gov; hxu@lanl.gov; qxjia@lanl.gov RI Kotula, Paul/A-7657-2011; Lu, Xujie/L-9672-2014; Chen, Aiping/F-3212-2011; Dai, Yaomin/E-4259-2016; OI Kotula, Paul/0000-0002-7521-2759; Azad, Abul/0000-0002-7784-7432; Lu, Xujie/0000-0001-8402-7160; Chen, Aiping/0000-0003-2639-2797; Dai, Yaomin/0000-0002-2464-3161; Xu, Hongwu/0000-0002-0793-6923 FU Laboratory Directed Research and Development Program of Los Alamos National Laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX X.L. acknowledges the J. Robert Oppenheimer Distinguished Fellowship supported by the Laboratory Directed Research and Development Program of Los Alamos National Laboratory. The work at Los Alamos National Laboratory was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy Office of Science, and in part by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors thank Pamela Bowlan and Shan Guo for their helpful discussions. NR 34 TC 1 Z9 1 U1 52 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5751 EP 5755 DI 10.1021/acs.nanolett.6b02454 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100064 PM 27482629 ER PT J AU Wang, JW Luo, H Liu, Y He, Y Fan, FF Zhang, Z Mao, SX Wang, CM Zhu, T AF Wang, Jiangwei Luo, Hao Liu, Yang He, Yang Fan, Feifei Zhang, Ze Mao, Scott X. Wang, Chongmin Zhu, Ting TI Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating SO NANO LETTERS LA English DT Article DE Nanotube; lithium-ion batteries; in situ TEM electrochemical testing; surface coating; volume expansion; mechanical confinement ID LITHIUM-ION BATTERIES; IN-SITU TEM; ELECTROCHEMICAL LITHIATION; HIGH-CAPACITY; SECONDARY BATTERIES; AMORPHOUS-SILICON; ANODE MATERIALS; POROUS SILICON; NANOWIRES; BEHAVIOR AB Electrochemically induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation, of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling tri-study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly; we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can be induced by increasing the thickness of SiOx on the outer surface, thus reducing the overall outward swelling of the lithiated nanotube. Moreover, both the sandwich lithiation mechanism and the two-stage lithiation process in a Si nanotubes remain unchanged with the-increasing thickness of surface coatings. Our chemomechanical Modeling reveals, the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings: This work-not only provides insights into the degradation of nanotube anodes with surface coatings but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries. C1 [Wang, Jiangwei; Zhang, Ze] Zhejiang Univ, Ctr Electron Microscopy, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China. [Wang, Jiangwei; Zhang, Ze] Zhejiang Univ, State Key Lab Silicon Mat, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China. [Wang, Jiangwei; He, Yang; Mao, Scott X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Luo, Hao; Zhu, Ting] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Liu, Yang] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. [Fan, Feifei] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA. [Wang, Chongmin] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wang, JW (reprint author), Zhejiang Univ, Ctr Electron Microscopy, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China.; Wang, JW (reprint author), Zhejiang Univ, State Key Lab Silicon Mat, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China.; Wang, JW; Mao, SX (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA.; Wang, CM (reprint author), Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM Jiangwei_Wang@zju.edu.cn; sxm2@pitt.edu; chongmin.wang@pnnl.gov RI Zhu, Ting/A-2206-2009 FU NSF [CMMI 1100205, DMR 1410936]; Chinese 1000-Youth-Talent Plan; China Scholarship Council; Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 6951379]; DOE's Office of Biological and Environmental Research; DOE [DE-AC05-76RLO1830] FX T.Z. acknowledges support by the NSF Grant CMMI 1100205 and DMR 1410936. J.W. acknowledges the support of the Chinese 1000-Youth-Talent Plan. H.L. acknowledges financial support from the China Scholarship Council. Work for PNNL is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Subcontract No. 6951379 under the advanced Battery Materials Research (BMR) program. Part of the work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. NR 35 TC 0 Z9 0 U1 61 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5815 EP 5822 DI 10.1021/acs.nanolett.6b02581 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100073 PM 27536960 ER PT J AU Sakimoto, KK Zhang, SJ Yang, PD AF Sakimoto, Kelsey K. Zhang, Stephanie J. Yang, Peidong TI Cysteine-Cystine Photoregeneration for Oxygenic Photosynthesis of Acetic Acid from CO2 by a Tandem Inorganic-Biological Hybrid System SO NANO LETTERS LA English DT Article DE Cadmium sulfide; titanium dioxide; Moorella thermoacetica; phthalocyanine; solar-to-chemical production; artificial photosynthesis ID METAL-PHTHALOCYANINES; CADMIUM-SULFIDE; SOLAR; REDUCTION; BACTERIA AB Tandem "Z-scheme" approaches to solar-to-chemical production afford the ability to independently develop, and optimize reductive photocatalysts for CO2 reduction to multicarbon compounds and Oxidative photocatalysts for O-2 evolution. To connect the two redox processes, molecular redox shuttles, reminiscent of biological electron transfer, offer an additional level-of facile chemical tunability that eliminates the need for solid-state semiconductor junction engineering. In this work, we report a tandem inorganic-biological hybrid system capable of-oxygenic photosynthesis of acetic add from CO2. The photoreductive catalyst consists of the bacterium Moorella thermoacetica self-photosensitized with CdS nanoparticles at, the expense of the thiol amino acid cysteine (Cys) oxidation to the disulfide form cystine (CySS). To regenerate the CySS/Cys redox shuttle, the photooxidative catalyst, TiO2 loaded with cocatalyst phthalocyanine (MnPc), couples water oxidation to CySS reduction. The combined system M. thermoacetica-CdS + TiO2-MnPc demonstrates a potential biomimetic approach to complete oxygenic solar-to-chemical production. C1 [Sakimoto, Kelsey K.; Zhang, Stephanie J.; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94702 USA. [Sakimoto, Kelsey K.; Yang, Peidong] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94702 USA. Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94702 USA. [Yang, Peidong] Kavli Energy NanoSci Inst, Berkeley, CA 94702 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94702 USA.; Yang, PD (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94702 USA.; Yang, PD (reprint author), Kavli Energy NanoSci Inst, Berkeley, CA 94702 USA. EM p_yang@berkeley.edu FU NSF [DGE-1106400, DMR-1507914] FX K.K.S. acknowledges support from the NSF Graduate Research Fellowship Program under grant DGE-1106400. Solar-to-chemical production experiments were supported by the NSF under grant DMR-1507914. The authors thank J. J. Gallagher and M. C. Y. Chang for the original inoculum of M. thermoacetica ATCC 39073. NR 26 TC 2 Z9 2 U1 71 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5883 EP 5887 DI 10.1021/acs.nanolett.6b02740 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100083 PM 27537852 ER PT J AU Asensio, MA Morella, NM Jakobson, CM Hartman, EC Glasgow, JE Sankaran, B Zwart, PH Tullman-Ercek, D AF Asensio, Michael A. Morella, Norma M. Jakobson, Christopher M. Hartman, Emily C. Glasgow, Jeff E. Sankaran, Banumathi Zwart, Peter H. Tullman-Ercek, Danielle TI A Selection for Assembly Reveals That a Single Amino Acid Mutant of the Bacteriophage MS2 Coat Protein Forms a Smaller Virus-like Particle SO NANO LETTERS LA English DT Article DE Protein engineering; protein supramolecular structure; virus structure; bacteriophage MS2; drug delivery; nanocontainers ID VIRAL CAPSIDS; MS2 CAPSIDS; FG LOOP; DELIVERY; RNA; ENCAPSULATION; STABILITY; NANOPARTICLES; MUTATIONS; MOLECULES AB Virus-like particles are used to encapsulate drugs, imaging agents, enzymes, and other biologically active molecules in order to enhance their function. However, the size of most virus-like particles is inflexible, precluding the design of appropriately sized containers for different applications. Here, we describe a chromatographic selection for virus-like particle assembly. Using this selection, we identified a single amino acid substitution to the,coat protein of bacteriophage MS2 that mediates a uniform switch in particle geometry from T = 3 to T = 1 icosahedral symmetry. The resulting smaller particle retains the ability to be disassembled and reassembled in vitro and to be chemically modified to load cargo into its interior cavity. The pair of 27 and 17 nm MS2 particles will allow,direct examination of the effect of size on function in established applications of virus-like particles, including drug:delivery and imaging. C1 [Asensio, Michael A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Morella, Norma M.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Jakobson, Christopher M.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Hartman, Emily C.; Glasgow, Jeff E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Sankaran, Banumathi; Zwart, Peter H.] Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Sankaran, Banumathi; Zwart, Peter H.; Tullman-Ercek, Danielle] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Tullman-Ercek, Danielle] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60091 USA. RP Tullman-Ercek, D (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.; Tullman-Ercek, D (reprint author), Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60091 USA. EM ercek@northwestern.edu RI Tullman-Ercek, Danielle/L-2792-2016 FU National Science Foundation [MCB1150567]; Army Research Office [W911NF-15-1-0144]; ExxonMobil Corporation; Hellman Family Faculty Fund; UC Berkeley; NDSEG Graduate Fellowship; NIH [GM066698]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank members of the Francis and Tullman-Ercek laboratories for their assistance and for fruitful discussions, especially Dr. Adel Elsohly and Ioana Aanei. We thank the following collaborators: those at UC Davis Campus Mass Spectrometry Facilities including Dr. William Jewell and Dr. Armann Andaya; Kevin Doxzen and the Doudna lab for crystallization assistance; and the QB3 Vincent J. Coates Genomics Sequencing Laboratory, UC Berkeley. This work was supported by the National Science Foundation (award MCB1150567 to D.T.E.), the Army Research Office (grant W911NF-15-1-0144 to D.T.E.), a Knowledge Build grant from ExxonMobil Corporation (to D.T.E.), the Hellman Family Faculty Fund (to D.T.E.; J.E.G.), a UC Berkeley Fellowship (C.M.J.), a NDSEG Graduate Fellowship (E.C.H.), and a NIH T32 CBI Training Grant (grant GM066698; E.C.H.). The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 37 TC 2 Z9 2 U1 10 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2016 VL 16 IS 9 BP 5944 EP 5950 DI 10.1021/acs.nanolett.6b02948 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DW1OI UT WOS:000383412100093 PM 27549001 ER PT J AU Demkowicz, PA Hunn, JD Ploger, SA Morris, RN Baldwin, CA Harp, JM Winston, PL Gerczak, TJ van Rooyen, IJ Montgomery, FC Silva, CM AF Demkowicz, Paul A. Hunn, John D. Ploger, Scott A. Morris, Robert N. Baldwin, Charles A. Harp, Jason M. Winston, Philip L. Gerczak, Tyler J. van Rooyen, Isabella J. Montgomery, Fred C. Silva, Chinthaka M. TI Irradiation performance of AGR-1 high temperature reactor fuel SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on High Temperature Reactor Technology (HTR) CY OCT 27-31, 2014 CL Weihai, PEOPLES R CHINA ID COATED PARTICLE FUEL; SILVER; IDENTIFICATION; COMPACTS; RELEASE; CESIUM AB The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of Ag-110m from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 038. Analysis of silver release from individual, compacts indicated that it was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 x 10(-4) to 5 x 10(-4) for Eu-154 and 8 x 10(-7) to 3 x 10(-5) for Sr-90. The average Cs-134 fractional release from compacts was <3 x 10(-6) when all particles maintained intact SiC. An estimated four particles out of 2.98 x 10(5) in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving Cs-134 fractional release in two capsules to approximately 10-5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. Palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study. (C) 2015 Elsevier B.V. All rights reserved. C1 [Demkowicz, Paul A.; Ploger, Scott A.; Harp, Jason M.; Winston, Philip L.; van Rooyen, Isabella J.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. [Hunn, John D.; Morris, Robert N.; Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Silva, Chinthaka M.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Demkowicz, PA (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM paul.demkowicz@inl.gov OI Morris, Robert/0000-0001-7192-7733 NR 30 TC 1 Z9 1 U1 5 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2016 VL 306 SI SI BP 2 EP 13 DI 10.1016/j.nucengdes.2015.09.011 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DV9WH UT WOS:000383292400002 ER PT J AU Einerson, JJ Pham, BT Scates, DM Maki, JT Petti, DA AF Einerson, Jeffrey J. Pham, Binh T. Scates, Dawn M. Maki, John T. Petti, David A. TI Analysis of fission gas release-to-birth ratio data from the AGR irradiations SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on High Temperature Reactor Technology (HTR) CY OCT 27-31, 2014 CL Weihai, PEOPLES R CHINA AB A series of advanced gas reactor (AGR) irradiation tests is being conducted in the advanced test reactor (ATR) at Idaho National Laboratory (INL) in support of development and qualification of tristructural isotropic (TRISO) fuel used in the High temperature gas-cooled reactor (HTGR). Each AGR test consists of multiple independent capsules containing fuel compacts placed in a graphite cylinder shrouded by a steel shell. These capsules are instrumented with thermocouples (TC) embedded in the graphite enabling temperature control. For AGR-1, the first US irradiation of modern TRISO fuel completed in 2009, there were no particle failures detected. For AGR-2, a few exposed kernels existed in the fuel compacts based upon quality control data. For the AGR-3/4 experiment, particle failures in all capsules were expected because of the use of designed-to-fail (DTF) fuel particles whose kernels are identical to the driver fuel kernels and whose coatings are designed to fail under irradiation. The release-rate-to-birth-rate ratio (R/B) for each of krypton and xenon isotopes is calculated from release rates measured by the germanium detectors used in the AGR fission product monitoring (FPM) system installed downstream from each irradiated capsule. Birth rates are calculated based on the fission power in the experiment and fission product generation models. Thus, this R/B is a measure of the ability of fuel particle coating layers and compact matrix to retain fission gas atoms preventing their release into the sweep gas flow. The major factors that govern gaseous diffusion and release processes are found to be fuel material diffusion coefficient, temperature, and isotopic decay constant. To compare the release behavior among the AGR capsules and historic experiments, the R/B per failed particle is used. HTGR designers use this parameter in their fission product behavior models. For the U.S. TRISO fuel, a regression analysis is performed to establish functional relationships between R/B per failed particle of selected noble gas isotopes and temperature. The effect of isotopic half-life is also obtained from the data. To reduce measurement uncertainty of the release rate, the krypton and xenon isotopes selected for regression analysis have a short enough half-life to achieve equilibrium in the capsule, but are also long enough to provide a measurable signal in the FPM detector. The impact of uncertainty of the estimated number of failed particles in each capsule is also examined. This study found that RIB values for AGR test fuel are comparable to R/B obtained in historic tests. The correlation with isotopic half-life is very stable with time indicating no strong influence of burnup on release. The correlation can be used by reactor designers to estimate fission gas release from postulated failed fuel in HTGR cores. (C) 2015 Elsevier B.V. All rights reserved. C1 [Einerson, Jeffrey J.; Pham, Binh T.; Scates, Dawn M.; Maki, John T.; Petti, David A.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Einerson, JJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM jeffrey.einerson@inl.gov NR 16 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2016 VL 306 SI SI BP 14 EP 23 DI 10.1016/j.nucengdes.2015.11.003 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DV9WH UT WOS:000383292400003 ER PT J AU Morris, RN Baldwin, CA Demkowicz, PA Hunn, JD Reber, EL AF Morris, Robert N. Baldwin, Charles A. Demkowicz, Paul A. Hunn, John D. Reber, Edward L. TI Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on High Temperature Reactor Technology (HTR) CY OCT 27-31, 2014 CL Weihai, PEOPLES R CHINA ID SIMULATOR FACS FURNACE; COMPACTS AB The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600-1800 degrees C during post-irradiation safety tests. Fourteen compacts (a total of 58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products Ag-110m, Cs-134, Cs-137, Eu-154, Eu-155, Sr-90, and Kr-85 was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium, and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 degrees C, the data suggest that release of these elements through intact coatings may become significant after similar to 100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 x 10(-6) after 300 h at 1600 degrees C or 100 h at 1800 degrees C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 degrees C, and Kr-85 release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after 210 h at 1800 degrees C in one compact. Post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior. (C) 2016 Elsevier B.V. All rights reserved. C1 [Morris, Robert N.; Baldwin, Charles A.; Hunn, John D.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Demkowicz, Paul A.; Reber, Edward L.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Morris, RN (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM morrisrn@ornl.gov OI Morris, Robert/0000-0001-7192-7733 NR 11 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2016 VL 306 SI SI BP 24 EP 35 DI 10.1016/j.nucengdes.2016.04.031 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DV9WH UT WOS:000383292400004 ER PT J AU Hunn, JD Baldwin, CA Gerczak, TJ Montgomery, FC Morris, RN Silva, CM Demkowicz, PA Harp, JM Ploger, SA AF Hunn, John D. Baldwin, Charles A. Gerczak, Tyler J. Montgomery, Fred C. Morris, Robert N. Silva, Chinthaka M. Demkowicz, Paul A. Harp, Jason M. Ploger, Scott A. TI Detection and analysis of particles with failed SiC in AGR-1 fuel compacts SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on High Temperature Reactor Technology (HTR) CY OCT 27-31, 2014 CL Weihai, PEOPLES R CHINA AB As the primary barrier to release of radioactive isotopes emitted from the fuel kernel, retention performance of the SiC layer in tristructural isotropic (TRISO) coated particles is critical to the overall safety of reactors that utilize this fuel design. Most isotopes are well-retained by intact Sic coatings, so pathways through this layer due to cracking, structural defects, or chemical attack can significantly contribute to radioisotope release. In the US TRISO fuel development effort, release of Cs-134 and Cs-137 are used to detect SiC failure during fuel compact irradiation and safety testing because the amount of cesium released by a compact containing one particle with failed SiC is typically ten or more times higher than that released by compacts without failed SiC. Compacts with particles that released cesium during irradiation testing or post-irradiation safety testing at 1600-1800 degrees C were identified, and individual particles with abnormally low cesium retention were sorted out with the Oak Ridge National Laboratory (ORNL) Irradiated Microsphere Gamma Analyzer (IMGA). X-ray tomography was used for three-dimensional imaging of the internal coating structure to locate low-density pathways through the SiC layer and guide subsequent materialography by optical and scanning electron microscopy. All three cesium-releasing particles recovered from as-irradiated compacts showed a region where the inner pyrocarbon (IPyC) had cracked due to radiation-induced dimensional changes in the shrinking buffer and the exposed SiC had experienced concentrated attack by palladium; SiC failures observed in particles subjected to safety testing were related to either fabrication defects or showed extensive Pd corrosion through the SiC where it had been exposed by similar IPyC cracking. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hunn, John D.; Baldwin, Charles A.; Gerczak, Tyler J.; Montgomery, Fred C.; Morris, Robert N.; Silva, Chinthaka M.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Demkowicz, Paul A.; Harp, Jason M.; Ploger, Scott A.] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Hunn, JD (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM hunnjd@ornl.gov OI Morris, Robert/0000-0001-7192-7733 NR 12 TC 2 Z9 2 U1 1 U2 1 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2016 VL 306 SI SI BP 36 EP 46 DI 10.1016/j.nucengdes.2015.12.011 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DV9WH UT WOS:000383292400005 ER PT J AU Bostelmann, F Strydom, G Reitsma, F Ivanov, K AF Bostelmann, Friederike Strydom, Gerhard Reitsma, Frederik Ivanov, Kostadin TI The IAEA coordinated research programme on HTGR uncertainty analysis: Phase I status and Ex. I-1 prismatic reference results SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on High Temperature Reactor Technology (HTR) CY OCT 27-31, 2014 CL Weihai, PEOPLES R CHINA ID NEUTRON-SCATTERING; HTTR CRITICALITY; CROSS-SECTIONS; REACTOR; IMPACT AB The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied, in contrast to the historical approach where sensitivity analysis were performed and uncertainties then determined by a simplified statistical combination of a few important input parameters. New methodologies are currently under development in the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity. High Temperature Gas-cooled Reactor (HTGR) designs require specific treatment of the double heterogeneous fuel design and large graphite quantities at high temperatures. The IAEA has therefore launched a Coordinated Research Project (CRP) on HTGR Uncertainty Analysis in Modelling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the Chinese HTR-PM. Work has started on the first phase and the current CRP status is reported in the paper. A comparison of the Serpent and SCALE/KENO-VI reference Monte Carlo results for Ex. I-1 of the MHTGR-350 design is also included. It was observed that the SCALE/KENO-VI Continuous Energy (CE) k(infinity) values were 395 pcm (Ex. I-1 a) to 803 pcm (Ex. I-1b) higher than the respective Serpent lattice calculations, and that within the set of the SCALE results, the KENO-VI 238 Multi-Group (MG) k(infinity) values were up to 800 pcm lower than the KENO-VI CE values. The use of the latest ENDF-B-VII.1 cross section library in Serpent lead to 180 pcm lower k(infinity) values compared to the older ENDF-B-VII.0 dataset, caused by the modified graphite neutron capture cross section. The fourth beta release of SCALE 6.2 likewise produced lower CE k(infinity) values when compared to SCALE 6.1, and the improved performance of the hew 252-group library available in SCALE 6.2 is especially noteworthy. A SCALE/TSUNAMI uncertainty analysis of the Hot Full Power variantfor Ex. I-1 a furthermore concluded that the U-238(n,gamma) (capture) and U-235((nu) over bar) cross-section covariance matrices contributed the most to the total uncertainty of 0.58%. (C) 2016 Elsevier B.V. All rights reserved. C1 [Bostelmann, Friederike; Strydom, Gerhard] Idaho Natl Lab, Nucl Sci & Engn Div, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. [Reitsma, Frederik] IAEA, Vienna Int Ctr, Div Nucl Power, POB 100, A-1400 Vienna, Austria. [Ivanov, Kostadin] North Carolina State Univ, Dept Nucl Engn, 2500 Stinson Dr, Raleigh, NC 27695 USA. [Bostelmann, Friederike] Gesell Anlagen & Reaktorsicherheit GRS gGmbH, Garching, Germany. RP Strydom, G (reprint author), Idaho Natl Lab, Nucl Sci & Engn Div, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM friederike.bostelmann@grs.de; gerhard.strydom@inl.gov; F.Reitsma@iaea.org; knivanov@ncsu.edu RI Strydom, Gerhard/B-4865-2017 OI Strydom, Gerhard/0000-0002-5712-8553 NR 33 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2016 VL 306 SI SI BP 77 EP 88 DI 10.1016/j.nucengdes.2015.12.009 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DV9WH UT WOS:000383292400010 ER PT J AU Lisowski, DD Kraus, AR Bucknor, MD Hu, R Farmer, MT AF Lisowski, Darius D. Kraus, Adam R. Bucknor, Matthew D. Hu, Rui Farmer, Mitch T. TI Experimental observations of natural circulation flow in the NSTF SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 7th International Topical Meeting on High Temperature Reactor Technology (HTR) CY OCT 27-31, 2014 CL Weihai, PEOPLES R CHINA AB A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary of some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lisowski, Darius D.; Kraus, Adam R.; Bucknor, Matthew D.; Hu, Rui; Farmer, Mitch T.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Lisowski, DD (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM dlisowski@anl.gov NR 11 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD SEP PY 2016 VL 306 SI SI BP 124 EP 132 DI 10.1016/j.nucengdes.2016.01.014 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DV9WH UT WOS:000383292400015 ER PT J AU Suzuki, Y Ida, K Kamiya, K Yoshinuma, M Tsuchiya, H Kobayashi, M Kawamura, G Ohdachi, S Sakakibara, S Watanabe, KY Hudson, S Feng, Y Yamada, I Yasuhara, R Tanaka, K Akiyama, T Morisaki, T AF Suzuki, Y. Ida, K. Kamiya, K. Yoshinuma, M. Tsuchiya, H. Kobayashi, M. Kawamura, G. Ohdachi, S. Sakakibara, S. Watanabe, K. Y. Hudson, S. Feng, Y. Yamada, I. Yasuhara, R. Tanaka, K. Akiyama, T. Morisaki, T. CA LHD Expt Grp TI Impact of magnetic topology on radial electric field profile in the scrape-off layer of the Large Helical Device SO NUCLEAR FUSION LA English DT Article; Proceedings Paper CT Joint Meeting of the 597th Wilhelm and Else Heraeus Seminar / 7th International Workshop on Stochasticity in Fusion Plasmas CY SEP 10-12, 2015 CL Greifswald, GERMANY DE radial electric field; stochasticity; stellarator; edge plasma ID EDGE REGION; PLASMA; HELIOTRON; DIVERTOR; LHD AB The radial electric field in the plasma edge is studied in the Large Helical Device (LHD) experiments. When magnetic field lines become stochastic or open at the plasma edge and connected to the vessel, electrons are lost faster than ions along these field lines. Then, a positive electric field appears in the plasma edge. The radial electric field profile can be used to detect the effective plasma boundary. Magnetic topology is an important issue in stellarator and tokamak research because the 3D boundary has the important role of controlling MHD edge stability with respect to ELMs, and plasma detachment. Since the stochastic magnetic field layer can be controlled in the LHD by changing the preset vacuum magnetic axis, this device is a good platform to study the properties of the radial electric field that appear with the different stochastic layer width. Two magnetic configurations with different widths of the stochastic layer as simulated in vacuum are studied for low-beta discharges. It has been found that a positive electric field appeared outside of the last closed flux surface. In fact the positions of the positive electric field are found in the boundary between of the stochastic layer and the scrape-off layer. To understand where is the boundary of the stochastic layer and the scrape-off layer, the magnetic field lines are analyzed statistically. The variance of the magnetic field lines in the stochastic layer is increased outwards for both configurations. However, the skewness, which means the asymmetry of the distribution of the magnetic field line, increases for only one configuration. If the skewness is large, the connection length becomes effectively short. Since that is consistent with the experimental observation, the radial electric field can be considered as an index of the magnetic topology. C1 [Suzuki, Y.; Ida, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, M.; Kawamura, G.; Ohdachi, S.; Sakakibara, S.; Watanabe, K. Y.; Yamada, I.; Yasuhara, R.; Tanaka, K.; Akiyama, T.; Morisaki, T.] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Suzuki, Y.; Ida, K.; Yoshinuma, M.; Kobayashi, M.; Ohdachi, S.; Sakakibara, S.; Watanabe, K. Y.] Grad Univ Adv Studies SOKENDAI, Toki, Gifu 5095292, Japan. [Kamiya, K.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Hudson, S.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Feng, Y.] Max Planck Inst Plasmaphys IPP, Greifswald, Germany. RP Suzuki, Y (reprint author), Natl Inst Fus Sci, Toki, Gifu 5095292, Japan.; Suzuki, Y (reprint author), Grad Univ Adv Studies SOKENDAI, Toki, Gifu 5095292, Japan. EM suzuki.yasuhiro@LHD.nifs.ac.jp RI Ida, Katsumi/E-4731-2016; Hudson, Stuart/H-7186-2013 OI Ida, Katsumi/0000-0002-0585-4561; Hudson, Stuart/0000-0003-1530-2733 NR 30 TC 0 Z9 0 U1 9 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2016 VL 56 IS 9 SI SI AR 092002 DI 10.1088/0029-5515/56/9/092002 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DW8HO UT WOS:000383896100003 ER PT J AU Drosg, M Steurer, MM Jericha, E Drake, DM AF Drosg, M. Steurer, M. M. Jericha, E. Drake, D. M. TI Angle-Dependent Double-Differential Neutron Emission Cross Sections of H-3(t, n) Between 5.98 and 19.14 MeV and Evidence of H-4 as Intermediate Reaction Product SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Double-differential neutron emission cross sections; H-3(t, n) 5He angle-dependent differential neutron emission cross sections; formation of H-4 ID COUNTING EFFICIENCY; SPECTRUM AB Neutrons for fusion applications stem not only from monoenergetic sources but also from "white" neutron sources. In this regard, the reaction H-3(t, n) is of particular interest. Continuous neutron spectra of the H-3(t, n) reactions were measured at 5.98-, 7.47-, 10.45-, 16.41-, and 19.14-MeV triton energy at typically seven angles between 0 and 145 deg. The spectra at the three lowest energies contain only neutrons from H-3(t, n) 5He and H-3(t, 2n) He-4 reactions and therefore can more easily be interpreted than the spectra at 16.41 and 19.14 MeV, which are too complex to allow a straightforward decomposition except for estimation of the neutron emission cross section following the reaction H-3(t, d) H-4. Angle-dependent double-differential and neutron energy-integrated cross sections are given at the five energies. In most cases the peak of the two-body ground state transition could be deconvolved reliably resulting in cross sections of the reaction H-3(t, n) 5He. Although the basic scale uncertainty is similar to 5%, severe background, in particular, at the higher triton energies, increases the total uncertainty of integrated cross sections up to 9%. Naturally, the uncertainty of each energy bin of the double-differential cross sections, which depend on bin width, is considerably higher. As no previous data are reported at or near these energies, no direct comparison with other data was feasible. Evidence is provided of the formation of the short-lived neutron-rich nuclei 5He and at higher energies of 4H. C1 [Drosg, M.; Steurer, M. M.] Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. [Jericha, E.] Vienna Univ Technol, Atominst, A-1020 Vienna, Austria. [Drake, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Drosg, M (reprint author), Univ Vienna, Fac Phys, Boltzmanngasse 5, A-1090 Vienna, Austria. EM manfred.drosg@univie.ac.at NR 22 TC 0 Z9 0 U1 1 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2016 VL 184 IS 1 BP 114 EP 124 DI 10.13182/NSE16-56 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DW0VF UT WOS:000383360400007 ER PT J AU Garrett, S Smith, J Smith, R Heidrich, B Heibele, M AF Garrett, Steven Smith, James Smith, Robert Heidrich, Brenden Heibele, Michael TI Using the Sound of Nuclear Energy SO NUCLEAR TECHNOLOGY LA English DT Article DE Thermoacoustics; in-core sensing; wireless telemetry ID WATER AB The generation of sound by heat has been documented as an acoustical curiosity since 1568 when a Buddhist monk reported in his diary the loud tone generated by a ceremonial rice cooker. Over the last four decades, significant progress has been made in understanding thermoacoustic processes, enabling the design of thermoacoustic engines and refrigerators. Motivated by the Fukushima nuclear reactor disaster, we have developed and tested a thermoacoustic engine that exploits the energy-rich conditions in the core of a nuclear reactor to provide core condition information to the operators without a need for external electrical power. The heat engine is self-powered and can wirelessly transmit the temperature and reactor power level by generation of a pure tone that can be detected outside the reactor. We report here the first use of a fission-powered thermoacoustic engine capable of serving as a performance and safety sensor in the core of a research reactor and present data from the hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These measurements confirmed that the frequency of the sound produced indicates the reactor's coolant temperature and that the amplitude (above an onset threshold) is related to the reactor's operating power level. These signals can be detected even in the presence of substantial background noise generated by the reactor's fluid pumps. C1 [Garrett, Steven] Penn State Univ, Grad Program Acoust, 201 G Appl Sci Bldg, University Pk, PA 16802 USA. [Smith, James] Fundamental Fuel Properties, Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Smith, Robert] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA. [Heidrich, Brenden] Nucl Sci User Facil, Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Heibele, Michael] Westinghouse Elect Co, Nucl Measurement Methods & Applicat, Pittsburgh, PA 15235 USA. RP Garrett, S (reprint author), Penn State Univ, Grad Program Acoust, 201 G Appl Sci Bldg, University Pk, PA 16802 USA. EM sxg185@psu.edu FU U.S. Department of Energy's Idaho National Laboratory; Westinghouse Global Technology Development Department of the Westinghouse Electric Company FX The design and optimization of this sensor relied on the Dynamic Environment for Low-Amplitude Thermoacoustic Energy Conversion (DELTAEC), a software package developed and supported over 25 years by G. W. Swift and W. W. Ward at the Los Alamos National Laboratory. The authors are grateful for the support of L. Bodendorf, I. Wilson, J. Lynch, and B. Rieck of IST Mirion for fabrication of the resonator and for its fueling. We are also appreciative of the support provided by Penn State's Radiation Science and Engineering Center for ensuring that the experiment could be operated safely and in full compliance with all U.S. Nuclear Regulatory Commission regulatory limits. Author J. S. thanks J. Lee and K. Jewell for help with the assembly and testing of the data acquisition system and V. Agarwal for assistance with the data analysis. The participation of R. Ali, J. Hrisko, and A. Bascom is also appreciated. This research was supported by the U.S. Department of Energy's Idaho National Laboratory and by the Westinghouse Global Technology Development Department of the Westinghouse Electric Company. NR 22 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2016 VL 195 IS 3 BP 353 EP 362 DI 10.13182/NT16-8 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DW0UP UT WOS:000383358700010 ER PT J AU Zhang, L Lohrasbi, M Tumuluri, U Chuang, SSC AF Zhang, Long Lohrasbi, Mehdi Tumuluri, Uma Chuang, Steven S. C. TI Asymmetric Hydrogenation of alpha-Amino Ester Probed by FTIR Spectroscopy SO ORGANIC PROCESS RESEARCH & DEVELOPMENT LA English DT Article ID SITU ATR-IR; ENANTIOSELECTIVE HYDROGENATION; MODIFIED PLATINUM; CINCHONIDINE ADSORPTION; PALLADIUM CATALYST; ALKENOIC ACID; COMPLEX; KETONES; ENHANCEMENT; MODIFIER AB Asymmetric hydrogenation reaction of dehydro-alpha-amino acid (i.e., alpha-amino ester) over cinchonidine (CD) modified Pd catalyst has been studied by an array of in situ infrared spectroscopic methods, including transmission, diffuse reflectance (DR), and attenuated total reflectance (ATR). Transmission FTIR spectra probed the hydrogenation reaction process, revealed OH-O and NH-N hydrogen bonding interactions between the adsorbed CD and during the reaction. DR and ATR spectra of the hydrogenation reaction under different conditions, which are consistent with but slightly different from the transmission spectra, evidenced the successful hydrogenation of the compound. The incorporation of DR and microfluidics flow-through design allowed us to investigate the adsorption of CD on the Pd surface efficiently. The results revealed that the N-bonded CD on Pd surface in a tilted configuration had increased abundance on the Pd surface with high coverage. These valuable insights provided an image of the reaction pathway to the prochiral structure (precursor state). C1 [Zhang, Long; Chuang, Steven S. C.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Lohrasbi, Mehdi; Tumuluri, Uma] Univ Akron, Dept Chem & Biomol Engn, Akron, OH 44325 USA. [Tumuluri, Uma] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Chuang, SSC (reprint author), Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. EM schuang@uakron.edu FU Faculty Research Initiative Fund of the University of Akron FX The authors are grateful to the financial support from the Faculty Research Initiative Fund of the University of Akron. NR 37 TC 0 Z9 0 U1 7 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1083-6160 EI 1520-586X J9 ORG PROCESS RES DEV JI Org. Process Res. Dev. PD SEP PY 2016 VL 20 IS 9 BP 1668 EP 1676 DI 10.1021/acs.oprd.6b00222 PG 9 WC Chemistry, Applied; Chemistry, Organic SC Chemistry GA DW4VC UT WOS:000383640100015 ER PT J AU Wingard, LA Guzman, PE Sabatini, JJ AF Wingard, Leah A. Guzman, Pablo E. Sabatini, Jesse J. TI A Chlorine Gas-Free Synthesis of Dichloroglyoxime SO ORGANIC PROCESS RESEARCH & DEVELOPMENT LA English DT Article AB A new procedure for the synthesis and isolation of dichloroglyoxime is discussed. This material has historically been synthesized from glyoxime and elemental chlorine gas. Chlorine gas is difficult to handle and control in the laboratory and has a high toxicity profile. Our method for making dichloroglyoxime in high purity uses glyoxime and N-chlorosuccinimide in DMF, with a lithium chloride-based workup. Overall yields are comparable with those obtained using the procedure involving the use of chlorine gas. C1 [Guzman, Pablo E.; Sabatini, Jesse J.] US Army Res Lab, Energet Technol Branch, Aberdeen Proving Ground, MD 21005 USA. [Wingard, Leah A.] Oak Ridge Associated Univ, Belcamp, MD 21017 USA. RP Sabatini, JJ (reprint author), US Army Res Lab, Energet Technol Branch, Aberdeen Proving Ground, MD 21005 USA. EM jesse.j.sabatini.civ@mail.mil FU Army Research Laboratory [W911NF-12-2-0019] FX Research sponsored by the Army Research Laboratory was accomplished in part under Cooperative Agreement Number W911NF-12-2-0019. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. NR 11 TC 1 Z9 1 U1 1 U2 1 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1083-6160 EI 1520-586X J9 ORG PROCESS RES DEV JI Org. Process Res. Dev. PD SEP PY 2016 VL 20 IS 9 BP 1686 EP 1688 DI 10.1021/acs.oprd.6b00252 PG 3 WC Chemistry, Applied; Chemistry, Organic SC Chemistry GA DW4VC UT WOS:000383640100017 ER PT J AU Qin, H Goldston, R Wurtele, J Freidberg, J AF Qin, Hong Goldston, Robert Wurtele, Jonathan Freidberg, Jeffrey TI Ronald Crosby Davidson SO PHYSICS TODAY LA English DT Biographical-Item C1 [Qin, Hong; Goldston, Robert] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Hefei, Peoples R China. [Wurtele, Jonathan] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Freidberg, Jeffrey] MIT, Cambridge, MA 02139 USA. RP Qin, H (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA.; Qin, H (reprint author), Univ Sci & Technol China, Hefei, Peoples R China. NR 0 TC 0 Z9 0 U1 2 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD SEP PY 2016 VL 69 IS 9 BP 60 EP 60 PG 1 WC Physics, Multidisciplinary SC Physics GA DW8BR UT WOS:000383878800014 ER PT J AU Zhang, X Liao, YH Tong, HM Zhang, L Zhang, SL Ren, G AF Zhang Xing Liao Yu-Heng Tong Hui-Min Zhang Lei Zhang Sheng-Li Ren Gang TI 3D Reconstruction and Structural Study of IgG1 Antibody by Individual-particle Electron Tomography SO PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS LA Chinese DT Article DE antibody; immunoglobulin; transmission electron microscopy technique; individual-particle electron tomography ID CRYOELECTRON TOMOGRAPHY; CRYO-EM; CONFORMATIONAL-CHANGES; MONOCLONAL-ANTIBODY; MOLECULAR-DYNAMICS; CRYSTAL-STRUCTURE; X-RAY; MICROSCOPY; RECEPTOR; VISUALIZATION AB Antibody (also named as an immunoglobulin, Ig), a most important macromolecule for immune response in human body, has been developed as macromolecular, drug to treat the cancer and immune diseases. Understanding of antibody three-dimensional (3D) structure and fluctuation could be an important step for further understanding and controlling the antibody pharmacological function. However, the study is limited by antibody flexible structure. In this paper, we reviewed the current research progresses on structural study of human IgG1 antibody conducted by our recently developed individual-particle electron tomography (IPET) method. The review includes the sample preparation method, basic logic of image processing strategy, 3D analysis and its application in antibody-drug conjunction and antibody structural fluctuation. We also discussed the strengths and weakness of the technique. C1 [Zhang Xing; Liao Yu-Heng; Zhang Lei; Zhang Sheng-Li] Xi An Jiao Tong Univ, Dept Appl Phys, Xian 710049, Peoples R China. [Zhang Xing; Liao Yu-Heng; Tong Hui-Min; Zhang Lei; Ren Gang] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zhang, SL (reprint author), Xi An Jiao Tong Univ, Dept Appl Phys, Xian 710049, Peoples R China.; Zhang, SL; Ren, G (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM zhangsl@mail.xjtu.edu.cn; gren@lbl.gov RI Zhang, Lei/G-6427-2012 OI Zhang, Lei/0000-0002-4880-824X FU U.S. Department of Energy [DE-AC02-05CH11231]; U.S. NIH (NHLBI) [1R01HL115153]; National Natural Science Foundation of China [11374237, 11504287] FX This work was supported by grants from U.S. Department of Energy (DE-AC02-05CH11231), U.S. NIH (NHLBI, #1R01HL115153) and The National Natural Science Foundation of China (11374237, 11504287). NR 53 TC 0 Z9 0 U1 4 U2 4 PU CHINESE ACAD SCIENCES, INST BIOPHYSICS PI BEIJING PA 15 DATUN RD, CHAOYAND DISTRICT, BEIJING, 100101, PEOPLES R CHINA SN 1000-3282 J9 PROG BIOCHEM BIOPHYS JI Prog. Biochem. Biophys. PD SEP PY 2016 VL 43 IS 9 BP 839 EP 849 DI 10.16476/j.pibb.2015.0389 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DW8XQ UT WOS:000383939200002 ER PT J AU Kapucu, N Haupt, B Yuksel, M Guvenc, I Saad, W AF Kapucu, Naim Haupt, Brittany Yuksel, Murat Guvenc, Ismail Saad, Walid TI On the Evolution of Wireless Communication Technologies and Spectrum Sharing for Public Safety: Policies and Practice SO RISK HAZARDS & CRISIS IN PUBLIC POLICY LA English DT Article DE wireless communication technology; spectrum sharing; public safety ID EMERGENCY RESPONSE; NETWORKS; COORDINATION; MANAGEMENT; GRIDS AB The field of emergency and crisis management continuously strives to enhance collaboration, communication, and coordination among public safety organizations. Successful integration is challenging due to current policies and regulations. Moreover, policymakers must predict future needs. Regardless of the challenges, development and growth of a national public safety communication system is no longer a hopeless cause and is anticipated to mitigate challenges by enhancing security, dependability and fault tolerance, cost effectiveness, interoperability, spectral efficiency, and advanced capabilities. Although this national public safety communication system is in the process of being implemented by various local, state, and federal agencies, such adoption is voluntary and attributes to a disconnect between policies and stakeholders. This study reviews the evolution of public safety communication system and discusses benefits and challenges of a national system, the policies and regulations affecting wireless communication technologies and spectrum sharing, and the influence of evolving technologies. C1 [Kapucu, Naim] Univ Cent Florida, Publ Policy, Orlando, FL 32816 USA. [Kapucu, Naim] Univ Cent Florida, Sch Publ Adm, Orlando, FL 32816 USA. [Haupt, Brittany; Guvenc, Ismail] UCF, Orlando, FL USA. [Yuksel, Murat] Univ Nevada, CSE Dept, Reno, NV USA. [Saad, Walid] Univ S Florida, Elect Engn, Tampa, FL 33620 USA. [Yuksel, Murat] Pepperdata, Sunnyvale, CA USA. [Yuksel, Murat] AT&T Labs, Florham Pk, NJ USA. [Yuksel, Murat] Los Alamos Natl Lab, Los Alamos, NM USA. [Guvenc, Ismail] Mitsubishi Elect Res Labs, Cambridge, MA USA. [Guvenc, Ismail] DOCOMO Innovat Inc, Palo Alto, CA USA. [Saad, Walid] Virginia Tech, Bradley Dept Elect & Comp Engn, Blacksburg, VA USA. [Saad, Walid] Wireless VT Res Grp, Network Sci Wireless & Secur NetSciWiS Lab, Blacksburg, VA USA. RP Kapucu, N (reprint author), Univ Cent Florida, Publ Policy, Orlando, FL 32816 USA.; Kapucu, N (reprint author), Univ Cent Florida, Sch Publ Adm, Orlando, FL 32816 USA. NR 58 TC 1 Z9 1 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1944-4079 J9 RISK HAZARDS CRISIS JI Risk Hazards Crisis Public Policy PD SEP PY 2016 VL 7 IS 3 BP 129 EP 145 DI 10.1002/rhc3.12098 PG 17 WC Public Administration SC Public Administration GA DW6GS UT WOS:000383749000002 ER PT J AU Pena, A Busquets, A Gomila, M Mulet, M Gomila, RM Reddy, TBK Huntemann, M Pati, A Ivanova, N Markowitz, V Garcia-Valdes, E Goker, M Woyke, T Klenk, HP Kyrpides, N Lalucat, J AF Pena, Arantxa Busquets, Antonio Gomila, Margarita Mulet, Magdalena Gomila, Rosa M. Reddy, T. B. K. Huntemann, Marcel Pati, Amrita Ivanova, Natalia Markowitz, Victor Garcia-Valdes, Elena Goeker, Markus Woyke, Tanja Klenk, Hans-Peter Kyrpides, Nikos Lalucat, Jorge TI High quality draft genome sequences of Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorataDSM 17059(T) type strains SO STANDARDS IN GENOMIC SCIENCES LA English DT Article DE Genomic Encyclopedia of Type Strains (GEBA); One Thousand Microbial Genomes Project (KMG-I); P. fulva; P. parafulva; P. cremoricolorata; Genome; Type strains ID SYSTEM; HYBRIDIZATION; ENCYCLOPEDIA; STANDARD; BACTERIA; ARCHAEA; PROJECT; VERSION AB Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorata DSM 17059(T). All three genomes are comparable in size (4.6-4.9 Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-togenome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex. C1 [Pena, Arantxa; Busquets, Antonio; Gomila, Margarita; Mulet, Magdalena; Garcia-Valdes, Elena; Lalucat, Jorge] Univ Illes Balears, Dept Biol Microbiol, Campus UIB,Crtra Valldemossa Km 7-5, Palma de Mallorca 07122, Spain. [Gomila, Rosa M.] Univ Illes Balears, Serv Cient Tecn, Palma de Mallorca, Spain. [Reddy, T. B. K.; Huntemann, Marcel; Pati, Amrita; Ivanova, Natalia; Markowitz, Victor; Woyke, Tanja; Kyrpides, Nikos] DOE Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. [Garcia-Valdes, Elena; Lalucat, Jorge] CSIC UIB, IMEDEA, Inst Mediterrani Estudis Avancats, Palma de Mallorca, Spain. [Goeker, Markus] Leibniz Inst DSMZ German Collect Microorganisms &, D-38124 Braunschweig, Germany. [Klenk, Hans-Peter] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Kyrpides, Nikos] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia. RP Lalucat, J (reprint author), Univ Illes Balears, Dept Biol Microbiol, Campus UIB,Crtra Valldemossa Km 7-5, Palma de Mallorca 07122, Spain.; Lalucat, J (reprint author), CSIC UIB, IMEDEA, Inst Mediterrani Estudis Avancats, Palma de Mallorca, Spain. EM jlalucat@uib.es RI Kyrpides, Nikos/A-6305-2014; Faculty of, Sciences, KAU/E-7305-2017; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; OI Kyrpides, Nikos/0000-0002-6131-0462; Garcia-Valdes, Elena/0000-0001-5829-0002; Ivanova, Natalia/0000-0002-5802-9485 FU Spanish MINECO [CGL2011-24318, CGL2015-70925-P, Consolider CSD2009-00006]; EuroNanoMedII project NanoDiaBac [AC14/00017]; Government of the Balearic Islands; FEDER; Conselleria d'Educacio, Cultura i Universitats del Govern de les Illes Balears; European Social Fund; University of the Balearic Islands FX Financial support was obtained from the Spanish MINECO through projects CGL2011-24318, CGL2015-70925-P and Consolider CSD2009-00006, from the EuroNanoMedII project NanoDiaBac (AC14/00017), as well as funds for competitive research groups from the Government of the Balearic Islands (with FEDER cofunding). Margarita Gomila is the recipient of a postdoctoral contract from the Conselleria d'Educacio, Cultura i Universitats del Govern de les Illes Balears and the European Social Fund. Arantxa Pena was supported by a postdoctoral contract from the University of the Balearic Islands. NR 40 TC 0 Z9 0 U1 3 U2 3 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1944-3277 J9 STAND GENOMIC SCI JI Stand. Genomic Sci. PD SEP 1 PY 2016 VL 11 AR 55 DI 10.1186/s40793-016-0178-2 PG 10 WC Genetics & Heredity; Microbiology SC Genetics & Heredity; Microbiology GA DW8PY UT WOS:000383919200001 PM 27594974 ER PT J AU Mokurala, K Baranowski, LL Lucas, FWD Siol, S van Hest, MFAM Mallick, S Bhargava, P Zakutayev, A AF Mokurala, Krishnaiah Baranowski, Lauryn L. de Souza Lucas, Francisco W. Siol, Sebastian van Hest, Maikel F. A. M. Mallick, Sudhanshu Bhargava, Parag Zakutayev, Andriy TI Combinatorial Chemical Bath Deposition of CdS Contacts for Chalcogenide Photovoltaics SO ACS COMBINATORIAL SCIENCE LA English DT Article DE buffer layer; CIGSe; CZTSe; current-voltage characteristics; external quantum efficiency; solar cells ID FILM SOLAR-CELLS; OF-THE-ART; BUFFER LAYER; EFFICIENCY; LIBRARIES; DEVICES; IN2S3 AB Contact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se-2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices. Combinatorial thickness steps of CdS thin films were achieved by removal of the substrate from the chemical bath, at regular intervals of time, and in equal distance increments. The trends in the photoconversion efficiency and in the spectral response of the PV devices as a function of thickness of CdS contacts were explained with the help of optical and morphological characterization of the CdS thin films. The maximum PV efficiency achieved for the combinatorial dip-coating CBD was similar to that for the PV devices processed using conventional CBD. The results of this study lead to the conclusion that combinatorial dip-coating can be used to accelerate the optimization of PV device performance of CdS and other candidate contact layers for a wide range of emerging absorbers. C1 [Mokurala, Krishnaiah; Baranowski, Lauryn L.; de Souza Lucas, Francisco W.; Siol, Sebastian; van Hest, Maikel F. A. M.; Zakutayev, Andriy] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Mokurala, Krishnaiah; Mallick, Sudhanshu; Bhargava, Parag] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Baranowski, Lauryn L.] Colorado Sch Mines, Golden, CO 80401 USA. [de Souza Lucas, Francisco W.] Univ Fed Sao Carlos, BR-13565905 Sao Carlos, SP, Brazil. RP Mokurala, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Mokurala, K (reprint author), Indian Inst Technol, Bombay 400076, Maharashtra, India. EM krishrama33@gmail.com; andriy.zakutayev@nrel.gov OI Lucas, Francisco Willian de Souza/0000-0002-4637-8469; Siol, Sebastian/0000-0002-0907-6525; Mallick, Sudhanshu/0000-0002-9744-8746 FU Solar Energy Research Institute for India; U.S. (SERIIUS) - U.S. Department of Energy (Office of Science) [DE AC36-08G028308]; U.S. (SERIIUS) - U.S. Department of Energy (Office of Basic Energy Sciences) [DE AC36-08G028308]; U.S. (SERIIUS) - U.S. Department of Energy (Energy Efficiency and Renewable Energy, Solar Energy Technology Program) [DE AC36-08G028308]; U.S. (SERIIUS) - U.S. Department of Energy (Office of International Affairs) [DE AC36-08G028308]; Government of India [IUSSTF/JCERDC-SERIIUS/2012]; MAGEEP SERIIUS visiting scholars program; Sao Paulo Research Foundation (FAPESP) [2014/12166-3]; Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program; US Department of Energy, Office of Energy Efficiency and Renewable Energy FX This work was supported by the Solar Energy Research Institute for India and the U.S. (SERIIUS) funded jointly by the U.S. Department of Energy subcontract DE AC36-08G028308 (Office of Science, Office of Basic Energy Sciences, and Energy Efficiency and Renewable Energy, Solar Energy Technology Program, with support from the Office of International Affairs) and the Government of India subcontract IUSSTF/JCERDC-SERIIUS/2012. The student exchange of KM was financially supported by MAGEEP SERIIUS visiting scholars program. F.W.S.L was funded by the Sao Paulo Research Foundation (FAPESP), grant 2014/12166-3. L.L.B. was supported by the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program. AZ acknowledges funding from US Department of Energy, Office of Energy Efficiency and Renewable Energy. The authors would like to thank to Stephen Glynn, Carolyn Beall, James Burst and Clay DeHart for their support during device fabrication and characterization. We would also like to acknowledge the support from NCPRE, DST, IIT Bombay, and SAIF, CEN and IRCC for the analysis. NR 51 TC 0 Z9 0 U1 21 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2156-8952 EI 2156-8944 J9 ACS COMB SCI JI ACS Comb. Sci. PD SEP PY 2016 VL 18 IS 9 BP 583 EP 589 DI 10.1021/acscombsci.6b00074 PG 7 WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Chemistry; Pharmacology & Pharmacy GA DV8UX UT WOS:000383213300007 PM 27479495 ER PT J AU Ruiz-Yi, B Bunn, JK Stasak, D Mehta, A Besser, M Kramer, MJ Takeuchi, I Hattrick-Simpers, J AF Ruiz-Yi, Benjamin Bunn, Jonathan Kenneth Stasak, Drew Mehta, Apurva Besser, Matthew Kramer, Matthew J. Takeuchi, Ichiro Hattrick-Simpers, Jason TI The Different Roles of Entropy and Solubility in High Entropy Alloy Stability SO ACS COMBINATORIAL SCIENCE LA English DT Article DE entropy; solubility; alloys; stability; metastable solid solution; mutual miscibility ID BULK METALLIC-GLASS; X-RAY-DIFFRACTION; MULTICOMPONENT ALLOYS; MECHANICAL-PROPERTIES; MATERIALS LIBRARIES; PRINCIPAL ELEMENTS; PHASE-FORMATION; SOLID-SOLUTION; MICROSTRUCTURE; COMBINATORIAL AB Multiprincipal element high entropy alloys stabilized as a single alloy phase represent a new material system with promising properties, such as high corrosion and creep resistance, sluggish diffusion, and high temperature tensile strength. However, the mechanism of stabilization to form single phase alloys is controversial. Early studies hypothesized that a large entropy of mixing was responsible for stabilizing the single phase; more recent work has proposed that the single-phase solid solution is the result of mutual solubility of the principal elements. Here, we demonstrate the first self-consistent study of the relative importance of these two proposed mechanisms. In situ high-throughput synchrotron diffraction studies were used to monitor the stability of the single phase alloy in thin-film (Al1-x-yCuxMoy)FeNiTiVZr composition spread samples. Our results indicate that a metastable solid solution can be captured via the rapid quenching typical of physical vapor deposition processes, but upon annealing the solid-solution phase stability is primarily governed by mutual miscibility. C1 [Ruiz-Yi, Benjamin; Bunn, Jonathan Kenneth; Hattrick-Simpers, Jason] Univ South Carolina, Dept Chem Engn, Columbia, SC 29208 USA. [Ruiz-Yi, Benjamin; Bunn, Jonathan Kenneth; Hattrick-Simpers, Jason] Univ South Carolina, SmartState Ctr Strateg Approaches Generat Elect, Columbia, SC 29208 USA. [Stasak, Drew; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Mehta, Apurva] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Besser, Matthew; Kramer, Matthew J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Hattrick-Simpers, J (reprint author), Univ South Carolina, Dept Chem Engn, Columbia, SC 29208 USA.; Hattrick-Simpers, J (reprint author), Univ South Carolina, SmartState Ctr Strateg Approaches Generat Elect, Columbia, SC 29208 USA. EM simpers@cec.sc.edu FU Illinois Clean Coal Institute [ICCI 15-06]; Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy [DE-AR000049]; SmartState Center for the Strategic Approaches to the Generation of Electricity; Critical Materials Institute, an Energy Innovation Hub - U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office; DOE [DE-AC02-07CH11358]; NSF Major Research Instrumentation program [DMR-1428620]; US Department of Energy, Office of Science, Office of Basic Energy Services [DE-AC02-76SF00515] FX The authors thank the Illinois Clean Coal Institute for providing funding through ICCI 15-06. The work is funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award number DE-AR000049. We also acknowledge the support of the SmartState Center for the Strategic Approaches to the Generation of Electricity. This is supported, in part, by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. The Ames Laboratory is operated by Iowa State University under DOE Contract No. DE-AC02-07CH11358. This work made use of the South Carolina SAXS Collaborative, supported by the NSF Major Research Instrumentation program (award DMR-1428620). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Services under Contract No. DE-AC02-76SF00515 NR 56 TC 0 Z9 0 U1 29 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2156-8952 EI 2156-8944 J9 ACS COMB SCI JI ACS Comb. Sci. PD SEP PY 2016 VL 18 IS 9 BP 596 EP 603 DI 10.1021/acscombsci.6b00077 PG 8 WC Chemistry, Applied; Chemistry, Medicinal; Chemistry, Multidisciplinary SC Chemistry; Pharmacology & Pharmacy GA DV8UX UT WOS:000383213300009 PM 27494349 ER PT J AU Noiriel, C Steefel, CI Yang, L Bernard, D AF Noiriel, Catherine Steefel, Carl I. Yang, Li Bernard, Dominique TI Effects of pore-scale precipitation on permeability and flow SO ADVANCES IN WATER RESOURCES LA English DT Article DE Calcite precipitation; Growth velocity; Growth rate; Porosity; Permeability; X-ray microtomography ID X-RAY MICROTOMOGRAPHY; CALCITE GROWTH-RATES; POROUS-MEDIA; LIMESTONE DISSOLUTION; TOMOGRAPHIC-IMAGES; FLUID-FLOW; RATE LAWS; KINETICS; CARBONATE; INHIBITION AB The effects of calcite precipitation on porous media permeability and flow were evaluated with a combined experimental and modeling approach. X-ray microtomography images of two columns packed with glass beads and calcite (spar crystals) or aragonite (Bahamas ooids) injected with a supersaturated solution (log Omega = 1.42) were processed in order to calculate rates of calcite precipitation with a spatial resolution of 4.46 mu m. Identification and localization of the newly precipitated crystals on the 3D images was performed and results used to calculate the crystal growth rates and velocities. The effects of carbonate precipitation were also evaluated in terms of the integrated precipitation rate over the length of the column, crystal shape, surface area and pore roughness changes. While growth was epitaxial on calcite spar, calcite rhombohedra formed on glass beads and clusters of polyhedrons formed on aragonite ooids. Near the column inlet, calcite precipitation occurred preferentially on carbonate grains compared to glass beads, with almost 100% of calcite spar surface area covered by new crystals versus 92% in the case of aragonite and 11% in the case of glass beads. Although the experimental chemistry and flow boundary conditions in the two columns were similar, their porosity-permeability evolution was different because the nucleation and subsequent crystal growth on the two substrates (i.e., calcite spar and aragonite ooids) was very different. The impact of mineral precipitation on pore-scale flow and permeability was evaluated using a pore-scale Stokes solver that accounted for the changes in pore geometry. For similar magnitude reductions in porosity, the decrease in permeability was highest within the sample that experienced the greatest increase in pore roughness. Various porous media models weregenerated to show the impact of different crystal growth patterns and pore roughness changes on flow and permeability-porosity relationship. Under constant flow rate boundary conditions, precipitation resulted in an increase in both the average and maximum velocities. Increases in, pore roughness led to a more heterogeneous flow field, principally through the effects on the fastest and slowest velocities within the domain. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Noiriel, Catherine] Univ Toulouse 3, Univ Toulouse, Observ Midi Pyrenees, Geosci Environm Toulouse,CNRS,IRD, 14 Ave Edouard Belin, F-31400 Toulouse, France. [Steefel, Carl I.; Yang, Li] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Bernard, Dominique] Univ Bordeaux, CNRS, Inst Chim Matiere Condensee Bordeaux, UPR 9048, F-33608 Pessac, France. RP Noiriel, C (reprint author), Univ Toulouse 3, Univ Toulouse, Observ Midi Pyrenees, Geosci Environm Toulouse,CNRS,IRD, 14 Ave Edouard Belin, F-31400 Toulouse, France. EM catherine.noiriel@get.obs-mip.fr RI Steefel, Carl/B-7758-2010; Noiriel, Catherine/B-6214-2009 OI Noiriel, Catherine/0000-0002-6283-1155 FU Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-05CH11231] FX This work was supported in part by the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. Synchrotron XMT work was performed at the Advanced Light Source, Beamline 8.3.2. Joern Larsen (ESD/LBNL), Alastair MacDowell (ALS/LBNL), Philippe Recourt, Sandra Ventalon and Sylvie Regnier (Universite de Lille 1) are thanked for their assistance with ICP-MS, XMT acquisition, SEM, Raman, and preparation of thin sections, respectively. NR 66 TC 1 Z9 1 U1 17 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2016 VL 95 SI SI BP 125 EP 137 DI 10.1016/j.advwatres.2015.11.013 PG 13 WC Water Resources SC Water Resources GA DV9YY UT WOS:000383299300010 ER PT J AU Klise, KA Moriarty, D Yoon, H Karpyn, Z AF Klise, Katherine A. Moriarty, Dylan Yoon, Hongkyu Karpyn, Zuleima TI Automated contact angle estimation for three-dimensional X-ray microtomography data SO ADVANCES IN WATER RESOURCES LA English DT Article DE Contact angle; Multiphase; Wettability; X-ray microtomography ID POROUS-MEDIUM SYSTEMS; CAPILLARY-PRESSURE; BEAD PACKS; WATER-WET; SCALE; WETTABILITY; FLOW; CO2 AB Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contact angles using the experimental data..The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Wetting characteristics in mixed-wet systems also change significantly after displacement cycles.. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu] Sandia Natl Labs, Geosci Res & Applicat Grp, POB 5800, Albuquerque, NM 87185 USA. [Karpyn, Zuleima] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Karpyn, Zuleima] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. RP Klise, KA (reprint author), Sandia Natl Labs, Geosci Res & Applicat Grp, POB 5800, Albuquerque, NM 87185 USA. EM kaklise@sandia.gov OI Yoon, Hongkyu/0000-0001-6719-280X FU U.S. Department of Energy, the Office of Science, Basic Energy Sciences program [DE-SC0006883]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04 94AL85000] FX The authors would like to acknowledge funding support from the U.S. Department of Energy, the Office of Science, Basic Energy Sciences program under Award Number DE-SC0006883. We also thank Victor Torrealba (The Pennsylvania State University) and Jesse Roach (Tetra Tech) for their technical comments. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04 94AL85000. NR 26 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2016 VL 95 SI SI BP 152 EP 160 DI 10.1016/j.advwatres.2015.11.006 PG 9 WC Water Resources SC Water Resources GA DV9YY UT WOS:000383299300012 ER PT J AU Yang, XF Mehmani, Y Perkins, WA Pasquali, A Schonherr, M Kim, K Perego, M Parks, ML Trask, N Balhoff, MT Richmond, MC Geier, M Krafczyk, M Luo, LS Tartakovsky, AM Scheibe, TD AF Yang, Xiaofan Mehmani, Yashar Perkins, William A. Pasquali, Andrea Schoenherr, Martin Kim, Kyungjoo Perego, Mauro Parks, Michael L. Trask, Nathaniel Balhoff, Matthew T. Richmond, Marshall C. Geier, Martin Krafczyk, Manfred Luo, Li-Shi Tartakovsky, Alexandre M. Scheibe, Timothy D. TI Intercomparison of 3D pore-scale flow and solute transport simulation methods SO ADVANCES IN WATER RESOURCES LA English DT Article DE Pore-scale modeling; Porous media flow; Computational fluid dynamics; Lattice Boltzmann method; Smoothed particle hydrodynamics; Pore-network model ID SMOOTHED PARTICLE HYDRODYNAMICS; LATTICE BOLTZMANN-EQUATION; MAGNETIC-RESONANCE MICROSCOPY; SINGLE-PHASE FLOW; POROUS-MEDIA; PACKED-BEDS; PRESSURE-DROP; FLUID-FLOW; DISPERSION; SYSTEMS AB Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods. (C) 2015 Published by Elsevier Ltd. C1 [Yang, Xiaofan; Perkins, William A.; Richmond, Marshall C.; Tartakovsky, Alexandre M.; Scheibe, Timothy D.] Pacific Northwest Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA. [Mehmani, Yashar] Stanford Univ, Sch Earth Energy & Environm Sci, 397 Panama Mall,Mitchell Bldg 101, Stanford, CA 94305 USA. [Pasquali, Andrea; Schoenherr, Martin; Geier, Martin; Krafczyk, Manfred] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Modelling Civil Engn, Pockelsstr 3, D-38106 Braunschweig, Germany. [Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Trask, Nathaniel] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02906 USA. [Balhoff, Matthew T.] Univ Texas Austin, Dept Petr & Geosyst Engn, 200 E Dean Keeton St,Stop C0300, Austin, TX 78712 USA. [Luo, Li-Shi] Old Dominion Univ, Dept Math & Stat, Engn & Computat Sci Bldg,4700 Elkhorn Ave, Norfolk, VA 23529 USA. [Luo, Li-Shi] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. RP Scheibe, TD (reprint author), Pacific Northwest Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA. EM tim.scheibe@pnnl.gov RI Luo, Li-Shi/A-4561-2011; Scheibe, Timothy/A-8788-2008; Richmond, Marshall/D-3915-2013 OI Luo, Li-Shi/0000-0003-1215-7892; Scheibe, Timothy/0000-0002-8864-5772; Richmond, Marshall/0000-0003-0111-1485 FU U. S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) through the PNNL Subsurface Biogeochemical Research Scientific Focus Area project; DOE-BER; DOE Office of Science [DE-AC02-05CH11231]; DOE [DE-AC06-76RLO 1830]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE Office of Science Advanced Scientific Computing Research (ASCR) Applied Mathematics program as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4); Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Forschungsgemeinschaft (DFG) [FOR 1083]; Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, DOE Project [DE-SC0001114] FX Research at Pacific Northwest National Laboratory (PNNL) was supported by the U. S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) through the PNNL Subsurface Biogeochemical Research Scientific Focus Area project. Computations described here were performed using computational facilities of the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE-BER and located at PNNL, computational facilities of PNNL's Institutional Computing program, and computational facilities of the National Energy Research Supercomputing Center, which is supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231. PNNL is operated for the DOE by Battelle Memorial Institute under Contract No. DE-AC06-76RLO 1830.; Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This SPH work was supported by the DOE Office of Science Advanced Scientific Computing Research (ASCR) Applied Mathematics program as part of the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.; Institute for Computational Modelling in Civil Engineering (iRMB) at Technische Universitat Braunschweig gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG) for funding the Research Training Group MUSIS (FOR 1083).; The pore-network modeling was carried out under funding from the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, DOE Project No. DE-SC0001114. We would also like to thank Karsten Thompson and LSU for providing the network extraction algorithm. NR 82 TC 2 Z9 2 U1 15 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2016 VL 95 SI SI BP 176 EP 189 DI 10.1016/j.advwatres.2015.09.015 PG 14 WC Water Resources SC Water Resources GA DV9YY UT WOS:000383299300014 ER PT J AU Peszynska, M Trykozko, A Iltis, G Schlueter, S Wildenschild, D AF Peszynska, Malgorzata Trykozko, Anna Iltis, Gabriel Schlueter, Steffen Wildenschild, Dorthe TI Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling SO ADVANCES IN WATER RESOURCES LA English DT Article DE Porescale modeling; Imaging porous media; Microtomography; Biomass and biofilm growth; Parabolic variational inequality; Multicomponent multiphase flow and transport in porous media ID PHASE-FIELD MODELS; FLOW; SIMULATIONS; SUBSURFACE; MESOSCALE; INERTIA AB Biofilm growth changes many physical properties of porous media such as porosity, permeability and mass transport parameters. The growth depends on various environmental conditions, and in particular, on flow rates. Modeling the evolution of such properties is difficult both at the porescale where the phase morphology can be distinguished, as well as during upscaling to the corescale effective properties. Experimental data on biofilm growth is also limited because its collection can interfere with the growth, while imaging itself presents challenges. In this paper we combine insight from imaging, experiments, and numerical simulations and visualization. The experimental dataset is based on glass beads domain inoculated by biomass which is subjected to various flow conditions promoting the growth of biomass and the appearance of a biofilm phase. The domain is imaged and the imaging data is used directly by a computational model for flow and transport. The results of the computational flow model are upscaled to produce conductivities which compare well with the experimentally obtained hydraulic properties of the medium. The flow model is also coupled to a newly developed biomass-nutrient growth model, and the model reproduces morphologies qualitatively similar to those observed in the experiment. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Peszynska, Malgorzata] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA. [Trykozko, Anna] Univ Warsaw, Interdisciplinary Ctr Modeling, PL-00325 Warsaw, Poland. [Iltis, Gabriel] Brookhaven Natl Lab, Upton, NY 11973 USA. [Schlueter, Steffen] Helmholtz Ctr Environm Res, Leipzig, Germany. [Wildenschild, Dorthe] Oregon State Univ, Chem Biol & Environm Engn, Corvallis, OR 97331 USA. RP Peszynska, M (reprint author), Oregon State Univ, Dept Math, Corvallis, OR 97331 USA. EM mpesz@math.oregonstate.edu; A.Trykozko@icm.edu.pl; giltis@bnl.gov; steffen.schlueter@ufz.de; dorthe.wildenschild@oregonstate.edu OI Wildenschild, Dorthe/0000-0002-6504-7817; Peszynska, Malgorzata/0000-0001-5013-7943 FU NSF [DMS-1115827, DMS-0511190]; Polish-Norwegian Research Programme [Pol-Nor/209820/14/2013]; PL-Grid Infrastructure; Environmental Remediation Science Program under the Department of Energy, Office of Biological and Environmental Research (BER) [DE-FG02-09ER64734, ER64734-1032845-0014978]; DOE Office of Science [DE-AC02-06CH11357]; GeoSoilEnviro- CARS - National Science Foundation Earth Sciences [EAR-1128799]; Department of Energy, Geosciences [DE-FG02-94ER14466]; Feodor Lynen Fellowship from the German Humboldt Foundation FX In addition, we would like to acknowledge our funding and other resources. Peszynska and Wildenschild were partially supported by the grant NSF DMS-1115827 "Hybrid modeling in porous media". Trykozko received funding from the Polish-Norwegian Research Programme operated by the National Centre for Research and Development under the Norwegian Financial Mechanism 2009-2014 within Project contract no. Pol-Nor/209820/14/2013; her research was also supported in part by PL-Grid Infrastructure. We thank Dr. Kerstin Kantiem (ICM, University of Warsaw) for visualizations performed with VisNow tool [1]. M. Peszynska thanks Oregon State University students Adriana Mendoza and Jessica Armstrong for useful discussions on the early versions of the (BN) model.; Wildenschild and Iltis were also supported from the Environmental Remediation Science Program (DE-FG02-09ER64734) under the Department of Energy, Office of Biological and Environmental Research (BER), Grant ER64734-1032845-0014978. The work was performed at GeoSoilEnviro- CARS (Sector 13), Advanced Photon Source (APS), ANL. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract /no. DE-AC02-06CH11357. We thank the staff (in particular Dr. Mark Rivers) and acknowledge the support of GeoSoilEnviro- CARS (Sector 13), which is supported by the National Science Foundation Earth Sciences (EAR-1128799), and the Department of Energy, Geosciences (DE-FG02-94ER14466). S. Schuleter was supported by a Feodor Lynen Fellowship from the German Humboldt Foundation.; For the flow computations and (H) part of the (H-BN) model we used an x86 cluster Hydra, HP BladeSystem/Actina based on AMD Opteron 2435/Intel Xeon 5660/AMD Opteron 6132 nodes x86_64 architecture with 24/32/256GB of memory, operated at Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw. The (BN) solver was implemented in MATLAB as a modification of flow-advection-diffusion-reaction code and supported by the NSF grants DMS-1115827 and DMS-0511190. NR 43 TC 3 Z9 3 U1 8 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 EI 1872-9657 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2016 VL 95 SI SI BP 288 EP 301 DI 10.1016/j.advwatres.2015.07.008 PG 14 WC Water Resources SC Water Resources GA DV9YY UT WOS:000383299300023 ER PT J AU McLerran, L Praszalowicz, M AF McLerran, Larry Praszalowicz, Michal TI Fluctuations and the rapidity dependence of charged particles spectra in fixed centrality bins in pA collisions SO ANNALS OF PHYSICS LA English DT Article DE Saturation scale fluctuations; Rapidity spectra ID PROTON-LEAD COLLISIONS; COLOR GLASS CONDENSATE; HIGH-ENERGY; NUCLEUS COLLISIONS; QCD; SATURATION; SCATTERING; ATLAS; PLUS; LHC AB We argue that large fluctuations in the saturation momentum are necessary to explain the ATLAS and ALICE data on pA collisions measured at the LHC. Using a form for the distribution of fluctuations motivated by theoretical studies of the non-linear evolution equations for the Color Glass Condensate, we find a remarkably good agreement between theory and the measured distributions. If the saturation momentum fluctuates, we argue that the cross section for a proton probe should also fluctuate, consistent with previous observations. (C) 2016 Elsevier Inc. All rights reserved. C1 [McLerran, Larry] Brookhaven Natl Lab, Dept Phys, Bdg 510A, Upton, NY 11973 USA. [McLerran, Larry] Cent China Normal Univ, Dept Phys, Wuhan, Peoples R China. [Praszalowicz, Michal] Jagiellonian Univ, M Smoluchowski Inst Phys, Ul S Lojasiewicza 11, PL-30348 Krakow, Poland. RP Praszalowicz, M (reprint author), Jagiellonian Univ, M Smoluchowski Inst Phys, Ul S Lojasiewicza 11, PL-30348 Krakow, Poland. EM michal@if.uj.edu.pl FU Department of Energy [DE-SC0012704]; Polish National Science Centre [2014/13/B/ST2/02486] FX We would like to thank A. Bialas, A. Bzdak, E. Iancu, D. Kharzeev, E. Levin, P. Tribedy and R. Venugopalan for discussion and remarks. The authors are supported under Department of Energy contract number Contract No. DE-SC0012704. Research of MP has been supported by the Polish National Science Centre grant 2014/13/B/ST2/02486. NR 39 TC 4 Z9 4 U1 0 U2 0 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 EI 1096-035X J9 ANN PHYS-NEW YORK JI Ann. Phys. PD SEP PY 2016 VL 372 BP 215 EP 225 DI 10.1016/j.aop.2016.05.010 PG 11 WC Physics, Multidisciplinary SC Physics GA DV3EE UT WOS:000382803000015 ER PT J AU Moon, JW Phelps, TJ Fitzgerald, CL Lind, RF Elkins, JG Jang, GG Joshi, PC Kidder, M Armstrong, BL Watkins, TR Ivanov, IN Graham, DE AF Moon, Ji-Won Phelps, Tommy J. Fitzgerald, Curtis L., Jr. Lind, Randall F. Elkins, James G. Jang, Gyoung Gug Joshi, Pooran C. Kidder, Michelle Armstrong, Beth L. Watkins, Thomas R. Ivanov, Ilia N. Graham, David E. TI Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Pilot plant reactor; Microbially mediated manufacturing; Zinc sulfide nanoparticles; Scalability ID SACCHAROMYCES-CEREVISIAE; ZNS NANOSTRUCTURES; THERMOANAEROBACTER; PARTICLES AB The thermophilic anaerobic metal-reducing bacterium Thermoanaerobacter sp. X513 efficiently produces zinc sulfide (ZnS) nanoparticles (NPs) in laboratory-scale (aecurrency sign 24-L) reactors. To determine whether this process can be up-scaled and adapted for pilot-plant production while maintaining NP yield and quality, a series of pilot-plant scale experiments were performed using 100-L and 900-L reactors. Pasteurization and N-2-sparging replaced autoclaving and boiling for deoxygenating media in the transition from small-scale to pilot plant reactors. Consecutive 100-L batches using new or recycled media produced ZnS NPs with highly reproducible similar to 2-nm average crystallite size (ACS) and yields of similar to 0.5 g L-1, similar to the small-scale batches. The 900-L pilot plant reactor produced similar to 320 g ZnS without process optimization or replacement of used medium; this quantity would be sufficient to form a ZnS thin film with similar to 120 nm thickness over 0.5 m width x 13 km length. At all scales, the bacteria produced significant amounts of acetic, lactic, and formic acids, which could be neutralized by the controlled addition of sodium hydroxide without the use of an organic pH buffer, eliminating 98 % of the buffer chemical costs. The final NP products were characterized using XRD, ICP-OES, TEM, FTIR, PL, DLS, HPLC, and C/N analyses, which confirmed that the growth medium without organic buffer enhanced the ZnS NP properties by reducing carbon and nitrogen surface coatings and supporting better dispersivity with similar ACS. C1 [Moon, Ji-Won; Phelps, Tommy J.; Elkins, James G.; Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Fitzgerald, Curtis L., Jr.] Oak Ridge Natl Lab, Fus Mat Nucl Syst Div, Oak Ridge, TN 37831 USA. [Lind, Randall F.; Jang, Gyoung Gug] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Joshi, Pooran C.; Armstrong, Beth L.; Watkins, Thomas R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kidder, Michelle] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Moon, JW (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM moonj@ornl.gov RI ivanov, ilia/D-3402-2015; Graham, David/F-8578-2010; Moon, Ji-Won/A-9186-2011; Armstrong, Beth/E-6752-2017 OI ivanov, ilia/0000-0002-6726-2502; Graham, David/0000-0001-8968-7344; Moon, Ji-Won/0000-0001-7776-6889; Armstrong, Beth/0000-0001-7149-3576 FU US Department of Energy (DOE), Advanced Manufacturing Office, Low Temperature Material Synthesis Program [CPS 24762]; US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division; DOE [DE-AC05-00OR22725] FX The authors gratefully acknowledge the support of the US Department of Energy (DOE), Advanced Manufacturing Office, Low Temperature Material Synthesis Program (CPS 24762). FTIR analysis performed by M.K. Kidder was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The authors thank Dr. C.B. Jacobs at ORNL for constructive discussion, Dr. J, Zhu for TEM images and S.R. Cline and J.P. Dugger for assistance designing the pilot plant and safety procedures. We also thank Stout Tanks & Kettles, LLC, for the customized reactor design and construction. NR 32 TC 0 Z9 0 U1 9 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 EI 1432-0614 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD SEP PY 2016 VL 100 IS 18 BP 7921 EP 7931 DI 10.1007/s00253-016-7556-y PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DU1YW UT WOS:000382008000012 PM 27118014 ER PT J AU Kenanakis, G Vasilopoulos, KC Viskadourakis, Z Barkoula, NM Anastasiadis, SH Kafesaki, M Economou, EN Soukoulis, CM AF Kenanakis, G. Vasilopoulos, K. C. Viskadourakis, Z. Barkoula, N. -M. Anastasiadis, S. H. Kafesaki, M. Economou, E. N. Soukoulis, C. M. TI Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films (vol 122, pg 802, 2016) SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Correction C1 [Kenanakis, G.; Vasilopoulos, K. C.; Anastasiadis, S. H.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, N Plastira 100, Iraklion 70013, Crete, Greece. [Viskadourakis, Z.] Univ Crete, Crete Ctr Quantum Complex & Nanotechnol, Iraklion 71003, Greece. [Barkoula, N. -M.] Univ Ioannina, Dept Mat Engn, GR-45110 Ioannina, Greece. [Anastasiadis, S. H.] Univ Crete, Dept Chem, Iraklion 71003, Crete, Greece. [Kafesaki, M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Crete, Greece. [Soukoulis, C. M.] US DOE, Ames Lab, Ames, IA 50011 USA. [Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kenanakis, G (reprint author), Fdn Res & Technol Hellas, Inst Elect Struct & Laser, N Plastira 100, Iraklion 70013, Crete, Greece. EM gkenanak@iesl.forth.gr RI Kafesaki, Maria/E-6843-2012; Economou, Eleftherios /E-6374-2010; Soukoulis, Costas/A-5295-2008 OI Kafesaki, Maria/0000-0002-9524-2576; NR 1 TC 0 Z9 0 U1 7 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD SEP PY 2016 VL 122 IS 9 AR 858 DI 10.1007/s00339-016-0373-4 PG 1 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DV0WZ UT WOS:000382642700074 ER PT J AU Kenanakis, G Vasilopoulos, KC Viskadourakis, Z Barkoula, NM Anastasiadis, SH Kafesaki, M Economou, EN Soukoulis, CM AF Kenanakis, G. Vasilopoulos, K. C. Viskadourakis, Z. Barkoula, N. -M. Anastasiadis, S. H. Kafesaki, M. Economou, E. N. Soukoulis, C. M. TI Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID FIBER-REINFORCED POLYPROPYLENE; PERCOLATION-THRESHOLD; COMPOSITES; NANOCOMPOSITES; TENSILE; LENGTH AB Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60-70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications. C1 [Kenanakis, G.; Vasilopoulos, K. C.; Anastasiadis, S. H.; Kafesaki, M.; Economou, E. N.; Soukoulis, C. M.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, N Plastira 100, Iraklion 70013, Crete, Greece. [Viskadourakis, Z.] Univ Crete, Crete Ctr Quantum Complex & Nanotechnol, Iraklion 71003, Greece. [Barkoula, N. -M.] Univ Ioannina, Dept Mat Engn, GR-45110 Ioannina, Greece. [Anastasiadis, S. H.] Univ Crete, Dept Chem, Iraklion 71003, Crete, Greece. [Kafesaki, M.] Univ Crete, Dept Mat Sci & Technol, Iraklion 71003, Crete, Greece. [Soukoulis, C. M.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Soukoulis, C. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Kenanakis, G (reprint author), Fdn Res & Technol Hellas, Inst Elect Struct & Laser, N Plastira 100, Iraklion 70013, Crete, Greece. EM gkenanak@iesl.forth.gr RI Anastasiadis, Spiros/D-2778-2009; Soukoulis, Costas/A-5295-2008; Kafesaki, Maria/E-6843-2012; Economou, Eleftherios /E-6374-2010 OI Anastasiadis, Spiros/0000-0003-0936-1614; Kafesaki, Maria/0000-0002-9524-2576; FU European Research Council under ERC [320081]; Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) [DE-AC02-07CH11358]; EU-FET Graphene Flagship [604391]; FP7-REGPOT [316165] FX This work was supported by the European Research Council under ERC Advanced Grant No. 320081 (PHOTOMETA). Work at Ames Laboratory was partially supported by the Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) under Contract No. DE-AC02-07CH11358. Financial support by the EU-FET Graphene Flagship (Grant Agreement No: 604391) is also acknowledged. Author Z.V. acknowledges the FP7-REGPOT 2012-2013 (Grand Agreement No 316165). The authors also acknowledge Dr. S. Droulias for the employment of the retrieval method calculating the refractive index n and impedance zeta of the samples and for his useful comments on the manuscript. NR 30 TC 1 Z9 1 U1 13 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD SEP PY 2016 VL 122 IS 9 DI 10.1007/s00339-016-0338-7 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DV0WZ UT WOS:000382642700018 ER PT J AU Serba, DD Sykes, RW Gjersing, EL Decker, SR Daverdin, G Devos, KM Brummer, EC Saha, MC AF Serba, Desalegn D. Sykes, Robert W. Gjersing, Erica L. Decker, Stephen R. Daverdin, Guillaume Devos, Katrien M. Brummer, E. Charles Saha, Malay C. TI Cell Wall Composition and Underlying QTL in an F-1 Pseudo-Testcross Population of Switchgrass SO BIOENERGY RESEARCH LA English DT Article DE Lignin content; Quantitative trait loci; Sugar release; Glucose; Xylose; Recalcitrant ID QUANTITATIVE TRAIT LOCI; PANICUM-VIRGATUM L.; F838 X F286; BIOMASS YIELD; LIGNIN CONTENT; PLANT HEIGHT; PHOSPHOGLYCERATE MUTASE; CHEMICAL-COMPOSITION; BIOFUEL PRODUCTION; SUGAR RELEASE AB Natural genetic variation for reduced recalcitrance can be used to improve switchgrass for biofuel production. A full-sib switchgrass mapping population developed by crossing a lowland genotype, AP13, and upland genotype, VS16, was evaluated at three locations (Ardmore and Burneyville, OK and Watkinsville, GA). Biomass harvested after senescence in 2009 and 2010 was evaluated at the National Renewable Energy Laboratory (NREL) for sugar release using enzymatic hydrolysis and for lignin content and syringyl/guaiacyl lignin monomer (S/G) ratio using pyrolysis molecular beam mass spectrometry (py-MBMS). Glucose and xylose release ranged from 120 to 313 and 123 to 263 mg g(-1), respectively, while lignin content ranged from 19 to 27 % of the dry biomass. Statistically significant differences were observed among the genotypes and the environments for the cell wall composition traits. Regression analysis showed that a unit increase in lignin content reduced total sugar release by an average of 10 mg g(-1). Quantitative trait loci (QTL) analysis detected 9 genomic regions underlying sugar release and 14 for lignin content. The phenotypic variation explained by the individual QTL identified for sugar release ranged from 4.5 to 9.4 and for lignin content from 3.8 to 11.1 %. Mapping of the QTL regions to the switchgrass genome sequence (v1.1) found that some of the QTL colocalized with genes involved in carbohydrate processing and metabolism, plant development, defense systems, and transcription factors. The markers associated with QTL can be implemented in breeding programs to efficiently develop improved switchgrass cultivars for biofuel production. C1 [Serba, Desalegn D.; Saha, Malay C.] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. [Sykes, Robert W.; Gjersing, Erica L.; Decker, Stephen R.] Natl Renewable Energy Lab, 15013 Denver W Pkwy, Golden, CO 80401 USA. [Daverdin, Guillaume; Devos, Katrien M.] Univ Georgia, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA. [Daverdin, Guillaume; Devos, Katrien M.] Univ Georgia, Dept Crop & Soil Sci, Athens, GA 30602 USA. [Daverdin, Guillaume; Devos, Katrien M.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Serba, Desalegn D.; Sykes, Robert W.; Gjersing, Erica L.; Decker, Stephen R.; Daverdin, Guillaume; Devos, Katrien M.; Brummer, E. Charles; Saha, Malay C.] Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA. [Brummer, E. Charles] Univ Calif Davis, Dept Plant Sci, Plant Breeding Ctr, Davis, CA 95616 USA. [Serba, Desalegn D.] Kansas State Univ, Agr Res Ctr Hays, Manhattan, KS 67601 USA. RP Saha, MC (reprint author), Samuel Roberts Noble Fdn Inc, Forage Improvement Div, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA.; Saha, MC (reprint author), Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA. EM mcsaha@noble.org NR 63 TC 0 Z9 0 U1 9 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 EI 1939-1242 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2016 VL 9 IS 3 BP 836 EP 850 DI 10.1007/s12155-016-9733-3 PG 15 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA DT4EV UT WOS:000381433800013 ER PT J AU Lenaerts, JTM Vizcaino, M Fyke, J van Kampenhout, L van den Broeke, MR AF Lenaerts, Jan T. M. Vizcaino, Miren Fyke, Jeremy van Kampenhout, Leo van den Broeke, Michiel R. TI Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model SO CLIMATE DYNAMICS LA English DT Article DE Antarctica; Ice sheets; Surface mass balance; Climate modelling; Sea level; Climate change ID AMUNDSEN SEA EMBAYMENT; WEST ANTARCTICA; SNOW ACCUMULATION; EAST ANTARCTICA; ENERGY BALANCE; ANNULAR MODE; VARIABILITY; EXTENT; PRECIPITATION; SIMULATIONS AB We present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) with a horizontal resolution of in the past, present and future (1850-2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals , which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenario RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet's edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content. C1 [Lenaerts, Jan T. M.; van Kampenhout, Leo; van den Broeke, Michiel R.] Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands. [Vizcaino, Miren] Delft Univ Technol, Dept Geosci & Remote Sensing, Delft, Netherlands. [Fyke, Jeremy] Los Alamos Natl Lab, Los Alamos, NM USA. RP Lenaerts, JTM (reprint author), Univ Utrecht, Inst Marine & Atmospher Res Utrecht, Princetonpl 5, NL-3584 CC Utrecht, Netherlands. EM j.lenaerts@uu.nl RI Van den Broeke, Michiel/F-7867-2011; OI Van den Broeke, Michiel/0000-0003-4662-7565; Lenaerts, Jan/0000-0003-4309-4011 FU Utrecht University; Ministry of Education, Culture and Science (OCW); NWO Exacte Wetenschappen; NWO ALW through a Veni postdoctoral grant; Regional and Global Climate Modeling Project of the US Department of Energy Biological and Environmental Research Program FX This study is funded by Utrecht University through its strategic theme Sustainability, sub-theme Water, Climate & Ecosystems. This work was carried out under the program of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture and Science (OCW). The CESM simulations are performed on the SurfSARA high-performance Cartesius system, with support from NWO Exacte Wetenschappen. Jan Lenaerts is supported by NWO ALW through a Veni postdoctoral grant. Jeremy Fyke is supported by the Regional and Global Climate Modeling Project of the US Department of Energy Biological and Environmental Research Program. We thank Bill Sacks (NCAR), Dave Lawrence (NCAR) and Mark Flanner (University of Michigan) for their valuable input. Graphics in this paper were constructed using the NCAR Command Line software [NCL version 6.2.1, UCAR/NCAR/CISL/VETS (2014)]. NR 81 TC 4 Z9 4 U1 16 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD SEP PY 2016 VL 47 IS 5-6 BP 1367 EP 1381 DI 10.1007/s00382-015-2907-4 PG 15 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DU3LK UT WOS:000382112000002 ER PT J AU Stone, DA Hansen, G AF Stone, Daithi A. Hansen, Gerrit TI Rapid systematic assessment of the detection and attribution of regional anthropogenic climate change SO CLIMATE DYNAMICS LA English DT Article DE Climate change; Detection; Attribution ID SEA-SURFACE TEMPERATURE; GENERAL-CIRCULATION MODELS; CMIP5; ICE AB Despite being a well-established research field, the detection and attribution of observed climate change to anthropogenic forcing is not yet provided as a climate service. One reason for this is the lack of a methodology for performing tailored detection and attribution assessments on a rapid time scale. Here we develop such an approach, based on the translation of quantitative analysis into the "confidence" language employed in recent Assessment Reports of the Intergovernmental Panel on Climate Change. While its systematic nature necessarily ignores some nuances examined in detailed expert assessments, the approach nevertheless goes beyond most detection and attribution studies in considering contributors to building confidence such as errors in observational data products arising from sparse monitoring networks. When compared against recent expert assessments, the results of this approach closely match those of the existing assessments. Where there are small discrepancies, these variously reflect ambiguities in the details of what is being assessed, reveal nuances or limitations of the expert assessments, or indicate limitations of the accuracy of the sort of systematic approach employed here. Deployment of the method on 116 regional assessments of recent temperature and precipitation changes indicates that existing rules of thumb concerning the detectability of climate change ignore the full range of sources of uncertainty, most particularly the importance of adequate observational monitoring. C1 [Stone, Daithi A.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS-50F1650, Berkeley, CA 94720 USA. [Hansen, Gerrit] Potsdam Inst Climate Impact Res, Potsdam, Germany. RP Stone, DA (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS-50F1650, Berkeley, CA 94720 USA. EM dstone@lbl.gov OI Stone, Daithi/0000-0002-2518-100X FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; German Ministry for Education and Research FX The authors wish to thank members of the International Detection and Attribution Group and an anonymous reviewer for useful comments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, under contract number DE-AC02-05CH11231. GH was supported by a grant from the German Ministry for Education and Research. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. We also thank the groups listed in Tables 1 and 3 for producing and making available their observational climate products. NR 47 TC 1 Z9 1 U1 4 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD SEP PY 2016 VL 47 IS 5-6 BP 1399 EP 1415 DI 10.1007/s00382-015-2909-2 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DU3LK UT WOS:000382112000004 ER PT J AU Smith, SJ Rao, S Riahi, K van Vuuren, DP Calvin, KV Kyle, P AF Smith, Steven J. Rao, Shilpa Riahi, Keywan van Vuuren, Detlef P. Calvin, Katherine V. Kyle, Page TI Future aerosol emissions: a multi-model comparison SO CLIMATIC CHANGE LA English DT Article ID GREENHOUSE-GAS EMISSIONS; SCENARIOS; MITIGATION AB This paper compares projections over the twenty-first century of SO2, BC, and OC emissions from three technologically detailed, long-term integrated assessment models. The character of the projections and the response of emissions due to a comprehensive climate policy are discussed focusing on the sectoral level. In a continuation of historical experience, aerosol and precursor emissions are increasingly decoupled from carbon dioxide emissions over the twenty-first century due to a combination of emission controls and technology shifts over time. Implementation of a comprehensive climate policy further reduces emissions, although there is significant variation in this response by sector and by model: the response has many similarities between models for the energy transformation and transportation sectors, with more diversity in the response for the building and industrial sectors. Much of these differences can be traced to specific characteristics of reference case end-use and supply-side technology deployment and emissions control assumptions, which are detailed by sector. C1 [Smith, Steven J.; Calvin, Katherine V.; Kyle, Page] PNNL, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Rao, Shilpa; Riahi, Keywan] Int Inst Appl Syst Anal, Schlosspl 1, Laxenburg, Austria. [van Vuuren, Detlef P.] PBL Netherlands Environm Assessment Agcy, Bilthoven, Netherlands. [van Vuuren, Detlef P.] Univ Utrecht, Copernicus Inst Sustainable Dev, Dept Geosci, Utrecht, Netherlands. RP Smith, SJ (reprint author), PNNL, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM ssmith@pnnl.gov FU Climate Change Division; U.S. Environmental Protection Agency; Global Technology Strategy Project at PNNL; FP7 project PEGASOS; European Commission FX SJS was supported for this work by the Climate Change Division, U.S. Environmental Protection Agency with additional support from the Global Technology Strategy Project at PNNL. DvV acknowledges the financial contribution received from the FP7 project PEGASOS, financed by the European Commission. The authors thank Linh Vu for assistance with data processing. We also thank the anonymous referees whose comments significantly improved the paper. NR 21 TC 0 Z9 0 U1 4 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD SEP PY 2016 VL 138 IS 1-2 BP 13 EP 24 DI 10.1007/s10584-016-1733-y PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DU3UT UT WOS:000382138400002 ER PT J AU Balaguru, K Judi, DR Leung, LR AF Balaguru, Karthik Judi, David R. Leung, L. Ruby TI Future hurricane storm surge risk for the US gulf and Florida coasts based on projections of thermodynamic potential intensity SO CLIMATIC CHANGE LA English DT Article ID SEA-LEVEL RISE; TROPICAL CYCLONE INTENSITY; CLIMATE-CHANGE; CMIP5 MODELS; INTENSIFICATION; TEMPERATURE; IMPACT; SIZE AB Coastal populations in the global tropics and sub-tropics are vulnerable to the devastating impacts of hurricane storm surge and this risk is only expected to rise under climate change. In this study, we address this issue for the U.S. Gulf and Florida coasts. Using the framework of Potential Intensity, observations and output from coupled climate models, we show that the future large-scale thermodynamic environment may become more favorable for hurricane intensification. Under the RCP 4.5 emissions scenario and for the peak hurricane season months of August-October, we show that the mean intensities of Atlantic hurricanes may increase by 1.8-4.2 % and their lifetime maximum intensities may increase by 2.7-5.3 % when comparing the last two decades of the 20th and 21st centuries. We then combine our estimates of hurricane intensity changes with projections of sea-level rise to understand their relative impacts on future storm surge using simulations with the National Weather Service's SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model for five historical hurricanes that made landfall in the Gulf of Mexico and Florida. Considering uncertainty in hurricane intensity changes and sea-level rise, our results indicate a median increase in storm surge ranging between 25 and 47 %, with changes in hurricane intensity increasing future storm surge by about 10 % relative to the increase that may result from sea level rise alone, with highly non-linear response of population at risk. C1 [Balaguru, Karthik] Pacific Northwest Natl Lab, Marine Sci Lab, Seattle, WA 98109 USA. [Judi, David R.] Pacific Northwest Natl Lab, Operat Safeguards & Logist, Richland, WA 99354 USA. [Leung, L. Ruby] Pacific Northwest Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. RP Judi, DR (reprint author), Pacific Northwest Natl Lab, Operat Safeguards & Logist, Richland, WA 99354 USA. EM david.judi@pnnl.gov FU U.S. Department of Homeland Security (DHS) National Protection and Programs Directorate, Office of Cyber and Infrastructure Analysis; U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research Regional and Global Climate Modeling program; DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX DR Judi and K Balaguru were partially supported by the U.S. Department of Homeland Security (DHS) National Protection and Programs Directorate, Office of Cyber and Infrastructure Analysis. LR Leung was supported by the U.S. Department of Energy (DOE) Office of Science Biological and Environmental Research Regional and Global Climate Modeling program. Pacific Northwest National Laboratory (PNNL) is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 41 TC 0 Z9 0 U1 28 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD SEP PY 2016 VL 138 IS 1-2 BP 99 EP 110 DI 10.1007/s10584-016-1728-8 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DU3UT UT WOS:000382138400008 ER PT J AU Jarett, JK Gochfeld, DJ Lesser, MP AF Jarett, J. K. Gochfeld, D. J. Lesser, M. P. TI Aposematic coloration does not deter corallivory by fish on the coral Montastraea cavernosa SO CORAL REEFS LA English DT Article DE Aposematic coloration; Chemical defense; Corallivory; Fish; Corals ID GREEN FLUORESCENT PROTEIN; REEF FISH; FEEDING BUTTERFLYFISHES; CHEMICAL DEFENSES; INVERTEBRATES; CYANOBACTERIA; CONSUMPTION; PREDATION; PIGMENTS; NITROGEN AB Predation on corals by visual predators is a significant source of partial or total mortality on coral reefs, and corals have evolved strategies, including chemical defenses, to deter predation. One mechanism that organisms use to communicate the presence of chemical defenses is aposematic coloration, or the display of bright coloration as a warning to visual predators such as fish. Corals exhibit multiple colors, and it has been hypothesized that one role for this variability in coloration is as an aposematic warning of adverse palatability. Here, we test green and orange color morphs of the Caribbean coral Montastraea cavernosa for the presence of chemical defenses and whether their differences in coloration elicited different feeding responses. While M. cavernosa is chemically defended, there is no difference in feeding deterrence between color morphs; thus, the different color morphs of this coral species do not appear to represent an example of aposematic coloration. C1 [Jarett, J. K.] Univ New Hampshire, Dept Mol Cellular & Biomed Sci, Durham, NH 03824 USA. [Gochfeld, D. J.] Univ Mississippi, Natl Ctr Nat Prod Res, University, MS 38677 USA. [Lesser, M. P.] Univ New Hampshire, Sch Marine Sci & Ocean Engn, Durham, NH 03824 USA. [Jarett, J. K.] US DOE, Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. RP Lesser, MP (reprint author), Univ New Hampshire, Sch Marine Sci & Ocean Engn, Durham, NH 03824 USA. EM jjarett@gmail.com; gochfeld@olemiss.edu; mpl@unh.edu FU NOAA Ocean Exploration; National Science Foundation FX We thank Marc Slattery, Cole Easson and Cara Fiore for assistance with feeding assays and the staffs of the Caribbean Marine Research Center and the Little Cayman Research Centre for logistical support. This research was conducted under permits from the Bahamas Department of Fisheries and the Cayman Islands Marine Conservation Board. The NOAA Ocean Exploration and National Science Foundation programs provided funding. NR 38 TC 0 Z9 0 U1 11 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0722-4028 EI 1432-0975 J9 CORAL REEFS JI Coral Reefs PD SEP PY 2016 VL 35 IS 3 BP 883 EP 887 DI 10.1007/s00338-016-1443-y PG 5 WC Marine & Freshwater Biology SC Marine & Freshwater Biology GA DU2CU UT WOS:000382019400014 ER PT J AU Fantke, P Ernstoff, AS Huang, L Csiszar, SA Jolliet, O AF Fantke, Peter Ernstoff, Alexi S. Huang, Lei Csiszar, Susan A. Jolliet, Olivier TI Coupled near-field and far-field exposure assessment framework for chemicals in consumer products SO ENVIRONMENT INTERNATIONAL LA English DT Article DE Near-field consumer exposure; Multimedia multi-pathway framework; Product intake fraction; Life cycle impact assessment; Chemical alternatives assessment; High-throughput risk screening ID PERSONAL CARE PRODUCTS; IN-VITRO BIOACTIVITY; COSMETIC PRODUCTS; FRAGRANCE INGREDIENTS; DERMAL EXPOSURE; RISK-ASSESSMENT; MODEL; PRIORITIZATION; SUBSTANCES; TOXICITY AB Humans can be exposed to chemicals in consumer products through product use and environmental emissions over the product life cycle. Exposure pathways are often complex, where chemicals can transfer directly from products to humans during use or exchange between various indoor and outdoor compartments until sub-fractions reach humans. To consistently evaluate exposure pathways along product life cycles, a flexible mass balance-based assessment framework is presented structuring multimedia chemical transfers in a matrix of direct inter-compartmental transfer fractions. By matrix inversion, we quantify cumulative multimedia transfer fractions and exposure pathway-specific product intake fractions defined as chemical mass taken in by humans per unit mass of chemical in a product. Combining product intake fractions with chemical mass in the product yields intake estimates for use in life cycle impact assessment and chemical alternatives assessment, or daily intake doses for use in risk-based assessment and high-throughput screening. Two illustrative examples of chemicals used in personal care products and flooring materials demonstrate how this matrix-based framework offers a consistent and efficient way to rapidly compare exposure pathways for adult and child users and for the general population. This framework constitutes a user-friendly approach to develop, compare and interpret multiple human exposure scenarios in a coupled system of near-field ('user' environment), far-field and human intake compartments, and helps understand the contribution of individual pathways to overall human exposure in various product application contexts to inform decisions in different science-policy fields for which exposure quantification is relevant (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Fantke, Peter; Ernstoff, Alexi S.] Tech Univ Denmark, Dept Engn Management, Quantitat Sustainabil Assessment Div, Prod Storvet 424, DK-2800 Lyngby, Denmark. [Huang, Lei; Jolliet, Olivier] Univ Michigan, Environm Hlth Sci, 1415 Washington Hts, Ann Arbor, MI 48109 USA. [Csiszar, Susan A.] US EPA, Oak Ridge Inst Sci & Educ, Ncit Risk Management Res Lab, Cincinnati, OH 45268 USA. RP Fantke, P (reprint author), Tech Univ Denmark, Dept Engn Management, Quantitat Sustainabil Assessment Div, Prod Storvet 424, DK-2800 Lyngby, Denmark. EM pefan@dtu.dk RI Ernstoff, Alexi/P-4728-2016; OI Ernstoff, Alexi/0000-0002-1114-6596; Fantke, Peter/0000-0001-7148-6982 FU European Commission under the Seventh Framework Programme [631910, 285286]; U.S. EPA on Development of Modular Risk Pathway Descriptions for Life Cycle Assessment [EP-14-C-000115]; Long Range Research Initiative of the American Chemistry Council [MTH1001-01]; U.S. Department of Energy [DW-89-92298301]; U.S. EPA [DW-89-92298301] FX We thank Peter Egeghy, Debbie Bennett, Jane Bare, and Jon Arnot for initial comments. This work was supported by the Marie Curie projects Quan-Tox (GA No. 631910) and Tox-Train (GA No. 285286) funded by the European Commission under the Seventh Framework Programme, by the U.S. EPA contract EP-14-C-000115 on Development of Modular Risk Pathway Descriptions for Life Cycle Assessment and the Long Range Research Initiative of the American Chemistry Council (MTH1001-01), and partly by an appointment to the Postdoctoral Research Program at the National Risk Management Research Laboratory, U.S. EPA administered by the Oak Ridge Institute for Science and Education (IAG No. DW-89-92298301 between the U.S. Department of Energy and the U.S. EPA). The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the U.S. EPA. NR 49 TC 1 Z9 1 U1 9 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD SEP PY 2016 VL 94 BP 508 EP 518 DI 10.1016/j.envint.2016.06.010 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA DU6QF UT WOS:000382339000056 PM 27318619 ER PT J AU Sullivan, RG Meyer, ME AF Sullivan, Robert G. Meyer, Mark E. TI ENVIRONMENTAL REVIEWS AND CASE STUDIES: The National Park Service Visual Resource Inventory: Capturing the Historic and Cultural Values of Scenic Views SO ENVIRONMENTAL PRACTICE LA English DT Review AB Several United States (US) federal agencies have developed visual resource inventory (VRI) and management systems that reflect specific agency missions and visual resource management objectives. These programs have varied in the degree to which they incorporate historic and cultural elements and values into the scenic inventory process. The recent nationwide expansion of renewable energy and associated transmission development is causing an increase in visual impacts on both scenic and historic/cultural resources. This increase has highlighted the need for better integration of visual and historic/cultural resource assessment and management activities for land use planning purposes. The US Department of the Interior National Park Service (NPS), in response to concerns arising from potential scenic impacts from renewable energy, electric transmission, and other types of development on lands and waters near NPS units, has developed a VRI process for high-value views both within and outside NPS unit boundaries. The NPS VRI incorporates historic and cultural elements and values into the scenic resource inventory process and provides practical guidance and metrics for successfully integrating historic and cultural concerns into the NPS's scenic resource conservation efforts. This article describes the NPS VRI process and compares it with the VRI processes of the US Department of the Interior Bureau of Land Management and the US Department of Agriculture Forest Service, with respect to the incorporation of historic and cultural values. The article discusses why a scenic inventory approach that more robustly integrates the historic and cultural values of the landscape is essential for NPS landscapes, and for fulfillment of NPS's mission. Inventories are underway at many NPS units, and the results indicate that the VRI process can be used successfully to capture important historic and cultural resource information and incorporate that information into the assessment of the scenic values of views within and outside NPS units. Environmental Practice 18: 166-179 (2016) C1 [Sullivan, Robert G.] Argonne Natl Lab, Environm Sci Div EVS 240, 9700 S Cass Ave, Argonne, IL 60439 USA. [Meyer, Mark E.] Natl Pk Serv, Air Resources Div, US Dept Interior, Denver, CO 80225 USA. RP Sullivan, RG (reprint author), Argonne Natl Lab, Environm Sci Div EVS 240, 9700 S Cass Ave, Argonne, IL 60439 USA.; Meyer, ME (reprint author), Natl Pk Serv, Air Resources Div, US Dept Interior, Denver, CO 80225 USA. EM Sullivan@anl.gov; mark_e_meyer@nps.gov FU US Department of the Interior National Park Service through the US Department of Energy [DE-AC02-06CH11357]; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Argonne National Laboratory's work was supported by the US Department of the Interior National Park Service through interagency agreement, through the US Department of Energy contract DE-AC02-06CH11357.; The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory. Argonne National Laboratory, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 12 TC 0 Z9 0 U1 3 U2 3 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1466-0466 EI 1466-0474 J9 ENVIRON PRAC JI Environ. Pract. PD SEP PY 2016 VL 18 IS 3 BP 166 EP 179 DI 10.1017/S1466046616000260 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA DV5OD UT WOS:000382976500005 ER PT J AU O'Rourke, DJ Weber, CC Richmond, PD AF O'Rourke, Daniel J. Weber, Cory C. Richmond, Pamela D. TI ENVIRONMENTAL REVIEWS AND CASE STUDIES: Addressing the Public Outreach Responsibilities of the National Historic Preservation Act: Argonne National Laboratory's Box Digital Display Platform SO ENVIRONMENTAL PRACTICE LA English DT Article AB Federal agencies are made responsible for managing the historic properties under their jurisdiction by the National Historic Preservation Act of 1966, as amended. A component of this responsibility is to mitigate the effect of a federal undertaking on historic properties through mitigation often through documentation. Providing public access to this documentation has always been a challenge. To address the issue of public access to mitigation information, personnel from Argonne National Laboratory created the Box Digital Display Platform, a system for communicating information about historic properties to the public. The platform, developed for the US Army Dugway Proving Ground, uses short introductory videos to present a topic but can also incorporate photos, drawings, GIS information, and documents. The system operates from a small, self-contained computer that can be attached to any digital monitor via an HDMI cable. The system relies on web-based software that allows the information to be republished as a touch-screen device application or as a website. The system does not connect to the Internet, and this increases security and eliminates the software maintenance fees associated with websites. The platform is designed to incorporate the products of past documentation to make this information more accessible to the public; specifically those documentations developed using the Historic American Building Survey/ Historic American Engineering Record (HABS/HAER) standards. Argonne National Laboratory's Box Digital Display Platform can assist federal agencies in complying with the requirements of the National Historic Preservation Act. Environmental Practice 18: 209-213 (2016) C1 [O'Rourke, Daniel J.; Weber, Cory C.; Richmond, Pamela D.] Argonne Natl Lab, Div Environm Sci, Bldg 240,9700 South Cass Ave, Argonne, IL 60439 USA. RP O'Rourke, DJ (reprint author), Argonne Natl Lab, Div Environm Sci, Bldg 240,9700 South Cass Ave, Argonne, IL 60439 USA. EM djorourke@anl.gov NR 0 TC 0 Z9 0 U1 5 U2 5 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND SN 1466-0466 EI 1466-0474 J9 ENVIRON PRAC JI Environ. Pract. PD SEP PY 2016 VL 18 IS 3 BP 209 EP 213 DI 10.1017/S1466046616000314 PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA DV5OD UT WOS:000382976500010 ER PT J AU Pascarelli, S Haskel, D Ishimatsu, N AF Pascarelli, Sakura Haskel, Daniel Ishimatsu, Naoki TI Frontiers of high pressure X-ray absorption spectroscopy SO HIGH PRESSURE RESEARCH LA English DT Editorial Material C1 [Pascarelli, Sakura] European Synchrotron Radiat Facil, Grenoble, France. [Haskel, Daniel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ishimatsu, Naoki] Hiroshima Univ, Grad Sch Sci, Hiroshima 730, Japan. RP Pascarelli, S (reprint author), European Synchrotron Radiat Facil, Grenoble, France. EM sakura@esrf.fr; haskel@aps.anl.gov; naoki@sci.hiroshima-u.ac.jp NR 0 TC 0 Z9 0 U1 3 U2 3 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD SEP PY 2016 VL 36 IS 3 SI SI BP 235 EP 236 DI 10.1080/08957959.2016.1215820 PG 2 WC Physics, Multidisciplinary SC Physics GA DV5II UT WOS:000382960100001 ER PT J AU Ping, Y Coppari, F AF Ping, Yuan Coppari, Federica TI Laser shock XAFS studies at OMEGA facility SO HIGH PRESSURE RESEARCH LA English DT Article DE EXAFS; HED; laser compression: iron ID ABSORPTION FINE-STRUCTURE; EARTHS INNER-CORE; IRON; PRESSURES; EDGE; SHIFT AB State-of-the-art laser facilities offer an excellent opportunity for studying materials at Mbar-Gbar pressures by dynamical compression. This paper summarizes recent experiments on EXAFS measurements of compressed solid iron up to 5Mbar using OMEGA laser facility. The X-ray source is produced by a spherical implosion, providing enough brightness and spectral smoothness required for EXAFS measurements. The compression path is tuned by laser pulse shaping to achieve off-hugoniot states. With an anharmonic model, the density, temperature and upper limit of strength of the compressed iron are determined from EXAFS data. Prospects of XAFS study of other materials are also discussed. C1 [Ping, Yuan; Coppari, Federica] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Ping, Y (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM ping2@llnl.gov FU U.S. DOE by LLNL [DEAC52-07NA27344] FX This work was performed under the auspices of U.S. DOE by LLNL under contract number DEAC52-07NA27344. NR 35 TC 0 Z9 0 U1 6 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD SEP PY 2016 VL 36 IS 3 SI SI BP 303 EP 314 DI 10.1080/08957959.2016.1196203 PG 12 WC Physics, Multidisciplinary SC Physics GA DV5II UT WOS:000382960100007 ER PT J AU Fabbris, G Hucker, M Gu, GD Tranquada, JM Haskel, D AF Fabbris, G. Hucker, M. Gu, G. D. Tranquada, J. M. Haskel, D. TI Combined single crystal polarized XAFS and XRD at high pressure: probing the interplay between lattice distortions and electronic order at multiple length scales in high T-c cuprates SO HIGH PRESSURE RESEARCH LA English DT Article DE Polarized XAFS; x-ray diffraction; high pressure; cuprates ID X-RAY-ABSORPTION; POLYCRYSTALLINE DIAMOND ANVILS; STRUCTURAL PHASE-TRANSITIONS; FINE-STRUCTURE; EXAFS; SPECTROSCOPY; TEMPERATURE; SUPERCONDUCTIVITY; LA2-XBAXCUO4; DIFFRACTION AB Some of the most exotic material properties derive from electronic states with short correlation length (similar to 10-500 angstrom), suggesting that the local structural symmetry may play a relevant role in their behavior. Here, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La1.875Ba0.125CuO4, in which the response of electronic order to pressure can only be understood by probing the structure at the relevant length scales. C1 [Fabbris, G.; Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Fabbris, G.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Fabbris, G.; Hucker, M.; Gu, G. D.; Tranquada, J. M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Fabbris, G (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM gfabbris@bnl.gov RI Fabbris, Gilberto/F-3244-2011; Tranquada, John/A-9832-2009 OI Fabbris, Gilberto/0000-0001-8278-4985; Tranquada, John/0000-0003-4984-8857 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357, DE-SC00112704]; U.S. Department of Energy [1047478] FX Work at Argonne National Laboratory (Brookhaven National Laboratory) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (DE-SC00112704). The Advanced Photon Source at Argonne National Laboratory is a U.S. Department of Energy Office of Science User Facility. G.F. was also supported by the U.S. Department of Energy under Award Number 1047478. NR 50 TC 0 Z9 0 U1 7 U2 7 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD SEP PY 2016 VL 36 IS 3 SI SI BP 348 EP 359 DI 10.1080/08957959.2016.1198905 PG 12 WC Physics, Multidisciplinary SC Physics GA DV5II UT WOS:000382960100010 ER PT J AU Souza-Neto, NM Haskel, D dos Reis, RD Gandra, FCG AF Souza-Neto, N. M. Haskel, D. dos Reis, R. D. Gandra, F. C. G. TI Combining state-of-the-art experiment and ab initio calculations for a better understanding of the interplay between valence, magnetism and structure in Eu compounds at high pressure SO HIGH PRESSURE RESEARCH LA English DT Article DE Magnetism; X-ray spectroscopy; first principle simulations; XANES; XMCD ID POLARIZED X-RAYS; EUROPIUM CHALCOGENIDES; CIRCULAR-DICHROISM; ANTIFERROMAGNETISM; MONOCHALCOGENIDES; SEMICONDUCTORS; PARAMETERS; TRANSITION; COLLAPSE AB We describe how first principle calculations can play a key role in the interpretation of X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectra for a better understanding of emergent phenomena in condensed matter physics at high applied pressure. Eu compounds are used as case study to illustrate the advantages of this methodology, ranging from studies of electronic charge transfer probed by quadrupolar and dipolar contributions, to accurately determining electronic valence, and to inform about the influence of pressure on RKKY interactions and magnetism. This description should help advance studies where the pressure dependence of XANES and XMCD data must be tackled with the support of theoretical calculations for a proper understanding of the electronic properties of materials. C1 [Souza-Neto, N. M.; dos Reis, R. D.] Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil. [Haskel, D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [dos Reis, R. D.; Gandra, F. C. G.] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, Campinas, SP, Brazil. RP Souza-Neto, NM (reprint author), Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas, SP, Brazil. EM narcizo.souza@lnls.br FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-06CH11357]; Brazilian Ministry of Science and Technology; CAPES; FAPESP [2013/22436-5, 2014/05480-3] FX Work at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357. Work at LNLS is supported by the Brazilian Ministry of Science and Technology. RDR thanks the funding for his Ph.D. fellowship from CAPES Brazilian agency. NMSN thanks the funding from FAPESP Brazilian agency under Contracts No. [2013/22436-5] and [2014/05480-3]. NR 47 TC 0 Z9 0 U1 6 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD SEP PY 2016 VL 36 IS 3 SI SI BP 360 EP 370 DI 10.1080/08957959.2016.1212025 PG 11 WC Physics, Multidisciplinary SC Physics GA DV5II UT WOS:000382960100011 ER PT J AU Kim, J AF Kim, Jungho TI Advances in high-resolution RIXS for the study of excitation spectra under high pressure SO HIGH PRESSURE RESEARCH LA English DT Article DE High pressure; resonant inelastic X-ray scattering; electronic and magnetic excitations ID X-RAY-SCATTERING; ANALYZERS AB Hard X-ray resonant inelastic X-ray scattering (RIXS) is a promising X-ray spectroscopic tool for measuring low-energy excitation spectra from complex materials under high pressure. In the past, these measurements have been stymied by technical difficulties inherent in measuring a tiny sample, held at high pressure, inside a diamond anvil cell. Now, due to substantial advances in X-ray instrumentation, high-resolution (< 200 meV) RIXS spectrometers at third-generation synchrotron radiation sources have started to successfully address these samples in their extreme environment. However, compared to elastic X-ray scattering and X-ray emission spectroscopy, RIXS is a very photon hungry technique and high-resolution RIXS for samples under high pressure is in its infancy. In this review, the fundamentals of the high-resolution RIXS and associated instrumentation are presented, as well as technical details of diamond anvil cells, sample preparation, and the measurement geometry. Experimental data from measurements of 3d- and 5d-transition metal oxides are shown and future improvements of the RIXS technique in the context of high pressure are discussed. C1 [Kim, Jungho] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Kim, J (reprint author), Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. EM jhkim@aps.anl.gov FU DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX The author would like to thank Y. Ding, V. V. Struzhkin, T. Gog, B. J. Kim for sharing their data and valuable comments. The author would like to thank S. V. Sinogeikin for building the in situ membrane pressure control system and the open-cycle cryostat system. This research used resources of the APS, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 22 TC 0 Z9 0 U1 4 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND SN 0895-7959 EI 1477-2299 J9 HIGH PRESSURE RES JI High Pressure Res. PD SEP PY 2016 VL 36 IS 3 SI SI BP 391 EP 403 DI 10.1080/08957959.2016.1212990 PG 13 WC Physics, Multidisciplinary SC Physics GA DV5II UT WOS:000382960100014 ER PT J AU Lee, J Jang, G Muljadi, E Blaabjerg, F Chen, Z Kang, YC AF Lee, Jinsik Jang, Gilsoo Muljadi, Eduard Blaabjerg, Frede Chen, Zhe Kang, Yong Cheol TI Stable Short-Term Frequency Support Using Adaptive Gains for a DFIG-Based Wind Power Plant SO IEEE TRANSACTIONS ON ENERGY CONVERSION LA English DT Article DE Adaptive-gain scheme (AGS); fixed-gain scheme (FGS); frequency nadir; inertial control; over-deceleration; releasable kinetic energy ID TURBINE GENERATORS; INERTIAL RESPONSE; SYSTEMS; PENETRATION; ENERGY AB For the fixed-gain inertial control of wind power plants (WPPs), a large gain setting provides a large contribution to supporting system frequency control, but it may cause over-deceleration for a wind turbine generator that has a small amount of kinetic energy (KE). Further, if the wind speed decreases during inertial control, even a small gain may cause over-deceleration. This paper proposes a stable inertial control scheme using adaptive gains for a doubly fed induction generator (DFIG)-based WPP. The scheme aims to improve the frequency nadir (FN) while ensuring stable operation of all DFIGs, particularly when the wind speed decreases during inertial control. In this scheme, adaptive gains are set to be proportional to the KE stored in DFIGs, which is spatially and temporally dependent. To improve the FN, upon detecting an event, large gains are set to be proportional to the KE of DFIGs; to ensure stable operation, the gains decrease with the declining KE. The simulation results demonstrate that the scheme improves the FN while ensuring stable operation of all DFIGs in various wind and system conditions. Further, it prevents over-deceleration even when the wind speed decreases during inertial control. C1 [Lee, Jinsik] Chonbuk Natl Univ, Dept Elect Engn, KS-004 Jeonju, South Korea. [Lee, Jinsik] Chonbuk Natl Univ, Wind Energy Grid Adapt Technol Res Ctr, KS-004 Jeonju, South Korea. [Jang, Gilsoo] Korea Univ, Sch Elect Engn, Seoul 136713, South Korea. [Muljadi, Eduard] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Blaabjerg, Frede; Chen, Zhe] Aalborg Univ, Dept Energy Technol, DK-9220 Aalborg, Denmark. [Kang, Yong Cheol] Chonbuk Natl Univ, Dept Elect Engn, Wind Energy Gate Adapt Technol Res Ctr, KS-004 Jeonju, South Korea. [Kang, Yong Cheol] Chonbuk Natl Univ, Smart Grid Res Ctr, KS-004 Jeonju, South Korea. RP Lee, J (reprint author), Chonbuk Natl Univ, Dept Elect Engn, KS-004 Jeonju, South Korea.; Lee, J (reprint author), Chonbuk Natl Univ, Wind Energy Grid Adapt Technol Res Ctr, KS-004 Jeonju, South Korea. EM jinsiklee@jbnu.ac.kr; gjang@korea.ac.kr; eduard.muljadi@nrel.gov; fbl@et.aau.dk; zch@et.aau.dk; yckang@jbnu.ac.kr OI Blaabjerg, Frede/0000-0001-8311-7412 FU National Research Foundation of Korea - Korea government [2010-0028509]; Ministry of Science, ICT, and Future Planning (MSIP), Korea, through the Wind-Energy Gate Adaptive Technologies (WeGAT) Center at the Chonbuk National University; U.S. Department of Energy; National Renewable Energy Laboratory [DE-AC36-08-GO28308] FX This work was supported by the National Research Foundation of Korea funded by the Korea government under Grant 2010-0028509; the Ministry of Science, ICT, and Future Planning (MSIP), Korea, through the Wind-Energy Gate Adaptive Technologies (WeGAT) Center at the Chonbuk National University; and the U.S. Department of Energy with the National Renewable Energy Laboratory under Contract DE-AC36-08-GO28308. Paper no. TEC-00554-2015. NR 23 TC 0 Z9 0 U1 3 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8969 EI 1558-0059 J9 IEEE T ENERGY CONVER JI IEEE Trans. Energy Convers. PD SEP PY 2016 VL 31 IS 3 BP 1068 EP 1079 DI 10.1109/TEC.2016.2532366 PG 12 WC Energy & Fuels; Engineering, Electrical & Electronic SC Energy & Fuels; Engineering GA DV8HC UT WOS:000383177100023 ER PT J AU Jakes, JE Arzola, X Bergman, R Ciesielski, P Hunt, CG Rahbar, N Tshabalala, M Wiedenhoeft, AC Zelinka, SL AF Jakes, Joseph E. Arzola, Xavier Bergman, Rick Ciesielski, Peter Hunt, Christopher G. Rahbar, Nima Tshabalala, Mandla Wiedenhoeft, Alex C. Zelinka, Samuel L. TI Not Just Lumber-Using Wood in the Sustainable Future of Materials, Chemicals, and Fuels SO JOM LA English DT Article ID MOLECULAR-DYNAMICS; FAST-PYROLYSIS; CELL-WALLS; CELLULOSE; CARBON; BIOMASS; LIGNIN; POLYMERS; GASIFICATION; CRYSTALLINE AB Forest-derived biomaterials can play an integral role in a sustainable and renewable future. Research across a range of disciplines is required to develop the knowledge necessary to overcome the challenges of incorporating more renewable forest resources in materials, chemicals, and fuels. We focus on wood specifically because in our view, better characterization of wood as a raw material and as a feedstock will lead to its increased utilization. We first give an overview of wood structure and chemical composition and then highlight current topics in forest products research, including (1) industrial chemicals, biofuels, and energy from woody materials; (2) wood-based activated carbon and carbon nanostructures; (3) development of improved wood protection treatments; (4) massive timber construction; (5) wood as a bioinspiring material; and (6) atomic simulations of wood polymers. We conclude with a discussion of the sustainability of wood as a renewable forest resource. C1 [Jakes, Joseph E.; Arzola, Xavier; Hunt, Christopher G.; Tshabalala, Mandla] USDA Forest Serv, Forest Biopolymers Sci & Engn, Forest Prod Lab, One Gifford Pinchot Dr, Madison, WI 53726 USA. [Arzola, Xavier] Univ Wisconsin, Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. [Bergman, Rick] USDA Forest Serv, Econ Stat & Life Cycle Anal Res, Forest Prod Lab, One Gifford Pinchot Dr, Madison, WI 53726 USA. [Ciesielski, Peter] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver W Pkwy, Golden, CO 80401 USA. [Rahbar, Nima] Worcester Polytech Inst, Dept Civil & Environm Engn, 100 Inst Rd, Worcester, MA 01609 USA. [Wiedenhoeft, Alex C.] USDA Forest Serv, Ctr Wood Anat Res, Forest Prod Lab, One Gifford Pinchot Dr, Madison, WI 53726 USA. [Zelinka, Samuel L.] USDA Forest Serv, Bldg & Fire Sci, Forest Prod Lab, One Gifford Pinchot Dr, Madison, WI 53726 USA. RP Jakes, JE (reprint author), USDA Forest Serv, Forest Biopolymers Sci & Engn, Forest Prod Lab, One Gifford Pinchot Dr, Madison, WI 53726 USA. EM jjakes@fs.fed.us FU USDA PECASE awards; Computational Pyrolysis Consortium (CPC) - Bioenergy Technologies Office (BETO) of the U.S. Department of Energy FX J.E.J. acknowledges funding from 2011 USDA PECASE awards. Financial support for P.N.C. was provided by the Computational Pyrolysis Consortium (CPC) funded by the Bioenergy Technologies Office (BETO) of the U.S. Department of Energy. We also thank Steve Schmeiding from the USDA Forest Products Laboratory for the photo used in Fig. 3. NR 80 TC 0 Z9 0 U1 14 U2 14 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD SEP PY 2016 VL 68 IS 9 BP 2395 EP 2404 DI 10.1007/s11837-016-2026-7 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA DU1SK UT WOS:000381989200012 ER PT J AU Byers, DA Henrikson, LS Breslawski, RP AF Byers, David A. Henrikson, L. Suzann Breslawski, Ryan P. TI Holocene cold storage practices on the eastern Snake River Plain: A risk-mitigation strategy for lean times SO JOURNAL OF ANTHROPOLOGICAL ARCHAEOLOGY LA English DT Article DE Snake River Plain; Cold storage caves; Bison; Risk; Z-score model ID YELLOWSTONE-NATIONAL-PARK; WYOMING BASIN; POPULATION-DYNAMICS; LATE PLEISTOCENE; PREY CHOICE; BISON; CALIFORNIA; MOBILITY; IDAHO; SITE AB Previous archaeological research in southern Idaho has suggested that climate change over the past 8000 years was not dramatic enough to alter long-term subsistence practices in the region. However, recent isotopic analyses of bison remains from cold storage caves on the Snake River Plain contest this hypothesis. These results, when examined against an archaeoclimate model, suggest that cold storage episodes coincided with drier, warmer phases that likely reduced forage and water, and thus limited the availability of bison on the open steppe. Within this context we build a risk model to illustrate how environment might have motivated cold storage behaviors. Caching bison in cold lava tubes would have mitigated both intra-annual and inter-annual food shortages under these conditions. Our analysis also suggests that skeletal fat, more than meat, may have influenced the selection, transport and storage of bison carcass parts. Deciphering when and how cold storage caves were utilized can ultimately provide a more comprehensive understanding of foraging behaviors in a broad range of hunting-gathering economies. (C) 2016 Elsevier Inc. All rights reserved. C1 [Byers, David A.] Utah State Univ, Dept Sociol Anthropol & Social Work, Old Main 245C, Logan, UT 84322 USA. [Henrikson, L. Suzann] Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. [Breslawski, Ryan P.] Southern Methodist Univ, Dept Anthropol, POB 750336, Dallas, TX 75275 USA. RP Byers, DA (reprint author), Utah State Univ, Dept Sociol Anthropol & Social Work, Old Main 245C, Logan, UT 84322 USA. EM david.byers@usu.edu; l.henrikson@inl.gov; rbreslawski@smu.edu OI Breslawski, Ryan/0000-0002-8336-1295 NR 92 TC 0 Z9 0 U1 0 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0278-4165 EI 1090-2686 J9 J ANTHROPOL ARCHAEOL JI J. Anthropol. Archaeol. PD SEP PY 2016 VL 43 BP 56 EP 68 DI 10.1016/j.jaa.2016.05.005 PG 13 WC Anthropology; Archaeology SC Anthropology; Archaeology GA DU4KL UT WOS:000382181400005 ER PT J AU McNamara, LA AF McNamara, Laura A. TI The Theater of Operations: National Security Affect from the Cold War to the War on Terror SO JOURNAL OF ANTHROPOLOGICAL RESEARCH LA English DT Book Review C1 [McNamara, Laura A.] Sandia Natl Labs, Livermore, CA 94550 USA. RP McNamara, LA (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 1 TC 0 Z9 0 U1 2 U2 2 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0091-7710 EI 2153-3806 J9 J ANTHROPOL RES JI J. Anthropol. Res. PD FAL PY 2016 VL 72 IS 3 BP 358 EP 360 PG 3 WC Anthropology SC Anthropology GA DV5TR UT WOS:000382993100007 ER PT J AU Aaboud, M Aad, G Abbott, B Abdallah, J Abdinov, O Abeloos, B Aben, R AbouZeid, OS Abraham, NL Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Ali, B Aliev, M Alimonti, G Alison, J Alkire, SP Allbrooke, BMM Allen, BW Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Alstaty, M Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antel, C Antonelli, M Antonov, A Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Armitage, LJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Artz, S Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisits, MS Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Navarro, LB Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bedognetti, M Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, AS Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Belyaev, NL Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Benitez, J Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Beringer, J Berlendis, S Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertram, IA Bertsche, C Bertsche, D Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethani, A Bethke, S Bevan, AJ Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Bielski, R Biesuz, NV Biglietti, M De Mendizabal, JB Billoud, TRV Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bisanz, T Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Boerner, D Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bokan, P Bold, T Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Bortfeldt, J Bortoletto, D Bortolotto, V Bos, K Boscherini, D Bosman, M Sola, JDB Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Boutle, SK Boveia, A Boyd, J Boyko, IR Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Broughton, JH de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruni, LS Brunt, BH Bruschi, M Bruscino, N Bryant, P Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burka, K Burke, S Burmeister, I Burr, JTP Busato, E Uscher, DB Buscher, V Bussey, P Butler, JM Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Callea, G Caloba, LP Lopez, SC Calvet, D Calvet, S Calvet, TP Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Camincher, C Campana, S Campanelli, M Camplani, A Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, I Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelijn, R Castelli, A Gimenez, VC Castro, NF Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavallaro, E Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chan, SK Chan, YL Chang, P Chapman, JD Charlton, DG Chatterjee, A Chau, CC Barajas, CAC Che, S Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, HJ Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chitan, A Chizhov, MV Choi, K Chomont, AR Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocca, C Ciocio, A Cirotto, F Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, BL Clark, MR Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Colasurdo, L Cole, B Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cormier, KJR Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cottin, G Cowan, G Cox, BE Cranmer, K Crawley, SJ Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Cueto, A Donszelmann, TC Cummings, J Curatolo, M Cuth, J Czirr, H Czodrowski, P D'amen, G D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dado, T Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Dann, NS Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, M Davison, P Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Maria, A De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Dehghanian, N Deigaard, I Del Gaudio, M Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Denysiuk, D Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Clemente, WK Di Donato, C Di Girolamo, A Di Girolamo, B Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dolejsi, J Dolezal, Z Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Duarte-Campderros, J Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Dudder, AC Duffield, EM Duflot, L Durhrssen, M Dumancic, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edwards, NC Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellajosyula, V Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Ennis, JS Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, F Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farina, C Farina, EM Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fawcett, WJ Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiedler, F Filicic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Forcolin, GT Formica, A Forti, A Foster, AG Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, LG Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Bravo, AG Gasnikova, K Gatti, C Gaudiello, A Gaudio, G Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Gecse, Z Gee, CNP Geich-Gimbel, C Geisen, M Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S Gentsos, C George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Ghneimat, M Giacobbe, B Giagu, S Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuli, F Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, G Gonella, L Gongadze, A de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goudet, CR Goujdami, D Goussiou, AG Govender, N Gozani, E Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gravila, PM Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Grevtsov, K Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Groh, S Grohs, JP Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guan, W Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, R Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Hadef, A Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanisch, S Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hartmann, NM Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hayakawa, D Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, JJ Heinrich, L Heinz, C Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Henkelmann, S Correia, AMH Henrot-Versille, S Herbert, GH Herget, V Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohn, D Holmes, TR Homann, M Hong, TM Hooberman, BH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, S Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Huo, P Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Ishijima, N Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ito, F Ponce, JMI Iuppa, R Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, P Jain, V Jakobi, KB Jakobs, K Jakobsen, S Jakoubek, T Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanneau, F Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jeske, C Jezequel, S Ji, H Jia, J Jiang, H Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, S Jones, TJ Jongmanns, J Jorge, PM Jovicevic, J Ju, X Rozas, AJ Kohler, MK Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kaji, T Kajomovitz, E Kalderon, CW Kaluza, A Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kanjir, L Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Kentaro, K Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khader, M Khalil-zada, F Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kilby, CR Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koehler, NM Koffas, T Koffeman, E Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Kowalewska, AB Kowalewski, R Kowalski, TZ Kozakai, C Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kravchenko, A Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuechler, JT Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lammers, S Lampl, W Lancon, E Landgraf, U Landon, MPJ Lanfermann, MC Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Lazzaroni, M Le, B Le Dortz, O Le Guirriec, E Le Quilleuc, EP LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, B Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Lerner, G Leroy, C Lesage, AAJ Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, D Leyko, AM Leyton, M Li, B Li, C Li, H Li, HL Li, L Li, L Li, Q Li, S Li, X Li, Y Liang, Z Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limosani, A Lin, SC Lin, TH Lindquist, BE Lionti, AE Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, YL Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Longo, L Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Solis, AL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Luzi, PM Lynn, D Lysak, R Lytken, E Lyubushkin, V Ma, H Ma, LL Ma, Y Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Maneira, J de Andrade, LM Ramos, JM Mann, A Manousos, A Mansoulie, B Mansour, JD Mantifel, R Mantoani, M Manzoni, S Mapelli, L Marceca, G March, L Marchiori, G Marcisovsky, M Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Outschoorn, VIM Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Fadden, NC Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McClymont, LI McDonald, EF Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meideck, T Meier, K Meineck, C Meirose, B Melini, D Garcia, BRM Melo, M Meloni, F Mengarelli, A Menke, S Meoni, E Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Miano, F Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Molander, S Moles-Valls, R Monden, R Mondragon, MC Monig, K Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Muskinja, M Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nagai, K Nagai, R Nagano, K Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naryshkin, I Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Manh, TN Nickerson, RB Nicolaidou, R Nielsen, J Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Norjoharuddeen, N Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Nurse, E Nuti, F O'grady, F O'Neil, DC O'Rourke, AA O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okawa, H Okumura, Y Okuyama, T Olariu, A Seabra, LFO Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oreglia, MJ Oren, Y Orestano, D Orlando, N Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Rodriguez, LP Aranda, CP Pagacova, M Griso, SP Paige, F Pais, P Pajchel, K Palacino, G Palazzo, S Palestini, S Palka, M Pallin, D Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, AJ Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pascuzzi, VR Pasqualucci, E Passaggio, S Pastore, F Pasztor, G Pataraia, S Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Penc, O Peng, C Peng, H Penwell, J Peralva, BS Perego, MM Perepelitsa, DV Codina, EP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrov, M Petrucci, F Pettersson, NE Peyaud, A Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pilcher, JE Pilkington, AD Pin, AWJ Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prell, S Price, D Price, LE Primavera, M Prince, S Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Przybycien, M Puddu, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Raine, JA Rajagopalan, S Rammensee, M Rangel-Smith, C Ratti, MG Rauscher, F Rave, S Ravenscroft, T Ravinovich, I Raymond, M Read, AL Readioff, NP Reale, M Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rimoldi, M Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Rizzi, C Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Rodina, Y Perez, AR Rodriguez, DR Roe, S Rogan, CS Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosenthal, O Rosien, NA Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryu, S Ryzhov, A Rzehorz, GF Saavedra, AF Sabato, G Sacerdoti, S Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Savic, N Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schachtner, BM Schaefer, D Schaefer, R Er, JSF Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schier, S Schillo, C Schioppa, M Schlenker, S Schmidt-Sommerfeld, KR Schmieden, K Schmitt, C Schmitt, S Schmitz, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schott, M Schovancova, J Schramm, S Schreyer, M Schuh, N Schulte, A Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Schwarz, TA Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciolla, G Scuri, F Scutti, F Searcy, J Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shaikh, NW Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sickles, AM Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silverstein, SB Simak, V Simic, L Simion, S Simioni, E Simmons, B Simon, D Simon, M Sinervo, P Sinev, NB Sioli, M Siragusa, G Sivoklokov, SY Sjolin, J Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Slovak, R Smakhtin, V Smart, BH Smestad, L Smiesko, J Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Sanchez, CAS Solar, M Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Son, H Song, HY Sood, A Sopczak, A Sopko, V Sorin, V Sosa, D Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M St Denis, RD Stabile, A Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, GH Stark, J Staroba, P Starovoitov, P Starz, S Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeshita, T Takubo, Y Talby, M Talyshev, AA Tan, KG Tanaka, J Tanaka, M Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, AC Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Tong, B Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Trofymov, A Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tseng, JCL Tsiareshka, PV Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tu, Y Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turgeman, D Turra, R Turvey, AJ Tuts, PM Tyndel, M Ucchielli, G Ueda, I Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Santurio, EV Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallier, A Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vankov, P Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vasquez, JG Vazeille, F Schroeder, TV Veatch, J Veeraraghavan, V Veloce, LM Veloso, F Veneziano, S Ventura, A Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigani, L Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vittori, C Vivarelli, I Vlachos, S Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wallangen, V Wang, C Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, W Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, MD Werner, P Wessels, M Wetter, J Whalen, K Whallon, NL Wharton, AM White, A White, MJ White, R Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilk, F Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, JA Wingerter-Seez, I Winklmeier, F Winston, OJ Winter, BT Wittgen, M Wittkowski, J Wolf, TMH Wolter, MW Wolters, H Worm, SD Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yang, Z Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zakharchuk, N Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zwalinski, L AF Aaboud, M. Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Abeloos, B. Aben, R. AbouZeid, O. S. Abraham, N. L. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Ali, B. Aliev, M. Alimonti, G. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allen, B. W. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Alstaty, M. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antel, C. Antonelli, M. Antonov, A. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Armitage, L. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Artz, S. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisits, M-S Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barranco Navarro, L. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bedognetti, M. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, A. S. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Belyaev, N. L. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Benitez, J. Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Beringer, J. Berlendis, S. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertram, I. A. Bertsche, C. Bertsche, D. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethani, A. Bethke, S. Bevan, A. J. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Bielski, R. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Billoud, T. R. V. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bisanz, T. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Boerner, D. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bokan, P. Bold, T. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Bortfeldt, J. Bortoletto, D. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Bossio Sola, J. D. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Broughton, J. H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruni, L. S. Brunt, B. H. Bruschi, M. Bruscino, N. Bryant, P. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burka, K. Burke, S. Burmeister, I. Burr, J. T. P. Busato, E. Uscher, D. B. Buescher, V. Bussey, P. Butler, J. M. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Callea, G. Caloba, L. P. Calvente Lopez, S. Calvet, D. Calvet, S. Calvet, T. P. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Camincher, C. Campana, S. Campanelli, M. Camplani, A. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, I. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelijn, R. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavallaro, E. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chan, S. K. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chatterjee, A. Chau, C. C. Barajas, C. A. Chavez Che, S. Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, H. J. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chitan, A. Chizhov, M. V. Choi, K. Chomont, A. R. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocca, C. Ciocio, A. Cirotto, F. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, B. L. Clark, M. R. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Colasurdo, L. Cole, B. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cormier, K. J. R. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Crawley, S. J. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Cueto, A. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Czirr, H. Czodrowski, P. D'amen, G. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dado, T. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Dann, N. S. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, M. Davison, P. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Maria, A. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Dehghanian, N. Deigaard, I. Del Gaudio, M. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Denysiuk, D. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Clemente, W. K. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dolejsi, J. Dolezal, Z. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Duarte-Campderros, J. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Dudder, A. Chr. Duffield, E. M. Duflot, L. Durhrssen, M. Dumancic, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edwards, N. C. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellajosyula, V. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Ennis, J. S. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, F. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farina, C. Farina, E. M. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fawcett, W. J. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Fernandez Perez, S. Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiedler, F. Filicic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Forcolin, G. T. Formica, A. Forti, A. Foster, A. G. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, L. G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Bravo, A. Gascon Gasnikova, K. Gatti, C. Gaudiello, A. Gaudio, G. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch. Geisen, M. Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. Gentsos, C. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Ghneimat, M. Giacobbe, B. Giagu, S. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuli, F. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, G. Gonella, L. Gongadze, A. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goudet, C. R. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gravila, P. M. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Grevtsov, K. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Groh, S. Grohs, J. P. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guan, W. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, R. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Hadef, A. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanisch, S. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hartmann, N. M. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hayakawa, D. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, J. J. Heinrich, L. Heinz, C. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Henkelmann, S. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Herget, V. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hooberman, B. H. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, S. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huo, P. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Ishijima, N. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ito, F. Ponce, J. M. Iturbe Iuppa, R. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, P. Jain, V. Jakobi, K. B. Jakobs, K. Jakobsen, S. Jakoubek, T. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanneau, F. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, H. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, S. Jones, T. J. Jongmanns, J. Jorge, P. M. Jovicevic, J. Ju, X. Juste Rozas, A. Kohler, M. K. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kaji, T. Kajomovitz, E. Kalderon, C. W. Kaluza, A. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kanjir, L. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Kentaro, K. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khader, M. Khalil-zada, F. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kilby, C. R. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koehler, N. M. Koffas, T. Koffeman, E. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Kowalewska, A. B. Kowalewski, R. Kowalski, T. Z. Kozakai, C. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kravchenko, A. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuechler, J. T. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. Navarro, J. L. La Rosa La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lammers, S. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lanfermann, M. C. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Lazzaroni, M. Le, B. Le Dortz, O. Le Guirriec, E. Le Quilleuc, E. P. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, B. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Lerner, G. Leroy, C. Lesage, A. A. J. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, D. Leyko, A. M. Leyton, M. Li, B. Li, C. Li, H. Li, H. L. Li, L. Li, L. Li, Q. Li, S. Li, X. Li, Y. Liang, Z. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limosani, A. Lin, S. C. Lin, T. H. Lindquist, B. E. Lionti, A. E. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. L. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Longo, L. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Solis, A. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Luzi, P. M. Lynn, D. Lysak, R. Lytken, E. Lyubushkin, V. Ma, H. Ma, L. L. Ma, Y. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Machado Miguens, J. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousos, A. Mansoulie, B. Mansour, J. D. Mantifel, R. Mantoani, M. Manzoni, S. Mapelli, L. Marceca, G. March, L. Marchiori, G. Marcisovsky, M. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Outschoorn, V. I. Martinez Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Fadden, N. C. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McClymont, L. I. McDonald, E. F. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meideck, T. Meier, K. Meineck, C. Meirose, B. Melini, D. Garcia, B. R. Mellado Melo, M. Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Miano, F. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Molander, S. Moles-Valls, R. Monden, R. Mondragon, M. C. Moenig, K. Monk, J. Monnier, E. Montalbano, A. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Muskinja, M. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nagai, K. Nagai, R. Nagano, K. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naryshkin, I. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Manh, T. Nguyen Nickerson, R. B. Nicolaidou, R. Nielsen, J. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Norjoharuddeen, N. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Rourke, A. A. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Oleiro Seabra, L. F. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Rodriguez, L. Pacheco Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paige, F. Pais, P. Pajchel, K. Palacino, G. Palazzo, S. Palestini, S. Palka, M. Pallin, D. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, A. J. Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pascuzzi, V. R. Pasqualucci, E. Passaggio, S. Pastore, Fr. Pasztor, G. Pataraia, S. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Penc, O. Peng, C. Peng, H. Penwell, J. Peralva, B. S. Perego, M. M. Perepelitsa, D. V. Codina, E. Perez Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrov, M. Petrucci, F. Pettersson, N. E. Peyaud, A. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Przybycien, M. Puddu, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Raine, J. A. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Ratti, M. G. Rauscher, F. Rave, S. Ravenscroft, T. Ravinovich, I. Raymond, M. Read, A. L. Readioff, N. P. Reale, M. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rimoldi, M. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Rizzi, C. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Rodina, Y. Rodriguez Perez, A. Rodriguez Rodriguez, D. Roe, S. Rogan, C. S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosenthal, O. Rosien, N. -A. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryu, S. Ryzhov, A. Rzehorz, G. F. Saavedra, A. F. Sabato, G. Sacerdoti, S. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Savic, N. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schachtner, B. M. Schaefer, D. Schaefer, R. Er, J. Schae Ff Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schier, S. Schillo, C. Schioppa, M. Schlenker, S. Schmidt-Sommerfeld, K. R. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schott, M. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schulte, A. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwartzman, A. Schwarz, T. A. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shaikh, N. W. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sickles, A. M. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silverstein, S. B. Simak, V. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simon, M. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sivoklokov, S. Yu. Sjolin, J. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Slovak, R. Smakhtin, V. Smart, B. H. Smestad, L. Smiesko, J. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Sanchez, C. A. Solans Solar, M. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Son, H. Song, H. Y. Sood, A. Sopczak, A. Sopko, V. Sorin, V. Sosa, D. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. St Denis, R. D. Stabile, A. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, G. H. Stark, J. Staroba, P. Starovoitov, P. Starz, S. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tan, K. G. Tanaka, J. Tanaka, M. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tapia Araya, S. Tapprogge, S. Tarem, S. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, A. C. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Tong, B. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Trofymov, A. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tseng, J. C-L. Tsiareshka, P. V. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tu, Y. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turgeman, D. Turra, R. Turvey, A. J. Tuts, P. M. Tyndel, M. Ucchielli, G. Ueda, I. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Santurio, E. Valdes Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallier, A. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vankov, P. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vasquez, J. G. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veeraraghavan, V. Veloce, L. M. Veloso, F. Veneziano, S. Ventura, A. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigani, L. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vittori, C. Vivarelli, I. Vlachos, S. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wallangen, V. Wang, C. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, W. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, M. D. Werner, P. Wessels, M. Wetter, J. Whalen, K. Whallon, N. L. Wharton, A. M. White, A. White, M. J. White, R. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilk, F. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winston, O. J. Winter, B. T. Wittgen, M. Wittkowski, J. Wolf, T. M. H. Wolter, M. W. Wolters, H. Worm, S. D. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yang, Z. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zakharchuk, N. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zwalinski, L. CA ATLAS Collaboration TI Search for resonances in diphoton events at root s=13TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Hadron-Hadron scattering (experiments); Hard scattering; Particle and resonance production; proton-proton scattering ID COLLISIONS; HIERARCHY; MODEL AB Searches for new resonances decaying into two photons in the ATLAS experiment at the CERN Large Hadron Collider are described. The analysis is based on protonproton collision data corresponding to an integrated luminosity of 3.2 fb(-1) at root s = 13TeV recorded in 2015. Two searches are performed, one targeted at a spin-2 particle of mass larger than 500 GeV, using Randall-Sundrum graviton states as a benchmark model, and one optimized for a spin-0 particle of mass larger than 200 GeV. Varying both the mass and the decay width, the most significant deviation from the background-only hypothesis is observed at a diphoton invariant mass around 750 GeV with local significances of 3.8 and 3.9 standard deviations in the searches optimized for a spin-2 and spin-0 particle, respectively. The global significances are estimated to be 2.1 standard deviations for both analyses. The consistency between the data collected at 13TeV and 8TeV is also evaluated. Limits on the production cross section times branching ratio to two photons for the two resonance types are reported. C1 [Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Czodrowski, P.; Dassoulas, J.; Dehghanian, N.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Vallier, A.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Grevtsov, K.; Guillemin, T.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Smart, B. H.; Todorov, T.; Vallier, A.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Blair, R. E.; Chekanov, S.; LeCompte, T.; Love, J.; Malon, D.; Metcalfe, J.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ryu, S.; Stanek, R. W.; van Gemmeren, P.; Wang, R.; Webster, J. S.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Jones, S.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veeraraghavan, V.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Andeen, T.; Ilchenko, Y.; Narayan, R.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavallaro, E.; Cavalli-Sforza, M.; Farooque, T.; Fernandez Perez, S.; Fischer, C.; Fracchia, S.; Gerbaudo, D.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Lo Sterzo, F.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Rizzi, C.; Rodriguez Perez, A.; Sorin, V.; Terzo, S.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, IFAE, Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bokan, P.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Smestad, L.; Stugu, B.; Yang, Z.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hadef, A.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Duffield, E. M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heim, T.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Mergelmeyer, S.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Meloni, F.; Miucci, A.; Mullier, G. A.; Rimoldi, M.; Stramaglia, M. E.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Andari, N.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Broughton, J. H.; Casadei, D.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Foster, A. G.; Gonella, L.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Istanbul Bilgi Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Beddall, A. J.] Bahcesehir Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Alberghi, G. L.; Biondi, S.; Ciocca, C.; D'amen, G.; De Castro, S.; Fabbri, F.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Ucchielli, G.; Valentinetti, S.; Villa, M.; Vittori, C.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Caudron, J.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Ghneimat, M.; Grefe, C.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Seema, P.; Stillings, J. A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.; Zhang, R.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Dhaliwal, S.; Goblirsch-Kolb, M.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.; Peralva, B. S.] Fed Univ Juiz Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Navarro, J. L. La Rosa; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Elmsheuser, J.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lee, C. A.; Liu, H.; Lynn, D.; Ma, H.; Maeno, T.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Stucci, S. A.; Takai, H.; Tricoli, A.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. [Gravila, P. M.] West Univ Timisoara, Timisoara, Romania. [Bossio Sola, J. D.; Marceca, G.; Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Brunt, B. H.; Carter, J. R.; Chapman, J. D.; Cottin, G.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Lester, C. G.; Mueller, T.; Parker, M. A.; Potter, C. J.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Gillberg, D.; Lacey, J.; Leight, W. A.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Ruiz-Martinez, A.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Amoroso, S.; Anders, G.; Anghinolfi, F.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backhaus, M.; Barak, L.; Barisits, M-S; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Bortfeldt, J.; Boveia, A.; Boyd, J.; Burckhart, H.; Camarda, S.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Colombo, T.; Conti, G.; Cortes-Gonzalez, A.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Di Nardo, R.; Dittus, F.; Dobos, D.; Dudarev, A.; Eifert, T.; Ellis, N.; Elsing, M.; Faltova, J.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Feng, E. J.; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hanisch, S.; Hawkings, R. J.; Helary, L.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Malyukov, S.; Mandelli, B.; Mandelli, L.; Manousos, A.; Mapelli, L.; Marzin, A.; Berlingen, J. Montejo; Mornacchi, G.; Nairz, A. M.; Nessi, M.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Petersen, B. A.; Pommes, K.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Sforza, F.; Sanchez, C. A. Solans; Spigo, G.; Starz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Gardner, R. W.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Oreglia, M. J.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Stark, G. H.; Swiatlowski, M.; Vukotic, I.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Diaz, M. A.; Ochoa-Ricoux, J. P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, T.; Carquin, E.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; da Costa, J. Barreiro Guimaraes; Cheng, H. J.; Fang, Y.; Jin, S.; Li, Q.; Liang, Z.; Merino, J. Llorente; Lou, X.; Mansour, J. D.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Li, C.; Liu, J. B.; Liu, M.; Liu, Y. L.; Liu, Y.; Peng, H.; Song, H. Y.; Wang, W.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Wang, C.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Du, Y.; Feng, C.; Liu, B.; Ma, L. L.; Ma, Y.; Wang, C.; Zaidan, R.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai, Peoples R China. [Bret, M. Cano; Guo, J.; Hu, S.; Li, L.; Yang, H.] PKU CHEP, Hangzhou, Zhejiang, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Chomont, A. R.; Donini, J.; Gris, Ph.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Vazeille, F.] CNRS, IN2P3, Clermont Ferrand, France. [Alkire, S. P.; Angerami, A.; Brooijmans, G.; Carbone, R. M.; Clark, M. R.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Callea, G.; Capua, M.; Crosetti, G.; Del Gaudio, M.; La Rotonda, L.; Mastroberardino, A.; Palazzo, S.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Gach, G. P.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Burka, K.; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwasaki, H.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Kowalewska, A. B.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Gupta, R.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] Southern Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Hamburg, Germany. [Asbah, N.; Behr, J. K.; Bertsche, C.; Bessner, M.; Bloch, I.; Britzger, D.; Deterre, C.; Dutta, B.; Dyndal, M.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Bravo, A. Gascon; Gasnikova, K.; Glazov, A.; Gregor, I. M.; Haleem, M.; Hamnett, P. G.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Madsen, A.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; O'Rourke, A. A.; Peschke, R.; Peters, K.; Pirumov, H.; Poley, A.; Robinson, J. E. M.; Schaefer, R.; Schmitt, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Trofymov, A.; Wang, J.; Zakharchuk, N.] DESY, Zeuthen, Germany. [Burmeister, I.; Cinca, D.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Lehrstuhl Expt Phys 4, Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mijovic, L.; Mills, C.; Pino, S. A. Olivares; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Frascati, Italy. [Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, V.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Glatzer, J.; Gonella, G.; Hirose, M.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Nagel, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schnoor, U.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Albert Ludwigs Univ, Fak Math & Phys, Freiburg, Germany. [Ancu, L. S.; De Mendizabal, J. Bilbao; Calace, N.; Chatterjee, A.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Katre, A.; Khoo, T. J.; Lacour, D.; Lanfermann, M. C.; Lionti, A. E.; March, L.; Mermod, P.; Nackenhorst, O.; Nessi, M.; Paolozzi, L.; Schramm, S.; Sfyrla, A.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Miglioranzi, S.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Heinz, C.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Crawley, S. J.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; Gul, U.; Knue, A.; Mullen, P.; O'Shea, V.; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Bisanz, T.; Blumenschein, U.; Brandt, G.; De Maria, A.; Drechsler, E.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Quadt, A.; Rieger, J.; Rosien, N. -A.; Rzehorz, G. F.; Shabalina, E.; Veatch, J.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Berlendis, S.; Bethani, A.; Camincher, C.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Gradin, P. O. J.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Meideck, T.; Petit, E.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subatom & Cosmol, CNRS, IN2P3, Grenoble, France. [Chan, S. K.; Clark, B. L.; Franklin, M.; Giromini, P.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Morii, M.; Rogan, C. S.; Skottowe, H. P.; Sun, S.; Tolley, E.; Tong, B.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Antel, C.; Baas, A. E.; Brandt, O.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; de Lima, D. E. Ferreira; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI, Inst Informat Technol, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.; Orlando, N.; Tu, Y.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Kopeliansky, R.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Guenther, J.; Jansky, R.; Kneringer, E.; Lukas, W.; Milic, A.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Abdallah, J.; Argyropoulos, S.; Benitez, J.; Mallik, U.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Jiang, H.; Krumnack, N.; Pluth, D.; Prell, S.; Werner, M. D.; Yu, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gongadze, A.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Lyubushkin, V.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Soloshenko, A.; Turchikhin, S.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kondo, T.; Kono, T.; Makida, Y.; Nagai, R.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamamoto, A.; Yasu, Y.] KEK, High Energy Accelerator Res Org, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo, Japan. [Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Bertram, I. A.; Borissov, G.; Bouhova-Thacker, E. V.; Cheatham, S.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Muenstermann, D.; Parker, A. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Aliev, M.; Bachas, K.; Chiodini, G.; Gorini, E.; Longo, L.; Primavera, M.; Reale, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Aliev, M.; Bachas, K.; Gorini, E.; Longo, L.; Reale, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jones, T. J.; King, B. T.; Klein, M. H.; Klein, M.; Klein, U.; Kretz, M.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipuzzi, M.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filicic, A.; Gorisek, A.; Kanjir, L.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Muskinja, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Armitage, L. J.; Bevan, A. J.; Bona, M.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lewis, D.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Kilby, C. R.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Bell, A. S.; Butterworth, J. M.; Campanelli, M.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Grout, Z. J.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Leney, K. J. C.; Martyniuk, A. C.; McClymont, L. I.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Solis, A. Lopez; Luzi, P. M.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Varouchas, D.; Yap, Y. C.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hedberg, V.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Fys Inst, Lund, Sweden. [Barreiro, F.; Calvente Lopez, S.; Cueto, A.; De la Torre, H.; Del Peso, J.; Glasman, C.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Artz, S.; Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Cuth, J.; Dudder, A. Chr.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Geisen, M.; Groh, S.; Heck, T.; Jakobi, K. B.; Kaluza, A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Pleskot, V.; Rave, S.; Sander, H. G.; Schaefer, U.; Schaffer, A. C.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Schulte, A.; Simioni, E.; Simon, M.; Tapprogge, S.; Urrejola, P.; Webb, S.; Yildirim, E.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Barnes, S. L.; Bielski, R.; Cox, B. E.; Da Via, C.; Dann, N. S.; Forcolin, G. T.; Forti, A.; Ponce, J. M. Iturbe; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Raine, J. A.; Schweiger, H.; Shaw, S. M.; Tomlinson, L.; Watts, S.; Wilk, F.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alstaty, M.; Barbero, M.; Calandri, A.; Calvet, T. P.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ellajosyula, V.; Feligioni, L.; Hadef, A.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Monnier, E.; Muanza, S.; Nagy, E.; Pralavorio, P.; Rodina, Y.; Rozanov, A.; Talby, M.; Theveneaux-Pelzer, T.; Torres, R. E. Ticse; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Wang, C.; Zhang, R.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pettersson, N. E.; Picazio, A.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Lefebvre, B.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Goldfarb, S.; Jennens, D.; Kubota, T.; Le, B.; McDonald, E. F.; Milesi, M.; Nuti, F.; Rados, P.; Scutti, F.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Ungaro, F. C.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Geng, C.; Guan, L.; Guo, Y.; Levin, D.; Li, B.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Martin, B.; Mondragon, M. C.; Plucinski, P.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Camplani, A.; Carminati, L.; Cavalli, D.; Citterio, M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Lazzaroni, M.; Mandelli, L.; Manzoni, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr, Particle & High Energy Phys, Minsk, Byelarus. [Arguin, J-F.; Azuelos, G.; Billoud, T. R. V.; Dallaire, F.; Ducu, O. A.; Gagnon, L. G.; Gauthier, L.; Leroy, C.; Mochizuki, K.; Manh, T. Nguyen; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Belyaev, N. L.; Bulekov, O.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Hartmann, N. M.; Heinrich, J. J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Rauscher, F.; Ruschke, A.; Schachtner, B. M.; Schaile, D.; Unverdorben, C.; Valderanis, C.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Koehler, N. M.; Kortner, S.; Kroha, H.; La Rosa, A.; Macchiolo, A.; Maier, A. A.; McCarthy, T. G.; Menke, S.; Mueller, F.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Savic, N.; Schacht, P.; Schmidt-Sommerfeld, K. R.; Spettel, F.; Stonjek, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Horii, Y.; Kentaro, K.; Nakahama, Y.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Mc Fadden, N. C.; Seidel, S. C.; Taylor, A. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Igonkina, O.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Bruni, L. S.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.; Wolf, T. M. H.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Bedognetti, M.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelijn, R.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kluit, P.; Koffeman, E.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Graaf, H.; van Vulpen, I.; Vankov, P.; Verkerke, W.; Vermeulen, J. C.; Weits, H.; Williams, S.; Wolf, T. M. H.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Brost, E.; Burghgrave, B.; Chakraborty, D.; Klimek, P.; Saha, P.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Budker Inst Nucl Phys, SB RAS, Novosibirsk, Russia. [Becot, C.; Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Che, S.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama, Japan. [Abbott, B.; Alhroob, M.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Cantero, J.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, Olomouc, Czech Republic. [Abreu, R.; Allen, B. W.; Brau, J. E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abeloos, B.; Ayoub, M. K.; Bassalat, A.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Goudet, C. R.; Grivaz, J. -F.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Lounis, A.; Maiani, C.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.] Univ Paris 11, Univ Paris Saclay, LAL, CNRS,IN2P3, Orsay, France. [Hanagaki, K.; Ishijima, N.; Nomachi, M.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, M. K.; Cameron, D.; Catmore, J. R.; Feigl, S.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Serfon, C.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Artoni, G.; Barr, A. J.; Becker, K.; Beresford, L.; Bortoletto, D.; Burr, J. T. P.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Fawcett, W. J.; Frost, J. A.; Gallas, E. J.; Giuli, F.; Gupta, S.; Gwenlan, C.; Hays, C. P.; Henderson, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Nagai, K.; Nickerson, R. B.; Norjoharuddeen, N.; Petrov, M.; Pickering, M. A.; Radescu, V.; Tseng, J. C-L.; Viehhauser, G. H. A.; Vigani, L.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Dondero, P.; Farina, E. M.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy. [Dondero, P.; Farina, E. M.; Fraternali, M.; Introzzi, G.; Kourkoumeli-Charalampidi, A.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Di Clemente, W. K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Mistry, K. P.; Reichert, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Naryshkin, I.; Ryabov, Y. F.; Schegelsky, V. A.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Andreazza, A.; Camplani, A.; Carminati, L.; Fanti, M.; Lazzaroni, M.; Manzoni, S.; Mazza, S. M.; Monzani, S.; Perini, L.; Ragusa, F.; Ratti, M. G.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Farina, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Oleiro Seabra, L. F.; Onofre, A.; Pedro, R.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrument & Fis Expt Particulas, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Pedro, R.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Ali, B.; Augsten, K.; Caforio, D.; Gallus, P.; Hubacek, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Sopczak, A.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, Prague, Czech Republic. [Berta, P.; Carli, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Kodys, P.; Kosek, T.; Leitner, R.; Reznicek, P.; Scheirich, D.; Slovak, R.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Ryzhov, A.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Vaniachine, A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.; Worm, S. D.] Rutherford Appleton Lab, Particle Phys Dept, Didcot, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Donato, C.; Falciano, S.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Messina, A.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Donato, C.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Vanadia, M.; Zanello, L.] Sapienza Univ Roma, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cerrito, L.; Di Ciaccio, A.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cerrito, L.; Di Ciaccio, A.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Rome, Italy. [Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Ceradini, F.; Di Micco, B.; Orestano, D.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Rome Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Reseau Univ Phys Hautes Energies, Univ Hassan 2, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucleaires, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Aaboud, M.; Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [Cherkaoui El Moursli, R.; Fassi, F.; Haddad, N.; Idrissi, Z.; Tayalati, Y.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Balli, F.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Denysiuk, D.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Jeanneau, F.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Le Quilleuc, E. P.; Lesage, A. A. J.; Mansoulie, B.; Nicolaidou, R.; Ouraou, A.; Rodriguez, L. Pacheco; Perego, M. M.; Peyaud, A.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, Inst Rech Lois Fondament Univ, Commiss Energie Atom & Energies Alternati, DSM,IRFU, Gif Sur Yvette, France. [AbouZeid, O. S.; Battaglia, M.; Debenedetti, C.; Grillo, A. A.; Hance, M.; Kuhl, A.; Law, A. T.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schier, S.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.; Whallon, N. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Campoverde, A.; Czirr, H.; Fleck, I.; Ghasemi, S.; Ibragimov, I.; Li, Y.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.] Simon Fraser Univ, Dept Phys, Burnaby, BC, Canada. [Armbruster, A. J.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Gao, Y. S.; Garelli, N.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Dado, T.; Melo, M.; Plazak, L.; Smiesko, J.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Yacoob, S.] Univ Cape Town, Dept Phys, Cape Town, South Africa. [Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Stockholm Univ, Dept Phys, Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Poettgen, R.; Rossetti, V.; Shaikh, N. W.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Ughetto, M.; Santurio, E. Valdes; Wallangen, V.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, Stockholm, Sweden. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY USA. [Backes, M.; Balestri, T.; Bee, C. P.; Chen, K.; Hobbs, J.; Huo, P.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Morvaj, L.; Piacquadio, G.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY USA. [Abraham, N. L.; Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Lerner, G.; Miano, F.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.; Winston, O. J.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW, Australia. [Hou, S.; Hsu, P. J.; Lee, S. C.; Lin, S. C.; Lin, T. H.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, S. M.; Yang, Y.; Zhang, G.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Gozani, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, Haifa, Israel. [Abramowicz, H.; Alexander, G.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Duarte-Campderros, J.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, Tel Aviv, Israel. [Gentsos, C.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Leisos, A.; Papageorgiou, K.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki, Greece. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamura, G.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Enari, Y.; Hanawa, K.; Ishino, M.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kishimoto, T.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Kozakai, C.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Okumura, Y.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo, Japan. [Hayakawa, D.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Tanaka, M.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Batista, S. J.; Chau, C. C.; Cormier, K. J. R.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Keoshkerian, H.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Pascuzzi, V. R.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Banerjee, Sw.; Canepa, A.; Chekulaev, S. V.; Hod, N.; Jovicevic, J.; Codina, E. Perez; Schneider, B.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC, Canada. [Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON, Canada. [Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Esposito, B.; Hara, K.; Ito, F.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Son, H.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Boldyrev, A. S.; Cobal, M.; Giordani, M. P.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, Udine, Italy. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Maddocks, H. J.; Ohman, H.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Atkinson, M.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Hooberman, B. H.; Khader, M.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Outschoorn, V. I. Martinez; Neubauer, M. S.; Rybar, M.; Shang, R.; Sickles, A. M.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Gonzalez, B. Alvarez; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular, IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect & Inst, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Fernandez Martinez, P.; Ferrer, A.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V. A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V. R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; McPherson, R. A.; Pearce, J.; Seuster, R.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Ennis, J. S.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry, W Midlands, England. [Iizawa, T.; Kaji, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Balek, P.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Dumancic, M.; Gross, E.; Kohler, M. K.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Ravinovich, I.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.; Turgeman, D.] Weizmann Inst Sci, Dept Particle Phys, Rehovot, Israel. [Banerjee, Sw.; Guan, W.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Herget, V.; Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Trefzger, T.; Weber, S. W.; Zibell, A.] Julius Maximilians Univ, Fak Phys & Astron, Wurzburg, Germany. [Bannoura, A. A. E.; Boerner, D.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Gilles, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kersten, S.; Kuechler, J. T.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Vogel, M.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachgrp Physik, Fak Math & Nat Wissensch, Wuppertal, Germany. [Baker, O. K.; Noccioli, E. Benhar; Cummings, J.; Demers, S.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Hernandez, D. Paredes; Thomsen, L. A.; Tipton, P.; Vasquez, J. G.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan, Armenia. [Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk, Russia. [Banerjee, Sw.] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, Fribourg, Switzerland. [Casado, M. P.] Univ Autonoma Barcelona, Dept Fis, Barcelona, Spain. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Victoria, BC, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Govender, N.] Ctr High Performance Comp, CSIR Campus, Cape Town, South Africa. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] GTU, Tbilisi, Rep of Georgia. [Kono, T.; Nagai, R.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellenic Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Phys Tech Inst, Dolgoprudnyi, Russia. [Pasztor, G.] Eotvos Lorand Univ, Budapest, Hungary. [Pinamonti, M.] SISSA, Int Sch Adv Studies, Trieste, Italy. [Purohit, M.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Guangdong, Peoples R China. [Shiyakova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Inst Nucl & Particle Phys, Wigner Res Ctr Phys, Budapest, Hungary. [Vest, A.] Flensburg Univ Appl Sci, Flensburg, Germany. [Perez, M. Villaplana] Univ Malaya, Dept Phys, Kuala Lumpur, Malaysia. RP Aaboud, M (reprint author), Univ Mohamed Premier, Fac Sci, Oujda, Morocco.; Aaboud, M (reprint author), LPTPM, Oujda, Morocco. RI Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; White, Ryan/E-2979-2015; Kantserov, Vadim/M-9761-2015; Chekulaev, Sergey/O-1145-2015; Zhukov, Konstantin/M-6027-2015; Snesarev, Andrey/H-5090-2013; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Carli, Ina/C-2189-2017; Martinez, Mario /I-3549-2015; Gladilin, Leonid/B-5226-2011; Conde Muino, Patricia/F-7696-2011; Tikhomirov, Vladimir/M-6194-2015; Ventura, Andrea/A-9544-2015; Stabile, Alberto/L-3419-2016; Warburton, Andreas/N-8028-2013; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; Boyko, Igor/J-3659-2013; Prokoshin, Fedor/E-2795-2012; Villa, Mauro/C-9883-2009; Guo, Jun/O-5202-2015; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; Coccaro, Andrea/P-5261-2016; Brooks, William/C-8636-2013; Staroba, Pavel/G-8850-2014; Lazzaroni, Massimo/N-3675-2015; Kukla, Romain/P-9760-2016; Goncalo, Ricardo/M-3153-2016; Gavrilenko, Igor/M-8260-2015; Owen, Mark/Q-8268-2016; Doyle, Anthony/C-5889-2009; Shulga, Evgeny/R-1759-2016; Maleev, Victor/R-4140-2016; Mitsou, Vasiliki/D-1967-2009; Camarri, Paolo/M-7979-2015 OI Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; White, Ryan/0000-0003-3589-5900; Kantserov, Vadim/0000-0001-8255-416X; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Carli, Ina/0000-0002-0411-1141; Gladilin, Leonid/0000-0001-9422-8636; Conde Muino, Patricia/0000-0002-9187-7478; Tikhomirov, Vladimir/0000-0002-9634-0581; Ventura, Andrea/0000-0002-3368-3413; Stabile, Alberto/0000-0002-6868-8329; Warburton, Andreas/0000-0002-2298-7315; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; Boyko, Igor/0000-0002-3355-4662; Prokoshin, Fedor/0000-0001-6389-5399; Villa, Mauro/0000-0002-9181-8048; Guo, Jun/0000-0001-8125-9433; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Coccaro, Andrea/0000-0003-2368-4559; Brooks, William/0000-0001-6161-3570; Lazzaroni, Massimo/0000-0002-4094-1273; Kukla, Romain/0000-0002-1140-2465; Goncalo, Ricardo/0000-0002-3826-3442; Owen, Mark/0000-0001-6820-0488; Doyle, Anthony/0000-0001-6322-6195; Shulga, Evgeny/0000-0001-5099-7644; Mitsou, Vasiliki/0000-0002-1533-8886; Camarri, Paolo/0000-0002-5732-5645 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon 2020, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex, France; Investissements d'Avenir Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Spain; Generalitat Valenciana, Spain; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. NR 63 TC 13 Z9 13 U1 40 U2 54 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD SEP 1 PY 2016 IS 9 AR 001 DI 10.1007/JHEP09(2016)001 PG 50 WC Physics, Particles & Fields SC Physics GA DV5PJ UT WOS:000382979800001 ER PT J AU Hageman, KN Chow, MR Boutros, PJ Roberts, D Tooker, A Lee, K Felix, S Pannu, SS Della Santina, CC AF Hageman, Kristin N. Chow, Margaret R. Boutros, Peter J. Roberts, Dale Tooker, Angela Lee, Kye Felix, Sarah Pannu, Satinderpall S. Della Santina, Charles C. TI Design of a Vestibular Prosthesis for Sensation of Gravitoinertial Acceleration SO JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME LA English DT Article; Proceedings Paper CT University-of-Minnesota's Design of Medical Devices (DMD) Conference CY APR 11-14, 2016 CL Minneapolis, MN SP Univ Minnesota ID DEFICIENCY C1 [Hageman, Kristin N.; Chow, Margaret R.; Boutros, Peter J.; Della Santina, Charles C.] Johns Hopkins Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. [Roberts, Dale; Della Santina, Charles C.] Johns Hopkins Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. [Tooker, Angela; Lee, Kye; Felix, Sarah; Pannu, Satinderpall S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hageman, KN (reprint author), Johns Hopkins Sch Med, Dept Biomed Engn, Baltimore, MD 21205 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1932-6181 EI 1932-619X J9 J MED DEVICES JI J. Med. Devices PD SEP PY 2016 VL 10 IS 3 AR 030923 DI 10.1115/1.4033759 PG 3 WC Engineering, Biomedical SC Engineering GA DV8KC UT WOS:000383184900024 ER PT J AU Wang, ZY Huang, L Yue, GQ Shen, B Dong, F Zhang, RJ Zheng, YX Wang, SY Wang, CZ Kramer, J Ho, KM Chen, LY AF Wang, Zhanyu Huang, Li Yue, G. Q. Shen, B. Dong, F. Zhang, R. J. Zheng, Y. X. Wang, S. Y. Wang, C. Z. Kramer, J. Ho, K. M. Chen, L. Y. TI Effects of Oxygen Impurities on Glass-Formation Ability in Zr2Cu Alloy SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID INITIO MOLECULAR-DYNAMICS; BULK METALLIC GLASSES; AUGMENTED-WAVE METHOD; RANGE ORDER; DEGREES-C; LIQUID; PHASE; ZR AB Using ab initio molecular dynamics simulations, we show that oxygen (O) impurities have a noticeable influence on the glass-formation ability (GFA) in Zr2Cu alloy. Cu-centered icosahedral clusters and Zr-centered Kasper polyhedra are the dominate short-range orders in undercooled Zr2Cu liquid which are most likely to be responsible for the glass formation in Zr2Cu systems. When O is introduced, a Zr octahedron is formed around the O impurity. Most of the Zr atoms in the octahedron also serve as the bridging atoms for cross-linked Kasper polyhedral network, resulting in an O-centered medium range order (MRO) structure. Meanwhile, Cu atoms are moved away from the first shell of O-centered octahedral clusters. With 1 at % O impurities, the fractions of Zr-centered clusters are less affected, while the increase of ideal icosahedral order and decrease of distorted icosahedral order lead to a more stable atomic structure. This result suggests that a low concentration of O impurities would improve the GFA in Zr2Cu alloy. However, when similar to 5 at. % O impurities are included, the ideal icosahedral clusters and Zr-centered Kasper polyhedra are seriously suppressed by the formation of O-centered MRO, which can lead to deterioration of GFA. Our analyses provide useful insight into glass formation behavior in O-doped metallic alloy systems. C1 [Wang, Zhanyu; Yue, G. Q.; Shen, B.; Dong, F.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Chen, L. Y.] Fudan Univ, Shanghai Ultraprecis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China. [Wang, Zhanyu; Yue, G. Q.; Shen, B.; Dong, F.; Zhang, R. J.; Zheng, Y. X.; Wang, S. Y.; Chen, L. Y.] Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China. [Huang, Li] South Univ Sci & Technol China, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China. [Huang, Li; Wang, S. Y.; Wang, C. Z.; Kramer, J.; Ho, K. M.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Huang, Li; Wang, S. Y.; Wang, C. Z.; Kramer, J.; Ho, K. M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Wang, S. Y.] Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China. RP Wang, SY (reprint author), Fudan Univ, Shanghai Ultraprecis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China.; Wang, SY (reprint author), Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China.; Wang, SY; Wang, CZ (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA.; Wang, SY; Wang, CZ (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA.; Wang, SY (reprint author), Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China. EM songyouwang@fudan.edu.cn; wangcz@ameslab.gov RI Zhang, Rong-jun/B-1436-2012 FU National Natural Science Foundation of China [11374055, 61427815, 11404160]; National Basic Research Program of China [2012CB934303, 2010CB933703]; Shenzhen Key Laboratory of Thermolelectric Materials [ZDSYS2014111816043451]; U.S. Department of Energy, Basic Energy Sciences, and Division of Materials Science and Engineering [DE-AC02-07CH11358] FX Work at Fudan University was supported by the National Natural Science Foundation of China (Grants 11374055 and 61427815) and National Basic Research Program of China (2012CB934303 and 2010CB933703). L.H. also acknowledges support from the National Natural Science Foundation of China (Grant 11404160) and Shenzhen Key Laboratory of Thermolelectric Materials under Grant ZDSYS2014111816043451. Work at Ames Laboratory was supported by the U.S. Department of Energy, Basic Energy Sciences, and Division of Materials Science and Engineering, including a grant of computer time at the National Energy Research Scientific Computing Centre (NERSC) in Berkeley, CA under Contract DE-AC02-07CH11358. NR 40 TC 0 Z9 0 U1 9 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 1 PY 2016 VL 120 IS 34 BP 9223 EP 9229 DI 10.1021/acs.jpcb.6b06306 PG 7 WC Chemistry, Physical SC Chemistry GA DV0GT UT WOS:000382596700048 PM 27509394 ER PT J AU Zhang, GC Yang, HH He, LL Hu, LQ Lan, SQ Li, FS Chen, HP Guo, TL AF Zhang, Guocheng Yang, Huihuang He, Lilin Hu, Liqin Lan, Shuqiong Li, Fushan Chen, Huipeng Guo, Tailiang TI Importance of Domain Purity in Semi-Conducting Polymer/Insulating Polymer Blends Transistors SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE domain purity; inkjet printing; neutron scattering; organic filed effect transistor; polymer blends; phase separation ID FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; FULLERENE HETEROJUNCTIONS; SEMICONDUCTING POLYMERS; ORGANIC PHOTOVOLTAICS; NEUTRON-SCATTERING; MORPHOLOGY CONTROL; CHARGE-TRANSPORT; PHASE-SEPARATION; HIGH-MOBILITY AB Printed electronics is a rapidly developing field of research which covers any electronic devices or circuits that can be processed using direct printing techniques. Among those printing techniques, inkjet printing is a technique of increasing interest for organic field-effect transistors (FETs) due to its fully data driven and direct patterning. In this work, the morphology of semi-conducting polymer/insulating polymer blends from inkjet printing and their FET properties have been investigated. We attempted to optimize the morphology of the blends by the addition of a co-solvent to the blend solution prior to film deposition. By varying the boiling temperature of the co-solvent, blend films are fabricated with varying domain purity and different degree of semi-conducting polymer ordering. The morphologies of all the as-cast samples from inkjet printing and subsequently thermally annealed samples are characterized by grazing incidence wide angle x-ray scattering and small angle neutron scattering. The results indicate that the sample where a low boiling temperature cosolvent is used exhibits a lower degree of semi-conducting polymer ordering and less pure domains, resulting in a decrease of hole mobility. The morphologies that are formed when high boiling temperature co-solvent is used, however, give a higher degree of semi-conducting polymer ordering along with higher domain purity, significantly improving hole mobility up to 1.44 cm(-2) V-1 s(-1) at V-DS = 40 V. More importantly, with thermal annealing, all the samples exhibit similar semi-conducting polymer ordering and domain sizes while the domain purity significantly varies. This work is a unique example that demonstrates the importance of domain purity in the optimization of morphology and FET performance, which is previous unavailable. It also provides a novel process that can efficiently control the morphology of semi-conducting polymer/insulating polymer mixtures during deposition to maximize FET performance from inkjet printing. (C) 2016 Wiley Periodicals, C1 [Zhang, Guocheng; Yang, Huihuang; Hu, Liqin; Lan, Shuqiong; Li, Fushan; Chen, Huipeng; Guo, Tailiang] Fuzhou Univ, Natl & Local United Engn Lab Flat Panel Display T, Inst Optoelect Display, Fuzhou 350002, Peoples R China. [Zhang, Guocheng] Fujian Univ Technol, Coll Informat Sci & Engn, Fuzhou 350108, Peoples R China. [He, Lilin] Oak Ridge Natl Lab, Neutron Sci Directorate, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Chen, HP (reprint author), Fuzhou Univ, Natl & Local United Engn Lab Flat Panel Display T, Inst Optoelect Display, Fuzhou 350002, Peoples R China. EM hpchen@fzu.edu.cn; gtl_fzu@hotmail.com OI He, Lilin/0000-0002-9560-8101 FU National Natural Science Foundation of China [51503039]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The authors wish to acknowledge National Natural Science Foundation of China (51503039) for support of this project. A portion of this research at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The GIWAXS was granted by 1W1A station of Beijing Synchrotron Radiation Facility. The staff members of 1W1A are gratefully thanked for their support in measurements and data reduction. NR 38 TC 2 Z9 2 U1 10 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-6266 EI 1099-0488 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD SEP 1 PY 2016 VL 54 IS 17 BP 1760 EP 1766 DI 10.1002/polb.24080 PG 7 WC Polymer Science SC Polymer Science GA DV9UD UT WOS:000383286800010 ER PT J AU Grudzinski, JJ Talaga, RL Pla-Dalmau, A Fagan, JE Grozis, C Kephart, K Fischer, R AF Grudzinski, James J. Talaga, Richard L. Pla-Dalmau, Anna Fagan, James E. Grozis, Charles Kephart, Karen Fischer, Richard TI The development of poly(vinyl chloride) extrusions for a 14,000-ton self-supporting structure for the detection of neutrinos SO JOURNAL OF VINYL & ADDITIVE TECHNOLOGY LA English DT Article; Proceedings Paper CT SPE Vinyltec Conference on PVC Processing and Additives CY OCT 21-23, 2013 CL Iselin, NJ SP SPE AB The NOvA Neutrino Experiment has built a one-of-a-kind self-supporting plastic structure, potentially the largest ever built. The poly(vinyl chloride) (PVC) structure serves as a neutrino detector and is composed of 28 individual blocks that measure 15.5 m (51 feet) high by 15.5 m (51 feet) wide by 2.1 m (7 feet) deep. The primary parts in the detector construction are 15.5-m (51-foot), 16-cell PVC extrusions. These extrusions form the basis of the detector modules, which are laminated together in a crossed pattern to form the individual blocks and then filled with (mineral oil)-based liquid scintillator. The self-supporting nature of the detector places important structural requirements on both the PVC formulation and the extrusions. Block assembly requirements impose narrow geometric tolerances. Because of the method of detecting neutrinos, the extrusions must possess exceptionally high reflectivity over a particular wavelength range. This requirement places additional restrictions on the components of the PVC formulation. Altogether, the PVC extrusions have to maintain important reflectivity characteristics, provide structural support to the detector, and meet relatively tight geometric requirements for assembly. In order to meet these constraints, a custom PVC formulation had to be created and extruded. We describe the purpose and requirements of the NOvA detector leading to the production of our unique PVC extrusion, summarize the research and development process, and discuss the lessons learned. J. VINYL ADDIT. TECHNOL., 22:368-376, 2016. (c) 2014 Society of Plastics Engineers C1 [Grudzinski, James J.; Talaga, Richard L.; Fischer, Richard] Argonne Natl Lab, Nucl Engn, 9700 S Cass Ave, Downers Grove, IL 60516 USA. [Pla-Dalmau, Anna; Fagan, James E.; Grozis, Charles; Kephart, Karen] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Grozis, Charles] Extrutech Plast Inc, Manitowoc, WI USA. RP Grudzinski, JJ (reprint author), Argonne Natl Lab, Nucl Engn, 9700 S Cass Ave, Downers Grove, IL 60516 USA. EM jjg@anl.gov NR 4 TC 0 Z9 0 U1 2 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1083-5601 EI 1548-0585 J9 J VINYL ADDIT TECHN JI J. Vinyl Addit. Technol. PD SEP PY 2016 VL 22 IS 3 BP 368 EP 376 DI 10.1002/vnl.21447 PG 9 WC Chemistry, Applied; Materials Science, Textiles; Polymer Science SC Chemistry; Materials Science; Polymer Science GA DV5BQ UT WOS:000382940900026 ER PT J AU Barrangou, R Doudna, JA AF Barrangou, Rodolphe Doudna, Jennifer A. TI Applications of CRISPR technologies in research and beyond SO NATURE BIOTECHNOLOGY LA English DT Review ID HEPATITIS-B-VIRUS; PLURIPOTENT STEM-CELLS; RNA-GUIDED ENDONUCLEASE; SEQUENCE-SPECIFIC ANTIMICROBIALS; DUCHENNE MUSCULAR-DYSTROPHY; STAPHYLOCOCCUS-AUREUS CAS9; TARGET DNA RECOGNITION; IN-VIVO; HIV-1 INFECTION; STREPTOCOCCUS-THERMOPHILUS AB Programmable DNA cleavage using CRISPR-Cas9 enables efficient, site-specific genome engineering in single cells and whole organisms. In the research arena, versatile CRISPR-enabled genome editing has been used in various ways, such as controlling transcription, modifying epigenomes, conducting genome-wide screens and imaging chromosomes. CRISPR systems are already being used to alleviate genetic disorders in animals and are likely to be employed soon in the clinic to treat human diseases of the eye and blood. Two clinical trials using CRISPR-Cas9 for targeted cancer therapies have been approved in China and the United States. Beyond biomedical applications, these tools are now being used to expedite crop and livestock breeding, engineer new antimicrobials and control disease-carrying insects with gene drives. C1 [Barrangou, Rodolphe] North Carolina State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27695 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Howard Hughes Med Inst, Innovat Genom Initiat, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer A.] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Barrangou, R (reprint author), North Carolina State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27695 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Innovat Genom Initiat, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Doudna, JA (reprint author), Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM rbarran@ncsu.edu; doudna@berkeley.edu NR 204 TC 12 Z9 12 U1 176 U2 224 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 EI 1546-1696 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD SEP PY 2016 VL 34 IS 9 BP 933 EP 941 DI 10.1038/nbt.3659 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DW0RE UT WOS:000383348500018 ER PT J AU Cowie, A Ximenes, F Berndes, G Brandao, M Lamers, P Marland, G AF Cowie, Annette Ximenes, Fabiano Berndes, Goran Brandao, Miguel Lamers, Patrick Marland, Gregg TI Policy institutions and forest carbon SO NATURE CLIMATE CHANGE LA English DT Letter C1 [Cowie, Annette] NSW Dept Primary Ind, Armidale, NSW 2351, Australia. [Cowie, Annette; Ximenes, Fabiano] Univ New England, Armidale, NSW 2351, Australia. [Ximenes, Fabiano] NSW Dept Ind & Lands, Forest Sci, Parramatta, NSW 2150, Australia. [Berndes, Goran] Chalmers, SE-41296 Gothenburg, Sweden. [Brandao, Miguel] KTH Royal Inst Technol, Ind Ecol, S-10044 Stockholm, Sweden. [Brandao, Miguel] Inst Soil Sci & Plant Cultivat, Dept Bioecon & Syst Anal, PL-24100 Pulawy, Poland. [Lamers, Patrick] INL, Idaho Falls, ID 83415 USA. [Marland, Gregg] Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA. RP Cowie, A (reprint author), NSW Dept Primary Ind, Armidale, NSW 2351, Australia.; Cowie, A (reprint author), Univ New England, Armidale, NSW 2351, Australia. EM annette.cowie@dpi.nsw.gov.au NR 7 TC 0 Z9 0 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD SEP PY 2016 VL 6 IS 9 BP 805 EP 805 PG 1 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DU3UB UT WOS:000382136600002 ER PT J AU Nune, SK Lao, DB Heldebrant, DJ Liu, J Olszta, MJ Kukkadapu, RK Gordon, LM Nandasiri, MI Whyatt, G Clayton, C Gotthold, DW Engelhardt, MH Schaef, HT AF Nune, Satish K. Lao, David B. Heldebrant, David J. Liu, Jian Olszta, Matthew J. Kukkadapu, Ravi K. Gordon, Lyle M. Nandasiri, Manjula I. Whyatt, Greg Clayton, Chris Gotthold, David W. Engelhardt, Mark H. Schaef, Herbert T. TI Anomalous water expulsion from carbon-based rods at high humidity SO NATURE NANOTECHNOLOGY LA English DT Article ID HYDROPHOBIC CONFINEMENT; LENGTH SCALES; LONG-RANGE; EVAPORATION; ADSORPTION; SIMULATION; NANOWIRES; SURFACE; ENERGY; DYNAMICS AB Three water adsorption-desorption mechanisms are common in inorganic materials: chemisorption, which can lead to the modification of the first coordination sphere; simple adsorption, which is reversible; and condensation, which is irreversible. Regardless of the sorption mechanism, all known materials exhibit an isotherm in which the quantity of water adsorbed increases with an increase in relative humidity. Here, we show that carbon-based rods can adsorb water at low humidity and spontaneously expel about half of the adsorbed water when the relative humidity exceeds a 50-80% threshold. The water expulsion is reversible, and is attributed to the interfacial forces between the confined rod surfaces. At wide rod spacings, a monolayer of water can form on the surface of the carbon-based rods, which subsequently leads to condensation in the confined space between adjacent rods. As the relative humidity increases, adjacent rods (confining surfaces) in the bundles are drawn closer together via capillary forces. At high relative humidity, and once the size of the confining surfaces has decreased to a critical length, a surface-induced evaporation phenomenon known as solvent cavitation occurs and water that had condensed inside the confined area is released as a vapour. C1 [Nune, Satish K.; Lao, David B.; Heldebrant, David J.; Liu, Jian; Olszta, Matthew J.; Whyatt, Greg; Clayton, Chris; Gotthold, David W.] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. [Kukkadapu, Ravi K.; Gordon, Lyle M.; Nandasiri, Manjula I.; Engelhardt, Mark H.] Pacific Northwest Natl Lab, Environm Mol Sci, Richland, WA 99354 USA. [Schaef, Herbert T.] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99354 USA. RP Heldebrant, DJ (reprint author), Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99354 USA. EM david.heldebrant@pnnl.gov RI Liu, Jian/D-3393-2009 OI Liu, Jian/0000-0001-5329-7408 FU Northwest National Laboratory's (PNNL) Materials Synthesis and Simulation Across Scales (MS3) Initiative Laboratory Directed Research and Development (LDRD) programme; Department of Energy's Office of Biological and Environmental Research, located at PNNL; US Department of Energy [DE-AC05-76RL01830] FX The authors thank the Pacific Northwest National Laboratory's (PNNL) Materials Synthesis and Simulation Across Scales (MS3) Initiative Laboratory Directed Research and Development (LDRD) programme for the support. XPS, Mossbauer spectroscopy, SEM, TEM and environmental SEM and TEM characterization was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research, located at PNNL. PNNL is a multi-programme national laboratory operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830. S.K.N. and D.J.H. thank J. S. Loring for infrared analysis and M. Perkins for 3D drawings. NR 43 TC 1 Z9 1 U1 13 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2016 VL 11 IS 9 BP 791 EP 797 DI 10.1038/NNANO.2016.91 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA DW1OP UT WOS:000383412800014 PM 27294505 ER PT J AU Tsugane, K Boku, T Murai, H Sato, M Tang, W Wang, B AF Tsugane, Keisuke Boku, Taisuke Murai, Hitoshi Sato, Mitsuhisa Tang, William Wang, Bei TI Hybrid-view programming of nuclear fusion simulation code in the PGAS parallel programming language XcalableMP SO PARALLEL COMPUTING LA English DT Article DE GTC-P; Partitioned global address space; Gyrokinetic PIC code; Nuclear fusion simulation; XcalableMP AB Recently, the Partitioned Global Address Space (PGAS) parallel programming model has emerged as a usable distributed memory programming model. XcalableMP (XMP) is a PGAS parallel programming language that extends base languages such as C and Fortran with directives in OpenMP-like style. XMP supports a global-view model that allows programmers to define global data and to map them to a set of processors, which execute the distributed global data as a single thread. In XMP, the concept of a coarray is also employed for local-view programming. In this study, we port Gyrokinetic Toroidal Code Princeton (GTC-P), which is a three-dimensional gyrokinetic PIC code developed at Princeton University to study the microturbulence phenomenon in magnetically confined fusion plasmas, to XMP as an example of hybrid memory model coding with the global-view and local-view programming models. In local-view programming, the coarray notation is simple and intuitive compared with Message Passing Interface (MPI) programming while the performance is comparable to that of the MPI version. Thus, because the global-view programming model is suitable for expressing the data parallelism for a field of grid space data, we implement a hybrid -view version using a global -view programming model to compute the field and a local -view programming model to compute the movement of particles. The performance is degraded by 20% compared with the original MPI version, but the hybrid -view version facilitates more natural data expression for static grid space data (in the global -view model) and dynamic particle data (in the local -view model), and it also increases the readability of the code for higher productivity. (C) 2016 Elsevier B.V. All rights reserved. C1 [Tsugane, Keisuke; Boku, Taisuke; Sato, Mitsuhisa] Univ Tsukuba, Grad Sch Syst & Informat Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan. [Boku, Taisuke] Univ Tsukuba, Ctr Computat Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan. [Murai, Hitoshi; Sato, Mitsuhisa] RIKEN, Adv Inst Computat Sci, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan. [Tang, William] Princeton Univ, Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08540 USA. [Tang, William; Wang, Bei] Princeton Univ, Princeton Inst Computat Sci & Engn, 335 Lewis Sci Lib Washington Rd & Ivy Lane, Princeton, NJ 08544 USA. RP Tsugane, K (reprint author), Univ Tsukuba, Grad Sch Syst & Informat Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan. EM tsugane@hpcs.cs.tsukuba.ac.jp FU JST-CREST program entitled "Research and Development of Unified Environment on Accelerated Computing and Interconnection for Post-Petascale Era" FX This research was partly supported by the JST-CREST program entitled "Research and Development of Unified Environment on Accelerated Computing and Interconnection for Post-Petascale Era." The authors are grateful for the utilization of the HA-PACS system at the Center for Computational Sciences, University of Tsukuba, as part of the Interdisciplinary Collaborative Research Program. NR 24 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2016 VL 57 BP 37 EP 51 DI 10.1016/j.parco.2016.05.016 PG 15 WC Computer Science, Theory & Methods SC Computer Science GA DW0BY UT WOS:000383307100003 ER PT J AU Wallace, S Zhou, Z Vishwanath, V Coghlan, S Tramm, J Lan, ZL Papka, ME AF Wallace, Sean Zhou, Zhou Vishwanath, Venkatram Coghlan, Susan Tramm, John Lan, Zhiling Papka, Michael E. TI Application power profiling on IBM Blue Gene/Q SO PARALLEL COMPUTING LA English DT Article DE Power profiling; Energy efficiency; Blue Gene/Q; Power performance analysis AB The power consumption of state of the art supercomputers, because of their complexity and unpredictable workloads, is extremely difficult to estimate. Accurate and precise results, as are now possible with the latest generation of IBM Blue Gene/Q, are therefore a welcome addition to the landscape. Only recently have end users been afforded the ability to access the power consumption of their applications. However, just because it's possible for end users to obtain this data does not mean it's a trivial task. This emergence of new data is therefore not only understudied, but also not fully understood. In this paper, we describe our open source power profiling library called MonEQ built on the IBM provided Environmental Monitoring (EMON) API. We show that it's lightweight, has extremely low overhead, is incredibly flexible, and has advanced features which end users can take advantage. We then integrate MonEQ into several benchmarks and show the data it produces and what analysis of this data can teach us. Going one step further we also describe how seemingly simple changes in scale or network topology can have dramatic effects on power consumption. To this end, previously well understood applications will now have new facets of potential analysis. (C) 2016 Elsevier B.V. All rights reserved. C1 [Wallace, Sean; Zhou, Zhou; Lan, Zhiling] IIT, Chicago, IL 60616 USA. [Vishwanath, Venkatram; Coghlan, Susan; Tramm, John; Papka, Michael E.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Papka, Michael E.] Northern Illinois Univ, De Kalb, IL USA. RP Wallace, S (reprint author), IIT, Chicago, IL 60616 USA. EM swallac6@iit.edu; zzhou1@iit.edu; venkat@anl.gov; smc@anl.gov; jtramm@mcs.anl.gov; lan@iit.edu; papka@anl.gov FU Argonne Leadership Computing Facility at Argonne National Laboratory - Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; Center for Exascale Simulation of Advanced Reactors (CESAR) Co-Design center - Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; US National Science Foundation [CNS-1320125, CCF-1422009] FX This research has been funded in part and used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. The research has been funded in part by the Center for Exascale Simulation of Advanced Reactors (CESAR) Co-Design center, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. Zhiling Lan is supported in part by US National Science Foundation grants CNS-1320125 and CCF-1422009. NR 38 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2016 VL 57 BP 73 EP 86 DI 10.1016/j.parco.2016.05.015 PG 14 WC Computer Science, Theory & Methods SC Computer Science GA DW0BY UT WOS:000383307100005 ER PT J AU Zhang, ZM Lang, M Pakin, S Fu, S AF Zhang, Ziming Lang, Michael Pakin, Scott Fu, Song TI TracSim: Simulating and scheduling trapped power capacity to maximize machine room throughput SO PARALLEL COMPUTING LA English DT Article DE High performance computing; Power simulation; Trapped power capacity; Power capping AB The power supplied to machine rooms tends to be over-provisioned because it is specified in practice not by workload demands but rather by high energy LINPACK runs or nameplate power estimates. This results in a considerable amount of trapped power capacity excess power infrastructure. Instead of being wasted, this trapped power capacity should be reclaimed to accommodate more compute nodes in the machine room and thereby increase system throughput. But to do this we need the ability to enforce a system-wide power cap. In this paper, we present TracSim, a full-system simulator that enables users to measure trapped power capacity and evaluate the performance of different policies for scheduling parallel tasks under a power cap. TracSim simulates the execution environment of a production HPC cluster at Los Alamos National Laboratory (LANL). TracSim enables users to specify the system topology, hardware configuration, power cap, and task workload and to develop resource configuration and task scheduling policies aimed at maximizing machine-room throughput while keeping power consumption under a power cap by exploiting CPU throttling techniques. We use real measurements from the LANL cluster to set TracSim's configuration parameters. We leverage TracSim to implement and evaluate four resource scheduling policies. Simulation results indicate the performance of those policies and quantify the amount of trapped capacity that can effectively be reclaimed. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhang, Ziming; Fu, Song] Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA. [Lang, Michael] Los Alamos Natl Lab, UltraScale Syst Res Ctr, Los Alamos, NM 87544 USA. [Pakin, Scott] Los Alamos Natl Lab, Appl Comp Sci Grp, Los Alamos, NM 87544 USA. RP Fu, S (reprint author), Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA. EM zimingzhang@my.unt.edu; mlang@lanl.gov; pakin@lanl.gov; song.fu@unt.edu NR 44 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2016 VL 57 BP 108 EP 124 DI 10.1016/j.parco.2015.11.002 PG 17 WC Computer Science, Theory & Methods SC Computer Science GA DW0BY UT WOS:000383307100008 ER PT J AU Popescu, R Heroux, MA Deparis, S AF Popescu, Radu Heroux, Michael A. Deparis, Simone TI Parallel subdomain solver strategies for the algebraic additive Schwarz preconditioner SO PARALLEL COMPUTING LA English DT Article; Proceedings Paper CT 8th International Workshop on Parallel Matrix Algorithms and Applications (PMAA) CY JUL 02-04, 2014 CL Univ Svizzera Italiana, Lugano, SWITZERLAND HO Univ Svizzera Italiana DE Partial differential equations; Finite element method; Parallel preconditioners; Algebraic Schwarz preconditioner; Hybrid preconditioners; Hybrid ShyLU preconditioner AB Domain-decomposition (DD) methods are used in most, if not all, modern parallel implementations of finite element modeling software. In the solver stage, the algebraic additive Schwarz (AAS) domain-decomposition preconditioner represents a fundamental component and its performance and scalability are key to the overall performance of the solution process. The established approach to construct the preconditioner in a parallel MPI setting is with a 1-to-1 correspondence between the number of MPI processes and the number of MS subdomains. In this paper, we describe our attempts to extend this paradigm with the possibility to assign more than one MPI process per MS subdomain, with the goal of improving the overall performance of the AAS preconditioner on supercomputers with multicore nodes. We discuss the implementation of the new AAS preconditioner framework, based on two levels of MPI parallelism, and the performance of different subdomain solver strategies. Finally, we examine the behavior of our novel approach for a series of benchmark problems, performed with the LifeV parallel finite element library. (C) 2016 Elsevier B.V. All rights reserved. C1 [Popescu, Radu; Deparis, Simone] Ecole Polytech Fed Lausanne, Lausanne, Switzerland. [Heroux, Michael A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Deparis, S (reprint author), Ecole Polytech Fed Lausanne, Lausanne, Switzerland. EM simone.deparis@epfl.ch RI Deparis, Simone/F-7938-2015; OI Deparis, Simone/0000-0002-2832-6630; Popescu, Radu/0000-0002-2224-8985 NR 19 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2016 VL 57 BP 137 EP 153 DI 10.1016/j.parco.2016.05.011 PG 17 WC Computer Science, Theory & Methods SC Computer Science GA DW0BY UT WOS:000383307100011 ER PT J AU Fobes, DM Zaliznyak, IA Tranquada, JM Xu, ZJ Gu, GD He, XG Ku, W Zhao, Y Matsuda, M Garlea, VO Winn, B AF Fobes, David M. Zaliznyak, Igor A. Tranquada, John M. Xu, Zhijun Gu, Genda He, Xu-Gang Ku, Wei Zhao, Yang Matsuda, Masaaki Garlea, V. Ovidiu Winn, Barry TI Forbidden phonon: Dynamical signature of bond symmetry breaking in the iron chalcogenides SO PHYSICAL REVIEW B LA English DT Article ID NEUTRON-SCATTERING; SUPERCONDUCTIVITY; INVAR; SPECTROMETER; MODE AB Investigation of the inelastic neutron scattering spectra in Fe1+y Te1-x Se-x near a signature wave vector Q = (1,0,0) for the bond-order wave (BOW) formation of parent compound Fe1+y Te [D. Fobes et al., Phys. Rev. Lett. 112, 187202 (2014)] reveals an acoustic-phonon-like dispersion present in all structural phases. While a structural Bragg peak accompanies the mode in the low-temperature phase of Fe1+y Te, it is absent in the high-temperature tetragonal phase, where Bragg scattering at this Q is forbidden by symmetry. Notably, this mode is also observed in superconducting FeTe0.55Se0.45, where structural and magnetic transitions are suppressed, and no BOW has been observed. The presence of this "forbidden" phonon indicates that the lattice symmetry is dynamically or locally broken by magneto-orbital BOW fluctuations, which are strongly coupled to lattice in these materials. C1 [Fobes, David M.; Zaliznyak, Igor A.; Tranquada, John M.; Xu, Zhijun; Gu, Genda; He, Xu-Gang; Ku, Wei] Brookhaven Natl Lab, CMPMSD, Upton, NY 11973 USA. [Zhao, Yang] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Zhao, Yang] Univ Maryland, DMSE, College Pk, MD 20742 USA. [Matsuda, Masaaki; Garlea, V. Ovidiu; Winn, Barry] Oak Ridge Natl Lab, QCMD, Oak Ridge, TN 37831 USA. RP Fobes, DM (reprint author), Brookhaven Natl Lab, CMPMSD, Upton, NY 11973 USA. EM dfobes@bnl.gov; zaliznyak@bnl.gov RI xu, zhijun/A-3264-2013; Matsuda, Masaaki/A-6902-2016; Tranquada, John/A-9832-2009 OI xu, zhijun/0000-0001-7486-2015; Matsuda, Masaaki/0000-0003-2209-9526; Tranquada, John/0000-0003-4984-8857 FU Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE) [DE-SC00112704]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; National Institute of Standards and Technology, U.S. Department of Commerce FX Work at BNL was supported by Office of Basic Energy Sciences (BES), Division of Materials Sciences and Engineering, U.S. Department of Energy (DOE), under Contract No. DE-SC00112704. Research conducted at ORNL's Spallation Neutron Source and High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing the neutron research facilities used in this work. NR 35 TC 0 Z9 0 U1 7 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 1 PY 2016 VL 94 IS 12 AR 121103 DI 10.1103/PhysRevB.94.121103 PG 5 WC Physics, Condensed Matter SC Physics GA DV6HT UT WOS:000383035100003 ER PT J AU van Veenendaal, M AF van Veenendaal, Michel TI Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects SO PHYSICAL REVIEW B LA English DT Article ID PHASE-TRANSITIONS; DENSITY-WAVE; MANGANITE AB The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50-100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than a picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. For small long-range interactions, recovery can be slow due to domain formation. C1 [van Veenendaal, Michel] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. RP van Veenendaal, M (reprint author), Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA.; van Veenendaal, M (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 South Cass Ave, Argonne, IL 60439 USA. FU US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; time-dependent x-ray spectroscopy collaboration, Computational Materials Science Network (CMSCN) [DE-FG02-08ER46540, DE-SC0007091]; NIU Institute for Nanoscience, Engineering, and Technology; US DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX I would like to thank Tsezar Seman for help with the figures. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award No. DE-FG02-03ER46097, the time-dependent x-ray spectroscopy collaboration as part of the Computational Materials Science Network (CMSCN) under Grants No. DE-FG02-08ER46540 and No. DE-SC0007091, and NIU Institute for Nanoscience, Engineering, and Technology. Work at Argonne National Laboratory was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 0 Z9 0 U1 5 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 1 PY 2016 VL 94 IS 11 AR 115101 DI 10.1103/PhysRevB.94.115101 PG 9 WC Physics, Condensed Matter SC Physics GA DV6HL UT WOS:000383034100001 ER PT J AU Wang, J Coppari, F Smith, RF Eggert, JH Lazicki, AE Fratanduono, DE Rygg, JR Boehly, TR Collins, GW Duffy, TS AF Wang, Jue Coppari, Federica Smith, Raymond F. Eggert, Jon H. Lazicki, Amy E. Fratanduono, Dayne E. Rygg, J. Ryan Boehly, Thomas R. Collins, Gilbert W. Duffy, Thomas S. TI X-ray diffraction of molybdenum under ramp compression to 1 TPa SO PHYSICAL REVIEW B LA English DT Article ID EQUATION-OF-STATE; STRUCTURAL PHASE-TRANSITIONS; SHOCK COMPRESSION; MO; PRESSURE; METALS; GPA; IRON; CU; STABILITY AB Molybdenum (Mo) is a transition metal with a wide range of technical applications. There has long been strong interest in its high-pressure behavior, and it is often used as standard for high-pressure experiments. Combining powder x-ray diffraction and dynamic ramp compression, structural and equation of state data were collected for solid Mo to 1 TPa (10 Mbar). Diffraction results are consistent with Mo remaining in the body-centered-cubic structure into the TPa regime. Stress-density data show that Mo under ramp loading is less compressible than the room-temperature isotherm but more compressible than the single-shock Hugoniot. C1 [Wang, Jue; Duffy, Thomas S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [Coppari, Federica; Smith, Raymond F.; Eggert, Jon H.; Lazicki, Amy E.; Fratanduono, Dayne E.; Rygg, J. Ryan; Collins, Gilbert W.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94550 USA. [Boehly, Thomas R.] Univ Rochester, Lab Laser Energet, 250 East River Rd, Rochester, NY 14623 USA. [Wang, Jue] Univ Illinois, Sch Chem Sci, Urbana, IL 61801 USA. [Wang, Jue] Univ Illinois, Fredrick Seitz Mat Res Lab, Urbana, IL 61801 USA. RP Wang, J (reprint author), Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA.; Wang, J (reprint author), Univ Illinois, Sch Chem Sci, Urbana, IL 61801 USA.; Wang, J (reprint author), Univ Illinois, Fredrick Seitz Mat Res Lab, Urbana, IL 61801 USA. RI Duffy, Thomas/C-9140-2017 OI Duffy, Thomas/0000-0002-5357-1259 FU National Nuclear Security Administration (NNSA)/Department of Energy (DOE) through the National Laser Users' Facility Program [DE-NA0002154, DE-NA0002720]; U.S. DOE by LLNL [DE-AC52-07NA27344] FX We thank the OMEGA staff at the Laboratory for Laser Energetics (LLE) for laser operation and technical support. We also thank the Lawrence Livermore National Laboratory (LLNL) target fabrication team for their assistance. The research was supported by the National Nuclear Security Administration (NNSA)/Department of Energy (DOE) through the National Laser Users' Facility Program under Contracts No. DE-NA0002154 and No. DE-NA0002720. This paper was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344. NR 71 TC 0 Z9 0 U1 14 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD SEP 1 PY 2016 VL 94 IS 10 AR 104102 DI 10.1103/PhysRevB.94.104102 PG 9 WC Physics, Condensed Matter SC Physics GA DV6HE UT WOS:000383033100002 ER PT J AU Albers, M Zhu, S Ayangeakaa, AD Janssens, RVF Gellanki, J Ragnarsson, I Alcorta, M Baugher, T Bertone, PF Carpenter, MP Chiara, CJ Chowdhury, P David, HM Deacon, AN DiGiovine, B Gade, A Hoffman, CR Kondev, FG Lauritsen, T Lister, CJ McCutchan, EA Nair, C Rogers, AM Seweryniak, D AF Albers, M. Zhu, S. Ayangeakaa, A. D. Janssens, R. V. F. Gellanki, J. Ragnarsson, I. Alcorta, M. Baugher, T. Bertone, P. F. Carpenter, M. P. Chiara, C. J. Chowdhury, P. David, H. M. Deacon, A. N. DiGiovine, B. Gade, A. Hoffman, C. R. Kondev, F. G. Lauritsen, T. Lister, C. J. McCutchan, E. A. Nair, C. Rogers, A. M. Seweryniak, D. TI Single-particle and collective excitations in Ni-62 SO PHYSICAL REVIEW C LA English DT Article ID ROTATIONAL BANDS; TERMINATION; ISOTOPES; NUCLEUS; DECAY AB Background: Level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving pi f(7/2) and nu g(9/2) orbitals on the onset of nuclear deformation is stressed. Purpose: A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich Ni-62 isotope. Method: The Mg-26(Ca-48,2 alpha 4n gamma)Ni-62 complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and gamma rays were detected with the Gammasphere array. Results: Two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. Conclusions: Based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f(7/2) protons and g(9/2) neutrons, driving the nucleus to sizable prolate deformation. C1 [Albers, M.; Zhu, S.; Ayangeakaa, A. D.; Janssens, R. V. F.; Alcorta, M.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; David, H. M.; DiGiovine, B.; Hoffman, C. R.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Seweryniak, D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Gellanki, J.] Univ Groningen, KVI CART, NL-9747 AA Groningen, Netherlands. [Ragnarsson, I.] Lund Univ, LTH, Div Math Phys, S-22100 Lund, Sweden. [Baugher, T.; Gade, A.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Baugher, T.; Gade, A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Chiara, C. J.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Chowdhury, P.; Lister, C. J.; Rogers, A. M.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Deacon, A. N.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Alcorta, M.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Bertone, P. F.] Marshall Space Flight Ctr, Bldg 4600 Rideout Rd, Huntsville, AL 35812 USA. [Chiara, C. J.] US Army Res Lab, Adelphi, MD 20783 USA. [David, H. M.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [McCutchan, E. A.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Albers, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RI Gade, Alexandra/A-6850-2008 OI Gade, Alexandra/0000-0001-8825-0976 FU US Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-94ER40834, DE-FG02-94ER40848, DE-FG02-08ER41556]; National Science Foundation [PHY-1102511]; Swedish Research Council; United Kingdom Science and Technology Facilities Council (STFC) FX The authors thank J. P. Greene (ANL) for target preparation and the ATLAS operations staff for the efficient running of the accelerator during the experiment. This work was supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant Nos. DE-FG02-94ER40834, DE-FG02-94ER40848, and DE-FG02-08ER41556, by the National Science Foundation under Contract No. PHY-1102511, by the Swedish Research Council, and by the United Kingdom Science and Technology Facilities Council (STFC). This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility. NR 53 TC 0 Z9 0 U1 2 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 1 PY 2016 VL 94 IS 3 AR 034301 DI 10.1103/PhysRevC.94.034301 PG 10 WC Physics, Nuclear SC Physics GA DV6KZ UT WOS:000383045700001 ER PT J AU Hutauruk, PTP Cloet, IC Thomas, AW AF Hutauruk, Parada T. P. Cloet, Ian C. Thomas, Anthony W. TI Flavor dependence of the pion and kaon form factors and parton distribution functions SO PHYSICAL REVIEW C LA English DT Article ID JONA-LASINIO MODEL; INELASTIC STRUCTURE FUNCTIONS; QUARK-DIQUARK MODEL; EXTENDED NJL MODEL; DRELL-YAN PROCESS; QUANTUM CHROMODYNAMICS; EVOLUTION-EQUATIONS; PERTURBATION-THEORY; MESON STRUCTURE; NUCLEAR-MATTER AB The separate quark flavor contributions to the pion and kaon valence quark distribution functions are studied, along with the corresponding electromagnetic form factors in the space-like region. The calculations are made using the solution of the Bethe-Salpeter equation for the model of Nambu and Jona-Lasinio with proper-time regularization. Both the pion and kaon form factors and the valence quark distribution functions reproduce many features of the available empirical data. The larger mass of the strange quark naturally explains the empirical fact that the ratio u(K) + (x)/u(pi) + (x) drops below unity at large x, with a value of approximately M-u(2)/Ms-2 as x -> 1. With regard to the elastic form factors we report a large flavor dependence, with the u-quark contribution to the kaon form factor being an order of magnitude smaller than that of the s-quark at large Q(2), which may be a sensitive measure of confinement effects in QCD. Surprisingly though, the total K+ and pi(+) form factors differ by only 10%. In general we find that flavor breaking effects are typically around 20%. C1 [Hutauruk, Parada T. P.; Thomas, Anthony W.] Univ Adelaide, CSSM, Adelaide, SA 5005, Australia. [Hutauruk, Parada T. P.; Thomas, Anthony W.] Univ Adelaide, Dept Phys, ARC Ctr Excellence Particle Phys Terascale, Adelaide, SA 5005, Australia. [Cloet, Ian C.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Hutauruk, PTP (reprint author), Univ Adelaide, CSSM, Adelaide, SA 5005, Australia.; Hutauruk, PTP (reprint author), Univ Adelaide, Dept Phys, ARC Ctr Excellence Particle Phys Terascale, Adelaide, SA 5005, Australia. FU U.S. Department of Energy, Office of Science, Office of Nuclear Physics [DE-AC02-06CH11357]; Australian Research Council through the ARC Centre of Excellence in Particle Physics at the Terascale; ARC Australian Laureate Fellowship at the University of Adelaide [FL0992247] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, contract no. DE-AC02-06CH11357 and the Australian Research Council through the ARC Centre of Excellence in Particle Physics at the Terascale and an ARC Australian Laureate Fellowship FL0992247 at the University of Adelaide. NR 85 TC 1 Z9 1 U1 3 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD SEP 1 PY 2016 VL 94 IS 3 AR 035201 DI 10.1103/PhysRevC.94.035201 PG 10 WC Physics, Nuclear SC Physics GA DV6KZ UT WOS:000383045700004 ER PT J AU Gretarsson, H Sung, NH Porras, J Bertinshaw, J Dietl, C Bruin, JAN Bangura, AF Kim, YK Dinnebier, R Kim, J Al-Zein, A Sala, MM Krisch, M Le Tacon, M Keimer, B Kim, BJ AF Gretarsson, H. Sung, N. H. Porras, J. Bertinshaw, J. Dietl, C. Bruin, Jan A. N. Bangura, A. F. Kim, Y. K. Dinnebier, R. Kim, Jungho Al-Zein, A. Sala, M. Moretti Krisch, M. Le Tacon, M. Keimer, B. Kim, B. J. TI Persistent Paramagnons Deep in the Metallic Phase of Sr2-xLaxIrO4 SO PHYSICAL REVIEW LETTERS LA English DT Article ID HIGH-ENERGY SPIN; HIGH-TEMPERATURE SUPERCONDUCTIVITY; X-RAY-SCATTERING; MAGNETIC EXCITATIONS; SR2IRO4; LA2CUO4 AB We have studied the magnetic excitations of electron-doped Sr2-xLaxIrO4 (0 <= x <= 0.10) using resonant inelastic x-ray scattering at the Ir L-3 edge. The long-range magnetic order is rapidly lost with increasing x, but two-dimensional short-range order (SRO) and dispersive magnon excitations with nearly undiminished spectral weight persist well into the metallic part of the phase diagram. The magnons in the SRO phase are heavily damped and exhibit anisotropic softening. Their dispersions are well described by a pseudospin-1/2 Heisenberg model with exchange interactions whose spatial range increases with doping. We also find a doping-independent high-energy magnetic continuum, which is not described by this model. The spin-orbit excitons arising from the pseudospin-3/2 manifold of the Ir ions broaden substantially in the SRO phase, but remain largely separated from the low-energy magnons. Pseudospin-1/2 models are therefore a good starting point for the theoretical description of the low-energy magnetic dynamics of doped iridates. C1 [Gretarsson, H.; Sung, N. H.; Porras, J.; Bertinshaw, J.; Dietl, C.; Bruin, Jan A. N.; Bangura, A. F.; Dinnebier, R.; Le Tacon, M.; Keimer, B.; Kim, B. J.] Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany. [Kim, Y. K.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, Y. K.] Inst for Basic Sci Korea, Ctr Correlated Electron Syst, Seoul 151742, South Korea. [Kim, Y. K.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. [Kim, Jungho] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Al-Zein, A.; Sala, M. Moretti; Krisch, M.] European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. [Le Tacon, M.] Karlsruhe Inst Technol, Inst Festkorperphys, Hermann v Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. RP Gretarsson, H (reprint author), Max Planck Inst Festkorperforsch, Heisenbergstr 1, D-70569 Stuttgart, Germany. RI Moretti Sala, Marco/H-1034-2014; Kim, Yeong Kwan/L-8207-2016 OI Moretti Sala, Marco/0000-0002-9744-9976; FU Alexander von Humboldt Foundation; DFG [TRR80] FX We would like to thank G. Jackeli, G. Khaliullin, and R. Coldea for fruitful discussions. N. H. Sung was supported by the Alexander von Humboldt Foundation. We acknowledge financial support by the DFG under Grant No. TRR80. NR 40 TC 4 Z9 4 U1 26 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2016 VL 117 IS 10 AR 107001 DI 10.1103/PhysRevLett.117.107001 PG 6 WC Physics, Multidisciplinary SC Physics GA DV6KG UT WOS:000383043600015 PM 27636488 ER PT J AU Intravaia, F Behunin, RO Henkel, C Busch, K Dalvit, DAR AF Intravaia, F. Behunin, R. O. Henkel, C. Busch, K. Dalvit, D. A. R. TI Failure of Local Thermal Equilibrium in Quantum Friction SO PHYSICAL REVIEW LETTERS LA English DT Article ID RADIATIVE HEAT-TRANSFER; FLUCTUATION-DISSIPATION THEOREM; RELATIVISTIC THEORY; CASIMIR FRICTION; FLAT SURFACE; TEMPERATURES; PARTICLES; SYSTEMS; VACUUM; FORCE AB Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems. C1 [Intravaia, F.; Busch, K.] Max Born Inst, D-12489 Berlin, Germany. [Behunin, R. O.] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. [Henkel, C.] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany. [Busch, K.] Humboldt Univ, Inst Phys, AG Theoret Opt & Photon, D-12489 Berlin, Germany. [Dalvit, D. A. R.] Los Alamos Natl Lab, Theoret Div, MS B213, Los Alamos, NM 87545 USA. RP Intravaia, F (reprint author), Max Born Inst, D-12489 Berlin, Germany. RI Intravaia, Francesco/E-6500-2010 OI Intravaia, Francesco/0000-0001-7993-4698 FU LANL LDRD program; Deutsche Forschungsgemeinschaft (DFG) [B10, 951]; European Union Marie Curie People program [PCIG14-GA-2013-631571]; DFG through the DIP program [SCHM 1049/7-1]; NSF MRSEC [DMR-1119826]; Packard Fellowship for Science and Engineering; Yale University FX We acknowledge support by the LANL LDRD program, and by the Deutsche Forschungsgemeinschaft (DFG) through project B10 within the Collaborative Research Center (CRC) 951 Hybrid Inorganic/Organic Systems for Opto-Electronics (HIOS). F. I. further acknowledges financial support from the European Union Marie Curie People program through the Career Integration Grant No. PCIG14-GA-2013-631571. C. H. and F.I. acknowledge support from the DFG through the DIP program (Grant No. SCHM 1049/7-1). R. B. further acknowledges financial support provided by NSF MRSEC DMR-1119826, the Packard Fellowship for Science and Engineering as well as Yale University startup funding. NR 43 TC 2 Z9 2 U1 14 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2016 VL 117 IS 10 AR 100402 DI 10.1103/PhysRevLett.117.100402 PG 5 WC Physics, Multidisciplinary SC Physics GA DV6KG UT WOS:000383043600002 PM 27636458 ER PT J AU Xu, P Ayino, Y Cheng, C Pribiag, VS Comes, RB Sushko, PV Chambers, SA Jalan, B AF Xu, Peng Ayino, Yilikal Cheng, Christopher Pribiag, Vlad S. Comes, Ryan B. Sushko, Peter V. Chambers, Scott A. Jalan, Bharat TI Predictive Control over Charge Density in the Two-Dimensional Electron Gas at the Polar-Nonpolar NdTiO3/SrTiO3 Interface SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERSTITIAL OXYGEN FORMATION; POINT-DEFECT CHEMISTRY; OXIDE INTERFACES; HETEROJUNCTION; CONDUCTIVITY; MAGNETISM AB Through systematic control of the Nd concentration, we show that the carrier density of the two-dimensional electron gas (2DEG) in SrTiO3/NdTiO3/SrTiO3(001) can be modulated over a wide range. We also demonstrate that the NdTiO3 in heterojunctions without a SrTiO3 cap is degraded by oxygen absorption from air, resulting in the immobilization of donor electrons that could otherwise contribute to the 2DEG. This system is, thus, an ideal model to understand and control the insulator-to-metal transition in a 2DEG based on both environmental conditions and film-growth processing parameters. C1 [Xu, Peng; Cheng, Christopher; Jalan, Bharat] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. [Ayino, Yilikal; Pribiag, Vlad S.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Comes, Ryan B.; Sushko, Peter V.; Chambers, Scott A.] Pacific Northwest Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA. RP Jalan, B (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. EM bjalan@umn.edu RI Sushko, Peter/F-5171-2013; OI Sushko, Peter/0000-0001-7338-4146; Comes, Ryan/0000-0002-5304-6921 FU AFOSR young investigator program [FA9550-16-1-0205]; UMN MRSEC [DMR-1420013]; U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering [10122]; Linus Pauling Distinguished Post-Doctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD Grant) [PN13100/2581]; Department of Energy's Office of Biological and Environmental Research FX The authors thank Professor Andre Mkhoyan for helpful discussions. This work at the University of Minnesota was supported primarily by the AFOSR young investigator program (Grant No. FA9550-16-1-0205) and in part by the UMN MRSEC under Grant No. DMR-1420013. We also acknowledge use of facilities at the UMN Characterization Facility and the Nanofabrication Center. The XPS work and computational modeling at PNNL was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering under Award No. 10122. R. C. was supported by the Linus Pauling Distinguished Post-Doctoral Fellowship at Pacific Northwest National Laboratory (PNNL LDRD Grant No. PN13100/2581). The PNNL work was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 50 TC 1 Z9 1 U1 20 U2 21 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2016 VL 117 IS 10 AR 106803 DI 10.1103/PhysRevLett.117.106803 PG 6 WC Physics, Multidisciplinary SC Physics GA DV6KG UT WOS:000383043600014 ER PT J AU Pena, MJ Kulkarni, AR Backe, J Boyd, M O'Neill, MA York, WS AF Pena, Maria J. Kulkarni, Ameya R. Backe, Jason Boyd, Michael O'Neill, Malcolm A. York, William S. TI Structural diversity of xylans in the cell walls of monocots SO PLANTA LA English DT Article DE Monocot; Cell wall; Glucuronoarabinoxylan; Glucuronoxylan ID FLOWERING PLANTS; XYLO-OLIGOSACCHARIDES; GALACTURONIC ACID; GLUCURONIC-ACID; POLYSACCHARIDE; MONOCOTYLEDONS; EVOLUTION; END; HEMICELLULOSE; BIOSYNTHESIS AB Main conclusion Xylans in the cell walls of monocots are structurally diverse. Arabinofuranose-containing glucuronoxylans are characteristic of commelinids. However, other structural features are not correlated with the major transitions in monocot evolution. Most studies of xylan structure in monocot cell walls have emphasized members of the Poaceae (grasses). Thus, there is a paucity of information regarding xylan structure in other commelinid and in non-commelinid monocot walls. Here, we describe the major structural features of the xylans produced by plants selected from ten of the twelve monocot orders. Glucuronoxylans comparable to eudicot secondary wall glucuronoxylans are abundant in non-commelinid walls. However, the alpha-D-glucuronic acid/4-O-methyl-alpha-D-glucuronic acid is often substituted at O-2 by an alpha-L-arabinopyranose residue in Alismatales and Asparagales glucuronoxylans. Glucuronoarabinoxylans were the only xylans detected in the cell walls of five different members of the Poaceae family (grasses). By contrast, both glucuronoxylan and glucuronoarabinoxylan are formed by the Zingiberales and Commelinales (commelinids). At least one species of each monocot order, including the Poales, forms xylan with the reducing end sequence -4)-beta-D-Xylp-(1,3)-alpha-L-Rhap-(1,2)-alpha-D-GalpA-(1,4)-D-Xyl first identified in eudicot and gymnosperm glucuronoxylans. This sequence was not discernible in the arabinopyranose-containing glucuronoxylans of the Alismatales and Asparagales or the glucuronoarabinoxylans of the Poaceae. Rather, our data provide additional evidence that in Poaceae glucuronoarabinoxylan, the reducing end xylose residue is often substituted at O-2 with 4-O-methyl glucuronic acid or at O-3 with arabinofuranose. The variations in xylan structure and their implications for the evolution and biosynthesis of monocot cell walls are discussed. C1 [Pena, Maria J.; Kulkarni, Ameya R.; Backe, Jason; O'Neill, Malcolm A.; York, William S.] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Pena, Maria J.; Kulkarni, Ameya R.; Backe, Jason; O'Neill, Malcolm A.; York, William S.] Univ Georgia, US DOE, Bioenergy Sci Ctr, Athens, GA 30602 USA. [Boyd, Michael] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [York, William S.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Kulkarni, Ameya R.] Incyte Corp, Wilmington, DE 19803 USA. RP York, WS (reprint author), Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA.; York, WS (reprint author), Univ Georgia, US DOE, Bioenergy Sci Ctr, Athens, GA 30602 USA.; York, WS (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. EM will@ccrc.uga.edu FU BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; U.S. Department of Energy [DE-FG02-93ER20097] FX This research was funded by the BioEnergy Science Center (BESC). BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. We also acknowledge the U.S. Department of Energy-funded Center for Plant and Microbial Complex Carbohydrates (Grant DE-FG02-93ER20097) for equipment support. NR 46 TC 4 Z9 4 U1 13 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 EI 1432-2048 J9 PLANTA JI Planta PD SEP PY 2016 VL 244 IS 3 BP 589 EP 606 DI 10.1007/s00425-016-2527-1 PG 18 WC Plant Sciences SC Plant Sciences GA DV5BK UT WOS:000382940300007 PM 27105886 ER PT J AU Whitfield, PS AF Whitfield, Pamela S. TI Quantitative phase analysis of challenging samples using neutron powder diffraction. Sample #4 from the CPD QPA round robin revisited SO POWDER DIFFRACTION LA English DT Article DE quantitative phase analysis; neutron diffraction; microabsorption ID CRYSTALLOGRAPHY COMMISSION; INTERNATIONAL UNION; REFINEMENT; OUTCOMES AB Quantitative phase analysis (QPA) using neutron powder diffraction more often than not involves non-ambient studies where no sample preparation is possible. The larger samples and penetration of neutrons versus X-rays makes neutron diffraction less susceptible to inhomogeneity and large grain sizes, but most well-characterized QPA standard samples do not have these characteristics. Sample #4 from the International Union of Crystallography Commission on Powder Diffraction QPA round robin was one such sample. Data were collected using the POWGEN time-of-flight (TOF) neutron powder diffractometer and analysed together with historical data from the C2 diffractometer at Chalk River. The presence of magnetic reflections from Fe3O4 (magnetite) in the sample was an additional consideration, and given the frequency at which iron-containing and other magnetic compounds are present during in-operando studies their possible impact on the accuracy of QPA is of interest. Additionally, scattering from thermal diffuse scattering in the high-Q region (<0.6 angstrom) accessible with TOF data could impact QPA results during least-squares because of the extreme peak overlaps present in this region. Refinement of POWGEN data was largely insensitive to the modification of longer d-spacing reflections by magnetic contributions, but the constant-wavelength data were adversely impacted if the magnetic structure was not included. A robust refinement weighting was found to be effective in reducing quantification errors using the constant-wavelength neutron data both where intensities from magnetic reflections were ignored and included. Results from the TOF data were very sensitive to inadequate modelling of the high-Q (low d-spacing) background using simple polynomials. (C) 2016 International Centre for Diffraction Data. C1 [Whitfield, Pamela S.] Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008,MS 6475, Oak Ridge, TN 37831 USA. RP Whitfield, PS (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, POB 2008,MS 6475, Oak Ridge, TN 37831 USA. EM whitfieldps@ornl.gov RI Whitfield, Pamela/P-1885-2015 OI Whitfield, Pamela/0000-0002-6569-1143 FU Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX The research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 27 TC 0 Z9 0 U1 4 U2 5 PU J C P D S-INT CENTRE DIFFRACTION DATA PI NEWTOWN SQ PA 12 CAMPUS BLVD, NEWTOWN SQ, PA 19073-3273 USA SN 0885-7156 EI 1945-7413 J9 POWDER DIFFR JI Powder Diffr. PD SEP PY 2016 VL 31 IS 3 BP 192 EP 197 DI 10.1017/S088571561600021X PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA DV5MK UT WOS:000382971200005 ER PT J AU Ding, KL Gulec, A Johnson, AM Drake, TL Wu, WQ Lin, YY Weitz, E Marks, LD Stair, PC AF Ding, Kunlun Gulec, Ahmet Johnson, Alexis M. Drake, Tasha L. Wu, Weiqiang Lin, Yuyuan Weitz, Eric Marks, Laurence D. Stair, Peter C. TI Highly Efficient Activation, Regeneration, and Active Site Identification of Oxide-Based Olefin Metathesis Catalysts SO ACS CATALYSIS LA English DT Article DE olefin metathesis; metal oxides; active site; activation; regeneration ID SURFACE ORGANOMETALLIC CHEMISTRY; SILICA MOLYBDENA CATALYSTS; RAMAN-SPECTROSCOPY; ALUMINA; METAL; REDUCTION; SELECTIVITY; COMPLEXES; MECHANISM; OXIDATION AB Supported metal oxide based olefin metathesis catalysts are widely used in the chemical industry. In comparison to their organometallic catalyst cousins, the oxide catalysts have much lower activity due to the very small fraction of active sites. We report that a simple pretreatment of MoO3/SiO2 and WO3/SiO2 under an olefin containing atmosphere at elevated temperatures leads to a 100 -1000 fold increase in the low -temperature propylene metathesis activity. The performance of these catalysts is comparable with those of the welldefined organometallic catalysts. Unprecedentedly, the catalyst can be easily regenerated by inert gas purging at elevated temperatures. Furthermore, using UV resonance Raman spectroscopy and electron microscopy, we provide strong evidence that the active sites for MoO3/SiO2 are derived from monomeric Mo(=O)(2) dioxo species. C1 [Ding, Kunlun; Johnson, Alexis M.; Drake, Tasha L.; Weitz, Eric; Stair, Peter C.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Gulec, Ahmet; Lin, Yuyuan; Marks, Laurence D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Wu, Weiqiang] Northwestern Univ, Ctr Catalysis & Surface Sci, Evanston, IL 60208 USA. [Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Stair, PC (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM pstair@northwestern.edu FU U.S. National Science Foundation [CHE-1058835]; Northwestern University ISEN Booster Awards; Northwestern University Institute for Catalysis in Energy Processes (ICEP) on Grant DOE [DE-FG02-03-ER15457]; NSF; MRI-R2 grant from National Science Foundation [DMR-0959470]; MRSEC program (NSF) at the Materials Research Center [DMR-1121262]; International Institute for Nanotechnology (IIN); Keck Foundation; State of Illinois through IIN FX We acknowledge funding from the U.S. National Science Foundation CHE-1058835 (K.D., A.M.J., and P.C.S.), Northwestern University ISEN Booster Awards (K.D. and P.C.S.), Northwestern University Institute for Catalysis in Energy Processes (ICEP) on Grant DOE DE-FG02-03-ER15457 (K.D., A.G., W.W., Y.L., E.W., L.D.M., and P.C.S.). T.L.D. thanks the NSF for the award of a Graduate Research Fellowship. This work made use of the JEOL JEM-ARM200CF instrument in the Electron Microscopy Service (Research Resources Center, UIC). The acquisition of the UIC JEOL JEM-ARM200CF instrument was supported by an MRI-R2 grant from the National Science Foundation (DMR-0959470). This work also made use of the EPIC facility and Keck-II facility of the NUANCE Center and the J. B. Cohen Xray Diffraction Facility at Northwestern University, which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN), the Keck Foundation, and the State of Illinois, through the IIN. We also acknowledge the Keck Biophysics Facility at Northwestern University. NR 41 TC 4 Z9 4 U1 25 U2 26 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2016 VL 6 IS 9 BP 5740 EP 5746 DI 10.1021/acscatal.6b00098 PG 7 WC Chemistry, Physical SC Chemistry GA DV1WY UT WOS:000382714000014 ER PT J AU Sun, J Cai, QX Wan, Y Wan, SL Wang, L Lin, JD Mei, DH Wang, Y AF Sun, Jie Cai, Qiuxia Wan, Yan Wan, Shaolong Wang, Li Lin, Jingdong Mei, Donghai Wang, Yong TI Promotional Effects of Cesium Promoter on Higher Alcohol Synthesis from Syngas over Cesium-Promoted Cu/ZnO/Al2O3 Catalysts SO ACS CATALYSIS LA English DT Article DE syngas; higher alcohol; Cu/ZnO/Al2O3; chain growth probability; cesium; DFT calculations ID FISCHER-TROPSCH SYNTHESIS; INCLUDING SIMULTANEOUS FORMATION; CARBON BOND FORMATION; CU-BASED CATALYSTS; METHANOL SYNTHESIS; OXYGENATE SYNTHESIS; ETHANOL FORMATION; KINETIC-MODEL; SYNTHESIS GAS; HYDROCARBON SYNTHESIS AB The promotional effects of a cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs2O-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and density functional theory (DFT) calculation method. In the presence of a cesium promoter, the C2+OH productivity increases from 77.1 to 157.3 g kg(cat)(-1) h(-1) at 583 K due to the enhancement of the initial C C bond formation. A detailed analysis of chain growth probabilities (CGPs) confirms that initial C C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of a cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGP values (C-3* to 2-methyl-C-3* are almost unaffected. With the assistance of a cesium promoter, the CGPs of the initial C C bond formation step (C-1* to C-2*) increase from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C C bond formation during syngas synthesis over the ZnCu(211) model surface is mainly due to the HCO + HCO coupling. In the presence of Cs2O, the stabilities of key intermediates such HCO and H2CO are enhanced, which facilitates both HCO + HCO and HCO + H2CO coupling steps with lower activation barriers. In addition, Bader charge analysis suggests that the presence of cesium ions could facilitate nucleophilic coupling between HCO and H2CO for the initial C C bond formation. C1 [Sun, Jie; Wan, Yan; Wan, Shaolong; Lin, Jingdong; Wang, Yong] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, Natl Engn Lab Green Chem Prod Alcohols Ethers Est, Xiamen 361005, Peoples R China. [Sun, Jie; Cai, Qiuxia; Mei, Donghai; Wang, Yong] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Cai, Qiuxia] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Zhejiang, Peoples R China. [Wang, Li] Sinochem Quanzhou Petrochem Co Ltd, Quanzhou 362103, Peoples R China. [Wang, Yong] Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. RP Lin, JD; Wang, Y (reprint author), Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, Natl Engn Lab Green Chem Prod Alcohols Ethers Est, Xiamen 361005, Peoples R China.; Mei, DH; Wang, Y (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA.; Wang, Y (reprint author), Washington State Univ, Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. EM jdlin@xmu.edu.cn; donghai.mei@pnnl.gov; wang42@wsu.edu RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011; Lin, JD/G-4606-2010 OI Mei, Donghai/0000-0002-0286-4182; Lin, JD/0000-0003-0686-6908 FU Sinochem Quanzhou Petrochemical Co. Ltd.; National Natural Science Foundation of China [21576227, 91545114, 91545203]; China Scholarship Council; U.S. Department of Energy, Office of Science [DE-AC05-RL01830 (FWP-47319)]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-05ER15712]; DOE's Office of Biological and Environmental Research FX This work was supported by Sinochem Quanzhou Petrochemical Co. Ltd. and the Major Research Plan of National Natural Science Foundation of China (No. 21576227, No. 91545114, and No. 91545203). J.S. appreciates the joint Ph.D. scholarship support from the China Scholarship Council. D.M. and Y.W. were supported by the U.S. Department of Energy, Office of Science and Office of Basic Energy Sciences under DE-AC05-RL01830 (FWP-47319) and DE-FG02-05ER15712, respectively. Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and is sponsored by DOE's Office of Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute. NR 65 TC 1 Z9 1 U1 60 U2 71 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2016 VL 6 IS 9 BP 5771 EP 5785 DI 10.1021/acscatal.6b00935 PG 15 WC Chemistry, Physical SC Chemistry GA DV1WY UT WOS:000382714000017 ER PT J AU Rogers, JL Mangarella, MC D'Amico, AD Gallagher, JR Dutzer, MR Stavitski, E Miller, JT Sievers, C AF Rogers, Jessica L. Mangarella, Michael C. D'Amico, Andrew D. Gallagher, James R. Dutzer, Michael R. Stavitski, Eli Miller, Jeffrey T. Sievers, Carsten TI Differences in the Nature of Active Sites for Methane Dry Reforming and Methane Steam Reforming over Nickel Aluminate Catalysts SO ACS CATALYSIS LA English DT Article DE spinel; synthesis gas; X-ray absorption spectroscopy; coordination number; regeneration ID SUPPORTED CATALYSTS; PARTIAL OXIDATION; HEXAALUMINATE CATALYSTS; NIAL2O4 SPINEL; PECHINI METHOD; SYNTHESIS GAS; SURFACE-AREA; MIXED-OXIDES; SYNGAS; NANOPARTICLES AB The Pechini synthesis was used to prepare nickel aluminate catalysts with the compositions NiAl4O7, NiAl2O4, and Ni2Al2O5. The samples have been characterized by N-2 physisorption, temperature programmed reduction (TPR), temperature-programmed oxidation (TPO), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XFS), transmission electron microscopy (TEM), and X-ray absorption spectroscopy (XAS). Characterization results indicate unique structural properties and excellent regeneration potential of nickel aluminates. Prepared samples were tested when unreduced and reduced prior to reaction for methane dry reforming and methane steam reforming reactivity. NiAl2O4 in the reduced and unreduced state as well as NiAl4O7 in the reduced state are active and stable for methane dry reforming due to the presence of 4-fold coordinated oxidized nickel. The limited amount of metallic nickel in these samples minimizes carbon deposition. On the other hand, the presence of metallic nickel is required for methane steam reforming. Ni2Al2O5 in the reduced and unreduced states and NiAl2O4 in the reduced state are found to be active for methane steam reforming due to the presence of sufficiently small nickel nanoparticles that catalyze the reaction without accumulating carbonaceous deposits. C1 [Rogers, Jessica L.; Mangarella, Michael C.; Dutzer, Michael R.; Sievers, Carsten] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA. [Rogers, Jessica L.; Dutzer, Michael R.; Sievers, Carsten] Georgia Inst Technol, Renewable Bioprod Inst, Atlanta, GA 30332 USA. [Rogers, Jessica L.] Dow Chem Co USA, Freeport, TX 77541 USA. [D'Amico, Andrew D.] Micromerit Instrument Corp, Norcross, GA 30093 USA. [Gallagher, James R.; Miller, Jeffrey T.] Argonne Natl Lab, Div Chem Technol, Argonne, IL 60430 USA. [Stavitski, Eli] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Rogers, Jessica L.; Miller, Jeffrey T.] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. RP Sievers, C (reprint author), Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA.; Sievers, C (reprint author), Georgia Inst Technol, Renewable Bioprod Inst, Atlanta, GA 30332 USA. EM carsten.sievers@chbe.gatech.edu FU Dow Chemical Company; Renewable Bioproducts Institute at the Georgia Institute of Technology; U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences [DE-AC-02-06CH11357]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DOE Office of Science by Brookhaven National Laboratory [DE-AC02-98CH10886] FX Derrick Flick, Brien Stears, Mark Siddoway, and Billy Bardin from the Dow Chemical Company are thanked for fruitful discussions. The assistance of Tianpin Wu at beamline 9-BM-C at Argonne National Laboratory in collecting XAS measurements is greatly appreciated (Proposal GUP-38563). The authors also wish to thank Yong Ding for acquiring TEM images. We thank Justin Notestein and Andrew Korinda for their help in orientation and data collection techniques at Argonne National Laboratory. Rich discussions regarding XRD with Dr. Z. John Zhang are acknowledged. We also thank Steven Ehrlich for his help with the synchrotron experiment. The work was funded by The Dow Chemical Company and a fellowship from the Renewable Bioproducts Institute at the Georgia Institute of Technology. J.T.M. and J.R.G. were funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Chemical Sciences, under Contract DE-AC-02-06CH11357. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used the X18A beamline of the National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory, under Contract No. DE-AC02-98CH10886. NR 63 TC 2 Z9 2 U1 44 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2016 VL 6 IS 9 BP 5873 EP 5886 DI 10.1021/acscatal.6b01133 PG 14 WC Chemistry, Physical SC Chemistry GA DV1WY UT WOS:000382714000027 ER PT J AU Priyadarshani, N Dutta, A Ginovska, B Buchko, GW O'Hagan, M Raugei, S Shaw, WJ AF Priyadarshani, Nilusha Dutta, Arnab Ginovska, Bojana Buchko, Garry W. O'Hagan, Molly Raugei, Simone Shaw, Wendy J. TI Achieving Reversible H-2/H+ Interconversion at Room Temperature with Enzyme-Inspired Molecular Complexes: A Mechanistic Study SO ACS CATALYSIS LA English DT Article DE reversible electrocatalysis; hydrogen production/oxidation; outer coordination sphere; renewable energy; enzyme mimic ID OUTER-COORDINATION SPHERE; HYDROGEN-PRODUCTION; CLOSTRIDIUM-PASTEURIANUM; PROTON-TRANSFER; PENDANT AMINES; ELECTROCATALYTIC OXIDATION; LOW OVERPOTENTIALS; ACTIVE-SITE; WATER; CATALYSTS AB Inspired by the contribution of the protein scaffold to the efficiency with which enzymes function, we used outer coordination sphere features to develop a molecular electrocatalyst for the reversible production/oxidation of H-2 at 25 degrees C: [Ni((P2N2Phe)-N-Cy)(2)](2+) (CyPhe; (P2N2R')-N-R = 1,5-diaza-3,7-diphosphacyclooctane, Cy = cyclohexyl, Phe = phenylalanine). Electrocatalytic reversibility is observed in aqueous, acidic methanol. The aromatic rings in the peripheral phenylalanine groups appear to be essential to achieving reversibility based on the observation that reversibility for arginine (CyArg) or glycine (CyGly) complexes is only achieved with elevated temperature (>50 degrees C) in 100% water. A complex with a hydroxyl group in the para-position of the aromatic ring, R' = tyrosine (CyTyr), shows similar reversible behavior. NMR spectroscopy and molecular dynamics studies suggest that interactions between the aromatic groups as well as between the carboxylic acid groups limit conformational flexibility, contributing to reversibility. NMR spectroscopy studies also show extremely fast proton exchange along a pathway from the Ni-H through the pendant amine to the carboxyl group. Further, a complex containing a side chain similar to tyrosine but without the carboxyl group (CyTym; Tym = tyramine) does not display reversible catalysis and has limited proton exchange from the pendant amine, demonstrating an essential role for the carboxylic acid and the proton pathway in achieving catalytic reversibility. This minimal pathway mimics proton pathways found in hydrogenases. The influence of multiple factors on lowering barriers and optimizing relative energies to achieve reversibility for this synthetic catalyst is a clear indication of the intricate interplay between the first, second, and outer coordination spheres that begins to mimic the complexity observed in metalloenzymes. C1 [Priyadarshani, Nilusha; Dutta, Arnab; Ginovska, Bojana; Buchko, Garry W.; O'Hagan, Molly; Raugei, Simone; Shaw, Wendy J.] Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. [Dutta, Arnab] IIT Gandhinagar, Chem Dept, Ahmadabad 382424, Gujarat, India. RP Shaw, WJ (reprint author), Pacific Northwest Natl Lab, POB 999, Richland, WA 99352 USA. EM wendy.shaw@pnnl.gov FU Office of Science Early Career Research Program through the US Department of Energy (DOE), Basic Energy Sciences; Center for Molecular Electrocatalysis, an Energy Frontier Research Center - US DOE, Office of Science, Office of Basic Energy Sciences; US DOE, Office of Science, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geosciences, and Bio-Sciences; US DOE's Office of Biological and Environmental Research program FX This work was funded by the Office of Science Early Career Research Program through the US Department of Energy (DOE), Basic Energy Sciences (N.P., A.D., B.G., G.W.B., W.J.S.), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, Office of Science, Office of Basic Energy Sciences (MOH, SR), and the US DOE, Office of Science, Office of Basic Energy Sciences, the Division of Chemical Sciences, Geosciences, and Bio-Sciences (S.R.). Part of the research was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by US DOE's Office of Biological and Environmental Research program located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the US DOE. NR 72 TC 3 Z9 3 U1 15 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2016 VL 6 IS 9 BP 6037 EP 6049 DI 10.1021/acscatal.6b01433 PG 13 WC Chemistry, Physical SC Chemistry GA DV1WY UT WOS:000382714000045 ER PT J AU Thornburg, NE Nauert, SL Thompson, AB Notestein, JM AF Thornburg, Nicholas E. Nauert, Scott L. Thompson, Anthony B. Notestein, Justin M. TI Synthesis-Structure-Function Relationships of Silica-Supported Niobium(V) Catalysts for Alkene Epoxidation with H2O2 SO ACS CATALYSIS LA English DT Article DE niobium; heterogeneous catalysis; supported catalyst; supported oxide; hydrogen peroxide; epoxidation; active site; calixarene ID MESOPOROUS MOLECULAR-SIEVES; AQUEOUS HYDROGEN-PEROXIDE; OXIDE CATALYSTS; ACTIVE-SITES; TITANIUM SILICALITE; TRANSITION-METAL; CYCLOOCTENE EPOXIDATION; HETEROGENEOUS CATALYSTS; SELECTIVE EPOXIDATION; AMORPHOUS SILICA AB Many industrially significant selective oxidation reactions are catalyzed by supported and bulk transition metal oxides. Catalysts for the synthesis of oxygenates, and especially for epoxidation, have predominantly focused on TiOx supported on or co-condensed with SiO2, whereas much of the rest of Groups 4 and 5 have been less studied. We have recently demonstrated through periodic trends using a uniform molecular precursor that niobium(V)-silica catalysts reveal the highest activity and selectivity for efficient utilization of H2O2 for epoxidation across all of Groups 4 and S. In this work, we graft a wide range of Nb(V) precursors, spanning surface densities of 0.07-1.6 Nb groups nm(-2) on mesoporous silica, and we characterize these materials with UV visible spectroscopy and Nb K-edge XANES. Further, we apply in situ chemical titration with phenylphosphonic acid (PPA) in the epoxidation of cis-cyclooctene by H2O2 to probe the numbers and nature of the active sites across this series and in a set of related Ti-, Zr-, Hf-, and Ta-SiO2 catalysts. By this method, the fraction of kinetically relevant NbOx species ranges from similar to 15% to similar to 65%, which correlates with spectroscopic evaluation of the NbOx sites. This titration leads to a single value for the average turnover frequency, on a per active site basis rather than a per Nb atom basis, of 1.4 +/- 0.52 min(-1) across the 21 materials in the series. These quantitative maps of structural properties and kinetic consequences link key catalyst descriptors of supported Nb-SiO2 to enable rational design for next-generation oxidation catalysts. C1 [Thornburg, Nicholas E.; Nauert, Scott L.; Thompson, Anthony B.; Notestein, Justin M.] Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd,Technol Inst E136, Evanston, IL 60208 USA. [Thompson, Anthony B.] Savannah River Natl Lab, Appl Res Ctr, 301 Gateway Dr, Aiken, SC 29803 USA. RP Notestein, JM (reprint author), Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd,Technol Inst E136, Evanston, IL 60208 USA. EM j-notestein@northwestern.edu OI Notestein, Justin/0000-0003-1780-7356 FU Dow Chemical Company; NSF [DGE-1324585, CBET-0933667, DMR-0521267]; DOE [DE-AC02-06CH11357]; National Science Foundation at the Materials Research Center of Northwestern University [DMR-1121262] FX N.E.T. and J.M.N. acknowledge financial support from the Dow Chemical Company. S.L.N. and A.B.T. acknowledge financial support from NSF Grants DGE-1324585 and CBET-0933667, respectively. Material characterization was performed at the IMSERC facility with financial support from NSF Grant DMR-0521267 and at the Quantitative Bio-element Imaging Center, and at Northwestern University, and at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) at the Advanced Photon Source at Argonne National Laboratory (DOE Contract No. DE-AC02-06CH11357). N.E.T. thanks Dr. Todd Eaton for his helpful discussions, Lauren McCullough for her assistance with chloride determination, and Dr. Qing Ma for his assistance with X-ray absorption spectroscopy experiments. Powder X-ray diffraction was performed at the J. B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. NR 81 TC 1 Z9 1 U1 36 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2016 VL 6 IS 9 BP 6124 EP 6134 DI 10.1021/acscatal.6b01796 PG 11 WC Chemistry, Physical SC Chemistry GA DV1WY UT WOS:000382714000054 ER PT J AU Zhang, ZY Chi, MF Veith, GM Zhang, PF Lutterman, DA Rosenthal, J Overbury, SH Dai, S Zhu, HY AF Zhang, Zhiyong Chi, Miaofang Veith, Gabriel M. Zhang, Pengfei Lutterman, Daniel A. Rosenthal, Joel Overbury, Steven H. Dai, Sheng Zhu, Huiyuan TI Rational Design of Bi Nanoparticles for Efficient Electrochemical CO2 Reduction: The Elucidation of Size and Surface Condition Effects SO ACS CATALYSIS LA English DT Article DE bismuth nanoparticle; surface activation; electrochemical CO2 reduction; CO; ionic liquid ID PBSE NANOCRYSTAL SOLIDS; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; SELECTIVE CONVERSION; AU NANOPARTICLES; COPPER NANOCRYSTALS; METAL-ELECTRODES; AQUEOUS CO2; ELECTROREDUCTION; CATALYSTS AB We report an efficient electrochemical conversion of CO2 to CO on surface-activated bismuth nano particles (NPs) in acetonitrile (MeCN) under ambient conditions, with the assistance of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]). Through the comparison between electrodeposited Bi films (Bi-ED) and different types of Bi NPs, we, for the first time, demonstrate the effects of catalyst's size and surface condition on organic phase electrochemical CO2 reduction. Our study reveals that the surface inhibiting layer (hydrophobic surfactants and Bi3+ species) formed during the synthesis and purification process hinders the CO2 reduction, leading to a 20% drop in Faradaic efficiency for CO evolution (FECO). Bi particle size showed a significant effect on FECO when the surface of Bi was air-oxidized, but this effect of size on FECO became negligible on surface-activated Bi NPs. After the surface activation (hydrazine treatment) that effectively removed the native inhibiting layer, activated 36-nm Bi NPs exhibited an almost-quantitative conversion of CO2 to CO (96.1% FECO), and a mass activity for CO evolution (MA(CO)) of 15.6 mA mg(-1), which is three-fold higher than the conventional Bi-ED, at -2.0 V (vs Ag/AgCl). This work elucidates the importance of the surface activation for an efficient electrochemical CO2 conversion on metal NPs and paves the way for understanding the CO2 electrochemical reduction mechanism in nonaqueous media. C1 [Zhang, Zhiyong; Zhang, Pengfei; Lutterman, Daniel A.; Overbury, Steven H.; Dai, Sheng; Zhu, Huiyuan] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. [Chi, Miaofang] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci Div, Oak Ridge, TN 37831 USA. [Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Rosenthal, Joel] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Zhu, HY (reprint author), Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. EM zhuh@ornl.gov FU FIRST Center, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Liane B. Russell Fellowship - Laboratory Directed Research and Development Program at the Oak Ridge National Laboratory FX This work was supported as part of the FIRST Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. XPS data (G.M.V.) was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division. H.Z. was supported by Liane B. Russell Fellowship sponsored by the Laboratory Directed Research and Development Program at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 46 TC 3 Z9 3 U1 108 U2 133 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2016 VL 6 IS 9 BP 6255 EP 6264 DI 10.1021/acscatal.6b01297 PG 10 WC Chemistry, Physical SC Chemistry GA DV1WY UT WOS:000382714000071 ER PT J AU Li, XL Van Zeeland, R Maligal-Ganesh, RV Pei, YC Power, G Stanley, L Huang, WY AF Li, Xinle Van Zeeland, Ryan Maligal-Ganesh, Raghu V. Pei, Yuchen Power, Gregory Stanley, Levi Huang, Wenyu TI Impact of Linker Engineering on the Catalytic Activity of Metal-Organic Frameworks Containing Pd(II)-Bipyridine Complexes SO ACS CATALYSIS LA English DT Article DE isoreticular metal-organic frameworks; single-site catalyst; heterogeneous catalysis; bipyridyl linker; structure-activity relationship; Suzuki-Miyaura cross-coupling ID COUPLING REACTIONS; HIGHLY EFFICIENT; SUZUKI REACTION; TRANSFORMATIONS; 2,2'-BIPYRIDINE; NANOPARTICLES; STABILITY; LIGANDS; ROBUST; WATER AB A series of mixed-linker bipyridyl metal organic framework (MOF)-supported palladium(II) catalysts were used to elucidate the electronic and steric effects of linker substitution on the activity of these catalysts in the context of Suzuki Miyaura 60. cross-coupling reactions. m-6,6'-Me(2)bpy-MOF-PdCl2 exhibited 110- and 496-fold enhancements in activity compared to nonfunctionalized m-bpy-MOF-PdCl2 and m-4,4'-Me(2)bpy-MOE-PdCl2, respectively. This result clearly demonstrates that the stereoelectronic properties of metal-binding linker units are critical to the activity of single-site organometallic catalysts in MOFs and highlights the importance of linker engineering in the design and development of efficient MOF catalysts. C1 [Li, Xinle; Van Zeeland, Ryan; Maligal-Ganesh, Raghu V.; Pei, Yuchen; Power, Gregory; Stanley, Levi; Huang, Wenyu] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Li, Xinle; Maligal-Ganesh, Raghu V.; Pei, Yuchen; Huang, Wenyu] US DOE, Ames Lab, Ames, IA 50011 USA. RP Stanley, L; Huang, WY (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Huang, WY (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM lstanley@iastate.edu; whuang@iastate.edu RI Huang, Wenyu/L-3784-2014 OI Huang, Wenyu/0000-0003-2327-7259 FU Ames Laboratory; Iowa State University; U.S. Department of Energy [DE-AC02-07CH11358] FX We thank Ames Laboratory (Royalty Account) and Iowa State University for startup funds. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract DE-AC02-07CH11358. We thank Gordon J. Miller for use of PXRD in his group. NR 43 TC 2 Z9 2 U1 42 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2016 VL 6 IS 9 BP 6324 EP 6328 DI 10.1021/acscatal.6b01753 PG 5 WC Chemistry, Physical SC Chemistry GA DV1WY UT WOS:000382714000079 ER PT J AU Meng, XZ Sun, QN Kosa, M Huang, F Pu, YQ Ragauskas, AJ AF Meng, Xianzhi Sun, Qining Kosa, Matyas Huang, Fang Pu, Yunqiao Ragauskas, Arthur J. TI Physicochemical Structural Changes of Poplar and Switchgrass during Biomass Pretreatment and Enzymatic Hydrolysis SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Biomass recalcitrance; cellulose accessibility; degree of polymerization; Simons' stain; peeling off; irreversible nonspecific binding ID DILUTE-ACID; LIGNOCELLULOSIC BIOMASS; HOT-WATER; CELLULOSE; RECALCITRANCE; SURFACE; MECHANISM; POROSITY; SORGHUM; FIBERS AB Converting lignocellulosics to simple sugars for second generation bioethanol is complicated due to biomass recalcitrance, and it requires a pretreatment stage prior to enzymatic hydrolysis. In this study, native, pretreated (acid and alkaline) and partially hydrolyzed poplar and switchgrass were characterized by using Simons' staining for cellulose accessibility, GPC for degree of polymerization (DP), and FTIR for chemical structure of plant cell wall. The susceptibility of the pretreated biomass to enzymatic hydrolysis could not be easily predicted from differences in cellulose DP and accessibility. During hydrolysis, the most significant DP reduction occurred at the very beginning of hydrolysis, and the DP began to decrease at a significantly slower rate after this initial period, suggesting an existence of a synergistic action of endo- and exoglucanases that contribute to the occurrence of a "peeling off" mechanism. Cellulose accessibility was found to be increased at the beginning of hydrolysis, after reaching a maximum value then started to decrease. The fresh enzyme restart hydrolysis experiment along with the accessibility data indicated that the factors associated with the nature of enzyme such as irreversible nonspecific binding of cellulases by lignin and steric hindrance of enzymes should be responsible for the gradual slowing down of the reaction rate. C1 [Meng, Xianzhi; Sun, Qining; Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Meng, Xianzhi; Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Kosa, Matyas; Huang, Fang] Georgia Inst Technol, Renewable Bioprod Inst, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Pu, Yunqiao; Ragauskas, Arthur J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Kosa, Matyas] Renmatix Inc, Res & Dev, King Of Prussia, PA 19406 USA. RP Ragauskas, AJ (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA.; Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA.; Ragauskas, AJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM argauskas@utk.edu RI Sun, Qining/B-7592-2016 OI Sun, Qining/0000-0002-9678-7834 FU U.S. Department of Energy [DE-AC05- 00OR22725]; DOE Public Access Plan FX This paper has been authored by UT-Battelle, LLC under contract no. DE-AC05- 00OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this paper, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 41 TC 1 Z9 1 U1 12 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD SEP PY 2016 VL 4 IS 9 BP 4563 EP 4572 DI 10.1021/acssuschemeng.6b00603 PG 10 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA DV1WP UT WOS:000382713100011 ER PT J AU Mukarakate, C Mittal, A Ciesielski, PN Budhi, S Thompson, L Iisa, K Nimlos, MR Donohoe, BS AF Mukarakate, Calvin Mittal, Ashutosh Ciesielski, Peter N. Budhi, Sridhar Thompson, Logan Iisa, Kristiina Nimlos, Mark R. Donohoe, Bryon S. TI Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis SO ACS SUSTAINABLE CHEMISTRY & ENGINEERING LA English DT Article DE Cellulose; Pyrolysis; Crystallinity; Allomorph; Biomass conversion; Biochar ID NEUTRON FIBER DIFFRACTION; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; BIOMASS PYROLYSIS; MOLECULAR CHARACTERIZATION; CORN STOVER; KINETICS; RESIDUES; OIL AB Cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fast pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase. C1 [Mukarakate, Calvin; Budhi, Sridhar; Thompson, Logan; Iisa, Kristiina; Nimlos, Mark R.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Mittal, Ashutosh; Ciesielski, Peter N.; Donohoe, Bryon S.] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Mukarakate, C (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA.; Donohoe, BS (reprint author), Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM calvin.mukarakate@nrel.gov; bryon.donohoe@nrel.gov RI Budhi, Sridhar/B-2157-2017 OI Budhi, Sridhar/0000-0003-2514-5161 FU U.S. Department of Energy, Bioenergy Technologies Office (DOE-BETO) [DE-AC36-08GO28308]; National Renewable Energy Laboratory (NREL); Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997] FX The cellulose allomorph generation, py-MBMS, py-GCMS, and TGA work presented here was supported by the U.S. Department of Energy, Bioenergy Technologies Office (DOE-BETO) under contract number DE-AC36-08GO28308 with the National Renewable Energy Laboratory (NREL). The imaging and image analysis of cellulose particles and chars was supported as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Award Number DE-SC0000997. The authors would also like to thank Steve Deutch for performing ICP analysis and David Robichaud, Mark Jarvis, Gregg Beckham, and Mike Crowley for helpful discussions. NR 41 TC 1 Z9 1 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2168-0485 J9 ACS SUSTAIN CHEM ENG JI ACS Sustain. Chem. Eng. PD SEP PY 2016 VL 4 IS 9 BP 4662 EP 4674 DI 10.1021/acssuschemeng.6b00812 PG 13 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Chemical SC Chemistry; Science & Technology - Other Topics; Engineering GA DV1WP UT WOS:000382713100022 ER PT J AU Chen, TY Gigax, JG Price, L Chen, D Ukai, S Aydogan, E Maloy, SA Garner, FA Shao, L AF Chen, Tianyi Gigax, Jonathan G. Price, Lloyd Chen, Di Ukai, S. Aydogan, Eda Maloy, S. A. Garner, F. A. Shao, Lin TI Temperature dependent dispersoid stability in ion-irradiated ferritic-martensitic dual-phase oxide-dispersion-strengthened alloy: Coherent interfaces vs. incoherent interfaces SO ACTA MATERIALIA LA English DT Article DE Ferritic-martensitic; Coherency; Interface energy; Nano-particle; Dispersoid integrity ID 650 DEGREES-C; FERRITIC/MARTENSITIC STEELS; MICROSTRUCTURAL DEVELOPMENT; MECHANICAL-PROPERTIES; NEUTRON-IRRADIATION; RADIATION-DAMAGE; CREEP-PROPERTIES; DEPARTURE SIDE; ODS STEEL; PURE IRON AB In this study, the microstructure of a 12Cr ferritic-martensitic oxide-dispersion-strengthened (ODS) alloy is studied before and after Fe ion irradiation up to 200 peak displacements per atom (dpa). Irradiation temperature ranges from 325 to 625 degrees C. Before irradiation, both coherent and incoherent dispersoids exist in the matrix. In response to irradiation, the mean sizes of dispersoids in both the ferrite and tempered martensite phases change to equilibrium values that increase with irradiation temperature. The evolution of dispersoids under irradiation is explained by a competition between athermal-radiation-driven shrinkage and thermal-diffusion-driven growth, with interface coherency affecting the growth mechanism. However, each coherency type exhibits different evolution behavior under irradiation. Coherent dispersoids, regardless of their initial size, change toward an equilibrium size at each temperature tested. On the other hand, incoherent dispersoids are destroyed at lower test temperatures but survive while shrinking in size at higher temperatures. This difference in behavior can be explained by the lower interfacial energy of coherent dispersoids in comparison with incoherent dispersoids. This study sheds light on the roles of interface configurations in maintaining dispersoid integrity under irradiation. (C) 2016 Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Chen, Tianyi; Gigax, Jonathan G.; Price, Lloyd; Chen, Di; Garner, F. A.; Shao, Lin] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Ukai, S.] Hokkaido Univ, Dept Mat Sci & Engn, Kita Ku, N13,W-8, Sapporo, Hokkaido 0600808, Japan. [Aydogan, Eda] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA. [Aydogan, Eda; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Shao, L (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM lshao@tamu.edu RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Chen, Tianyi/0000-0003-2880-824X FU US Department of Energy's NEUP program [DE-NE0008297] FX The research was supported by US Department of Energy's NEUP program, through grant no. DE-NE0008297. NR 80 TC 1 Z9 1 U1 9 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 1 PY 2016 VL 116 BP 29 EP 42 DI 10.1016/j.actamat.2016.05.042 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DU6QT UT WOS:000382340400003 ER PT J AU Beland, LK Osetsky, YN Stoller, RE AF Beland, Laurent Karim Osetsky, Yuri N. Stoller, Roger E. TI The effect of alloying nickel with iron on the supersonic ballistic stage of high energy displacement cascades SO ACTA MATERIALIA LA English DT Article DE Radiation damage; Nickel; Nickel-iron; Molecular dynamics; High-entropy alloys ID MOLECULAR-DYNAMICS SIMULATIONS; ATOMISTIC SIMULATIONS; MULTICOMPONENT ALLOYS; NI; ACCUMULATION; DAMAGE AB Previous experimental and theoretical studies suggest that the production of extended defect structures by collision cascades is inhibited in equiatomic NiFe, in comparison to pure Ni. It is also known that the production of such extend defect structures results from the formation of subcascades by high-energy recoils and their subsequent interaction. A detailed analysis of the ballistics of 40 keV cascades in Ni and NiFe is performed to identify the formation of such subcascades and to assess their spatial distribution. It is found that subcascades in Ni and NiFe are created with nearly identical energies and distributed similarly in space. This suggests that the differences in production of extended defect structures is not related to processes taking place in the ballistic phase of the collision cascade. These results can be generalized to other, more chemically complex, concentrated alloys where the elements have similar atomic numbers, such as many high-entropy alloys. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Beland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Beland, LK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM belandlk@ornl.gov OI Beland, Laurent Karim/0000-0001-5332-7128; Osetskiy, Yury/0000-0002-8109-0030 FU Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences; Fonds Quebecois de recherche Nature et Technologies FX This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. LKB acknowledges additional support from a fellowship awarded by the Fonds Quebecois de recherche Nature et Technologies. We thank Alfredo Correa and German D Samolyuk for insightful discussions. NR 34 TC 0 Z9 0 U1 13 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 1 PY 2016 VL 116 BP 136 EP 142 DI 10.1016/j.actamat.2016.06.031 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DU6QT UT WOS:000382340400012 ER PT J AU Kumar, MA Beyerlein, IJ Tome, CN AF Kumar, M. Arul Beyerlein, I. J. Tome, C. N. TI Effect of local stress fields on twin characteristics in HCP metals SO ACTA MATERIALIA LA English DT Article DE Plasticity; Magnesium; Zirconium; Titanium; Anisotropy ID CLOSE-PACKED METALS; AZ31 MAGNESIUM ALLOY; DEFORMATION TWINS; TEXTURE EVOLUTION; GRAIN-SIZE; PLASTIC-DEFORMATION; STRUCTURAL INTERPRETATION; DIFFRACTION MEASUREMENTS; MECHANICAL RESPONSE; NEUTRON-DIFFRACTION AB We study the effect of nearest neighboring grains on the propensity for {1012} twin growth in Mg and Zr. Twin lamellae lying within one grain flanked by two neighboring grains with several orientations are considered. The fields of resolved shear stress on the twin system are calculated in the multicrystal using a three-dimensional full-field crystal plasticity Fast Fourier Transform approach. The calculations were carried out for Mg and Zr using slip threshold stresses corresponding to 300 K and 76 K, respectively, where twin activity is important. We show that the neighboring grain constraint tends to oppose further growth and that the critical applied stress needed to overcome this resistance depends on neighboring grain orientation, more strongly in Zr than in Mg. We also present results for a pair of adjacent and parallel twins at various spacings. It is found that their paired interaction increases the resistive forces for twin growth above that for an isolated twin. The critical spacing above which this enhanced resistance is removed is smaller for Zr than Mg. Our analysis reveals that these two disparate responses of Zr and Mg are both a consequence of the fact that Zr is elastically and plastically more anisotropic than Mg. Additional calculations carried out on Ti support this conclusion. These findings can help explain why, for the same grain size, more twins per grain form in Zr than in Mg, twins in Zr tend to be thinner than those in Mg, and the relationship between the thickness of the twin and its Schmid factor in Zr is not as strong as in Mg. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Kumar, M. Arul; Tome, C. N.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Kumar, MA (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. EM marulkr@lanl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences (OBES) [FWP-06SCPE401] FX This work was entirely funded by U.S. Department of Energy, Office of Basic Energy Sciences (OBES) FWP-06SCPE401. NR 75 TC 1 Z9 1 U1 28 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 1 PY 2016 VL 116 BP 143 EP 154 DI 10.1016/j.actamat.2016.06.042 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DU6QT UT WOS:000382340400013 ER PT J AU Pagan, DC Miller, MP AF Pagan, Darren C. Miller, Matthew P. TI Determining heterogeneous slip activity on multiple slip systems from single crystal orientation pole figures SO ACTA MATERIALIA LA English DT Article DE Diffraction; Pole figures; Plastic deformation; Crystallographic slip ID X-RAY-DIFFRACTION; TEXTURE ANALYSIS; DEFORMATION; GRAIN; POLYCRYSTALS; COMPRESSION; PLASTICITY; MICROSCOPY; ALUMINUM AB A new experimental method to determine heterogeneity of shear strains associated with crystallographic slip in the bulk of ductile, crystalline materials is outlined. The method quantifies the time resolved evolution of misorientation within plastically deforming crystals using single crystal orientation pole figures (SCPFs) measured in-situ with X-ray diffraction. A multiplicative decomposition of the crystal kinematics is used to interpret the distributions of lattice plane orientation observed on the SCPFs in terms of heterogeneous slip activity (shear strains) on multiple slip systems. To show the method's utility, the evolution of heterogeneous slip is quantified in a silicon single crystal plastically deformed at high temperature at multiple load steps, with slip activity in sub-volumes of the crystal analyzed simultaneously. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Pagan, Darren C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Miller, Matthew P.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Miller, Matthew P.] Cornell High Energy Synchrotron Source, Ithaca, NY USA. RP Pagan, DC (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM pagan2@llnl.gov RI Miller, Matthew/D-7903-2017; OI Miller, Matthew/0000-0002-0241-769X FU National Science Foundation; National Institutes of Health/National Institute of General Medical Sciences under NSF [DMR-1332208]; National Science Foundation (NSF) [CMMI-0928257]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344 (LLNL-JRNL-679683)] FX The experiment was conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF Award No. DMR-1332208. Darren Pagan was supported by by the National Science Foundation (NSF) under award No. CMMI-0928257 and a GRA position at CHESS. This work was performed partially under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-679683). The authors wish to thank Professors Paul Dawson and Armand Beaudoin for many helpful discussions and guidance, Mark Obstalecki for help performing the silicon compression experiment, and Dr. Jacob Ruff for his support as staff scientist at the A-2 station at CHESS. NR 44 TC 0 Z9 0 U1 6 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 1 PY 2016 VL 116 BP 200 EP 211 DI 10.1016/j.actamat.2016.06.020 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DU6QT UT WOS:000382340400018 ER PT J AU Lieberman, EJ Lebensohn, RA Menasche, DB Bronkhorst, CA Rollett, AD AF Lieberman, Evan J. Lebensohn, Ricardo A. Menasche, David B. Bronkhorst, Curt A. Rollett, Anthony D. TI Microstructural effects on damage evolution in shocked copper polycrystals SO ACTA MATERIALIA LA English DT Article DE Polycrystal plasticity modeling; Micromechanics; Damage initiation; Deformation inhomogeneities; Shocks ID FAST FOURIER-TRANSFORMS; GRAIN-BOUNDARIES; INTERGRANULAR DAMAGE; PLASTIC-DEFORMATION; VOID NUCLEATION; CAVITY GROWTH; FRACTURE; FAILURE; STEEL; HETEROGENEITY AB Three-dimensional crystal orientation fields of a copper sample, characterized before and after shock loading using High Energy Diffraction Microscopy, are used for input and validation of direct numerical simulations using a Fast Fourier Transform (FFT)-based micromechanical model. The locations of the voids determined by X-ray tomography in the incipiently-spalled sample, predominantly found near grain boundaries, were traced back and registered to the pre-shocked microstructural image. Using FFT-based simulations with direct input from the initial microstructure, micromechanical fields at the shock peak stress were obtained. Statistical distributions of micromechanical fields restricted to grain boundaries that developed voids after the shock are compared with corresponding distributions for all grain boundaries. Distributions of conventional measures of stress and strain (deviatoric and mean components) do not show correlation with the locations of voids in the post-shocked image. Neither does stress triaxiality, surface traction or grain boundary inclination angle, in a significant way. On the other hand, differences in Taylor factor and accumulated plastic work across grain boundaries do correlate with the occurrence of damage. Damage was observed to take place preferentially at grain boundaries adjacent to grains having very different plastic response. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Lieberman, Evan J.; Menasche, David B.; Rollett, Anthony D.] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Lieberman, Evan J.; Lebensohn, Ricardo A.; Bronkhorst, Curt A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lebensohn, RA (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, MS G755, Los Alamos, NM 87845 USA. EM lebenso@lanl.gov RI Lebensohn, Ricardo/A-2494-2008; Rollett, Anthony/A-4096-2012; OI Lebensohn, Ricardo/0000-0002-3152-9105; Rollett, Anthony/0000-0003-4445-2191; Lieberman, Evan/0000-0001-5692-2635; Bronkhorst, Curt/0000-0002-2709-1964 FU Los Alamos National Laboratory's Directed Research and Development (LDRD-DR Project) [20140114DR]; Joint DoD/DOE Munitions Technology Programs; US Department of Energy, National Nuclear Security Administration [DE-NA0002918]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors wish to thank Saryu Fensin, Edward Kober and John Bingert (LANL), and Robert Suter (CMU) for fruitful discussions. This work was supported by Los Alamos National Laboratory's Directed Research and Development (LDRD-DR Project 20140114DR). RAL and CAB also acknowledge support from the Joint DoD/DOE Munitions Technology Programs. ADR also acknowledges support from the US Department of Energy, National Nuclear Security Administration, under contract number DE-NA0002918. The data was collected at the Advanced Photon Source (beamline 1-ID), supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357. NR 47 TC 1 Z9 1 U1 7 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP 1 PY 2016 VL 116 BP 270 EP 280 DI 10.1016/j.actamat.2016.06.054 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DU6QT UT WOS:000382340400025 ER PT J AU Bilheux, H AF Bilheux, Hassina TI NEUTRON CHARACTERIZATION OF ADDITIVELY MANUFACTURED INCONEL 718 SO ADVANCED MATERIALS & PROCESSES LA English DT Article ID TRANSMISSION; RESOLUTION; RADIOGRAPHY C1 [Bilheux, Hassina] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. RP Bilheux, H (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM bilheuxn@ornl.gov RI Bilheux, Hassina/H-4289-2012 OI Bilheux, Hassina/0000-0001-8574-2449 FU Laboratory Directed Research and Development Program of ORNL FX The team thanks M. Frost and H. Skorpenske for setting up the detector at the SNS beamlines. Resources at the High Flux Isotope Reactor and Spallation Neutron Source, U.S. DOE Office of Science User Facilities operated by ORNL, were used in this research. This research is also sponsored by the Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle LLC, for DOE. NR 13 TC 0 Z9 0 U1 4 U2 4 PU ASM INT PI MATERIALS PARK PA SUBSCRIPTIONS SPECIALIST CUSTOMER SERVICE, MATERIALS PARK, OH 44073-0002 USA SN 0882-7958 EI 2161-9425 J9 ADV MATER PROCESS JI Adv. Mater. Process. PD SEP PY 2016 VL 174 IS 8 BP 16 EP 20 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA DV4LE UT WOS:000382896300003 ER PT J AU Berryman, CE Agarwal, S Lieberman, HR Fulgoni, VL Pasiakos, SM AF Berryman, Claire E. Agarwal, Sanjiv Lieberman, Harris R. Fulgoni, Victor L., III Pasiakos, Stefan M. TI Diets higher in animal and plant protein are associated with lower adiposity and do not impair kidney function in US adults SO AMERICAN JOURNAL OF CLINICAL NUTRITION LA English DT Article DE higher-protein diet; kidney function; cardiometabolic risk; NHANES; protein source; central adiposity ID PROCESSED MEAT CONSUMPTION; DOSE-RESPONSE METAANALYSIS; RED MEAT; PROSPECTIVE COHORT; FISH CONSUMPTION; HEART-DISEASE; ALL-CAUSE; RISK; MORTALITY; STROKE AB Background: Higher-protein diets are associated with decreased adiposity and greater HDL cholesterol than lower protein diets. Whether these benefits can be attributed to a specific protein source (i.e., non-dairy animal, dairy, or plant) is unknown, and concerns remain regarding the impact of higher-protein diets on kidney function. Objective: The objective of this study was to evaluate trends of protein source on markers of cardiometabolic disease risk and kidney function in US adults. Design: Total, nondairy animal, dairy, and plant protein intake were estimated with the use of 24-h recall data from NHANES 2007-2010 (n = 11,111; >= 19 y). Associations between source-specific protein intake and health outcomes were determined with the use of models that adjusted for sex, race and ethnicity, age, physical activity, poverty to-income ratio, individual intake (grams per kilogram) for each of the other 2 protein sources, body mass index (BMI) (except for weight related variables), and macronutrient (carbohydrate, fiber, and total and saturated fat) intake. Results: Mean +/- SE total protein intake was 82.3 +/- 0.8 g/d (animal. 37.4 +/- 0.5 g/d; plant: 24.7 +/- 0.3 g/d; and dairy: 13.4 +/- 0.3 g/d). Both BMI and waist circumference were inversely associated [regression coefficient (95% CI)] with animal [-0.199 (-0.265, -0.134), P < 0.0001; -0.505 (-0.641, -0.370), P < 0.0001] and plant [-0.346 (-0.455, -0.237), P < 0.0001; -0.826 (-1.114, -0.538), P < 0.0001] protein intake. Blood urea nitrogen concentrations increased across deciles for animal [0.313 (0.248, 0.379), P < 0.0001; decile 1-10: 11.6 +/- 0.2 to 14.9 +/- 0.3 mg/dL] and dairy [0.195 (0.139, 0.251), P < 0.0001; decile 1-10: 12.7 +/- 0.2 to 13.9 +/- 0.2 mg/dL] but not plant protein intake. Glomerular filtration rate and blood creatinine were not associated with intake of any protein source. Conclusions: Diets higher in plant and animal protein, independent of other dietary factors, are associated with cardiometabolic benefits, particularly improved central adiposity, with no apparent impairment of kidney function. C1 [Berryman, Claire E.; Lieberman, Harris R.; Pasiakos, Stefan M.] US Army Res Inst Environm Med, Mil Nutr Div, Natick, MA 01760 USA. [Berryman, Claire E.; Agarwal, Sanjiv] Oak Ridge Inst Sci & Educ, Belcamp, MD USA. [Fulgoni, Victor L., III] Henry M Jackson Fdn, Bethesda, MD USA. RP Pasiakos, SM (reprint author), US Army Res Inst Environm Med, Mil Nutr Div, Natick, MA 01760 USA. EM stefan.m.pasiakos.civ@mail.mil RI Pasiakos, Stefan/E-6295-2014; Berryman, Claire/B-5553-2017 OI Pasiakos, Stefan/0000-0002-5378-5820; FU US Army Military Research and Material Command; Department of Defense Center Alliance for Nutrition and Dietary Supplements Research FX Supported by the US Army Military Research and Material Command and the Department of Defense Center Alliance for Nutrition and Dietary Supplements Research. NR 43 TC 1 Z9 1 U1 9 U2 12 PU AMER SOC NUTRITION-ASN PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0002-9165 EI 1938-3207 J9 AM J CLIN NUTR JI Am. J. Clin. Nutr. PD SEP PY 2016 VL 104 IS 3 BP 743 EP 749 DI 10.3945/ajcn.116.133819 PG 7 WC Nutrition & Dietetics SC Nutrition & Dietetics GA DU7UU UT WOS:000382420900027 PM 27465374 ER PT J AU Clancy, CE An, G Cannon, WR Liu, YL May, EE Ortoleva, P Popel, AS Sluka, JP Su, J Vicini, P Zhou, XB Eckmann, DM AF Clancy, Colleen E. An, Gary Cannon, William R. Liu, Yaling May, Elebeoba E. Ortoleva, Peter Popel, Aleksander S. Sluka, James P. Su, Jing Vicini, Paolo Zhou, Xiaobo Eckmann, David M. TI Multiscale Modeling in the Clinic: Drug Design and Development SO ANNALS OF BIOMEDICAL ENGINEERING LA English DT Article DE Pharmacology; Mathematical; Multiscale modeling; Simulation; Drug delivery ID SYSTEMS CHEMICAL BIOLOGY; VIRUS-LIKE PARTICLES; AGENT-BASED MODEL; MYCOBACTERIUM-TUBERCULOSIS; ARRHYTHMOGENIC MECHANISMS; ELECTRICAL RESTITUTION; COMPUTATIONAL MODEL; MOLECULAR-DYNAMICS; SICILIAN GAMBIT; BLOOD-VESSELS AB A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multiscale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multiscale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multiscale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical and computational techniques employed for multiscale modeling approaches used in pharmacometric and systems pharmacology models in drug development and present several examples illustrating the current state-of-the-art models for (1) excitable systems and applications in cardiac disease; (2) stem cell driven complex biosystems; (3) nanoparticle delivery, with applications to angiogenesis and cancer therapy; (4) host-pathogen interactions and their use in metabolic disorders, inflammation and sepsis; and (5) computer-aided design of nanomedical systems. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multiscale models. C1 [Clancy, Colleen E.] Univ Calif Davis, Dept Pharmacol, Davis, CA 95616 USA. [An, Gary] Univ Chicago, Dept Surg, 5841 S Maryland Ave, Chicago, IL 60637 USA. [Cannon, William R.] Pacific Northwest Natl Lab, Computat Biol Grp, Richland, WA USA. [Liu, Yaling] Lehigh Univ, Dept Mech Engn & Mech, Bioengn Program, Bethlehem, PA 18015 USA. [May, Elebeoba E.] Univ Houston, Dept Biomed Engn, Houston, TX USA. [Ortoleva, Peter] Indiana Univ, Dept Chem, Bloomington, IN USA. [Popel, Aleksander S.] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD USA. [Sluka, James P.] Indiana Univ, Biocomplex Inst, Bloomington, IN USA. [Su, Jing; Zhou, Xiaobo] Wake Forest Univ, Dept Radiol, Winston Salem, NC 27109 USA. [Vicini, Paolo] MedImmune, Clin Pharmacol & DMPK, Cambridge, England. [Eckmann, David M.] Univ Penn, Dept Anesthesiol & Crit Care, Philadelphia, PA 19104 USA. RP Clancy, CE (reprint author), Univ Calif Davis, Dept Pharmacol, Davis, CA 95616 USA.; Eckmann, DM (reprint author), Univ Penn, Dept Anesthesiol & Crit Care, Philadelphia, PA 19104 USA. EM ceclancy@ucdavis.edu; eckmanndm@uphs.upenn.edu OI An, Gary/0000-0003-4549-9004 FU NIH [R01CA138264, U01HL126273, U01EB016027, R01EB006818, R01-GM-115839, P30-DK-42086, R01GM077138, R15EB015105]; EPA [R835001]; Laboratory Directed Research Program at Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC06-76RLO] FX This work was supported in part by NIH grants R01CA138264 (ASP), U01HL126273 (CEC), U01EB016027 (DME), R01EB006818 (DME), R01-GM-115839 and P30-DK-42086 (GA), R01GM077138 (JPS) and R15EB015105 (YL) as well as EPA grant R835001 (JPS). WRC was funded under the Laboratory Directed Research Program at the Pacific Northwest National Laboratory. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO. NR 137 TC 5 Z9 5 U1 22 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-6964 EI 1573-9686 J9 ANN BIOMED ENG JI Ann. Biomed. Eng. PD SEP PY 2016 VL 44 IS 9 BP 2591 EP 2610 DI 10.1007/s10439-016-1563-0 PG 20 WC Engineering, Biomedical SC Engineering GA DV1IO UT WOS:000382674700002 PM 26885640 ER PT J AU Utturkar, SM Cude, WN Robeson, MS Yang, ZMK Klingeman, DM Land, ML Allman, SL Lu, TYS Brown, SD Schadt, CW Podar, M Doktycz, MJ Pelletier, DA AF Utturkar, Sagar M. Cude, W. Nathan Robeson, Michael S., Jr. Yang, Zamin K. Klingeman, Dawn M. Land, Miriam L. Allman, Steve L. Lu, Tse-Yuan S. Brown, Steven D. Schadt, Christopher W. Podar, Mircea Doktycz, Mitchel J. Pelletier, Dale A. TI Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MICROBIAL DARK-MATTER; DE-NOVO; COXIELLA-BURNETII; ESCHERICHIA-COLI; ACID RESISTANCE; SEQUENCING DATA; GEN. NOV.; RHIZOSPHERE; SOIL; PHYLOGENY AB Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. Here, we describe a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from the plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria. IMPORTANCE Plant roots harbor a diverse collection of microbes that live within host tissues. To gain a comprehensive understanding of microbial adaptations to this endophytic lifestyle from strains that cannot be cultivated, it is necessary to separate bacterial cells from the predominance of plant tissue. This study provides a valuable approach for the separation and isolation of endophytic bacteria from plant root tissue. Isolated live bacteria provide material for microbiome sequencing, single-cell genomics, and analyses of genomes of uncultured bacteria to provide genomics information that will facilitate future cultivation attempts. C1 [Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Michael S., Jr.; Yang, Zamin K.; Klingeman, Dawn M.; Land, Miriam L.; Allman, Steve L.; Lu, Tse-Yuan S.; Brown, Steven D.; Schadt, Christopher W.; Podar, Mircea; Doktycz, Mitchel J.; Pelletier, Dale A.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Utturkar, Sagar M.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN USA. [Cude, W. Nathan] Novozymes North Amer Inc, Durham, NC USA. [Robeson, Michael S., Jr.] Colorado State Univ, Ft Collins, CO 80523 USA. RP Pelletier, DA (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM pelletierda@ornl.gov RI Schadt, Christopher/B-7143-2008; Land, Miriam/A-6200-2011; OI Schadt, Christopher/0000-0001-8759-2448; Land, Miriam/0000-0001-7102-0031; Robeson, Michael/0000-0001-7119-6301 FU U.S. Department of Energy (DOE) FX This work, including the efforts of Dale A. Pelletier, Sagar M. Utturkar, W. Nathan Cude, Michael S. Robeson, Jr., Zamin K. Yang, Dawn M. Klingeman, Miriam L. Land, Steve L. Allman, Tse-Yuan S. Lu, Steven D. Brown, Christopher W. Schadt, Mircea Podar, and Mitchel J. Doktycz, was funded by U.S. Department of Energy (DOE). NR 82 TC 0 Z9 0 U1 22 U2 27 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2016 VL 82 IS 18 BP 5698 EP 5708 DI 10.1128/AEM.01285-16 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DU9KF UT WOS:000382535000022 PM 27422831 ER PT J AU Seo, H Lee, SK An, SJ Park, SH Ku, JH Menlove, HO Rael, CD LaFleur, AM Browne, MC AF Seo, Hee Lee, Seung Kyu An, Su Jung Park, Se-Hwan Ku, Jeong-Hoe Menlove, Howard O. Rael, Carlos D. LaFleur, Adrienne M. Browne, Michael C. TI Development of prototype induced-fission-based Pu accountancy instrument for safeguards applications SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Safeguards; Nuclear material accountancy; Nondestructive assay AB Prototype safeguards instrument for nuclear material accountancy (NMA) of uranium/transuranic (U/TRU) products that could be produced in a future advanced PWR fuel processing facility has been developed and characterized. This is a new, hybrid neutron measurement system based on fast neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) methods. The FNEM method is sensitive to the induced fission rate by fast neutrons, while the PNAR method is sensitive to the induced fission rate by thermal neutrons in the sample to be measured. The induced fission rate is proportional to the total amount of fissile material, especially plutonium (Pu), in the U/TRU product; hence, the Pu amount can be calibrated as a function of the induced fission rate, which can be measured using either the FNEM or PNAR method. In the present study, the prototype system was built using six He-3 tubes, and its performance was evaluated for various detector parameters including high-voltage (HV) plateau, efficiency profiles, dead time, and stability. The system's capability to measure the difference in the average neutron energy for the FNEM signature also was evaluated, using AmLi, PuBe, Cf-252, as well as four Pu-oxide sources each with a different impurity (Al, F, Mg, and B) and producing (alpha,n) neutrons with different average energies. Future work will measure the hybrid signature (i.e., FNEM x PNAR) for a Pu source with an external interrogating neutron source after enlarging the cavity size of the prototype system to accommodate a large-size Pu source (similar to 600 g Pu). (C) 2016 Elsevier Ltd. All rights reserved. C1 [Seo, Hee; Lee, Seung Kyu; An, Su Jung; Park, Se-Hwan; Ku, Jeong-Hoe] Korea Atom Energy Res Inst, Daejeon 34057, South Korea. [Menlove, Howard O.; Rael, Carlos D.; LaFleur, Adrienne M.; Browne, Michael C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Seo, H (reprint author), Korea Atom Energy Res Inst, Daejeon 34057, South Korea. EM hseo@kaeri.re.kr FU National Research Foundation of Korea (NRF) - Korean government (MSIP) [2012M2A8A5025950] FX This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2012M2A8A5025950). NR 13 TC 1 Z9 1 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD SEP PY 2016 VL 115 BP 67 EP 73 DI 10.1016/j.apradiso.2016.06.011 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DV0GB UT WOS:000382594900013 PM 27337652 ER PT J AU Balkin, ER Gagnon, K Strong, KT Smith, BE Dorman, EF Emery, RC Pauzauskie, PJ Fassbender, ME Cutler, CS Ketring, AR Jurisson, SS Wilbur, DS AF Balkin, Ethan R. Gagnon, Katherine Strong, Kevin T. Smith, Bennett E. Dorman, Eric F. Emery, Robert C. Pauzauskie, Peter J. Fassbender, Michael E. Cutler, Cathy S. Ketring, Alan R. Jurisson, Silvia S. Wilbur, D. Scott TI Deuteron irradiation of W and WO3 for production of high specific activity Re-186: Challenges associated with thick target preparation SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Re-186 production; Pressed targets; W and WO3 thick targets; Deuteron induced reaction; High specific activity ID CARRIER-ADDED RE-186; ELECTROPHORETIC DEPOSITION; PRETARGETED RADIOIMMUNOTHERAPY; EXCITATION-FUNCTIONS; PROTON-BOMBARDMENT; REACTOR PRODUCTION; TUNGSTEN; SEPARATION; CYCLOTRON; EXPERIENCE AB This investigation evaluated target fabrication and beam parameters for scale-up production of high specific activity Re-186 using deuteron irradiation of enriched W-186 via the W-186(d,2n)Re-186 reaction. Thick W and WO3 targets were prepared, characterized and evaluated in deuteron irradiations. Full-thickness targets, as determined using SRIM, were prepared by uniaxially pressing powdered natural abundance W and WO3, or 96.86% enriched W-186, into Al target supports. Alternatively, thick targets were prepared by pressing W-186 between two layers of graphite powder or by placing pre-sintered (1105 degrees C, 12 h) natural abundance WO3 pellets into an Al target support. Assessments of structural integrity were made on each target prepared. Prior to irradiation, material composition analyses were conducted using SEM, XRD, and Raman spectroscopy. Within a minimum of 24 h post irradiation, gamma-ray spectroscopy was performed on all targets to assess production yields and radionuclidic byproducts. Problems were encountered with the structural integrity of some pressed W and WO3 pellets before and during irradiation, and target material characterization results could be correlated with the structural integrity of the pressed target pellets. Under the conditions studied, the findings suggest that all WO3 targets prepared and studied were unacceptable. By contrast, W-186 metal was found to be a viable target material for Re-186 production. Thick targets prepared with powdered W-186 pressed between layers of graphite provided a particularly robust target configuration. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Balkin, Ethan R.; Gagnon, Katherine; Dorman, Eric F.; Emery, Robert C.; Wilbur, D. Scott] Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. [Strong, Kevin T.; Pauzauskie, Peter J.] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Smith, Bennett E.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Fassbender, Michael E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Cutler, Cathy S.] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. [Cutler, Cathy S.; Ketring, Alan R.] Univ Missouri, Res Reactor Ctr, Columbia, MO 65211 USA. [Jurisson, Silvia S.] Univ Missouri, Dept Chem, Columbia, MO 65211 USA. [Gagnon, Katherine] Univ Alberta, Cross Canc Inst, Dept Oncol, Edmonton, AB T6H 5Y1, Canada. RP Wilbur, DS (reprint author), Univ Washington, Dept Radiat Oncol, Seattle, WA 98195 USA. EM dswilbur@uw.edu FU U.S. Department of Energy [DE-SC0007348]; NSERC of Canada Postdoctoral Fellowship FX This work was supported in part by funds from the U.S. Department of Energy (DE-SC0007348) and NSERC of Canada Postdoctoral Fellowship (KG). Portions of the materials characterization and product composition analyses were conducted at the University of Washington in the Northwest Nanotechnology Infrastructure User Facility, which is a member of the NSF National Nanotechnology Coordinated Infrastructure (NNCI). NR 46 TC 0 Z9 0 U1 6 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD SEP PY 2016 VL 115 BP 197 EP 207 DI 10.1016/j.apradiso.2016.06.021 PG 11 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DV0GB UT WOS:000382594900031 PM 27423020 ER PT J AU Saer, R Orf, GS Lu, X Zhang, H Cuneo, MJ Myles, DAA Blankenship, RE AF Saer, Rafael Orf, Gregory S. Lu, Xun Zhang, Hao Cuneo, Matthew J. Myles, Dean A. A. Blankenship, Robert E. TI Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE Fenna-Matthews-Olson; Bacteriochlorophyll; Exciton; Spectroscopy; Energy transfer; Photosynthesis ID BACTERIUM CHLOROBIUM-TEPIDUM; CHLOROBACULUM-TEPIDUM; FMO-PROTEIN; PROSTHECOCHLORIS-AESTUARII; ANTENNA PROTEIN; ENERGY-TRANSFER; PURIFICATION; SPECTROSCOPY; SPECTRA; ALPHA AB The Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria transfers excitation energy from the chlorosome antenna complex to the reaction center. In understanding energy transfer in the FMO protein, the individual contributions of the bacteriochlorophyll pigments to the FMO complex's absorption spectrum could provide detailed information with which molecular and energetic models can be constructed. The absorption properties of the pigments, however, are such that their spectra overlap significantly. To overcome this, we used site-directed mutagenesis to construct a series of mutant FMO complexes in the model green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum). Two cysteines at positions 49 and 353 in the C. tepidum FMO complex, which reside near hydrogen bonds between BChls 2 and 3, and their amino acid binding partner serine 73 and tyrosine 15, respectively, were changed to alanine residues. The resulting C49A, C353A, and C49A C353A double mutants were analyzed with a combination of optical absorption and circular dichroism (CD) spectroscopies. Our results revealed changes in the absorption properties of several underlying spectral components in the FMO complex, as well as the redox behavior of the complex in response to the reductant sodium dithionite. A high-resolution X-ray structure of the C49A C353A double mutant reveals that these spectral changes appear to be independent of any major structural rearrangements in the FMO mutants. Our findings provide important tests for theoretical calculations of the C. tepidum FMO absorption spectrum, and additionally highlight a possible role for cysteine residues in the redox activity of the pigment-protein complex. (C) 2016 Elsevier B.V. All rights reserved. C1 [Saer, Rafael; Blankenship, Robert E.] Washington Univ, Dept Biol, 1 Brookings Dr, St Louis, MO 63130 USA. [Orf, Gregory S.; Zhang, Hao; Blankenship, Robert E.] Washington Univ, Dept Chem, 1 Brookings Dr, St Louis, MO 63130 USA. [Saer, Rafael; Zhang, Hao; Blankenship, Robert E.] Washington Univ, Photosynthet Antenna Res Ctr, 1 Brookings Dr, St Louis, MO 63130 USA. [Lu, Xun; Cuneo, Matthew J.; Myles, Dean A. A.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Blankenship, RE (reprint author), Washington Univ, One Brookings Dr Campus Box 1137, St Louis, MO 63130 USA. EM blankenship@wustl.edu FU Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC 0001035]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX This work was supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035. X-ray data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID (or 22-BM) beamline at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at www.ser-cat.org/members.html. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38. We are also grateful for the assistance with data collation from Macro molecular X-ray Crystallography Laboratory, Department of Molecular and Structural Biochemistry, North Carolina State University. NR 32 TC 2 Z9 2 U1 8 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD SEP PY 2016 VL 1857 IS 9 BP 1455 EP 1463 DI 10.1016/j.bbabio.2016.04.007 PG 9 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DV0EI UT WOS:000382590400011 PM 27114180 ER PT J AU Simpson, JP Thrower, N Ohlrogge, JB AF Simpson, Jeffrey P. Thrower, Nicholas Ohlrogge, John B. TI How did nature engineer the highest surface lipid accumulation among plants? Exceptional expression of acyl-lipid-associated genes for the assembly of extracellular triacylglycerol by Bayberry (Myrica pensylvanica) fruits SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS LA English DT Article DE Pathway evolution; Lipid secretion; Cuticle; Transacylase ID FATTY-ACID BIOSYNTHESIS; TRANSFER PROTEIN; CUTIN BIOSYNTHESIS; ACP THIOESTERASES; ARABIDOPSIS; SUBERIN; IDENTIFICATION; POLYESTER; TISSUE; WAX AB Bayberry (Myrica pensylvanica) fruits are covered with a remarkably thick layer of crystalline wax consisting of triacylglycerol (TAG) and diacylglycerol (DAG) esterified exclusively with saturated fatty acids. As the only plant known to accumulate soluble glycerolipids as a major component of surface waxes, Bayberry represents a novel system to investigate neutral lipid biosynthesis and lipid secretion by vegetative plant cells. The assembly of Bayberry wax is distinct from conventional TAG and other surface waxes, and instead proceeds through a pathway related to cutin synthesis (Simpson and Ohlrogge, 2016). In this study, microscopic examination revealed that the fruit tissue that produces and secretes wax (Bayberry knobs) is fully developed before wax accumulates and that wax is secreted to the surface without cell disruption. Comparison of transcript expression to genetically related tissues (Bayberry leaves, M. rubra fruits), cutin-rich tomato and cherry fruit epidermis, and to oil-rich mesocarp and seeds, revealed exceptionally high expression of 13 transcripts for acyl-lipid metabolism together with down-regulation of fatty acid oxidases and desaturases. The predicted protein sequences of the most highly expressed lipid-related enzyme-encoding transcripts in Bayberry knobs are 100% identical to the sequences from Bayberry leaves, which do not produce surface DAG or TAG. Together, these results indicate that TAG biosynthesis and secretion in Bayberry is achieved by both up and down-regulation of a small subset of genes related to the biosynthesis of cutin and saturated fatty acids, and also implies that modifications in gene expression, rather than evolution of new gene functions, was the major mechanism by which Bayberry evolved its specialized lipid metabolism. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license C1 [Simpson, Jeffrey P.; Ohlrogge, John B.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Simpson, Jeffrey P.; Thrower, Nicholas; Ohlrogge, John B.] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Ohlrogge, JB (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. EM simps219@msu.edu; thrower@msu.edu; ohlrogge@msu.edu OI Simpson, Jeffrey/0000-0003-4019-0681 FU Department of Energy Great Lakes Bioenergy Research Center [BER DE-FC02-07ER64494]; National Science And Engineering Research Council of Canada (NSERC) [PGS-D3] FX We thank the MSU grounds department for maintenance of Bayberry shrubs and the MSU Center for advanced microscopy's Abby Vanderberg and Alicia Pastor for sample preparation and assistance with SEM and TEM, respectively, and Heather McFarlane (University of British Columbia) for assistance with TEM sample preparation. RNA sequencing was performed by the DOE Joint Genome Institute (JGI), with special assistance from Kerrie Barry, Erika Lindquist, and Anna Lipzen. We thank Curtis Wilkerson (MSU) for suggestions and advice on transcript analysis and Frank Telewski for support with Bayberry plant protection. This work was supported in part by Department of Energy Great Lakes Bioenergy Research Center BER DE-FC02-07ER64494. J.P.S. received a National Science And Engineering Research Council of Canada (NSERC) post-graduate fellowship (PGS-D3). NR 71 TC 1 Z9 1 U1 8 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1388-1981 EI 0006-3002 J9 BBA-MOL CELL BIOL L JI Biochim. Biophys. Acta Mol. Cell Biol. Lipids PD SEP PY 2016 VL 1861 IS 9 SI SI BP 1243 EP 1252 DI 10.1016/j.bbalip.2016.01.022 PN B PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA DT5PA UT WOS:000381533900005 PM 26869450 ER PT J AU Zienkiewicz, K Du, ZY Ma, W Vollheyde, K Benning, C AF Zienkiewicz, Krzysztof Du, Zhi-Yan Ma, Wei Vollheyde, Katharina Benning, Christoph TI Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS LA English DT Review DE Triacylglycerol (TAG); Lipid; Microalgae; Diacylglycerol:acyltransferase (DGAT); Phospholipid:diacylglycerol acyltransferase (PDAT); Lipid droplet (LD) ID DIATOM PHAEODACTYLUM-TRICORNUTUM; ALGA CHLAMYDOMONAS-REINHARDTII; FATTY-ACID-COMPOSITION; TRIACYLGLYCEROL ACCUMULATION; DIACYLGLYCEROL-ACYLTRANSFERASE; NITROGEN DEPRIVATION; BIOFUEL PRODUCTION; OIL ACCUMULATION; GENOME REVEALS; TRANSCRIPTIONAL REGULATION AB Photosynthetic microalgae have promise as biofuel feedstock. Under certain conditions, they produce substantial amounts of neutral lipids, mainly in the form of triacylglycerols (TAGs), which can be converted to fuels. Much of our current knowledge on the genetic and molecular basis of algal neutral lipid metabolism derives mainly from studies of plants, i.e. seed tissues, and to a lesser extent from direct studies of algal lipid metabolism. Thus, the knowledge of TAG synthesis and the cellular trafficking of TAG precursors in algal cells is to a large extent based on genome predictions, and most aspects of TAG metabolism have yet to be experimentally verified. The biofuel prospects of microalgae have raised the interest in mechanistic studies of algal TAG biosynthesis in recent years and resulted in an increasing number of publications on lipid metabolism in microalgae. In this review we summarize the current findings on genetic, molecular and physiological studies of TAG accumulation in microalgae. Special emphasis is on the functional analysis of key genes involved in TAG synthesis, molecular mechanisms of regulation of TAG biosynthesis, as well as on possible mechanisms of lipid droplet formation in microalgal cells. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. (C) 2016 Elsevier B.V. All rights reserved. C1 [Zienkiewicz, Krzysztof; Du, Zhi-Yan; Ma, Wei; Benning, Christoph] Michigan State Univ, Michigan State Univ US Dept Energy Plant Res Lab, E Lansing, MI 48824 USA. [Zienkiewicz, Krzysztof; Du, Zhi-Yan; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Zienkiewicz, Krzysztof; Vollheyde, Katharina] Univ Gottingen, Dept Plant Biochem, Albrecht von Haller Inst Plant Sci, D-37073 Gottingen, Germany. [Ma, Wei; Benning, Christoph] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Benning, C (reprint author), Michigan State Univ, Plant Biol Lab 110, 612 Wilson Rd, E Lansing, MI 48824 USA. EM benning@cns.msu.edu OI ZIENKIEWICZ, KRZYSZTOF/0000-0002-8525-9569 FU Center for Advanced Biofuels Systems (CABS) [DE-SC0001295]; Energy Frontier Research Center - U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0001295]; U.S Department of Energy, Office of Basic Energy Sciences [DE-FG02-98ER20305]; US National Science Foundation [MCB-0741395, MCB-1515169]; US Department of Energy-Great Lakes Bioenergy Research Center [DE-FC02-07ER64494]; US Air Force Office of Scientific Research [FA9550-11-1-0264]; Michigan State University AgBioResearch; Marie Curie International Outgoing Fellowship within the EU 7th Framework Program AlgaeOilSynth project [627266] FX Work on lipid and TAG metabolism in the Benning lab has been supported by grants from the Center for Advanced Biofuels Systems (CABS) (DE-SC0001295), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001295, the U.S Department of Energy, Office of Basic Energy Sciences Grant DE-FG02-98ER20305, the US National Science Foundation, MCB-0741395 and MCB-1515169, the US Department of Energy-Great Lakes Bioenergy Research Center Cooperative Agreement DE-FC02-07ER64494, the US Air Force Office of Scientific Research, FA9550-11-1-0264, and Michigan State University AgBioResearch. K.Z. was supported by a Marie Curie International Outgoing Fellowship within the EU 7th Framework Program AlgaeOilSynth project no. 627266, FP7-PEOPLE-2013-IOF. NR 142 TC 3 Z9 3 U1 46 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1388-1981 EI 0006-3002 J9 BBA-MOL CELL BIOL L JI Biochim. Biophys. Acta Mol. Cell Biol. Lipids PD SEP PY 2016 VL 1861 IS 9 SI SI BP 1269 EP 1281 DI 10.1016/j.bbalip.2016.02.008 PN B PG 13 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA DT5PA UT WOS:000381533900007 PM 26883557 ER PT J AU Magana-Zook, S Gaylord, JM Knapp, DR Dodge, DA Ruppert, SD AF Magana-Zook, S. Gaylord, J. M. Knapp, D. R. Dodge, D. A. Ruppert, S. D. TI Large-scale seismic waveform quality metric calculation using Hadoop SO COMPUTERS & GEOSCIENCES LA English DT Article AB In this work we investigated the suitability of Hadoop MapReduce and Apache Spark for large-scale computation of seismic waveform quality metrics by comparing their performance with that of a traditional distributed implementation. The Incorporated Research Institutions for Seismology (IRIS) Data Management Center (DMC) provided 43 terabytes of broadband waveform data of which 5.1 TB of data were processed with the traditional architecture, and the full 43 TB were processed using MapReduce and Spark. Maximum performance of similar to 0.56 terabytes per hour was achieved using all 5 nodes of the traditional implementation. We noted that I/O dominated processing, and that I/O performance was deteriorating with the addition of the 5th node. Data collected from this experiment provided the baseline against which the Hadoop results were compared. Next, we processed the full 43 TB dataset using both MapReduce and Apache Spark on our 18-node Hadoop cluster. These experiments were conducted multiple times with various subsets of the data so that we could build models to predict performance as a function of dataset size. We found that both MapReduce and Spark significantly outperformed the traditional reference implementation. At a dataset size of 5.1 terabytes, both Spark and MapReduce were about 15 times faster than the reference implementation. Furthermore, our performance models predict that for a dataset of 350 terabytes, Spark running on a 100-node cluster would be about 265 times faster than the reference implementation. We do not expect that the reference implementation deployed on a 100-node cluster would perform significantly better than on the 5-node cluster because the I/O performance cannot be made to scale. Finally, we note that although Big Data technologies clearly provide a way to process seismic waveform datasets in a high-performance and scalable manner, the technology is still rapidly changing, requires a high degree of investment in personnel, and will likely require significant changes in other parts of our infrastructure. Nevertheless, we anticipate that as the technology matures and third-party tool vendors make it easier to manage and operate clusters, Hadoop (or a successor) will play a large role in our seismic data processing. (C) 2016 Published by Elsevier Ltd. C1 [Magana-Zook, S.; Gaylord, J. M.; Knapp, D. R.; Dodge, D. A.; Ruppert, S. D.] Lawrence Livermore Natl Lab, 7000 East Ave,MS 046, Livermore, CA 94550 USA. RP Magana-Zook, S (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,MS 046, Livermore, CA 94550 USA. EM maganazook1@llnl.gov; gaylord2@llnl.gov; knapp22@llnl.gov; dodge1@llnl.gov; ruppert1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. This is LLNL Contribution LLNL-JRNL-683307. NR 13 TC 0 Z9 0 U1 24 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD SEP PY 2016 VL 94 BP 18 EP 30 DI 10.1016/j.cageo.2016.05.012 PG 13 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA DT2QO UT WOS:000381325700003 ER PT J AU Madduri, R Foster, I AF Madduri, Ravi Foster, Ian TI Science as a Service SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material C1 [Madduri, Ravi] Argonne Natl Lab, Computat Inst, Argonne, IL 60439 USA. [Madduri, Ravi; Foster, Ian] Univ Chicago, Chicago, IL 60637 USA. [Foster, Ian] Argonne Natl Lab, Argonne, IL 60439 USA. RP Madduri, R (reprint author), Argonne Natl Lab, Computat Inst, Argonne, IL 60439 USA.; Madduri, R (reprint author), Univ Chicago, Chicago, IL 60637 USA. EM rm@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2016 VL 18 IS 5 BP 8 EP 9 PG 2 WC Computer Science, Interdisciplinary Applications SC Computer Science GA DU7UI UT WOS:000382419700002 ER PT J AU Mehta, DP Dean, AM Kouri, TM AF Mehta, Dinesh P. Dean, Anthony M. Kouri, Tina M. TI Chemical Kinetics: A CS Perspective SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Chemical kinetics has played a critical role in understanding phenomena such as global climate change and photochemical smog, and researchers use it to analyze chemical reactors and alternative fuels. When computing is applied to the development of detailed chemical kinetic models, it allows scientists to predict the behavior of these complex chemical systems. C1 [Mehta, Dinesh P.] Colorado Sch Mines, Elect Engn & Comp Sci, Golden, CO 80401 USA. [Dean, Anthony M.] Colorado Sch Mines, Chem Engn, Golden, CO 80401 USA. [Dean, Anthony M.] Colorado Sch Mines, Res, Golden, CO 80401 USA. [Kouri, Tina M.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Mehta, DP (reprint author), Colorado Sch Mines, Elect Engn & Comp Sci, Golden, CO 80401 USA. EM dmehta@mines.edu; amdean@mines.edu; tkouri@sandia.gov NR 9 TC 0 Z9 0 U1 4 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2016 VL 18 IS 5 BP 48 EP 55 PG 8 WC Computer Science, Interdisciplinary Applications SC Computer Science GA DU7UI UT WOS:000382419700006 ER PT J AU Wolf, L AF Wolf, Laura TI Multiyear Simulation Study Provides Breakthrough in Membrane Protein Research SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article C1 [Wolf, Laura] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wolf, L (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM lwolf@anl.gov FU Argonne Leadership Computing Facility, a US DOE Office of Science User Facility [DE-AC02-06CH11357] FX An award of computer time was provided by the US Department of Energy's Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a US DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2016 VL 18 IS 5 BP 94 EP 97 PG 4 WC Computer Science, Interdisciplinary Applications SC Computer Science GA DU7UI UT WOS:000382419700010 ER PT J AU Zimmer, RK Ferrier, GA Kim, SJ Kaddis, CS Zimmer, CA Loo, JA AF Zimmer, Richard K. Ferrier, Graham A. Kim, Steven J. Kaddis, Catherine S. Zimmer, Cheryl Ann Loo, Joseph A. TI A multifunctional chemical cue drives opposing demographic processes and structures ecological communities SO ECOLOGY LA English DT Article DE chemical cue; chemical ecology; chemoreception; community ecology; dispersal; foundation species; glycoprotein; habitat colonization; population dynamics; predator; prey; sensory exploitation; settlement; wave-swept shore; alpha(2)-macroglobulin ID PROTEIN COMPLEX SIPC; URCHIN HOLOPNEUSTES-PURPURASCENS; BARNACLE BALANUS-AMPHITRITE; ROCKY INTERTIDAL COMMUNITY; FREE FATTY-ACIDS; CLIMATE-CHANGE; FOOD-WEB; LARVAL SETTLEMENT; HABITAT SELECTION; TROPHIC CASCADES AB Foundation species provide critical resources to ecological community members and are key determinants of biodiversity. The barnacle Balanus glandula is one such species and dominates space among the higher reaches of wave-swept shores (Northeastern Pacific Ocean). This animal produces a cuticular glycoprotein (named "MULTIFUNCin") of 199.6 kDa, and following secretion, a 390 kDa homodimer in native form. From field and lab experiments, we found that MULTIFUNCin significantly induces habitat selection by conspecific larvae, while simultaneously acting as a potent feeding stimulant to a major barnacle predator (whelk, Acanthinucella spirata). Promoting immigration via settlement on the one hand, and death via predation on the other, MULTIFUNCin drives opposing demographic processes toward structuring predator and prey populations. As shown here, a single compound is not restricted to a lone species interaction or sole ecological function. Complex biotic interactions therefore can be shaped by simple chemosensory systems and depend on the multifunctional properties of select bioactive proteins. C1 [Zimmer, Richard K.; Ferrier, Graham A.; Zimmer, Cheryl Ann] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Zimmer, Richard K.; Zimmer, Cheryl Ann] Univ Queensland, Moreton Bay Res Stn, Ctr Marine Sci, Brisbane, Qld 4072, Australia. [Zimmer, Richard K.; Zimmer, Cheryl Ann] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. [Kim, Steven J.; Kaddis, Catherine S.; Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Loo, Joseph A.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Zimmer, RK (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA.; Zimmer, RK (reprint author), Univ Queensland, Moreton Bay Res Stn, Ctr Marine Sci, Brisbane, Qld 4072, Australia.; Zimmer, RK (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. EM z@biology.ucla.edu FU National Science Foundation [OCE 08-52361, IOS 11-21692]; National Institutes of Health [R01GM104610, R01GM103479]; UCLA Council on Research FX We thank many UCLA undergraduates (Nancy Tu, Hao Dieu, Tinh Ton, Michal Ross, Margaret McGonigle, Erin Eastwood, Aleksey Kurylov, Michael Awshee, Patrick Green, Ian Jackson, Edward Lopez, Jennifer Wan, Noelle Bidegainberry, Emily Adamson, Christopher Leber and Veganeh Parhizhar) for their valuable contributions to the project. Dr. Rachel Ogorzalek Loo (UCLA) graciously assisted with the de novo peptide sequencing; Dr. Deborah Leon (UCLA) ably contributed to protein mass spectrometry analysis; and, Dr. Seth Miller (UC Davis) kindly supplied the image of a barnacle (Balanus glandula cypris stage) larva for Fig. 4. Dr. Robert Raguso (Cornell University) and Dr. Gabrielle Nevitt (UC Davis) provided many thoughtful comments that greatly improved earlier drafts of the manuscript. This research was supported by awards from the National Science Foundation (OCE 08-52361 and IOS 11-21692 to RKZ), the National Institutes of Health (R01GM104610 and R01GM103479 to JAL) and the UCLA Council on Research. NR 68 TC 6 Z9 6 U1 17 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0012-9658 EI 1939-9170 J9 ECOLOGY JI Ecology PD SEP PY 2016 VL 97 IS 9 BP 2232 EP 2239 DI 10.1002/ecy.1455 PG 8 WC Ecology SC Environmental Sciences & Ecology GA DU9HK UT WOS:000382527100008 PM 27859065 ER PT J AU Yang, Y Lee, S Brown, DE Zhao, HR Li, XS Jiang, DQ Hao, SJ Zhao, YX Cong, DY Zhang, X Ren, Y AF Yang, Ying Lee, Sungsik Brown, Dennis E. Zhao, Hairui Li, Xinsong Jiang, Daqiang Hao, Shijie Zhao, Yongxiang Cong, Daoyong Zhang, Xin Ren, Yang TI Fabrication of ultrafine manganese oxide-decorated carbon nanofibers for high-performance electrochemical capacitors SO ELECTROCHIMICA ACTA LA English DT Article DE Manganese oxide; Carbon nanofiber; Assembly; In situ synthesis; Supercapacitor ID SUPERCAPACITOR ELECTRODES; HIERARCHICAL ARCHITECTURES; OXYGEN REDUCTION; FILMS; PSEUDOCAPACITANCE; ELECTROCATALYST; FRAMEWORK; FIBERS; ANODES; PAPER AB Ultrafine manganese oxide-decorated carbon nanofibers (MnOn-CNF, 1.3 < n < 2.0) as a new type of electrode materials are facilely fabricated by direct conversion of Mn, Zn-trimesic acid (H3BTC) metal organic framework fibers (Mn-ZnBTC). The construction and evolution of Mn-ZnBTC fibers are investigated by SEM and in situ high-energy XRD. The manganese oxides are highly dispersed onto the porous carbon nanofibers formed simultaneously, verified by TEM, X-ray absorption fine structure (XAFS), Raman, ICP-AES and N-2 adsorption techniques. As expected, the resulting MnOn-CNF composites are highly stable, and can be cycled up to 5000 times with a high capacitance retention ratio of 98% in electrochemical capacitor measurements. They showa high capacitance of up to 179 F g(-1) per mass of the composite electrode, and a remarkable capacitance of up to 18290 F g(-1) per active mass of the manganese (IV) oxide, significantly exceeding the theoretical specific capacitance of manganese(IV) oxide (1370 F g(-1)). The maximum energy density is up to 19.7 Wh kg(-1) at the current density of 0.25 Ag-1, even orders higher than those of reported electric double-layer capacitors and pseudocapacitors. The excellent capacitive performance can be ascribed to the joint effect of easy accessibility, high porosity, tight contact and superior conductivity integrated in final MnOn-CNF composites. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Yang, Ying; Zhao, Hairui; Li, Xinsong; Jiang, Daqiang; Hao, Shijie; Zhao, Yongxiang; Zhang, Xin] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China. [Lee, Sungsik; Ren, Yang] Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Brown, Dennis E.] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Cong, Daoyong] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, 30 Xueyuan Rd, Beijing 100083, Peoples R China. RP Zhang, X (reprint author), China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China.; Yang, Y (reprint author), 18 Fuxue Rd, Beijing 102249, Peoples R China. EM catalyticscience@163.com; zhangxin@cup.edu.cn RI Jiang, Daqiang /G-5511-2014 FU National Natural Science Foundation of China [21303229, 21173269, 51471187]; Beijing Natural Science Foundation [2152025, 2152026]; Science Foundation of China University of Petroleum, Beijing [2462013YJRC018, 2462013YJRC005]; State Key Lab of Advanced Metals and Materials [2014-ZD01]; U.S. DOE [DE-AC02-06CH11357] FX The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (21303229, 21173269, 51471187), Beijing Natural Science Foundation (2152025, 2152026), the Science Foundation of China University of Petroleum, Beijing (2462013YJRC018, 2462013YJRC005), and the State Key Lab of Advanced Metals and Materials 2014-ZD01. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, supported by the U.S. DOE under Contract No. DE-AC02-06CH11357, is also acknowledged. NR 34 TC 1 Z9 1 U1 34 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD SEP 1 PY 2016 VL 211 BP 524 EP 532 DI 10.1016/j.electacta.2016.06.012 PG 9 WC Electrochemistry SC Electrochemistry GA DS6PJ UT WOS:000380904100059 ER PT J AU Lewerenz, HJ Lichterman, MF Richter, MH Crumlin, EJ Hu, S Axnanda, S Favaro, M Drisdell, W Hussain, Z Brunschwig, BS Liu, Z Nilsson, A Bell, AT Lewis, NS Friebel, D AF Lewerenz, Hans-Joachim Lichterman, Michael F. Richter, Matthias H. Crumlin, Ethan J. Hu, Shu Axnanda, Stephanus Favaro, Marco Drisdell, Walter Hussain, Zahid Brunschwig, Bruce S. Liu, Zhi Nilsson, Anders Bell, Alexis T. Lewis, Nathan S. Friebel, Daniel TI Operando Analyses of Solar Fuels Light Absorbers and Catalysts SO ELECTROCHIMICA ACTA LA English DT Article DE Catalysis; Semiconductors; Protection; operando spectroscopy; artificial photosynthesis ID OXYGEN EVOLUTION REACTION; ABSORPTION FINE-STRUCTURE; NICKEL-OXIDE FILMS; WATER OXIDATION; CONVERSION EFFICIENCY; PHOTOELECTRON-SPECTROSCOPY; ALKALINE MEDIA; COBALT OXIDES; SURFACES; PHOTOANODES AB Operando synchrotron radiation photoelectron spectroscopy in the tender X-ray energy range has been used to obtain information on the energy-band relations of semiconductor and metal-covered semiconductor surfaces while in direct contact with aqueous electrolytes under potentiostatic control. The system that was investigated consists of highly doped Si substrates that were conformally coated with similar to 70 nm titania films produced by atomic-layer deposition. TiO2/electrolyte and Si/TiO2/Ni/electrolyte interfaces were then analyzed by synchrotron radiation photoelectron spectroscopy. The PES data allows for determination of the flat-band position and identification of potential regions in which Fermi level pinning, depletion, or accumulation occurred. Operando X-ray absorption spectroscopy (XAS) techniques were additionally used to investigate the properties of heterogeneous electrocatalysts for the oxygen-evolution reaction. Operando XAS including the pre-edge, edge and EXAFS regions allowed the development of a detailed picture of the catalysts under operating conditions, and elucidated the changes in the physical and electronic structure of the catalyst that accompanied increases in the applied potential. Specifically, XAS data, combined with DFT studies, indicated that the activity of the electrocatalyst correlated with the formation of Fe dopant sites in gamma-NiOOH. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lewerenz, Hans-Joachim; Lichterman, Michael F.; Richter, Matthias H.; Hu, Shu; Lewis, Nathan S.] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA. [Lewerenz, Hans-Joachim] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Lichterman, Michael F.; Richter, Matthias H.; Hu, Shu; Lewis, Nathan S.] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA. [Crumlin, Ethan J.; Axnanda, Stephanus; Favaro, Marco; Hussain, Zahid; Liu, Zhi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Favaro, Marco; Drisdell, Walter] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Favaro, Marco; Drisdell, Walter; Bell, Alexis T.] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Brunschwig, Bruce S.; Lewis, Nathan S.] CALTECH, Beckman Inst, Pasadena, CA 91125 USA. [Liu, Zhi] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Liu, Zhi] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China. [Nilsson, Anders; Friebel, Daniel] SLAC Natl Accelerator Lab, SUNCAT Ctr Interfacial Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Bell, Alexis T.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. RP Lewerenz, HJ; Lichterman, MF; Richter, MH; Lewis, NS (reprint author), CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA.; Lewerenz, HJ (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA.; Lichterman, MF; Richter, MH; Lewis, NS (reprint author), CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA.; Lewis, NS (reprint author), CALTECH, Beckman Inst, Pasadena, CA 91125 USA. EM lewerenz@caltech.edu; mLichter@caltech.edu; nslewis@caltech.edu RI Nilsson, Anders/E-1943-2011; Liu, Zhi/B-3642-2009; OI Nilsson, Anders/0000-0003-1968-8696; Liu, Zhi/0000-0002-8973-6561; Favaro, Marco/0000-0002-3502-8332; Bell, Alexis/0000-0002-5738-4645 FU Office of Science of the U.S. Department of Energy (DOE) [DE-SC0004993]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE [DE-AC02-05CH11231] FX This work was supported by the Office of Science of the U.S. Department of Energy (DOE) through award no. DE-SC0004993 to the Joint Center for Artificial Photosynthesis. The Advanced Light Source acknowledges support by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. XAS data collection was carried out at Stanford Synchrotron Radiation Lightsource, a National User Facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. Computational work was carried out through NERSC computational resources under DOE Contract No. DE-AC02-05CH11231. NR 54 TC 1 Z9 1 U1 22 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD SEP 1 PY 2016 VL 211 BP 711 EP 719 DI 10.1016/j.electacta.2016.06.006 PG 9 WC Electrochemistry SC Electrochemistry GA DS6PJ UT WOS:000380904100081 ER PT J AU Lamy, JV Jaramillo, P Azevedo, IL Wiser, R AF Lamy, Julian V. Jaramillo, Paulina Azevedo, Ines L. Wiser, Ryan TI Should we build wind farms close to load or invest in transmission to access better wind resources in remote areas? A case study in the MISO region SO ENERGY POLICY LA English DT Article DE Wind power; Transmission; Variability; Decision making under uncertainty ID POWER; ENERGY; ELECTRICITY; PRICE AB Wind speeds in remote areas are sometimes very high, but transmission costs to access these locations can be prohibitive. We present a conceptual model to estimate the economics of accessing high quality wind resources in remote areas to comply with renewable energy policy targets, and apply the model to the Midwestern grid (MISO) as a case study. We assess the goal of providing 40 TWh of new wind generation while minimizing costs, and include temporal aspects of wind power (variability costs and correlation to market prices) as well as total wind power produced from different farms. We find that building wind farms in North/South Dakota (windiest states) compared to Illinois (less windy, but close to load) would only be economical if the incremental transmission costs to access them were below $360/kW of wind capacity (break-even value). Historically, the incremental transmission costs for wind development in North/South Dakota compared to in Illinois are about twice this value. However, the break-even incremental transmission cost for wind farms in Minnesota/Iowa (also windy states) is $250/kW, which is consistent with historical costs. We conclude that wind development in Minnesota/Iowa is likely more economical to meet MISO renewable targets compared to North/South Dakota or Illinois. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Lamy, Julian V.; Jaramillo, Paulina; Azevedo, Ines L.] Carnegie Mellon Univ, Dept Engn & Publ Policy, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Wiser, Ryan] Lawrence Berkeley Natl Lab, Elect Markets & Policy Grp, Berkeley, CA USA. RP Lamy, JV (reprint author), Carnegie Mellon Univ, Dept Engn & Publ Policy, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM jlamy@andrew.cmu.edu; paulina@cmu.edu; iazevedo@cmu.edu; RHWiser@lbl.gov FU Center for Climate and Energy Decision Making [SES-0949710, SES-1463492]; Doris Duke Charitable Foundation through the RenewElec project at Carnegie Mellon University; Richard King Mellon Foundation through the RenewElec project at Carnegie Mellon University; Electric Power Research Institute through the RenewElec project at Carnegie Mellon University; Heinz Endowment through the RenewElec project at Carnegie Mellon University; U.S. Environmental Protection Agency (EPA) through STAR Fellowship [FP-91763701-0] FX This work was funded in part by the Center for Climate and Energy Decision Making (SES-0949710 and SES-1463492), through a cooperative agreement between the National Science Foundation and Carnegie Mellon University. The Doris Duke Charitable Foundation, the Richard King Mellon Foundation, the Electric Power Research Institute, and the Heinz Endowment also provided support through the RenewElec project at Carnegie Mellon University. Finally, the U.S. Environmental Protection Agency (EPA) provided support through the STAR Fellowship Assistance Agreement no. FP-91763701-0. None of the funding agencies formally reviewed this paper. Findings and recommendations are the sole responsibility of the authors and do not necessarily represent the views of the sponsors. Further, none of the funding agencies endorse any products or commercial services mentioned in this work. NR 47 TC 0 Z9 0 U1 8 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2016 VL 96 BP 341 EP 350 DI 10.1016/j.enpol.2016.06.011 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DT5NU UT WOS:000381530700028 ER PT J AU Barbose, G Wiser, R Heeter, J Mai, T Bird, L Bolinger, M Carpenter, A Heath, G Keyser, D Macknick, J Mills, A Millstein, D AF Barbose, Galen Wiser, Ryan Heeter, Jenny Mai, Trieu Bird, Lori Bolinger, Mark Carpenter, Alberta Heath, Garvin Keyser, David Macknick, Jordan Mills, Andrew Millstein, Dev TI A retrospective analysis of benefits and impacts of US renewable portfolio standards SO ENERGY POLICY LA English DT Article DE Renewable energy; RPS; Renewable portfolio standard; Greenhouse gas, air pollution, water use ID CLEAN-ENERGY POLICIES; LIFE-CYCLE ASSESSMENT; UNITED-STATES; NATURAL-GAS; MULTIOBJECTIVE OPTIMIZATION; GENERATION TECHNOLOGIES; ENVIRONMENTAL BENEFITS; ELECTRICITY-GENERATION; MARKET PRICES; SOCIAL COST AB As states consider revising or developing renewable portfolio standards (RPS), they are evaluating policy costs, benefits, and other impacts. We present the first U.S. national-level assessment of state RPS program benefits and impacts, focusing on new renewable electricity resources used to meet RPS compliance obligations in 2013. In our central-case scenario, reductions in life-cycle greenhouse gas emissions from displaced fossil fuel-generated electricity resulted in $2.2 billion of global benefits. Health and environmental benefits from reductions in criteria air pollutants (sulfur dioxide, nitrogen oxides, and particulate matter 2.5) were even greater, estimated at $5.2 billion in the central case. Further benefits accrued in the form of reductions in water withdrawals and consumption for power generation. Finally, although best considered resource transfers rather than net societal benefits, new renewable electricity generation used for RPS compliance in 2013 also supported nearly 200,000 U.S.-based gross jobs and reduced wholesale electricity prices and natural gas prices, saving consumers a combined $1.3-$4.9 billion. In total, the estimated benefits and impacts well-exceed previous estimates of RPS compliance costs. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Barbose, Galen; Wiser, Ryan; Bolinger, Mark; Mills, Andrew; Millstein, Dev] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90-4000, Berkeley, CA 94720 USA. [Heeter, Jenny; Mai, Trieu; Bird, Lori; Carpenter, Alberta; Heath, Garvin; Keyser, David; Macknick, Jordan] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Barbose, G (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 90-4000, Berkeley, CA 94720 USA. EM glbarbose@lbl.gov; rhwiser@lbl.gov; jenny.heeter@nrel.gov; trieu.mai@nrel.gov; lori.bird@nrel.gov; mabolinger@lbl.gov; alberta.carpenter@nrel.gov; garvin.heath@nrel.gov; david.keyser@nrel.gov; jordan.macknick@nrel.gov; admills@lbl.gov; dmillstein@lbl.gov FU DOE's Office of Energy Efficiency and Renewable Energy's (EERE) Strategic Programs Office [DE-AC36-08GO28308, DE-AC02-05CH11231] FX The authors would like to thank DOE's Office of Energy Efficiency and Renewable Energy's (EERE) Strategic Programs Office for primary funding support for this analysis (Contract Nos. DE-AC36-08GO28308 (NREL) and DE-AC02-05CH11231 (LBNL)). In particular, the authors are grateful to Steve Capanna of the Strategic Programs Office for his support of this project. We also wish to thank Jarett Zuboy for his excellent editorial support. NR 112 TC 1 Z9 1 U1 14 U2 20 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2016 VL 96 BP 645 EP 660 DI 10.1016/j.enpol.2016.06.035 PG 16 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DT5NU UT WOS:000381530700052 ER PT J AU Munnings, C Morgenstern, RD Wang, ZM Liu, X AF Munnings, Clayton Morgenstern, Richard D. Wang, Zhongmin Liu, Xu TI Assessing the design of three carbon trading pilot programs in China SO ENERGY POLICY LA English DT Article DE China; Carbon; Emissions trading; ETS pilot; Political economy ID POLICY DESIGN; SCHEME; SYSTEM; MARKET; LESSONS; ENERGY; CONSTRUCTION AB To help overcome the challenge of growing CO2 emissions, China is experimenting with market-based instruments, including pilot CO2 emissions trading systems (ETSs) in seven regions that serve as precursors of a national CO2 ETS. Implementing an ETS in a rapidly growing economy in which government authorities exercise significant control over markets poses many challenges. This study assesses how well three of the most developed pilot ETSs, in Guangdong, Shanghai, and Shenzhen, have adapted carbon emissions trading to China's economic and political context. We base our study on new information gathered through interviews with local pilot ETS regulators and experts, analysis of recent trading data, and extensive legal and literature reviews. We point out instances in which pilot regulators have deftly tailored carbon emissions trading to China's unique context and instances in which designs are insufficient to ensure smooth operation. We also indicate areas in which broader institutional reforms of China's political economy may be required for carbon emissions trading to operate successfully. We make nine recommendations to improve the design and operation of the pilot programs and to inform the construction of a national CO2 ETS. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Munnings, Clayton; Morgenstern, Richard D.; Wang, Zhongmin] Resources Future Inc, Washington, DC 20036 USA. [Liu, Xu] Lawrence Berkeley Natl Lab, San Francisco, CA USA. RP Morgenstern, RD (reprint author), Resources Future Inc, Washington, DC 20036 USA. EM morgenst@rff.org FU Energy Foundation-China and Resources for the Future [G-1311-19484] FX We thank the Energy Foundation-China and Resources for the Future (Grant number G-1311-19484) for funding this research and especially Liu Shuang and Hu Min for organizing numerous meetings with Chinese regulators in the United States and in China. We also thank Dallas Burtraw, Jeremy Schreifels, and five anonymous referees for helpful comments, Yushuang Wang for help with translation, and Muxi Yang for research assistance. NR 103 TC 1 Z9 1 U1 12 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2016 VL 96 BP 688 EP 699 DI 10.1016/j.enpol.2016.06.015 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DT5NU UT WOS:000381530700056 ER PT J AU Difiglio, C AF Difiglio, Carmine TI Introduction, collective findings and policy recommendations on renewable and nuclear electricity SO ENERGY POLICY LA English DT Editorial Material C1 [Difiglio, Carmine] US DOE, Washington, DC 20585 USA. RP Difiglio, C (reprint author), US DOE, Washington, DC 20585 USA. EM carmine.difiglio@hq.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2016 VL 96 BP 726 EP 727 DI 10.1016/j.enpol.2016.05.030 PG 2 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DT5NU UT WOS:000381530700060 ER PT J AU Budnitz, RJ AF Budnitz, Robert J. TI Nuclear power: Status report and future prospects SO ENERGY POLICY LA English DT Article DE Nuclear safety; Reactor safety; Nuclear proliferation; Reactor physical security; Safety culture; International nuclear institutions AB This article reviews the current status and future prospects of commercial nuclear electric power, with emphasis on issues of safety, physical security, proliferation, and economics. Discussions of these issues are presented separately for the current operating fleet, for new reactor designs similar in size to the current fleet, and for prospective new reactors of substantially smaller size. This article also discusses the issue of expansion of commercial nuclear power into new countries. The article concludes with recommendations, related both to technical issues and policy considerations. The major implications for policy are that although the level of safety and security achieved in today's operating reactor fleet worldwide is considered broadly acceptable, some advanced designs now under development potentially offer demonstrably safer performance, and may offer improved financial performance also. Management and safety culture are vital attributes for achieving adequate safety and security, as are a strong political culture that includes an absence of corruption, an independent regulatory authority, and a separation of nuclear operation from day-to-day politics. In some countries that are now considering a nuclear-power program for the first time, careful attention to these attributes will be essential for success. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Budnitz, Robert J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Budnitz, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM RJBudnitz@lbl.gov NR 24 TC 0 Z9 0 U1 11 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2016 VL 96 BP 735 EP 739 DI 10.1016/j.enpol.2016.03.011 PG 5 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DT5NU UT WOS:000381530700062 ER PT J AU Khatib, H Difiglio, C AF Khatib, Hisham Difiglio, Carmine TI Economics of nuclear and renewables SO ENERGY POLICY LA English DT Article DE Renewables; Nuclear; System costing; Discount rates; Subsidies AB This paper provides an assessment of the economic challenges faced by both nuclear power and "new" renewable electricity technologies. The assessment reflects the need to incorporate new renewables into power grids and issues faced in dispatching power and their effect on traditional electricity technologies as well as the need for transmission extension and/or grid reinforcement. Wider introduction of smart grids and the likely demise of nuclear in some OECD countries are bound to enhance the future prospects for new renewables. However, their immediate future expansion will depend on continued subsidies, which are becoming difficult to sustain in present economic circumstances. Development of large energy storage facilities and carbon pricing could significantly enhance future renewable energy prospects. Correspondingly, expanding renewable energy, in spite of their popularity with some governments and sections of the public, is likely to face challenges which will slow their present rapid progress. Nuclear is now shied away from in many industrialized countries and having mixed prospects in developing economies. In many instances, it suffers from high initial costs, long lead times and often excessive construction delays. Nuclear power also faces challenging risks investment as well as regulatory. In contrast to renewables, its share of global energy consumption is declining. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Khatib, Hisham] World Energy Council, POB 410, Amman 11831, Jordan. [Difiglio, Carmine] US DOE, Washington, DC 20585 USA. RP Khatib, H (reprint author), World Energy Council, POB 410, Amman 11831, Jordan. EM khatib@nets.com.jo; carmine.difiglio@hq.doe.gov NR 22 TC 1 Z9 1 U1 19 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2016 VL 96 BP 740 EP 750 DI 10.1016/j.enpol.2016.04.013 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DT5NU UT WOS:000381530700063 ER PT J AU Pierpoint, LM AF Pierpoint, Lara M. TI Harnessing electricity storage for systems with intermittent sources of power: Policy and R&D needs SO ENERGY POLICY LA English DT Article DE Electricity storage; Batteries; Electricity markets ID VEHICLE AB A central challenge for grid operators is matching electricity supply to demand, especially when the electricity supply is composed in part of intermittent resources. Several system options could help balance electricity supply and demand given different mixes of intermittent, baseload and load-following generation capacity; of these, electricity storage is especially interesting. If electricity storage could be deployed widely, grids of any size could sustain a wide range of profiles of intermittent and baseload power. Currently, most installed electricity storage worldwide is pumped hydro. Flywheels, compressed air and batteries represent interesting technologies that could provide grid-scale storage, especially if technology costs come down. A significant amount of storage R&D worldwide is appropriately focused on lowering these costs, but more is needed. Ultimately, storage will only achieve high levels of penetration if it can compete for service provision in electricity markets, and policy adjustments are needed in many countries to ensure this is the case. Published by Elsevier Ltd. C1 [Pierpoint, Lara M.] US DOE, Off Energy Policy & Syst Anal, 1000 Independence Ave SW, Washington, DC 20585 USA. RP Pierpoint, LM (reprint author), US DOE, Off Energy Policy & Syst Anal, 1000 Independence Ave SW, Washington, DC 20585 USA. EM lara.pierpoint@hq.doe.gov NR 28 TC 1 Z9 1 U1 4 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD SEP PY 2016 VL 96 BP 751 EP 757 DI 10.1016/j.enpol.2016.04.032 PG 7 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA DT5NU UT WOS:000381530700064 ER PT J AU Tsang, CF Rosberg, JE Sharma, P Berthet, T Juhlin, C Niemi, A AF Tsang, Chin-Fu Rosberg, Jan-Erik Sharma, Prabhakar Berthet, Theo Juhlin, Christopher Niemi, Auli TI Hydrologic testing during drilling: application of the flowing fluid electrical conductivity (FFEC) logging method to drilling of a deep borehole SO HYDROGEOLOGY JOURNAL LA English DT Article DE Hydraulic testing; Fractured rocks; Heterogeneity; Well logging; Drilling ID SCANDINAVIAN CALEDONIDES; SITE; PARAMETERS; LOGS AB Drilling of a deep borehole does not normally allow for hydrologic testing during the drilling period. It is only done when drilling experiences a large loss (or high return) of drilling fluid due to penetration of a large-transmissivity zone. The paper proposes the possibility of conducting flowing fluid electrical conductivity (FFEC) logging during the drilling period, with negligible impact on the drilling schedule, yet providing important information on depth locations of both high-and low-transmissivity zones and their hydraulic properties. The information can be used to guide downhole fluid sampling and post-drilling detailed testing of the borehole. The method has been applied to the drilling of a 2,500-m borehole at Are, central Sweden, firstly when the drilling reached 1,600 m, and then when the drilling reached the target depth of 2,500 m. Results unveil eight hydraulically active zones from 300 m down to borehole bottom, with depths determined to within the order of a meter. Further, the first set of data allows the estimation of hydraulic transmissivity values of the six hydraulically conductive zones found from 300 to 1,600 m, which are very low and range over one order of magnitude. C1 [Tsang, Chin-Fu] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tsang, Chin-Fu; Berthet, Theo; Juhlin, Christopher; Niemi, Auli] Uppsala Univ, Uppsala, Sweden. [Rosberg, Jan-Erik] Lund Univ, Lund, Sweden. [Sharma, Prabhakar] Nalanda Univ, Nalanda, Bihar, India. RP Tsang, CF (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Tsang, CF (reprint author), Uppsala Univ, Uppsala, Sweden. EM cftsang@lbl.gov RI Juhlin, Christopher/I-4572-2012; OI Juhlin, Christopher/0000-0003-2776-0846; Berthet, Theo/0000-0002-8796-1407 FU Swedish Geological Survey (SGU) [1724]; Used Fuel Disposition Campaign, Office of Nuclear Energy of the U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; International Continental Scientific Drilling Program (ICDP); Swedish Research Council (VR) [2013-94] FX The authors cordially acknowledge the support of Swedish Geological Survey (SGU), grant number 1724, for the research reported in this paper. The first author would also like to acknowledge partial support for preparation of this paper by the Used Fuel Disposition Campaign, Office of Nuclear Energy of the U.S. Department of Energy, under contract number DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. The drilling of the COSC-1 borehole was financed by the International Continental Scientific Drilling Program (ICDP) and the Swedish Research Council (VR: grant 2013-94). Special thanks to Per-Gunnar Alm and the logging crew from Lund University in conducting the field operation for the FFEC logging. We are also grateful to ICDP-OSG logging teams for collecting the logging data shown in Fig. 6. NR 22 TC 1 Z9 1 U1 7 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 EI 1435-0157 J9 HYDROGEOL J JI Hydrogeol. J. PD SEP PY 2016 VL 24 IS 6 BP 1333 EP 1341 DI 10.1007/s10040-016-1405-z PG 9 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA DU2OC UT WOS:000382049400002 ER PT J AU Del Alamo, JA Antoniadis, DA Lin, JQ Lu, WJ Vardi, A Zhao, X AF Del Alamo, Jesus A. Antoniadis, Dimitri A. Lin, Jianqiang Lu, Wenjie Vardi, Alon Zhao, Xin TI Nanometer-Scale III-V MOSFETs SO IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY LA English DT Article DE III-V compound semiconductors; CMOS; InGaAs; InGaSb ID LAYER-DEPOSITED AL2O3; QUANTUM-WELL MOSFETS; FIELD-EFFECT TRANSISTORS; OHMIC CONTACTS; IN0.7GA0.3AS CHANNEL; INGAAS; SOURCE/DRAIN; PERFORMANCE; SILICON; CMOS AB After 50 years of Moore's Law, Si CMOS, the mainstream logic technology, is on a course of diminishing returns. The use of new semiconductor channel materials with improved transport properties over Si offer the potential for device scaling to nanometer dimensions and continued progress. Among new channel materials, III-V compound semiconductors are particularly promising. InGaAs is currently the most attractive candidate for future III-V based n-type MOSFETs while InGaSb is of great interest for p-channel MOSFETs. At the point of most likely deployment, devices based on these semiconductors will have a highly three-dimensional architecture. This paper reviews recent progress toward the development of nanoscale III-V MOSFETs based on InGaAs and InGaSb with emphasis on scalable technologies and device architectures and relevant physics. Progress in recent times has been brisk but much work remains to be done before III-V CMOS can become a reality. C1 [Del Alamo, Jesus A.; Antoniadis, Dimitri A.; Lin, Jianqiang; Lu, Wenjie; Vardi, Alon; Zhao, Xin] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA. [Lin, Jianqiang] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Del Alamo, JA (reprint author), MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA. EM alamo@mit.edu FU Korea Institute of Science and Technology; National Science Foundation under E3S STC Award [0939514]; Defense Threat Reduction Agency [HDTRA1-14-1-0057]; Northrop Grumman; Samsung Electronics; Applied Materials; Lam Research FX This work was supported in part by the Korea Institute of Science and Technology, in part by the National Science Foundation under E3S STC Award 0939514, in part by the Defense Threat Reduction Agency under Grant HDTRA1-14-1-0057, in part by Northrop Grumman, in part by Samsung Electronics, in part by Applied Materials, and in part by Lam Research. NR 76 TC 1 Z9 1 U1 13 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2168-6734 J9 IEEE J ELECTRON DEVI JI IEEE J. Electron Devices Soc. PD SEP PY 2016 VL 4 IS 5 BP 205 EP 214 DI 10.1109/JEDS.2016.2571666 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA DV1JI UT WOS:000382676700003 ER PT J AU De Coster, A Tran, AP Lambot, S AF De Coster, Alberic Anh Phuong Tran Lambot, Sebastien TI Fundamental Analyses on Layered Media Reconstruction Using GPR and Full-Wave Inversion in Near-Field Conditions SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Full-wave inversion (FWI); Green's functions; ground-penetrating radar (GPR); intrinsic antenna model; number of frequencies ID GROUND-PENETRATING RADAR; SOIL-MOISTURE ESTIMATION; FORM INVERSION; WATER-CONTENT; MULTI-OFFSET; PERMITTIVITY; CONDUCTIVITY; VALIDATION AB Multifrequency and multioffset ground-penetrating radar data acquisition modes are used to maximize the information content and parameter retrieval capabilities. However, they also increase the computational cost dedicated to the inversion procedure. In this paper, the impact of the number of frequencies and the multistatic configurations on the information retrieval capabilities is investigated through the response surface topographies of the objective functions. We resort to a full-wave-inversion procedure and a recently developed electromagnetic model which takes advantage of a closed-form solution of Maxwell's equations to describe the antenna-medium system. We show with numerical and laboratory experiments the possibility of reducing the number of frequencies from several hundreds to one or several tens of components without affecting the information retrieval capabilities. We also show through several scenarios that the presence of a perfect electrical conductor increases the number of frequencies required to ensure an acceptable retrieval of the subsurface properties whereas the conductivity of the first layer and the relative permittivity of the second layer do not affect it. The results highlight that information content analyses are important in order to study and optimize data acquisition and inversion procedures, and thereby the computation time. C1 [De Coster, Alberic; Lambot, Sebastien] Catholic Univ Louvain, Earth & Life Inst, B-1348 Louvain La Neuve, Belgium. [Anh Phuong Tran] Lawrence Berkeley Natl Lab, Dept Geophys, Berkeley, CA 94720 USA. RP De Coster, A (reprint author), Catholic Univ Louvain, Earth & Life Inst, B-1348 Louvain La Neuve, Belgium. EM alberic.decoster@uclouvain.be; aptran@lbl.gov; sebastien.lambot@uclouvain.be OI Tran, Anh Phuong/0000-0002-7703-6621 FU Walloon Region through the "SENSPORT" project [1217720]; Fonds National de la Recherche Scientifique-Belgium; EU [TU1208] FX This work was supported in part by the Walloon Region through the "SENSPORT" project (Convention no 1217720) undertaken in the framework of the WBGreen research program, by the Fonds National de la Recherche Scientifique-Belgium support, and by the networking activities carried out within the EU-funded COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar." NR 33 TC 0 Z9 0 U1 4 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD SEP PY 2016 VL 54 IS 9 BP 5143 EP 5158 DI 10.1109/TGRS.2016.2556862 PG 16 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DV1NZ UT WOS:000382689300011 ER PT J AU Kargarian, A Fu, Y Wu, HY AF Kargarian, Amin Fu, Yong Wu, Hongyu TI Chance-Constrained System of Systems Based Operation of Power Systems SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Active distribution grid; chance-constrained programing; distributed optimization; generation scheduling; stochastic programming; system of systems ID ACTIVE DISTRIBUTION GRIDS; SECURITY AB In this paper, a chance-constrained system of systems (SoS) based decision-making approach is presented for stochastic scheduling of power systems encompassing active distribution grids. Based on the concept of SoS, the independent system operator (ISO) and distribution companies (DISCOs) are modeled as self-governing systems. These systems collaborate with each other to run the entire power system in a secure and economic manner. Each self-governing system accounts for its local reserve requirements and line flow constraints with respect to the uncertainties of load and renewable energy resources. A set of chance constraints are formulated to model the interactions between the ISO and DISCOs. The proposed model is solved by using analytical target cascading (ATC) method, a distributed optimization algorithm in which only a limited amount of information is exchanged between collaborative ISO and DISCOs. In this paper, a 6-bus and a modified IEEE 118-bus power systems are studied to show the effectiveness of the proposed algorithm. C1 [Kargarian, Amin; Fu, Yong] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA. [Wu, Hongyu] Natl Renewable Energy Lab, Power Syst Engn Ctr, Golden, CO 80401 USA. RP Kargarian, A (reprint author), Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA. EM ak836@msstate.edu; fu@ece.msstate.edu; hongyu.wu@nrel.gov OI Wu, Hongyu/0000-0002-5223-6635 FU National Science Foundation [ECCS-1150555] FX This work was supported by the National Science Foundation under Grant ECCS-1150555. Paper no. TPWRS-01600-2014. NR 20 TC 0 Z9 0 U1 9 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2016 VL 31 IS 5 BP 3404 EP 3413 DI 10.1109/TPWRS.2015.2499275 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA DU8QB UT WOS:000382477600007 ER PT J AU Lubin, M Dvorkin, Y Backhaus, S AF Lubin, Miles Dvorkin, Yury Backhaus, Scott TI A Robust Approach to Chance Constrained Optimal Power Flow With Renewable Generation SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Chance constrained optimization; distributionally robust optimization; optimal power flow; optimization methods; power system economics; wind power integration; wind power uncertainty; wind power variability ID UNIT COMMITMENT; SYSTEMS; APPROXIMATIONS; OPTIMIZATION; UNCERTAINTY AB Optimal Power Flow (OPF) dispatches controllable generation at minimum cost subject to operational constraints on generation and transmission assets. The uncertainty and variability of intermittent renewable generation is challenging current deterministic OPF approaches. Recent formulations of OPF use chance constraints to limit the risk from renewable generation uncertainty, however, these new approaches typically assume the probability distributions which characterize the uncertainty and variability are known exactly. We formulate a robust chance constrained (RCC) OPF that accounts for uncertainty in the parameters of these probability distributions by allowing them to be within an uncertainty set. The RCC OPF is solved using a cutting-plane algorithm that scales to large power systems. We demonstrate the RRC OPF on a modified model of the Bonneville Power Administration network, which includes 2209 buses and 176 controllable generators. Deterministic, chance constrained (CC), and RCC OPF formulations are compared using several metrics including cost of generation, area control error, ramping of controllable generators, and occurrence of transmission line overloads as well as the respective computational performance. C1 [Lubin, Miles] MIT, Ctr Operat Res, Cambridge, MA 02139 USA. [Dvorkin, Yury] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA. [Backhaus, Scott] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. RP Lubin, M (reprint author), MIT, Ctr Operat Res, Cambridge, MA 02139 USA. EM mlubin@mit.edu; dvorkin@uw.edu; backhaus@lanl.gov OI Backhaus, Scott/0000-0002-0344-6791 FU Advanced Grid Modeling Program in the Office of Electricity in the US Department of Energy; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Computational Science Graduate Fellowship [DE-FG02-97ER25308]; Clean Energy Institute Student Training & Exploration Grant FX The work at LANL was supported by the Advanced Grid Modeling Program in the Office of Electricity in the US Department of Energy and was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The work of M. Lubin was supported by the DOE Computational Science Graduate Fellowship, which is provided under grant number DE-FG02-97ER25308. The work of Y. Dvorkin was supported in part by the Clean Energy Institute Student Training & Exploration Grant. Paper no. TPWRS-00563-2015. NR 44 TC 0 Z9 0 U1 8 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD SEP PY 2016 VL 31 IS 5 BP 3840 EP 3849 DI 10.1109/TPWRS.2015.2499753 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA DU8QB UT WOS:000382477600048 ER PT J AU Jiang, RW Guan, YP Watson, JP AF Jiang, Ruiwei Guan, Yongpei Watson, Jean-Paul TI Risk-averse stochastic unit commitment with incomplete information SO IIE TRANSACTIONS LA English DT Article DE Stochastic programming; unit commitment; renewable energy; incomplete information ID MIXED-INTEGER INEQUALITIES; ROBUST OPTIMIZATION; WIND POWER; TRANSMISSION; CONSTRAINTS; SECURITY; NETWORK; UNCERTAINTY; GENERATION; PORTFOLIOS AB Due to the sustainable nature and stimulus plans from government, renewable energy (such as wind and solar) has been increasingly used in power systems. However, the intermittency of renewable energy creates challenges for power system operators to keep the systems reliable and cost-effective. In addition, information about renewable energy is usually incomplete. Instead of knowing the true probability distribution of the renewable energy course, only a set of historical data samples can be collected from the true (while ambiguous) distribution. In this article, we study two risk-averse stochastic unit commitment models with incomplete information: the first model being a chance-constrained unit commitment model and the second one a two-stage stochastic unit commitment model with recourse. Based on historical data on renewable energy, we construct a confidence set for the probability distribution of the renewable energy and propose data-driven stochastic unit commitment models to hedge against the incomplete nature of the information. Our models also ensure that, with a high probability, a large portion of renewable energy is utilized. Furthermore, we develop solution approaches to solve the models based on deriving strong valid inequalities and Benders' decomposition algorithms. We show that the risk-averse behavior of both models decreases as more data samples are collected and eventually vanishes as the sample size goes to infinity. Finally, our case studies verify the effectiveness of our proposed models and solution approaches. C1 [Jiang, Ruiwei] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA. [Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Computat & Stochast Optimizat Lab, Gainesville, FL 32611 USA. [Watson, Jean-Paul] Sandia Natl Labs, Discrete Math & Complex Syst Dept, POB 5800, Albuquerque, NM 87185 USA. RP Guan, YP (reprint author), Univ Florida, Dept Ind & Syst Engn, Computat & Stochast Optimizat Lab, Gainesville, FL 32611 USA. EM guan@ise.ufl.edu FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was partially supported by Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 35 TC 0 Z9 0 U1 5 U2 5 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0740-817X EI 1545-8830 J9 IIE TRANS JI IIE Trans. PD SEP PY 2016 VL 48 IS 9 BP 838 EP 854 DI 10.1080/0740817X.2016.1167287 PG 17 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DV1JX UT WOS:000382678400004 ER PT J AU Kodavasal, J Lavoie, GA Assanis, DN Martz, JB AF Kodavasal, Janardhan Lavoie, George A. Assanis, Dennis N. Martz, Jason B. TI Reaction-space analysis of homogeneous charge compression ignition combustion with varying levels of fuel stratification under positive and negative valve overlap conditions SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Homogeneous charge compression ignition; port fuel injection; direct injection; negative valve overlap; positive valve overlap; NO; reactivity stratification; computational fluid dynamics ID HCCI ENGINES; MODEL; TEMPERATURE; PERFORMANCE; SIMULATION; DURATION AB Full-cycle computational fluid dynamics simulations with gasoline chemical kinetics were performed to determine the impact of breathing and fuel injection strategies on thermal and compositional stratification, combustion and emissions during homogeneous charge compression ignition combustion. The simulations examined positive valve overlap and negative valve overlap strategies, along with fueling by port fuel injection and direct injection. The resulting charge mass distributions were analyzed prior to ignition using ignition delay as a reactivity metric. The reactivity stratification arising from differences in the distributions of fuel-oxygen equivalence ratio (phi(FO)), oxygen molar fraction (chi(O2)) and temperature (T) was determined for three parametric studies. In the first study, the reactivity stratification and burn duration for positive valve overlap valve events with port fuel injection and early direct injection were nearly identical and were dominated by wall-driven thermal stratification. nitrogen oxide (NO) and carbon monoxide (CO) emissions were negligible for both injection strategies. In the second study, which examined negative valve overlap valve events with direct injection and port fuel injection, reactivity stratification increased for direct injection as the phi(FO) and T distributions associated with direct fuel injection into the hot residual gas were positively correlated; however, the latent heat absorbed from the hot residual gas by the evaporating direct injection fuel jet reduced the overall thermal and reactivity stratification. These stratification effects were offsetting, resulting in similar reactivity stratification and burn durations for the two injection strategies. The higher local burned gas temperatures with direct injection resulted in an order of magnitude increase in NO, while incomplete combustion of locally over-lean regions led to a sevenfold increase in CO emissions compared to port fuel injection. The final study evaluated positive valve overlap and negative valve overlap valve events with direct injection. Relative to positive valve overlap, the negative valve overlap condition had a wider reactivity stratification, a longer burn duration and higher NO and CO emissions associated with reduced fuel-air mixing. C1 [Kodavasal, Janardhan; Lavoie, George A.; Martz, Jason B.] Univ Michigan, Walter E Lay Automot Engn Lab, Ann Arbor, MI 48109 USA. [Kodavasal, Janardhan; Assanis, Dennis N.] Argonne Natl Lab, 9700 S Cass Ave,Bldg 362, Argonne, IL 60439 USA. [Assanis, Dennis N.] SUNY Stony Brook, Stony Brook, NY 11794 USA. RP Kodavasal, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 362, Argonne, IL 60439 USA. EM jkodavasal@anl.gov FU Department of Energy (National Energy Technology Laboratory) [DE-EE0003533] FX The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This material is based on the work supported by the Department of Energy (National Energy Technology Laboratory) under Award Number(s) DE-EE0003533. This work was performed as a part of the ACCESS project consortium (Robert Bosch LLC, AVL Inc., Emitec Inc., Stanford University, University of Michigan) under the direction of PI Hakan Yilmaz and Co-PI Oliver Miersch-Wiemers, Robert Bosch LLC. NR 40 TC 1 Z9 1 U1 1 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 EI 2041-3149 J9 INT J ENGINE RES JI Int. J. Engine Res. PD SEP PY 2016 VL 17 IS 7 BP 776 EP 794 DI 10.1177/1468087415613208 PG 19 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA DT3KF UT WOS:000381379000006 ER PT J AU Zecevic, M Beyerlein, IJ McCabe, RJ McWilliams, BA Knezevic, M AF Zecevic, Miroslav Beyerlein, Irene J. McCabe, Rodney J. McWilliams, Brandon A. Knezevic, Marko TI Transitioning rate sensitivities across multiple length scales: Microstructure-property relationships in the Taylor cylinder impact test on zirconium SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Microstructures; Elastic-viscoplastic material; Rate-dependent material; Impact testing; Finite elements ID X-RAY-DIFFRACTION; IMPLICIT FINITE-ELEMENTS; DUCTILE SINGLE-CRYSTALS; CRYSTALLOGRAPHIC TEXTURE EVOLUTION; POLYCRYSTALLINE HCP/BCC COMPOSITES; PRESSURE-DOUBLE-TORSION; FLAT-ENDED PROJECTILES; LINE-PROFILE ANALYSIS; STRAIN-PATH CHANGES; SELF-CONSISTENT AB A finite-element based plasticity model is developed for polycrystals deformed to high strain-rates. The model is multiscale, covering from thermally activated dislocation motion on a specific crystallographic slip system (nm), to single crystal plasticity (mu m), to polycrystalline aggregate plasticity (mm), and ultimately heterogeneous deformation of the macroscale test sample (m). Within the model, the rate dependence in macroscale response arises solely from the microscopic characteristic stress to activate dislocation motion. This is accomplished by introduction of a novel methodology, used at the intermediate length scales, to relax the extraneous rate dependencies occurring as a result of the visco-plastic rate sensitive flow rule commonly associated with single crystal plasticity formulations. The multi-scale model developed here also permits simulations to be carried out in stress imposed, strain-rate imposed, and mixed stress/strain-rate-imposed boundary conditions, another advancement over previous techniques. Simulation results are presented for the deformation of high-purity Zr in a Taylor impact cylinder test. The variation in sample shape changes, texture evolution, and deformation twin fraction after the test are experimentally examined. These same quantities are calculated with the model and good agreement is achieved in all aspects. We show that without adjustment of material parameters that the thermally activated hardening model applies to much higher strain-rates (104/s-105/s) than the strain-rates used previously to characterize it. This model can be broadly applied to understanding microstructure-property relationships in high-strain-rate deformation processes that generate spatially and temporarily heterogeneous mechanical fields. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Zecevic, Miroslav; Knezevic, Marko] Univ New Hampshire, Dept Mech Engn, 33 Acad Way,Kingsbury Hall,W119, Durham, NH 03824 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [McCabe, Rodney J.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [McWilliams, Brandon A.] US Army Res Lab, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA. RP Knezevic, M (reprint author), Univ New Hampshire, Dept Mech Engn, 33 Acad Way,Kingsbury Hall,W119, Durham, NH 03824 USA. EM marko.knezevic@unh.edu FU Army Research Laboratory; Los Alamos National Laboratory Directed Research and Development (LDRD) project [ER20140348]; [W911NF-15-2-0084] FX This research was sponsored by the Army Research Laboratory and was accomplished under Cooperative Agreement Number W911NF-15-2-0084. IJB would like to acknowledge support through a Los Alamos National Laboratory Directed Research and Development (LDRD) project ER20140348. The authors would like to thank Dr. John F. Bingert for supplying the Taylor impact testing and characterization data sets. NR 96 TC 1 Z9 1 U1 2 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD SEP PY 2016 VL 84 BP 138 EP 159 DI 10.1016/j.ijplas.2016.05.005 PG 22 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA DT5PG UT WOS:000381534500006 ER PT J AU Darquenne, C Lamm, WJ Fine, JM Corley, RA Glenny, RW AF Darquenne, Chantal Lamm, Wayne J. Fine, Janelle M. Corley, Richard A. Glenny, Robb W. TI Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Aerosol bolus dispersion; Mode shift; Heliox; Particles ID HUMAN RESPIRATORY-TRACT; HUMAN-LUNG; BOLUS DISPERSION; PARTICLE DEPOSITION; HELIUM-OXYGEN; FLOW; HYPERGRAVITY; AIR; MICROGRAVITY; PREDICTIONS AB Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predictions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV1=50-80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.9 mu m-diameter particles (tidal volume of I L, flow rate of 0.3 L/s and 0.75 L/s). Bolus inhalations of 1 mu m particles were performed to penetration volumes of 200, 500 and 800 mL (flow rate of 0.5 L/s). Aerosol bolus dispersion (H), deposition, and mode shift (MS) were calculated from these data. There was no significant difference in total deposition between healthy subjects and those with COPD. Total deposition increased with increasing particle size and also with increasing flow rate. Similarly, there was no significant difference in aerosol bolus deposition between subject groups. Yet, the rate of increase in dispersion and of decrease in MS with increasing penetration volume was higher in subjects with COPD than in healthy volunteers (H: 0.798 +/- 0.205 vs. 0.527 +/- 0.122 mL/mL, p=0.01; MS: -0.271 +/- 0.129 vs. -0.145 +/- 0.076 mL/mL, p=0.05) indicating larger ventilation inhomogeneities (based on H) and increased flow sequencing (based on MS) in the COPD than in the healthy group. In conclusion, in the supine posture, deposition appears to lack sensitivity for assessing the effect of lung morphology and/or ventilation distribution alteration induced by mild-to-moderate lung disease on the fate of inhaled aerosols. However, other parameters such as aerosol bolus dispersion and mode shift may be more sensitive parameters for evaluating models of lungs with moderate disease. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Darquenne, Chantal; Fine, Janelle M.] Univ Calif San Diego, Dept Med, 9500 Gilman Dr 0623A, La Jolla, CA 92093 USA. [Lamm, Wayne J.; Glenny, Robb W.] Univ Washington, Dept Med, Seattle, WA 98195 USA. [Corley, Richard A.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Glenny, Robb W.] Univ Washington, Dept Physiol & Biophys, Seattle, WA 98195 USA. RP Darquenne, C (reprint author), Univ Calif San Diego, Dept Med, 9500 Gilman Dr 0623A, La Jolla, CA 92093 USA. EM cdarquenne@ucsd.edu FU NHLBI at NIH [R01 HL073598] FX The study was funded by R01 HL073598 from NHLBI at NIH. NR 37 TC 1 Z9 1 U1 3 U2 3 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD SEP PY 2016 VL 99 SI SI BP 27 EP 39 DI 10.1016/j.jaerosci.2016.01.019 PG 13 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DT6JE UT WOS:000381589700006 PM 27493296 ER PT J AU Kabilan, S Suffield, SR Recknagle, KP Jacob, RE Einstein, DR Kuprat, AP Carson, JP Colby, SM Saunders, JH Hines, SA Teeguarden, JG Straub, TM Moe, M Taft, SC Corley, RA AF Kabilan, S. Suffield, S. R. Recknagle, K. P. Jacob, R. E. Einstein, D. R. Kuprat, A. P. Carson, J. P. Colby, S. M. Saunders, J. H. Hines, S. A. Teeguarden, J. G. Straub, T. M. Moe, M. Taft, S. C. Corley, R. A. TI Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Three-dimensional computational fluid dynamics; Particle deposition; New Zealand white rabbit; Human Bacillus anthracis; Lung ID ZEALAND WHITE-RABBITS; INHALATIONAL ANTHRAX; PARTICLE DEPOSITION; HUMAN LUNGS; AIR-FLOW; AEROSOL DEPOSITION; INCUBATION PERIOD; RAT; DOSIMETRY; TRANSPORT AB Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and mu CT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species specific anatomy and physiology for deposition. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Kabilan, S.; Suffield, S. R.; Recknagle, K. P.; Jacob, R. E.; Einstein, D. R.; Kuprat, A. P.; Colby, S. M.; Teeguarden, J. G.; Straub, T. M.; Corley, R. A.] Pacific Northwest Natl Lab, 902 Battelle Blvd,POB 999,MSIN J4-16, Richland, WA 99352 USA. [Carson, J. P.] Texas Adv Comp Ctr, Austin, TX 78758 USA. [Saunders, J. H.; Hines, S. A.] Battelle Mem Inst, 505 King Ave, Columbus, OH 43201 USA. [Moe, M.] Dept Homeland Secur, Sci & Technol Directorate, Washington, DC 20528 USA. [Taft, S. C.] US EPA, Natl Homeland Secur Res Ctr, Threat & Consequence Assessment Div, Cincinnati, OH 45268 USA. RP Kabilan, S (reprint author), Pacific Northwest Natl Lab, 902 Battelle Blvd,POB 999,MSIN J4-16, Richland, WA 99352 USA. EM senthil.kabilan@pnnl.gov FU U.S. Environmental Protection Agency through its Office of Research and Development [EP-C-09-006, DW9792343401]; Department of Homeland Security, Science and Technology Directorate [HSHQPM-14-X-00037]; National Heart, Lung, and Blood Institute of the National Institutes of Health [R01 HL073598] FX The U.S. Environmental Protection Agency through its Office of Research and Development under Contract no. EP-C-09-006 and Interagency Agreement DW9792343401 and the Department of Homeland Security, Science and Technology Directorate through Contract HSHQPM-14-X-00037 funded and managed the research described here for the development of the rabbit model and for spore simulations in both species. It has been subjected to the EPA and DHS review and has been approved for publication. Note that approval does not signify that the contents necessarily reflect the views of EPA and DHS. Mention of trade names, products, or services does not convey official EPA/DHS approval, endorsement, or recommendation. Development of the human model was performed under a Grant from the National Heart, Lung, and Blood Institute of the National Institutes of Health (R01 HL073598). NR 53 TC 0 Z9 0 U1 7 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD SEP PY 2016 VL 99 SI SI BP 64 EP 77 DI 10.1016/j.jaerosci.2016.01.011 PG 14 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DT6JE UT WOS:000381589700010 ER PT J AU Xi, JX Kim, J Si, XHA Corley, RA Zhou, Y AF Xi, Jinxiang Kim, JongWon Si, Xiuhua A. Corley, Richard A. Zhou, Yue TI Modeling of inertial deposition in scaled models of rat and human nasal airways: Towards in vitro regional dosimetry in small animals SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE In vitro inhalation dosimetry; Small animals; Site-specific deposition; Inter-species extrapolation; Scaled models; Deposition similarity ID COMPUTATIONAL FLUID-DYNAMICS; UPPER RESPIRATORY-TRACT; SUBMICROMETER AEROSOL DEPOSITION; PARTICLE DEPOSITION; AIR-FLOW; ULTRAFINE AEROSOLS; INHALATION; CAVITY; NANOPARTICLE; SIMULATIONS AB Rodents are routinely used in inhalation toxicology tests as human surrogates. However, in vitro dosimetry tests in rodent casts are still scarce due to small rodent airways and in vitro tests to quantify sub-regional dosimetry are still impractical. We hypothesized that for inertial particles whose deposition is dominated by airflow convection (Reynolds number) and particle inertia (Stokes number), the deposition should be similar among airway replicas of different scales if their Reynolds and Stokes numbers are kept the same. In this study, we aimed to (1) numerically test the hypothesis in three airway geometries: a USP induction port, a human nose model, and a Sprague-Dawley rat nose model, and (2) find the range of applicability of this hypothesis. Five variants of the LISP and human nose models and three variants of the rat nose model were tested. Inhalation rates and particle sizes were scaled to match the Reynolds number and Stokes numbers. A low-Reynolds-number k-omega model was used to resolve the airflow and a Lagrangian tracking algorithm was used to simulate the particle transport and deposition. Statistical analysis of predicted doses was conducted using ANOVA. For normal inhalation rates and particle diameters ranging from 0.5 to 24 mu m, the deposition differences between the life-size and scaled models are insignificant for all airway geometries considered (i.e., human nose, USP, and rat nose). Furthermore, the deposition patterns and exit particle profiles also look similar among scaled models. However, deposition rates and patterns start to deviate if inhalation rates are too low, or particle sizes are too large. For the rat nose, the threshold velocity was found to be 0.71 m/s and the threshold Froude number to be 50. Results of this study provide a theoretical foundation for sub-regional in vitro dosimetry tests in small animals and for interpretation of data from inter-species or intra-species with varying body sizes. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Xi, Jinxiang; Kim, JongWon] Cent Michigan Univ, Sch Engn & Technol, 1200 South Franklin St, Mt Pleasant, MI 48858 USA. [Si, Xiuhua A.] Calif Baptist Univ, Dept Mech Engn, Riverside, CA 92504 USA. [Corley, Richard A.] Pacific Northwest Natl Lab, Syst Toxicol & Exposure Sci, Richland, WA 99352 USA. [Zhou, Yue] Lovelace Resp Res Inst, Aerosol Resp Dosimetry Program, 2425 Ridgecrest SE, Albuquerque, NM 87108 USA. RP Xi, JX (reprint author), Cent Michigan Univ, Sch Engn & Technol, 1200 South Franklin St, Mt Pleasant, MI 48858 USA. EM xi1j@cmich.edu FU Central Michigan University Innovative Research Grants [P17757, P17758]; Central Michigan University Early Career Grant [P62242] FX The authors thank Dr. MingAn Yang of Mathematics Department at Central Michigan University for assistance in statistical analysis. We also thank Zachary Firlit and Alexander Grabinski for reviewing this manuscript. This research is partially supported by Central Michigan University Innovative Research Grants P17757, P17758 and Central Michigan University Early Career Grant P62242. NR 55 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD SEP PY 2016 VL 99 SI SI BP 78 EP 93 DI 10.1016/j.jaerosci.2016.01.013 PG 16 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DT6JE UT WOS:000381589700011 ER PT J AU Asgharian, B Miller, FJ Price, O Schroeter, JD Einstein, DR Corley, RA Bentley, T AF Asgharian, Bahman Miller, Frederick J. Price, Owen Schroeter, Jeffry D. Einstein, Daniel R. Corley, Richard A. Bentley, Timothy TI Modeling particle deposition in the pig respiratory tract SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Pig; Lung geometry; Morphometric variables; Particles; Deposition modeling ID MULTIPLE-PATH MODEL; BRONCHIAL TREE; HUMAN LUNG; INHALATION; DOSIMETRY; GEOMETRY; MASS AB Despite increasing use of pigs as surrogates for humans in inhalation studies, measurements of particle deposition in the lungs of pigs are lacking. No comprehensive models are available for deposition of inhaled particles in the lungs of pigs to bridge the gap between exposure and biological response. In this study, a mathematical model was developed for the deposition of particles in the respiratory tract of pigs. Semi-empirical equations were developed to relate particle deposition efficiency in the pig nasal passages to non-dimensional parameters for diffusion and impaction deposition. The conducting airway tree of pigs was reconstructed from scanned images and other morphometric data in the literature. The pulmonary airway region was reconstructed assuming geometric similarities between humans and pigs due to a lack of information available on the pulmonary airways of pigs. The tracheobronchial and alveolar trees were combined to obtain a limited-monopodial lung geometry for pigs. A lung ventilation model was developed in this geometry based on lung compliance, airway resistance, and airflow inertance using breathing parameters from the literature. The lung deposition model was constructed based on models for lung ventilation, particle transport, and deposition in the asymmetric (monopodial) lung structure to predict particle deposition in the lungs of pigs. Model predictions indicated that the largest airflow and particle deposition occurred in the basal (diaphragmatic) lobes, which possessed the largest airway dimensions and volumes. The predicted site of deposition was related to particle size with larger particles depositing proximally and smaller particles depositing distally. There was limited penetration of coarse particles into the alveolar region because most of these particles were removed from inhaled air in the nasal and tracheobronchial regions. The deposition model developed in this study is a powerful tool to relate exposure environment to biological response and assess the dose of the delivered particles to the lungs. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Asgharian, Bahman; Schroeter, Jeffry D.] Appl Res Associates Inc, 8537 Six Forks Rd,Suite 600, Raleigh, NC 27615 USA. [Miller, Frederick J.] Fred J Miller & Associates LLC, 911 Queensferry Rd, Cary, NC 27511 USA. [Price, Owen] Appl Res Associates Inc, 801 North Quincy St,Suite 700, Arlington, VA 22203 USA. [Einstein, Daniel R.; Corley, Richard A.] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Bentley, Timothy] Off Naval Res, Arlington, VA 22217 USA. RP Asgharian, B (reprint author), Appl Res Associates Inc, 8537 Six Forks Rd,Suite 600, Raleigh, NC 27615 USA. EM basgharian@ara.com FU Office of Naval Research [N00014-12-C-0624]; National Heart, Lung, and Blood Institute of the National Institutes of Health [NHLBI R01 HL073598] FX This work was funded in part by the Office of Naval Research via contract N00014-12-C-0624. Reconstruction of lung tracheobronchial tree was supported by a grant from the National Heart, Lung, and Blood Institute (NHLBI R01 HL073598) of the National Institutes of Health. NR 22 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 EI 1879-1964 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD SEP PY 2016 VL 99 SI SI BP 107 EP 124 DI 10.1016/j.jaerosci.2016.01.016 PG 18 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DT6JE UT WOS:000381589700013 ER EF