FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Gu, JY Liu, Z AF Gu, Jiayin Liu, Zhen TI Physics implications of the diphoton excess from the perspective of renormalization group flow SO PHYSICAL REVIEW D LA English DT Article ID DARK-MATTER; RESONANCE; HIGGS; MODEL AB A very plausible explanation for the recently observed diphoton excess at the 13 TeV LHC is a (pseudo) scalar with mass around 750 GeV, which couples to a gluon pair and to a photon pair through loops involving vectorlike quarks (VLQs). To accommodate the observed rate, the required Yukawa couplings tend to be large. A large Yukawa coupling would rapidly run up with the scale and quickly reach the perturbativity bound, indicating that new physics, possibly with a strong dynamics origin, is nearby. The case becomes stronger especially if the ATLAS observation of a large width persists. In this paper we study the implication on the scale of new physics from the 750 GeV diphoton excess using the method of renormalization group running with careful treatment of different contributions and perturbativity criterion. Our results suggest that the scale of new physics is generically not much larger than the TeV scale, in particular if the width of the hinted (pseudo) scalar is large. Introducing multiple copies of VLQs, lowering the VLQ masses, and enlarging VLQ electric charges help reduce the required Yukawa couplings and can push the cutoff scale to higher values. Nevertheless, if the width of the 750 GeV resonance turns out to be larger than about 1 GeV, it is very hard to increase the cutoff scale beyond a few TeVs. This is a strong hint that new particles in addition to the 750 GeV resonance and the vectorlike quarks should be around the TeV scale. C1 [Gu, Jiayin] Chinese Acad Sci, Inst High Energy Phys, Ctr Future High Energy Phys, Beijing 100049, Peoples R China. [Liu, Zhen] Fermilab Natl Accelerator Lab, Dept Phys Theor, Batavia, IL 60510 USA. RP Gu, JY (reprint author), Chinese Acad Sci, Inst High Energy Phys, Ctr Future High Energy Phys, Beijing 100049, Peoples R China.; Liu, Z (reprint author), Fermilab Natl Accelerator Lab, Dept Phys Theor, Batavia, IL 60510 USA. EM gujy@ihep.ac.cn; zliu2@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy; Chinese Academy of Science (CAS) International Traveling Award [H95120N1U7] FX We would like to thank Haipeng An, Patrick Fox, Peisi Huang, Jack Kearney, and Lian-Tao Wang for helpful discussions. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. J. G. is supported in part by the Chinese Academy of Science (CAS) International Traveling Award under Grant No. H95120N1U7. Z. L. would also like to thank the Center for Future High Energy Physics (CFHEP) in Beijing for its hospitality where part of this work was done. NR 100 TC 39 Z9 39 U1 1 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 6 PY 2016 VL 93 IS 7 AR 075006 DI 10.1103/PhysRevD.93.075006 PG 12 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DI5ZE UT WOS:000373578200003 ER PT J AU Stanford, MG Lewis, BB Iberi, V Fowlkes, JD Tan, S Livengood, R Rack, PD AF Stanford, Michael G. Lewis, Brett B. Iberi, Vighter Fowlkes, Jason D. Tan, Shida Livengood, Rick Rack, Philip D. TI In Situ Mitigation of Subsurface and Peripheral Focused Ion Beam Damage via Simultaneous Pulsed Laser Heating SO SMALL LA English DT Article DE direct-write processing; graphene milling; ion beams; laser heating; subsurface damage mitigation ID HELIUM-IMPLANTED SILICON; ELECTRON-BEAM; HE-IMPLANTATION; PLATINUM; GRAPHENE; PURIFICATION; DIFFUSION; DEPOSITS; DEFECTS; ENERGY AB Focused helium and neon ion (He+/Ne+) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He+/Ne+ beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He+/Ne+ ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He+ patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. These results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams. C1 [Stanford, Michael G.; Lewis, Brett B.; Fowlkes, Jason D.; Rack, Philip D.] Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA. [Iberi, Vighter; Fowlkes, Jason D.; Rack, Philip D.] Oak Ridge Natl Lab, Nanofabricat Res Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37381 USA. [Tan, Shida; Livengood, Rick] Intel Corp, MS SC9-68,2200 Mission Coll Blvd, Santa Clara, CA 95054 USA. RP Rack, PD (reprint author), Univ Tennessee, Mat Sci & Engn Dept, Knoxville, TN 37996 USA.; Rack, PD (reprint author), Oak Ridge Natl Lab, Nanofabricat Res Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37381 USA. EM prack@utk.edu FU National Defense Science and Engineering Graduate Fellowship through the AFOSR; University of Tennessee Chancellor's Fellowship program; DOE Office of Science User Facility FX M.G.S. acknowledges support from the National Defense Science and Engineering Graduate Fellowship funded through the AFOSR. B.B.L. acknowledges support via the University of Tennessee Chancellor's Fellowship program. P.D.R. and J.D.F. acknowledge support and all the authors acknowledge that the experiments were conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The authors would like to thank Mario Baca, Kechang Yu, and Darryl Shima for their outstanding sample prep and TEM work. The authors would also like to acknowledge Adam Rondinone for support with the Zeiss Orion Nanofab. NR 31 TC 4 Z9 4 U1 7 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1613-6810 EI 1613-6829 J9 SMALL JI Small PD APR 6 PY 2016 VL 12 IS 13 BP 1779 EP 1787 DI 10.1002/smll.201503680 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DI8ED UT WOS:000373733200013 PM 26864147 ER PT J AU Gargallo-Garriga, A Sardans, J Perez-Trujillo, M Guenther, A Llusia, J Rico, L Terradas, J Farre-Armengol, G Filella, I Parella, T Penuelas, J AF Gargallo-Garriga, Albert Sardans, Jordi Perez-Trujillo, Miriam Guenther, Alex Llusia, Joan Rico, Laura Terradas, Jaume Farre-Armengol, Gerard Filella, Iolanda Parella, Teodor Penuelas, Josep TI Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota SO BMC PLANT BIOLOGY LA English DT Article DE Epiphytic and endophytic microbiota; metabolites; antibiotics; Sambucus nigra ID BACTERIAL MICROBIOTA; EPIPHYTIC BACTERIA; VOLATILE EMISSIONS; PHYLLOSPHERE; LEAF; GROWTH; BIOTRANSFORMATION; ARABIDOPSIS; PATHOGEN; HOST AB Background: The phyllospheric microbiota is assumed to play a key role in the metabolism of host plants. Its role in determining the epiphytic and internal plant metabolome, however, remains to be investigated. We analyzed the Liquid Chromatography-Mass Spectrometry (LC-MS) profiles of the epiphytic and internal metabolomes of the leaves and flowers of Sambucus nigra with and without external antibiotic treatment application. Results: The epiphytic metabolism showed a degree of complexity similar to that of the plant organs. The suppression of microbial communities by topical applications of antibiotics had a greater impact on the epiphytic metabolome than on the internal metabolomes of the plant organs, although even the latter changed significantly both in leaves and flowers. The application of antibiotics decreased the concentration of lactate in both epiphytic and organ metabolomes, and the concentrations of citraconic acid, acetyl-CoA, isoleucine, and several secondary compounds such as terpenes and phenols in the epiphytic extracts. The metabolite pyrogallol appeared in the floral epiphytic community only after the treatment. The concentrations of the amino acid precursors of the ketoglutarate-synthesis pathway tended to decrease in the leaves and to increase in the foliar epiphytic extracts. Conclusions: These results suggest that anaerobic and/or facultative anaerobic bacteria were present in high numbers in the phyllosphere and in the apoplasts of S. nigra. The results also show that microbial communities play a significant role in the metabolomes of plant organs and could have more complex and frequent mutualistic, saprophytic, and/or parasitic relationships with internal plant metabolism than currently assumed. C1 [Gargallo-Garriga, Albert; Sardans, Jordi; Llusia, Joan; Rico, Laura; Farre-Armengol, Gerard; Filella, Iolanda; Penuelas, Josep] UAB, CSIC, Global Ecol Unit CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain. [Gargallo-Garriga, Albert; Sardans, Jordi; Llusia, Joan; Rico, Laura; Terradas, Jaume; Farre-Armengol, Gerard; Filella, Iolanda; Penuelas, Josep] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain. [Gargallo-Garriga, Albert; Perez-Trujillo, Miriam; Parella, Teodor] Univ Autonoma Barcelona, Serv Nucl Magnet Resonance, Cerdanyola Del Valles 08913, Catalonia, Spain. [Guenther, Alex] Pacific NW Natl Lab, Richland, WA 99354 USA. [Terradas, Jaume] Univ Autonoma Barcelona, Dept BABVE, Barcelona 08913, Catalonia, Spain. RP Gargallo-Garriga, A (reprint author), UAB, CSIC, Global Ecol Unit CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain.; Gargallo-Garriga, A (reprint author), CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain.; Gargallo-Garriga, A (reprint author), Univ Autonoma Barcelona, Serv Nucl Magnet Resonance, Cerdanyola Del Valles 08913, Catalonia, Spain. EM albert.gargallo@gmail.com RI Farre-Armengol, Gerard/I-3384-2016; Perez-Trujillo, Miriam/I-6349-2012; OI Farre-Armengol, Gerard/0000-0001-5763-0474; Perez-Trujillo, Miriam/0000-0002-6919-7417; Sardans, Jordi/0000-0003-2478-0219; Penuelas, Josep/0000-0002-7215-0150; Parella, Teodor/0000-0002-1914-2709 FU European Research Council Synergy grant [ERC-2013-SyG-610028]; Spanish Government grants [CGL2013-48074-P, CTQ2012-32436]; Catalan Government grant [SGR 2014-274] FX This research was supported by the European Research Council Synergy grant ERC-2013-SyG-610028 IMBALANCE-P, the Spanish Government grants CGL2013-48074-P and CTQ2012-32436, and the Catalan Government grant SGR 2014-274. NR 68 TC 0 Z9 0 U1 5 U2 16 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2229 J9 BMC PLANT BIOL JI BMC Plant Biol. PD APR 6 PY 2016 VL 16 AR 78 DI 10.1186/s12870-016-0767-7 PG 12 WC Plant Sciences SC Plant Sciences GA DI2NJ UT WOS:000373332400001 PM 27048394 ER PT J AU Tobioka, K Kitano, R Murayama, H AF Tobioka, Kohsaku Kitano, Ryuichiro Murayama, Hitoshi TI Enhanced Higgs mass in Compact Supersymmetry SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID KALUZA-KLEIN THEORIES; ELECTROWEAK SYMMETRY-BREAKING; EXTRA DIMENSIONS; HADRON COLLIDERS; STANDARD MODEL; GENERIC MODEL; DARK-MATTER; PROGRAM; BOSON; MSSM AB The current LHC results make weak scale supersymmetry difficult due to relatively heavy mass of the discovered Higgs boson and the null results of new particle searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz mechanism, is possible to accommodate such situations. A concrete example, the Compact Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and large mixing in the top and scalar top quark sector with vertical bar A(t)vertical bar similar to 2m((t) over tilde) which radiatively raises the Higgs mass. While the zero mode contribution of the model has been considered, in this paper we calculate the Kaluza-Klein tower effect to the Higgs mass. Although such contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein modes, we find the effect significantly enhances the radiative correction to the Higgs quartic coupling by from 10 to 50%. This is mainly because the top quark wave function is pushed out from the brane, which makes the top mass depend on higher powers in the Higgs field. As a result the Higgs mass is enhanced up to 15 GeV from the previous calculation. We also show the whole parameter space is testable at the LHC run II. C1 [Tobioka, Kohsaku] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Tobioka, Kohsaku] Weizmann Inst Sci, Dept Particle Phys & Astrophys, Herzl St 234, IL-7610001 Rehovot, Israel. [Tobioka, Kohsaku; Kitano, Ryuichiro] High Energy Accelerator Res Org KEK, Ctr Theory, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. [Kitano, Ryuichiro] Grad Univ Adv Studies Sokendai, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. [Kitano, Ryuichiro; Murayama, Hitoshi] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Inst Adv Study, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan. [Murayama, Hitoshi] Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA. [Murayama, Hitoshi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Tobioka, K (reprint author), Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel.; Tobioka, K (reprint author), Weizmann Inst Sci, Dept Particle Phys & Astrophys, Herzl St 234, IL-7610001 Rehovot, Israel.; Tobioka, K; Kitano, R (reprint author), High Energy Accelerator Res Org KEK, Ctr Theory, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan.; Kitano, R (reprint author), Grad Univ Adv Studies Sokendai, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan.; Kitano, R; Murayama, H (reprint author), Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Inst Adv Study, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan.; Murayama, H (reprint author), Univ Calif Berkeley, Dept Phys, 366 LeConte Hall, Berkeley, CA 94720 USA.; Murayama, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM tobioka@post.kek.jp; Ryuichiro.Kitano@kek.jp; hitoshi.murayama@ipmu.jp FU JSPS [15H03669, 26400241, 14J00179]; MEXT KAKENHI [25105011, 15H05887]; WPI, MEXT, Japan; U.S. DOE [DE-AC03-765F00098]; NSF [PHY-1316783] FX We thank Lorenzo di Pietro, Hou Keong Lou, Xiaochuan Lu, Yasunori Nomura, and Ryosuke Sato for useful discussions. This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (No. 15H03669 [RK]) and (C) (No. 26400241 [HM]), Grant-in-Aid for JSPS Fellows (No. 14J00179 [KT]), MEXT KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas (No. 25105011 [RK], No. 15H05887 [HM]), and by WPI, MEXT, Japan. HM also was supported in part by the U.S. DOE under Contract DE-AC03-765F00098, in part by the NSF under grant PHY-1316783. NR 82 TC 1 Z9 1 U1 1 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR 5 PY 2016 IS 4 AR 025 DI 10.1007/JHEP04(2016)025 PG 30 WC Physics, Particles & Fields SC Physics GA DL0OE UT WOS:000375331500002 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Agricola, J Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Akesson, TPA Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Asman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Baca, MJ Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Baldin, EM Balek, P Balestri, T Balli, F Balunas, WK Banas, E Banerjee, S Bannoura, AAE Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Biedermann, D Biesuz, NV Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biondi, S Bjergaard, DM Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Blunier, S Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogavac, D Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boutle, SK Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Madden, WDB Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bruscino, N Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burgard, CD Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calace, N Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Carbone, RM Cardarelli, R Cardillo, F Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Casper, DW Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Alberich, LC Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, YL Chang, P Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Moursli, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Chiarelli, G Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Cirotto, F Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Colasurdo, L Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuth, J Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Benedetti, A De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Dette, K Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Du, Y Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dutta, B Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Feremenga, L Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Flaschel, N Fleck, I Fleischmann, P Fletcher, GT Fletcher, G Fletcher, RRM Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Frate, M Fraternali, M Freeborn, D French, ST Fressard-Batraneanu, SM Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fusayasu, T Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gach, GP Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Geng, C Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghasemi, S Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gignac, M Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Gozani, E Grabas, HMX Graber, L Grabowska-Bold, I Gradin, POJ Grafstrom, P Gramling, J Gramstad, E Grancagnolo, S Gratchev, V Gray, HM Graziani, E Greenwood, ZD Grefe, C Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Guo, Y Gupta, S Gustavino, G Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Haney, B Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henkelmann, S Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hu, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikematsu, K Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Ince, T Introzzi, G Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Johnson, WJ Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kaplan, LS Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karentzos, E Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kasahara, K Kashif, L Kass, RD Kastanas, A Kataoka, Y Kato, C Katre, A Katzy, J Kawade, K Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kido, S Kim, HY Kim, SH Kim, YK Kimura, N Kind, OM King, BT King, M King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Knapik, J Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Kolb, M Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kukla, R Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Lazovich, T Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, X Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, H Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loew, KM Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, H Lu, N Lubatti, HJ Luci, C Lucotte, A Luedtke, C Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Macek, B Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeda, J Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J de Andrade, LM Ramos, JM Mann, A Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marley, DE Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Theenhausen, HMZ Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, A Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mistry, KP Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monden, R Monig, K Monini, C Monk, J Monnier, E Montalbano, A Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Mori, D Mori, T Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, RSP Mueller, T Muenstermann, D Mullen, P Mullier, GA Sanchez, FJM Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nachman, BP Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Villar, DIN Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Olszewski, A Olszowska, J Onofre, A Onogi, K Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB St Panagiotopoulou, E Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Penc, O Peng, C Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petroff, P Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pin, AWJ Pina, J Pinamonti, M Pinfold, JL Pingel, A Pires, S Pirumov, H Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Poley, A Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Astigarraga, MEP Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reichert, J Reisin, H Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rifki, O Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, JHN Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saha, P Sahinsoy, M Saimpert, M Saito, T Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Loyola, JES Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sammel, D Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schmitz, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Sicho, P Sidebo, PE Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Sinervo, P Sinev, NB Sioli, M Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Sokhrannyi, G Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spangenberg, M Spano, F Spearman, WR Sperlich, D Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Denis, RDS Stabile, A Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Suchek, S Sugaya, Y Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Svatos, M Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Araya, ST Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, PTE Taylor, W Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Temple, D Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todome, K Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsui, KM Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Ueda, I Ueno, R Ughetto, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, D Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, WM Yap, YC Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yuen, SPY Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zeng, JC Zeng, Q Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, G Zhang, H Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, M Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Agricola, J. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Amaral Coutinho, Y. Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Baca, M. J. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Baldin, E. M. Balek, P. Balestri, T. Balli, F. Balunas, W. K. Banas, E. Banerjee, Sw Bannoura, A. A. E. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Biedermann, D. Biesuz, N. V. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biondi, S. Bjergaard, D. M. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Blunier, S. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogavac, D. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boutle, S. K. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Madden, W. D. Breaden Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bruscino, N. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burgard, C. D. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calace, N. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Armadans, R. Caminal Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Carbone, R. M. Cardarelli, R. Cardillo, F. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Casper, D. W. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerda Alberich, L. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, Y. L. Chang, P. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Chiarelli, G. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Cirotto, F. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Colasurdo, L. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Conde Muino, P. Coniavitis, E. Connell, S. H. Connelly, I. A. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuth, J. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Benedetti, A. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Dette, K. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Du, Y. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duhrssen, M. Dunford, M. Yildiz, H. Duran Duren, M. Durglishvili, A. Duschinger, D. Dutta, B. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Feremenga, L. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Flaschel, N. Fleck, I. Fleischmann, P. Fletcher, G. T. Fletcher, G. Fletcher, R. R. M. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Frate, M. Fraternali, M. Freeborn, D. French, S. T. Fressard-Batraneanu, S. M. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fusayasu, T. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gach, G. P. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geich-Gimbel, Ch Geisler, M. P. Gemme, C. Genest, M. H. Geng, C. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghasemi, S. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gignac, M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Firmino Da Costa, J. Goncalves Pinto Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Gozani, E. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Gradin, P. O. J. Grafstrom, P. Gramling, J. Gramstad, E. Grancagnolo, S. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Grefe, C. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Guo, Y. Gupta, S. Gustavino, G. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Haney, B. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henkelmann, S. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hu, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikematsu, K. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Ince, T. Introzzi, G. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Johnson, W. J. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kaplan, L. S. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karentzos, E. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kasahara, K. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Kato, C. Katre, A. Katzy, J. Kawade, K. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kido, S. Kim, H. Y. Kim, S. H. Kim, Y. K. Kimura, N. Kind, O. M. King, B. T. King, M. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Knapik, J. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Kolb, M. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kukla, R. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Lazovich, T. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, X. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, H. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loew, K. M. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, H. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luedtke, C. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Macek, B. Machado Miguens, J. Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeda, J. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marley, D. E. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Theenhausen, H. Meyer Zu Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mistry, K. P. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Monden, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montalbano, A. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Mori, D. Mori, T. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Mullier, G. A. Sanchez, F. J. Munoz Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nachman, B. P. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Villar, D. I. Narrias Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Olszewski, A. Olszowska, J. Onofre, A. Onogi, K. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero y Garzon, G. Otono, H. Ouchrif, M. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. St Panagiotopoulou, E. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Penc, O. Peng, C. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petroff, P. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pin, A. W. J. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pires, S. Pirumov, H. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Poley, A. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Astigarraga, M. E. Pozo Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reichert, J. Reisin, H. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rifki, O. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, J. H. N. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saha, P. Sahinsoy, M. Saimpert, M. Saito, T. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Salazar Loyola, J. E. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sammel, D. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schmitz, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidebo, P. E. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Sinervo, P. Sinev, N. B. Sioli, M. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Sokhrannyi, G. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spangenberg, M. Spano, F. Spearman, W. R. Sperlich, D. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Denis, R. D. St. Stabile, A. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Suchek, S. Sugaya, Y. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Svatos, M. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tapia Araya, S. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, P. T. E. Taylor, W. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Temple, D. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todome, K. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsui, K. M. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Ueda, I. Ueno, R. Ughetto, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, D. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, W-M. Yap, Y. C. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yuen, S. P. Y. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zeng, J. C. Zeng, Q. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, G. Zhang, H. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, M. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Search for anomalous couplings in the Wtb vertex from the measurement of double differential angular decay rates of single top quarks produced in the t-channel with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron scattering ID PAIR PRODUCTION; INFORMATION CRITERIA; HADRON COLLIDERS; CROSS-SECTION; MODEL; LHC; RESUMMATION; FERMILAB; SPIN AB The electroweak production and subsequent decay of single top quarks is determined by the properties of the Wtb vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the t-channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb(-1) of proton-proton collision data at root s = 7 TeV collected with the ATLAS detector at the LHC. Two parameters are measured simultaneously in this analysis. The fraction f(1) of decays containing transversely polarised W bosons is measured to be 0.37 +/- 0.07 (stat. circle plus syst.). The phase delta_ between amplitudes for transversely and longitudinally polarised W bosons recoiling against lefthanded b-quarks is measured to be -0.014 pi +/- 0.036 pi (stat. circle plus syst.). The correlation in the measurement of these parameters is 0.15. These values result in two-dimensional limits at the 95% confidence level on the ratio of the complex coupling parameters g(R) and V-L, yielding R-e[g(R)/V-L] is an element of [-0.36; 0.10] and Im[g(R)/V-L] is an element of [-0.17; 0.23] with a correlation of 0.11. The results are in good agreement with the predictions of the Standard Model. C1 [Jackson, P.; Lee, L.; Petridis, A.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Saddique, A.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] IN2P3, CNRS, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Mastrandrea, P.; Sauvage, G.; Sauvan, E.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mt Blanc, Annecy Le Vieux, France. [Blair, R. E.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Paramonov, A.; Price, L. E.; Proudfoot, J.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Feremenga, L.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Karentzos, E.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; St Panagiotopoulou, E.; Papadopoulou, Th D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Anjos, N.; Bosman, M.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Agatonovic-Jovin, T.; Bogavac, D.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Bhimji, W.; Brosamer, J.; Calafiura, P.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Gabrielli, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Biedermann, D.; Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Hristova, I.; Kind, O. M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Sperlich, D.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Invalidenstr 110, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Mullier, G. A.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allport, P. P.; Bella, L. Aperio; Baca, M. J.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Gach, G. P.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Biondi, S.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Corradi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; Biondi, S.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Sioli, M.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Bruscino, N.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch; Gonella, L.; Grefe, C.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lantzsch, K.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Moles-Valls, R.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau; Yuen, S. P. Y.] Univ Bonn, Inst Phys, Nussallee 12, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Barone, G.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Loew, K. M.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Amaral Coutinho, Y.; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, BR-21945 Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Elect Circuits Dept, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; La Rosa Navarro, J. L.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Gordon, H. A.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Xu, L.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. Transilvania Univ Brasov, Brasov, Romania. [Alexa, C.; Boldea, V.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Ducu, O. A.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Pantea, D.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Rosten, J. H. N.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Ueno, R.; Vincter, M. G.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Gonzalez, B. Alvarez; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Beermann, T. A.; Beltramello, O.; Bianco, M.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Carrillo-Montoya, G. D.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duhrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Feng, E. J.; Perez, S. Fernandez; Francis, D.; Fressard-Batraneanu, S. M.; Froidevaux, D.; Gadatsch, S.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Gumpert, C.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Klioutchnikova, T.; Krasznahorkay, A.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Astigarraga, M. E. Pozo; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Ritsch, E.; Roe, S.; Ruiz-Martinez, A.; Ruthmann, N.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sforza, F.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Staerz, S.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Swiatlowski, M.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Blunier, S.; Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Alameda 340, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; Salazar Loyola, J. E.; Tapia Araya, S.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Peng, C.; Ren, H.; Shan, L. Y.; Sun, X.; Xu, D.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Geng, C.; Guo, Y.; Han, L.; Hu, Q.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Zhang, G.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, L.; Li, Y.; Zhang, H.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Du, Y.; Feng, C.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Bret, M. Cano; Guo, J.; Yang, H.] Shanghai Jiao Tong Univ, Dept Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, Shanghai 200030, Peoples R China. [Chen, X.; Zhou, N.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] IN2P3, CNRS, Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Carbone, R. M.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Ochoa, I.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Wang, T.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Besjes, G. J.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Lab Nazl Frascati, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Knapik, J.; Korcyl, K.; Malecki, Pa; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Notkestr 85, Hamburg, Germany. [Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Dutta, B.; Eckardt, C.; Filipuzzi, M.; Flaschel, N.; Glazov, A.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Pirumov, H.; Poley, A.; Radescu, V.; Robinson, J. E. M.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Dette, K.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bjergaard, D. M.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; Pino, S. A. Olivares; Proissl, M.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Burgard, C. D.; Buescher, D.; Cardillo, F.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Landgraf, U.; Luedtke, C.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Sammel, D.; Schillo, C.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Ta, D.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. [Ancu, L. S.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Calace, N.; Clark, A.; Coccaro, A.; Delitzsch, C. M.; della Volpe, D.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nessi, M.; Paolozzi, L.; Picazio, A.; Ristic, B.; Schramm, S.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Duren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Boutle, S. K.; Madden, W. D. Breaden; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; Denis, R. D. St.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Agricola, J.; Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Janus, M.; Kareem, M. J.; Kawamura, G.; Lai, S.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subatom & Cosmol, Grenoble, France. [McFarlane, K. W.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Lazovich, T.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Tuna, A. N.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Theenhausen, H. Meyer Zu; Villar, D. I. Narrias; Sahinsoy, M.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Starovoitov, P.; Suchek, S.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Kolb, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Chan, Y. L.; Castillo, L. R. Flores; Lu, H.; Salvucci, A.; Tsui, K. M.] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Kneringer, E.; Lukas, W.; Usanova, A.; Vigne, R.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Argyropoulos, S.; Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Huseynov, N.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Kukhtin, V.; Ladygin, E.; Minashvili, A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Hanagaki, K.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Okuyama, T.; Sasaki, O.; Suzuki, S.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Kido, S.; Kishimoto, T.; Kurashige, H.; Maeda, J.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Monden, R.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Sfiligoj, T.; Sokhrannyi, G.] Univ Ljubljana, Ljubljana, Slovenia. [Bevan, A. J.; Bona, M.; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.; Castanheira, M. Teixeira Dias] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, London, Surrey, England. [Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Ortiz, N. G. Gutierrez; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Mcfayden, J. A.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Chelstowska, M. A.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Chelstowska, M. A.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Chelstowska, M. A.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.; Yap, Y. C.] IN2P3, CNRS, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Doglioni, C.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Llorente Merino, J.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Cuth, J.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schmitz, S.; Schott, M.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Li, X.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Sanchez, F. J. Munoz; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Pin, A. W. J.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, R.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhang, R.] IN2P3, CNRS, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Taylor, P. T. E.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Geng, C.; Goldfarb, S.; Guan, L.; Guo, Y.; Hu, X.; Levin, D.; Liu, H.; Lu, N.; Marley, D. E.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Yu, J. M.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Tollefson, K.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Stabile, A.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Tikhomirov, V. O.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Giuliani, C.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Spettel, F.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst Phys, D-80805 Munich, Germany. [Fusayasu, T.; Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Horii, Y.; Kawade, K.; Morvaj, L.; Onogi, K.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Cirotto, F.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Di Donato, C.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Cirotto, F.; Di Donato, C.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Caron, S.; Colasurdo, L.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Konig, A. C.; Nektarijevic, S.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; Deigaard, I.; Deluca, C.; Duda, D.; Ferrari, P.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Andari, N.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Saha, P.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Bertsche, D.; De Benedetti, A.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Rifki, O.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Bousson, N.; Haley, J.; Jamin, D. O.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Abreu, R.; Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Whalen, K.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Petroff, P.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] IN2P3, CNRS, Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Introzzi, G.; Lanza, A.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Introzzi, G.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Balunas, W. K.; Brendlinger, K.; Fletcher, R. R. M.; Haney, B.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Machado Miguens, J.; Meyer, C.; Mistry, K. P.; Reichert, J.; Stahlman, J.; Thomson, E.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Biesuz, N. V.; Cavasinni, V.; Chiarelli, G.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Boudreau, J.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Machado Miguens, J.; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, P-1699 Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Penc, O.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Berta, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] NRC KI, State Res Ctr, Inst High Energy Phys Protvino, Moscow, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Sawyer, C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Di Domenico, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Gustavino, G.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Via E Carnevale, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA Marrakech, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Firmino Da Costa, J. Goncalves Pinto; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Kukla, R.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay Commissariat Energie Atom & Energies A, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Hance, M.; Kuhl, A.; La Rosa, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Alpigiani, C.; Blackburn, D.; Goussiou, A. G.; Hsu, S. -C.; Johnson, W. J.; Lubatti, H. J.; Marx, M.; Meehan, S.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Pastor, E. Torro; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hamity, G. N.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Klinger, J. A.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ghasemi, S.; Ibragimov, I.; Ikematsu, K.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; Mori, D.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Temple, D.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Moss, J.; Mount, R.; Nachman, B. P.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Tompkins, L.; Wittgen, M.; Young, C.; Zeng, Q.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Plazak, L.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Castaneda-Miranda, E.; Hamilton, A.; Lee, C. A.; Yacoob, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Connell, S. H.; Govender, N.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Hsu, C.; Kar, D.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Plucinski, P.; Poettgen, R.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Sidebo, P. E.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; McCarthy, R. L.; Montalbano, A.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.; Zhou, M.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Allbrooke, B. M. M.; Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Morley, A. K.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Wang, J.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Hou, S.; Hsu, P. J.; Lee, S. C.; Li, B.; Lin, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Song, H. Y.; Teng, P. K.; Wang, C.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Gozani, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Asai, S.; Chen, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kato, C.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Mori, T.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Nobe, T.; Saito, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Pettersson, N. E.; Todome, K.; Yamaguchi, D.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Sinervo, P.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Hayashi, T.; Kasahara, K.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Casper, D. W.; Corso-Radu, A.; Frate, M.; Gerbaudo, D.; Guest, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Armadans, R. Caminal; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Long, J. D.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.; Zeng, J. C.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Gradin, P. O. J.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, CNM, IMB, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Valero, A.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; Gignac, M.; Henkelmann, S.; King, S. B.; Lister, A.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Pearce, J.; Sobie, R.; Trovatelli, M.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Farrington, S. M.; Harrison, P. F.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.; Spangenberg, M.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kaplan, L. S.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Braun, H. M.; Cornelissen, T.; Ellinghaus, F.; Ernis, G.; Fischer, J.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Anisenkov, A. V.; Baldin, E. M.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Banerjee, Sw] Univ Louisville, Dept Phys & Astron, Louisville, KY 40292 USA. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 823, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] IPP, Toronto, ON, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Barcelona, Spain. Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] Int Sch Adv Studies SISSA, Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.; Aad, G (reprint author), IN2P3, CNRS, Marseille, France. RI Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Garcia, Jose /H-6339-2015; Gavrilenko, Igor/M-8260-2015; Di Domenico, Antonio/G-6301-2011; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Owen, Mark/Q-8268-2016; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; Chekulaev, Sergey/O-1145-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Carli, Ina/C-2189-2017; Smirnova, Oxana/A-4401-2013; Maneira, Jose/D-8486-2011; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; Doyle, Anthony/C-5889-2009; Conde Muino, Patricia/F-7696-2011; Stabile, Alberto/L-3419-2016; Boyko, Igor/J-3659-2013; Coccaro, Andrea/P-5261-2016; Staroba, Pavel/G-8850-2014; Kukla, Romain/P-9760-2016; Goncalo, Ricardo/M-3153-2016; Vykydal, Zdenek/H-6426-2016; Fedin, Oleg/H-6753-2016; White, Ryan/E-2979-2015; Guo, Jun/O-5202-2015; Gorelov, Igor/J-9010-2015; Ventura, Andrea/A-9544-2015; Kantserov, Vadim/M-9761-2015; Mitsou, Vasiliki/D-1967-2009; Villa, Mauro/C-9883-2009; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Zhukov, Konstantin/M-6027-2015; Gladilin, Leonid/B-5226-2011; Nechaeva, Polina/N-1148-2015; Mashinistov, Ruslan/M-8356-2015; Livan, Michele/D-7531-2012; SULIN, VLADIMIR/N-2793-2015; Warburton, Andreas/N-8028-2013; Carvalho, Joao/M-4060-2013; Tikhomirov, Vladimir/M-6194-2015; Snesarev, Andrey/H-5090-2013; Brooks, William/C-8636-2013 OI Pina, Joao /0000-0001-8959-5044; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Belanger-Champagne, Camille/0000-0003-2368-2617; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Peleganchuk, Sergey/0000-0003-0907-7592; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Cristinziani, Markus/0000-0003-3893-9171; Galhardo, Bruno/0000-0003-0641-301X; Di Domenico, Antonio/0000-0001-8078-2759; Gauzzi, Paolo/0000-0003-4841-5822; Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Owen, Mark/0000-0001-6820-0488; Fabbri, Laura/0000-0002-4002-8353; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Carli, Ina/0000-0002-0411-1141; Smirnova, Oxana/0000-0003-2517-531X; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Doyle, Anthony/0000-0001-6322-6195; Conde Muino, Patricia/0000-0002-9187-7478; Stabile, Alberto/0000-0002-6868-8329; Boyko, Igor/0000-0002-3355-4662; Coccaro, Andrea/0000-0003-2368-4559; Kukla, Romain/0000-0002-1140-2465; Goncalo, Ricardo/0000-0002-3826-3442; Vykydal, Zdenek/0000-0003-2329-0672; White, Ryan/0000-0003-3589-5900; Guo, Jun/0000-0001-8125-9433; Gorelov, Igor/0000-0001-5570-0133; Ventura, Andrea/0000-0002-3368-3413; Kantserov, Vadim/0000-0001-8255-416X; Mitsou, Vasiliki/0000-0002-1533-8886; Villa, Mauro/0000-0002-9181-8048; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Gladilin, Leonid/0000-0001-9422-8636; Mashinistov, Ruslan/0000-0001-7925-4676; Livan, Michele/0000-0002-5877-0062; SULIN, VLADIMIR/0000-0003-3943-2495; Warburton, Andreas/0000-0002-2298-7315; Carvalho, Joao/0000-0002-3015-7821; Tikhomirov, Vladimir/0000-0002-9634-0581; Brooks, William/0000-0001-6161-3570 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia, Russian Federation; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, Switzerland; Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, Canada; Ontario Innovation Trust, Canada; EPLANET, European Union; ERC, European Union; FP7, European Union; Horizon, European Union; Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, France; ANR, France; Region Auvergne, France; Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; Herakleitos programme EU-ESF; Thales programme EU-ESF; Aristeia programme EU-ESF; Greek NSRF; BSF, Israel; GIF, Israel; Minerva, Israel; BRF, Norway; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. NR 70 TC 4 Z9 4 U1 18 U2 50 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR 5 PY 2016 IS 4 AR 023 DI 10.1007/JHEP04(2016)023 PG 46 WC Physics, Particles & Fields SC Physics GA DJ1KV UT WOS:000373962600001 ER PT J AU Xiang, FM Parviz, D Givens, TM Tzeng, P Davis, EM Stafford, CM Green, MJ Grunlan, JC AF Xiang, Fangming Parviz, Dorsa Givens, Tara M. Tzeng, Ping Davis, Eric M. Stafford, Christopher M. Green, Micah J. Grunlan, Jaime C. TI Stiff and Transparent Multilayer Thin Films Prepared Through Hydrogen-Bonding Layer-by-Layer Assembly of Graphene and Polymer SO ADVANCED FUNCTIONAL MATERIALS LA English DT Article DE elastic modulus; graphene; hydrogen bonding; layer-by-layer assembly; light transmittance ID FUNCTIONALIZED GRAPHENE; ELASTIC PROPERTIES; ORGANIC-SOLVENTS; OXYGEN BARRIER; GAS BARRIER; NANOCOMPOSITES; CONDUCTIVITY; DISPERSIONS; SHEETS; COMPOSITES AB Due to their exceptional orientation of 2D nanofillers, layer-by-layer (LbL) assembled polymer/graphene oxide thin films exhibit unmatched mechanical performance relative to any conventionally produced counterparts with similar composition. Unprecedented mechanical property improvement, by replacing graphene oxide with pristine graphene, is demonstrated in this work. Polyvinylpyrrolidone-stabilized graphene platelets are alternately deposited with poly(acrylic acid) using hydrogen bonding assisted LbL assembly. Transmission electron microscopy imaging and the Halpin-Tsai model are used to demonstrate, for the first time, that intact graphene can be processed from water to generate polymer nanocomposite thin films with simultaneous parallel-alignment, high packing density, and exfoliation. A multilayer thin film with only 3.9 vol% of highly exfoliated, and structurally intact graphene, increases the elastic modulus (E) of a polymer multilayer thin film by 322% (from 1.41 to 4.81 GPa), while maintaining visible light transmittance of approximate to 90%. This is one of the greatest improvements in elastic modulus ever reported for a graphene-filled polymer nanocomposite with a glassy (E > 1 GPa) matrix. The technique described here provides a powerful new tool to improve nanocomposite properties (mechanical, gas transport, etc.) that can be universally applied to a variety of polymer matrices and 2D nanoplatelets. C1 [Xiang, Fangming; Givens, Tara M.; Grunlan, Jaime C.] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Parviz, Dorsa; Tzeng, Ping; Green, Micah J.] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA. [Davis, Eric M.; Stafford, Christopher M.] NIST, Mat Sci & Engn Div, 100 Bur Dr, Gaithersburg, MD 20899 USA. [Xiang, Fangming] Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. [Davis, Eric M.] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA. RP Grunlan, JC (reprint author), Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. EM jgrunlan@tamu.edu RI Grunlan, Jaime/K-3242-2016; Xiang, Fangming/L-4289-2014 OI Grunlan, Jaime/0000-0001-5241-9741; Xiang, Fangming/0000-0002-2022-8163 NR 48 TC 2 Z9 2 U1 33 U2 95 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1616-301X EI 1616-3028 J9 ADV FUNCT MATER JI Adv. Funct. Mater. PD APR 5 PY 2016 VL 26 IS 13 BP 2143 EP 2149 DI 10.1002/adfm.201504758 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DI8FX UT WOS:000373738000010 ER PT J AU Badal, SP Michalak, SD Chan, GCY You, Y Shelley, JT AF Badal, Sunil P. Michalak, Shawn D. Chan, George C. -Y. You, Yi Shelley, Jacob T. TI Tunable Ionization Modes of a Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source SO ANALYTICAL CHEMISTRY LA English DT Article ID TEMPERATURE PLASMA PROBE; DESORPTION/IONIZATION MASS-SPECTROMETRY; DESORPTION-IONIZATION; POSITIVE-IONS; NITRIC-OXIDE; CORK-TAINT; GAS-PHASE; OPEN-AIR; PHOTOIONIZATION; DISCHARGES AB Plasma-based ambient desorption/ionization sources are versatile in that they enable direct ionization of gaseous samples as well as desorption/ionization of analytes from liquid and solid samples. However, ionization matrix effects, caused by competitive ionization processes, can worsen sensitivity or even inhibit detection all together. The present study is focused on expanding the analytical capabilities of the flowing atmospheric pressure afterglow (PAPA) source by exploring additional types of ionization chemistry. Specifically, it was found that the abundance and type of reagent ions produced by the FAPA source and, thus, the corresponding ionization pathways of analytes, can be altered by changing the source working conditions. High abundance of proton-transfer reagent ions was observed with relatively high gas flow rates and low discharge currents. Conversely, charge-transfer reagent species were most abundant at low gas flows and high discharge currents. A rather nonpolar model analyte, biphenyl, was found to significantly change ionization pathway based on source operating parameters. Different analyte ions (e.g., MH+ via proton-transfer and M+. via charge-transfer) were formed under unique operating parameters demonstrating two different operating regimes. These tunable ionization modes of the FAPA were used to enable or enhance detection of analytes which traditionally exhibit low-sensitivity in plasma-based ADI-MS analyses. In one example, 2,2'-dichloroquaterphenyl was detected under charge-transfer FAPA conditions, which were difficult or impossible to detect with proton-transfer FAPA or direct analysis in real-time (DART). Overall, this unique mode of operation increases the number and range of detectable analytes and has the potential to lessen ionization matrix effects in ADI-MS analyses. C1 [Badal, Sunil P.; You, Yi; Shelley, Jacob T.] Kent State Univ, Dept Chem & Biochem, 214 Williams Hall, Kent, OH 44242 USA. [Michalak, Shawn D.] Stark State Coll, North Canton, OH 44720 USA. [Chan, George C. -Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Shelley, JT (reprint author), Kent State Univ, Dept Chem & Biochem, 214 Williams Hall, Kent, OH 44242 USA. EM jshelley@kent.edu FU National Science Foundation (NSF) REU summer research program FX The authors would like to thank Dr. Robert Twieg and Dr. Suvagata Tripathi for providing the 2,2 '-dichloroquaterphenyl sample as well as Wade Aldhizer and Larry Maurer for their technical help. The authors would like to thank IonSense for loan of the DART ID-Cube source and Prosolia, Inc. for loan of the FAPA power supply. The authors would also like to thank the National Science Foundation (NSF) REU summer research program, which funded S.M. to work on this project. NR 39 TC 3 Z9 3 U1 12 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD APR 5 PY 2016 VL 88 IS 7 BP 3494 EP 3503 DI 10.1021/acs.analchem.5b03434 PG 10 WC Chemistry, Analytical SC Chemistry GA DI7CI UT WOS:000373656300014 PM 26916720 ER PT J AU Ball, CS Light, YK Koh, CY Wheeler, SS Coffey, LL Meagher, RJ AF Ball, Cameron S. Light, Yooli K. Koh, Chung-Yan Wheeler, Sarah S. Coffey, Lark L. Meagher, Robert J. TI Quenching of Unincorporated Amplification Signal Reporters in Reverse-Transcription Loop-Mediated Isothermal Amplification Enabling Bright, Single-Step, Closed-Tube, and Multiplexed Detection of RNA Viruses SO ANALYTICAL CHEMISTRY LA English DT Article ID WEST-NILE-VIRUS; RAPID DETECTION; CHIKUNGUNYA VIRUS; VISUAL DETECTION; RT-LAMP; TRANSMISSION; HIV-1; ASSAY; DNA AB Reverse-transcription-loop-mediated isothermal amplification (RT-LAMP) has frequently been proposed as an enabling technology for simplified diagnostic tests for RNA viruses. However, common detection techniques used for LAMP and RT-LAMP have drawbacks, including poor discrimination capability, inability to multiplex targets, high rates of false positives, and (in some cases) the requirement of opening reaction tubes postamplification. Here, we present a simple technique that allows closed-tube, target-specific detection, based on inclusion of a dye-labeled primer that is incorporated into a target-specific amplicon if the target is present. A short, complementary quencher hybridizes to unincorporated primer upon cooling down at the end of the reaction, thereby quenching fluorescence of any unincorporated primer. Our technique, which we term QUASR (for quenching of unincorporated amplification signal reporters, read "quasar"), does not significantly reduce the amplification efficiency or sensitivity of RT-LAMP. Equipped with a simple LED excitation source and a colored plastic gel filter, the naked eye or a camera can easily discriminate between positive and negative QUASR reactions, which produce a difference in signal of approximately 10:1 without background subtraction. We demonstrate that QUASR detection is compatible with complex sample matrices such as human blood, using a novel LAMP primer set for bacteriophage MS2 (a model RNA virus particle). Furthermore, we demonstrate single-tube duplex detection of West Nile virus (WNV) and chikungunya virus (CHIKV) RNA. C1 [Ball, Cameron S.; Light, Yooli K.; Koh, Chung-Yan; Meagher, Robert J.] Sandia Natl Labs, POB 969,MS 9291, Livermore, CA 94551 USA. [Wheeler, Sarah S.; Coffey, Lark L.] Univ Calif Davis, Sch Vet Med, Dept Pathol Microbiol & Immunol, One Shield Ave, Davis, CA 95616 USA. RP Meagher, RJ (reprint author), Sandia Natl Labs, POB 969,MS 9291, Livermore, CA 94551 USA. EM rmeaghe@sandia.gov FU Sandia National Laboratories' Laboratory-Directed Research and Development (LDRD) Program [173111]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories' Laboratory-Directed Research and Development (LDRD) Program, Grant 173111 (PI: Meagher). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 23 TC 5 Z9 5 U1 15 U2 32 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD APR 5 PY 2016 VL 88 IS 7 BP 3562 EP 3568 DI 10.1021/acs.analchem.5b04054 PG 7 WC Chemistry, Analytical SC Chemistry GA DI7CI UT WOS:000373656300022 PM 26980448 ER PT J AU Mahoney, CM Kelly, RT Alexander, L Newburn, M Bader, S Ewing, RG Fahey, AJ Atkinson, DA Beagley, N AF Mahoney, Christine M. Kelly, Ryan T. Alexander, Liz Newburn, Matt Bader, Sydney Ewing, Robert G. Fahey, Albert J. Atkinson, David A. Beagley, Nathaniel TI Bayesian Integration and Classification of Composition C-4 Plastic Explosives Based on Time-of-Flight-Secondary Ion Mass Spectrometry and Laser Ablation-Inductively Coupled Plasma Mass Spectrometry SO ANALYTICAL CHEMISTRY LA English DT Article ID PARTIAL LEAST-SQUARES; TOF-SIMS; ELEMENTAL ANALYSIS; PAPER; QUANTIFICATION; DISCRIMINATION; FINGERPRINTS; INKS AB Time-of-flight-secondary ion mass spectrometry (TOF-SIMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) were used for characterization and identification of unique signatures from a series of 18 Composition C-4 plastic explosives. The samples were obtained from various commercial and military sources around the country. Positive and negative ion TOF-SIMS data were acquired directly from the C-4 residue on Si surfaces, where the positive ion mass spectra obtained were consistent with the major composition of organic additives, and the negative ion mass spectra were more consistent with explosive content in the C-4 samples. Each series of mass spectra was subjected to partial least squares-discriminant analysis (PLS-DA), a multivariate statistical analysis approach which serves to first find the areas of maximum variance within different classes of C-4 and subsequently to classify unknown samples based on correlations between the unknown data set and the original data set (often referred to as a training data set). This method was able to successfully classify test samples of C-4, though with a limited degree of certainty. The classification accuracy of the method was further improved by integrating the positive and negative ion data using a Bayesian approach. The TOF-SIMS data was combined with a second analytical method, LA-ICPMS, which was used to analyze elemental signatures in the C-4. The integrated data were able to classify test samples with a high degree of certainty. Results indicate that this Bayesian integrated approach constitutes a robust classification method that should be employable even in dirty samples collected in the field. C1 [Mahoney, Christine M.; Kelly, Ryan T.; Alexander, Liz; Newburn, Matt; Bader, Sydney] Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA. [Ewing, Robert G.; Fahey, Albert J.; Atkinson, David A.] Pacific NW Natl Lab, Natl Secur Directorate, 902 Battelle Blvd, Richland, WA 99352 USA. [Beagley, Nathaniel] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA. [Mahoney, Christine M.] Corning Inc, SP FR-018, Corning, NY 14831 USA. [Fahey, Albert J.] US Naval Res Lab, Code 6367,Bldg 222,Room 257,4555 Overlook Ave SW, Washington, DC 20375 USA. RP Mahoney, CM (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99352 USA.; Mahoney, CM (reprint author), Corning Inc, SP FR-018, Corning, NY 14831 USA. EM mahoneycm@corning.com FU Department of Energy's Office of Biological and Environmental Research FX We would like to acknowledge Michelle Evans from the Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF) for providing PNNL with C-4 samples studied in this work. The research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Finally, the authors would like to acknowledge Dan Graham, Ph.D., University of Washington, for the development and use of software that was used in this study to characterize and tabulate mass spectral data. NR 37 TC 0 Z9 0 U1 5 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD APR 5 PY 2016 VL 88 IS 7 BP 3598 EP 3607 DI 10.1021/acs.analchem.5b04151 PG 10 WC Chemistry, Analytical SC Chemistry GA DI7CI UT WOS:000373656300027 PM 26913559 ER PT J AU Wang, YC Engelhardt, MH Baer, DR Castner, DG AF Wang, Yung-Chen Engelhardt, Mark H. Baer, Donald R. Castner, David G. TI Quantifying the Impact of Nanoparticle Coatings and Nonuniformities on XPS Analysis: Gold/Silver Core-Shell Nanoparticles SO ANALYTICAL CHEMISTRY LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; GOLD NANOPARTICLES; SURFACE-ANALYSIS; BREAST-CANCER; INTENSITIES; SIMULATION; MONOLAYERS; SOFTWARE; SPECTRA; FLAT AB Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, nonspherical, and contain off centered Au-cores. Using the average NP dimensions determined from STEM analysis, SESSA spectral modeling indicated that washed Au/Ag-core-shell NPs were stabilized with a 0.8 nm layer of sodium citrate and a 0.05 nm (one wash) or 0.025 nm (two wash) layer of adventitious hydrocarbon, but did not fully account for the observed XPS signal from the Au-core. This was addressed by a series of simulations and normalizations to account for contributions of NP nonsphericity and off-centered Au-cores. Both of these nonuniformities reduce the effective Ag-shell thickness, which effect the Au-core photoelectron intensity. The off-centered cores had the greatest impact for the particles in this study. When the contributions from the geometrical nonuniformities are included in the simulations, the SESSA generated elemental compositions that matched the XPS elemental compositions. This work demonstrates how spectral modeling software such as SESSA, when combined with experimental XPS and STEM measurements, advances the ability to quantitatively assess overlayer thicknesses for multilayer core-shell NPs and deal with complex, nonideal geometrical properties. C1 [Wang, Yung-Chen; Castner, David G.] Univ Washington, Dept Bioengn, Natl ESCA & Surface Anal Ctr Biomed Problems, Box 351653, Seattle, WA 98195 USA. [Castner, David G.] Univ Washington, Dept Chem Engn, Natl ESCA & Surface Anal Ctr Biomed Problems, Box 351653, Seattle, WA 98195 USA. [Engelhardt, Mark H.; Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Box 999, Richland, WA 99352 USA. RP Castner, DG (reprint author), Univ Washington, Dept Bioengn, Natl ESCA & Surface Anal Ctr Biomed Problems, Box 351653, Seattle, WA 98195 USA.; Castner, DG (reprint author), Univ Washington, Dept Chem Engn, Natl ESCA & Surface Anal Ctr Biomed Problems, Box 351653, Seattle, WA 98195 USA. EM castner@uw.edu FU National Institutes of Health [EB-002027]; National Institutes of Health, National Institute of Environmental Health Sciences (NIEHS) [U19 ES019544]; National Science Foundation Graduate Research Fellowship Program [DGE-1256082]; DOE's Office of Biological and Environmental Research FX Y.-C.W. and D.G.C. gratefully acknowledge the support from National Institutes of Health Grant EB-002027 to NESAC/BIO from the National Institute of Biomedical Imaging and Bioengineering. D.R.B. acknowledges support from the National Institutes of Health, National Institute of Environmental Health Sciences (NIEHS) under Grant U19 ES019544. The silver nanomaterials were provided by the NIEHS Centers for Nanotechnology Health Implications Research (NCNHIR) Consortium. Y.-C.W. was supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1256082. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. A portion of this research was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and is located at Pacific Northwest National Laboratory (PNNL). We thank Drs. J. Smith and P. Musuamy for assistance with preparation of the samples for the XPS measurements and Dr. C.-M. Wang for the STEM measurements that were reported in ref 7. We thank M. Chudzicki, C. Powell, A. Shard, and W. Werner for simulating discussions regarding XPS analysis of nanoparticles. NR 36 TC 6 Z9 6 U1 17 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD APR 5 PY 2016 VL 88 IS 7 BP 3917 EP 3925 DI 10.1021/acs.analchem.6b00100 PG 9 WC Chemistry, Analytical SC Chemistry GA DI7CI UT WOS:000373656300067 PM 26950247 ER PT J AU Mei, Y Ramanathan, A Glover, K Stanley, C Sanishvili, R Chakravarthy, S Yang, ZY Colbert, CL Sinha, SC AF Mei, Yang Ramanathan, Arvind Glover, Karen Stanley, Christopher Sanishvili, Ruslan Chakravarthy, Srinivas Yang, Zhongyu Colbert, Christopher L. Sinha, Sangita C. TI Conformational Flexibility Enables the Function of a BECN1 Region Essential for Starvation-Mediated Autophagy SO BIOCHEMISTRY LA English DT Article ID SMALL-ANGLE SCATTERING; PROTEIN SECONDARY STRUCTURE; BECLIN 1-DEPENDENT AUTOPHAGY; CIRCULAR-DICHROISM SPECTRA; TUMOR-SUPPRESSOR FUNCTION; X-RAY-SCATTERING; WEB SERVER; BIOLOGICAL MACROMOLECULES; REGULATES AUTOPHAGY; MOLECULAR-DYNAMICS AB BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 angstrom sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron electron resonance electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy. C1 [Mei, Yang; Glover, Karen; Yang, Zhongyu; Colbert, Christopher L.; Sinha, Sangita C.] N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58108 USA. [Ramanathan, Arvind] Oak Ridge Natl Lab, Hlth Data Sci Inst, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA. [Stanley, Christopher] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Sanishvili, Ruslan] Argonne Natl Lab, GMCA, APS, Xray Sci Div,Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Chakravarthy, Srinivas] Argonne Natl Lab, Adv Photon Source, BioCAT, 9700 South Cass Ave,Bldg 435B, Argonne, IL 60439 USA. RP Sinha, SC (reprint author), N Dakota State Univ, Dept Chem & Biochem, Fargo, ND 58108 USA. EM sangita.sinha@ndsu.edu RI Sinha, Sangita/R-6119-2016; ID, BioCAT/D-2459-2012; OI Stanley, Christopher/0000-0002-4226-7710 FU National Institutes of Health [RO3 NS090939, R15 GM113227]; National Science Foundation [MCB-1413525]; North Dakota EPSCoR doctoral dissertation award; Laboratory Director's Research and Development SEED [7278] FX This work was supported by National Institutes of Health Grants RO3 NS090939 (S.C.S.) and R15 GM113227 (C.L.C.), National Science Foundation Grant MCB-1413525 (S.C.S.), a North Dakota EPSCoR doctoral dissertation award for Y.M. (S.C.S.), and a Laboratory Director's Research and Development SEED proposal 7278 (A.R.). NR 85 TC 4 Z9 4 U1 8 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD APR 5 PY 2016 VL 55 IS 13 BP 1945 EP 1958 DI 10.1021/acs.biochem.5b01264 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7CH UT WOS:000373656200002 PM 26937551 ER PT J AU Chen, YC Borken-Kleefeld, J AF Chen, Yuche Borken-Kleefeld, Jens TI NOx Emissions from Diesel Passenger Cars Worsen with Age SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID LIGHT-DUTY VEHICLES AB Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest.deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles. C1 [Chen, Yuche] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Borken-Kleefeld, Jens] Int Inst Appl Syst Anal, Schlosspl 1, A-2361 Laxenburg, Austria. RP Borken-Kleefeld, J (reprint author), Int Inst Appl Syst Anal, Schlosspl 1, A-2361 Laxenburg, Austria. EM borken@iiasa.ac.at OI Chen, Yuche/0000-0003-2577-2448 FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX We are grateful for the provision of remote sensing data by Zurich's Office of Waste, Water, Energy, and Air (G-M Alt). Y.C. was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. We gratefully acknowledge the discussions with S. Hausberger (TU Graz), and L. Ntziachristos (LAT/EMISIA). NR 17 TC 6 Z9 6 U1 3 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 5 PY 2016 VL 50 IS 7 BP 3327 EP 3332 DI 10.1021/acs.est.b04704 PG 6 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DI7CD UT WOS:000373655800005 PM 26886254 ER PT J AU Harding-Marjanovic, KC Yi, S Weathers, TS Sharp, JO Sedlak, DL Alvarez-Cohen, L AF Harding-Marjanovic, Katie C. Yi, Shan Weathers, Tess S. Sharp, Jonathan O. Sedlak, David L. Alvarez-Cohen, Lisa TI Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides mccartyi-Containing Microbial Community SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID FIRE-TRAINING AREA; PERFLUOROALKYL ACIDS; PERFLUORINATED SURFACTANTS; REDUCTIVE DECHLORINATION; US MILITARY; GROUNDWATER; PERSISTENCE; PRECURSORS; GLYCOL; MS/MS AB The application of aqueous film-forming foams (AFFFs) to extinguish chlorinated solvent-fueled fires has led to the co-contamination of poly-and perfluoroalkyl substances (PFASs) and trichloroethene (TCE) in groundwater and soil. Although reductive dechlorination of TCE by Dehalococcoides mccartyi is a frequently used remediation strategy, the effects of AFFF and PFASs on TCE dechlorination are not well understood. Various AFFF formulations, PFASs, and ethylene glycols were amended to the growth medium of a D. mccartyicontaining enrichment culture to determine the impact on dechlorination, fermentation, and methanogenesis. The community was capable of fermenting organics (e.g., diethylene glycol butyl ether) in all AFFF formulations to hydrogen and acetate, but the product concentrations varied significantly according to formulation. TCE was dechlorinated in the presence of an AFFF formulation manufactured by 3M but was not dechlorinated in the presence of formulations from two other manufacturers. Experiments amended with AFFF-derived PFASs and perfluoroalkyl acids (PFAAs) indicated that dechlorination could be inhibited by PFASs but that the inhibition depends on surfactant concentration and structure. This study revealed that the fermentable components of AFFF can stimulate TCE dechlorination, while some of the fluorinated compounds in certain AFFF formulations can inhibit dechlorination. C1 [Harding-Marjanovic, Katie C.; Yi, Shan; Sedlak, David L.; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Weathers, Tess S.; Sharp, Jonathan O.] Colorado Sch Mines, Dept Civil & Environm Engn, Golden, CO 80401 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Harding-Marjanovic, Katie C.] Exponent Inc, Pasadena, CA USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA.; Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM kmarjanovic@exponent.com; alvarez@ce.berkeley.edu RI Sharp, Jonathan/A-4893-2013 OI Sharp, Jonathan/0000-0002-2942-1066 FU Strategic Environmental Research and Development Program (SERDP) [ER-2128, ER-2126]; National Science Foundation [CBET-1055396] FX This study was supported by the Strategic Environmental Research and Development Program (SERDP), grant no. ER-2128, ER-2126, and the National Science Foundation grant no. CBET-1055396. The authors thank Professor Jennifer Field at Oregon State University for her thoughtful discussions on this study and for providing the AFFF materials used to conduct these experiments. NR 37 TC 1 Z9 1 U1 26 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 5 PY 2016 VL 50 IS 7 BP 3352 EP 3361 DI 10.1021/acs.est.5b04773 PG 10 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DI7CD UT WOS:000373655800008 PM 26894610 ER PT J AU Reardon, PN Chacon, SS Walter, ED Bowden, ME Washton, NM Kleber, M AF Reardon, Patrick N. Chacon, Stephany S. Walter, Eric D. Bowden, Mark E. Washton, Nancy M. Kleber, Markus TI Abiotic Protein Fragmentation by Manganese Oxide: Implications for a Mechanism to Supply Soil Biota with Oligopeptides SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID NMR-SPECTROSCOPY; ENVIRONMENTAL PROTEOMICS; HYDROGEN-PEROXIDE; AMINO-ACIDS; ADSORPTION; NITROGEN; HYDROLYSIS; BIRNESSITE; ENZYMES; MINERALIZATION AB The ability of plants and microorganisms to take up organic nitrogen in the form of free amino acids and oligopeptides has received increasing attention over the last two decades, yet the mechanisms for the formation of such compounds in soil environments remain poorly understood. We used Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopies to distinguish the reaction of a model protein with a pedogenic oxide (Birnessite, MnO2) from its response to a phyllosilicate (Kaolinite). Our data demonstrate that birnessite fragments the model protein while kaolinite does not, resulting in soluble peptides that would be available to soil biota and confirming the existence of an abiotic pathway for the formation of organic nitrogen compounds for direct uptake by plants and microorganisms. The absence of reduced Mn(II) in the solution suggests that birnessite acts as a catalyst rather than an oxidant in this reaction. NMR and EPR spectroscopies are shown to be valuable tools to observe these reactions and capture the extent of protein transformation together with the extent of mineral response. C1 [Chacon, Stephany S.; Kleber, Markus] Oregon State Univ, Dept Crop & Soil Sci, Corvallis, OR 97331 USA. [Reardon, Patrick N.; Walter, Eric D.; Bowden, Mark E.; Washton, Nancy M.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Kleber, Markus] Leibniz Zentrum Agrarlandschaftsforsch ZALF, Inst Bodenlandschaftsforsch, Eberswalder Str 84, D-15374 Muncheberg, Germany. RP Reardon, PN (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. EM Patrick.Reardon@pnnl.gov RI Chacon, Stephany Soledad/I-5903-2014; Walter, Eric/P-9329-2016; OI Chacon, Stephany Soledad/0000-0001-7599-9152; Reardon, Patrick/0000-0002-6858-0086 FU William Wiley Postdocotoral Fellowship from EMSL FX Funding for this work was provided in part by the William Wiley Postdocotoral Fellowship from EMSL to P.N.R. NR 56 TC 1 Z9 1 U1 7 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 5 PY 2016 VL 50 IS 7 BP 3486 EP 3493 DI 10.1021/acs.est.5b04622 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DI7CD UT WOS:000373655800023 PM 26974439 ER PT J AU Richards-Henderson, NK Goldstein, AH Wilson, KR AF Richards-Henderson, Nicole K. Goldstein, Allen H. Wilson, Kevin R. TI Sulfur Dioxide Accelerates the Heterogeneous Oxidation Rate of Organic Aerosol by Hydroxyl Radicals SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PEROXY-RADICALS; CHEMISTRY; PHASE; OH; SOLVENTS; KINETICS AB There remains considerable uncertainty in how anthropogenic gas phase emissions alter the oxidative aging of organic aerosols in the troposphere. Here we observe a 10-20 fold acceleration in the effective heterogeneous OH oxidation rate of organic aerosol in the presence of SO2. This acceleration originates from the radical chain reactions propagated by alkoxy radicals, which are formed efficiently inside the particle by the reaction of peroxy radicals with SO2. As the OH approaches atmospheric concentrations, the radical chain length increases, transforming the aerosol at rates predicted to be up to 10 times the OH-aerosol collision frequency. Model predictions, constrained by experiments over orders of magnitude changes in [OH] and [SO2], suggest that in polluted regions the heterogeneous processing of organic aerosols by OH ([SO2] >= 40 ppb) occur on similar time scales as analogous gas phase oxidation reactions. These results provide evidence for a previously unidentified mechanism by which organic aerosol oxidation is enhanced by anthropogenic gas phase emissions. C1 [Richards-Henderson, Nicole K.; Wilson, Kevin R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Goldstein, Allen H.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP Wilson, KR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM krwilson@lbl.gov FU Office of Energy Research, Office of Basic Energy Science of the U.S. Department of Energy [DE-AC02-05CH11231]; Department of Energy, Office of Science Early Career Research Program FX This work and the Advanced Light Source were supported by the Director, Office of Energy Research, Office of Basic Energy Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. K.R.W. was supported by the Department of Energy, Office of Science Early Career Research Program. We thank Dr. Frances Houle and Dr. Aaron Wiegel for technical support on the model and Mr. Bruce Rude for technical support on the instrument. We acknowledge Dr. Michael Ward for work on initial experiments. NR 30 TC 2 Z9 2 U1 9 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD APR 5 PY 2016 VL 50 IS 7 BP 3554 EP 3561 DI 10.1021/acs.est.5b05369 PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA DI7CD UT WOS:000373655800031 PM 26953762 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahn, SU Aiola, S Akindinov, A Alam, SN Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Almaraz, JRM Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anielski, J Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Arnaldi, R Arnold, OW Arsene, IC Arslandok, M Audurier, B Augustinus, A Averbeck, R Azmi, MD Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Baldisseri, A Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biswas, R Biswas, S Bjelogrlic, S Blair, JT Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botta, E Bottger, S Bourjau, C Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Butt, JB Buxton, JT Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Carnesecchi, F Castellanos, JC Castro, AJ Casula, EAR Sanchez, CC Cepila, J Cerello, P Cerkala, J Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Cho, S Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C Cifarelli, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A de Cataldo, G de Conti, C de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E Deplano, C Dhankher, P Di Bari, D Di Mauro, A Di Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Gimenez, DD Donigus, B Dordic, O Drozhzhova, T Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Engel, H Epple, E Erazmus, B Erdemir, I Erhardt, F Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Feuillard, VJG Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Gauger, EF Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glassel, P Coral, DMG Ramirez, AG Gonzalez, V Gonzalez-Zamora, P Gorbunov, S Gorlich, L Gotovac, S Grabski, V Grachov, OA Graczykowski, LK Graham, KL Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gronefeld, JM Grosse-Oetringhaus, JF Grossiord, JY Grosso, R Guber, F Guernane, R Guerzoni, B Gulbrandsen, K Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Harris, JW Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Heide, M Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hillemanns, H Hippolyte, B Hosokawa, R Hristov, P Huang, M Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Inaba, M Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacobs, PM Jadhav, MB Jadlovska, S Jadlovsky, J Jahnke, C Jakubowska, MJ Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jung, H Jusko, A Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karayan, L Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, DW Kim, DJ Kim, D Kim, H Kim, JS Kim, M Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Klewin, S Kluge, A Knichel, ML Knospe, AG Kobayashi, T Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kopcik, M Kour, M Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Meethaleveedu, GK Kralik, I Kravcakova, A Kretz, M Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kuhn, C Kuijer, PG Kumar, A Kumar, J Kumar, L Kumar, S Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Lehas, F Lemmon, RC Lenti, V Leogrande, E Monzon, IL Vargas, HL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Lindal, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, G Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Mas, A Masciocchi, S Masera, M Masoni, A Massacrier, L Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Melikyan, Y Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Minervini, LM Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E De Godoy, DAM Moreno, LAP Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muhlheim, D Muhuri, S Mukherjee, M Mulligan, JD Munhoz, MG Munzer, RH Murray, S Musa, L Musinsky, J Naik, B Nair, R Nandi, BK Nania, R Nappi, E Naru, MU da Luz, HN Nattrass, C Nayak, K Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Noris, JCC Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Orava, R Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, P Paic, G Pal, SK Pan, J Pandey, AK Papcun, P Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Pei, H Peitzmann, T Da Costa, HP De Oliveira, EP Peresunko, D Lara, CEP Lezama, EP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Rami, F Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Revol, JP Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Romita, R Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Rybicki, A Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salzwedel, J Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sarkar, D Scapparone, E Scarlassara, F Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schuster, T Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Sefcik, M Seger, JE Sekiguchi, Y Sekihata, D Selyuzhenkov, I Senosi, K Senyukov, S Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shangaraev, A Sharma, A Sharma, M Sharma, M Sharma, N Shigaki, K Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvermyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Sogaard, C Song, J Song, M Song, Z Soramel, F Sorensen, S Sozzi, F Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Stachel, J Stan, I Stefanek, G Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Suljic, M Sultanov, R Sumbera, M Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Tabassam, U Takahashi, J Tambave, GJ Tanaka, N Tangaro, MA Tarhini, M Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thader, J Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trombetta, G Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vajzer, M Vala, M Palomo, LV Vallero, S Van der Maarel, J Van Hoorne, JW Van Leeuwen, M Vanat, T Vyvre, PV Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Venaruzzo, M Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Tello, AV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Volkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Vyushin, A Wagner, B Wagner, J Wang, H Wang, M Watanabe, D Watanabe, Y Weber, M Weber, SG Weiser, DF Wessels, JP Westerhoff, U Whitehead, AM Wiechula, J Wikne, J Wilde, M Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yaldo, CG Yang, H Yang, P Yano, S Yasar, C Yin, Z Yokoyama, H Yoo, IK Yoon, JH Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zardoshti, N Zarochentsev, A Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhang, C Zhang, Z Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zichichi, A Zimmermann, A Zimmermann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahn, S. U. Aiola, S. Akindinov, A. Alam, S. N. Aleksandrov, D. Alessandro, B. Alexandre, D. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz, J. R. M. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Alves Garcia Prado, C. Andrei, C. Andronic, A. Anguelov, V. Anielski, J. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaueser, H. Arcelli, S. Arnaldi, R. Arnold, O. W. Arsene, I. C. Arslandok, M. Audurier, B. Augustinus, A. Averbeck, R. Azmi, M. D. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Baldisseri, A. Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bello Martinez, H. Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biswas, R. Biswas, S. Bjelogrlic, S. Blair, J. T. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botta, E. Boettger, S. Bourjau, C. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Butt, J. B. Buxton, J. T. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Villar, E. Calvo Camerini, P. Carena, F. Carena, W. Carnesecchi, F. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Ceballos Sanchez, C. Cepila, J. Cerello, P. Cerkala, J. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Cho, S. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L. Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Conti, C. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. Deplano, C. Dhankher, P. Di Bari, D. Di Mauro, A. Di Nezza, P. Diaz Corchero, M. A. Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Drozhzhova, T. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Engel, H. Epple, E. Erazmus, B. Erdemir, I. Erhardt, F. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Feuillard, V. J. G. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Gauger, E. F. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Gomez Coral, D. M. Ramirez, A. Gomez Gonzalez, V. Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Grabski, V. Grachov, O. A. Graczykowski, L. K. Graham, K. L. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gronefeld, J. M. Grosse-Oetringhaus, J. F. Grossiord, J. -Y. Grosso, R. Guber, F. Guernane, R. Guerzoni, B. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Harris, J. W. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Heide, M. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hillemanns, H. Hippolyte, B. Hosokawa, R. Hristov, P. Huang, M. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Inaba, M. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacobs, P. M. Jadhav, M. B. Jadlovska, S. Jadlovsky, J. Jahnke, C. Jakubowska, M. J. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jung, H. Jusko, A. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karayan, L. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, M. Mohisin Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, D. W. Kim, D. J. Kim, D. Kim, H. Kim, J. S. Kim, M. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Klewin, S. Kluge, A. Knichel, M. L. Knospe, A. G. Kobayashi, T. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kopcik, M. Kour, M. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Meethaleveedu, G. Koyithatta Kralik, I. Kravcakova, A. Kretz, M. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kuhn, C. Kuijer, P. G. Kumar, A. Kumar, J. Kumar, L. Kumar, S. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. de Guevara, P. Ladron Fernandes, C. Lagana Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Lehas, F. Lemmon, R. C. Lenti, V. Leogrande, E. Leon Monzon, I. Leon Vargas, H. Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Lindal, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loginov, V. Loizides, C. Lopez, X. Lopez Torres, E. Lowe, A. Luettig, P. Lunardon, M. Luparello, G. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Mas, A. Masciocchi, S. Masera, M. Masoni, A. Massacrier, L. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Melikyan, Y. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Minervini, L. M. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. De Godoy, D. A. Moreira Moreno, L. A. P. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mulligan, J. D. Munhoz, M. G. Munzer, R. H. Murray, S. Musa, L. Musinsky, J. Naik, B. Nair, R. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. da Luz, H. Natal Nattrass, C. Nayak, K. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Noris, J. C. C. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Da Silva, A. C. Oliveira Oliver, M. H. Onderwaater, J. Oppedisano, C. Orava, R. Ortiz Velasquez, A. Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, P. Paic, G. Pal, S. K. Pan, J. Pandey, A. K. Papcun, P. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Pei, H. Peitzmann, T. Da Costa, H. Pereira Pereira De Oliveira Filho, E. Peresunko, D. Lara, C. E. Perez Lezama, E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Rami, F. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Revol, J. -P. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Rohrich, D. Romita, R. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Rybicki, A. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salzwedel, J. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sarkar, D. Scapparone, E. Scarlassara, F. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schuster, T. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Sefcik, M. Seger, J. E. Sekiguchi, Y. Sekihata, D. Selyuzhenkov, I. Senosi, K. Senyukov, S. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shangaraev, A. Sharma, A. Sharma, M. Sharma, M. Sharma, N. Shigaki, K. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvermyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Sogaard, C. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. Sozzi, F. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Stachel, J. Stan, I. Stefanek, G. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Suljic, M. Sultanov, R. Sumbera, M. Szabo, A. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Tabassam, U. Takahashi, J. Tambave, G. J. Tanaka, N. Tangaro, M. A. Tarhini, M. Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thaeder, J. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trombetta, G. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vajzer, M. Vala, M. Palomo, L. Valencia Vallero, S. Van der Maarel, J. Van Hoorne, J. W. Van Leeuwen, M. Vanat, T. Vyvre, P. Vande Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Venaruzzo, M. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Villatoro Tello, A. Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Vyushin, A. Wagner, B. Wagner, J. Wang, H. Wang, M. Watanabe, D. Watanabe, Y. Weber, M. Weber, S. G. Weiser, D. F. Wessels, J. P. Westerhoff, U. Whitehead, A. M. Wiechula, J. Wikne, J. Wilde, M. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yaldo, C. G. Yang, H. Yang, P. Yano, S. Yasar, C. Yin, Z. Yokoyama, H. Yoo, I. -K. Yoon, J. H. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zardoshti, N. Zarochentsev, A. Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhang, C. Zhang, Z. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zichichi, A. Zimmermann, A. Zimmermann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Inclusive quarkonium production at forward rapidity in pp collisions at root s=8 TeV SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID HEAVY QUARKONIUM; J/PSI AB We report on the inclusive production cross sections of J/psi, psi(2S), gamma(1S), gamma(2S) and gamma(3S), measured at forward rapidity with the ALICE detector in pp collisions at a center-of-mass energy root s = 8 TeV. The analysis is based on data collected at the LHC and corresponds to an integrated luminosity of 1.23 pb(-1). Quarkonia are reconstructed in the dimuon-decay channel. The differential production cross sections are measured as a function of the transverse momentum p(T) and rapidity y, over the p(T) ranges 0 < p(T) < 20 GeV/c for J/psi, 0 < p(T) < 12 GeV/c for all other resonances, and for 2.5 < y < 4. The cross sections, integrated over p(T) and y, and assuming unpolarized quarkonia, are sigma(J/psi) = 8.98 +/- 0.04 +/- 0.82 mu b, sigma(psi(2S)) = 1.23 +/- 0.08 +/- 0.22 mu b, sigma(gamma(1S)) = 71 +/- 6 +/- 7 nb, sigma(gamma(2S)) = 26 +/- 5 +/- 4 nb and sigma(gamma(3S)) = 9 +/- 4 +/- 1 nb, where the first uncertainty is statistical and the second one is systematic. These values agree, within at most 1.4 sigma, with measurements performed by the LHCb collaboration in the same rapidity range. C1 [Grigoryan, A.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Bello Martinez, H.; Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Moreno, L. A. P.; Noris, J. C. C.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.; Villatoro Tello, A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Senyukov, S.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Das, S.; Ghosh, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Biswas, R.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Ctr Astroparticle Phys & Space Sci, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Pei, H.; Ren, X.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, Y.; Zhang, Z.; Zhou, D.; Zhu, J.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Diaz Corchero, M. A.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] CIEMAT, E-28040 Madrid, Spain. [Cruz Albino, R.; Herrera Corral, G.; de Guevara, P. Ladron; Montano Zetina, L.] CINVESTAV, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Cruz Albino, R.; Herrera Corral, G.; de Guevara, P. Ladron; Montano Zetina, L.; Rodriguez Cahuantzi, M.] CINVESTAV, Ctr Invest & Estudios Avanzados, Merida, Venezuela. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Fermi Museo Stor Fis, Rome, Italy. [Alici, A.; Cifarelli, L.; De Caro, A.; De Gruttola, D.; Noferini, F.; Revol, J. -P.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Feuillard, V. J. G.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Butt, J. B.; Naru, M. U.; Suleymanov, M.; Tabassam, U.; Zaman, A.] COMSATS Inst Informat Technol, Islamabad, Pakistan. [Ferreiro, E. G.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Ferreiro, E. G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Haaland, O.; Huang, M.; Loenne, P. I.; Nystrand, J.; Rohrich, D.; Tambave, G. J.; Ullaland, K.; Velure, A.; Wagner, B.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Mons, Norway. [Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. Mohisin; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Lisa, M. A.; Salzwedel, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Lindal, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Minervini, L. M.] Dipartimento Elettrotecn Elettron Politecn, Bari, Italy. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Mazzoni, M. A.; Meddi, F.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Puddu, G.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Fionda, F. M.; Masoni, A.; Puddu, G.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, G.; Margagliotti, G. V.; Rui, R.; Suljic, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Luparello, G.; Piano, S.; Rachevski, A.; Rui, R.; Suljic, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Barbano, A. M.; Beole, S.; Bufalino, S.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Puccio, M.; Russo, R.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Beole, S.; Botta, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Gagliardi, M.; Gallio, M.; Giubellino, P.; La Pointe, S. L.; Lattuca, A.; Leoncino, M.; Marchisone, M.; Masera, M.; Oppedisano, C.; Prino, F.; Puccio, M.; Russo, R.; Scomparin, E.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Colocci, M.; Guerzoni, B.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Basile, M.; Bellini, F.; Carnesecchi, F.; Cifarelli, L.; Cindolo, F.; Colocci, M.; Guerzoni, B.; Hatzifotiadou, D.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.] Univ Catania, Dipartimento Fis, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Pappalardo, G. S.; Petta, C.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Ist Nazl Fis Nucl, Grp Collegato, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientale, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Ist Nazl Fis Nucl, Grp Collegato, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Tangaro, M. A.; Trombetta, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Colella, D.; de Cataldo, G.; Di Bari, D.; Elia, D.; Lenti, V.; Manzari, V.; Mastroserio, A.; Minervini, L. M.; Nappi, E.; Paticchio, V.; Tangaro, M. A.; Trombetta, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Richert, T.; Silvermyr, D.; Sogaard, C.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Barth, K.; Berzano, D.; Betev, L.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Colella, D.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Floris, M.; Francescon, A.; Fuchs, U.; Ganoti, P.; Gargiulo, C.; Gheata, A.; Gheata, M.; Grigoras, A.; Grosse-Oetringhaus, J. F.; Hillemanns, H.; Hristov, P.; Kalweit, A.; Keil, M.; Klein, J.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Lakomov, I.; Laudi, E.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Musa, L.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Ronchetti, F.; Rossi, A.; Schukraft, J.; Schutz, Y.; Senyukov, S.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vyvre, P. Vande; von Haller, B.; Vranic, D.; Weber, M.; Zimmermann, M. B.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Arnold, O. W.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Excellence Cluster Univ, D-80290 Munich, Germany. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Mons, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Sefcik, M.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; de Cuveland, J.; Gorbunov, S.; Hutter, D.; Kirsch, S.; Kisel, I.; Kollegger, T.; Kretz, M.; Krzewicki, M.; Lindenstruth, V.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Jung, H.; Kim, D. W.; Kim, J. S.; Kim, M.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Mieskolainen, M. M.; Orava, R.; Rasanen, S. S.] Helsinki Inst Phys, Helsinki, Finland. [Okubo, T.; Sekihata, D.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Dash, S.; Dhankher, P.; Jadhav, M. B.; Meethaleveedu, G. Koyithatta; Kumar, J.; Kumar, S.; Naik, B.; Nandi, B. K.; Pandey, A. K.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.] Indian Inst Technol, Indore, Madhya Pradesh, India. [Behera, N. K.; Cho, S.; Kweon, M. J.; Yoon, J. H.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Das, I.; Espagnon, B.; Hadjidakis, C.; Suire, C.; Tarhini, M.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay, F-91405 Orsay, France. [Boettger, S.; Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaueser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Drozhzhova, T.; Erdemir, I.; Heckel, S. T.; Kamin, J.; Klein, C.; Luettig, P.; Marquard, M.; Ozdemir, M.; Lezama, E. Perez; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Anielski, J.; Bathen, B.; Feldkamp, L.; Haake, R.; Heide, M.; Klein-Boesing, C.; De Godoy, D. A. Moreira; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Wilde, M.; Zimmermann, M. B.] Univ Munster, Inst Kernphys, Wilhelm Klemm Str 9, D-48149 Munster, Germany. [Belikov, I.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Rami, F.; Roy, C.] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bianchin, C.; Bjelogrlic, S.; Caliva, A.; Dobrin, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Rocco, E.; Snellings, R. J. M.; Van der Maarel, J.; Van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Yang, H.; Zhang, C.] Univ Utrecht, Inst Subat Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Colella, D.; Jadlovsky, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci, Bucharest, Romania. [Cuautle, E.; Maldonado Cervantes, I.; Nellen, L.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Alfaro Molina, R.; Belmont-Moreno, E.; Gomez Coral, D. M.; Grabski, V.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Marchisone, M.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, iThemba Labs, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res, Dubna, Russia. [Baek, Y. W.; Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Uysal, A. Karasu; Okatan, A.; Yasar, C.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Feuillard, V. J. G.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, CNRS, IN2P3, Phys Corpusculaire Lab, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guernane, R.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, CNRS, IN2P3, Lab Phys Subat & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Sakai, S.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Ricci, R. A.; Venaruzzo, M.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Collu, A.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Milano, L.; Ploskon, M.; Porter, J.; Thaeder, J.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Melikyan, Y.; Peresunko, D.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Oyama, K.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Deloff, A.; Kovalenko, O.; Kurashvili, P.; Nair, R.; Redlich, K.; Siemiarczuk, T.; Stefanek, G.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Dash, A.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yushmanov, I.] Kurchatov Inst, Natl Res Ctr, Moscow, Russia. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Bourjau, C.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Christakoglou, P.; Deplano, C.; Dobrin, A.; Kuijer, P. G.; Lehas, F.; Lara, C. E. Perez; Manso, A. Rodriguez] Nikhef, Natl Inst Subatamaire Fys, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbury Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Adamova, D.; Bielcikova, J.; Ferencei, J.; Kucera, V.; Pospisil, J.; Sumbera, M.; Vajzer, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Cormier, T. M.; Poghosyan, M. G.; Read, K. F.; Silvermyr, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Malaev, M.; Nikulin, V.; Riabov, V.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Ganoti, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.; Whitehead, A. M.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Kour, M.; Kumar, A.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, M.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Arnold, O. W.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Karayan, L.; Klein, J.; Klewin, S.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Weiser, D. F.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmermann, A.] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Browning, T. A.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Song, J.; Yoo, I. -K.] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, D-64291 Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Vyushin, A.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Graham, K. L.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos; Zardoshti, N.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Villar, E. Calvo; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Weber, M.] Stefan Meyer Inst Subatomare Phys, Vienna, Austria. [Aphecetche, L.; Audurier, B.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Massacrier, L.; Molnar, L.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Cerkala, J.; Jadlovska, S.; Jadlovsky, J.; Kopcik, M.; Papcun, P.] Tech Univ Kosice, Kosice, Slovakia. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Rybicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Blair, J. T.; Gauger, E. F.; Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Almaraz, J. R. M.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Alves Garcia Prado, C.; Bregant, M.; Cosentino, M. R.; De, S.; de Conti, C.; Domenicis Gimenez, D.; Figueredo, M. A. S.; Jahnke, C.; Fernandes, C. Lagana; Mas, A.; Munhoz, M. G.; da Luz, H. Natal; Da Silva, A. C. Oliveira; Pereira De Oliveira Filho, E.; Suaide, A. A. P.; Szanto de Toledo, A.; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Chinellato, D. D.; Dash, A.; Takahashi, J.] Univ Estadual Campinas, UNICAMP, Campinas, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Borri, M.; Chartier, M.; Figueredo, M. A. S.; Norman, J.; Romita, R.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Scott, R.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Marchisone, M.; Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Watanabe, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Hosokawa, R.; Inaba, M.; Kobayashi, T.; Miake, Y.; Sano, M.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Grossiord, J. -Y.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS, IN2P3, IPN, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev, A.] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Saini, J.; Sarkar, D.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Graczykowski, L. K.; Jakubowska, M. J.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.; Yaldo, C. G.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Epple, E.; Grachov, O. A.; Harris, J. W.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Schuster, T.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, D.; Kim, H.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, Zentrum Technol Transfer & Telekommunikat, Worms, Germany. [Khan, M. Mohisin] Georgia State Univ, Atlanta, GA 30303 USA. [Malinina, L.] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. RI Chinellato, David/D-3092-2012; Akindinov, Alexander/J-2674-2016; Takahashi, Jun/B-2946-2012; Pshenichnov, Igor/A-4063-2008; Bregant, Marco/I-7663-2012; Sevcenco, Adrian/C-1832-2012; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Vechernin, Vladimir/J-5832-2013; Natal da Luz, Hugo/F-6460-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Kovalenko, Vladimir/C-5709-2013; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Barnby, Lee/G-2135-2010; Peitzmann, Thomas/K-2206-2012; Kondratiev, Valery/J-8574-2013; Vinogradov, Leonid/K-3047-2013; Castillo Castellanos, Javier/G-8915-2013; Ferreiro, Elena/C-3797-2017 OI Chinellato, David/0000-0002-9982-9577; Akindinov, Alexander/0000-0002-7388-3022; Takahashi, Jun/0000-0002-4091-1779; Pshenichnov, Igor/0000-0003-1752-4524; Sevcenco, Adrian/0000-0002-4151-1056; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Vechernin, Vladimir/0000-0003-1458-8055; Natal da Luz, Hugo/0000-0003-1177-870X; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Kovalenko, Vladimir/0000-0001-6012-6615; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Barnby, Lee/0000-0001-7357-9904; Peitzmann, Thomas/0000-0002-7116-899X; Kondratiev, Valery/0000-0002-0031-0741; Vinogradov, Leonid/0000-0001-9247-6230; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356 FU State Committee of Science, Armenia; World Federation of Scientists (WFS), Armenia; Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community; Helsinki Institute of Physics; Academy of Finland; French CNRS-IN2P3, France; 'Region Pays de Loire', France; 'Region Alsace', France; 'Region Auvergne', France; CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA); National Office for Research and Technology (NKTH); Department of Atomic Energy; Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico (DGAPA), Mexico; Amerique Latine Formation academique - European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics; National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, SouthAfrica; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnolgicas y Desarrollo Nuclear (CEADEN); Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; State of Texas; State of Ohio; Ministry of Science, Education and Sports of Croatia; Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Pontificia Universidad Catolica del Peru FX The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the 'Region Pays de Loire', 'Region Alsace', 'Region Auvergne' and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), Mexico, Amerique Latine Formation academique - European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, SouthAfrica; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnolgicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Pontificia Universidad Catolica del Peru. NR 26 TC 1 Z9 1 U1 5 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD APR 5 PY 2016 VL 76 IS 4 AR 184 DI 10.1140/epjc/s10052-016-3987-y PG 13 WC Physics, Particles & Fields SC Physics GA DI7PV UT WOS:000373694700001 PM 28260969 ER PT J AU Zhu, JX Janoschek, M Chaves, DS Cezar, JC Durakiewicz, T Ronning, F Sassa, Y Mansson, M Scott, BL Wakeham, N Bauer, ED Thompson, JD AF Zhu, Jian-Xin Janoschek, Marc Chaves, D. S. Cezar, J. C. Durakiewicz, Tomasz Ronning, Filip Sassa, Yasmine Mansson, Martin Scott, B. L. Wakeham, N. Bauer, Eric D. Thompson, J. D. TI Electronic correlation and magnetism in the ferromagnetic metal Fe3GeTe2 SO PHYSICAL REVIEW B LA English DT Article ID MAGNETOCRYSTALLINE ANISOTROPY ENERGY; RAY CIRCULAR-DICHROISM; IRON PNICTIDES; SUM-RULES; MAGNETIZATION; CRYSTALS; COBALT AB Motivated by the search for design principles of rare-earth-free strong magnets, we present a study of electronic structure and magnetic properties of the ferromagnetic metal Fe3GeTe2 within the local-density approximation (LDA) of the density-functional theory, and its combination with dynamical mean-field theory (DMFT). To compare these calculations, we measure magnetic and thermodynamic properties as well as x-ray magnetic circular dichroism and the photoemission spectrum of single-crystal Fe3GeTe2. We find that the experimentally determined Sommerfeld coefficient is enhanced by an order of magnitude with respect to the LDA value. This enhancement can be partially explained by LDA+DMFT. In addition, the inclusion of dynamical electronic correlation effects provides the experimentally observed magnetic moments, and the spectral density is in better agreement with photoemission data. These results establish the importance of electronic correlations in this ferromagnet. C1 [Zhu, Jian-Xin; Janoschek, Marc; Durakiewicz, Tomasz; Ronning, Filip; Scott, B. L.; Wakeham, N.; Bauer, Eric D.; Thompson, J. D.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Chaves, D. S.; Cezar, J. C.] Natl Ctr Res Energy & Mat CNPEM, Brazil Synchrotron Light Lab LNLS, Campinas, SP, Brazil. [Sassa, Yasmine] Uppsala Univ, Dept Phys & Astron, S-75121 Uppsala, Sweden. [Mansson, Martin] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland. [Mansson, Martin] KTH Royal Inst Technol, Dept Mat & Nanophys, SE-16440 Stockholm, Sweden. [Chaves, D. S.] Inst Neel, Grp Micro & Nanomagnetism, Grenoble, France. RP Zhu, JX (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jxzhu@lanl.gov; jdt@lanl.gov RI Mansson, Martin/C-1134-2014; Criginski Cezar, Julio/D-5039-2012; Scott, Brian/D-8995-2017; Sassa, Yasmine/F-3362-2017; OI Mansson, Martin/0000-0002-3086-9642; Criginski Cezar, Julio/0000-0002-7904-6874; Scott, Brian/0000-0003-0468-5396; Ronning, Filip/0000-0002-2679-7957; Janoschek, Marc/0000-0002-2943-0173; Bauer, Eric/0000-0003-0017-1937 FU U.S. DOE through the Los Alamos LDRD program [DE-AC52-06NA25396]; Wenner-Gren Foundation; Marie Sklodowska Curie Action; International Career Grant through the European Commission; Swedish Research Council (VR) [INCA-2014-6426] FX We are grateful to C. D. Batista and Zhi-Ping Yin for helpful discussions. Work at LANL was performed under the auspices of the U.S. DOE Contract No. DE-AC52-06NA25396 through the Los Alamos LDRD program. Y.S. was supported by the Wenner-Gren Foundation, and M.M. was supported by Marie Sklodowska Curie Action, International Career Grant through the European Commission and Swedish Research Council (VR), Grant No. INCA-2014-6426. Part of the theoretical calculations were carried out on a Linux cluster in the Center for Integrated Nanotechnologies, a DOE Office of Basic Energy Sciences user facility. NR 34 TC 3 Z9 3 U1 11 U2 30 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 5 PY 2016 VL 93 IS 14 AR 144404 DI 10.1103/PhysRevB.93.144404 PG 6 WC Physics, Condensed Matter SC Physics GA DI5UZ UT WOS:000373567300005 ER PT J AU Sato, N Melnitchouk, W Kuhn, SE Ethier, JJ Accardi, A AF Sato, Nobuo Melnitchouk, W. Kuhn, S. E. Ethier, J. J. Accardi, A. CA Jefferson Lab Angular Momentum Col TI Iterative Monte Carlo analysis of spin-dependent parton distributions SO PHYSICAL REVIEW D LA English DT Article ID DEEP-INELASTIC-SCATTERING; STRUCTURE FUNCTIONS G(1)(P); STRUCTURE FUNCTIONS G(2); TARGET MASS CORRECTIONS; SUM-RULE CALCULATION; PRECISION-MEASUREMENT; ASYMMETRY A(2); POLARIZED HE-3; PROTON; NEUTRON AB We present a comprehensive new global QCD analysis of polarized inclusive deep-inelastic scattering, including the latest high-precision data on longitudinal and transverse polarization asymmetries from Jefferson Lab and elsewhere. The analysis is performed using a new iterative Monte Carlo fitting technique which generates stable fits to polarized parton distribution functions (PDFs) with statistically rigorous uncertainties. Inclusion of the Jefferson Lab data leads to a reduction in the PDF errors for the valence and sea quarks, as well as in the gluon polarization uncertainty at x >= 0.1. The study also provides the first determination of the flavor-separated twist-3 PDFs and the d(2) moment of the nucleon within a global PDF analysis. C1 [Sato, Nobuo; Melnitchouk, W.; Accardi, A.] Jefferson Lab, Newport News, VA 23606 USA. [Kuhn, S. E.] Old Dominion Univ, Norfolk, VA 23529 USA. [Ethier, J. J.] Coll William & Mary, Williamsburg, VA 23187 USA. [Accardi, A.] Hampton Univ, Hampton, VA 23668 USA. RP Sato, N (reprint author), Jefferson Lab, Newport News, VA 23606 USA. FU US Department of Energy (DOE) [DE-AC05-06OR23177]; DOE [DE-SC008791, DE-FG0296ER40960, DE-SC0006758]; GAUSTEQ (Germany and U.S. Nuclear Theory Exchange Program for QCD Studies of Hadrons and Nuclei) FX We are grateful to M. Stratmann and W. Vogelsang for assistance with Mellin moment techniques, and to C. Fernandez-Ramirez, P. Jimenez-Delgado, F. M. Steffens and the experimental members of the JAM Collaboration [97] for helpful discussions. This work was supported by the US Department of Energy (DOE) Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab. A. A. was partially supported by the DOE Contract No. DE-SC008791, S. K. was supported by the DOE under Contract No. DE-FG0296ER40960, and N. S. was partially supported by GAUSTEQ (Germany and U.S. Nuclear Theory Exchange Program for QCD Studies of Hadrons and Nuclei), DOE Contract No. DE-SC0006758. NR 96 TC 7 Z9 7 U1 3 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 5 PY 2016 VL 93 IS 7 AR 074005 DI 10.1103/PhysRevD.93.074005 PG 27 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DI5YZ UT WOS:000373577700004 ER PT J AU Adams, PD Aertgeerts, K Bauer, C Bell, JA Berman, HM Bhat, TN Blaney, JM Bolton, E Bricogne, G Brown, D Burley, SK Case, DA Clark, KL Darden, T Emsley, P Feher, VA Feng, ZK Groom, CR Harris, SF Hendle, J Holder, T Joachimiak, A Kleywegt, GJ Krojer, T Marcotrigiano, J Mark, AE Markley, JL Miller, M Minor, W Montelione, GT Murshudov, G Nakagawa, A Nakamura, H Nicholls, A Nicklaus, M Nolte, RT Padyana, AK Peishoff, CE Pieniazek, S Read, RJ Shao, CH Sheriff, S Smart, O Soisson, S Spurlino, J Stouch, T Svobodova, R Tempel, W Terwilliger, TC Tronrud, D Velankar, S Ward, SC Warren, GL Westbrook, JD Williams, P Yang, HW Young, J AF Adams, Paul D. Aertgeerts, Kathleen Bauer, Cary Bell, Jeffrey A. Berman, Helen M. Bhat, Talapady N. Blaney, Jeff M. Bolton, Evan Bricogne, Gerard Brown, David Burley, Stephen K. Case, David A. Clark, Kirk L. Darden, Tom Emsley, Paul Feher, Victoria A. Feng, Zukang Groom, Colin R. Harris, Seth F. Hendle, Jorg Holder, Thomas Joachimiak, Andrzej Kleywegt, Gerard J. Krojer, Tobias Marcotrigiano, Joseph Mark, Alan E. Markley, John L. Miller, Matthew Minor, Wladek Montelione, Gaetano T. Murshudov, Garib Nakagawa, Atsushi Nakamura, Haruki Nicholls, Anthony Nicklaus, Marc Nolte, Robert T. Padyana, Anil K. Peishoff, Catherine E. Pieniazek, Susan Read, Randy J. Shao, Chenghua Sheriff, Steven Smart, Oliver Soisson, Stephen Spurlino, John Stouch, Terry Svobodova, Radka Tempel, Wolfram Terwilliger, Thomas C. Tronrud, Dale Velankar, Sameer Ward, Suzanna C. Warren, Gregory L. Westbrook, John D. Williams, Pamela Yang, Huanwang Young, Jasmine TI Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop SO STRUCTURE LA English DT Article ID PROTEIN DATA-BANK; CAMBRIDGE STRUCTURAL DATABASE; ELECTRON-DENSITY; TASK-FORCE; INFORMATION; MACROMOLECULES; GENERATION; MOLECULES; TOOLS; PDB AB Crystallographic studies of ligands bound to biological macromolecules (proteins and nucleic acids) represent an important source of information concerning drug-target interactions, providing atomic level insights into the physical chemistry of complex formation between macromolecules and ligands. Of the more than 115,000 entries extant in the Protein Data Bank (PDB) archive, similar to 75% include at least one non-polymeric ligand. Ligand geometrical and stereochemical quality, the suitability of ligand models for in silico drug discovery and design, and the goodness-of-fit of ligand models to electron-density maps vary widely across the archive. We describe the proceedings and conclusions from the first Worldwide PDB/Cambridge Crystallographic Data Center/Drug Design Data Resource (wwPDB/CCDC/D3R) Ligand Validation Workshop held at the Research Collaboratory for Structural Bioinformatics at Rutgers University on July 30-31, 2015. Experts in protein crystallography from academe and industry came together with non-profit and for-profit software providers for crystallography and with experts in computational chemistry and data archiving to discuss and make recommendations on best practices, as framed by a series of questions central to structural studies of macromolecule-ligand complexes. What data concerning bound ligands should be archived in the PDB? How should the ligands be best represented? How should structural models of macromolecule-ligand complexes be validated? What supplementary information should accompany publications of structural studies of biological macromolecules? Consensus recommendations on best practices developed in response to each of these questions are provided, together with some details regarding implementation. Important issues addressed but not resolved at the workshop are also enumerated. C1 [Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Aertgeerts, Kathleen] LLC, DART NeuroSci, San Diego, CA 92131 USA. [Bauer, Cary] Bruker AXS Inc, Madison, WI 53711 USA. [Bell, Jeffrey A.; Holder, Thomas] Schrodinger Inc, New York, NY 10036 USA. [Berman, Helen M.; Burley, Stephen K.; Feng, Zukang; Shao, Chenghua; Westbrook, John D.; Yang, Huanwang; Young, Jasmine] State Univ New Jersey, Ctr Integrat Prote Res, Res Collaboratory Struct Bioinformat Prot D, Piscataway, NJ 08854 USA. [Berman, Helen M.; Burley, Stephen K.; Feng, Zukang; Marcotrigiano, Joseph; Westbrook, John D.; Yang, Huanwang; Young, Jasmine] State Univ New Jersey, Dept Chem & Chem Biol Rutgers, Piscataway, NJ 08854 USA. [Bhat, Talapady N.] NIST, Biosyst & Biomat Div, Gaithersburg, MD 20899 USA. [Blaney, Jeff M.; Harris, Seth F.] South San Francisco, Genentech Inc, San Francisco, CA 94080 USA. [Bolton, Evan] US Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. [Bricogne, Gerard] Global Phasing Ltd, Cambridge CB3 0AX, England. [Brown, David] Charles River Ltd, Struct Biol & Biophys, Cambridge CB10 1XL, England. [Burley, Stephen K.] Univ Calif San Diego, San Diego Supercomputer Ctr, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA. [Clark, Kirk L.] Novartis Inst BioMed Res, Cambridge, MA 02139 USA. [Darden, Tom] OpenEye Sci, Cambridge, MA 02142 USA. [Emsley, Paul; Nicholls, Anthony; Warren, Gregory L.] MRC Lab Mol Biol, Cambridge CB2 0QH, England. [Feher, Victoria A.; Murshudov, Garib] Univ Calif San Diego, Dept Chem & Biochem, Drug Design Data Resource, La Jolla, CA 92093 USA. [Groom, Colin R.] Cambridge Crystallog Data Ctr, Cambridge CB2 1EZ, England. [Hendle, Jorg; Ward, Suzanna C.] Lilly Biotechnol Ctr, Structural Biol, San Diego, CA 92121 USA. [Joachimiak, Andrzej] Argonne Natl Lab, Biosci, Structural Biol Ctr, Argonne, IL 60439 USA. [Kleywegt, Gerard J.] European Bioinformat Inst, European Mol Biol Lab, Protein Data Bank Europe, Cambridge CB10 1SD, England. [Krojer, Tobias; Velankar, Sameer] Univ Oxford, Structural Genom Consortium, Oxford OX3 7DQ, England. [Marcotrigiano, Joseph; Montelione, Gaetano T.; Smart, Oliver] State Univ New Jersey, Ctr Adv Biotechnol & Med, Piscataway, NJ 08854 USA. [Mark, Alan E.; Miller, Matthew] Univ Queensland, Sch Chem & Mol Biosci, St Lucia, Qld 4072, Australia. [Markley, John L.] Univ Wisconsin, Dept Biochem, BioMagResBank, Madison, WI 53706 USA. [Minor, Wladek] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA 22908 USA. [Montelione, Gaetano T.] State Univ New Jersey, Dept Mol Biol & Biochem, Piscataway, NJ 08854 USA. [Nakagawa, Atsushi; Nakamura, Haruki] Osaka Univ, Inst Prot Res, Protein Data Bank Japan, Osaka 5650871, Japan. [Nicklaus, Marc] Natl Inst Hlth, Natl Canc Inst, Ctr Canc Res, Computer Aided Drug Design Grp, Frederick, MD 21702 USA. [Nolte, Robert T.; Peishoff, Catherine E.] Collegeville, GlaxoSmithKline, Collegeville, PA 19426 USA. [Padyana, Anil K.] Agios Pharmaceut Inc, Cambridge, MA 02139 USA. [Pieniazek, Susan] Bristol Myers Squibb Res & Dev, Pennington, NJ 08534 USA. [Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England. [Soisson, Stephen] Bristol Myers Squibb Res & Dev, Princeton, NJ 08543 USA. [Soisson, Stephen] Merck Res Labs, West Point, PA 19486 USA. [Spurlino, John] Janssen Pharmaceut Inc, Spring House, PA 19002 USA. [Stouch, Terry] Sci Solut LLC, West Windsor, NJ 08550 USA. [Svobodova, Radka] Masaryk Univ, Natl Ctr Biomol Res, CEITEC Cent European Inst Technol, Brno 62500, Czech Republic. [Tempel, Wolfram] Univ Toronto, Structural Genom Consortium, Toronto, ON M5G IL7, Canada. [Terwilliger, Thomas C.] Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Tronrud, Dale] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Williams, Pamela] Atex Pharmaceut, Cambridge CB4 0QA, England. RP Burley, SK (reprint author), State Univ New Jersey, Ctr Integrat Prote Res, Res Collaboratory Struct Bioinformat Prot D, Piscataway, NJ 08854 USA.; Burley, SK (reprint author), State Univ New Jersey, Dept Chem & Chem Biol Rutgers, Piscataway, NJ 08854 USA.; Burley, SK (reprint author), Univ Calif San Diego, San Diego Supercomputer Ctr, Skaggs Sch Pharm & Pharmaceut Sci, La Jolla, CA 92093 USA.; Feher, VA (reprint author), Univ Calif San Diego, Dept Chem & Biochem, Drug Design Data Resource, La Jolla, CA 92093 USA.; Groom, CR (reprint author), Cambridge Crystallog Data Ctr, Cambridge CB2 1EZ, England. EM stephen.burley@rcsb.org; vfeher@ucsd.edu; groom@ccdc.cam.ac.uk RI Svobodova Varekova, Radka/E-2867-2012; Terwilliger, Thomas/K-4109-2012; Marcotrigiano, Joseph /K-6697-2016; Read, Randy/L-1418-2013; Mark, Alan/A-8799-2011; OI Minor, Wladek/0000-0001-7075-7090; Terwilliger, Thomas/0000-0001-6384-0320; Marcotrigiano, Joseph /0000-0003-0346-3353; Read, Randy/0000-0001-8273-0047; Mark, Alan/0000-0001-5880-4798; Smart, Oliver/0000-0002-9669-1998; Kleywegt, Gerard J./0000-0002-4670-0331; Velankar, Sameer/0000-0002-8439-5964; Nicklaus, Marc/0000-0002-4775-7030 FU National Science Foundation [DBI 1338415]; Wellcome Trust [104948]; JST-NBDC; National Institute of General Medical Sciences [GM109046, GM111528] FX The workshop was supported by funding to RCSB PDB by the National Science Foundation (DBI 1338415); PDBe by the Wellcome Trust (104948); PDBj by JST-NBDC; BMRB by the National Institute of General Medical Sciences (GM109046); D3R by the National Institute of General Medical Sciences (GM111528); registration fees from industrial participants; and a tax-deductible donation to the wwPDB Foundation by the Bristol-Myers Squibb Foundation. NR 38 TC 11 Z9 11 U1 7 U2 14 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD APR 5 PY 2016 VL 24 IS 4 BP 502 EP 508 DI 10.1016/j.str.2016.02.017 PG 7 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA DI5VN UT WOS:000373568700005 PM 27050687 ER PT J AU Molugu, SK Hildenbrand, ZL Morgan, DG Sherman, MB He, LL Georgopoulos, C Sernova, NV Kurochkina, LP Mesyanzhinov, VV Miroshnikov, KA Bernal, RA AF Molugu, Sudheer K. Hildenbrand, Zacariah L. Morgan, David Gene Sherman, Michael B. He, Lilin Georgopoulos, Costa Sernova, Natalia V. Kurochkina, Lidia P. Mesyanzhinov, Vadim V. Miroshnikov, Konstantin A. Bernal, Ricardo A. TI Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin SO STRUCTURE LA English DT Article ID ANGLE NEUTRON-SCATTERING; ELECTRON-MICROSCOPY; CRYSTAL-STRUCTURE; LID CLOSURE; GROEL; COMPLEX; PROTEOSTASIS; RESOLUTION; ALLOSTERY; SELECTION AB Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage 4EL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the 4EL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that 4EL is capable of folding beta-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the 4EL chaperonin are significantly different from those observed in group I and II chaperonins. C1 [Molugu, Sudheer K.; Hildenbrand, Zacariah L.; Bernal, Ricardo A.] Univ Texas El Paso, Dept Chem, El Paso, TX 79968 USA. [Morgan, David Gene] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Sherman, Michael B.] Univ Texas Med Branch, Dept Biochem & Mol Biol, Galveston, TX 77555 USA. [He, Lilin] Oak Ridge Natl Lab, Neutron Scattering Sci Div, C23,Bldg 7964K, Oak Ridge, TN 37831 USA. [Georgopoulos, Costa] Univ Utah, Dept Biochem, 4100 EEJMRB, Salt Lake City, UT 84112 USA. [Sernova, Natalia V.] Russian Acad Sci, Kharkevich Inst Informat Transmiss Problems, Bolshoi Karetny Pereulok 19, Moscow 127994, Russia. [Kurochkina, Lidia P.; Mesyanzhinov, Vadim V.; Miroshnikov, Konstantin A.] RAS, Shemyakin Ovchinnikov Inst Bioorgan Chem, Miklukho Maklaya 16-10, Moscow 117997, Russia. RP Bernal, RA (reprint author), Univ Texas El Paso, Dept Chem, El Paso, TX 79968 USA. EM rbernal@utep.edu OI Molugu, Sudheer Kumar/0000-0001-9939-1950; He, Lilin/0000-0002-9560-8101 FU NIH-NIGMS [SC3GM113805]; NSF-MRI [0923437]; Welch Foundation [AH-1649]; Russian Fund for Basic Research [11-0-00935]; Office of Biological and Environmental Research of the US Department of Energy [FWP ERKP291]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported by NIH-NIGMS SC3GM113805, NSF-MRI 0923437 and Welch Foundation grant AH-1649 to Ricardo A. Bernal and Russian Fund for Basic Research grant #11-0-00935 to Lidia P. Kurochkina. We would like to thank Dr. Judy Ellzey and Dr. Peter Cooke, Director of the New Mexico State University EM facility for his help with negative stain transmission electron microscopy. The Bio-SANS of the Center for Structural Molecular Biology (FWP ERKP291) at Oak Ridge National Laboratory is supported by the Office of Biological and Environmental Research of the US Department of Energy. Research at the High Flux Isotope Reactor of Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. NR 41 TC 0 Z9 0 U1 1 U2 4 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD APR 5 PY 2016 VL 24 IS 4 BP 537 EP 546 DI 10.1016/j.str.2016.02.006 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA DI5VN UT WOS:000373568700009 PM 26996960 ER PT J AU Roessler, CG Agarwal, R Allaire, M Alonso-Mori, R Andi, B Bachega, JFR Bommer, M Brewster, AS Browne, MC Chatterjee, R Cho, E Cohen, AE Cowan, M Datwani, S Davidson, VL Defever, J Eaton, B Ellson, R Feng, YP Ghislain, LP Glownia, JM Han, GY Hattne, J Hellmich, J Heroux, A Ibrahim, M Kern, J Kuczewski, A Lemke, HT Liu, PH Majlof, L McClintock, WM Myers, S Nelsen, S Olechno, J Orville, AM Sauter, NK Soares, AS Soltis, SM Song, H Stearns, RG Tran, R Tsai, Y Uervirojnangkoorn, M Wilmot, CM Yachandra, V Yano, J Yukl, ET Zhu, DL Zouni, A AF Roessler, Christian G. Agarwal, Rakhi Allaire, Marc Alonso-Mori, Roberto Andi, Babak Bachega, Jose F. R. Bommer, Martin Brewster, Aaron S. Browne, Michael C. Chatterjee, Ruchira Cho, Eunsun Cohen, Aina E. Cowan, Matthew Datwani, Sammy Davidson, Victor L. Defever, Jim Eaton, Brent Ellson, Richard Feng, Yiping Ghislain, Lucien P. Glownia, James M. Han, Guangye Hattne, Johan Hellmich, Julia Heroux, Annie Ibrahim, Mohamed Kern, Jan Kuczewski, Anthony Lemke, Henrik T. Liu, Pinghua Majlof, Lars McClintock, William M. Myers, Stuart Nelsen, Silke Olechno, Joe Orville, Allen M. Sauter, Nicholas K. Soares, Alexei S. Soltis, S. Michael Song, Heng Stearns, Richard G. Tran, Rosalie Tsai, Yingssu Uervirojnangkoorn, Monarin Wilmot, Carrie M. Yachandra, Vittal Yano, Junko Yukl, Erik T. Zhu, Diling Zouni, Athina TI Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography SO STRUCTURE LA English DT Article ID FREE-ELECTRON LASER; X-RAY-DIFFRACTION; LIPIDIC CUBIC PHASE; PHOTOSYSTEM-II; PROTEIN CRYSTALS; RADIATION-DAMAGE; GLOSSOSCOLEX-PAULISTUS; GIANT HEMOGLOBIN; ROOM-TEMPERATURE; MICROCRYSTALS AB X-ray free-electron lasers (XFELs) provide very intense X-ray pulses suitable for macromolecular crystallography. Each X-ray pulse typically lasts for tens of femtoseconds and the interval between pulses is many orders of magnitude longer. Here we describe two novel acoustic injection systems that use focused sound waves to eject picoliter to nanoliter crystal-containing droplets out of microplates and into the X-ray pulse from which diffraction data are collected. The on-demand droplet delivery is synchronized to the XFEL pulse scheme, resulting in X-ray pulses intersecting up to 88% of the droplets. We tested several types of samples in a range of crystallization conditions, wherein the overall crystal hit ratio (e.g., fraction of images with observable diffraction patterns) is a function of the microcrystal slurry concentration. We report crystal structures from lysozyme, thermolysin, and stachydrine demethylase (Stc2). Additional samples were screened to demonstrate that these methods can be applied to rare samples. C1 [Roessler, Christian G.; Allaire, Marc; Andi, Babak; Cowan, Matthew; Heroux, Annie; Kuczewski, Anthony; Myers, Stuart; Orville, Allen M.; Soares, Alexei S.] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. [Agarwal, Rakhi; Orville, Allen M.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Brewster, Aaron S.; Chatterjee, Ruchira; Han, Guangye; Hattne, Johan; Kern, Jan; Tran, Rosalie; Uervirojnangkoorn, Monarin; Yachandra, Vittal; Yano, Junko] Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Cho, Eunsun; Liu, Pinghua; Song, Heng] Boston Univ, Dept Chem, 590 Commonwealth Ave, Boston, MA 02215 USA. [Bachega, Jose F. R.] Univ Sao Paulo, Inst Fis Sao Carlos, Ctr Biotecnol Mol Estrutural, BR-13560 Sao Carlos, SP, Brazil. [Datwani, Sammy; Eaton, Brent; Ellson, Richard; Ghislain, Lucien P.; Majlof, Lars; McClintock, William M.; Olechno, Joe; Stearns, Richard G.] Labcyte Inc, Sunnyvale, CA 94089 USA. [Wilmot, Carrie M.; Yukl, Erik T.] Univ Minnesota, Mol Biol & Biophys, Dept Biochem, Minneapolis, MN 55455 USA. [Davidson, Victor L.] Univ Minnesota, Mol Biol & Biophys, Dept Biochem, Minneapolis, MN 55455 USA. [Alonso-Mori, Roberto; Browne, Michael C.; Defever, Jim; Feng, Yiping; Tsai, Yingssu; Zhu, Diling] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA. [Tsai, Yingssu] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Soltis, S. Michael] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Hellmich, Julia] Tech Univ Berlin, Max Lab Biophys Chem, D-10623 Berlin, Germany. [Bommer, Martin; Hellmich, Julia; Ibrahim, Mohamed; Zouni, Athina] Humboldt Univ, Inst Biol, D-10099 Berlin, Germany. [Agarwal, Rakhi] St Josephs Coll, Dept Phys Sci, Patchogue, NY 11772 USA. [Yukl, Erik T.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. [Allaire, Marc] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA. [Hattne, Johan] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA. [Lemke, Henrik T.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Orville, Allen M.] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. [Roessler, Christian G.] Ventana Med Syst Inc, Oro Valley, AZ 85755 USA. RP Allaire, M; Orville, AM; Soares, AS (reprint author), Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA.; Orville, AM (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA.; Allaire, M (reprint author), Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging, Berkeley, CA 94720 USA.; Orville, AM (reprint author), Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England. EM mallaire@lbl.gov; allen.orville@diamond.ac.uk; soares@bnl.gov RI Song, Heng/I-1381-2016; Sauter, Nicholas/K-3430-2012; Lemke, Henrik Till/N-7419-2016; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; OI Lemke, Henrik Till/0000-0003-1577-8643; Yukl, Erik/0000-0001-6519-6938; Davidson, Victor/0000-0002-1966-7302 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; Brookhaven National Laboratory/US DOE, Laboratory Directed Research and Development [11-008]; NIH/NCRR [2-P41-RR012408]; NIH/National Institute of General Medical Sciences (NIGMS) [8P41GM103473-16]; US DOE, Office of Biological and Environmental Research (OBER) [FWP BO-70]; NIH NIGMS [Y1GM008003]; Brookhaven National Laboratory Biosciences Department [BO-9734]; NIH [GM095887, GM102520, 5R01 GM066569-11, 5R37 GM041574-26, F32 GM097779-03, GM055302, GM110501]; Office of Science, DOE [DE-AC02-05CH11231]; National Science Foundation [CHE 0748504]; US DOE, Office of Science, OBES, Division of Chemical Sciences, Geosciences, and Biosciences (CSGB) [DE-AC02-05CH11231]; Human Frontiers Science Project; DFG-Cluster of Excellence "UniCat"; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515, DE-AC02-98CH10886]; DOE Office of Biological and Environmental Research; NIH, National Institute of General Medical Sciences [P41GM103393]; [Sfb1078] FX Experiments were carried out at the LCLS, a national user facility operated by Stanford University on behalf of the US Department of Energy (DOE), Office of Basic Energy Sciences (OBES). Use of the LCLS, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. We thank the staff at LCLS/SLAC for their support. This work was supported by the Brookhaven National Laboratory/US DOE, Laboratory Directed Research and Development grant 11-008 (A.S.S., M.A., and A.M.O.); NIH/NCRR grant 2-P41-RR012408, NIH/National Institute of General Medical Sciences (NIGMS) grant 8P41GM103473-16 and the US DOE, Office of Biological and Environmental Research (OBER) grant FWP BO-70 (A.H., A.M.O., and A.S.S); NIH NIGMS grant Y1GM008003 (M.A.); and the Brookhaven National Laboratory Biosciences Department grant BO-9734 (R.A.). NIH grants GM095887 and GM102520 and Director, Office of Science, DOE under contract DE-AC02-05CH11231 for data-processing methods (A.S.B. and N.K.S.). NIH 5R01 GM066569-11 (C.M.W.), NIH 5R37 GM041574-26 (V.L.D.), NIH F32 GM097779-03 (E.T.Y.) for MauG-MADH biochemistry. Anaerobically purified Stc2 production was supported by the National Science Foundation grant CHE 0748504 (P.L.). PS-II production and crystallization was supported by the US DOE Director, Office of Science, OBES, Division of Chemical Sciences, Geosciences, and Biosciences (CSGB) under contract DE-AC02-05CH11231 (J.Y. and V.K.Y.); NIH grants GM055302 (V.K.Y.) and GM110501 (J.Y.), the Human Frontiers Science Project (J.Y. and A.Z.), the DFG-Cluster of Excellence "UniCat" coordinated by the Technische Universitat Berlin and Sfb1078, TP A5 (A.Z.). Testing of crystals and various parts of the setup were carried out at synchrotron facilities that were provided by the Advanced Light Source (ALS) in Berkeley, the National Synchrotron Light Source (NSLS) in Upton, NY, and the Stanford Synchrotron Radiation Lightsource (SSRL). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the NIH, National Institute of General Medical Sciences (including P41GM103393). Richard Ellson is a founder and a member of the Board of Directors of Labcyte Inc. S.D., B.E., L.P.G., L.M., W.M.M., J.O., and R.G.S. are employed by Labcyte Inc. NR 66 TC 5 Z9 5 U1 11 U2 23 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0969-2126 EI 1878-4186 J9 STRUCTURE JI Structure PD APR 5 PY 2016 VL 24 IS 4 BP 631 EP 640 DI 10.1016/j.str.2016.02.007 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA DI5VN UT WOS:000373568700019 PM 26996959 ER PT J AU Bai, L Hu, K Wang, T Jastrab, JM Darwin, KH Li, HL AF Bai, Lin Hu, Kuan Wang, Tong Jastrab, Jordan M. Darwin, K. Heran Li, Huilin TI Structural analysis of the dodecameric proteasome activator PafE in Mycobacterium tuberculosis SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE structural biology; proteasome; Mycobacterium tuberculosis; X-ray crystallography; cryo-EM ID EM STRUCTURE DETERMINATION; 20S PROTEASOME; REGULATORY PARTICLE; ELECTRON-MICROSCOPY; ATPASE HOMOLOG; REG ALPHA; DEGRADATION; RESOLUTION; ASSOCIATION; PUPYLATION AB The human pathogen Mycobacterium tuberculosis (Mtb) requires a proteasome system to cause lethal infections in mice. We recently found that proteasome accessory factor E (PafE, Rv3780) activates proteolysis by the Mtb proteasome independently of adenosine triphosphate (ATP). Moreover, PafE contributes to the heat-shock response and virulence of Mtb. Here, we show that PafE subunits formed four-helix bundles similar to those of the eukaryotic ATP-independent proteasome activator subunits of PA26 and PA28. However, unlike any other known proteasome activator, PafE formed dodecamers with 12-fold symmetry, which required a glycine-XXX-glycine-XXX-glycine motif that is not found in previously described activators. Intriguingly, the truncation of the PafE carboxyl-terminus resulted in the robust binding of PafE rings to native proteasome core particles and substantially increased proteasomal activity, suggesting that the extended carboxyl-terminus of this cofactor confers suboptimal binding to the proteasome core particle. Collectively, our data show that proteasomal activation is not limited to hexameric ATPases in bacteria. C1 [Bai, Lin; Hu, Kuan; Wang, Tong; Li, Huilin] Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA. [Hu, Kuan; Li, Huilin] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Jastrab, Jordan M.; Darwin, K. Heran] NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA. RP Li, HL (reprint author), Brookhaven Natl Lab, Biosci Dept, Upton, NY 11973 USA.; Li, HL (reprint author), SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA.; Darwin, KH (reprint author), NYU, Sch Med, Dept Microbiol, New York, NY 10016 USA. EM heran.darwin@med.nyu.edu; hli@bnl.gov RI bai, lin/J-2502-2015 OI bai, lin/0000-0002-7535-7819 FU National Institutes of Health [AI070285, AI088075, T32 AI007180, F30 AI110067]; Burroughs Wellcome Fund; Offices of Biological and Environmental Research; Basic Energy Sciences of the US Department of Energy; National Center for Research Resources of the US National Institutes of Health FX We thank Annie Heroux and Laura Morisco for their expert help during data collection. This work was supported by National Institutes of Health Grants AI070285 (to H.L.), AI088075 (to K.H.D), and T32 AI007180 and F30 AI110067 (to J.M.J.). K.H.D. holds an Investigator in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund. X-ray diffraction data for this study were collected at X25 and X29 of the National Synchrotron Light Source, Brookhaven National Laboratory, and at the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) 31-ID of the Advanced Photon Source, Argonne National Laboratory. Use of LRL-CAT was provided by Eli Lilly Company, which operates the facility. Financial support to the synchrotron facilities was principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy, and from the National Center for Research Resources of the US National Institutes of Health. NR 53 TC 6 Z9 6 U1 0 U2 12 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD APR 5 PY 2016 VL 113 IS 14 BP E1983 EP E1992 DI 10.1073/pnas.1512094113 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DI2UI UT WOS:000373354000008 PM 27001842 ER PT J AU Avery, AD Zhou, BH Lee, J Lee, ES Miller, EM Ihly, R Wesenberg, D Mistry, KS Guillot, SL Zink, BL Kim, YH Blackburn, JL Ferguson, AJ AF Avery, Azure D. Zhou, Ben H. Lee, Jounghee Lee, Eui-Sup Miller, Elisa M. Ihly, Rachelle Wesenberg, Devin Mistry, Kevin S. Guillot, Sarah L. Zink, Barry L. Kim, Yong-Hyun Blackburn, Jeffrey L. Ferguson, Andrew J. TI Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties SO NATURE ENERGY LA English DT Article ID CONDUCTING POLYMER POLY(3,4-ETHYLENEDIOXYTHIOPHENE); AUGMENTED-WAVE METHOD; THIN-FILMS; THERMAL-CONDUCTIVITY; CHARGE-TRANSFER; SOLAR-CELLS; POWER; TRANSPORT; DIAMETER; DENSITY AB Thermoelectric power generation, allowing recovery of part of the energy wasted as heat, is emerging as an important component of renewable energy and energy efficiency portfolios. Although inorganic semiconductors have traditionally been employed in thermoelectric applications, organic semiconductors garner increasing attention as versatile thermoelectric materials. Here we present a combined theoretical and experimental study suggesting that semiconducting single-walled carbon nanotubes with carefully controlled chirality distribution and carrier density are capable of large thermoelectric power factors, higher than 340 mu Wm(-1) K-2, comparable to the best-performing conducting polymers and larger than previously observed for carbon nanotube films. Furthermore, we demonstrate that phonons are the dominant source of thermal conductivity in the networks, and that our carrier doping process significantly reduces the thermal conductivity relative to undoped networks. These findings provide the scientific underpinning for improved functional organic thermoelectric composites with carbon nanotube inclusions. C1 [Avery, Azure D.; Zhou, Ben H.; Miller, Elisa M.; Ihly, Rachelle; Mistry, Kevin S.; Guillot, Sarah L.; Blackburn, Jeffrey L.; Ferguson, Andrew J.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. [Lee, Jounghee; Lee, Eui-Sup; Kim, Yong-Hyun] Korea Adv Inst Sci & Technol, Grad Sch Nanosci & Technol, Daejeon 305701, South Korea. [Wesenberg, Devin; Zink, Barry L.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. [Guillot, Sarah L.] Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. RP Blackburn, JL; Ferguson, AJ (reprint author), Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA. EM jeffrey.blackburn@nrel.gov; andrew.ferguson@nrel.gov OI Zink, Barry/0000-0001-7732-532X; Guillot, Sarah/0000-0003-0887-897X; Ferguson, Andrew/0000-0003-2544-1753 FU Laboratory Directed Research and Development Program at the National Renewable Energy Laboratory (NREL); Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy (DOE); US Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory Director's Fellowship; Department of Energy, Office of Science, Science Undergraduate Laboratory Internship (SULI) Program; National Research Foundation of Korea [2015R1A2A2A05027766]; Global Frontier RD [2011-0031566]; NSF-DMR [DMR-0847796, DMR-1410247]; US Department of Energy (DOE) Office of Science [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000] FX The investigation of the thermoelectric properties of the SWCNT networks carried out by the NREL authors was performed under a grant from the Laboratory Directed Research and Development Program at the National Renewable Energy Laboratory (NREL). The development of the s-SWCNT separations at NREL was funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy (DOE). NREL is supported by the US Department of Energy under Contract No. DE-AC36-08GO28308. E.M.M. would like to thank the National Renewable Energy Laboratory Director's Fellowship for funding. B.H.Z. and S.L.G. would like to thank the Department of Energy, Office of Science, Science Undergraduate Laboratory Internship (SULI) Program for funding. Work at KAIST was supported by the National Research Foundation of Korea (2015R1A2A2A05027766) and Global Frontier R&D (2011-0031566: Center for Multiscale Energy Systems) programmes. Work at D.U. is supported by NSF-DMR (DMR-0847796 and DMR-1410247). This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). NR 51 TC 10 Z9 10 U1 10 U2 10 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2058-7546 J9 NAT ENERGY JI Nat. Energy PD APR 4 PY 2016 VL 1 AR 16033 DI 10.1038/NENERGY.2016.33 PG 9 WC Energy & Fuels; Materials Science, Multidisciplinary SC Energy & Fuels; Materials Science GA EK7OU UT WOS:000394115900001 ER PT J AU Schoedel, A Ji, Z Yaghi, OM AF Schoedel, Alexander Ji, Zhe Yaghi, Omar M. TI The role of metal-organic frameworks in a carbon-neutral energy cycle SO NATURE ENERGY LA English DT Review ID SECONDARY BUILDING UNITS; HIGH-SURFACE-AREA; HYDROGEN-STORAGE; METHANE STORAGE; DIOXIDE CAPTURE; CO2 REDUCTION; AMBIENT CONDITIONS; POROUS MATERIALS; HIGH-CAPACITY; FLUE-GAS AB Reducing society's reliance on fossil fuels presents one of the most pressing energy and environmental challenges facing our planet. Hydrogen, methane and carbon dioxide, which are some of the smallest and - simplest molecules known, may lie at the centre of solving this problem through realization of a carbon-neutral energy cycle. Potentially, this could be achieved through the deployment of hydrogen as the fuel of the long term, methane as a transitional fuel, and carbon dioxide capture and sequestration as the urgent response to ongoing climate change. Here we detail strategies and technologies developed to overcome the difficulties encountered in the capture, storage, delivery and conversion of these gas molecules. In particular, we focus on metal-organic frameworks in which metal oxide 'hubs' are linked with organic 'struts' to make materials of ultrahigh porosity, which provide a basis for addressing this challenge through materials design on the molecular level. C1 [Schoedel, Alexander; Ji, Zhe; Yaghi, Omar M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Schoedel, Alexander; Ji, Zhe; Yaghi, Omar M.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Schoedel, Alexander; Ji, Zhe; Yaghi, Omar M.] Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA. [Yaghi, Omar M.] King Abdulaziz City Sci & Technol, POB 6086, Riyadh 11442, Saudi Arabia. RP Yaghi, OM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), Univ Calif Berkeley, Kavli Energy Nanosci Inst, Berkeley, CA 94720 USA.; Yaghi, OM (reprint author), King Abdulaziz City Sci & Technol, POB 6086, Riyadh 11442, Saudi Arabia. EM yaghi@berkeley.edu OI Schoedel, Alexander/0000-0001-6548-9300 FU BASF SE (Ludwigshafen, Germany); US Department of Defense; Defense Threat Reduction Agency [HDTRA 1-12-1-0053]; US Department of Energy, Office of Science, Office of Basic Energy Sciences; Energy Frontier Research Center [DE-SC0001015]; King Abdulaziz City of Science and Technology (KACST); German Research Foundation (DFG) [SCHO 1639/1-1] FX Funding of MOF research in the Yaghi group is supported by BASF SE (Ludwigshafen, Germany), US Department of Defense, Defense Threat Reduction Agency (HDTRA 1-12-1-0053), US Department of Energy, Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Center grant (DE-SC0001015), and King Abdulaziz City of Science and Technology (KACST). A.S. gratefully acknowledges the German Research Foundation (DFG, SCHO 1639/1-1) for financial support. The authors would like to thank A. Fracaroli for help with collating data on carbon dioxide capture in the presence of water, L. Ding (Delft University of Technology) for producing Fig. 1 graphics, and Ahmad S. Alshammari for helpful discussions. NR 101 TC 30 Z9 30 U1 13 U2 13 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2058-7546 J9 NAT ENERGY JI Nat. Energy PD APR 4 PY 2016 VL 1 AR 16034 DI 10.1038/NENERGY.2016.34 PG 13 WC Energy & Fuels; Materials Science, Multidisciplinary SC Energy & Fuels; Materials Science GA EK7OU UT WOS:000394115900002 ER PT J AU Burckel, DB Finnegan, PS Henry, MD Resnick, PJ Jarecki, RL AF Burckel, D. Bruce Finnegan, Patrick S. Henry, M. David Resnick, Paul J. Jarecki, Robert L., Jr. TI Oblique patterned etching of vertical silicon sidewalls SO APPLIED PHYSICS LETTERS LA English DT Article ID 3-DIMENSIONAL PHOTONIC CRYSTALS; FARADAY CAGE; METAMATERIAL; FABRICATION; BANDGAP AB A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches. (C) 2016 AIP Publishing LLC. C1 [Burckel, D. Bruce; Finnegan, Patrick S.; Henry, M. David; Resnick, Paul J.; Jarecki, Robert L., Jr.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Burckel, DB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM dbburck@sandia.gov FU Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to acknowledge Bonnie McKenzie for providing SEM images and Major Monochie for fabrication of the Faraday cages. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 20 TC 1 Z9 1 U1 4 U2 8 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 4 PY 2016 VL 108 IS 14 AR 142103 DI 10.1063/1.4945681 PG 4 WC Physics, Applied SC Physics GA DJ5EX UT WOS:000374230700024 ER PT J AU Dreyer, CE Alkauskas, A Lyons, JL Speck, JS Van de Walle, CG AF Dreyer, Cyrus E. Alkauskas, Audrius Lyons, John L. Speck, James S. Van de Walle, Chris G. TI Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters SO APPLIED PHYSICS LETTERS LA English DT Article ID POINT-DEFECTS; GAN; SEMICONDUCTORS; HYDROGEN; CAPTURE AB We describe a mechanism by which complexes between gallium vacancies and oxygen and/or hydrogen act as efficient channels for nonradiative recombination in InGaN alloys. Our identification is based on first-principles calculations of defect formation energies, charge-state transition levels, and nonradiative capture coefficients for electrons and holes. The dependence of these quantities on alloy composition is analyzed. We find that modest concentrations of the proposed defect complexes (similar to 10(16) cm(-3)) can give rise to Shockley-Read-Hall coefficients A = (10(7) - 10(9))s(-1). The resulting nonradiative recombination would significantly reduce the internal quantum efficiency of optoelectronic devices. (C) 2016 AIP Publishing LLC. C1 [Dreyer, Cyrus E.; Lyons, John L.; Speck, James S.; Van de Walle, Chris G.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Dreyer, Cyrus E.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08845 USA. [Alkauskas, Audrius] Ctr Phys Sci & Technol, LT-01108 Vilnius, Lithuania. [Alkauskas, Audrius] Kaunas Univ Technol, Dept Phys, LT-51368 Kaunas, Lithuania. [Lyons, John L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Dreyer, CE (reprint author), Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08845 USA. EM cedreyer@engineering.ucsb.edu RI Alkauskas, Audrius/I-3245-2012; OI Alkauskas, Audrius/0000-0002-4228-6612; Lyons, John L./0000-0001-8023-3055; Van de Walle, Chris/0000-0002-4212-5990 FU U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-SC0010689]; Marie Sklodowska-Curie Action of the European Union [657054]; DOE Office of Science [DE-AC02-05CH11231] FX We acknowledge M. A. Reshchikov, C. Weisbuch, J. Shen, and Q. Yan for fruitful interactions. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, under Award No. DE-SC0010689. A. A. was supported by Marie Sklodowska-Curie Action of the European Union (project Nitride-SRH, Grant No. 657054). Computational resources were provided by the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231. NR 32 TC 5 Z9 5 U1 12 U2 25 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 4 PY 2016 VL 108 IS 14 AR 141101 DI 10.1063/1.4942674 PG 5 WC Physics, Applied SC Physics GA DJ5EX UT WOS:000374230700001 ER PT J AU Garrett, SL Smith, JA Smith, RWM Heidrich, BJ Heibel, MD AF Garrett, Steven L. Smith, James A. Smith, Robert W. M. Heidrich, Brenden J. Heibel, Michael D. TI Fission-powered in-core thermoacoustic sensor SO APPLIED PHYSICS LETTERS LA English DT Article ID BINARY-MIXTURES; ENGINE AB A thermoacoustic engine is operated within the core of a nuclear reactor to acoustically telemeter coolant temperature (frequency-encoded) and reactor power level (amplitude-encoded) outside the reactor, thus providing the values of these important parameters without external electrical power or wiring. We present data from two hydrophones in the coolant (far from the core) and an accelerometer attached to a structure outside the reactor. These signals have been detected even in the presence of substantial background noise generated by the reactor's fluid pumps. (C) 2016 AIP Publishing LLC. C1 [Garrett, Steven L.] Penn State Univ, Grad Program Acoust, University Pk, PA 16802 USA. [Smith, James A.] Idaho Natl Lab, Fundamental Fuel Properties, Idaho Falls, ID 83415 USA. [Smith, Robert W. M.] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA. [Heidrich, Brenden J.] Idaho Natl Lab, Nucl Sci User Facil, Idaho Falls, ID 83415 USA. [Heibel, Michael D.] Westinghouse Elect Co, Global Technol Dev, Cranberry Township, PA 16066 USA. RP Garrett, SL (reprint author), Penn State Univ, Grad Program Acoust, University Pk, PA 16802 USA. OI Heidrich, Brenden/0000-0001-5639-3307 FU Penn State's Radiation Science and Engineering Center; U.S. Department of Energy's Idaho National Laboratory; Westinghouse Global Technology Development Department of the Westinghouse Electric Company FX The design and optimization of this sensor relied upon the Design Environment for Low-Amplitude Thermoacoustic Energy Conversion (DELTAEC), a software package developed and supported for over twenty-five years by G. W. Swift and W. W. Ward at the Los Alamos National Laboratory. The authors are grateful for the support of Larry Bodendorf, Iain Wilson, James Lynch, and Brandon Rieck of IST Mirion for fabrication of the resonator and for its fueling. We are also appreciative of the support provided by Penn State's Radiation Science and Engineering Center for ensuring that the experiment could be operated safely and in full compliance with all NRC regulatory limits. J.A.S. thanks James Lee and Keith Jewell for help with the assembly and testing of the data acquisition system and Vivek Agarwal for assistance with the data analysis. The participation of Randall Ali, Joshua Hrisko, and Andrew Bascom, three of S.L.G.'s graduate students, contributed to the success of these experiments. This research was supported by the U.S. Department of Energy's Idaho National Laboratory and by the Westinghouse Global Technology Development Department of the Westinghouse Electric Company. NR 20 TC 0 Z9 0 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 4 PY 2016 VL 108 IS 14 AR 144102 DI 10.1063/1.4944697 PG 4 WC Physics, Applied SC Physics GA DJ5EX UT WOS:000374230700047 ER PT J AU Lott, M Payan, C Garnier, V Vu, QA Eiras, JN Remillieux, MC Le Bas, PY Ulrich, TJ AF Lott, Martin Payan, Cedric Garnier, Vincent Vu, Quang A. Eiras, Jesus N. Remillieux, Marcel C. Le Bas, Pierre-Yves Ulrich, T. J. TI Three-dimensional treatment of nonequilibrium dynamics and higher order elasticity SO APPLIED PHYSICS LETTERS LA English DT Article ID SLOW DYNAMICS; CONSTANTS; SOLIDS; ROCKS AB This letter presents a three-dimensional model to describe the complex behavior of nonlinear mesoscopic elastic materials such as rocks and concrete. Assuming isotropy and geometric contraction of principal stress axes under dynamic loading, the expression of elastic wave velocity is derived, based on the second-order elastic constants (lambda, mu), third-order elastic constants (l, m, n), and a parameter alpha of nonclassical nonlinear elasticity resulting from conditioning. We demonstrate that both softening and recovering of the elastic properties under dynamic loading is an isotropic effect related to the strain tensor. The measurement of the conditioning is achieved using three polarized waves. The model allows the evaluation of the third-order elastic constants uncoupled from conditioning and viscoelastic effects. The values obtained are similar to those reported in the literature using quasi-static loading. (C) 2016 AIP Publishing LLC. C1 [Lott, Martin; Payan, Cedric; Garnier, Vincent; Vu, Quang A.] Aix Marseille Univ, CNRS, LMA, UPR 7051,Cent Marseille, F-13453 Marseille 13, France. [Eiras, Jesus N.] Univ Politecn Valencia, Inst Ciencia & Tecnol Hormigon ICITECH, E-46022 Valencia, Spain. [Remillieux, Marcel C.; Le Bas, Pierre-Yves; Ulrich, T. J.] Los Alamos Natl Lab, Geophys Grp EES 17, POB 1663, Los Alamos, NM 87545 USA. RP Lott, M (reprint author), Aix Marseille Univ, CNRS, LMA, UPR 7051,Cent Marseille, F-13453 Marseille 13, France. EM lott@lma.cnrs-mrs.fr FU French National Research Agency through the ENDE program [ANR-11 RSNR 0009] FX The authors acknowledge the support of the French National Research Agency through the ENDE program ( Grant No. ANR-11 RSNR 0009). NR 22 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 4 PY 2016 VL 108 IS 14 AR 141907 DI 10.1063/1.4945680 PG 5 WC Physics, Applied SC Physics GA DJ5EX UT WOS:000374230700019 ER PT J AU Williams, KW Monahan, NR Koleske, DD Crawford, MH Zhu, XY AF Williams, Kristopher W. Monahan, Nicholas R. Koleske, Daniel D. Crawford, Mary H. Zhu, X. -Y. TI Ultrafast and band-selective Auger recombination in InGaN quantum wells SO APPLIED PHYSICS LETTERS LA English DT Article ID LIGHT-EMITTING-DIODES; EFFICIENCY DROOP; DYNAMICS AB In InGaN quantum well based light-emitting diodes, Auger recombination is believed to limit the quantum efficiency at high injection currents. Here, we report the direct observation of carrier loss from Auger recombination on a sub-picosecond timescale in a single InGaN quantum well using time-resolved photoemission. Selective excitations of different valence sub-bands reveal that the Auger rate constant decreases by two orders of magnitude as the effective hole mass decreases, confirming the critical role of momentum conservation. (C) 2016 AIP Publishing LLC. C1 [Williams, Kristopher W.; Monahan, Nicholas R.; Zhu, X. -Y.] Columbia Univ, Dept Chem, New York, NY 10027 USA. [Koleske, Daniel D.; Crawford, Mary H.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Zhu, XY (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA.; Crawford, MH; Zhu, XY (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM mhcrawf@sandia.gov; xyzhu@columbia.edu RI Monahan, Nicholas/G-4946-2013 OI Monahan, Nicholas/0000-0002-8562-5127 FU Solid-State Lighting Science Energy Frontier Research Center (EFRC); Department of Energy Office of Basic Energy Science; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Solid-State Lighting Science Energy Frontier Research Center (EFRC) and sponsored by the Department of Energy Office of Basic Energy Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. We thank Dr. Haiming Zhu for help with photoluminescence measurements and Michael Smith for processing of InGaN QW samples. NR 22 TC 3 Z9 3 U1 6 U2 15 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD APR 4 PY 2016 VL 108 IS 14 AR 141105 DI 10.1063/1.4945669 PG 5 WC Physics, Applied SC Physics GA DJ5EX UT WOS:000374230700005 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieck, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Ochesanu, S Rougny, R De Klundert, MV Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Caillol, C Clerbaux, B De Lentdecker, G Delannoy, H Dobur, D Fasanella, G Favart, L Gay, PR Grebenyuk, A Leonard, A Mohammadi, A Pernie, L Randle-Conde, A Reis, T Seva, T Thomas, L Velde, CV Vanlaer, P Wang, J Zenoni, F Beernaert, K Benucci, L Cimmino, A Crucy, S Fagot, A Garcia, G Gul, M Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Diblen, SS Sigamani, M Strobbe, N Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Beliy, N Caebergs, T Hammad, H Junior, WLA Alves, GA Brito, L Martins, MC Martins, TDR Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santaolalla, J Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, S Abad, DR Vargas, JCR Aleksandrov, A Genchev, V Hadjiiska, R Iaydjiev, P Marinov, A Piperov, S Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Tao, J Wang, C Wang, Z Zhang, H Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Zhang, F Zhang, L Zou, W Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finger, M Ali, A Aly, R Aly, S Assran, Y Kamel, AE Lotfy, A Mahmoud, MA Masod, R Radi, A Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wend-Land, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A De Cassagnac, RG Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Beaupere, N Bernet, C Boudoul, G Bouvier, E Brochet, S Montoya, CAC Chasserat, J Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Xiao, H Lomidze, D Autermann, C Beranek, S Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Sammet, J Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Gallo, E Garcia, JG Geiser, A Gizhko, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Roland, B Sahin, MO Salfeld-Nebgen, J Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trippkewitz, KD Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Hoffmann, M Hoing, RS Junkes, A Kirschenmann, H Klanner, R Kogler, R Lapsien, T Lenz, T Marchesini, I Marconi, D Nowatschin, D Ott, J Peiffer, T Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Seidel, M Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F De Boer, W Descroix, A Dierlamm, A Feindt, M Frensch, F Giffels, M Gilbert, A Hartmann, F Husemann, U Katkov, I Kornmayer, A Pardo, PL Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Markou, A Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Palinkas, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Mal, P Mandal, K Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Nishu, N Singh, JB Walia, G Kumar, A Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Kumar, A Malhotra, S Naimuddin, M Ranjan, K Sharma, R Sharma, V Banerjee, S Bhattacharya, S Chatterjee, K Dey, S Dutta, S Jain, S Jain, S Khurana, R Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sudhakar, K Sur, N Sutar, B Wickramage, N Sharma, S Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Chhibra, SS Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Sharma, A Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Calvelli, V Ferro, F Lo Vetere, M Robutti, E Tosi, S Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Bellato, M Bisello, D Carlin, R De Oliveira, ACA Checchia, P Dall'Osso, M Dorigo, T Dosselli, U Fantinel, S Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Gabusi, M Magnani, A Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Fiori, F Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Micheli, F Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Soffi, L Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Umer, T Zanetti, A Chang, S Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Sakharov, A Son, DC Kim, H Kim, TJ Ryu, MS Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, JH Lee, JSH Park, IC Ryu, G Choi, Y Choi, YK Goh, J Kim, D Kwon, E Lee, J Yu, I Juodagalvis, A Vaitkus, J Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Linares, EC Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez, GR Sanchez-Hernandez, A Moreno, SC Valencia, FV Carpinteyro, S Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Reucroft, S Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Iglesias, LL Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Toriashvili, T Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Bylinkin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Baskakov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Myagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Ekmedzic, M Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, C Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, S Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cortezon, EP Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A De Saa, JRC Campderros, JD Fernandez, M Gomez, G Graziano, A Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Hansen, M Harris, P Hegeman, J Innocente, V Janot, P Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Magini, N Malgeri, L Mannelli, M Marrouche, J Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Petrilli, A Petrucciani, G Pfeiffer, A Piparo, D Racz, A Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Sharma, A Silva, P Simon, M Sphicas, P Spiga, D Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Rohe, T Bachmair, F Bani, L Bianchini, L Buchmann, MA Casal, B Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marini, AC Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Mohr, N Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrozzi, L Peruzzi, M Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR TheofiLatos, K Wallny, R Weber, HA Aarrestad, TK Amsler, C Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Taroni, S Yang, Y Cardaci, M Chen, KH Doan, TH Ferro, C Konyushikhin, M Kuo, CM Lin, W Lu, YJ Volpe, R Yu, SS Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Petrakou, E Tsai, JF Tzeng, YM Wilken, R Asavapibhop, B Kovitanggoon, K Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Onengut, G Ozdemir, K Polatoz, A Cerci, DS Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Surat, UE Yalvac, M Zeyrek, M Albayrak, EA Gulmez, E Kaya, M Kaya, O Yetkin, T Cankocak, K Gunaydin, YO Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-storey, SS Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Womersley, WJ Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Fulcher, J Futyan, D Hall, G Iles, G Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Sharp, P Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Pastika, N Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J John, JS Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Demiragli, Z Dhingra, N Ferapontov, A Garabedian, A Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Sagir, S Sinthuprasith, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Rakness, G Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Rikova, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Sumowidagdo, S Wei, H Wimpenny, S Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Holzner, A Kelley, R Klein, D Kovalskyi, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Tu, Y Vartak, A Wasserbaech, S Welke, C Wurthwein, F Yagil, A Della Porta, GZ Barge, D Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Justus, C Mccoll, N Mullin, SD Richman, J Stuart, D To, W West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Azzolini, V Calamba, A Carlson, B Ferguson, T Iiyama, Y Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Smith, JG Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Ryd, A Skinnari, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hirschauer, J Hooberman, B Hu, Z Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwan, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K No, JMMF Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Whitbeck, A Yang, F Yin, H Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Di Giovanni, GP Field, RD Fisher, M Furic, IK Hugon, J Konigsberg, J Korytov, A Kypreos, T Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Muniz, L Rank, D Rinkevicius, A Shchutska, L Snowball, M Sperka, D Wang, SJ Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Veeraraghavan, V Weinberg, M Bhopatkar, V Hohlmann, M Kalakhety, H Mareskas-Palcek, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Sen, S Snyder, C Tan, P Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Nash, K Osherson, M Swartz, M Xiao, M Xin, Y Baringer, P Bean, A Benelli, G Bruner, C Gray, J Kenny, RP Majumder, D Malek, M Murray, M Noonan, D Sanders, S Stringer, R Wang, Q Wood, JS Chakaberia, I Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Saini, LK Skhirtladze, N Svintradze, I Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Pedro, K Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Klute, M Lai, YS Lee, YJ Levin, A Luckey, PD Mcginn, C Niu, X Paus, C Ralph, D Roland, C Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Finkel, A Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Nourbakhsh, S Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Lazo-Flores, J Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Won, S Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Lynch, S Marinelli, N Meng, F Mueller, C Musienko, Y Pearson, T Planer, M Ruchti, R Smith, G Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Quan, X Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Kress, M Leonardo, N Miller, DH Neumeister, N Primavera, F Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Zablocki, J Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Verzetti, M Vishnevskiy, D Demortier, L Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Elayavalli, RK Lath, A Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Flanagan, W Gilmore, J Kamon, T Krutelyov, V Montalvo, R Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Roe, J Rose, A Safonov, A Suarez, I Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Christian, A Dasu, S Dodd, L Duric, S Friis, E Gomber, B Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Ruggles, T Sarangi, T Savin, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Knuenz, V. Koenig, A. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieck, J. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Ochesanu, S. Rougny, R. De Klundert, M. Van Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Caillol, C. Clerbaux, B. De Lentdecker, G. Delannoy, H. Dobur, D. Fasanella, G. Favart, L. Gay, P. R. Grebenyuk, A. Leonard, A. Mohammadi, A. Pernie, L. Randle-Conde, A. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Zenoni, F. Beernaert, K. Benucci, L. Cimmino, A. Crucy, S. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Diblen, S. Salva Sigamani, M. Strobbe, N. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Beliy, N. Caebergs, T. Hammad, H. Junior, W. L. Alda Alves, G. A. Brito, L. Correa Martins Junior, M. Dos Reis Martins, T. Hensel, C. Mora Herrera, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santaolalla, J. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Genchev, V. Hadjiiska, R. Iaydjiev, P. Marinov, A. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Tao, J. Wang, C. Wang, Z. Zhang, H. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Zhang, F. Zhang, L. Zou, W. Avila, C. Cabrera, A. Sierra, L. F. Chaparro Florez, C. Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finger, M., Jr. Ali, A. Aly, R. Aly, S. Assran, Y. Kamel, A. Ellithi Lotfy, A. Mahmoud, M. A. Masod, R. Radi, A. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wend-Land, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. De Cassagnac, R. Granier Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Bernet, C. Boudoul, G. Bouvier, E. Brochet, S. Montoya, C. A. Carrillo Chasserat, J. Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Xiao, H. Lomidze, D. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Sammet, J. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Roland, B. Sahin, M. Oe. Salfeld-Nebgen, J. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trippkewitz, K. D. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Hoffmann, M. Hoeing, R. S. Junkes, A. Kirschenmann, H. Klanner, R. Kogler, R. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Nowatschin, D. Ott, J. Peiffer, T. Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Frensch, F. Giffels, M. Gilbert, A. Hartmann, F. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Markou, A. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Palinkas, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Mal, P. Mandal, K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Nishu, N. Singh, J. B. Walia, G. Kumar, Ashok Kumar, Arun Bhardwaj, A. Choudhary, B. C. Garg, R. B. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, R. Sharma, V. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Jain, Sa. Jain, Sh. Khurana, R. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sudhakar, K. Sur, N. Sutar, B. Wickramage, N. Sharma, S. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Chhibra, S. S. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Sharma, A. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Calvelli, V. Ferro, F. Lo Vetere, M. Robutti, E. Tosi, S. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Bellato, M. Bisello, D. Carlin, R. De Oliveira, A. Carvalho Antunes Checchia, P. Dall'Osso, M. Dorigo, T. Dosselli, U. Fantinel, S. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Gabusi, M. Magnani, A. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Micheli, F. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Soffi, L. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Umer, T. Zanetti, A. Chang, S. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Sakharov, A. Son, D. C. Kim, H. Kim, T. J. Ryu, M. S. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Juodagalvis, A. Vaitkus, J. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Casimiro Linares, E. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Ramirez Sanchez, G. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Carpinteyro, S. Pedraza, I. Salazar Ibarguen, H. A. . Morelos Pineda, A. Krofcheck, D. Butler, P. H. Reucroft, S. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Walczak, M. Bargassa, P. Da Cruz E Silva, C. Beirao Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Toriashvili, T. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Bylinkin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Baskakov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Myagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Ekmedzic, M. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. Duarte Campderros, J. Fernandez, M. Gomez, G. Graziano, A. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Hansen, M. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Marrouche, J. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Petrilli, A. Petrucciani, G. Pfeiffer, A. Piparo, D. Racz, A. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schafer, C. Schwick, C. Sharma, A. Silva, P. Simon, M. Sphicas, P. Spiga, D. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Tsirou, A. Veres, G. I. Wardle, N. Wohri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Rohe, T. Bachmair, F. Bani, L. Bianchini, L. Buchmann, M. A. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Dunser, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marini, A. C. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Mohr, N. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrozzi, L. Peruzzi, M. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. TheofiLatos, K. Wallny, R. Weber, H. A. Aarrestad, T. K. Amsler, C. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Taroni, S. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Ferro, C. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Petrakou, E. Tsai, J. F. Tzeng, Y. M. Wilken, R. Asavapibhop, B. Kovitanggoon, K. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Onengut, G. Ozdemir, K. Polatoz, A. Cerci, D. Sunar Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Surat, U. E. Yalvac, M. Zeyrek, M. Albayrak, E. A. Gulmez, E. Kaya, M. Kaya, O. Yetkin, T. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Womersley, W. J. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Fulcher, J. Futyan, D. Hall, G. Iles, G. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Sharp, P. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Pastika, N. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. John, J. St. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Demiragli, Z. Dhingra, N. Ferapontov, A. Garabedian, A. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Sagir, S. Sinthuprasith, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Rakness, G. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Rikova, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Sumowidagdo, S. Wei, H. Wimpenny, S. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Holzner, A. Kelley, R. Klein, D. Kovalskyi, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Welke, C. Wurthwein, F. Yagil, A. Della Porta, G. Zevi Barge, D. Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Justus, C. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. To, W. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Iiyama, Y. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Smith, J. G. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Skinnari, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Grunendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Hu, Z. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwan, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. No, J. M. Marra Ffi Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Whitbeck, A. Yang, F. Yin, H. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Di Giovanni, G. P. Field, R. D. Fisher, M. Furic, I. K. Hugon, J. Konigsberg, J. Korytov, A. Kypreos, T. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Muniz, L. Rank, D. Rinkevicius, A. Shchutska, L. Snowball, M. Sperka, D. Wang, S. J. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Veeraraghavan, V. Weinberg, M. Bhopatkar, V. Hohlmann, M. Kalakhety, H. Mareskas-Palcek, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Sen, S. Snyder, C. Tan, P. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Nash, K. Osherson, M. Swartz, M. Xiao, M. Xin, Y. Baringer, P. Bean, A. Benelli, G. Bruner, C. Gray, J. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Noonan, D. Sanders, S. Stringer, R. Wang, Q. Wood, J. S. Chakaberia, I. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Skhirtladze, N. Svintradze, I. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Pedro, K. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Klute, M. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Mcginn, C. Niu, X. Paus, C. Ralph, D. Roland, C. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Finkel, A. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Nourbakhsh, S. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Lazo-Flores, J. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Won, S. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Lynch, S. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Pearson, T. Planer, M. Ruchti, R. Smith, G. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Quan, X. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Kress, M. Leonardo, N. Miller, D. H. Neumeister, N. Primavera, F. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Zablocki, J. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Verzetti, M. Vishnevskiy, D. Demortier, L. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Lath, A. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Krutelyov, V. Montalvo, R. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Roe, J. Rose, A. Safonov, A. Suarez, I. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Christian, A. Dasu, S. Dodd, L. Duric, S. Friis, E. Gomber, B. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Ruggles, T. Sarangi, T. Savin, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Comparison of the Z/gamma* + jets to gamma + jets cross sections in pp collisions at root s = 8 (vol 10, 128, 2015) SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Correction C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; De Klundert, M. Van; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, P. R.; Grebenyuk, A.; Leonard, A.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Zenoni, F.; Zhang, F.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Hammad, H.] Univ Mons, B-7000 Mons, Belgium. [Junior, W. L. Alda; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Ali, A.; Aly, R.; Aly, S.; Assran, Y.; Kamel, A. Ellithi; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wend-Land, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; De Cassagnac, R. Granier; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Bernet, C.] Ecole Polytech, Lab Leprince Ringuet, IN2P3 CNRS, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] Inst Natl Phys Nucl & Phys Particules, CNRS IN2P3, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, Univ Lyon, CNRS IN2P3, Inst Phys Nucl, F-69622 Villeurbanne, France. [Lomidze, D.; Toriashvili, T.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Sonnenschein, L.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Roland, B.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Wissing, C.] DESY, Notkestr 85, Hamburg, Germany. [Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoffmann, M.; Hoeing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.] Univ Hamburg, Hamburg, Germany. [Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Woehrmann, C.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Banerjee, S.; Aziz, T.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India. [Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Cristella, L.; De Palma, M.; Iaselli, G.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Padova, I-80125 Naples, Italy. [Esposito, M.; Iorio, A. O. M.; Sciacca, C.] Univ Naples Federico II, Federico 2, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Di Guida, S.; Meola, S.] Univ G Marconi, Rome, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fantinel, S.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Carlin, R.; De Oliveira, A. Carvalho Antunes; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trento, Trento, Italy. [Braghieri, A.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Via Palestro 3, I-27100 Pavia, Italy. [Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; Donato, S.; Fiori, F.; Foa, L.; Ligabue, F.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Micheli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Soffi, L.; Traczyk, P.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Pacher, L.; Angioni, G. L. Pinna; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.] Univ Trieste, Trieste, Italy. [Chang, S.; Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Kim, H.; Kim, T. J.; Ryu, M. S.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Ramirez Sanchez, G.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A. .] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Reucroft, S.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Chwalek, T.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Bargassa, P.; Da Cruz E Silva, C. Beirao; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Exp Particle, Lisbon, Portugal. [Finger, M., Jr.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, St Petersburg, Russia. [Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bylinkin, A.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, Yu.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Leninsky Prospect 53, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, POB 550, Belgrade 11001, Serbia. [Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Merlin, J. A.; Boudoul, G.; Lingemann, J.; Hartmann, F.; Kornmayer, A.; Mohanty, A. K.; Radogna, R.; Sharma, A.; Silvestris, L.; Giordano, F.; Gennai, S.; Lucchini, M. T.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Ciangottini, D.; Spiezia, A.; Donato, S.; Traczyk, P.; Finco, L.; Candelise, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schafer, C.; Schwick, C.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wohri, H. K.; Zagozdzinska, A.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Bani, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; TheofiLatos, K.; Wallny, R.; Weber, H. A.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Wilken, R.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Cerci, D. Sunar; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Albayrak, E. A.; Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; John, J. St.; Sulak, L.; Zou, D.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wurthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grunendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; No, J. M. Marra Ffi; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Abdulsalam, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.] Johns Hopkins Univ, Baltimore, MD USA. [Sander, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Stringer, R.; Wang, Q.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Gomez, G.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Rolandi, G.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, D.; Oliveros, S.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.] Univ Rochester, Rochester, NY 14627 USA. [Demortier, L.] Rockefeller Univ, 1230 York Ave, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI 53706 USA. [Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Moon, C. S.] CNRS IN2P3, Paris, France. [Ali, A.; Masod, R.; Radi, A.] Ain Shams Univ, Cairo, Egypt. [Ali, A.; Radi, A.] British Univ Egypt, Cairo, Egypt. [Aly, R.; Aly, S.] Helwan Univ, Cairo, Egypt. [Assran, Y.] Suez Univ, Suez, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Lotfy, A.; Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Hempel, M.; Karacheban, O.; Marfin, I.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Squillacioti, P.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Heredia-de la Cruz, I.] Consejo Natl Ciencia & Tecnol, Mexico City, DF, Mexico. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.] Gaziosmanpasa Univ, Tokat, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Cerci, D. Sunar] Adiyaman Univ, Adiyaman, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, TR-46050 Kahramanmaras, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Stahl, Achim/E-8846-2011; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Colafranceschi, Stefano/M-1807-2016; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Dubinin, Mikhail/I-3942-2016; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Della Ricca, Giuseppe/B-6826-2013; Varela, Joao/K-4829-2016; Dudko, Lev/D-7127-2012; Manganote, Edmilson/K-8251-2013; Azarkin, Maxim/N-2578-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Novaes, Sergio/D-3532-2012; Yazgan, Efe/C-4521-2014; Leonidov, Andrey/M-4440-2013; Paulini, Manfred/N-7794-2014; Smirnov, Vitaly/B-5001-2017; Ogul, Hasan/S-7951-2016; Dremin, Igor/K-8053-2015; Kirakosyan, Martin/N-2701-2015; Puljak, Ivica/D-8917-2017; TUVE', Cristina/P-3933-2015; Benussi, Luigi/O-9684-2014; Andreev, Vladimir/M-8665-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Flix, Josep/G-5414-2012; Nguyen, Federico/Q-8994-2016; Ruiz, Alberto/E-4473-2011; Petrushanko, Sergey/D-6880-2012; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017 OI Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Stahl, Achim/0000-0002-8369-7506; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Dubinin, Mikhail/0000-0002-7766-7175; Tinoco Mendes, Andre David/0000-0001-5854-7699; Della Ricca, Giuseppe/0000-0003-2831-6982; Varela, Joao/0000-0003-2613-3146; Dudko, Lev/0000-0002-4462-3192; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Novaes, Sergio/0000-0003-0471-8549; Yazgan, Efe/0000-0001-5732-7950; Paulini, Manfred/0000-0002-6714-5787; Ogul, Hasan/0000-0002-5121-2893; TUVE', Cristina/0000-0003-0739-3153; Benussi, Luigi/0000-0002-2363-8889; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Flix, Josep/0000-0003-2688-8047; Nguyen, Federico/0000-0002-6713-1596; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767 NR 1 TC 0 Z9 0 U1 14 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR 4 PY 2016 IS 4 AR 010 DI 10.1007/JHEP04(2016)010 PG 21 WC Physics, Particles & Fields SC Physics GA DJ1KU UT WOS:000373962500001 ER PT J AU Truxal, AE Slack, CC Gomes, MD Vassiliou, CC Wemmer, DE Pines, A AF Truxal, Ashley E. Slack, Clancy C. Gomes, Muller D. Vassiliou, Christophoros C. Wemmer, David E. Pines, Alexander TI Nondisruptive Dissolution of Hyperpolarized Xe-129 into Viscous Aqueous and Organic Liquid Crystalline Environments SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE hyperpolarization; liquid crystals; NMR spectroscopy; phase transitions; xenon ID NMR-SPECTROSCOPY; MAGNETIC-RESONANCE; XENON NMR; BIOSENSOR; BACTERIOPHAGE; REPORTERS AB Studies of hyperpolarized xenon-129 (hp-Xe-129) in media such as liquid crystals and cell suspensions are in demand for applications ranging from biomedical imaging to materials engineering but have been hindered by the inability to bubble Xe through the desired media as a result of viscosity or perturbations caused by bubbles. Herein a device is reported that can be reliably used to dissolve hp-Xe-129 into viscous aqueous and organic samples without bubbling. This method is robust, requires small sample volumes (<60L), is compatible with existing NMR hardware, and is made from readily available materials. Experiments show that Xe can be introduced into viscous and aligned media without disrupting molecular order. We detected dissolved xenon in an aqueous liquid crystal that is disrupted by the shear forces of bubbling, and we observed liquid-crystal phase transitions in (MBBA). This tool allows an entirely new class of samples to be investigated by hyperpolarized-gas NMR spectroscopy. C1 [Truxal, Ashley E.; Slack, Clancy C.; Gomes, Muller D.; Vassiliou, Christophoros C.; Wemmer, David E.; Pines, Alexander] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Truxal, Ashley E.; Slack, Clancy C.; Gomes, Muller D.; Vassiliou, Christophoros C.; Pines, Alexander] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wemmer, David E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. RP Pines, A (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Pines, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM pines@berkeley.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]; National Science Foundation Graduate Research Fellowship [DGE-1106400] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. C.C.S. is also supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400. NR 45 TC 3 Z9 3 U1 3 U2 16 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD APR 4 PY 2016 VL 55 IS 15 BP 4666 EP + DI 10.1002/anie.201511539 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DI6NJ UT WOS:000373615900001 PM 26954536 ER PT J AU Xian, L Tian, GX Beavers, CM Teat, SJ Shuh, DK AF Xian, Liang Tian, Guoxin Beavers, Christine M. Teat, Simon J. Shuh, David K. TI Glutarimidedioxime: A Complexing and Reducing Reagent for Plutonium Recovery from Spent Nuclear Fuel Reprocessing SO ANGEWANDTE CHEMIE-INTERNATIONAL EDITION LA English DT Article DE chelates; plutonium; reduction; structure elucidation; waste reduction ID KINETICS; ACID; REDUCTION AB Efficient separation processes for recovering uranium and plutonium from spent nuclear fuel are essential to the development of advanced nuclear fuel cycles. The performance characteristics of a new salt-free complexing and reducing reagent, glutarimidedioxime (H(2)A), are reported for recovering plutonium in a PUREX process. With a phase ratio of organic to aqueous of up to 10:1, plutonium can be effectively stripped from 30% tributyl phosphate (TBP) in kerosene into 1m HNO3 with H(2)A. The complexation-reduction mechanism is illustrated with the combination of UV/Vis absorption spectra and the crystal structure of a Pu-IV complex with the reagent. The fast stripping rate and the high efficiency for stripping Pu-IV, through the complexation-reduction mechanism, is suitable for use in centrifugal contactors with very short contact/resident times, thereby offering significant advantages over conventional processes. C1 [Xian, Liang; Tian, Guoxin] China Inst Atom Energy, Dept Radiochem, POB 275-26, Beijing 102413, Peoples R China. [Beavers, Christine M.; Teat, Simon J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Tian, Guoxin; Shuh, David K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tian, GX (reprint author), China Inst Atom Energy, Dept Radiochem, POB 275-26, Beijing 102413, Peoples R China.; Teat, SJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.; Tian, GX; Shuh, DK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM gtian@ciae.ac.cn; steat@lbl.gov; dkshuh@lbl.gov RI Beavers, Christine/C-3539-2009 OI Beavers, Christine/0000-0001-8653-5513 FU National Natural Science Foundation of China [91426302]; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Heavy Element Chemistry Program of the U.S. Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the National Natural Science Foundation of China (91426302) and the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Heavy Element Chemistry Program of the U.S. Department of Energy at Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 14 TC 1 Z9 1 U1 12 U2 40 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1433-7851 EI 1521-3773 J9 ANGEW CHEM INT EDIT JI Angew. Chem.-Int. Edit. PD APR 4 PY 2016 VL 55 IS 15 BP 4671 EP 4673 DI 10.1002/anie.201510712 PG 3 WC Chemistry, Multidisciplinary SC Chemistry GA DI6NJ UT WOS:000373615900005 PM 26970221 ER PT J AU Kamada, K Namikawa, T Senatore, S Matthews, C Lenne, PF Maury, O Andraud, C Ponce-Vargas, M Le Guennic, B Jacquemin, D Agbo, P An, DD Gauny, SS Liu, X Abergel, RJ Fages, F D'Aleo, A AF Kamada, Kenji Namikawa, Tomotaka Senatore, Sebastien Matthews, Cedric Lenne, Pierre-Francois Maury, Olivier Andraud, Chantal Ponce-Vargas, Miguel Le Guennic, Boris Jacquemin, Denis Agbo, Peter An, Dahlia D. Gauny, Stacey S. Liu, Xin Abergel, Rebecca J. Fages, Frederic D'Aleo, Anthony TI Boron Difluoride Curcuminoid Fluorophores with Enhanced Two-Photon Excited Fluorescence Emission and Versatile Living-Cell Imaging Properties SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE cell imaging; density functional calculations; dipolar dyes; photophysics; two-photon processes ID MESOPOROUS SILICA NANOPARTICLES; OPTICAL-DATA STORAGE; PHOTODYNAMIC THERAPY; CROSS-SECTIONS; 2'-HYDROXYCHALCONE DERIVATIVES; TELECOMMUNICATION WAVELENGTHS; BORONDIFLUORIDE COMPLEXES; PHOTOPHYSICAL PROPERTIES; ORGANIC NANOPARTICLES; ALZHEIMERS-DISEASE AB The synthesis of boron difluoride complexes of a series of curcuminoid derivatives containing various donor end groups is described. Time-dependent (TD)-DFT calculations confirm the charge-transfer character of the second lowest-energy transition band and ascribe the lowest energy band to a cyanine-like transition. Photophysical studies reveal that tuning the donor strength of the end groups allows covering a broad spectral range, from the visible to the NIR region, of the UV-visible absorption and fluorescence spectra. Two-photon-excited fluorescence and Z-scan techniques prove that an increase in the donor strength or in the rigidity of the backbone results in a considerable increase in the two-photon cross section, reaching 5000GM, with predominant two-photon absorption from the S-0-S-2 charge-transfer transition. Direct comparisons with the hemicurcuminoid derivatives show that the two-photon active band for the curcuminoid derivatives has the same intramolecular charge-transfer character and therefore arises from a dipolar structure. Overall, this structure-relationship study allows the optimization of the two-photon brightness (i.e., 400-900GM) with one dye that emits in the NIR region of the spectrum. In addition, these dyes demonstrate high intracellular uptake efficiency in Cos7 cells with emission in the visible region, which is further improved by using porous silica nanoparticles as dye vehicles for the imaging of two mammalian carcinoma cells type based on NIR fluorescence emission. C1 [Kamada, Kenji] Natl Inst Adv Ind Sci & Technol, IFMRI, Ikeda, Osaka 5638577, Japan. [Kamada, Kenji; Namikawa, Tomotaka] Kwansei Gakuin Univ, Sch Sci & Technol, Dept Chem, Sanda, Hyogo 6691337, Japan. [Senatore, Sebastien; Matthews, Cedric; Lenne, Pierre-Francois] Aix Marseille Univ, CNRS, Inst Biol Dev Marseille, UMR7288, F-13288 Marseille 9, France. [Maury, Olivier; Andraud, Chantal] Univ Lyon 1, ENS Lyon, CNRS, UMR 5182, F-69364 Lyon, France. [Ponce-Vargas, Miguel; Le Guennic, Boris] Univ Rennes 1, UMR CNRS 6226, Inst Sci Chim Rennes, 263 Ave Gen Leclerc, F-35042 Rennes, France. [Jacquemin, Denis] Univ Nantes, UMR CNRS 6230, Lab CEISAM, 2 Rue Houssiniere, F-44322 Nantes 3, France. [Jacquemin, Denis] Inst Univ France, 1 Rue Descartes, F-75005 Paris 05, France. [Agbo, Peter; An, Dahlia D.; Gauny, Stacey S.; Liu, Xin; Abergel, Rebecca J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Fages, Frederic; D'Aleo, Anthony] Aix Marseille Univ, CNRS, CINaM UMR 7325, Campus Luminy,Case 913, F-13288 Marseille, France. RP Kamada, K (reprint author), Natl Inst Adv Ind Sci & Technol, IFMRI, Ikeda, Osaka 5638577, Japan.; Abergel, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA.; D'Aleo, A (reprint author), Aix Marseille Univ, CNRS, CINaM UMR 7325, Campus Luminy,Case 913, F-13288 Marseille, France. EM k.kamada@aist.go.jp; rjabergel@lbl.gov; daleo@cinam.univ-mrs.fr RI Jacquemin, Denis/E-9020-2011; Fages, Frederic/A-7562-2017; OI Jacquemin, Denis/0000-0002-4217-0708; Fages, Frederic/0000-0003-2013-0710; Maury, Olivier/0000-0002-4639-643X; Ponce-Vargas, Miguel/0000-0002-6028-3167 FU European Research Council (ERC); Region des Pays de la Loire [Marches 278845]; Agence Nationale de la Recherche [ANR-10-INSB-04-01]; US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; ANR [ANR-14-CE05-0035-02] FX A.D. and F.F. would like to thank the Spectropole de Marseille and, especially, C. Chendo and V. Monnier for performing the mass spectrometry analysis and M. Giorgi for providing the X-ray crystallography. D.J. acknowledges the European Research Council (ERC) and the Region des Pays de la Loire for financial support in the framework of a Starting Grant (Marches 278845) and the LumoMat Project, respectively. This research used resources of: 1) the GENCI-CINES/IDRIS, 2) the CCIPL (Centre de Calcul Intensif des Pays de Loire), 3) a local Troy cluster, and 4) a Grant-in-Aid for Scientific Research #25248007 (K.K.) from JSPS and #15H00966 (K.K., Innovative Areas "Stimuli-Responsive Chemical Species") from MEXT, Japan. This work was performed by using the France-BioImaging infrastructure supported by the Agence Nationale de la Recherche (ANR-10-INSB-04-01). R.J.A. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231, through an Early Career Award. K.K. thanks Dr. Koji Ohta, Kyoto University, for his helpful suggestions on the quantum chemical calculations. M.P.-V. thanks the ANR (project ANR-14-CE05-0035-02) for his postdoctoral grant. NR 79 TC 11 Z9 11 U1 17 U2 44 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD APR 4 PY 2016 VL 22 IS 15 BP 5219 EP 5232 DI 10.1002/chem.201504903 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA DI4QE UT WOS:000373483600024 PM 26919627 ER PT J AU Ti, SC Pamula, MC Howes, SC Duellberg, C Cade, NI Kleiner, RE Forth, S Surrey, T Nogales, E Kapoor, TM AF Ti, Shih-Chieh Pamula, Melissa C. Howes, Stuart C. Duellberg, Christian Cade, Nicholas I. Kleiner, Ralph E. Forth, Scott Surrey, Thomas Nogales, Eva Kapoor, Tarun M. TI Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends SO DEVELOPMENTAL CELL LA English DT Article ID ALPHA-BETA-TUBULIN; GTP HYDROLYSIS; STABILIZE MICROTUBULES; PROTEINS; COMPLEX; CAP; PURIFICATION; TRANSITIONS; NUCLEATION; TRANSPORT AB The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. Here, we purify and characterize tubulin heterodimers that have human beta-tubulin isotype III (TUBB3), as well as heterodimers with one of two beta-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus-and minus- and-stabilizing caps. Importantly, the D417Hmutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus-and minus-ends of microtubules. C1 [Ti, Shih-Chieh; Pamula, Melissa C.; Kleiner, Ralph E.; Forth, Scott; Kapoor, Tarun M.] Rockefeller Univ, Lab Chem & Cell Biol, 1230 York Ave, New York, NY 10065 USA. [Howes, Stuart C.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Duellberg, Christian; Cade, Nicholas I.; Surrey, Thomas] Lincolns Inn Fields Lab, Francis Crick Inst, 44 Lincolns Inn Fields, London WC2A 3LY, England. RP Kapoor, TM (reprint author), Rockefeller Univ, Lab Chem & Cell Biol, 1230 York Ave, New York, NY 10065 USA. EM kapoor@mail.rockefeller.edu FU NIH [GM65933]; Leukemia & Lymphoma Society [CDP-530714]; Damon Runyon Cancer Research Foundation Postdoctoral Fellowship [DRG-2118-12]; Charles H. Revson Foundation Senior Fellowship in Biomedical Science; NIH NRSA fellowship [F32-GM099380]; Francis Crick Institute; Cancer Research UK; UK Medical Research Council; Wellcome Trust; FP7 ERC [323042] FX This research was supported by the NIH (GM65933, PI: T.M.K.). S.C.T. acknowledges support from the Leukemia & Lymphoma Society (CDP-530714). R.E.K. was supported by a Damon Runyon Cancer Research Foundation Postdoctoral Fellowship (DRG-2118-12) and by a Charles H. Revson Foundation Senior Fellowship in Biomedical Science. S.F. was supported by an NIH NRSA fellowship (F32-GM099380). E.N. is a Howard Hughes Medical Institute Investigator. C.D., N.I.C., and T.S. acknowledge support by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and the Wellcome Trust. C.D. and T.S. also acknowledge funding from FP7 ERC grant 323042. We also thank Brain Chait (Rockefeller University) for access to mass spectrometry instruments and Luke Rice (UT Southwestern) for helpful discussions. NR 48 TC 2 Z9 2 U1 1 U2 8 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1534-5807 EI 1878-1551 J9 DEV CELL JI Dev. Cell PD APR 4 PY 2016 VL 37 IS 1 BP 72 EP 84 DI 10.1016/j.devcel.2016.03.003 PG 13 WC Cell Biology; Developmental Biology SC Cell Biology; Developmental Biology GA DI6SB UT WOS:000373629300012 PM 27046833 ER PT J AU Woerner, WR Qian, GR Oganov, AR Stephens, PW Dharmagunawardhane, HAN Sinclair, A Parise, JB AF Woerner, William R. Qian, Guang-Rui Oganov, Artem R. Stephens, Peter W. Dharmagunawardhane, H. A. Naveen Sinclair, Alexandra Parise, John B. TI Combined Theoretical and in Situ Scattering Strategies for Optimized Discovery and Recovery of High-Pressure Phases: A Case Study of the GaN-Nb2O5 System SO INORGANIC CHEMISTRY LA English DT Article ID CRYSTAL-STRUCTURE PREDICTION; SOLID-STATE CHEMISTRY; VISIBLE-LIGHT; GALLIUM OXONITRIDE; 1ST PRINCIPLES; DENSE SODIUM; ANION ORDER; OXYNITRIDE; SPINEL; PHOTOCATALYSTS AB The application of pressure in solid-state synthesis provides a route for the creation of new and exciting materials. However, the onerous nature of high-pressure techniques limits their utility in materials discovery. The systematic search for novel oxynitrides-semiconductors for photocatalytic overall water splitting-is a representative case where quench high-pressure synthesis is useful and necessary in order to obtain target compounds. We utilize state of the art crystal structure prediction theory (USPEX) and in situ synchrotron-based X-ray scattering to speed up the discovery and optimization of novel compounds using high-pressure synthesis. Using this approach, two novel oxynitride phases were discovered in the GaN-Nb2O5 system. The (Nb2O5)(0.84):(NbO2)(0.32):(GaN)(0.82) rutile structured phase was formed at 1 GPa and 900 degrees C and gradually transformed to a alpha-PbO2-related structure above 2.8 GPa and 1000 degrees C. The low-pressure rutile type phase was found to have a direct optical band gap of 0.84 eV and an indirect gap of 0.51 eV. C1 [Woerner, William R.; Qian, Guang-Rui; Oganov, Artem R.; Parise, John B.] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA. [Stephens, Peter W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Dharmagunawardhane, H. A. Naveen] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Sinclair, Alexandra; Parise, John B.] SUNY Stony Brook, Mineral Phys Inst, Stony Brook, NY 11794 USA. [Parise, John B.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Parise, John B.] Brookhaven Natl Lab, Photon Sci, Upton, NY 11934 USA. RP Parise, JB (reprint author), SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA.; Parise, JB (reprint author), SUNY Stony Brook, Mineral Phys Inst, Stony Brook, NY 11794 USA.; Parise, JB (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA.; Parise, JB (reprint author), Brookhaven Natl Lab, Photon Sci, Upton, NY 11934 USA. EM john.parise@stonybrook.edu RI Oganov, Artem/A-1213-2008 OI Oganov, Artem/0000-0001-7082-9728 FU National Science Foundation [DMR-1231586]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-06CH11357]; COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under NSF [EAR 10-43050]; Mineral Physics Institute, Stony Brook University; Office of Basic Energy Sciences, U.S. Department of Energy, at the Spallation Neutron Source, Oak Ridge National Laboratory [DE-AC05-00OR22725]; UT Battelle FX The theoretical calculations, HPHT synthesis, and analysis of the synchrotron, neutron, and optical data by W.R.W., A.R.O., G.-R.Q., and H.A.N.D. was supported by the National Science Foundation under its materials Genome Initiative, Grant DMR-1231586. The use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the X17B2 beamline was supported by COMPRES, the Consortium for Materials Properties Research in Earth Sciences, under NSF Cooperative Agreement EAR 10-43050 and by the Mineral Physics Institute, Stony Brook University. The collection of high-resolution X-ray diffraction patterns at the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The neutron scattering measurements at POWGEN were supported by the Office of Basic Energy Sciences, U.S. Department of Energy, at the Spallation Neutron Source, Oak Ridge National Laboratory, under Contract No. DE-AC05-00OR22725 with UT Battelle. NR 68 TC 0 Z9 0 U1 9 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2016 VL 55 IS 7 BP 3384 EP 3392 DI 10.1021/acs.inorgchem.5b02791 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DI5PI UT WOS:000373550700024 PM 27002597 ER PT J AU Long, GJ Grandjean, F Guo, XF Navrotsky, A Kukkadapu, RK AF Long, Gary J. Grandjean, Fernande Guo, Xiaofeng Navrotsky, Alexandra Kukkadapu, Ravi K. TI Mossbauer Spectral Properties of Yttrium Iron Garnet, Y3Fe5O12, and Its Isovalent and Nonisovalent Yttrium-Substituted Solid Solutions SO INORGANIC CHEMISTRY LA English DT Article ID BI-YIG SYSTEM; MAGNETIC-MOMENT; SYMMETRY; CE0.1Y2.9FE5O12; HYPERFINE; COMPOSITE; MODEL; HEAT; FE57 AB Several high-resolution Mossbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia (3) over bard space group to the trigonal R (3) over bar space group. These spectral fits indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f the 3d, 3d, and the 1a, 1b, 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic Ia (3) over bard symmetry is subdivided into four sextets arising from four different 6f sites in R (3) over bar rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis. This analysis, when applied to the potential nuclear waste storage compounds Y3-xCa0.5xTh0.5xFe5O12 and Y3-xCa0.5xCe0.5xFe5O12, indicates virtually no perturbation of the structural, electronic, and magnetic properties upon substitution of small amounts of calcium(II) and thorium(IV) or cerium(W) onto the yttrium(III) 24c site as compared with Y3Fe5O12. The observed broadening of the four different 6f sites derived from the 24d site results from the substitution of yttrium(III) with calcium(II) and thorium(IV) or cerium(IV) cations on the next-nearest neighbor 24c site. In contrast, the same analysis applied to Y2.8Ce0.2Fe5O12 indicates a local perturbation of the magnetic exchange pathways as a result of the presence of cerium(IV) in the 24c next-nearest neighbor site of the iron(III) 24d site. C1 [Long, Gary J.; Grandjean, Fernande] Univ Missouri, Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. [Guo, Xiaofeng; Navrotsky, Alexandra] Univ Calif Davis, Thermochem Lab, Davis, CA 95616 USA. [Kukkadapu, Ravi K.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Long, GJ; Grandjean, F (reprint author), Univ Missouri, Missouri Univ Sci & Technol, Dept Chem, Rolla, MO 65409 USA. EM glong@mst.edu; fgrandjean@ulg.ac.be FU U.S. Department of Energy's Office of Biological and Environmental Research, which is located at the Pacific Northwest National Laboratory in Richland, WA FX The authors thank H. Serier-Brault, P. B. A. Fechine, and J.-M. Greneche for providing the Mossbauer spectral data reported in their earlier papers and R. P. Hermann for assistance with the new fitting code. Part of the work reported herein has been carried out at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research, which is located at the Pacific Northwest National Laboratory in Richland, WA. NR 30 TC 1 Z9 1 U1 4 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2016 VL 55 IS 7 BP 3413 EP 3418 DI 10.1021/acs.inorgchem.5b02769 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DI5PI UT WOS:000373550700027 PM 26998613 ER PT J AU Liu, JJ Goddard, PA Singleton, J Brambleby, J Foronda, F Moller, JS Kohama, Y Ghannadzadeh, S Ardavan, A Blundell, SJ Lancaster, T Xiao, F Williams, RC Pratt, FL Baker, PJ Wierschem, K Lapidus, SH Stone, KH Stephens, PW Bendix, J Woods, TJ Carreiro, KE Tran, HE Villa, CJ Manson, JL AF Liu, Junjie Goddard, Paul A. Singleton, John Brambleby, Jamie Foronda, Francesca Moeller, Johannes S. Kohama, Yoshimitsu Ghannadzadeh, Saman Ardavan, Arzhang Blundell, Stephen J. Lancaster, Tom Xiao, Fan Williams, Robert C. Pratt, Francis L. Baker, Peter J. Wierschem, Keola Lapidus, Saul H. Stone, Kevin H. Stephens, Peter W. Bendix, Jesper Woods, Toby J. Carreiro, Kimberly E. Tran, Hope E. Villa, Cecelia J. Manson, Jamie L. TI Antiferromagnetism in a Family of S=1 Square Lattice Coordination Polymers NiX2(pyz)(2) (X = Cl, Br, I, NCS; pyz = Pyrazine) SO INORGANIC CHEMISTRY LA English DT Article ID MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; HEISENBERG-ANTIFERROMAGNET; PHASE-TRANSITIONS; QUANTUM MAGNETS; METAL-COMPLEXES; EXCHANGE; NI; NI(C2H8N2)2NO2(CLO4); TEMPERATURE AB The crystal structures of NiX2(pyz)(2) (X = Cl (1), Br (2), I (3), and NCS (4)) were determined by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2) (pyz)(2)]EF6 (E = P, Sb), which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggered packing of adjacent layers. Long-range antiferromagnetic (AFM) order occurs below 1.5 (Cl), 1.9 (Br and NCS), and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3, and 4 were measured by electron-spin resonance with no evidence for zero field splitting (ZFS) being observed. The magnetism of 1-4 spans the spectrum from quasi-two-dimensional (2D) to three-dimensional (3D) antiferromagnetism. Nearly identical results and thermodynamic features were obtained for 2 and 4 as shown by pulsed-field magnetization, magnetic susceptibility, as well as their Neel temperatures. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. Compound 3 is characterized as a 3D AFM with the interlayer interaction (j(perpendicular to)) being slightly stronger than the intralayer interaction along Ni-pyz-Ni segments (j(pyz)) within the two-dimensional [Ni(pyz)(2)](2+) square planes. Regardless of X, j(pyz), is similar for the four compounds and is roughly 1 K. C1 [Liu, Junjie; Foronda, Francesca; Moeller, Johannes S.; Ghannadzadeh, Saman; Ardavan, Arzhang; Blundell, Stephen J.] Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. [Goddard, Paul A.; Brambleby, Jamie] Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. [Singleton, John; Kohama, Yoshimitsu] Los Alamos Natl Lab, Natl High Magnet Field Lab, MS-E536, Los Alamos, NM 87545 USA. [Lancaster, Tom; Xiao, Fan; Williams, Robert C.] Univ Durham, Ctr Phys Mat, S Rd, Durham DH1 3LE, England. [Pratt, Francis L.; Baker, Peter J.] STFC Rutherford Appleton Lab, ISIS Pulsed Muon Facil, Didcot OX11 0QX, Oxon, England. [Wierschem, Keola] Nanyang Technol Univ, Sch Math & Phys Sci, Singapore 637371, Singapore. [Lapidus, Saul H.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. [Stone, Kevin H.; Stephens, Peter W.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bendix, Jesper] Univ Copenhagen, Dept Chem, DK-2100 Copenhagen, Denmark. [Woods, Toby J.; Carreiro, Kimberly E.; Tran, Hope E.; Villa, Cecelia J.; Manson, Jamie L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. RP Manson, JL (reprint author), Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. EM jmanson@ewu.edu RI Goddard, Paul/A-8638-2015; Baker, Peter/E-4216-2010; Stone, Kevin/N-9311-2016 OI Goddard, Paul/0000-0002-0666-5236; Baker, Peter/0000-0002-2306-2648; Stone, Kevin/0000-0003-1387-1510 FU National Science Foundation [DMR-1306158, DMR-1157490]; State of Florida; U.S. Department of Energy (DoE) and through the DoE Basic Energy Science Field Work Proposal "Science in 100 T"; EPSRC; U.S. DoE, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. DoE, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Work at EWU was supported by the National Science Foundation under grant no. DMR-1306158. A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, the State of Florida, and the U.S. Department of Energy (DoE) and through the DoE Basic Energy Science Field Work Proposal "Science in 100 T." Work done in the UK is supported by the EPSRC. Data presented in this paper resulting from the UK effort will be made available at http://wrap.warwick.ac.uk/77684. We are grateful to Alex Amato for technical assistance. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. DoE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. DoE, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 80 TC 3 Z9 3 U1 3 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2016 VL 55 IS 7 BP 3515 EP 3529 DI 10.1021/acs.inorgchem.5b02991 PG 15 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DI5PI UT WOS:000373550700038 PM 27002487 ER PT J AU Odoh, SO Shamblin, J Colla, CA Hickam, S Lobeck, HL Lopez, RAK Olds, T Szymanowski, JES Sigmon, GE Neuefeind, J Casey, WH Lang, M Gagliardi, L Burns, PC AF Odoh, Samuel O. Shamblin, Jacob Colla, Christopher A. Hickam, Sarah Lobeck, Haylie L. Lopez, Rachel A. K. Olds, Travis Szymanowski, Jennifer E. S. Sigmon, Ginger E. Neuefeind, Joerg Casey, William H. Lang, Maik Gagliardi, Laura Burns, Peter C. TI Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U2O7 SO INORGANIC CHEMISTRY LA English DT Article ID NUCLEAR-FUEL; THERMAL DECOMPOSITION; URANIUM PEROXIDE; APPROXIMATION; METASTUDTITE; STUDTITE; DENSITY; COMPLEXES; CORROSION; MINERALS AB Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western U.S.A. The drums contained an X-ray amorphous reactive form of uranium oxide that may have contributed to the pressurization. Heating hydrated uranyl peroxides produced during in situ mining can produce, an amorphous compound, as shown by X-ray powder diffraction of material from impacted drums. Subsequently, studtite, [(UO2)(O-2)(H2O)(2)](H2O)(2), was heated in the laboratory. Its thermal decomposition produced a hygroscopic anhydrous uranyl peroxide that reacts with water to release O-2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U2O7 conformer consists of two bent (UO2)(2+) uranyl ions bridged by a peroxide group bidentate and parallel to each uranyl ion, and a mu(2)-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model, as do H-1- and O-17-nuclear magnetic resonance, spectra. The reactivity of U2O7 in water and with water in air is higher than that of other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle. C1 [Odoh, Samuel O.; Gagliardi, Laura] Univ Minnesota, Dept Chem, Minnesota Supercomp Inst, Minneapolis, MN 55455 USA. [Shamblin, Jacob; Lang, Maik] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Colla, Christopher A.; Casey, William H.] Univ Calif Davis, Dept Chem, Dept Earth & Planetary Sci, Davis, CA 95616 USA. [Hickam, Sarah; Lobeck, Haylie L.; Lopez, Rachel A. K.; Olds, Travis; Szymanowski, Jennifer E. S.; Sigmon, Ginger E.; Burns, Peter C.] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA. [Neuefeind, Joerg] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. [Burns, Peter C.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Burns, PC (reprint author), Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA.; Burns, PC (reprint author), Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. EM pburns@nd.edu RI Neuefeind, Joerg/D-9990-2015; OI Neuefeind, Joerg/0000-0002-0563-1544; Shamblin, Jacob/0000-0002-1799-5353 FU Office of Basic Energy Sciences of the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center [DE-SC0001089]; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy FX This research is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy as part of the Materials Science of Actinides Energy Frontier Research Center (DE-SC0001089). Chemical analyses were conducted at the Center for Environmental Science and Technology at the University of Notre Dame. Spectra and diffraction data were collected at the Materials Characterization Facility of the Center for Sustainable Energy at the University of Notre Dame. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors thank Dr. Ping Yu of the UC Davis Keck NMR Facility for help with the NMR spectra. NR 23 TC 4 Z9 4 U1 12 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2016 VL 55 IS 7 BP 3541 EP 3546 DI 10.1021/acs.inorgchem.6b00017 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DI5PI UT WOS:000373550700040 PM 26974702 ER PT J AU Han, F Liu, HM Malliakas, CD Sturza, M Chung, DY Wan, XG Kanatzidis, MG AF Han, Fei Liu, Huimei Malliakas, Christos D. Sturza, Mihai Chung, Duck Young Wan, Xiangang Kanatzidis, Mercouri G. TI La1-xBi1+xS3 (x approximate to 0.08): An n-Type Semiconductor SO INORGANIC CHEMISTRY LA English DT Article ID LOW THERMAL-CONDUCTIVITY; SINGLE DIRAC CONE; THERMOELECTRIC PROPERTIES; TOPOLOGICAL INSULATORS; BI2TE3-SB2TE3 ALLOYS; STRUCTURAL EVOLUTION; ELECTRONIC-STRUCTURE; PHASE HOMOLOGIES; SUPERCONDUCTIVITY; COMPOUND AB The new bismuth chalcogenide La(0.9)2Bi(1.08)S(3) crystallizes in the. monoclinic space group C2/m with a = 28.0447(19) angstrom, b = 4.0722(2) angstrom, c 14.7350(9) angstrom, and beta = 118.493(5)degrees. The structure of La0.92B1.08S3 is built of NaCl-type Bi2S5 blocks and BiS4 and LaS5 infinitely long chains, forming a compact three-dimensional framework with parallel tunnels. Optical spectroscopy and resistivity measurements reveal a semiconducting behavior with a band gap of similar to 1 eV and activation energy for transport of 0.36(1) eV. Thermopower measurements suggest the majority carriers of La0.92Bi1.08S3 are electrons. Heat capacity measurements indicate no phase transitions from 2 to 300 K. Band structure calculations at the density functional theory level confirm the semiconducting nature and the indirect gap of La0.92Bi1.08S3. C1 [Han, Fei; Malliakas, Christos D.; Sturza, Mihai; Chung, Duck Young; Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Liu, Huimei; Wan, Xiangang] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Malliakas, Christos D.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Kanatzidis, MG (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA.; Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu RI Han, Fei/N-2021-2013 OI Han, Fei/0000-0001-7782-2713 FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF of China [11374137, 11525417] FX This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Use of the Center for Nanoscale Materials, including resources in the Electron Microscopy Center, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work done at Nanjing University (electronic structure calculations by H. Liu and X. Wan) is supported by the NSF of China (Grant Nos. 11374137 and 11525417). NR 47 TC 1 Z9 1 U1 3 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0020-1669 EI 1520-510X J9 INORG CHEM JI Inorg. Chem. PD APR 4 PY 2016 VL 55 IS 7 BP 3547 EP 3552 DI 10.1021/acs.inorgchem.6b00025 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DI5PI UT WOS:000373550700041 PM 26998638 ER PT J AU Liu, LF Hsia, MM Dama, M Vogel, J Pauly, M AF Liu, Lifeng Hsia, Mon Mandy Dama, Murali Vogel, John Pauly, Markus TI A Xyloglucan Backbone 6-O-Acetyltransferase from Brachypodium distachyon Modulates Xyloglucan Xylosylation SO MOLECULAR PLANT LA English DT Letter ID O-ACETYLATION; ARABIDOPSIS; BIOSYNTHESIS; PROTEINS; GENE C1 [Liu, Lifeng; Dama, Murali; Vogel, John; Pauly, Markus] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Hsia, Mon Mandy; Vogel, John] USDA, Western Reg Res Ctr, 800 Buchanan St, Albany, CA 94710 USA. [Vogel, John] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pauly, M (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. EM mpauly69@berkeley.edu RI Pauly, Markus/B-5895-2008; OI Pauly, Markus/0000-0002-3116-2198; Vogel, John/0000-0003-1786-2689 NR 10 TC 2 Z9 2 U1 0 U2 6 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 1674-2052 EI 1752-9867 J9 MOL PLANT JI Mol. Plant. PD APR 4 PY 2016 VL 9 IS 4 BP 615 EP 617 DI 10.1016/j.molp.2015.11.004 PG 3 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA DI8HS UT WOS:000373742700013 PM 26589447 ER PT J AU Demos, SG Negres, RA Raman, RN Shen, N Rubenchik, AM Matthews, MJ AF Demos, Stavros G. Negres, Raluca A. Raman, Rajesh N. Shen, Nan Rubenchik, Alexander M. Matthews, Manyalibo J. TI Mechanisms governing the interaction of metallic particles with nanosecond laser pulses SO OPTICS EXPRESS LA English DT Article ID FUSED-SILICA SURFACES; ABLATION; REMOVAL; DAMAGE; POWDER; DECONTAMINATION; MICROPARTICLES; CONTAMINATION; GENERATION; EXPLOSION AB The interaction of nanosecond laser pulses at 1064-and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications. The experimental results were interpreted using physical models incorporating specific processes to assess their contribution to the overall observed behaviors. Analysis of the experimental results suggests that the induced kinetic properties of the particle can be adequately described using the concept of momentum coupling introduced to explain the interaction of plane metal targets to large-aperture laser beams. The results also suggest that laser energy deposition on the formed plasma affects the energy partitioning and the material modifications to the substrate. (C) 2016 Optical Society of America C1 [Demos, Stavros G.; Negres, Raluca A.; Raman, Rajesh N.; Shen, Nan; Rubenchik, Alexander M.; Matthews, Manyalibo J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Demos, SG (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM demos1@llnl.gov FU Laboratory Directed Research and Development [14-ERD-098]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was funded under a Laboratory Directed Research and Development grant 14-ERD-098 and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 49 TC 4 Z9 4 U1 12 U2 23 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD APR 4 PY 2016 VL 24 IS 7 BP 7792 EP 7815 DI 10.1364/OE.24.007792 PG 24 WC Optics SC Optics GA DI4KP UT WOS:000373469100086 PM 27137063 ER PT J AU Groitl, F Keller, T Rolfs, K Tennant, DA Habicht, K AF Groitl, F. Keller, T. Rolfs, K. Tennant, D. A. Habicht, K. TI Anomalous thermal decoherence in a quantum magnet measured with neutron spin echo spectroscopy SO PHYSICAL REVIEW B LA English DT Article ID FERROMAGNETIC CURIE-POINT; SCATTERING; RESOLUTION; COHERENCE; RESONANCE; LIQUID; EUO AB The effect of temperature dependent asymmetric line broadening is investigated in Cu(NO3)(2)center dot 2.5D(2)O, a model material for a one-dimensional bond alternating Heisenberg chain, using the high resolution neutron-resonance spin echo (NRSE) technique. Inelastic neutron scattering experiments on dispersive excitations including phase sensitive measurements demonstrate the potential of NRSE to resolve line shapes, which are non-Lorentzian, opening up a new and hitherto unexplored class of experiments for the NRSE method beyond standard linewidth measurements. The particular advantage of NRSE is its direct access to the correlations in the time domain without convolution with the resolution function of the background spectrometer. This application of NRSE is very promising and establishes a basis for further experiments on different systems, since the results for Cu(NO3)(2)center dot 2.5D(2)O are applicable to a broad range of quantum systems. C1 [Groitl, F.; Rolfs, K.; Tennant, D. A.; Habicht, K.] Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. [Keller, T.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Keller, T.] FRM II, Max Planck Soc Outstat, D-85748 Garching, Germany. [Tennant, D. A.] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany. [Groitl, F.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Groitl, F.; Rolfs, K.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Tennant, D. A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Groitl, F (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, D-14109 Berlin, Germany. EM felix.groitl@psi.ch RI Tennant, David/Q-2497-2015; Habicht, Klaus/K-3636-2013 OI Tennant, David/0000-0002-9575-3368; Habicht, Klaus/0000-0002-9915-7221 FU Deutsche Forschungsgemeinschaft [TRR80] FX The authors would like to thank Dr. Bella Lake (HZB) and Dr. Diana Lucia Quintero-Castro (HZB) for fruitful discussions and Kathrin Buchner (MPI) for technical support during the experiments. This work is based upon experiments performed at the TRISP instrument operated by MPG at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany. T.K. acknowledges financial support from the Deutsche Forschungsgemeinschaft through TRR80. NR 44 TC 2 Z9 2 U1 4 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 4 PY 2016 VL 93 IS 13 AR 134404 DI 10.1103/PhysRevB.93.134404 PG 6 WC Physics, Condensed Matter SC Physics GA DI2FO UT WOS:000373311300004 ER PT J AU Sills, RB Cai, W AF Sills, R. B. Cai, W. TI Solute drag on perfect and extended dislocations SO PHILOSOPHICAL MAGAZINE LA English DT Article DE solute; drag; extended dislocation; Dislocation; Cottrell atmosphere ID AUSTENITIC STAINLESS-STEEL; EDGE DISLOCATION; HYDROGEN; STRESS; DEFORMATION; ATMOSPHERE; CRYSTALS; METALS; MOTION; NICKEL AB The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction [GRAPHICS] , and the dislocation character angle [GRAPHICS] , are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen. C1 [Sills, R. B.; Cai, W.] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Sills, R. B.] Sandia Natl Labs, Gas Transfer Syst, Livermore, CA USA. RP Sills, RB (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA.; Sills, RB (reprint author), Sandia Natl Labs, Gas Transfer Syst, Livermore, CA USA. EM rbsills@sandia.gov FU Sandia National Laboratories; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010412]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by Sandia National Laboratories (R.B.S.) and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [award number DE-SC0010412 (W.C.)]. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract [DE-AC04-94AL85000]. NR 37 TC 0 Z9 0 U1 7 U2 15 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD APR 2 PY 2016 VL 96 IS 10 BP 895 EP 921 DI 10.1080/14786435.2016.1142677 PG 27 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA DJ0HS UT WOS:000373883700001 ER PT J AU Pauthner, M Yeung, J Ullman, C Bakker, J Wurch, T Reichert, JM Lund-Johansen, F Bradbury, ARM Carter, PJ Melis, JPM AF Pauthner, Matthias Yeung, Jenny Ullman, Chris Bakker, Joost Wurch, Thierry Reichert, Janice M. Lund-Johansen, Fridtjof Bradbury, Andrew R. M. Carter, Paul J. Melis, Joost P. M. TI Antibody engineering & therapeutics, the annual meeting of the antibody society December 7-10, 2015, San Diego, CA, USA SO MABS LA English DT Article DE immunology; bispecific antibodies; preclinical; diagnostic antibodies; Antibody engineering; clinical; antibody effector functions; antibody therapeutics; antibody-drug conjugates; immunotherapy ID METASTATIC BREAST-CANCER; T-CELL IMMUNITY; RECEPTOR ANTIBODIES; IMMUNOGENIC TUMORS; ANTITUMOR IMMUNITY; DRUG CONJUGATE; BLOCKADE; THERAPY; IMMUNOTHERAPY; COMPLEMENT AB The 26th Antibody Engineering & Therapeutics meeting, the annual meeting of The Antibody Society united over 800 participants from all over the world in San Diego from 6-10 December 2015. The latest innovations and advances in antibody research and development were discussed, covering a myriad of antibody-related topics by more than 100 speakers, who were carefully selected by The Antibody Society. As a prelude, attendees could join the pre-conference training course focusing, among others, on the engineering and enhancement of antibodies and antibody-like scaffolds, bispecific antibody engineering and adaptation to generate chimeric antigen receptor constructs. The main event covered 4d of scientific sessions that included antibody effector functions, reproducibility of research and diagnostic antibodies, new developments in antibody-drug conjugates (ADCs), preclinical and clinical ADC data, new technologies and applications for bispecific antibodies, antibody therapeutics for non-cancer and orphan indications, antibodies to harness the cellular immune system, building comprehensive IgVH-gene repertoires through discovering, confirming and cataloging new germline IgVH genes, and overcoming resistance to clinical immunotherapy. The Antibody Society's special session focused on "Antibodies to watch" in 2016. Another special session put the spotlight on the limitations of the new definitions for the assignment of antibody international nonproprietary names introduced by the World Health Organization. The convention concluded with workshops on computational antibody design and on the promise and challenges of using next-generation sequencing for antibody discovery and engineering from synthetic and in vivo libraries. C1 [Pauthner, Matthias] Scripps Res Inst, Dept Immunol & Microbiol, La Jolla, CA 92037 USA. [Yeung, Jenny] UCL, London, England. [Ullman, Chris] Paratopix Ltd, Cambridge, England. [Bakker, Joost] Scicomvisuals, Amsterdam, Netherlands. [Wurch, Thierry] Ctr Rech Servier, Lyon, France. [Reichert, Janice M.] Reichert Biotechnol Consulting LLC, Framingham, MA USA. [Lund-Johansen, Fridtjof] Oslo Univ Hosp, Rikshosp, Dept Immunol, Oslo, Norway. [Bradbury, Andrew R. M.] Los Alamos Natl Lab, Los Alamos, NM USA. [Carter, Paul J.] Genentech Inc, Antibody Engn Dept, San Francisco, CA USA. [Melis, Joost P. M.] Genmab, Utrecht, Netherlands. RP Melis, JPM (reprint author), Genmab, Utrecht, Netherlands. EM j.melis@genmab.com OI Bradbury, Andrew/0000-0002-5567-8172; Reichert, Janice/0000-0003-0400-1951; Lund-Johansen, Fridtjof/0000-0002-2445-1258 NR 54 TC 1 Z9 1 U1 1 U2 12 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 1942-0862 EI 1942-0870 J9 MABS-AUSTIN JI mAbs PD APR 2 PY 2016 VL 8 IS 3 BP 617 EP 652 DI 10.1080/19420862.2016.1153211 PG 36 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA DI4XA UT WOS:000373501500017 PM 26909869 ER PT J AU Chan, CYX Gritsenko, MA Smith, RD Qian, WJ AF Chan, Chi Yuet X'avia Gritsenko, Marina A. Smith, Richard D. Qian, Wei-Jun TI The current state of the art of quantitative phosphoproteomics and its applications to diabetes research SO EXPERT REVIEW OF PROTEOMICS LA English DT Review DE targeted proteomics; phosphorylation; phosphopeptide enrichment; Phosphoproteomics; diabetes; LC-MS/MS; quantification ID HYDROPHILIC INTERACTION CHROMATOGRAPHY; ION AFFINITY-CHROMATOGRAPHY; TANDEM MASS-SPECTROMETRY; PHASE PROTEIN MICROARRAYS; LABEL-FREE QUANTITATION; RENAL-CELL CARCINOMA; LUNG-CANCER; PHOSPHOPEPTIDE ENRICHMENT; ELECTRON-TRANSFER; IN-VIVO AB Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored. C1 [Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Qian, Wei-Jun] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA.; Qian, WJ (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM Weijun.Qian@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIDDK NIH HHS [UC4 DK104167]; NIGMS NIH HHS [P41 GM103493] NR 139 TC 0 Z9 0 U1 15 U2 29 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-9450 EI 1744-8387 J9 EXPERT REV PROTEOMIC JI Expert Rev. Proteomics PD APR 2 PY 2016 VL 13 IS 4 BP 421 EP 433 DI 10.1586/14789450.2016.1164604 PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA DH7SC UT WOS:000372993100002 PM 26960075 ER PT J AU Piepel, GF Cooley, SK Vienna, JD Crum, JV AF Piepel, Greg F. Cooley, Scott K. Vienna, John D. Crum, Jarrod V. TI Designing a mixture experiment when the components are subject to a nonlinear multiple-component constraint SO QUALITY ENGINEERING LA English DT Article DE experimental design; layered design; low-activity waste; nuclear waste glass; sulfate solubility AB This article presents a case study of developing an experimental design for a constrained mixture experiment when the experimental region is defined by single-component constraints (SCCs), linear multiple-component constraints (MCCs), and a nonlinear MCC. Traditional methods and software for designing constrained mixture experiments with SCCs and linear MCCs are not directly applicable because of the nonlinear MCC. A modification of existing methodology to account for the nonlinear MCC was developed and is described in this article. The case study involves a 15-component nuclear waste glass example in which SO3 is one of the components. SO3 has a solubility limit in glass that depends on the composition of the balance of the glass. A goal was to design the experiment so that SO3 would not exceed its predicted solubility limit for any of the experimental glasses. A partial quadratic mixture model expressed in the relative proportions of the 14 other components was used to construct a nonlinear MCC in terms of all 15 components. In addition, there were SCCs and linear MCCs. This article discusses the waste glass example and how a layered design was generated to (1) account for the SCCs, linear MCCs, and nonlinear MCC and (2) meet the goals of the study. C1 [Piepel, Greg F.; Cooley, Scott K.] Pacific NW Natl Lab, Appl Stat & Computat Modeling Grp, Richland, WA 99352 USA. [Vienna, John D.; Crum, Jarrod V.] Pacific NW Natl Lab, Mat Sci Grp, Richland, WA 99352 USA. RP Piepel, GF (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM greg.piepel@pnnl.gov FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830]; U.S. Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office FX This work was conducted at Pacific Northwest National Laboratory (PNNL). The authors gratefully acknowledge the financial support of the U.S. Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office under the direction of Dr. Albert A. Kruger. PNNL is a multiprogram national laboratory operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 9 TC 1 Z9 1 U1 2 U2 3 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0898-2112 EI 1532-4222 J9 QUAL ENG JI Qual. Eng. PD APR 2 PY 2016 VL 28 IS 2 BP 220 EP 230 DI 10.1080/08982112.2015.1086003 PG 11 WC Engineering, Industrial; Statistics & Probability SC Engineering; Mathematics GA DG4EP UT WOS:000372024500006 ER PT J AU Schulze, MC Chavez, DE AF Schulze, Maxwell C. Chavez, David E. TI Synthesis and Characterization of Energetic Plasticizer AMDNNM SO JOURNAL OF ENERGETIC MATERIALS LA English DT Article DE nitrate esters; plasticizer; nitrocellulose ID NITRATE ESTER; PROPELLANT AB The synthesis of room temperature liquid azidomethyl-dinitroxydimethyl-nitromethane (AMDNNM, 5) in 57% overall yield and its formulation with nitrocellulose (AMDNNM/NC) are described. The small-scale explosive sensitivity of neat AMDNNM was determined to be slightly more sensitive than PETN, whereas AMDNNM/NC is significantly less sensitive. Both neat AMDNNM and AMDNNM/NC have thermal stabilities similar to that of pentaerythritol tetranitrate (PETN). The explosive and chemical properties of this novel material make it a good candidate for an energetic plasticizer. C1 [Schulze, Maxwell C.; Chavez, David E.] Los Alamos Natl Lab, Explos Sci & Shock Phys Div, Los Alamos, NM 87545 USA. RP Chavez, DE (reprint author), Los Alamos Natl Lab, Explos Sci & Shock Phys Div, MS C920, Los Alamos, NM 87545 USA. EM dechavez@lanl.gov FU DoD/DOE Joint Munitions Technology Development Program FX This work was supported by the DoD/DOE Joint Munitions Technology Development Program. NR 18 TC 0 Z9 0 U1 5 U2 27 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0737-0652 EI 1545-8822 J9 J ENERG MATER JI J. Energ. Mater. PD APR 2 PY 2016 VL 34 IS 2 BP 129 EP 137 DI 10.1080/07370652.2015.1005774 PG 9 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical; Materials Science, Multidisciplinary SC Chemistry; Engineering; Materials Science GA CZ4IR UT WOS:000367067200003 ER PT J AU Aartsen, MG Abraham, K Ackermann, M Adams, J Aguilar, JA Ahlers, M Ahrens, M Altmann, D Anderson, T Ansseau, I Anton, G Archinger, M Arguelles, C Arlen, TC Auffenberg, J Bai, X Barwick, SW Baum, V Bay, R Beatty, JJ Tjus, JB Becker, KH Beiser, E BenZvi, S Berghaus, P Berley, D Bernardini, E Bernhard, A Besson, DZ Binder, G Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Borner, M Bos, F Bose, D Boser, S Botner, O Braun, J Brayeur, L Bretz, HP Buzinsky, N Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, GH Conrad, JM Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC Day, M de Andre, JPAM De Clercq, C Rosendo, ED Dembinski, H De Ridder, S Desiati, P de Vries, KD de Wasseige, G de With, M DeYoung, T Diaz-Velez, JC di Lorenzo, V Dumm, JP Dunkman, M Eberhardt, B Edsjo, J Ehrhardt, T Eichmann, B Euler, S Evenson, PA Fahey, S Fazely, AR Feintzeig, J Felde, J Filimonov, K Finley, C Flis, S Fosig, CC Fuchs, T Gaisser, TK Gaior, R Gallagher, J Gerhardt, L Ghorbani, K Gier, D Gladstone, L Glagla, M Glusenkamp, T Goldschmidt, A Golup, G Gonzalez, JG Gora, D Grant, D Griffith, Z Gross, A Ha, C Haack, C Ismail, AH Hallgren, A Halzen, F Hansen, E Hansmann, B Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, GC Hoffman, KD Hoffmann, R Holzapfel, K Homeier, A Hoshina, K Huang, F Huber, M Huelsnitz, W Hulth, PO Hultqvist, K In, S Ishihara, A Jacobi, E Japaridze, GS Jeong, M Jero, K Jones, BJP Jurkovic, M Kappes, A Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, JL Kemp, J Kheirandish, A Kiryluk, J Klein, SR Kohnen, G Koirala, R Kolanoski, H Konietz, R Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krings, K Kroll, G Kroll, M Kruckl, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Lanfranchi, JL Larson, MJ Lesiak-Bzdak, M Leuermann, M Leuner, J Lu, L Lunemann, J Madsen, J Maggi, G Mahn, KBM Mandelartz, M Maruyama, R Mase, K Matis, HS Maunu, R McNally, F Meagher, K Medici, M Meier, M Meli, A Menne, T Merino, G Meures, T Miarecki, S Middell, E Mohrmann, L Montaruli, T Morse, R Nahnhauer, R Naumann, U Neer, G Niederhausen, H Nowicki, SC Nygren, DR Pollmann, AO Olivas, A Omairat, A O'Murchadha, A Palczewski, T Pandya, H Pankova, DV Paul, L Pepper, JA de los Heros, CP Pfendner, C Pieloth, D Pinat, E Posselt, J Price, PB Przybylski, GT Quinnan, M Raab, C Radel, L Rameez, M Rawlins, K Reimann, R Relich, M Resconi, E Rhode, W Richman, M Richter, S Riedel, B Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Sabbatini, L Sander, HG Sandrock, A Sandroos, J Sarkar, S Savage, C Schatto, K Schimp, M Schlunder, P Schmidt, T Schoenen, S Schoneberg, S Schonwald, A Schulte, L Schumacher, L Scott, P Seckel, D Seunarine, S Silverwood, H Soldin, D Song, M Spiczak, GM Spiering, C Stahlberg, M Stamatikos, M Stanev, T Stasik, A Steuer, A Stezelberger, T Stokstad, RG Stossl, A Strom, R Strotjohann, NL Sullivan, GW Sutherland, M Taavola, H Taboada, I Tatar, J Ter-Antonyan, S Terliuk, A Tesic, G Tilav, S Toale, PA Tobin, MN Toscano, S Tosi, D Tselengidou, M Turcati, A Unger, E Usner, M Vallecorsa, S Vandenbroucke, J van Eijndhoven, N Vanheule, S van Santen, J Veenkamp, J Vehring, M Voge, M Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Weaver, C Wendt, C Westerhoff, S Whelan, BJ Wiebe, K Wiebusch, CH Wille, L Williams, DR Wills, L Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, DL Xu, XW Xu, Y Yanez, JP Yodh, G Yoshida, S Zoll, M AF Aartsen, M. G. Abraham, K. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Ahrens, M. Altmann, D. Anderson, T. Ansseau, I. Anton, G. Archinger, M. Arguelles, C. Arlen, T. C. Auffenberg, J. Bai, X. Barwick, S. W. Baum, V. Bay, R. Beatty, J. J. Tjus, J. Becker Becker, K. -H. Beiser, E. BenZvi, S. Berghaus, P. Berley, D. Bernardini, E. Bernhard, A. Besson, D. Z. Binder, G. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Boerner, M. Bos, F. Bose, D. Boeser, S. Botner, O. Braun, J. Brayeur, L. Bretz, H. -P. Buzinsky, N. Casey, J. Casier, M. Cheung, E. Chirkin, D. Christov, A. Clark, K. Classen, L. Coenders, S. Collin, G. H. Conrad, J. M. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. Day, M. de Andre, J. P. A. M. De Clercq, C. Rosendo, E. del Pino Dembinski, H. De Ridder, S. Desiati, P. de Vries, K. D. de Wasseige, G. de With, M. DeYoung, T. Diaz-Velez, J. C. di Lorenzo, V. Dumm, J. P. Dunkman, M. Eberhardt, B. Edsjo, J. Ehrhardt, T. Eichmann, B. Euler, S. Evenson, P. A. Fahey, S. Fazely, A. R. Feintzeig, J. Felde, J. Filimonov, K. Finley, C. Flis, S. Foesig, C. -C. Fuchs, T. Gaisser, T. K. Gaior, R. Gallagher, J. Gerhardt, L. Ghorbani, K. Gier, D. Gladstone, L. Glagla, M. Gluesenkamp, T. Goldschmidt, A. Golup, G. Gonzalez, J. G. Gora, D. Grant, D. Griffith, Z. Gross, A. Ha, C. Haack, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hansen, E. Hansmann, B. Hanson, K. Hebecker, D. Heereman, D. Helbing, K. Hellauer, R. Hickford, S. Hignight, J. Hill, G. C. Hoffman, K. D. Hoffmann, R. Holzapfel, K. Homeier, A. Hoshina, K. Huang, F. Huber, M. Huelsnitz, W. Hulth, P. O. Hultqvist, K. In, S. Ishihara, A. Jacobi, E. Japaridze, G. S. Jeong, M. Jero, K. Jones, B. J. P. Jurkovic, M. Kappes, A. Karg, T. Karle, A. Katz, U. Kauer, M. Keivani, A. Kelley, J. L. Kemp, J. Kheirandish, A. Kiryluk, J. Klein, S. R. Kohnen, G. Koirala, R. Kolanoski, H. Konietz, R. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krings, K. Kroll, G. Kroll, M. Krueckl, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Lanfranchi, J. L. Larson, M. J. Lesiak-Bzdak, M. Leuermann, M. Leuner, J. Lu, L. Lunemann, J. Madsen, J. Maggi, G. Mahn, K. B. M. Mandelartz, M. Maruyama, R. Mase, K. Matis, H. S. Maunu, R. McNally, F. Meagher, K. Medici, M. Meier, M. Meli, A. Menne, T. Merino, G. Meures, T. Miarecki, S. Middell, E. Mohrmann, L. Montaruli, T. Morse, R. Nahnhauer, R. Naumann, U. Neer, G. Niederhausen, H. Nowicki, S. C. Nygren, D. R. Pollmann, A. Obertacke Olivas, A. Omairat, A. O'Murchadha, A. Palczewski, T. Pandya, H. Pankova, D. V. Paul, L. Pepper, J. A. de los Heros, C. Perez Pfendner, C. Pieloth, D. Pinat, E. Posselt, J. Price, P. B. Przybylski, G. T. Quinnan, M. Raab, C. Raedel, L. Rameez, M. Rawlins, K. Reimann, R. Relich, M. Resconi, E. Rhode, W. Richman, M. Richter, S. Riedel, B. Robertson, S. Rongen, M. Rott, C. Ruhe, T. Ryckbosch, D. Sabbatini, L. Sander, H. -G. Sandrock, A. Sandroos, J. Sarkar, S. Savage, C. Schatto, K. Schimp, M. Schlunder, P. Schmidt, T. Schoenen, S. Schoeneberg, S. Schoenwald, A. Schulte, L. Schumacher, L. Scott, P. Seckel, D. Seunarine, S. Silverwood, H. Soldin, D. Song, M. Spiczak, G. M. Spiering, C. Stahlberg, M. Stamatikos, M. Stanev, T. Stasik, A. Steuer, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strom, R. Strotjohann, N. L. Sullivan, G. W. Sutherland, M. Taavola, H. Taboada, I. Tatar, J. Ter-Antonyan, S. Terliuk, A. Tesic, G. Tilav, S. Toale, P. A. Tobin, M. N. Toscano, S. Tosi, D. Tselengidou, M. Turcati, A. Unger, E. Usner, M. Vallecorsa, S. Vandenbroucke, J. van Eijndhoven, N. Vanheule, S. van Santen, J. Veenkamp, J. Vehring, M. Voge, M. Vraeghe, M. Walck, C. Wallace, A. Wallraff, M. Wandkowsky, N. Weaver, Ch. Wendt, C. Westerhoff, S. Whelan, B. J. Wiebe, K. Wiebusch, C. H. Wille, L. Williams, D. R. Wills, L. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, D. L. Xu, X. W. Xu, Y. Yanez, J. P. Yodh, G. Yoshida, S. Zoll, M. CA IceCube Collaboration TI Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter experiments; dark matter theory; neutrino experiments AB We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models. C1 [Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.] Rhein Westfal TH Aachen, Phys Inst 3, D-52056 Aachen, Germany. [Aartsen, M. G.; Hill, G. C.; Robertson, S.; Wallace, A.; Whelan, B. J.] Univ Adelaide, Dept Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, 3211 Providence Dr, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Binder, G.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; Tatar, J.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Binder, G.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; Tatar, J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [de With, M.; Hebecker, D.; Kolanoski, H.; Kowalski, M.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Tjus, J. Becker; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Homeier, A.; Schulte, L.; Voge, M.] Univ Bonn, Phys Inst, Nussallee 12, D-53115 Bonn, Germany. [Aguilar, J. A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O'Murchadha, A.; Pinat, E.; Raab, C.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Brayeur, L.; Casier, M.; De Clercq, C.; de Vries, K. D.; de Wasseige, G.; Golup, G.; Kunnen, J.; Lunemann, J.; Maggi, G.; Toscano, S.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Arguelles, C.; Collin, G. H.; Conrad, J. M.; Jones, B. J. P.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Gaior, R.; Ishihara, A.; Kuwabara, T.; Lu, L.; Mase, K.; Relich, M.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Silverwood, H.] Univ Canterbury, Dept Phys & Astron, Private Bag 4800, Christchurch, New Zealand. [Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Pfendner, C.; Stamatikos, M.; Sutherland, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, 174 W 18Th Ave, Columbus, OH 43210 USA. [Hansen, E.; Koskinen, D. J.; Larson, M. J.; Medici, M.; Sarkar, S.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Boerner, M.; Fuchs, T.; Meier, M.; Menne, T.; Pieloth, D.; Rhode, W.; Ruhe, T.; Sandrock, A.; Schlunder, P.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [de Andre, J. P. A. M.; DeYoung, T.; Hignight, J.; Mahn, K. B. M.; Neer, G.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Buzinsky, N.; Grant, D.; Kopper, C.; Nowicki, S. C.; Riedel, B.; Weaver, Ch.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Altmann, D.; Anton, G.; Classen, L.; Kappes, A.; Katz, U.; Tselengidou, M.] Friedrich Alexander Univ Erlangen Nurnberg, Erlangen Ctr Astroparticle Phys, D-91058 Erlangen, Germany. [Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [De Ridder, S.; Ismail, A. Haj; Labare, M.; Meli, A.; Ryckbosch, D.; Vanheule, S.; Vraeghe, M.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Ahlers, M.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Ahlers, M.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J. C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M. N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D. L.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Archinger, M.; Baum, V.; Boeser, S.; Rosendo, E. del Pino; di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C. -C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H. -G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, Staudinger Weg 7, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J.] Tech Univ Munich, D-85748 Garching, Germany. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Dembinski, H.; Evenson, P. A.; Gaisser, T. K.; Gonzalez, J. G.; Koirala, R.; Pandya, H.; Seckel, D.; Stanev, T.; Tilav, S.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Kauer, M.; Maruyama, R.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Sarkar, S.] Univ Oxford, Dept Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Kurahashi, N.; Richman, M.; Wills, L.; Yodh, G.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Bai, X.] South Dakota Sch Mines & Technol, Dept Phys, Rapid City, SD 57701 USA. [Madsen, J.; Seunarine, S.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Ahrens, M.; Bohm, C.; Danninger, M.; Dumm, J. P.; Edsjo, J.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Savage, C.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Ahrens, M.; Bohm, C.; Danninger, M.; Dumm, J. P.; Edsjo, J.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Savage, C.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.; Niederhausen, H.; Xu, Y.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bose, D.; In, S.; Jeong, M.; Rott, C.] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea. [Clark, K.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Palczewski, T.; Pepper, J. A.; Toale, P. A.; Williams, D. R.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.] Penn State Univ, Dept Astron & Astrophys, 525 Davey Lab, University Pk, PA 16802 USA. [Anderson, T.; Arlen, T. C.; Cowen, D. F.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J. L.; Pankova, D. V.; Quinnan, M.; Tesic, G.] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA. [BenZvi, S.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Boersma, D. J.; Botner, O.; Euler, S.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.; Unger, E.] Uppsala Univ, Dept Phys & Astron, Box 516, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Helbing, K.; Hickford, S.; Hoffmann, R.; Kopper, S.; Naumann, U.; Pollmann, A. Obertacke; Omairat, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H. -P.; Silva, A. H. Cruz; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kowalski, M.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N. L.; Terliuk, A.; Usner, M.; van Santen, J.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. [Hoshina, K.] Univ Tokyo, Earthquake Res Inst, Bunkyo Ku, Tokyo 1130032, Japan. [Stamatikos, M.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Danninger, M.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada. [Scott, P.] Imperial Coll London, Dept Phys, London SW7 2AZ, England. [Silverwood, H.] Univ Amsterdam, GRAPPA Inst, NL-1098 XH Amsterdam, Netherlands. RP Danninger, M (reprint author), Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden.; Danninger, M (reprint author), Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden.; Scott, P (reprint author), Imperial Coll London, Dept Phys, London SW7 2AZ, England. EM matthias.danninger@cern.ch; p.scott@imperial.ac.uk OI Perez de los Heros, Carlos/0000-0002-2084-5866; Koskinen, David/0000-0002-0514-5917; Sarkar, Subir/0000-0002-3542-858X; Strotjohann, Nora Linn/0000-0002-4667-6730; Arguelles Delgado, Carlos/0000-0003-4186-4182 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada; WestGrid and Compute/Calcul Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Helmholtz Alliance for Astroparticle Physics (HAP); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF); Science and Technology Facilities Council, United Kingdom (STFC) FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF); Science and Technology Facilities Council, United Kingdom (STFC). We also thank the GAMBIT DM and Collider Workgroups for code testing of nulike. NR 40 TC 20 Z9 20 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2016 IS 4 AR 022 DI 10.1088/1475-7516/2016/04/022 PG 31 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ5VI UT WOS:000393286400001 ER PT J AU Blennow, M Coloma, P Fernandez-Martinez, E Machado, PAN Zaldivar, B AF Blennow, Mattias Coloma, Pilar Fernandez-Martinez, Enrique Machado, Pedro A. N. Zaldivar, Bryan TI Global constraints on vector-like WIMP effective interactions SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter experiments ID MASS MATRIX MODELS; DARK-MATTER; PHYSICS; ANGLES AB In this work we combine information from relic abundance, direct detection, cosmic microwave background, positron fraction, gamma rays, and colliders to explore the existing constraints on couplings between Dark Matter and Standard Model constituents when no underlying model or correlation is assumed. For de finiteness, we include independent vector-like effective interactions for each Standard Model fermion. Our results show that low Dark Matter masses below 20 GeV are disfavoured at the 3 sigma level with respect to higher masses, due to the tension between the relic abundance requirement and upper constraints on the Dark Matter couplings. Furthermore, large couplings are typically only allowed in combinations which avoid effective couplings to the nuclei used in direct detection experiments. C1 [Blennow, Mattias] KTH Royal Inst Technol, Sch Engn Sci, Dept Theoret Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden. [Coloma, Pilar] Virginia Tech, Ctr Neutrino Phys, Dept Phys, 850 West Campus Dr, Blacksburg, VA 24061 USA. [Coloma, Pilar] Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. [Fernandez-Martinez, Enrique; Machado, Pedro A. N.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Fernandez-Martinez, Enrique; Machado, Pedro A. N.] Univ Autonoma Madrid, Inst Fis Teor, CSIC, Calle Nicolas Cabrera 13-15, E-28049 Madrid, Spain. [Zaldivar, Bryan] Univ Libre Bruxelles, Serv Phys Theor, Blvd Triomphe,CP225, B-1050 Brussels, Belgium. RP Blennow, M (reprint author), KTH Royal Inst Technol, Sch Engn Sci, Dept Theoret Phys, Albanova Univ Ctr, S-10691 Stockholm, Sweden. EM emb@kth.se; pcoloma@fnal.gov; enrique.fernandez-martinez@uam.es; pedro.machado@uam.es; bryan.zaldivar@ulb.ac.be FU Goran Gustafsson Foundation; European Union [PITN-GA-2011-289442]; EU [PCIG11-GA-2012-321582]; Spanish MINECO [RYC2011-07710, FPA2009-09017, SEV-2012-0249]; IISN; Belgian Federal Science Policy [P7/37]; Fermi Research Alliance [DE-AC02-07CH11359]; U.S. Department of Energy [DE-SC001363]; National Science Foundation [PHY-1066293] FX We are happy to acknowledge stimulating discussions with Felix Kahlhoefer, Olga Mena, Miguel Peiro, Pantelis Tziveloglou and Aaron Vincent. The work of MB was supported by the Goran Gustafsson Foundation. PC, EFM and PM acknowledge financial support by the European Union through the ITN INVISIBLES (PITN-GA-2011-289442). EFM also acknowledges support from the EU through the FP7 Marie Curie Actions CIG NeuProbes (PCIG11-GA-2012-321582) and the Spanish MINECO through the "Ramon y Cajal" programme (RYC2011-07710) and the project FPA2009-09017. EFM and PM were also supported by the Spanish MINECO through the Centro de excelencia Severo Ochoa Program under grant SEV-2012-0249. The work of BZ is supported by the IISN and by the Belgian Federal Science Policy through the Interuniversity Attraction Pole P7/37. Fermilab is operated by the Fermi Research Alliance under contract no. DE-AC02-07CH11359 with the U.S. Department of Energy. The work of PC was partially supported by the U.S. Department of Energy under contract DE-SC001363. PC and PM would like to thank the Mainz Institute for Theoretical Physics for its hospitality and partial support during the completion of this work. EFM and PM thank the Aspen Center for Physics for its hospitality and the support of the National Science Foundation grant PHY-1066293 and the Simons Foundation for their stay there. NR 58 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2016 IS 4 AR 015 DI 10.1088/1475-7516/2016/04/015 PG 24 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ5VI UT WOS:000393286400013 ER PT J AU Foreman, S Senatore, L AF Foreman, Simon Senatore, Leonardo TI The EFT of Large Scale Structures at all redshifts: analytical predictions for lensing SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological perturbation theory; power spectrum; dark matter theory; cosmological simulations ID MATTER POWER SPECTRUM; PRECISION EMULATION; MODELS AB We study the prediction of the Effective Field Theory of Large Scale Structures (EFTofLSS) for the matter power spectrum at different redshifts. In previous work, we found that the two-loop prediction can match the nonlinear power spectrum measured from N-body simulations at redshift zero within approximately 2% up to k similar to 0.6 h Mpc(-1) after fixing a single free parameter, the so-called "speed of sound". We determine the time evolution of this parameter by matching the EFTofLSS prediction to simulation output at different redshifts, and find that it is well-described by a fitting function that only includes one additional parameter. After the two free parameters are fixed, the prediction agrees with nonlinear data within approximately 2% up to at least k similar to h Mpc(-1) at z >= 1, and also within approximately 5% up to k similar to 1.2 h Mpc(-1) at z = 1 and k similar to 2.3 h Mpc(-1) at z = 3, a major improvement with respect to other perturbative techniques. We also develop an accurate way to estimate where the EFTofLSS predictions at different loop orders should fail, based on the sizes of the next-order terms that are neglected, and find agreement with the actual comparisons to data. Finally, we use our matter power spectrum results to perform analytical calculations of lensing potential power spectra corresponding to both CMB and galaxy lensing. This opens the door to future direct applications of the EFTofLSS to observations of gravitational clustering on cosmic scales. C1 [Foreman, Simon] Stanford Univ, Stanford Inst Theoret Phys, 382 Via Pueblo Mall, Stanford, CA 94306 USA. Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94306 USA. Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. SLAC, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. RP Foreman, S (reprint author), Stanford Univ, Stanford Inst Theoret Phys, 382 Via Pueblo Mall, Stanford, CA 94306 USA. EM sfore@stanford.edu; senatore@stanford.edu FU Munich Institute for Astroand Particle Physics (MIAPP) of the DFG cluster of excellence "Origin and Structure of the Universe"; Natural Sciences and Engineering Research Council of Canada; DOE [DE-FG02-12ER41854]; NSF [PHY-1068380] FX We are very much indebted to Eiichiro Komatsu for strongly motivating us in the importance of this project. We also thank John Joseph Carrasco, Antony Lewis, and Matias Zaldarriaga for useful conversations. This research was supported by the Munich Institute for Astroand Particle Physics (MIAPP) of the DFG cluster of excellence "Origin and Structure of the Universe." S.F. is partially supported by the Natural Sciences and Engineering Research Council of Canada. L.S. is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. NR 33 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD APR PY 2016 IS 4 AR 033 DI 10.1088/1475-7516/2016/04/033 PG 35 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA EJ5VI UT WOS:000393286400027 ER PT J AU Bracco, C Amorim, LD Assmann, R Batsch, F Bingham, R Burt, G Buttenschon, B Butterworth, A Caldwell, A Chattopadhyay, S Cipiccia, S Deacon, LC Doebert, S Dorda, U Feldbaumer, E Fonseca, RA Fedossev, V Goddard, B Grebenyuk, J Grulke, O Gschwendtner, E Hansen, J Hessler, C Hofle, W Holloway, J Jaroszynski, D Jenkins, M Jensen, L Jolly, S Jones, R Kasim, MF Lopes, N Lotov, K Mandry, SR Martyanov, M Meddahi, M Mete, O Minakov, V Moody, J Muggli, P Najmudin, Z Norreys, PA Oz, E Pardons, A Petrenko, A Pukhov, A Rieger, K Reimann, O Seryi, AA Shaposhnikova, E Sherwood, P Silva, LO Sosedkin, A Tarkeshian, R Trines, RMGM Velotti, FM Vieira, J Vincke, H Welsch, C Wing, M Xia, G AF Bracco, C. Amorim, L. D. Assmann, R. Batsch, F. Bingham, R. Burt, G. Buttenschoen, B. Butterworth, A. Caldwell, A. Chattopadhyay, S. Cipiccia, S. Deacon, L. C. Doebert, S. Dorda, U. Feldbaumer, E. Fonseca, R. A. Fedossev, V. Goddard, B. Grebenyuk, J. Grulke, O. Gschwendtner, E. Hansen, J. Hessler, C. Hofle, W. Holloway, J. Jaroszynski, D. Jenkins, M. Jensen, L. Jolly, S. Jones, R. Kasim, M. F. Lopes, N. Lotov, K. Mandry, S. R. Martyanov, M. Meddahi, M. Mete, O. Minakov, V. Moody, J. Muggli, P. Najmudin, Z. Norreys, P. A. Oez, E. Pardons, A. Petrenko, A. Pukhov, A. Rieger, K. Reimann, O. Seryi, A. A. Shaposhnikova, E. Sherwood, P. Silva, L. O. Sosedkin, A. Tarkeshian, R. Trines, R. M. G. M. Velotti, F. M. Vieira, J. Vincke, H. Welsch, C. Wing, M. Xia, G. TI AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Plasma; wakefields; protons; proof-of-principle; self-modulation AB The AWAKE Collaboration has been formed in order to demonstrate proton-driven plasma wakefield acceleration for the first time. This acceleration technique could lead to future colliders of high energy but of a much reduced length when compared to proposed linear accelerators. The CERN SPS proton beam in the CNGS facility will be injected into a 10 m plasma cell where the long proton bunches will be modulated into significantly shorter micro bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20 MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial three-four years experimental program. The experiment will inform future larger-scale tests of proton-driven plasma wakefield acceleration and applications to high energy colliders. C1 [Lotov, K.; Minakov, V.; Sosedkin, A.] Budker Inst Nucl Phys SB RAS, Novosibirsk, Russia. [Bracco, C.; Butterworth, A.; Cipiccia, S.; Doebert, S.; Feldbaumer, E.; Fedossev, V.; Goddard, B.; Gschwendtner, E.; Hansen, J.; Hessler, C.; Hofle, W.; Jensen, L.; Jones, R.; Martyanov, M.; Meddahi, M.; Pardons, A.; Petrenko, A.; Shaposhnikova, E.; Velotti, F. M.; Vincke, H.] CERN, Geneva, Switzerland. [Burt, G.; Chattopadhyay, S.; Jenkins, M.; Mete, O.; Welsch, C.; Xia, G.] Cockroft Inst, Daresbury, Cheshire, England. [Fonseca, R. A.] Inst Univ Lisboa, ISCTE, DCTI, Lisbon, Portugal. [Assmann, R.; Dorda, U.; Grebenyuk, J.; Wing, M.] DESY, Hamburg, Germany. [Chattopadhyay, S.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Pukhov, A.] Heinrich Heine Univ, Dusseldorf, Germany. [Wing, M.] Univ Hamburg, Hamburg, Germany. [Amorim, L. D.; Fonseca, R. A.; Lopes, N.; Silva, L. O.; Vieira, J.] Univ Lisbon, Inst Super Tecn, GoLP Inst Plasmas & Fusao Nucl, Lisbon, Portugal. [Lopes, N.; Najmudin, Z.] Imperial Coll, John Adams Inst Accelerator Sci, London, England. [Burt, G.; Jenkins, M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chattopadhyay, S.; Welsch, C.] Univ Liverpool, Dept Phys, Liverpool, Merseyside, England. [Mete, O.; Xia, G.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Batsch, F.; Caldwell, A.; Mandry, S. R.; Moody, J.; Muggli, P.; Oez, E.; Rieger, K.; Reimann, O.; Tarkeshian, R.] Max Planck Inst Phys & Astrophys, Munich, Germany. [Buttenschoen, B.; Grulke, O.] Max Planck Inst Plasma Phys, Greifswald, Germany. [Chattopadhyay, S.] Northern Illinois Univ, De Kalb, IL USA. [Lotov, K.; Minakov, V.; Sosedkin, A.] Novosibirsk State Univ, Novosibirsk, Russia. [Norreys, P. A.] Univ Oxford, Dept Phys, Oxford, England. [Kasim, M. F.; Norreys, P. A.; Seryi, A. A.] Univ Oxford, John Adams Inst Accelerator Sci, Oxford, England. [Bingham, R.; Holloway, J.; Norreys, P. A.; Trines, R. M. G. M.] Rutherford Appleton Lab, Chilton, England. [Bingham, R.; Cipiccia, S.; Jaroszynski, D.] Univ Strathclyde, Glasgow, Lanark, Scotland. [Deacon, L. C.; Holloway, J.; Jolly, S.; Mandry, S. R.; Sherwood, P.; Wing, M.] UCL, London, England. RP Bracco, C (reprint author), CERN, Geneva, Switzerland. EM chiara.bracco@cern.ch RI Fonseca, Ricardo/B-7680-2009 OI Fonseca, Ricardo/0000-0001-6342-6226 NR 16 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 175 EP 180 DI 10.1016/j.nuclphysbps.2015.09.022 PG 6 GA EF4KW UT WOS:000390295200021 ER PT J AU Verdu-Andres, S Belomestnykh, S Ben-Zvi, I Calaga, R Wu, Q Xiao, BP AF Verdu-Andres, Silvia Belomestnykh, Sergey Ben-Zvi, Ilan Calaga, Rama Wu, Qiong Xiao, Binping TI Crab cavities for colliders: past, present and future SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Crab cavity; crab crossing; head-on collision; particle collider; luminosity upgrade; luminosity leveling AB The numerous parasitic encounters near interaction points of some particle colliders can be mitigated by introducing a crossing angle between beams. However, the crossing angle lowers the luminosity due to reduced geometric overlap of the bunches. Crab cavities allow restoring head-on collisions at the interaction point, thus increasing the geometric luminosity. Crab cavities also offer a mechanism for luminosity leveling. KEKB was the first facility to implement the crab crossing technique in 2007, for the interaction of electron and positron beams. The High Luminosity Large Hadron Collider (HL-LHC) project envisages the use of crab cavities for increasing and leveling the luminosity of proton-proton collisions in LHC. And crab cavities have been proposed and studied for future colliders like CLIC, ILC and eRHIC. This paper will review the past, present and future of crab cavities for particle colliders. C1 [Verdu-Andres, Silvia; Belomestnykh, Sergey; Ben-Zvi, Ilan; Wu, Qiong; Xiao, Binping] Brookhaven Natl Lab, Upton, NY 11973 USA. [Belomestnykh, Sergey; Ben-Zvi, Ilan] SUNY Stony Brook, Stony Brook, NY 11790 USA. [Calaga, Rama] European Org Nucl Res CERN, Route Meyrin 385, CH-1217 Meyrin, Switzerland. RP Verdu-Andres, S (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM sverdu@bnl.gov NR 18 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 193 EP 197 DI 10.1016/j.nuclphysbps.2015.09.025 PG 5 GA EF4KW UT WOS:000390295200024 ER PT J AU Brice, S AF Brice, Steve TI Proton Improvement Plan II: An 800 MeV Superconducting Linac to Support Megawatt Proton Beams at Fermilab SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE High Power Protons; Superconducting Linac AB Fermilab has proposed an upgrade of its proton accelerator complex based on construction of a new superconducting radio frequency linac. The plan is structured to deliver, in a cost effective manner, more than 1 MW of beam power to the neutrino production target at the initiation of the Long Baseline Neutrino Facility, while simultaneously creating a flexible platform for longer-term development of the Fermilab complex to multi-MW capabilities in support of a broader research program. C1 [Brice, Steve] Fermilab Natl Accelerator Lab, POB 500,Batavia 1, Batavia, IL 60510 USA. RP Brice, S (reprint author), Fermilab Natl Accelerator Lab, POB 500,Batavia 1, Batavia, IL 60510 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 238 EP 243 DI 10.1016/j.nuclphysbps.2015.09.032 PG 6 GA EF4KW UT WOS:000390295200031 ER PT J AU Dafni, T Arik, M Armengaud, E Aune, S Avignone, FT Barth, K Belov, A Betz, M Brauninger, H Brax, P Breijnholt, N Brun, P Cantatore, G Carmona, JM Carosi, GP Caspers, F Caspi, S Cetin, SA Chelouche, D Christensen, FE Collar, JI Dael, A Davenport, M Derbin, AV Desch, K Diago, A Dobrich, B Dratchnev, I Dudarev, A Eleftheriadis, C Fanourakis, G Ferrer-Ribas, E Friedrich, P Galan, J Garcia, JA Gardikiotis, A Garza, JG Gazis, EN Georgiopoulou, E Geralis, T Gimeno, B Giomataris, I Gninenko, S Gomez, H Gonzalez-Diaz, D Gruber, E Guendelman, E Guthorl, T Hailey, CJ Hartmann, R Hauf, S Haug, F Hasinoff, MD Hiramatsu, T Hoffmann, DHH Horns, D Iguaz, FJ Irastorza, IG Isern, J Imai, K Jacoby, J Jaeckel, J Jakobsen, AC Jakovcic, K Kaminski, J Kawasaki, M Karuza, M Konigsmann, K Kotthaus, R Krcmar, M Kousouris, K Krieger, C Kuster, M Lakic, B Laurent, JM Limousin, O Lindner, A Liolios, A Ljubicic, A Luzon, G Matsuki, S Muratova, VN Neff, S Niinikoski, T Nones, C Ortega, I Papaevangelou, T Pivovaroff, MJ Raffelt, G Redondo, J Riege, H Ringwald, A Rodriguez, A Rosu, M Russenschuck, S Ruz, J Saikawa, K Savvidis, I Sekiguchi, T Semertzidis, YK Shilon, I Sikivie, P Silva, H Solanki, SK Stewart, L ten Kates, HHJ Tomas, A Troitsky, S Vafeiadis, T van Bibber, K Vedrine, P Villar, JA Vogel, JK Walckiers, L Weltman, A Wester, W Yildiz, SC Zioutas, K AF Dafni, T. Arik, M. Armengaud, E. Aune, S. Avignone, F. T. Barth, K. Belov, A. Betz, M. Braeuninger, H. Brax, P. Breijnholt, N. Brun, P. Cantatore, G. Carmona, J. M. Carosi, G. P. Caspers, F. Caspi, S. Cetin, S. A. Chelouche, D. Christensen, F. E. Collar, J. I. Dael, A. Davenport, M. Derbin, A. V. Desch, K. Diago, A. Doebrich, B. Dratchnev, I. Dudarev, A. Eleftheriadis, C. Fanourakis, G. Ferrer-Ribas, E. Friedrich, P. Galan, J. Garcia, J. A. Gardikiotis, A. Garza, J. G. Gazis, E. N. Georgiopoulou, E. Geralis, T. Gimeno, B. Giomataris, I. Gninenko, S. Gomez, H. Gonzalez-Diaz, D. Gruber, E. Guendelman, E. Guthoerl, T. Hailey, C. J. Hartmann, R. Hauf, S. Haug, F. Hasinoff, M. D. Hiramatsu, T. Hoffmann, D. H. H. Horns, D. Iguaz, F. J. Irastorza, I. G. Isern, J. Imai, K. Jacoby, J. Jaeckel, J. Jakobsen, A. C. Jakovcic, K. Kaminski, J. Kawasaki, M. Karuza, M. Koenigsmann, K. Kotthaus, R. Krcmar, M. Kousouris, K. Krieger, C. Kuster, M. Lakic, B. Laurent, J. M. Limousin, O. Lindner, A. Liolios, A. Ljubicic, A. Luzon, G. Matsuki, S. Muratova, V. N. Neff, S. Niinikoski, T. Nones, C. Ortega, I. Papaevangelou, T. Pivovaroff, M. J. Raffelt, G. Redondo, J. Riege, H. Ringwald, A. Rodriguez, A. Rosu, M. Russenschuck, S. Ruz, J. Saikawa, K. Savvidis, I. Sekiguchi, T. Semertzidis, Y. K. Shilon, I. Sikivie, P. Silva, H. Solanki, S. K. Stewart, L. ten Kates, H. H. J. Tomas, A. Troitsky, S. Vafeiadis, T. van Bibber, K. Vedrine, P. Villar, J. A. Vogel, J. K. Walckiers, L. Weltman, A. Wester, W. Yildiz, S. C. Zioutas, K. TI An update on the Axion Helioscopes front: current activities at CAST and the IAXO project. SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE axions; dark matter; x-ray detectors; micromegas detectors; x-ray focusing devices; magnet development; CAST; IAXO ID SOLAR AXIONS; COHERENT CONVERSION; MAGNETIC-FIELD; SEARCH; TELESCOPE; PHOTONS AB Although they have not yet been detected, axions and axion-like particles (ALPs) continue to maintain the interest (even increasingly so) of the rare-event searches community as viable candidates for the Dark Matter of the Universe but also as a solution for several other puzzles of astrophysics. Their property of coupling to photons has inspired different experimental methods for their detection, one of which is the helioscope technique. The CERN Axion Solar Telescope (CAST) is the most sensitive helioscope built up to date and has recently published part of the latest data taken with the magnet bores gradually filled with He-3, probing the mass range up to 1.17 eV. The International AXion Observatory (IAXO) is being proposed as a facility where different axion studies can be performed, with the primary goal to study axions coming from the Sun. Designed to maximize sensitivity, it will improve the levels reached by CAST by almost 5 orders of magnitude in signal detection, that is more than one order of magnitude in terms of gay. Here we will summarize the most important aspects of the helioscopes, and focus mainly on IAXO, based on the recent papers [1, 2]. C1 [Dafni, T.; Carmona, J. M.; Diago, A.; Garcia, J. A.; Garza, J. G.; Gomez, H.; Gonzalez-Diaz, D.; Iguaz, F. J.; Irastorza, I. G.; Laurent, J. M.; Luzon, G.; Ortega, I.; Redondo, J.; Rodriguez, A.; Shilon, I.; Tomas, A.; Villar, J. A.; Weltman, A.] Univ Zaragoza, Lab Fis Nucl & Altas Energias, Zaragoza, Spain. [Arik, M.; Cetin, S. A.; Yildiz, S. C.] Dogus Univ, Istanbul, Turkey. [Armengaud, E.; Aune, S.; Brun, P.; Dael, A.; Ferrer-Ribas, E.; Galan, J.; Giomataris, I.; Limousin, O.; Nones, C.; Papaevangelou, T.; Vedrine, P.] CEA Saclay, IRFU, Gif Sur Yvette, France. [Avignone, F. T.] Univ S Carolina, Dept Phys, Columbia, SC USA. [Barth, K.; Betz, M.; Brax, P.; Caspers, F.; Davenport, M.; Dudarev, A.; Haug, F.; Kousouris, K.; Laurent, J. M.; Niinikoski, T.; Russenschuck, S.; Shilon, I.; Silva, H.; Stewart, L.; ten Kates, H. H. J.; Vafeiadis, T.; Walckiers, L.; Zioutas, K.] CERN, Geneva, Switzerland. [Belov, A.; Gninenko, S.; Troitsky, S.] Russian Acad Sci, INR, Moscow, Russia. [Braeuninger, H.; Friedrich, P.] MPE, Garching, Germany. [Cantatore, G.] INFN, Sez Trieste, Trieste, Italy. [Cantatore, G.] Univ Trieste, Trieste, Italy. [Breijnholt, N.; Carosi, G. P.; Pivovaroff, M. J.; Ruz, J.; Vogel, J. K.] LLNL, Phys & Life Sci Directorate, Livermore, CA USA. [Caspi, S.] LBNL, Berkeley, CA USA. [Chelouche, D.] Univ Haifa, Dept Phys, IL-31905 Haifa, Israel. [Christensen, F. E.; Jakobsen, A. C.] Tech Univ Denmark, DTU Space, Copenhagen, Denmark. [Collar, J. I.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Collar, J. I.] Univ Chicago, KICP, Chicago, IL 60637 USA. [Derbin, A. V.; Dratchnev, I.; Muratova, V. N.] St Petersburg Nucl Phys Inst, St Petersburg, Russia. [Desch, K.; Kaminski, J.; Krieger, C.] Univ Bonn, Inst Phys, Bonn, Germany. [Doebrich, B.; Lindner, A.; Ringwald, A.] DESY, Hamburg, Germany. [Eleftheriadis, C.; Liolios, A.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Fanourakis, G.; Geralis, T.] NCSR Demokritos, Athens, Greece. [Gardikiotis, A.; Georgiopoulou, E.; Zioutas, K.] Univ Patras, Dept Phys, Patras, Greece. [Gazis, E. N.] Natl Tech Univ Athens, Athens, Greece. [Gimeno, B.] Univ Valencia, Inst Ciencias Mat, Valencia, Spain. [Gruber, E.; Guthoerl, T.; Koenigsmann, K.] Albert Ludwigs Univ Freiburg, Freiburg, Germany. [Guendelman, E.] Ben Gurion Univ Negev, Dept Phys, Beer Sheva, Israel. [Hailey, C. J.] Columbia Univ, Astrophys Lab, New York, NY 10027 USA. [Hartmann, R.] MPI Halbleiterlab, Munich, Germany. [Hauf, S.; Hoffmann, D. H. H.; Kuster, M.; Neff, S.; Riege, H.; Rosu, M.] Tech Univ Darmstadt, IKP, Darmstadt, Germany. [Hasinoff, M. D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC, Canada. [Hiramatsu, T.] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto, Japan. [Horns, D.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Isern, J.] CSIC, Fac Ciencies, Inst Ciencies Espai, IEEC, Bellaterra, Spain. [Imai, K.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki, Japan. [Jacoby, J.] Goethe Univ Frankfurt, Inst Angew Phys, Frankfurt, Germany. [Jaeckel, J.] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany. [Jakovcic, K.; Krcmar, M.; Lakic, B.; Ljubicic, A.] Rudjer Boskovic Inst, Zagreb, Croatia. [Kawasaki, M.; Sekiguchi, T.] Univ Tokyo, Inst Cosm Ray Res, Tokyo, Japan. [Karuza, M.] Univ Rijeka, Dept Phys, Rijeka, Croatia. [Kotthaus, R.] Univ Rijeka, Ctr Micro & Nano Sci & Technol, Rijeka, Croatia. [Raffelt, G.] Max Planck Inst Phys & Astrophys, Munich, Germany. [Matsuki, S.] Kyoto Univ, Res Ctr Low Temp & Mat Sci, Kyoto 6068502, Japan. [Saikawa, K.] Tokyo Inst Technol, Dept Phys, Tokyo, Japan. [Semertzidis, Y. K.] Korea Adv Inst Sci & Technol, IBS, Ctr Axion & Precis Phys, Daejeon, South Korea. [Sikivie, P.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Solanki, S. K.] Max Planck Inst Sonnensyst Forsch, Katlenburg Lindau, Germany. [van Bibber, K.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. Univ Cape Town, Cape Town, South Africa. [Wester, W.] Fermilab Natl Accelerator Lab, Batavia, IL USA. RP Dafni, T (reprint author), Univ Zaragoza, Lab Fis Nucl & Altas Energias, Zaragoza, Spain. EM tdafni@unizar.es NR 28 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 244 EP 249 DI 10.1016/j.nuclphysbps.2015.09.033 PG 6 GA EF4KW UT WOS:000390295200032 ER PT J AU Carmona-Benitez, MC Akerib, DS Araujo, HM Bai, X Bailey, AJ Balajthy, J Beltrame, P Bernard, E Bernstein, A Bradley, A Byram, D Cahn, SB Chan, C Chapman, JJ Chiller, AA Chiller, C Currie, A de Viveiros, L Dobi, A Dobson, J Druszkiewicz, E Edwards, B Faham, CH Fiorucci, S Flores, C Gaitskell, RJ Gehman, VM Ghag, C Gibson, KR Gilchriese, MGD Hall, C Hanhardt, M Haselschwardt, S Hertel, SA Horn, M Huang, DQ Ihm, M Jacobsen, RG Kazkaz, K Knoche, R Larsen, NA Lee, C Lenardo, B Lesko, KT Lindote, A Lopes, MI Malling, DC Manalaysay, A Mannino, R McKinsey, DN Mei, DM Mock, J Moongweluwan, M Morad, J Murphy, AS Nehrkorn, C Nelson, H Neves, F Ott, RA Pangilinan, M Parker, PD Pease, EK Pech, K Phelps, P Reichhart, L Shutt, T Silva, C Solovov, VN Sorensen, P O'Sullivan, K Sumner, TJ Szydagis, M Taylor, D Tennyson, B Tiedt, DR Tripathi, M Tvrznikova, L Uvarov, S Verbus, JR Walsh, N Webb, R White, JT Witherell, MS Wolfs, FLH Woods, M Zhang, C AF Carmona-Benitez, M. C. Akerib, D. S. Araujo, H. M. Bai, X. Bailey, A. J. Balajthy, J. Beltrame, P. Bernard, E. Bernstein, A. Bradley, A. Byram, D. Cahn, S. B. Chan, C. Chapman, J. J. Chiller, A. A. Chiller, C. Currie, A. de Viveiros, L. Dobi, A. Dobson, J. Druszkiewicz, E. Edwards, B. Faham, C. H. Fiorucci, S. Flores, C. Gaitskell, R. J. Gehman, V. M. Ghag, C. Gibson, K. R. Gilchriese, M. G. D. Hall, C. Hanhardt, M. Haselschwardt, S. Hertel, S. A. Horn, M. Huang, D. Q. Ihm, M. Jacobsen, R. G. Kazkaz, K. Knoche, R. Larsen, N. A. Lee, C. Lenardo, B. Lesko, K. T. Lindote, A. Lopes, M. I. Malling, D. C. Manalaysay, A. Mannino, R. McKinsey, D. N. Mei, D-M Mock, J. Moongweluwan, M. Morad, J. Murphy, A. St J. Nehrkorn, C. Nelson, H. Neves, F. Ott, R. A. Pangilinan, M. Parker, P. D. Pease, E. K. Pech, K. Phelps, P. Reichhart, L. Shutt, T. Silva, C. Solovov, V. N. Sorensen, P. O'Sullivan, K. Sumner, T. J. Szydagis, M. Taylor, D. Tennyson, B. Tiedt, D. R. Tripathi, M. Tvrznikova, L. Uvarov, S. Verbus, J. R. Walsh, N. Webb, R. White, J. T. Witherell, M. S. Wolfs, F. L. H. Woods, M. Zhang, C. CA LUX Collaboration TI First Results of the LUX Dark Matter Experiment SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE dark matter; WIMP; liquid xenon; time projection chamber AB LUX (Large Underground Xenon) is a dark matter direct detection experiment deployed at the 4850' level of the Sanford Underground Research Facility (SURF) in Lead, SD, operating a 370 kg dual-phase xenon TPC. Results of the first WIMP search run were presented in late 2013, for the analysis of 85.3 live-days with a fiducial volume of 118 kg, taken during the period of April to August 2013. The experiment exhibited a sensitivity to spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6 x 10(-46) cm(2) at a WIMP mass of 33 GeV/c(2), becoming the world's leading WIMP search result, in conflict with several previous claimed hints of discovery. C1 [Carmona-Benitez, M. C.; Haselschwardt, S.; Nehrkorn, C.; Nelson, H.; Witherell, M. S.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Akerib, D. S.; Bradley, A.; Gibson, K. R.; Lee, C.; Pech, K.; Phelps, P.; Shutt, T.] Case Western Reserve Univ, Dept Phys, 10900 Euclid Ave, Cleveland, OH 44106 USA. [Araujo, H. M.; Bailey, A. J.; Currie, A.; Sumner, T. J.] Imperial Coll London, High Energy Phys, Blackett Lab, London SW7 2BZ, England. [Bai, X.; Tiedt, D. R.] South Dakota Sch Mines & Technol, 501 East St Joseph St, Rapid City, SD 57701 USA. [Balajthy, J.; Dobi, A.; Hall, C.; Knoche, R.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beltrame, P.; Dobson, J.; Murphy, A. St J.] Univ Edinburgh, Sch Phys & Astron, SUPA, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bernard, E.; Cahn, S. B.; Edwards, B.; Hertel, S. A.; Horn, M.; Larsen, N. A.; McKinsey, D. N.; Parker, P. D.; Pease, E. K.; O'Sullivan, K.; Tennyson, B.; Tvrznikova, L.] Yale Univ, Dept Phys, 217 Prospect St, New Haven, CT 06511 USA. [Bernstein, A.; Kazkaz, K.; Sorensen, P.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. [Byram, D.; Chiller, A. A.; Chiller, C.; Mei, D-M; Zhang, C.] Univ South Dakota, Dept Phys, 414E Clark St, Vermillion, SD 57069 USA. [Chan, C.; Chapman, J. J.; Fiorucci, S.; Gaitskell, R. J.; Huang, D. Q.; Malling, D. C.; Pangilinan, M.; Verbus, J. R.] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA. [de Viveiros, L.; Lindote, A.; Lopes, M. I.; Neves, F.; Silva, C.; Solovov, V. N.] Univ Coimbra, Dept Phys, LIP Coimbra, Rua Larga, P-3004516 Coimbra, Portugal. [Druszkiewicz, E.; Moongweluwan, M.; Wolfs, F. L. H.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Faham, C. H.; Gehman, V. M.; Gilchriese, M. G. D.; Lesko, K. T.] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Flores, C.; Lenardo, B.; Manalaysay, A.; Mock, J.; Morad, J.; Ott, R. A.; Szydagis, M.; Tripathi, M.; Uvarov, S.; Walsh, N.; Woods, M.] Univ Calif Davis, Dept Phys, One Shields Ave, Davis, CA 95616 USA. [Ghag, C.; Reichhart, L.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. [Hanhardt, M.; Taylor, D.] Sanford Underground Res Facil, South Dakota Sci & Technol Author, Lead, SD 57754 USA. [Ihm, M.; Jacobsen, R. G.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mannino, R.; Webb, R.; White, J. T.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. RP Carmona-Benitez, MC (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM carmona@physics.ucsb.edu NR 18 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 309 EP 313 DI 10.1016/j.nuclphysbps.2015.09.043 PG 5 GA EF4KW UT WOS:000390295200042 ER PT J AU Davini, S Agnes, P Alexander, T Alton, A Arisaka, K Back, HO Baldin, B Biery, K Bonfini, G Bossa, M Brigatti, A Brodsky, J Budano, F Calaprice, F Canci, N Candela, A Cariello, M Cavalcante, P Chavarria, A Chepurnov, A Cocco, AG D'Angelo, D D'Incecco, M De Deo, M Derbin, A Devoto, A Di Eusanio, F Edkins, E Empl, A Fan, A Fiorillo, G Fomenko, K Franco, D Gabriele, F Galbiati, C Goretti, A Grandi, L Guan, MY Guardincerri, Y Hackett, B Herner, K Hungerford, EV Ianni, A Ianni, A Kendziora, C Koh, G Korablev, D Korga, G Kurlej, A Li, PX Lombardi, P Luitz, S Machulin, I Mandarano, A Mari, S Maricic, J Marini, L Martoff, CJ Meyers, PD Montanari, D Montuschi, M Monzani, ME Musico, P Odrowski, S Orsini, M Ortica, F Pagani, L Pantic, E Papp, L Parmeggiano, S Pelliccia, N Perasso, S Pocar, A Pordes, S Qian, H Randle, K Ranucci, G Razeto, A Reinhold, B Renshaw, A Romani, A Rossi, B Rossi, N Rountree, SD Sablone, D Saldanha, R Sands, W Segreto, E Shields, E Smirnov, O Sotnikov, A Stanford, C Suvorov, Y Tatarowicz, J Testera, G Tonazzo, A Unzhakov, E Vogelaar, RB Wada, M Walker, S Wang, H Watson, A Westerdale, S Wojcik, M Xiang, X Xu, J Yang, CG Yoo, J Zavatarelli, S Zec, A Zhu, C Zuzel, G AF Davini, S. Agnes, P. Alexander, T. Alton, A. Arisaka, K. Back, H. O. Baldin, B. Biery, K. Bonfini, G. Bossa, M. Brigatti, A. Brodsky, J. Budano, F. Calaprice, F. Canci, N. Candela, A. Cariello, M. Cavalcante, P. Chavarria, A. Chepurnov, A. Cocco, A. G. D'Angelo, D. D'Incecco, M. De Deo, M. Derbin, A. Devoto, A. Di Eusanio, F. Edkins, E. Empl, A. Fan, A. Fiorillo, G. Fomenko, K. Franco, D. Gabriele, F. Galbiati, C. Goretti, A. Grandi, L. Guan, M. Y. Guardincerri, Y. Hackett, B. Herner, K. Hungerford, E. V. Ianni, Al Ianni, An Kendziora, C. Koh, G. Korablev, D. Korga, G. Kurlej, A. Li, P. X. Lombardi, P. Luitz, S. Machulin, I. Mandarano, A. Mari, S. Maricic, J. Marini, L. Martoff, C. J. Meyers, P. D. Montanari, D. Montuschi, M. Monzani, M. E. Musico, P. Odrowski, S. Orsini, M. Ortica, F. Pagani, L. Pantic, E. Papp, L. Parmeggiano, S. Pelliccia, N. Perasso, S. Pocar, A. Pordes, S. Qian, H. Randle, K. Ranucci, G. Razeto, A. Reinhold, B. Renshaw, A. Romani, A. Rossi, B. Rossi, N. Rountree, S. D. Sablone, D. Saldanha, R. Sands, W. Segreto, E. Shields, E. Smirnov, O. Sotnikov, A. Stanford, C. Suvorov, Y. Tatarowicz, J. Testera, G. Tonazzo, A. Unzhakov, E. Vogelaar, R. B. Wada, M. Walker, S. Wang, H. Watson, A. Westerdale, S. Wojcik, M. Xiang, X. Xu, J. Yang, C. G. Yoo, J. Zavatarelli, S. Zec, A. Zhu, C. Zuzel, G. TI A first walk on the DarkSide SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Dark matter; Scintillation detectors ID GRAN SASSO; MATTER EXPERIMENTS; LIQUID ARGON; DETECTOR AB DarkSide-50 (DS-50) at Gran Sasso underground laboratory (LNGS), Italy, is a direct dark matter search experiment based on a TPC with liquid argon. DS-50 has completed its first dark matter run using atmospheric argon as target. The DS-50 detector performances and the results of the first physics run are reviewed in this proceeding. C1 [Davini, S.; Empl, A.; Hungerford, E. V.; Korga, G.; Sablone, D.] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Agnes, P.; Franco, D.; Perasso, S.; Tonazzo, A.] Univ Paris Diderot, Sorbonne Paris Cite, APC, F-75205 Paris, France. [Alexander, T.; Kurlej, A.; Pocar, A.; Randle, K.; Zec, A.] Univ Massachusetts, Phys Dept, Amherst, MA 01003 USA. [Alton, A.] Augustana Coll, Dept Phys & Astron, Sioux Falls, SD 57197 USA. [Arisaka, K.; Canci, N.; Fan, A.; Pantic, E.; Renshaw, A.; Suvorov, Y.; Wang, H.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Back, H. O.; Brodsky, J.; Calaprice, F.; Galbiati, C.; Goretti, A.; Ianni, An; Koh, G.; Meyers, P. D.; Qian, H.; Rossi, B.; Sands, W.; Shields, E.; Stanford, C.; Wada, M.; Westerdale, S.; Xiang, X.; Xu, J.; Zhu, C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Baldin, B.; Biery, K.; Di Eusanio, F.; Guardincerri, Y.; Herner, K.; Kendziora, C.; Montanari, D.; Pordes, S.; Yoo, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Bonfini, G.; Candela, A.; Cavalcante, P.; D'Incecco, M.; De Deo, M.; Gabriele, F.; Ianni, Al; Montuschi, M.; Odrowski, S.; Orsini, M.; Razeto, A.; Rossi, N.; Segreto, E.] Lab Nazl Gran Sasso, I-67010 Assergi, AQ, Italy. [Bossa, M.; Mandarano, A.] Gran Sasso Sci Inst, I-67100 Laquila, Italy. [Brigatti, A.; D'Angelo, D.; Lombardi, P.; Parmeggiano, S.; Ranucci, G.] Univ Milan, Dept Phys, I-20133 Milan, Italy. [Brigatti, A.; D'Angelo, D.; Lombardi, P.; Parmeggiano, S.; Ranucci, G.] Ist Nazl Fis Nucl, I-20133 Milan, Italy. [Budano, F.; Mari, S.; Marini, L.] Univ Rome Tre, Dept Phys, I-00146 Rome, Italy. [Budano, F.; Mari, S.; Marini, L.] Ist Nazl Fis Nucl, I-00146 Rome, Italy. [Cariello, M.; Musico, P.; Pagani, L.; Testera, G.; Zavatarelli, S.] Univ Genoa, Dept Phys, I-16146 Genoa, Italy. [Cariello, M.; Musico, P.; Pagani, L.; Testera, G.; Zavatarelli, S.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Chavarria, A.; Grandi, L.; Saldanha, R.] Univ Chicago, Enrico Fermi Inst, Kavli Inst, Chicago, IL 60637 USA. [Chavarria, A.; Grandi, L.; Saldanha, R.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Chepurnov, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia. [Cocco, A. G.; Fiorillo, G.; Walker, S.] Univ Naples Federico II, Dept Phys, I-80126 Naples, Italy. [Cocco, A. G.; Fiorillo, G.; Walker, S.] Ist Nazl Fis Nucl, I-80126 Naples, Italy. [Derbin, A.; Unzhakov, E.] St Petersburg Nucl Phys Inst, Gatchina 188350, Russia. [Devoto, A.] Univ Cagliari, Dept Phys, I-09042 Cagliari, Italy. [Devoto, A.] Ist Nazl Fis Nucl, I-09042 Cagliari, Italy. [Edkins, E.; Hackett, B.; Maricic, J.; Reinhold, B.] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 USA. [Fomenko, K.; Korablev, D.; Smirnov, O.; Sotnikov, A.] Joint Inst Nucl Res, Dubna 141980, Russia. [Guan, M. Y.; Li, P. X.; Yang, C. G.] Inst High Energy Phys, Beijing 100049, Peoples R China. [Luitz, S.; Monzani, M. E.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Machulin, I.] Natl Res Nucl Univ, Moscow Engn Phys Inst, Moscow 115409, Russia. [Martoff, C. J.; Tatarowicz, J.; Watson, A.] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA. [Ortica, F.; Pelliccia, N.; Romani, A.] Univ Perugia, Chem Biol & Biotechnol Dept, I-06123 Perugia, Italy. [Ortica, F.; Pelliccia, N.; Romani, A.] Ist Nazl Fis Nucl, I-06123 Perugia, Italy. [Papp, L.; Rountree, S. D.; Vogelaar, R. B.] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA. [Wojcik, M.; Zuzel, G.] Jagiellonian Univ, Smoluchowski Inst Phys, PL-30059 Krakow, Poland. RP Davini, S (reprint author), Univ Houston, Dept Phys, Houston, TX 77204 USA. EM stefano.davini@gmail.com RI Ortica, Fausto/C-1001-2013; Canci, Nicola/E-7498-2017; OI Ortica, Fausto/0000-0001-8276-452X; Canci, Nicola/0000-0002-4797-4297; Xu, Jingke/0000-0001-8084-5609; Franco, Davide/0000-0001-5604-2531; Unzhakov, Evgeniy/0000-0003-2952-6412; Rossi, Nicola/0000-0002-7046-528X NR 29 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 452 EP 458 DI 10.1016/j.nuclphysbps.2015.09.066 PG 7 GA EF4KW UT WOS:000390295200065 ER PT J AU Berger, EL Zhang, H AF Berger, Edmond L. Zhang, Hao TI Higgs boson physics and broken flavor symmetry - LHC phenomenology SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Higgs boson; broken flavor symmetry; flavon; Higgs-flavon mixing; LHC phenomenology C1 [Berger, Edmond L.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Zhang, Hao] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. RP Berger, EL (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 788 EP 793 DI 10.1016/j.nuclphysbps.2015.09.121 PG 6 GA EF4KW UT WOS:000390295200120 ER PT J AU Herner, K AF Herner, Kenneth TI Higgs Boson Studies at the Tevatron SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Higgs; Tevatron; Boson; DO; Higgs Properties ID MASSLESS PARTICLES; BROKEN SYMMETRIES; SEARCH; LHC AB We present the combination of searches for the Standard Model Higgs boson at a center -of -mass energy of Ars = 1.96 TeV, using the full Run 2 dataset collected with the CDF and DO detectors at the Fermilab Tevatron collider. We also present combined measurements of Higgs Boson production cross sections, branching ratios, and couplings to fermions and bosons. Finally, we present tests of different spin and parity hypotheses for a particle H of mass 125 GeV produced in association with a vector boson and decaying into a pair of b quarks, and place constraints on such hypotheses using the DO data. C1 [Herner, Kenneth] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Herner, K (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM kherner@fnal.gov NR 26 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 852 EP 856 DI 10.1016/j.nuclphysbps.2015.09.131 PG 5 GA EF4KW UT WOS:000390295200130 ER PT J AU Barberis, D Cranshaw, J Favareto, A Casani, AF Gallas, E de la Hoz, SG Hrivnac, J Malon, D Nowak, M Prokoshin, F Salt, J Martinez, JS Tobbicke, R Yuan, R AF Barberis, D. Cranshaw, J. Favareto, A. Fernandez Casani, A. Gallas, E. Gonzalez de la Hoz, S. Hrivnac, J. Malon, D. Nowak, M. Prokoshin, F. Salt, J. Sanchez Martinez, J. Tobbicke, R. Yuan, R. TI The ATLAS EventIndex: Full chain deployment and first operation SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE ATLAS; Distributed Computing AB The Event Index project consists in the development and deployment of a complete catalogue of events for experiments with large amounts of data, such as the ATLAS experiment at the LHC accelerator at CERN. Data to be stored in the EventIndex are produced by, all production jobs that run at CERN or the GRID; for every permanent output file, a snippet of information, containing the file unique identifier and the relevant attributes for each event, is sent to the central catalogue. The estimated insertion rate during the LHC Run 2 is about 80 Hz of file records containing similar to 15 kHz of event records. This contribution describes the system design, the initial performance tests of the full data collection and cataloguing chain, and the project evolution towards the full deployment and operation by the end of 2014. C1 [Barberis, D.; Favareto, A.] Univ Genoa, Genoa, Italy. [Barberis, D.; Favareto, A.] Ist Nazl Fis Nucl, Genoa, Italy. [Cranshaw, J.; Malon, D.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Fernandez Casani, A.; Gonzalez de la Hoz, S.; Salt, J.; Sanchez Martinez, J.] Inst Fis Corpuscular IFIC, Valencia, Spain. [Gallas, E.] Univ Oxford, Oxford, England. [Hrivnac, J.; Yuan, R.] Univ Paris 11, Orsay, France. [Hrivnac, J.; Yuan, R.] IN2P3, CNRS, Orsay, France. [Nowak, M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Prokoshin, F.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Tobbicke, R.] CERN, Geneva, Switzerland. RP Casani, AF (reprint author), Inst Fis Corpuscular IFIC, Valencia, Spain. OI Fernandez Casani, Alvaro/0000-0003-1394-509X NR 16 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 913 EP 918 DI 10.1016/j.nuclphysbps.2015.09.141 PG 6 GA EF4KW UT WOS:000390295200140 ER PT J AU Contin, G Anderssen, E Greiner, L Schambach, J Silber, J Stezelberger, T Sun, XM Szelezniak, M Vu, C Wieman, H Woodmansee, S AF Contin, Giacomo Anderssen, Eric Greiner, Leo Schambach, Joachim Silber, Joseph Stezelberger, Thorsten Sun, Xiangming Szelezniak, Michal Vu, Chinh Wieman, Howard Woodmansee, Sam TI The STAR Heavy Flavor Tracker (HFT): focus on the MAPS based PXL detector SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE MAPS; Pixel; Vertex; Probe testing; Insertion mechanics; Heavy Ions; HFT; STAR; RHIC AB The heavy quark hadrons are suggested as a clean probe for studying the early dynamic evolution of the dense and hot medium created in high-energy nuclear collisions. The Heavy Flavor Tracker (HFT) of the STAR experiment, designed to improve the vertex resolution and extend the measurement capabilities in the heavy flavor domain, was installed for the 2014 heavy ion run of RHIC. It is composed of three different silicon detectors arranged in four concentric cylinders close to the STAR interaction point. The two inner-most layers are based on CMOS monolithic active pixels (MAPS), featured for the first time in a collider experiment, while the two outer layers are based on pads and strips. The two innermost HFT layers are placed at a radius of 2.7 and 8 cm from the beam line and accommodate 400 ultra-thin (50 mu m) high resolution MAPS sensors arranged in 10-sensor ladders to cover a total silicon area of 0.16 m(2). Each sensor includes a pixel array of 928 rows and 960 columns with a 20.7 mu m pixel pitch, providing a sensitive area of 3.8 cm(2). The sensor features 185.6 mu s readout time and 170 mW/cm(2) power dissipation. The detector is air-cooled, allowing a global material budget as low as 0.39% X/X-0 on the inner layer. A novel mechanical approach to detector insertion enables effective installation and integration of the pixel layers within an 8 hour shift during the on-going STAR run. After a detailed description of the design specifications and the technology implementation, the detector status and operations during the current 200 GeV Au+Au run will be presented in this paper, with a particular focus on calibration and general system operations aimed at stabilizing the running conditions. A preliminary estimation of the detector performance meeting the design requirements will be reported. C1 [Contin, Giacomo; Anderssen, Eric; Greiner, Leo; Silber, Joseph; Stezelberger, Thorsten; Vu, Chinh; Wieman, Howard; Woodmansee, Sam] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schambach, Joachim] Univ Texas Austin, 1 Univ Stn, Austin, TX 78712 USA. [Sun, Xiangming] CCNU, Wuhan, Peoples R China. [Szelezniak, Michal] IPHC, Strasbourg, France. RP Contin, G (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM gcontin@lbl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1155 EP 1159 DI 10.1016/j.nuclphysbps.2015.09.181 PG 5 GA EF4KW UT WOS:000390295200179 ER PT J AU Barnett, RM AF Barnett, R. Michael TI Planetarium Show on Dark Matter SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Dark matter; outreach; education; planetarium; film; big bang; galaxies; underground; LHC; Large Hadron Collider AB We describe a new planetarium show about Dark Matter entitled "Phantom of the Universe". When completed in late 2014, it will feature the exciting story of dark matter, from the Big Bang to its anticipated discovery at the Large Hadron Collider. C1 [Barnett, R. Michael] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94618 USA. RP Barnett, RM (reprint author), Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94618 USA. EM rmbarnett@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1208 EP 1210 DI 10.1016/j.nuclphysbps.2015.09.190 PG 3 GA EF4KW UT WOS:000390295200188 ER PT J AU Bardeen, MG AF Bardeen, Marjorie G. TI Data Portfolio: instructional materials provide particle physics data in high school classrooms SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE education; high school; experimental data; classroom materials AB We discuss Data Portfolio (DP), a new suite of activities that provide experimental particle physics data to high school students and a professional development program for their teachers. DP is a website resource with a broad range of instructional materials that allows teachers to select activities of the correct level and scope for their students. Activities range from introductory to survey, investigation and exploration. DP incorporates existing elements such as masterclasses and e-Labs along with new ways of introducing students to physics concepts that underlie the data measurements and investigations. Evaluators have determined that these elements are in line with the latest standards and effective instructional models. To be successful, teachers need to be confident to use the materials, comfortable to step back so students can guide their own learning, and clever to convince administrators that they are meeting school and district requirements. Professional development workshops accompany the DP where participants experience some of these activities as their students would and plan how to use them in their classes. The first weeklong DP workshop was held in July at Fermilab. We have also held outreach workshops in conjunction with ILC workshops around the world. DP is a product of QuarkNet, a long-term professional development program embedded in the U.S. particle physics research community and funded by the National Science Foundation and the U.S. Department of Energy and supported by universities and labs across the country. C1 [Bardeen, Marjorie G.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Bardeen, MG (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1239 EP 1243 DI 10.1016/j.nuclphysbps.2015.09.197 PG 5 GA EF4KW UT WOS:000390295200195 ER PT J AU Bernlochner, FU Ligeti, Z Turczyk, S AF Bernlochner, Florian U. Ligeti, Zoltan Turczyk, Sascha TI A new way to search for right-handed currents in semileptonic B -> rho l(v)over-bar decay SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 AB There exist a long standing tension among determinations of the CKM matrix element vertical bar V-ub vertical bar from various (semi)leptonic B decay channels with varying significance of up to similar to 3 sigma-. An interesting possibility to ease this tension is to allow for a right-handed contribution to the standard model left-handed weak current mediating the b -> u quark decay. Current bounds on such a contribution are fairly weak. We propose a new way to search for such a right-handed current in semileptonic B -> p meson decays. We describe a new variable that we propose, and discuss the theoretical uncertainties. Especially we investigate the uncertainties and their correlations among all contributing form factors with the assumed z-expansion for its shape, valid over the whole q(2) range. Then we study the achievable sensitivity both from the available Babar and Belle data sets, as well as from an anticipated 50 ab(-1) at Belle C1 [Bernlochner, Florian U.] Univ Victoria, Victoria, BC V8W 3P, Canada. [Bernlochner, Florian U.] Rheinische Friedrich Wilhelms Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Turczyk, Sascha] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55099 Mainz, Germany. [Turczyk, Sascha] Johannes Gutenberg Univ Mainz, Mainz Inst Theoret Phys, D-55099 Mainz, Germany. RP Bernlochner, FU (reprint author), Univ Victoria, Victoria, BC V8W 3P, Canada. NR 19 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1296 EP 1302 DI 10.1016/j.nuclphysbps.2015.09.207 PG 7 GA EF4KW UT WOS:000390295200205 ER PT J AU Bardeen, WA AF Bardeen, William A. TI Spontaneous Breaking of Scale Invariance in U(N) Chern-Simons Gauge Theories in Three Dimensions SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 AB I explore the existence of a massive phase in a conformally invariant U(N) Chem-Simons gauge theories in D = 3 with matter fields in the fundamental representation. These models have attracted recent attention as being dual, in the conformal phase, to theories of higher spin gravity on AdS(4). Using the 't Hooft large N expansion, exact solutions are obtained for scalar current correlators in the massive phase where the conformal symmetry is spontaneously broken. A massless dilaton appears as a composite state, and its properties are discussed. Solutions exist for matters field that are either bosons or fermions. C1 [Bardeen, William A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Bardeen, WA (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM bardeen@fnal.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1494 EP 1498 DI 10.1016/j.nuclphysbps.2015.09.241 PG 5 GA EF4KW UT WOS:000390295200239 ER PT J AU Chen, CH AF Chen, Chin-Hao TI PHENIX Results in d plus Au Collisions SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE quark-gluon plasma AB The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a comprehensive set of measurements in d+Au collisions. Observables in d+Au collisions were originally conceived as a control experiment where no quark-gluon plasma is formed and one could isolate so-called cold nuclear matter effects, including nuclear modified parton distributions and parton multiple scattering. However, recent data from the PHENIX experiment in d+Au, in conjunction with new p+Pb results at the Large Hadron Collider, give strong evidence for a very different picture. We present new results that hint at the formation of a small quark-gluon plasma, that though short lived, leaves a fingerprint of evidence on final state observables. These new results will be discussed in the context of competing theoretical interpretations. C1 [Chen, Chin-Hao] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Chen, CH (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1600 EP 1603 DI 10.1016/j.nuclphysbps.2015.09.259 PG 4 GA EF4KW UT WOS:000390295200257 ER PT J AU Celis, A Cirigliano, V Passemar, E AF Celis, Alejandro Cirigliano, Vincenzo Passemar, Emilie TI Disentangling new physics contributions in lepton flavour violating tau decays SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE tau decays; lepton flavour violation; Higgs decays ID SEARCH; MESON AB The possibility to discriminate between different operators contributing to lepton flavour violating tau decays is discussed within an effective field theory framework. Correlations among decay rates in different channels as well as differential distributions in many-body decays are considered. Recent developments in the determination of the hadronic form factors for tau - L pi pi (l = e, mu) decays are incorporated in the analysis. The above issues are exemplified by considering a Higgs-like boson with lepton flavour violating couplings. Implications of the search for lepton flavour violating Higgs decays performed recently by the CMS collaboration are also discussed. C1 [Celis, Alejandro] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain. [Cirigliano, Vincenzo; Passemar, Emilie] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA. [Passemar, Emilie] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Passemar, Emilie] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Passemar, Emilie] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, 12000 Jefferson Ave, Newport News, VA 23606 USA. RP Celis, A (reprint author), Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain. OI Celis, Alejandro/0000-0002-3045-6696 NR 45 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1664 EP 1670 DI 10.1016/j.nuclphysbps.2015.09.269 PG 7 GA EF4KW UT WOS:000390295200267 ER PT J AU Sisti, M Artusa, DR Avignone, FT Azzolini, O Balata, M Banks, TI Bari, G Beeman, J Bellini, F Bersani, A Biassoni, M Brofferio, C Bucci, C Cai, XZ Camacho, A Caminata, A Canonica, L Cao, XG Capelli, S Cappelli, L Carbone, L Cardani, L Casali, N Cassina, L Chiesa, D Chott, N Clemenza, M Copello, S Cosmelli, C Cremonesi, O Creswick, RJ Cushman, JS Dafinei, I Dally, A Datskov, V Dell'Oro, S Deninno, MM Di Domizio, S di Vacri, ML Drobizhev, A Ejzak, L Fang, DQ Farach, HA Faverzani, M Fernandes, G Ferri, E Ferroni, F Fiorini, E Franceschi, MA Freedman, SJ Fujikawa, BK Giachero, A Gironi, L Giuliani, A Gorla, P Gotti, C Gutierrez, TD Haller, EE Han, K Heeger, KM Hennings-Yeomans, R Hickerson, KP Huang, HZ Kadel, R Keppel, G Kolomensky, YG Li, YL Ligi, C Lim, KE Liu, X Ma, YG Maiano, C Maino, M Martinez, M Maruyama, RH Mei, Y Moggi, N Morganti, S Napolitano, T Nastasi, M Nisi, S Nones, C Norman, EB Nucciotti, A O'Donnell, T Orio, F Orlandi, D Ouellet, JL Pagliarone, CE Pallavicini, M Palmieri, V Pattavina, L Pavan, M Pedretti, M Pessina, G Pettinacci, V Piperno, G Pira, C Pirro, S Pozzi, S Previtali, E Rosenfeld, C Rusconi, C Sala, E Sangiorgio, S Scielzo, ND Smith, AR Taffarello, L Tenconi, M Terranova, F Tian, WD Tomei, C Trentalange, S Ventura, G Vignati, M Wang, BS Wang, HW Wielgus, L Wilson, J Winslow, LA Wise, T Woodcraft, A Zanotti, L Zarra, C Zhang, GQ Zhu, BX Zucchelli, S AF Sisti, M. Artusa, D. R. Avignone, F. T., III Azzolini, O. Balata, M. Banks, T. I. Bari, G. Beeman, J. Bellini, F. Bersani, A. Biassoni, M. Brofferio, C. Bucci, C. Cai, X. Z. Camacho, A. Caminata, A. Canonica, L. Cao, X. G. Capelli, S. Cappelli, L. Carbone, L. Cardani, L. Casali, N. Cassina, L. Chiesa, D. Chott, N. Clemenza, M. Copello, S. Cosmelli, C. Cremonesi, O. Creswick, R. J. Cushman, J. S. Dafinei, I. Dally, A. Datskov, V. Dell'Oro, S. Deninno, M. M. Di Domizio, S. di Vacri, M. L. Drobizhev, A. Ejzak, L. Fang, D. Q. Farach, H. A. Faverzani, M. Fernandes, G. Ferri, E. Ferroni, F. Fiorini, E. Franceschi, M. A. Freedman, S. J. Fujikawa, B. K. Giachero, A. Gironi, L. Giuliani, A. Gorla, P. Gotti, C. Gutierrez, T. D. Haller, E. E. Han, K. Heeger, K. M. Hennings-Yeomans, R. Hickerson, K. P. Huang, H. Z. Kadel, R. Keppel, G. Kolomensky, Yu. G. Li, Y. L. Ligi, C. Lim, K. E. Liu, X. Ma, Y. G. Maiano, C. Maino, M. Martinez, M. Maruyama, R. H. Mei, Y. Moggi, N. Morganti, S. Napolitano, T. Nastasi, M. Nisi, S. Nones, C. Norman, E. B. Nucciotti, A. O'Donnell, T. Orio, F. Orlandi, D. Ouellet, J. L. Pagliarone, C. E. Pallavicini, M. Palmieri, V. Pattavina, L. Pavan, M. Pedretti, M. Pessina, G. Pettinacci, V. Piperno, G. Pira, C. Pirro, S. Pozzi, S. Previtali, E. Rosenfeld, C. Rusconi, C. Sala, E. Sangiorgio, S. Scielzo, N. D. Smith, A. R. Taffarello, L. Tenconi, M. Terranova, F. Tian, W. D. Tomei, C. Trentalange, S. Ventura, G. Vignati, M. Wang, B. S. Wang, H. W. Wielgus, L. Wilson, J. Winslow, L. A. Wise, T. Woodcraft, A. Zanotti, L. Zarra, C. Zhang, G. Q. Zhu, B. X. Zucchelli, S. TI Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Double beta decay; Neutrino mass; Bolometers ID RADIOACTIVE CONTAMINATION; RARE EVENTS; VALIDATION AB CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of Te-130. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV.kg.y) will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10(26) y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented. C1 [Sisti, M.; Biassoni, M.; Brofferio, C.; Capelli, S.; Cassina, L.; Chiesa, D.; Clemenza, M.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maiano, C.; Maino, M.; Nastasi, M.; Nucciotti, A.; Pavan, M.; Pozzi, S.; Sala, E.; Terranova, F.; Zanotti, L.] Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. [Sisti, M.; Biassoni, M.; Brofferio, C.; Capelli, S.; Carbone, L.; Cassina, L.; Chiesa, D.; Clemenza, M.; Cremonesi, O.; Datskov, V.; Faverzani, M.; Ferri, E.; Fiorini, E.; Giachero, A.; Gironi, L.; Gotti, C.; Maiano, C.; Maino, M.; Nastasi, M.; Nucciotti, A.; Pavan, M.; Pessina, G.; Pozzi, S.; Previtali, E.; Rusconi, C.; Sala, E.; Terranova, F.; Zanotti, L.] INFN Sez Milano Bicocca, I-20126 Milan, Italy. [Artusa, D. R.; Avignone, F. T., III; Chott, N.; Creswick, R. J.; Farach, H. A.; Rosenfeld, C.; Wilson, J.] Univ South Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Azzolini, O.; Camacho, A.; Keppel, G.; Palmieri, V.; Pira, C.] INFN Lab Nazl Legnaro, I-35020 Padua, Italy. [Artusa, D. R.; Balata, M.; Banks, T. I.; Bucci, C.; Canonica, L.; Cappelli, L.; Casali, N.; Dell'Oro, S.; di Vacri, M. L.; Gorla, P.; Nisi, S.; Orlandi, D.; Pagliarone, C. E.; Pattavina, L.; Pirro, S.; Zarra, C.] INFN Lab Nazl Gran Sasso, I-67010 Laquila, Italy. [Banks, T. I.; Drobizhev, A.; Freedman, S. J.; Hennings-Yeomans, R.; Kolomensky, Yu. G.; O'Donnell, T.; Ouellet, J. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Banks, T. I.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kolomensky, Yu. G.; Mei, Y.; Ouellet, J. L.; Smith, A. R.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Bari, G.; Deninno, M. M.; Moggi, N.; Zucchelli, S.] INFN Sez Bologna, I-40127 Bologna, Italy. [Beeman, J.; Haller, E. E.] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bellini, F.; Cardani, L.; Cosmelli, C.; Ferroni, F.; Piperno, G.; Vignati, M.] Sapienza Univ Roma, Dipartimento Fis, I-00185 Rome, Italy. [Bellini, F.; Cardani, L.; Cosmelli, C.; Dafinei, I.; Ferroni, F.; Morganti, S.; Orio, F.; Pettinacci, V.; Piperno, G.; Tomei, C.; Vignati, M.] INFN Sez Roma, I-00185 Rome, Italy. [Copello, S.; Di Domizio, S.; Fernandes, G.; Freedman, S. J.; Pallavicini, M.; Woodcraft, A.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bersani, A.; Caminata, A.; Di Domizio, S.; Fernandes, G.; Pallavicini, M.] INFN Sez Genova, I-16146 Genoa, Italy. [Cai, X. Z.; Cao, X. G.; Fang, D. Q.; Li, Y. L.; Ma, Y. G.; Tian, W. D.; Wang, H. W.; Zhang, G. Q.] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai 201800, Peoples R China. [Cushman, J. S.; Heeger, K. M.; Lim, K. E.; Maruyama, R. H.; Wise, T.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Dally, A.; Ejzak, L.; Wielgus, L.; Wise, T.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Franceschi, M. A.; Ligi, C.; Napolitano, T.] INFN Lab Nazl Frascati, I-00044 Rome, Italy. [Giuliani, A.; Tenconi, M.] Ctr Spectrometrie Nucl & Spectrometrie Masse, F-91405 Orsay, France. [Gutierrez, T. D.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Haller, E. E.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Hickerson, K. P.; Huang, H. Z.; Liu, X.; Trentalange, S.; Winslow, L. A.; Zhu, B. X.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Kadel, R.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Martinez, M.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Nones, C.] CEA Saclay, Serv Phys Particules, F-91191 Gif Sur Yvette, France. [Norman, E. B.; Pedretti, M.; Sangiorgio, S.; Scielzo, N. D.; Wang, B. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Norman, E. B.; Wang, B. S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Taffarello, L.] INFN Sez Padova, I-35131 Padua, Italy. [Ventura, G.] Univ Florence, Dipartimento Fis, I-50125 Florence, Italy. [Ventura, G.] INFN Sez Firenze, I-50125 Florence, Italy. Univ Edimburgh, Inst Astron, SUPA, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Zucchelli, S.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. RP Sisti, M (reprint author), Univ Milano Bicocca, Dipartimento Fis, I-20126 Milan, Italy. EM monica.sisti@mib.infn.it RI capelli, silvia/G-5168-2012; Ma, Yu-Gang/M-8122-2013; Martinez, Maria/K-4827-2012; Casali, Nicola/C-9475-2017; Giachero, Andrea/I-1081-2013; Chiesa, Davide/H-7240-2014; Di Domizio, Sergio/L-6378-2014; OI Pessina, Gianluigi Ezio/0000-0003-3700-9757; Pozzi, Stefano/0000-0003-2986-1990; capelli, silvia/0000-0002-0300-2752; pavan, maura/0000-0002-9723-7834; Gironi, Luca/0000-0003-2019-0967; Gotti, Claudio/0000-0003-2501-9608; Ma, Yu-Gang/0000-0002-0233-9900; Martinez, Maria/0000-0002-9043-4691; Casali, Nicola/0000-0003-3669-8247; Giachero, Andrea/0000-0003-0493-695X; Chiesa, Davide/0000-0003-1978-1727; Di Domizio, Sergio/0000-0003-2863-5895; Clemenza, Massimiliano/0000-0002-8064-8936 NR 27 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 1719 EP 1725 DI 10.1016/j.nuclphysbps.2015.09.277 PG 7 GA EF4KW UT WOS:000390295200275 ER PT J AU Adriani, O Berti, E Bonechi, L Bongi, M Castellini, G D'Alessandro, R Del Prete, M Haguenauer, M Itow, Y Kasahara, K Kawade, K Makino, Y Masuda, K Matsubayashi, E Menjo, H Mitsuka, G Muraki, Y Papini, P Perrot, AL Pfeiffer, D Ricciarini, S Sako, T Sakurai, N Suzuki, T Tamura, T Tiberio, A Torii, S Tricomi, A Turner, WC AF Adriani, O. Berti, E. Bonechi, L. Bongi, M. Castellini, G. D'Alessandro, R. Del Prete, M. Haguenauer, M. Itow, Y. Kasahara, K. Kawade, K. Makino, Y. Masuda, K. Matsubayashi, E. Menjo, H. Mitsuka, G. Muraki, Y. Papini, P. Perrot, A. -L. Pfeiffer, D. Ricciarini, S. Sako, T. Sakurai, N. Suzuki, T. Tamura, T. Tiberio, A. Torii, S. Tricomi, A. Turner, W. C. TI Latest LHCf physics results SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE LHC; Forward physics; Hadronic interaction models AB The LHCf experiment is dedicated to the measurement of very forward particle production in the high energy hadron-hadron collisions at LHC, with the aim of improving the cosmic-ray air shower developments models. The detector has taken data in p-p collisions at different center of mass energies, from 900 GeV up to 7 TeV, and in p-Pb collisions at root s = 5.02 TeV. The results of forward production spectra of neutrons in p-p collisions and pi(0) in p-Pb collisions, compared with the models most widely used in the High Energy Cosmic Ray physics, are presented in this paper. C1 [Adriani, O.; Berti, E.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Papini, P.; Ricciarini, S.; Tiberio, A.] Ist Nazl Fis Nucl, Sect Florence, Florence, Italy. [Adriani, O.; Berti, E.; Bongi, M.; D'Alessandro, R.; Del Prete, M.; Mitsuka, G.; Tiberio, A.] Univ Florence, Florence, Italy. [Castellini, G.; Ricciarini, S.] CNR, IFAC, Rome, Italy. [Itow, Y.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Mitsuka, G.; Muraki, Y.; Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi, Japan. [Menjo, H.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi, Japan. [Itow, Y.; Sako, T.; Sakurai, N.] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi, Japan. [Haguenauer, M.] Ecole Polytech, Palaiseau, France. [Kasahara, K.; Suzuki, T.; Torii, S.] Waseda Univ, RISE, Tokyo, Japan. [Perrot, A. -L.; Pfeiffer, D.] CERN, Geneva, Switzerland. [Tamura, T.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Tricomi, A.] Ist Nazl Fis Nucl, Sect Catania, Catania, Italy. [Tricomi, A.] Univ Catania, Catania, Italy. [Turner, W. C.] LBNL, Berkeley, CA USA. RP Adriani, O (reprint author), Ist Nazl Fis Nucl, Sect Florence, Florence, Italy.; Adriani, O (reprint author), Univ Florence, Florence, Italy. OI Ricciarini, Sergio Bruno/0000-0001-6176-3368 NR 7 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2073 EP 2077 DI 10.1016/j.nuclphysbps.2015.09.335 PG 5 GA EF4KW UT WOS:000390295200333 ER PT J AU Lincoln, D AF Lincoln, D. CA DO Collaboration TI Multiple parton interaction studies at Dempty set SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE jets; multiparton; photons; J/Psi ID IDENTIFICATION; DETECTOR AB We present the results of studies of multiparton interactions done by the Dempty set collaboration using the Fermilab Tevatron at a center of mass energy of 1.96 TeV. Three analyses are presented, involving three distinct final signatures: (a) a photon with at least 3 jets (gamma + 3jets), (b) a photon with a bottom or charm quark tagged jet and at least 2 other jets (gamma + b/c + 2jets), and (c) two J/Psi mesons. The fraction of photon + jet events initiated by double parton scattering is about 20%, while the fraction for events in which two J/Psi mesons were produced is 30 +/- 10. While the two measurements are statistically compatible, the difference might indicate differences in the quark and gluon distribution within a nucleon. This speculation originates from the fact that photon + jet events are created by collisions with quarks in the initial states, while J/ip events are produced preferentially by a gluonic initial state. C1 [Lincoln, D.; DO Collaboration] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Lincoln, D (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM lincoln@fnal.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2118 EP 2121 DI 10.1016/j.nuclphysbps.2015.09.344 PG 4 GA EF4KW UT WOS:000390295200341 ER PT J AU Jindariani, S AF Jindariani, Sergo CA CMS Collaboration TI Measurements of top quark properties in top pair production and decay at the LHC using the CMS detector SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE LHC; CMS; Top Quark; Charge Asymmetry; Spin Correlations; Polarization AB Measurements are presented of the properties of top quarks in pair production and decay from proton-proton collisions at the LHC. The data were collected at centre-of-mass energies of 7 and 8 TeV by the CMS experiment during the years 2011 and 2012. The top quark-antiquark charge asymmetry is measured using the difference of the absolute rapidities of the reconstructed top and anti-top kinematics, as well as from distributions of the top quark decay products. The measurements are performed in the decay channels of the t (t) over bar pair into both one and two leptons in the final state. The polarization of top quarks and top pair spin correlations are measured from the angular distributions of top quark decay products. The W-boson helicity fractions and angular asymmetries are extracted and limits on anomalous contributions to the Wtb vertex are determined. The flavor content in top-quark pair events is measured using the fraction of top quarks decaying into a W-boson and a b-quark relative to all top quark decays, R = B(t -> Wb)/B(t -> Wq), and the result is used to determine the CKM matrix element V-tb as well as the width of the top quark resonance. All of the results are found to be in good agreement with standard model predictions. C1 [Jindariani, Sergo] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Jindariani, S (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 21 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2299 EP 2306 DI 10.1016/j.nuclphysbps.2015.09.375 PG 8 GA EF4KW UT WOS:000390295200372 ER PT J AU Rontsch, R Schulze, M AF Rontsch, Raoul Schulze, Markus TI Constraining the top-Z coupling through t(t)over-barZ production at the LHC SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Top physics; NLO Computations; QCD Phenomenology AB We study top pair production in association with a Z-boson at the LHC, focusing on the sensitivity to the top Z-couplings. As yet, these couplings have not been studied in a hadronic collider environment. We calculate t (t) over barZ production to next-to-leading order in perturbative QCD, and include spin correlations in the top and Z-decays to the same order. We use the cross section measurements made by CMS using 4.9 fb(-1) of data from the root s = 7 TeV LHC run to place constraints on the top-Z couplings through a log-likelihood ratio analysis. Looking ahead to the higher energy run, we use the azimuthal angle between the leptons arising from the Z-decay, which is particularly sensitive to the top-Z coupling, to investigate the constraints that could be obtained using 30, 300, and 3000 fb(-1) of data. We find that using NLO predictions significantly improves the top-Z coupling constraints, due to the decreased scale uncertainty. C1 [Rontsch, Raoul] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Schulze, Markus] CERN, PH Dept, TH Unit, CH-1211 Geneva 23, Switzerland. RP Rontsch, R (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM rontsch@fnal.gov; markus.schulze@cern.ch NR 17 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2311 EP 2316 DI 10.1016/j.nuclphysbps.2015.09.377 PG 6 GA EF4KW UT WOS:000390295200374 ER PT J AU Principato, C AF Principato, C. CA CDF Collaboration TI C. Principato*, on behalf of the CDF Collaboration, Fermilab SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Exotic Higgs; dilepton events; CDF ID Z-GAMMA PRODUCTION; HADRON COLLIDERS AB A direct search at CDF for an exotic Higgs boson that decays to invisible particles is reported. The simplest H -> invisible Standard Model (SM) process has a branching ratio of 10(-3). However, Higgs boson decays to invisible particles can be significantly enhanced in many BSM models. One of the cleanest signatures in searching for this process is when the Higgs boson is produced in association with a Z boson that decays to a charged dilepton pair. In this analysis we model the ZH signal assuming the SM production cross section and a H -> invisible branching ratio of 100%. We investigate several Higgs mass hypotheses from 115 to 150 Gev/c(2), and place 95% credibility level limits on Higgs boson production in this final state. The results here use the full CDF data:set corresponding to 9.7 fb(-1) of luminosity. C1 [Principato, C.; CDF Collaboration] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Principato, C (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM crisprin@fnal.gov NR 18 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2476 EP 2478 DI 10.1016/j.nuclphysbps.2015.09.430 PG 3 GA EF4KW UT WOS:000390295200426 ER PT J AU Abba, A Bedeschi, F Citterio, M Caponio, F Cusimano, A Geraci, A Marino, P Morello, MJ Neri, N Punzi, G Piucci, A Ristori, L Spinella, F Stracka, S Tonelli, D AF Abba, A. Bedeschi, F. Citterio, M. Caponio, F. Cusimano, A. Geraci, A. Marino, P. Morello, M. J. Neri, N. Punzi, G. Piucci, A. Ristori, L. Spinella, F. Stracka, S. Tonelli, D. TI The artificial retina for track reconstruction at the LHC crossing rate SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Pattern recognition; Trigger algorithms AB We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices. C1 [Punzi, G.; Piucci, A.] Univ Pisa, Lungarno Pacinotti 43, I-56126 Pisa, Italy. [Marino, P.; Morello, M. J.; Stracka, S.] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56127 Pisa, Italy. [Bedeschi, F.; Marino, P.; Morello, M. J.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.] INFN Pisa, Lgo Bruno Pontecorvo 3, I-56127 Pisa, Italy. [Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Neri, N.] Politecn & INFN Milano, Via Celoria 16, I-20133 Milan, Italy. [Ristori, L.] Fermilab Natl Accelerator Lab, Wilson & Kirk Rd, Batavia, IL 60510 USA. [Tonelli, D.] CERN, 385 Route Meyrin, Geneva, Switzerland. RP Marino, P (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56127 Pisa, Italy.; Marino, P (reprint author), INFN Pisa, Lgo Bruno Pontecorvo 3, I-56127 Pisa, Italy. EM pietro.marino@pi.infn.it RI Stracka, Simone/M-3931-2015 OI Stracka, Simone/0000-0003-0013-4714 NR 9 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2488 EP 2490 DI 10.1016/j.nuclphysbps.2015.09.434 PG 3 GA EF4KW UT WOS:000390295200430 ER PT J AU Lee, M AF Lee, MyeongJae CA Mu2e Collaboration TI The Straw-tube Tracker for the Mu2e Experiment SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Mu2e; Straw detector AB The Mu2e experiment will search for neutrinoless conversion of muons into electrons in the field of an aluminum nucleus. Precise and robust measurement of the outgoing electron momentum is an essential element to the experiment. We describe the design of a low mass tracking system to meet this requirement. We have chosen to use about 20,000 thin-walled Mylar straws held under tension to avoid the need for supports within the active volume. The electronics system enables the time-division technique to measure hit position along the wire. Charge will be measured using ADCs to provide particle identification capability. C1 [Lee, MyeongJae] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lee, M (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2530 EP 2532 DI 10.1016/j.nuclphysbps.2015.09.448 PG 3 GA EF4KW UT WOS:000390295200444 ER PT J AU Collin, AP Crespo-Anadon, JI Haser, J Yang, G AF Collin, A. P. Crespo-Anadon, J. I. Haser, J. Yang, G. TI Measurement of the detection systematic uncertainty in the Double Chooz experiment SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE efficiency; reactor; neutrino; oscillation; theta(13) AB Double Chooz is a reactor antineutrino oscillation experiment designed to make a precision measurement of the neutrino mixing angle theta(13). The new methods developed for measuring the dominant components of the antineutrino detection systematic uncertainty using several neutron sources as well as the studies on the neutron transport boundary effects on the target are described. Benefiting from a revised signal selection criteria and increased statistics, the 0.5% precision level achieved on the detection systematic uncertainty represents almost a factor two improvement with respect to the previous result and leads to a more precise theta(13) measurement. Building upon this improvement, the phase with two detectors will profit from an even better detection systematic uncertainty thanks to the cancellation of correlated uncertainties, granting a high precision theta(13) measurement. C1 [Collin, A. P.; Haser, J.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Crespo-Anadon, J. I.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Yang, G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Yang, G.] IIT, Dept Phys, Chicago, IL 60616 USA. RP Crespo-Anadon, JI (reprint author), CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. EM joseignacio.crespo@ciemat.es NR 2 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2645 EP 2647 DI 10.1016/j.nuclphysbps.2015.10.017 PG 3 GA EF4KW UT WOS:000390295200482 ER PT J AU Dafni, T Alvarez, V Bandac, I Bettini, A Borges, FIGM Camargo, M Carcel, S Cebrian, S Cervera, A Conde, CAN Diaz, J Esteve, R Fernandes, LMP Fernandez, M Ferrario, P Ferreira, AL Freitas, EDC Gehman, VM Goldschmidt, A Gomez, H Gomez-Cadenas, JJ Gonzalez-Diaz, D Gutierrez, RM Hauptman, J Morata, JAH Herrera, DC Iguaz, FJ Irastorza, IG Labarga, L Laing, A Liubarsky, I Lorca, D Losada, M Luzon, G Mari, A Martin-Albo, J Martinez, A Martinez-Lema, G Miller, T Monrabal, F Monserrate, M Monteiro, CMB Mora, FJ Moutinho, LM Vidal, JM Nebot-Guinot, M Nygren, D Oliveira, CAB Perez, J Aparicio, JLP Renner, J Ripoll, L Rodriguez, A Rodriguez, J Santos, FP dos Santos, JMF Segui, L Serra, L Shuman, D Simon, A Sofka, C Sorel, M Toledo, JF Torrent, J Tsamalaidze, Z Veloso, JFCA Villar, JA Webb, RC White, JT Yahlali, N AF Dafni, T. Alvarez, V. Bandac, I. Bettini, A. Borges, F. I. G. M. Camargo, M. Carcel, S. Cebrian, S. Cervera, A. Conde, C. A. N. Diaz, J. Esteve, R. Fernandes, L. M. P. Fernandez, M. Ferrario, P. Ferreira, A. L. Freitas, E. D. C. Gehman, V. M. Goldschmidt, A. Gomez, H. Gomez-Cadenas, J. J. Gonzalez-Diaz, D. Gutierrez, R. M. Hauptman, J. Hernando Morata, J. A. Herrera, D. C. Iguaz, F. J. Irastorza, I. G. Labarga, L. Laing, A. Liubarsky, I. Lorca, D. Losada, M. Luzon, G. Mari, A. Martin-Albo, J. Martinez, A. Martinez-Lema, G. Miller, T. Monrabal, F. Monserrate, M. Monteiro, C. M. B. Mora, F. J. Moutinho, L. M. Munoz Vidal, J. Nebot-Guinot, M. Nygren, D. Oliveira, C. A. B. Perez, J. Perez Aparicio, J. L. Renner, J. Ripoll, L. Rodriguez, A. Rodriguez, J. Santos, F. P. dos Santos, J. M. F. Segui, L. Serra, L. Shuman, D. Simon, A. Sofka, C. Sorel, M. Toledo, J. F. Torrent, J. Tsamalaidze, Z. Veloso, J. F. C. A. Villar, J. A. Webb, R. C. White, J. T. Yahlali, N. TI Results of the material screening program of the NEXT experiment SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Double beta decay; Radiopurity; Germanium gamma spectrometry AB The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate neutrinoless double beta decay, requires extremely low background levels. An extensive material screening and selection process to assess the radioactivity of components is underway combining several techniques, including germanium gamma-ray spectrometry performed at the Canfranc Underground Laboratory; recent results of this material screening program are presented here. C1 [Dafni, T.; Bandac, I.; Bettini, A.; Cebrian, S.; Gomez, H.; Gonzalez-Diaz, D.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Luzon, G.; Rodriguez, A.; Segui, L.; Villar, J. A.] Lab Subterrneo Canfranc, Canfranc Estacin 22880, Huesca, Spain. [Dafni, T.; Cebrian, S.; Gomez, H.; Gonzalez-Diaz, D.; Herrera, D. C.; Iguaz, F. J.; Irastorza, I. G.; Luzon, G.; Rodriguez, A.; Segui, L.; Villar, J. A.] Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain. [Alvarez, V.; Carcel, S.; Cervera, A.; Diaz, J.; Ferrario, P.; Gomez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martin-Albo, J.; Martinez, A.; Monrabal, F.; Monserrate, M.; Munoz Vidal, J.; Nebot-Guinot, M.; Rodriguez, J.; Serra, L.; Simon, A.; Sorel, M.; Yahlali, N.] Univ Valencia, Valencia 46980, Spain. [Bettini, A.] Univ Padua, I-35131 Padua, Italy. [Bettini, A.] INFN Sect, Dipartimento Fisca G Galilei, I-35131 Padua, Italy. [Borges, F. I. G. M.; Conde, C. A. N.; Fernandes, L. M. P.; Freitas, E. D. C.; Monteiro, C. M. B.; Santos, F. P.; dos Santos, J. M. F.] Univ Coimbra, Dept Fis, P-3004516 Coimbra, Portugal. [Camargo, M.; Gutierrez, R. M.; Losada, M.] Univ Antonio Narino, Ctr Invest Ciencias Basicas & Aplicadas, Bogota, Colombia. [Esteve, R.; Mari, A.; Mora, F. J.; Toledo, J. F.] Univ Politecn Valencia, I3M, E-46022 Valencia, Spain. [Fernandez, M.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid 28040, Spain. [Ferreira, A. L.; Moutinho, L. M.; Veloso, J. F. C. A.] Univ Aveiro, I3N, P-3810193 Aveiro, Portugal. [Gehman, V. M.; Goldschmidt, A.; Miller, T.; Nygren, D.; Oliveira, C. A. B.; Renner, J.; Shuman, D.] LBNL, Berkeley, CA 94720 USA. [Hauptman, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Hernando Morata, J. A.; Martinez-Lema, G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela 15782, Spain. [Labarga, L.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Perez, J.] UAM CSIC, IFT, Madrid 28049, Spain. [Perez Aparicio, J. L.] Univ Politecn Valencia, Dept Mecan Medios Continuos & Teoria Estruct, Valencia 46071, Spain. [Ripoll, L.; Torrent, J.] Univ Girona, Escola Politecn Super, Girona 17071, Spain. [Sofka, C.; Webb, R. C.; White, J. T.] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA. [Tsamalaidze, Z.] JINR, Dubna 141980, Russia. RP Dafni, T (reprint author), Lab Subterrneo Canfranc, Canfranc Estacin 22880, Huesca, Spain.; Dafni, T (reprint author), Univ Zaragoza, Lab Fis Nucl & Astroparticulas, E-50009 Zaragoza, Spain. OI Santos, Filomena/0000-0002-0214-4185; Munoz Vidal, Javier/0000-0002-9649-2251; Toledo Alarcon, Jose Francisco/0000-0002-9782-4510; Freitas, Elisabete/0000-0001-8235-3229; Martin-Albo, Justo/0000-0002-7318-1469; Veloso, Joao/0000-0002-7107-7203 NR 3 TC 0 Z9 0 U1 4 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2666 EP 2668 DI 10.1016/j.nuclphysbps.2015.10.024 PG 3 GA EF4KW UT WOS:000390295200489 ER PT J AU Blyth, SC Chan, YL Chen, XC Chu, MC Cui, KX Hahn, RL Ho, TH Hsiung, YB Hu, BZ Kwan, KK Kwok, MW Kwok, T Lau, YP Leung, JKC Leung, KY Lin, GL Lin, YC Luk, KB Luk, WH Ngai, HY Ngan, SY Pun, CSJ Shih, K Tam, YH Tsang, RHM Wang, CH Wong, CM Wong, HL Wong, KK Yeh, M Zhang, BJ AF Blyth, S. C. Chan, Y. L. Chen, X. C. Chu, M. C. Cui, K. X. Hahn, R. L. Ho, T. H. Hsiung, Y. B. Hu, B. Z. Kwan, K. K. Kwok, M. W. Kwok, T. Lau, Y. P. Leung, J. K. C. Leung, K. Y. Lin, G. L. Lin, Y. C. Luk, K. B. Luk, W. H. Ngai, H. Y. Ngan, S. Y. Pun, C. S. J. Shih, K. Tam, Y. H. Tsang, R. H. M. Wang, C. H. Wong, C. M. Wong, H. L. Wong, K. K. Yeh, M. Zhang, B. J. TI Measurement of Cosmic-ray Muon-induced Spallation Neutrons in the Aberdeen Tunnel Underground Laboratory SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Cosmic-ray muon; Spallation neutron; Aberdeen Tunnel; Underground laboratory ID INTENSITY CURVE; DEPTH; FLUX AB Muon-induced neutrons are one of the major backgrounds to various underground experiments, such as dark matter searches, low-energy neutrino oscillation experiments and neutrino-less double beta-decay experiments. Previous experiments on the underground production rate of muon-induced neutrons were mostly carried out either at shallow sites or at very deep sites. The Aberdeen Tunnel experiment aims to measure the neutron production rate at a moderate depth of 611 meters water equivalent. Our apparatus comprises of six layers of plastic-scintillator hodoscopes for tracking the incident cosmic-ray muons, and 760 L of gadolinium-doped liquid-scintillator for both neutron production and detection targets. In this paper, we describe the design and the performance of the apparatus. The preliminary result on the measurement of neutron production rate is also presented. C1 [Blyth, S. C.; Wang, C. H.] Natl United Univ, Dept Electroopt Engn, Miaoli, Taiwan. [Chan, Y. L.; Chen, X. C.; Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Lin, Y. C.; Luk, W. H.; Ngan, S. Y.; Shih, K.; Tam, Y. H.; Wong, C. M.; Wong, K. K.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Cui, K. X.; Kwok, T.; Lau, Y. P.; Leung, J. K. C.; Leung, K. Y.; Ngai, H. Y.; Pun, C. S. J.; Tsang, R. H. M.; Wong, H. L.; Zhang, B. J.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Hahn, R. L.; Yeh, M.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ho, T. H.; Hsiung, Y. B.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Hu, B. Z.; Lin, G. L.] Natl Chiao Tung Univ, Inst Phys, Hsinchu, Taiwan. [Luk, K. B.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Ngai, HY (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. EM jimmyngai@graduate.hku.hk NR 13 TC 0 Z9 0 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2675 EP 2677 DI 10.1016/j.nuclphysbps.2015.10.027 PG 3 GA EF4KW UT WOS:000390295200492 ER PT J AU Leontsinis, S AF Leontsinis, S. CA ATLAS Collaboration TI First measurement of associated vector boson plus prompt charmonium production at the ATLAS experiment SO NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS LA English DT Proceedings Paper CT 37th International Conference on High Energy Physics (ICHEP) CY JUL 02-09, 2014 CL Valencia, SPAIN SP Int Union Pure & Appl Phys, Sect C11 DE Hadron-hadron scattering; vector boson; charmonium; associated production AB The associated production of vector boson + prompt J/psi is a key observable for understanding of quarkonium production mechanisms. Here we present the first evidence of such process and the measurement of its production rate. Relative contributions to the signal from single and double parton scattering are estimated and possible implications of this novel final state for studying multiple parton interactions are discussed. Finally, we compare Single parton scattering cross-sections to cutting-edge theoretical calculations in the colour singlet and colour octet formalisms. C1 [Leontsinis, S.] Natl Tech Univ Athens, Dept Phys, 9 Heroon Polytechniou St, GR-15780 Athens, Greece. [Leontsinis, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Leontsinis, S (reprint author), Natl Tech Univ Athens, Dept Phys, 9 Heroon Polytechniou St, GR-15780 Athens, Greece.; Leontsinis, S (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM Stefanos.Leontsinis@cern.ch NR 11 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2405-6014 EI 1873-3832 J9 NUCL PART PHYS P JI Nucl. Part. Phys. Proc. PD APR-JUN PY 2016 VL 273 BP 2755 EP 2757 DI 10.1016/j.nuclphysbps.2015.10.053 PG 3 GA EF4KW UT WOS:000390295200518 ER PT J AU Jehlik, F Rask, E Duoba, M AF Jehlik, Forrest Rask, Eric Duoba, Michael TI Real-World Thermal Effects on Wheel Assembly Efficiency of Conventional and Electric Vehicles SO SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-MECHANICAL SYSTEMS LA English DT Article AB It is widely understood that cold ambient temperatures negatively impact vehicle system efficiency. This is due to a combination of factors: increased friction (engine oil, transmission, and driveline viscous effects), cold start enrichment, heat transfer, and air density variations. Although the science of quantifying steady-state vehicle component efficiency is mature, transient component efficiencies over dynamic ambient real-world conditions is less understood and quantified. This work characterizes wheel assembly efficiencies of a conventional and electric vehicle over a wide range of ambient conditions. For this work, the wheel assembly is defined as the tire side axle spline, spline housing, bearings, brakes, and tires. Dynamometer testing over hot and cold ambient temperatures was conducted with a conventional and electric vehicle instrumented to determine the output energy losses of the wheel assembly in proportion to the input energy of the half-shafts. Additionally, response surface methodology (RSM) techniques were applied to the conventional vehicle serving as predictive models of the wheel assembly efficiency as a function of its thermal state. For the conventional vehicle, data showed that under -17 degrees C ambient conditions, nearly 40% of the wheel assembly efficiency is lost over an urban drive cycle. For the urban cycle driven at +35 degrees C, this loss reduces to less than 10%. For standard +20 degrees C ambient conditions, the efficiency of a first urban cycle for a conventional vehicle is on the order of 78%, increasing to nearly 85% by the third cycle. For a battery electric vehicle, the first urban cycle at -7 degrees C losses are on the order of 40%. At +35 degrees C, these losses are reduced to approximately 5%. Efforts to reduce such significant losses could positively impact vehicle system efficiency. C1 [Jehlik, Forrest; Rask, Eric; Duoba, Michael] Argonne Natl Lab, Div Energy Syst, Adv Powertrain Res Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Jehlik, F (reprint author), Argonne Natl Lab, Div Energy Syst, Adv Powertrain Res Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fjehlik@anl.gov NR 16 TC 0 Z9 0 U1 1 U2 1 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3995 EI 1946-4002 J9 SAE INT J PASSEN CAR JI SAE Int. J. Passeng. Cars-Mech. Syst. PD APR PY 2016 VL 9 IS 1 BP 25 EP 35 DI 10.4271/2016-01-0236 PG 11 WC Transportation Science & Technology SC Transportation GA DW4NH UT WOS:000383619500004 ER PT J AU Jeffers, MA Chaney, L Rugh, JP AF Jeffers, Matthew A. Chaney, Larry Rugh, John P. TI Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather SO SAE INTERNATIONAL JOURNAL OF PASSENGER CARS-MECHANICAL SYSTEMS LA English DT Article AB When operated, the cabin climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all-electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the vehicle climate control system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward grid-connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating. C1 [Jeffers, Matthew A.; Chaney, Larry; Rugh, John P.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Rugh, JP (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM john.rugh@nrel.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3995 EI 1946-4002 J9 SAE INT J PASSEN CAR JI SAE Int. J. Passeng. Cars-Mech. Syst. PD APR PY 2016 VL 9 IS 1 BP 75 EP 82 DI 10.4271/2016-01-0262 PG 8 WC Transportation Science & Technology SC Transportation GA DW4NH UT WOS:000383619500010 ER PT J AU Finnell, J AF Finnell, Joshua TI The Angel of History SO LIBRARY JOURNAL LA English DT Book Review C1 [Finnell, Joshua] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Finnell, J (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87544 USA. NR 1 TC 0 Z9 0 U1 0 U2 0 PU REED BUSINESS INFORMATION PI NEW YORK PA 360 PARK AVENUE SOUTH, NEW YORK, NY 10010 USA SN 0363-0277 J9 LIBR J JI Libr. J. PD APR PY 2016 VL 141 IS 13 BP 77 EP 77 PG 1 WC Information Science & Library Science SC Information Science & Library Science GA DT0ME UT WOS:000381176900074 ER PT J AU Long, H Harley-Trochimczyk, A He, TY Pham, T Tang, ZR Sho, TL Zettl, A Mickelson, W Carraro, C Maboudian, R AF Long, Hu Harley-Trochimczyk, Anna He, Tianyi Thang Pham Tang, Zirong Sho, Tielin Zettl, Alex Mickelson, William Carraro, Carlo Maboudian, Roya TI In Situ Localized Growth of Porous Tin Oxide Films on Low Power Microheater Platform for Low Temperature CO Detection SO ACS SENSORS LA English DT Article DE gas sensors; in situ synthesis; low power; microheater; nanocrystalline tin oxide; CO sensor ID GAS SENSORS; THIN-FILM; SNO2 NANOSHEETS; CARBON; METAL; PERFORMANCE; NANOTUBES; PLATINUM AB This paper reports a facile method for creating a nanostructured metal oxide film on a low power microheater sensor platform and the direct realization of this structure as a gas sensor. By fast annealing the deposited liquid precursors with the microheater, a highly porous, nanocrystalline metal oxide film can be generated in situ and locally on the sensor platform. With only minimal processing, a high performance, miniaturized gas sensor is ready for use. A carbon monoxide sensor using the in situ synthesized porous tin oxide (SnO2) sensing film is made as a demonstration of this technique. The sensor exhibits a low detection limit and fast response and recovery time at a low operating temperature. This facile fabrication method is highly flexible and has great potential for large-scale gas sensor fabrication. C1 [Long, Hu; Harley-Trochimczyk, Anna; Carraro, Carlo; Maboudian, Roya] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Long, Hu; Harley-Trochimczyk, Anna; He, Tianyi; Mickelson, William; Carraro, Carlo; Maboudian, Roya] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [He, Tianyi] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Thang Pham; Zettl, Alex; Mickelson, William] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Long, Hu; Tang, Zirong; Sho, Tielin] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China. [Thang Pham; Zettl, Alex] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Thang Pham; Zettl, Alex] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Thang Pham; Zettl, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Maboudian, R (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA.; Maboudian, R (reprint author), Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM maboudia@berkeley.edu FU National Science Foundation (NSF) [IIP 1444950]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Energy Research, Materials Sciences Division of the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; China Scholarship Council; NSF [DGE 1106400] FX The authors acknowledge Jiyoung Chang for microheater fabrication, Qin Zhou for help with microheater design, and Lunet Luna for SEM characterization. This work is supported by Berkeley Sensor and Actuator Center (BSAC) Industrial Members and National Science Foundation (NSF grant # IIP 1444950) which provided for the design of experiments, student support, and sensor fabrication and performance characterization. The structural characterizations were conducted at the Molecular Foundry, which is supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. T.P., A.Z., and W.M. acknowledge funding from the Director, Office of Energy Research, Materials Sciences Division of the Lawrence Berkeley National Laboratory under grant DE-AC02-05CH11231 which provided for student (T.P.) support, microheater fabrication, TEM characterization, and sensor performance characterization. H.L. and A. H.-T. acknowledge additional support though the China Scholarship Council, and the NSF Graduate Research Fellowship (grant # DGE 1106400), respectively. NR 35 TC 4 Z9 4 U1 15 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2379-3694 J9 ACS SENSORS JI ACS Sens. PD APR PY 2016 VL 1 IS 4 BP 339 EP 343 DI 10.1021/acssensors.5b00302 PG 5 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology SC Chemistry; Science & Technology - Other Topics GA DY9OU UT WOS:000385464500004 ER PT J AU Padrino, JC Ma, X VanderHeyden, WB Zhang, DZ AF Padrino, Juan C. Ma, Xia VanderHeyden, W. Brian Zhang, Duan Z. TI A Separate-Phase Drag Model and a Surrogate Approximation for Simulation of the Steam-Assisted-Gravity-Drainage Process SO SPE JOURNAL LA English DT Article ID SAGD PROCESS; 2-PHASE FLOWS; POROUS-MEDIA; TRANSPORT; DISPERSE; MOMENTUM; BALANCE; SOILS AB General, ensemble phase-averaged equations for multiphase flows were specialized for the simulation of the steam-assisted-gravity-drainage (SAGD) process. In the average momentum equation, fluid/solid and fluid/fluid viscous interactions are represented by separate force terms. This equation has a form similar to that of Darcy's law for multiphase flow but augmented by the fluid/fluid viscous forces. Models for these fluid/fluid interactions are suggested and implemented into the numerical code CartaBlanca. Numerical results indicate that the model captures the main features of the multiphase flow in the SAGD process, but the detailed features, such as plumes, are missed. We find that viscous coupling among the fluid phases is important. Advection time scales for the different fluids differ by several orders of magnitude because of vast viscosity differences. Numerically resolving all these time scales is time consuming. To address this problem, we introduce a steam-surrogate approximation to increase the steam-advection time scale, while keeping the mass and energy fluxes well-approximated. This approximation leads to approximately a 40-fold speedup in execution speed of the numerical calculations at the cost of a few percentage errors in the relevant quantities. C1 [Padrino, Juan C.; Ma, Xia; Zhang, Duan Z.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [VanderHeyden, W. Brian] BP America, Houston, TX USA. RP Padrino, JC (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. FU BP Heavy Oil Flagship; United States Department of Energy; Los Alamos National Laboratory [LDRD 20140002DR] FX We gratefully acknowledge support from the BP Heavy Oil Flagship. This work was performed under the auspices of the United States Department of Energy. This paper greatly benefited from questions posed and comments made by the reviewers, to whom we are indebted. Los Alamos National Laboratory LDRD 20140002DR project also provided partial funding for this project. NR 18 TC 0 Z9 0 U1 1 U2 1 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X EI 1930-0220 J9 SPE J JI SPE J. PD APR PY 2016 VL 21 IS 2 BP 364 EP 379 PG 16 WC Engineering, Petroleum SC Engineering GA DY6QW UT WOS:000385254100004 ER PT J AU Pitakbunkate, T Balbuena, PB Moridis, GJ Blasingame, TA AF Pitakbunkate, T. Balbuena, P. B. Moridis, G. J. Blasingame, T. A. TI Effect of Confinement on Pressure/Volume/Temperature Properties of Hydrocarbons in Shale Reservoirs SO SPE JOURNAL LA English DT Article; Proceedings Paper CT SPE Annual Technical Conference and Exhibition CY OCT 27-29, 2014 CL Amsterdam, NETHERLANDS SP SPE ID PHASE-BEHAVIOR; GAS-FLOW; SIMULATION; NANOPORE; ADSORPTION; MIXTURE; FLUID AB Shale reservoirs play an important role as a future energy resource of the United States. Numerous studies were performed to describe the storage and transport of hydrocarbons through ultrasmall pores in the shale reservoirs. Most of these studies were developed by modifying techniques used for conventional reservoirs. The common pore-size distribution of the shale reservoirs is approximately 1 to 20 nm and in such confined spaces that the interactions between the wall of the container (i.e., the shale and kerogen) and the contained fluids (i.e., the hydrocarbon fluids and water) may exert significant influence on the localized phase behavior. We believe this is because the orientation and distribution of fluid molecules in the confined space are different from those of the bulk fluid, causing changes in the localized thermodynamic properties. This study provides a detailed account of the changes of pressure/volume/ temperature properties and phase behavior (specifically, the phase diagrams) in a synthetic shale reservoir for pure hydrocarbons (methane and ethane) and a simple methane/ethane (binary) mixture. Grand canonical Monte Carlo (GCMC) simulations are performed to study the effect of confinement on the fluid properties. A graphite slab made of two layers is used to represent kerogen in the shale reservoirs. The separation between the two layers, representing a kerogen pore, is varied from 1 to 10 nm to observe the changes of the hydrocarbon-fluid properties. In this paper, the critical properties of methane and ethane as well as the methane/ethane mixture phase diagrams in different pore sizes are derived from the GCMC simulations. In addition, the GCMC simulations are used to investigate the deviations of the fluid densities in the confined space from those of the bulk fluids at reservoir conditions. Although not investigated in this work, such deviations may indicate that significant errors for production forecasting and reserves estimation in shale reservoirs may occur if the (typical) bulk densities are used in reservoir-engineering calculations. C1 [Pitakbunkate, T.; Blasingame, T. A.] Texas A&M Univ, Petr Engn, College Stn, TX 77843 USA. [Balbuena, P. B.] Texas A&M Univ, Chem Engn, College Stn, TX 77843 USA. [Moridis, G. J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Pitakbunkate, T (reprint author), Texas A&M Univ, Petr Engn, College Stn, TX 77843 USA. NR 39 TC 3 Z9 3 U1 5 U2 5 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X EI 1930-0220 J9 SPE J JI SPE J. PD APR PY 2016 VL 21 IS 2 BP 621 EP 634 PG 14 WC Engineering, Petroleum SC Engineering GA DY6QW UT WOS:000385254100024 ER PT J AU Eloe-Fadrosh, EA Ivanova, NN Woyke, T Kyrpides, NC AF Eloe-Fadrosh, Emiley A. Ivanova, Natalia N. Woyke, Tanja Kyrpides, Nikos C. TI Metagenomics uncovers gaps in amplicon-based detection of microbial diversity SO NATURE MICROBIOLOGY LA English DT Article ID UNCULTURED BACTERIA; ARCHAEA; SEQUENCES; PRIMERS; RARE AB Our view of microbial diversity has expanded greatly over the past 40 years, primarily through the wide application of PCR-based surveys of the small-subunit ribosomal RNA (SSU rRNA) gene. Yet significant gaps in knowledge remain due to well-recognized limitations of this method. Here, we systematically survey primer fidelity in SSU rRNA gene sequences recovered from over 6,000 assembled metagenomes sampled globally. Our findings show that approximately 10% of environmental microbial sequences might be missed from classical PCR-based SSU rRNA gene surveys, mostly members of the Candidate Phyla Radiation (CPR) and as yet uncharacterized Archaea. These results underscore the extent of uncharacterized microbial diversity and provide fruitful avenues for describing additional phylogenetic lineages. C1 [Eloe-Fadrosh, Emiley A.; Ivanova, Natalia N.; Woyke, Tanja; Kyrpides, Nikos C.] Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Kyrpides, NC (reprint author), Joint Genome Inst, Walnut Creek, CA 94598 USA. EM nckyrpides@lbl.gov RI Kyrpides, Nikos/A-6305-2014; OI Kyrpides, Nikos/0000-0002-6131-0462; Ivanova, Natalia/0000-0002-5802-9485 FU US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility [DE-AC02-05CH11231]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was conducted by the US Department of Energy Joint Genome Institute, a DOE Office of Science User Facility (contract no. DE-AC02-05CH11231), and used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy (contract no. DE-AC02-05CH11231). NR 21 TC 8 Z9 8 U1 5 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND EI 2058-5276 J9 NAT MICROBIOL JI NAT. MICROBIOL PD APR PY 2016 VL 1 IS 4 AR 15032 DI 10.1038/NMICROBIOL.2015.32 PG 4 WC Microbiology SC Microbiology GA DW4HY UT WOS:000383605000001 PM 27572438 ER PT J AU Ratcliff, MA Burton, J Sindler, P Christensen, E Fouts, L Chupka, GM McCormick, RL AF Ratcliff, Matthew A. Burton, Jonathan Sindler, Petr Christensen, Earl Fouts, Lisa Chupka, Gina M. McCormick, Robert L. TI Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article ID PYROLYSIS OIL; GASOLINE; IMPACT; FUELS; CHEMISTRY; VEHICLE; ANISOLE; BLENDS AB Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil. C1 [Ratcliff, Matthew A.; Burton, Jonathan; Sindler, Petr; Christensen, Earl; Fouts, Lisa; Chupka, Gina M.; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ratcliff, MA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM matthew.ratcliff@nrel.gov NR 48 TC 2 Z9 2 U1 2 U2 2 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 59 EP 70 DI 10.4271/2016-01-0705 PG 12 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400007 ER PT J AU Kass, MD Daw, C AF Kass, Michael D. Daw, Charles TI Compatibility of Dimethyl Ether (DME) and Diesel Blends with Fuel System Polymers: A Hansen Solubility Analysis Approach SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article AB The compatibility of notable infrastructure elastomers and plastics with DME and its blends with diesel fuel were examined using solubility analysis. The elastomer materials were fluorocarbon, acrylonitrile butadiene rubber (NBR), styrene butadiene (SBR), neoprene, polyurethane and silicone. Plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), along with several nylon grades and thermosetting resins. These materials have been rigorously studied with other fuel types, and their volume change results were found to correspond well with their predicted solubility levels. A Hansen solubility analysis was performed for each material with DME, diesel, and blends of both fuel components. The results for the elastomers indicate that DME and its blends with diesel fuel will offer improved compatibility with NBR and SBR materials. Silicone, neoprene and polyurethane show similar solubility potential for any combination of DME and diesel, so no degradation is expected with DME. In contrast, fluorocarbon can be expected to become increasingly incompatible with increased DME concentration. In general, the solubility analysis also indicated that many of the plastic materials can be expected to have good to excellent compatibility with DME and its blends with diesel fuel. The analysis also indicated that polyester resins should exhibit high solubility (and therefore high swelling) in both diesel and DME. However, previous empirical results showed that this result was not an accurate reflection of polyester resin performance in diesel fuel. C1 [Kass, Michael D.; Daw, Charles] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kass, MD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM kassmd@ornl.gov NR 19 TC 0 Z9 0 U1 3 U2 3 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 71 EP 79 DI 10.4271/2016-01-0835 PG 9 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400008 ER PT J AU Sluder, CS Szybist, JP McCormick, RL Ratcliff, MA Zigler, BT AF Sluder, C. Scott Szybist, James P. McCormick, Robert L. Ratcliff, Matthew A. Zigler, Bradley T. TI Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article AB The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity. Three fuels were formulated for the ORNL study with matched RON and octane sensitivity, but with differing HoV. Experiments with these fuels in a 1.6-liter GTDI engine showed that the fuels exhibited very similar combustion phasing under knock-limited spark advance (KLSA) conditions. Fuels having a range of RON, octane sensitivity, and HoV were tested at NREL in a single-cylinder GDI engine under conditions where octane sensitivity has little effect on knock resistance. KLSA was found to be well correlated with RON. These results reinforce the concept that HoV anti-knock effects can be viewed as a contributor to octane sensitivity. From this viewpoint, HoV effects manifest themselves as increases in octane sensitivity. C1 [Sluder, C. Scott; Szybist, James P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [McCormick, Robert L.; Ratcliff, Matthew A.; Zigler, Bradley T.] Natl Renewable Energy Lab, Golden, CO USA. RP Sluder, CS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM sluders@ornl.gov; szybistjp@ornl.gov; Robert.McCormick@nrel.gov; Matthew.Ratcliff@nrel.gov; Brad.Zigler@nrel.gov NR 24 TC 1 Z9 1 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 80 EP 90 DI 10.4271/2016-01-0836 PG 11 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400009 ER PT J AU Chishty, MA Bolla, M Hawkes, E Pei, YJ Kook, S AF Chishty, Muhammad Aqib Bolla, Michele Hawkes, Evatt Pei, Yuanjiang Kook, Sanghoon TI Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article ID DIESEL-ENGINE CONDITIONS; TURBULENT JET FLAMES; FINITE-VOLUME METHOD; SOOT FORMATION; NONPREMIXED FLAMES; REACTIVE FLOWS; COMBUSTION; SIMULATIONS; NO AB The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot. The effect of radiation absorption was found to be important and the typical radiation time scale is observed to overlap with the long injection duration, leading to a moderate influence on the temperature distribution. The flame lift-off length is not affected by radiation and differences in soot formation are perceivable but only minor. The performance of the DOM and P1 models is comparable, whereas the optically thin assumption leads to a higher cooling effect. It is anticipated that NOx formation rates are expected to be influenced by radiative heat transfer in a more pronounced manner. C1 [Chishty, Muhammad Aqib; Bolla, Michele; Hawkes, Evatt; Kook, Sanghoon] Univ New South Wales, Sydney, NSW 2052, Australia. [Pei, Yuanjiang] Argonne Natl Lab, Argonne, IL 60439 USA. RP Chishty, MA (reprint author), Univ New South Wales, Sydney, NSW 2052, Australia. RI Hawkes, Evatt/C-5307-2012 OI Hawkes, Evatt/0000-0003-0539-7951 NR 44 TC 3 Z9 3 U1 4 U2 4 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 100 EP 107 DI 10.4271/2016-01-0857 PG 8 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400011 ER PT J AU Hakim, L Lacaze, G Oefelein, J AF Hakim, Layal Lacaze, Guilhem Oefelein, Joseph TI Large Eddy Simulation of Autoignition Transients in a Model Diesel Injector Configuration SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article ID SUBGRID-SCALE MODEL; HIGH-PRESSURE; N-DODECANE; SUPERCRITICAL PRESSURE; TURBULENT COMBUSTION; CORRESPONDING STATES; MECHANISM; FLAMES; VALIDATION; PREDICTION AB Developing an improved understanding of transient mixing and combustion processes inherent in diesel injection is an important element in the design of advanced engines. This paper provides a detailed analysis of these processes using an idealized benchmark configuration designed to facilitate precise comparisons between different models and numerical methods. The computational domain is similar to the Engine Combustion Network (www.sandia.gov/ECN) Spray-A injector with n-dodecane as the fuel. Quantified idealizations are made in the treatment of boundary conditions to eliminate ambiguities and unknowns associated with the actual injector(s) used in the experiment. These ambiguities hinder comparisons aimed at understanding the accuracy of different models and the coupled effects of potential numerical errors. Prior to understanding the impact of injector imperfections on their performance, it is first necessary to understand how models perform in a well-controlled environment with well-defined boundary conditions. Here, we focus on the latter while accurately matching the operating conditions used in the experiments. Relevant high-pressure phenomena are treated with real-fluid thermodynamics and transport for multicomponent mixtures. A highly resolved calculation is performed to study both scalar-mixing and initiation of combustion. Results are assembled into a database that can facilitate one-to-one comparisons between codes. The combined set of results is analyzed to provide physical insights related to localized broadband transient mixing and combustion processes that are typically not available from experiments. C1 [Hakim, Layal; Lacaze, Guilhem; Oefelein, Joseph] Sandia Natl Labs, Livermore, CA 94550 USA. RP Oefelein, J (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM oefelei@sandia.gov NR 53 TC 0 Z9 0 U1 1 U2 1 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 165 EP 176 DI 10.4271/2016-01-0872 PG 12 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400016 ER PT J AU Christensen, E McCormick, RL Sigelko, J Johnson, S Zickmann, S Lopes, S Gault, R Slade, D AF Christensen, Earl McCormick, Robert L. Sigelko, Jenny Johnson, Stuart Zickmann, Stefan Lopes, Shailesh Gault, Roger Slade, David TI Impact of a Diesel High Pressure Common Rail Fuel System and Onboard Vehicle Storage on B20 Biodiesel Blend Stability SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article ID SIZE-EXCLUSION CHROMATOGRAPHY; OXIDATION STABILITY; POLAR COMPOUNDS; DEGRADATION; FATS; OILS AB Adoption of high-pressure common-rail (HPCR) fuel systems, which subject diesel fuels to higher temperatures and pressures, has brought into question the veracity of ASTM International specifications for biodiesel and biodiesel blend oxidation stability, as well as the lack of any stability parameter for diesel fuel. A controlled experiment was developed to investigate the impact of a light-duty diesel HPCR fuel system on the stability of 20% biodiesel (B20) blends under conditions of intermittent use and long-term storage in a relatively hot and dry climate. B20 samples with Rancimat induction periods (IPs) near the current 6.0-hour minimum specification (6.5 hr) and roughly double the ASTM specification (13.5 hr) were prepared from a conventional diesel and a highly unsaturated biodiesel. Four 2011 model year Volkswagen Passats equipped with HPCR fuel injection systems were utilized: one on B0, two on B20-6.5 hr, and one on B20-13.5 hr. Each vehicle was operated over a one-hour drive cycle in a hot running loss test cell to initially stress the fuel. The cars were then kept at Volkswagen's Arizona Proving Ground for two (35 degrees C average daily maximum) to six months (26 degrees C average daily maximum). The fuel was then stressed again by running a portion of the one-hour dynamometer drive cycle (limited by the amount of fuel in the tank). Fuel rail and fuel tank samples were analyzed for IP, acid number, peroxide content, polymer content, and ester profile. The HPCR fuel pumps were removed, dismantled, and inspected for deposits or abnormal wear. Analysis of fuels collected during initial dynamometer tests showed no impact of exposure to HPCR conditions. Long-term storage with intermittent use showed that IP remained above 3 hours, acid number below 0.3 mg KOH/g, peroxides low, no change in ester profile, and no production of polymers. Final dynamometer tests produced only small changes in fuel properties. Inspection of the HPCR fuel pumps revealed no deposits or abnormal wear for any fuel. The results provide some confidence that the ASTM D7467 stability requirement of 6 hr. minimum IP for B6 to B20 blends provides adequate protection for modern engine fuel systems. C1 [Christensen, Earl; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Sigelko, Jenny; Johnson, Stuart] Volkswagen Grp Amer Inc, Pembroke Pines, FL USA. [Zickmann, Stefan] Volkswagen AG, Wolfsburg, Germany. [Lopes, Shailesh] Gen Motors Co, Detroit, MI USA. [Gault, Roger] Truck & Engine Mfg Assoc, Chicago, IL USA. [Slade, David] Renewable Energy Grp Inc, Ames, IA USA. RP Christensen, E (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM earl.christensen@nrel.gov NR 22 TC 0 Z9 0 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 203 EP 214 DI 10.4271/2016-01-0885 PG 12 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400019 ER PT J AU Uy, D Storey, J Sluder, CS Barone, T Lewis, S Jagner, M AF Uy, Dairene Storey, John Sluder, C. Scott Barone, Teresa Lewis, Sam Jagner, Mark TI Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article ID ELECTROSTATIC PRECIPITATOR; SAMPLER AB The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol. In this study, the number, size distribution, composition, and morphology of entrained lubricant aerosol is examined on a medium-duty diesel engine operating at different speeds and loads. A unique sampling apparatus is described for sampling the aerosol in the same manner that it enters the intake. In addition, the performance of oil separators is examined. Results demonstrate that the size distribution changes with load, and contains both a sub-micron and super-micron component. The chemical composition of the aerosol varies depending on engine speed and load and oil separator used, while TEM results show that aerosol morphology changes with lubricant viscosity and also engine conditions. C1 [Uy, Dairene; Jagner, Mark] Ford Motor Co, Dearborn, MI 48121 USA. [Storey, John; Sluder, C. Scott; Barone, Teresa; Lewis, Sam] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Barone, Teresa] NIOSH, Pittsburgh Res Lab, Atlanta, GA USA. RP Uy, D (reprint author), Ford Motor Co, Dearborn, MI 48121 USA.; Storey, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM duy@ford.com; storeyjm@oml.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 224 EP 238 DI 10.4271/2016-01-0897 PG 15 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400021 ER PT J AU Carlson, RB Wishart, J Stutenberg, K AF Carlson, Richard Barney Wishart, Jeffrey Stutenberg, Kevin TI On-Road and Dynamometer Evaluation of Vehicle Auxiliary Loads SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article AB Laboratory and on-road vehicle evaluation is conducted on four vehicle models to evaluate and characterize the impacts to fuel economy of real-world auxiliary loads. The four vehicle models in this study include the Volkswagen Jetta TDI, Mazda 3 i-ELOOP, Chevrolet Cruze Diesel, and Honda Civic GX (CNG). Four vehicles of each model are included in this; sixteen vehicles in total. Evaluation was conducted using a chassis dynamometer over standard drive cycles as well as twelve months of on-road driving across a wide range of road and environmental conditions. The information gathered in the study serves as a baseline to quantify future improvements in auxiliary load reduction technology. The results from this study directly support automotive manufacturers in regards to potential "off-cycle" fuel economy credits as part of the Corporate Average Fuel Economy (CAFE) regulations, in which credit is provided for advanced technologies in which reduction of energy consumption from vehicle auxiliary loads can be demonstrated. The observed on-road auxiliary load varied from 135 W to over 1200 W across a wide range of ambient conditions and utilization patterns. The annual average auxiliary load varied across vehicle models from 310 W to 640 W. Ambient temperature was the most predominant factor to impact auxiliary load since air conditioner (A/C) operation is prevalent at high ambient temperature and heating system operation is prevalent at cold ambient temperatures. Additionally the impact of auxiliary load on vehicle fuel economy was determined to be typically between 7.5% and 18% of the fuel consumed during onroad operation of the four vehicle models in this study. During dynamometer testing, auxiliary loads were captured from several key locations along the low-voltage bus, including the alternator output, the low-voltage battery, and select other locations dependent upon the vehicle configuration. Dynamometer testing was then conducted on both certification and custom constant-speed drive cycles at three ambient temperatures (-7 degrees C, 23 degrees C, as well as 35 degrees C with 850 W/m(2) of solar emulation). This instrumentation and test methodology provides an accurate understanding of the energy use by the accessory system from these four vehicle technologies. This paper details and discusses the dynamometer and on-road evaluation results of the auxiliary load from the sixteen vehicles over the twelve month period. C1 [Carlson, Richard Barney] Idaho Natl Lab, Idaho Falls, ID 83402 USA. [Wishart, Jeffrey] Intertek Testing Serv NA Inc, Idaho Falls, ID USA. [Stutenberg, Kevin] Argonne Natl Lab, Argonne, IL 60439 USA. RP Carlson, RB (reprint author), Idaho Natl Lab, Idaho Falls, ID 83402 USA. NR 5 TC 1 Z9 1 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 260 EP 268 DI 10.4271/2016-01-0901 PG 9 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400023 ER PT J AU Thomas, J AF Thomas, John TI Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations SO SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS LA English DT Article AB A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years 2017 (MY17) through 2025 (MY25) passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the required rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the model year 2005 (MY05) US light-duty vehicle fleet to the model year 2015 (MY15) fleet shows improved fuel economy (FE) of approximately 26% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of required vehicle rate-of-change. A set of 40 same-model vehicle pairs for MY05 and MY15 is compared to examine changes in energy use and related technological change over the 10 year period. Powertrain improvements measured as increased vehicle efficiency, and vehicle "mass-glider" improvements measured as decreased tractive work requirements are quantified. The focus is first on conventional gasoline powertrain vehicles which currently dominate the market, with diesels and hybrids also examined due to their potential importance for CAFE compliance. Results indicate 10 years of progress for the studied vehicle set yielded reduced tractive effort of 5.6% and improved powertrain efficiency of 16.5%. Further analysis shows that this high rate of powertrain progress must increase by 90% or more in order to meet the 2025 CAFE standards. Comparison of MY15 vehicle FE values to CAFE target values is offered as well as conjecture on whether gasoline powertrains are adequate to meet regulations under reasonable assumptions. C1 [Thomas, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Thomas, J (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM thomasjf@oml.gov NR 19 TC 0 Z9 0 U1 3 U2 3 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3952 EI 1946-3960 J9 SAE INT J FUELS LUBR JI SAE Int. J. Fuels Lubr. PD APR PY 2016 VL 9 IS 1 BP 290 EP 305 DI 10.4271/2016-01-0909 PG 16 WC Transportation Science & Technology SC Transportation GA DY2IN UT WOS:000384916400025 ER PT J AU Urrego-Blanco, JR Urban, NM Hunke, EC Turner, AK Jeffery, N AF Urrego-Blanco, Jorge R. Urban, Nathan M. Hunke, Elizabeth C. Turner, Adrian K. Jeffery, Nicole TI Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID THICKNESS DISTRIBUTION; SPECTRAL ALBEDO; PHYSICAL-PROPERTIES; TURBULENT EXCHANGE; GRAVITY DRAINAGE; SEASONAL SNOW; SYSTEM MODEL; MELT PONDS; OCEAN; CLIMATE AB Changes in the high-latitude climate system have the potential to affect global climate through feedbacks with the atmosphere and connections with midlatitudes. Sea ice and climate models used to understand these changes have uncertainties that need to be characterized and quantified. We present a quantitative way to assess uncertainty in complex computer models, which is a new approach in the analysis of sea ice models. We characterize parametric uncertainty in the Los Alamos sea ice model (CICE) in a standalone configuration and quantify the sensitivity of sea ice area, extent, and volume with respect to uncertainty in 39 individual model parameters. Unlike common sensitivity analyses conducted in previous studies where parameters are varied one at a time, this study uses a global variance-based approach in which Sobol' sequences are used to efficiently sample the full 39-dimensional parameter space. We implement a fast emulator of the sea ice model whose predictions of sea ice extent, area, and volume are used to compute the Sobol' sensitivity indices of the 39 parameters. Main effects and interactions among the most influential parameters are also estimated by a nonparametric regression technique based on generalized additive models. A ranking based on the sensitivity indices indicates that model predictions are most sensitive to snow parameters such as snow conductivity and grain size, and the drainage of melt ponds. It is recommended that research be prioritized toward more accurately determining these most influential parameter values by observational studies or by improving parameterizations in the sea ice model. C1 [Urrego-Blanco, Jorge R.; Urban, Nathan M.; Hunke, Elizabeth C.; Turner, Adrian K.; Jeffery, Nicole] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Urrego-Blanco, JR (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jorge.urrego.blanco@lanl.gov FU Regional and Global Climate Modeling (RGCM) Program of the Office of Biological and Environmental Research (BER) within U.S. Department of Energy's Office of Science FX We want to thank Andrew Roberts and two anonymous reviewers for useful discussions and suggestions on the manuscript. This study has been supported by the Regional and Global Climate Modeling (RGCM) Program of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's Office of Science. We thank the Earth System Modeling (ESM) Program, also within BER, for use of the column-package version of CICE5, as developed for the Accelerated Climate Model for Energy (ACME). The sea ice observational data used in this study were obtained freely from the National Snow and Ice data Center and from papers properly cited and referred to in the reference list. The source code for CICE 5.1 and other data are available from the authors upon request at jorge.urrego.blanco@lanl.gov. NR 88 TC 0 Z9 0 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD APR PY 2016 VL 121 IS 4 BP 2709 EP 2732 DI 10.1002/2015JC011558 PG 24 WC Oceanography SC Oceanography GA DW2HA UT WOS:000383462300033 ER PT J AU Iskandarani, M Wang, ST Srinivasan, A Thacker, WC Winokur, J Knio, OM AF Iskandarani, Mohamed Wang, Shitao Srinivasan, Ashwanth Thacker, W. Carlisle Winokur, Justin Knio, Omar M. TI An overview of uncertainty quantification techniques with application to oceanic and oil-spill simulations SO JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS LA English DT Article ID POLYNOMIAL CHAOS; SENSITIVITY-ANALYSIS; BAYESIAN-INFERENCE; COLLOCATION; EXPANSIONS; MODEL; APPROXIMATIONS; PLUME AB We give an overview of four different ensemble-based techniques for uncertainty quantification and illustrate their application in the context of oil plume simulations. These techniques share the common paradigm of constructing a model proxy that efficiently captures the functional dependence of the model output on uncertain model inputs. This proxy is then used to explore the space of uncertain inputs using a large number of samples, so that reliable estimates of the model's output statistics can be calculated. Three of these techniques use polynomial chaos (PC) expansions to construct the model proxy, but they differ in their approach to determining the expansions' coefficients; the fourth technique uses Gaussian Process Regression (GPR). An integral plume model for simulating the Deepwater Horizon oil-gas blowout provides examples for illustrating the different techniques. A Monte Carlo ensemble of 50,000 model simulations is used for gauging the performance of the different proxies. The examples illustrate how regression-based techniques can outperform projection-based techniques when the model output is noisy. They also demonstrate that robust uncertainty analysis can be performed at a fraction of the cost of the Monte Carlo calculation. C1 [Iskandarani, Mohamed; Wang, Shitao] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. [Srinivasan, Ashwanth] Tendral LLC, Miami, FL USA. [Winokur, Justin] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Knio, Omar M.] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27706 USA. [Knio, Omar M.] King Abdullah Univ Sci & Technol, Div Comp Elect & Math Sci & Engn, Thuwal, Saudi Arabia. RP Iskandarani, M (reprint author), Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA. EM miskandarani@rsmas.miami.edu FU BP/The Gulf of Mexico Research Initiative; Office of Naval Research [N00014-101-0498]; U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research [DE-SC0008789] FX This research was made possible in part by a grant from BP/The Gulf of Mexico Research Initiative to the CARTHE and DEEP-C Consortia and by the Office of Naval Research, award N00014-101-0498. J. Winokur and O. M. Knio were also supported in part by the U.S. Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, under award DE-SC0008789. This research was conducted in collaboration with and using the resources of the University of Miami Center for Computational Science. The source code for the model used in this study, TAMOC, is freely available at https://github.com/socolofs/tamoc. The data and input files necessary to reproduce the experiments are available from the authors upon request (swang@rsmas.miami.edu). The data are archived at https://github.com/Shitao/A-comparison-of-uncertainty-quantification-tec hniques-using-integral-plume-model. NR 50 TC 2 Z9 2 U1 3 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9275 EI 2169-9291 J9 J GEOPHYS RES-OCEANS JI J. Geophys. Res.-Oceans PD APR PY 2016 VL 121 IS 4 BP 2789 EP 2808 DI 10.1002/2015JC011366 PG 20 WC Oceanography SC Oceanography GA DW2HA UT WOS:000383462300037 ER PT J AU Erskine, DJ Edelstein, J Wishnow, EH Sirk, M Muirhead, PS Muterspaugh, MW Lloyd, JP Ishikawa, Y McDonald, EA Shourt, WV Vanderburg, AM AF Erskine, David J. Edelstein, Jerry Wishnow, Edward H. Sirk, Martin Muirhead, Philip S. Muterspaugh, Matthew W. Lloyd, James P. Ishikawa, Yuzo McDonald, Eliza A. Shourt, William V. Vanderburg, Andrew M. TI High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results SO JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS LA English DT Article DE dispersed interferometry; Doppler radial velocimetry; high-resolution spectroscopy ID MICHELSON INTERFEROMETER; RADIAL VELOCIMETRY; SPECTROGRAPHS; EFFICIENT; SPECTRUM AB High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the "TEDI" interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10x) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20x) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350x times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels-EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Erskine, David J.] Lawrence Livermore Natl Lab, Mailstop L-487,7000 East Ave, Livermore, CA 94550 USA. [Edelstein, Jerry; Wishnow, Edward H.; Sirk, Martin; Ishikawa, Yuzo; McDonald, Eliza A.; Shourt, William V.] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. [Muirhead, Philip S.] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA. [Muterspaugh, Matthew W.] Tennessee State Univ, Boswell Sci Hall, Nashville, TN 37209 USA. [Lloyd, James P.] Cornell Univ, Carl Sagan Inst, Dept Astron, Space Sci 230, Ithaca, NY 14853 USA. [Vanderburg, Andrew M.] Harvard Smithsonian Ctr Astrophys, 60 Garden St,MS-10, Cambridge, MA 02138 USA. RP Erskine, DJ (reprint author), Lawrence Livermore Natl Lab, Mailstop L-487,7000 East Ave, Livermore, CA 94550 USA. EM erskine1@llnl.gov RI Muirhead, Philip/H-2273-2014 OI Muirhead, Philip/0000-0002-0638-8822 NR 24 TC 1 Z9 1 U1 4 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 2329-4124 EI 2329-4221 J9 J ASTRON TELESC INST JI J. Astron. Telesc. Instrum. Syst. PD APR PY 2016 VL 2 IS 2 AR 025004 DI 10.1117/1.JATIS.2.2.025004 PG 36 WC Engineering, Aerospace; Instruments & Instrumentation; Optics SC Engineering; Instruments & Instrumentation; Optics GA DV7OV UT WOS:000383126900005 ER PT J AU Ballottari, M Truong, TB De Re, E Erickson, E Stella, GR Fleming, GR Bassi, R Niyogi, KK AF Ballottari, Matteo Truong, Thuy B. De Re, Eleonora Erickson, Erika Stella, Giulio R. Fleming, Graham R. Bassi, Roberto Niyogi, Krishna K. TI Identification of pH-sensing Sites in the Light Harvesting Complex Stress-related 3 Protein Essential for Triggering Non-photochemical Quenching in Chlamydomonas reinhardtii SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID PHOTOSYSTEM-II ANTENNA; PHOTOPROTECTIVE ENERGY-DISSIPATION; HIGHER-PLANT ANTENNA; CHLOROPHYLL FLUORESCENCE; PHYSCOMITRELLA-PATENS; THERMAL DISSIPATION; XANTHOPHYLL CYCLE; IN-VIVO; CHLOROPLAST MEMBRANES; CATION FORMATION AB Light harvesting complex stress-related 3 (LHCSR3) is the protein essential for photoprotective excess energy dissipation (non-photochemical quenching, NPQ) in the model green alga Chlamydomonas reinhardtii. Activation of NPQ requires low pH in the thylakoid lumen, which is induced in excess light conditions and sensed by lumen-exposed acidic residues. In this work we have used site-specific mutagenesis in vivo and in vitro for identification of the residues in LHCSR3 that are responsible for sensing lumen pH. Lumen-exposed protonatable residues, aspartate and glutamate, were mutated to asparagine and glutamine, respectively. By expression in a mutant lacking all LHCSR isoforms, residues Asp(117), Glu(221), and Glu(224) were shown to be essential for LHCSR3-dependent NPQ induction in C. reinhardtii. Analysis of recombinant proteins carrying the same mutations refolded in vitro with pigments showed that the capacity of responding to low pH by decreasing the fluorescence life time, present in the wild-type protein, was lost. Consistent with a role in pH sensing, the mutations led to a substantial reduction in binding the NPQ inhibitor dicyclohexylcarbodiimide. C1 [Ballottari, Matteo; Stella, Giulio R.; Bassi, Roberto] Univ Verona, Dept Biotechnol, Str Le Grazie, I-37134 Verona, Italy. [Truong, Thuy B.; Erickson, Erika; Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Fleming, Graham R.] Univ Calif Berkeley, Dept Chem, Hildebrand B77, Berkeley, CA 94720 USA. [Stella, Giulio R.] Univ Paris 06, Sorbonne Univ, CNRS, Lab Biol Computat & Quantitat,UMR 7238, 15 Rue Ecole Med, F-75006 Paris, France. [De Re, Eleonora; Erickson, Erika; Fleming, Graham R.; Niyogi, Krishna K.] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [De Re, Eleonora; Fleming, Graham R.] Univ Calif Berkeley, Grad Grp Appl Sci & Technol, Berkeley, CA 94720 USA. [Truong, Thuy B.] Donald Danforth Plant Sci Ctr, St Louis, MO 63132 USA. RP Bassi, R (reprint author), Univ Verona, Dept Biotechnol, Str Le Grazie, I-37134 Verona, Italy.; Niyogi, KK (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM roberto.bassi@univr.it; niyogi@berkeley.edu FU U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [449B]; Italian Ministry of Education, University and Research through PRIN ("Progetti di Ricerca di Interesse Nazionale") [2012XSAWYM]; National Science Foundation; Marie Curie Actions Initial Training Networks ACCLIPHOT [PITN-GA-2012-316427] FX This work was supported in part by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under field work proposal 449B. The authors declare that they have no conflicts of interest with the contents of this article.; Supported by the Italian Ministry of Education, University and Research through PRIN ("Progetti di Ricerca di Interesse Nazionale") project 2012XSAWYM.; Supported by a National Science Foundation Graduate Research Fellowship.; Supported by Marie Curie Actions Initial Training Networks ACCLIPHOT Grant PITN-GA-2012-316427. NR 73 TC 5 Z9 5 U1 9 U2 10 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 EI 1083-351X J9 J BIOL CHEM JI J. Biol. Chem. PD APR 1 PY 2016 VL 291 IS 14 BP 7334 EP 7346 DI 10.1074/jbc.M115.704601 PG 13 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DW2BJ UT WOS:000383447600011 PM 26817847 ER PT J AU Ekoto, I Skeen, S Steeper, RR Hansen, N AF Ekoto, Isaac Skeen, Scott Steeper, Richard R. Hansen, Nils TI Detailed Characterization of Negative Valve Overlap Chemistry by Photoionization Mass Spectroscopy SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article ID COMBUSTION; ENGINE AB For next-generation engines that operate using low-temperature gasoline combustion (LTGC) modes, a major issue remains poor combustion stability at low-loads. Negative valve overlap (NVO) enables enhanced main combustion control through modified valve timings to retain combustion residuals along with a small fuel injection that partially reacts during the recompression. While the thermal effects of NVO fueling on main combustion are well understood, the chemical effects of NVO reactions are less certain, especially oxygen-deficient reactions where fuel pyrolysis dominates. To better understand NVO period chemistry details, comprehensive speciation of engine samples collected at the end of the NVO cycle was performed by photoionization mass spectroscopy (PIMS) using synchrotron generated vacuum-ultraviolet light. Two operating conditions were explored: 1) a fuel lean condition with a short NVO fuel injection and a relatively high amount of excess oxygen in the NVO cycle (7%), and 2) a fuel-rich condition with a longer NVO fuel injection and low amount of NVO-cycle excess oxygen (4%). Samples were collected by a custom dump-valve apparatus from a direct injection, single-cylinder, automotive research engine operating under low-load LTGC and fueled by either isooctane or an 88-octane research certification gasoline. Samples were stored in heated stainless steel cylinders and transported to the Lawrence Berkeley National Laboratory Advanced Light Source for analysis using a Sandia National Laboratories flame sampling apparatus. For all isooctane fueled conditions, NVO cycle sample speciation from the PIMS measurements agreed well with previously reported GC sample measurements if the sum total of all isomer constituents from the PIMS measurements were considered. PIMS data, however, provides richer speciation information that is useful for validation of computational modeling approaches. The PIMS data also revealed that certain species for the GC diagnostic were either misidentified during the calibration process or not identified at all. Examples of unidentified species include several classes of oxygenates (e.g., ketenes, aldehydes, and simple alcohols) and simple aromatics (e.g., benzene and toluene). For the gasoline fueled NVO cycles, performance characteristics were well matched to corresponding isooctane fueled NVO cycles. However, significant PIMS cross-talk from a wide range of gasoline components restricted the sampling analysis to a handful of species. Nonetheless, it was confirmed that for fuel-lean NVO operation there was a comparable increase in acetylene with NVO injection timing retard that is attributed to the prevalence of locally-rich, piston-surface pool fires caused by fuel spray impingement. C1 [Ekoto, Isaac; Skeen, Scott; Steeper, Richard R.; Hansen, Nils] Sandia Natl Labs, MS 9053,POB 969, Livermore, CA 94551 USA. RP Ekoto, I (reprint author), Sandia Natl Labs, MS 9053,POB 969, Livermore, CA 94551 USA. EM iekoto@sandia.gov NR 35 TC 1 Z9 1 U1 0 U2 0 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD APR PY 2016 VL 9 IS 1 BP 26 EP 38 DI 10.4271/2015-01-1804 PG 13 WC Transportation Science & Technology SC Transportation GA DU4NH UT WOS:000382189300003 ER PT J AU Malbec, LM Eagle, WE Musculus, MPB Schihl, P AF Malbec, Louis-Marie Eagle, W. Ethan Musculus, Mark P. B. Schihl, Peter TI Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article ID NON-PREMIXED FLAMES; HIGH-PRESSURE; AUTOIGNITION CHARACTERISTICS; NUMERICAL SIMULATIONS; NOZZLE GEOMETRY; TURBULENT JETS; MOMENTUM FLUX; LIFT-OFF; COMBUSTION; FUEL AB Non-conventional operating conditions and fuels in diesel engines can produce longer ignition delays compared to conventional diesel combustion. If those extended delays are longer than the injection duration, the ignition and combustion progress can be significantly influenced by the transient following the end of injection (EOI), and especially by the modification of the mixture field. The objective of this paper is to assess how those long ignition delays, obtained by injecting at low in-cylinder temperatures (e.g., 760-800K), are affected by EOI. Two multi-hole diesel fuel injectors with either six 0.20mm orifices or seven 0.14mm orifices have been used in a 2.34L single-cylinder optical diesel engine. We consider a range of ambient top dead center (TDC) temperatures at the start of injection from 760-1000K as well as a range of injection durations from 0.5ms to 3.1ms. Ignition delays are computed through the analysis of both cylinder pressure and chemiluminescence imaging. A simplified one-dimensional (1-d) model of the diesel jet, able to match the behavior of a transient injection and entrainment processes, is used to estimate the ensemble-averaged mixture fraction fields during the injection event and at the ignition kernel locations. At TDC temperatures of 850K or higher, the injection duration is longer than ignition delay, and thus EOI has no effect on ignition delay. At TDC temperatures of 800K or lower, for short injection durations (<1.3ms), ignition occurs after EOI and ignition delay decreases with decreasing injection duration is observed. In addition, the 1-d spray model predicts a decrease of the mixture fraction at ignition kernels with decreasing ignition delay. This is in contrast to the expected trend of increasing kinetic time with decreasing mixture fraction for well-mixed reactors. This suggests that mixture fraction alone is not the first-order parameter influencing the timing and position of ignition sites. The history of the ignition kernel(s) and/or of the scalar dissipation may also need to be considered. C1 [Malbec, Louis-Marie] IFP Energies Nouvelles, Rueil Malmaison, France. [Eagle, W. Ethan; Musculus, Mark P. B.] Sandia Natl Labs, Livermore, CA 94550 USA. [Schihl, Peter] US Army, TARDEC, Warren, MI USA. RP Malbec, LM (reprint author), IFP Energies Nouvelles, Rueil Malmaison, France. NR 59 TC 0 Z9 0 U1 2 U2 2 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD APR PY 2016 VL 9 IS 1 BP 47 EP 70 DI 10.4271/2015-01-1830 PG 24 WC Transportation Science & Technology SC Transportation GA DU4NH UT WOS:000382189300005 ER PT J AU Battistoni, M Poggiani, C Som, S AF Battistoni, Michele Poggiani, Claudio Som, Sibendu TI Prediction of the Nozzle Flow and Jet Characteristics at Start and End of Injection: Transient Behaviors SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article ID X-RAY RADIOGRAPHY; RELAXATION MODEL; 2-PHASE FLOW; SPRAY; COMBUSTION AB This paper reports investigations on diesel jet transients, accounting for internal nozzle flow and needle motion. The calculations are performed with Large Eddy Simulation (LES) turbulence model by coupling the internal and external multiphase flows simultaneously. Short and multiple injection strategies are commonly used in internal combustion engines. Their features are significantly different from those generally found in steady state conditions, which have been extensively studied in the past, however, these conditions are seldom reached in modern engines. Recent researches have shown that residual gas can be ingested in the injector sac after the end-of-injection (EOI) and undesired dribbles can be produced. Moreover, a new injection event behaves differently at the start-of-injection (SOI) depending on the sac initial condition, and the initial spray development can be affected for the first few tens of mu s. To investigate these phenomena, LES of end-of-injection and start-of-injection processes have been carried out on a single hole injector, in order to provide insights in to the physics. Detailed needle motion data and orifice morphology have been measured using x-ray synchrotron source at Argonne National Laboratory. Simulations are validated against available x-ray data of the internal flow and near nozzle exit region. Results are able to realistically capture the injection rate ramp-up, the initial gas discharge followed by liquid injection, the realistic liquid tip penetration and the EOI dribbles, provided all the boundary condition details are properly included in the simulations. Such information is invaluable towards developing simulation tools for enabling and improving low temperature combustion concepts with multiple injection strategies. C1 [Battistoni, Michele; Poggiani, Claudio] Univ Perugia, I-06100 Perugia, Italy. [Som, Sibendu] Argonne Natl Lab, Argonne, IL 60439 USA. RP Battistoni, M (reprint author), Univ Perugia, I-06100 Perugia, Italy. EM michele.battistoni@unipg.it RI Battistoni, Michele/M-9194-2014 OI Battistoni, Michele/0000-0001-6807-9657 NR 39 TC 0 Z9 0 U1 3 U2 3 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD APR PY 2016 VL 9 IS 1 BP 84 EP 97 DI 10.4271/2015-01-1850 PG 14 WC Transportation Science & Technology SC Transportation GA DU4NH UT WOS:000382189300007 ER PT J AU Duke, DJ Swantek, AB Sovis, NM Tilocco, FZ Powell, CF Kastengren, AL Gursoy, D Bicer, T AF Duke, Daniel J. Swantek, Andrew B. Sovis, Nicolas M. Tilocco, F. Zak Powell, Christopher F. Kastengren, Alan L. Gursoy, Doga Bicer, Tekin TI Time-resolved X-ray Tomography of Gasoline Direct Injection Sprays SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article ID FLUID-DYNAMICS; RADIOGRAPHY; COMBUSTION AB Quantitative measurements of direct injection fuel spray density and mixing are difficult to achieve using optical diagnostics, due to the substantial scattering of light and high optical density of the droplet field. For multi-hole sprays, the problem is even more challenging, as it is difficult to isolate a single spray plume along a single line of sight. Time resolved x-ray radiography diagnostics developed at Argonne's Advanced Photon Source have been used for some time to study diesel fuel sprays, as x-rays have high penetrating power in sprays and scatter only weakly. Traditionally, radiography measurements have been conducted along any single line of sight, and have been applied to single-hole and group-hole nozzles with few plumes. In this new work, we extend the technique to multi-hole gasoline direct injection sprays. By taking time-resolved measurements over a raster-scan pattern from multiple lines of sight, we are able to tomographically reconstruct the time-resolved ensemble mean density field in a plane intersecting the spray. Traditional Fourier back-projection methods are not well-suited for this experiment, so a model-based iterative reconstruction algorithm has been employed in this particular application. Three gasoline direct injection sprays with various 6-hole patterns were studied at injection pressures of 100 to 175 bar and atmospheric back pressure, at selected axial positions several mm downstream of the nozzle. These measurements reveal that the sprays are quite unsteady and interact with each other strongly during the early phase of injection. The spray plume cross-sections are very non-uniform, exhibiting small rich regions on the outer sides of the plumes surrounded by much leaner regions on the inner sides. We propose that this may be due to spray-spray interaction, interaction with the nozzle hole counter-bore, and inhomogeneities in the sprays due to the hole geometry and needle lift. C1 [Duke, Daniel J.; Swantek, Andrew B.; Sovis, Nicolas M.; Tilocco, F. Zak; Powell, Christopher F.; Kastengren, Alan L.; Gursoy, Doga; Bicer, Tekin] Argonne Natl Lab, Argonne, IL 60439 USA. RP Duke, DJ (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. NR 37 TC 1 Z9 1 U1 1 U2 1 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD APR PY 2016 VL 9 IS 1 BP 143 EP 153 DI 10.4271/2015-01-1873 PG 11 WC Transportation Science & Technology SC Transportation GA DU4NH UT WOS:000382189300010 ER PT J AU Kook, S Zhang, RL Chan, QN Aizawa, T Kondo, K Pickett, LM Cenker, E Bruneaux, G Andersson, O Pagels, J Nordin, EZ AF Kook, Sanghoon Zhang, Renlin Chan, Qing Nian Aizawa, Tetsuya Kondo, Katsufumi Pickett, Lyle M. Cenker, Emre Bruneaux, Gilles Andersson, Oivind Pagels, Joakim Nordin, Erik Z. TI Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments SO SAE INTERNATIONAL JOURNAL OF ENGINES LA English DT Article ID FRACTAL GEOMETRY; LIGHT-SCATTERING; MORPHOLOGY; FUEL; MICROSTRUCTURE; COMBUSTION; SIZE; MICROGRAPHS; PRESSURE; AEROSOLS AB The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines. Through a comparison between automatically detected and manually selected primary particles from extensive datasets, five key image-processing parameters of the self-subtraction level, negative Laplacian shape parameter, maximum and minimum diameter of primary particles, and CHT sensitivity are optimised. From the analysis of the size distribution and mean diameter of primary particles, it is found that the automatic method is much more dependent upon the minimum primary particle diameter and CHT sensitivity than the other three parameters. With the optimised set values, the new particle detection code shows a good agreement with the results from the manual method. C1 [Kook, Sanghoon; Zhang, Renlin; Chan, Qing Nian] Univ New South Wales, Sydney, NSW 2052, Australia. [Aizawa, Tetsuya; Kondo, Katsufumi] Meiji Univ, Tokyo 101, Japan. [Pickett, Lyle M.] Sandia Natl Labs, Livermore, CA 94550 USA. [Cenker, Emre; Bruneaux, Gilles] IFP Energies Nouvelles, Hauts De Seine, France. [Andersson, Oivind; Pagels, Joakim; Nordin, Erik Z.] Lund Univ, S-22100 Lund, Sweden. RP Kook, S (reprint author), Univ New South Wales, Sydney, NSW 2052, Australia. EM s.kook@unsw.edu.au RI Pagels, Joakim/G-9118-2014 NR 53 TC 1 Z9 1 U1 2 U2 2 PU SAE INT PI WARRENDALE PA 400 COMMONWEALTH DR, WARRENDALE, PA 15096 USA SN 1946-3936 EI 1946-3944 J9 SAE INT J ENGINES JI SAE Int. J. Engines PD APR PY 2016 VL 9 IS 1 BP 279 EP 296 DI 10.4271/2015-01-1991 PG 18 WC Transportation Science & Technology SC Transportation GA DU4NH UT WOS:000382189300021 ER PT J AU Levinson, Z Verduijn, E Wood, OR Mangat, P Goldberg, KA Benk, MP Wojdyla, A Smith, BW AF Levinson, Zachary Verduijn, Erik Wood, Obert R. Mangat, Pawitter Goldberg, Kenneth A. Benk, Markus P. Wojdyla, Antoine Smith, Bruce W. TI Measurement of EUV lithography pupil amplitude and phase variation via image-based methodology SO JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS LA English DT Article DE EUV lithography; EUV aberrations; EUV transmission function; aberration metrology; image-based aberration metrology; pupil characterization AB An approach to image-based EUV aberration metrology using binary mask targets and iterative model-based solutions to extract both the amplitude and phase components of the aberrated pupil function is presented. The approach is enabled through previously developed modeling, fitting, and extraction algorithms. We seek to examine the behavior of pupil amplitude variation in real-optical systems. Optimized target images were captured under several conditions to fit the resulting pupil responses. Both the amplitude and phase components of the pupil function were extracted from a zone-plate-based EUV mask microscope. The pupil amplitude variation was expanded in three different bases: Zernike polynomials, Legendre polynomials, and Hermite polynomials. It was found that the Zernike polynomials describe pupil amplitude variation most effectively of the three. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Levinson, Zachary; Smith, Bruce W.] Rochester Inst Technol, 168 Lomb Mem Dr, Rochester, NY 14623 USA. [Verduijn, Erik; Wood, Obert R.; Mangat, Pawitter] GLOBALFOUNDRIES, 400 Stone Break Rd Extens, Malta, NY 12020 USA. [Goldberg, Kenneth A.; Benk, Markus P.; Wojdyla, Antoine] Lawrence Berkeley Natl Lab, One Cyclotron Rd, Berkeley, CA 94720 USA. RP Levinson, Z (reprint author), Rochester Inst Technol, 168 Lomb Mem Dr, Rochester, NY 14623 USA. EM zal2186@rit.edu NR 35 TC 0 Z9 0 U1 1 U2 1 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1932-5150 EI 1932-5134 J9 J MICRO-NANOLITH MEM JI J. Micro-Nanolithogr. MEMS MOEMS PD APR PY 2016 VL 15 IS 2 AR 023508 DI 10.1117/1.JMM.15.2.023508 PG 12 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics SC Engineering; Science & Technology - Other Topics; Materials Science; Optics GA DV6JD UT WOS:000383039900001 ER PT J AU Carlton, HD Elmer, JW Li, Y Pacheco, M Goyal, D Parkinson, DY MacDowell, AA AF Carlton, Holly D. Elmer, John W. Li, Yan Pacheco, Mario Goyal, Deepak Parkinson, Dilworth Y. MacDowell, Alastair A. TI Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Engineering; Issue 110; Synchrotron radiation micro-tomography; x-ray imaging; computed tomography; non-destructive failure analysis; lead free solders; and three-dimensional microelectronic packages ID X-RAY-DIFFRACTION; IN-SITU; SN; SOLIDIFICATION; NUCLEATION AB Synchrotron radiation micro-tomography (SR mu T) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range similar to 7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 mu m all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials. C1 [Carlton, Holly D.; Elmer, John W.] Lawrence Livermore Natl Lab, Mat Engn Div, Livermore, CA 94550 USA. [Li, Yan; Pacheco, Mario; Goyal, Deepak] Intel Corp, Assembly Test & Technol Dev Failure Anal Labs, Santa Clara, CA 95051 USA. [Parkinson, Dilworth Y.; MacDowell, Alastair A.] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. RP Carlton, HD (reprint author), Lawrence Livermore Natl Lab, Mat Engn Div, Livermore, CA 94550 USA. EM carlton4@llnl.gov FU U.S. Department of Energy [DE-AC52-07NA27344]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The LLNL portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Intel Corporation authors would like to thank Pilin Liu, Liang Hu, William Hammond, and Carlos Orduno from Intel Corporation for some of the data collection and helpful discussions. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 16 TC 0 Z9 0 U1 2 U2 2 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD APR PY 2016 IS 110 AR e53683 DI 10.3791/53683 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR9ZX UT WOS:000380256000033 ER PT J AU Li, XF Lin, MW Lin, JH Huang, B Puretzky, AA Ma, C Wang, K Zhou, W Pantelides, ST Chi, MF Kravchenko, I Fowlkes, J Rouleau, CM Geohegan, DB Xiao, K AF Li, Xufan Lin, Ming-Wei Lin, Junhao Huang, Bing Puretzky, Alexander A. Ma, Cheng Wang, Kai Zhou, Wu Pantelides, Sokrates T. Chi, Miaofang Kravchenko, Ivan Fowlkes, Jason Rouleau, Christopher M. Geohegan, David B. Xiao, Kai TI Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy SO SCIENCE ADVANCES LA English DT Article ID LIGHT-EMITTING-DIODES; P-N-JUNCTIONS; SINGLE-CRYSTALLINE; DIRAC FERMIONS; HETEROSTRUCTURES; GROWTH; GRAPHENE; MOS2; LAYERS; SEMICONDUCTORS AB Two-dimensional (2D) heterostructures hold the promise for future atomically thin electronics and optoelectronics because of their diverse functionalities. Although heterostructures consisting of different 2D materials with well-matched lattices and novel physical properties have been successfully fabricated via van der Waals (vdW) epitaxy, constructing heterostructures from layered semiconductors with large lattice misfits remains challenging. We report the growth of 2D GaSe/MoSe2 heterostructures with a large lattice misfit using two-step chemical vapor deposition (CVD). Both vertically stacked and lateral heterostructures are demonstrated. The vertically stacked GaSe/MoSe2 heterostructures exhibit vdW epitaxy with well-aligned lattice orientation between the two layers, forming a periodic superlattice. However, the lateral heterostructures exhibit no lateral epitaxial alignment at the interface between GaSe and MoSe2 crystalline domains. Instead of a direct lateral connection at the boundary region where the same lattice orientation is observed between GaSe and MoSe2 monolayer domains in lateral GaSe/MoSe2 heterostructures, GaSe monolayers are found to overgrow MoSe2 during CVD, forming a stripe of vertically stacked vdW heterostructures at the crystal interface. Such vertically stacked vdW GaSe/MoSe2 heterostructures are shown to form p-n junctions with effective transport and separation of photogenerated charge carriers between layers, resulting in a gate-tunable photovoltaic response. These GaSe/MoSe2 vdW heterostructures should have applications as gate-tunable field-effect transistors, photodetectors, and solar cells. C1 [Li, Xufan; Lin, Ming-Wei; Puretzky, Alexander A.; Ma, Cheng; Wang, Kai; Chi, Miaofang; Kravchenko, Ivan; Fowlkes, Jason; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Lin, Junhao; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lin, Junhao; Zhou, Wu; Pantelides, Sokrates T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Huang, Bing] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. [Huang, Bing] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA. [Lin, Junhao] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058565, Japan. RP Xiao, K (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM xiaok@ornl.gov RI Kravchenko, Ivan/K-3022-2015; Chi, Miaofang/Q-2489-2015; Li, Xufan/A-8292-2013; Zhou, Wu/D-8526-2011; Wang, Kai/H-4361-2011; Geohegan, David/D-3599-2013; Lin, Junhao/D-7980-2015 OI Kravchenko, Ivan/0000-0003-4999-5822; Chi, Miaofang/0000-0003-0764-1567; Li, Xufan/0000-0001-9814-0383; Zhou, Wu/0000-0002-6803-1095; Wang, Kai/0000-0002-6405-7837; Geohegan, David/0000-0003-0273-3139; Lin, Junhao/0000-0002-2195-2823 NR 46 TC 12 Z9 12 U1 55 U2 81 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD APR PY 2016 VL 2 IS 4 AR e1501882 DI 10.1126/sciadv.1501882 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR7IB UT WOS:000380072100045 PM 27152356 ER PT J AU Liu, YY Stradins, P Wei, SH AF Liu, Yuanyue Stradins, Paul Wei, Su-Huai TI Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier SO SCIENCE ADVANCES LA English DT Article ID FIELD-EFFECT TRANSISTORS; AUGMENTED-WAVE METHOD; MOS2 TRANSISTORS; CONTACTS; ELECTRONICS; HETEROSTRUCTURE; DICHALCOGENIDES; TRANSPARENT; INTERFACE; TRANSPORT AB Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. C1 [Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Wei, Su-Huai] Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China. [Liu, Yuanyue] CALTECH, Pasadena, CA 91125 USA. RP Liu, YY; Wei, SH (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA.; Wei, SH (reprint author), Beijing Computat Sci Res Ctr, Beijing 100094, Peoples R China.; Liu, YY (reprint author), CALTECH, Pasadena, CA 91125 USA. EM yuanyue.liu.microman@gmail.com; suhuaiwei@csrc.ac.cn OI Liu, Yuanyue/0000-0002-5880-8649 NR 54 TC 6 Z9 6 U1 24 U2 29 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD APR PY 2016 VL 2 IS 4 AR e1600069 DI 10.1126/sciadv.1600069 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR7IB UT WOS:000380072100052 PM 27152360 ER PT J AU Po, HC Watanabe, H Zaletel, MP Vishwanath, A AF Po, Hoi Chun Watanabe, Haruki Zaletel, Michael P. Vishwanath, Ashvin TI Filling-enforced quantum band insulators in spin-orbit coupled crystals SO SCIENCE ADVANCES LA English DT Article AB An early triumph of quantum mechanics was the explanation of metallic and insulating behavior based on the filling of electronic bands. A complementary, classical picture of insulators depicts electrons as occupying localized and symmetric Wannier orbitals that resemble atomic orbitals. We report the theoretical discovery of band insulators for which electron filling forbids such an atomic description. We refer to them as filling-enforced quantum band insulators (feQBIs) because their wave functions are associated with an essential degree of quantum entanglement. Like topological insulators, which also do not admit an atomic description, feQBIs need spin-orbit coupling for their realization. However, they do not necessarily support gapless surface states. Instead, the band topology is reflected in the insulating behavior at an unconventional filling. We present tight binding models of feQBIs and show that they only occur in certain nonsymmorphic, body-centered cubic crystals. C1 [Po, Hoi Chun; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Watanabe, Haruki] MIT, Dept Phys, Cambridge, MA 02139 USA. [Zaletel, Michael P.] Microsoft Res, Stn Q, Santa Barbara, CA 93106 USA. [Vishwanath, Ashvin] Lawrence Livermore Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Vishwanath, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.; Vishwanath, A (reprint author), Lawrence Livermore Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ashvinv@berkeley.edu NR 19 TC 4 Z9 4 U1 1 U2 2 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 2375-2548 J9 SCI ADV JI Sci. Adv. PD APR PY 2016 VL 2 IS 4 AR e1501782 DI 10.1126/sciadv.1501782 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DR7IB UT WOS:000380072100039 PM 27152352 ER PT J AU Nishitsuji, Y Rowe, CA Wapenaar, K Draganov, D AF Nishitsuji, Yohei Rowe, C. A. Wapenaar, Kees Draganov, Deyan TI Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article ID ACOUSTIC TRANSMISSION RESPONSE; BIT TIME-REVERSAL; INTERNAL STRUCTURE; TIDAL STRESSES; LUNAR MANTLE; CRUST; GRAIL; WAVES AB The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0Hz). C1 [Nishitsuji, Yohei; Wapenaar, Kees; Draganov, Deyan] Delft Univ Technol, Dept Geosci & Engn, Delft, Netherlands. [Rowe, C. A.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM USA. RP Nishitsuji, Y (reprint author), Delft Univ Technol, Dept Geosci & Engn, Delft, Netherlands. EM y.nishitsuji@tudelft.nl OI Rowe, Charlotte/0000-0001-5803-0147; Wapenaar, Kees/0000-0002-1620-8282 FU Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation [EAR-1261681]; Division for Earth and Life Sciences (ALW); Netherlands Organization for Scientific Research (NWO) [VIDI 864.11.009] FX The data used in this study were collected using the Moon Seismic Monitor (http://darts.isas.jaxa.jp/planet/seismology/apollo/app/) of the Data Archives and Transmission System (DATS, darts.jaxa.jp), provided by the Center for Science-satellite Operation and Data Archive (C-SODA, http://c-soda.isas.jaxa.jp) at the Institute of Space and Astronautical Science (ISAS, http://www.isas.jaxa.jp/e/index.shtml) and the Japan Aerospace Exploration Agency (JAXA, http://global.jaxa.jp). The facilities of IRIS Data Services, and specifically the IRIS Data Management Center, were used for access to waveforms, related metadata, and/or derived products used in this study. IRIS Data Services are funded through the Seismological Facilities for the Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science Foundation under Cooperative Agreement EAR-1261681. This research is supported by the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO) with grant VIDI 864.11.009. This is Los Alamos National Laboratory Publication LA-UR-15-27729. The maps were drawn with Generic Mapping Tool (GMT) [Wessel and Smith, 1991]. The travel times for the Moon were calculated using the TauP Toolkit [Crotwell et al., 1999]. We are grateful to S.A. Hauck II, Editor in Chief, and two anonymous reviewers for their very constructive comments that helped improve the quality of the manuscript. NR 59 TC 1 Z9 1 U1 4 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD APR PY 2016 VL 121 IS 4 BP 695 EP 713 DI 10.1002/2015JE004975 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DR5EZ UT WOS:000379927400008 ER PT J AU Simms, LE Engebretson, MJ Pilipenko, V Reeves, GD Clilverd, M AF Simms, Laura E. Engebretson, Mark J. Pilipenko, Viacheslav Reeves, Geoffrey D. Clilverd, Mark TI Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID OUTER RADIATION BELT; VAN ALLEN PROBES; WAVE-PARTICLE INTERACTIONS; SOLAR-WIND; GEOSYNCHRONOUS ORBIT; EMIC WAVES; MAGNETOSPHERIC CONVECTION; GEOMAGNETIC-PULSATIONS; MAGNETIC STORMS; CHORUS WAVES AB The daily maximum relativistic electron flux at geostationary orbit can be predicted well with a set of daily averaged predictor variables including previous day's flux, seed electron flux, solar wind velocity and number density, AE index, IMF B-z, Dst, and ULF and VLF wave power. As predictor variables are intercorrelated, we used multiple regression analyses to determine which are the most predictive of flux when other variables are controlled. Empirical models produced from regressions of flux on measured predictors from 1 day previous were reasonably effective at predicting novel observations. Adding previous flux to the parameter set improves the prediction of the peak of the increases but delays its anticipation of an event. Previous day's solar wind number density and velocity, AE index, and ULF wave activity are the most significant explanatory variables; however, the AE index, measuring substorm processes, shows a negative correlation with flux when other parameters are controlled. This may be due to the triggering of electromagnetic ion cyclotron waves by substorms that cause electron precipitation. VLF waves show lower, but significant, influence. The combined effect of ULF and VLF waves shows a synergistic interaction, where each increases the influence of the other on flux enhancement. Correlations between observations and predictions for this 1 day lag model ranged from 0.71 to 0.89 (average: 0.78). A path analysis of correlations between predictors suggests that solar wind and IMF parameters affect flux through intermediate processes such as ring current (Dst), AE, and wave activity. C1 [Simms, Laura E.; Engebretson, Mark J.] Augsburg Coll, Minneapolis, MN 55454 USA. [Pilipenko, Viacheslav] Inst Phys Earth, Moscow, Russia. [Reeves, Geoffrey D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Clilverd, Mark] British Antarctic Survey, Cambridge, England. RP Simms, LE (reprint author), Augsburg Coll, Minneapolis, MN 55454 USA. EM simmsl@augsburg.edu OI Reeves, Geoffrey/0000-0002-7985-8098 FU National Science Foundation [AGS-1264146] FX We thank Craig Rodger and Kyle Murphy for helpful discussions and comments on earlier drafts. We also thank the reviewers for their insightful comments. Relativistic electron and seed electron flux data were obtained from Los Alamos National Laboratory (LANL) geosynchronous energetic particle instruments (contact: G. D. Reeves). Satellite and ground-based ULF indices are available at https://www.dropbox.com/sh/uphhexbvn8407of/AACy_nEd7jt3JKtwDt_R6w70a or by request from the authors. Bz, V, N, P, and Kp, Dst, and AE indices are available from Goddard Space Flight Center Space Physics Data Facility at the OMNIWeb data website (http://omniweb.gsfc.nasa.gov/html/ow_data.html). This work was supported by National Science Foundation grant AGS-1264146 to Augsburg College. NR 87 TC 1 Z9 1 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2016 VL 121 IS 4 BP 3181 EP 3197 DI 10.1002/2016JA022414 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR5RO UT WOS:000379960300025 ER PT J AU Li, JX Bortnik, J Thorne, RM Li, W Ma, QL Baker, DN Reeves, GD Fennell, JF Spence, HE Kletzing, CA Kurth, WS Hospodarsky, GB Angelopoulos, V Blake, JB AF Li, Jinxing Bortnik, Jacob Thorne, Richard M. Li, Wen Ma, Qianli Baker, Daniel N. Reeves, Geoffrey D. Fennell, Joseph F. Spence, Harlan E. Kletzing, Craig A. Kurth, William S. Hospodarsky, George B. Angelopoulos, Vassilis Blake, J. Bernard. TI Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID PITCH-ANGLE DISTRIBUTIONS; ALLEN PROBES OBSERVATIONS; RADIATION-BELT ELECTRONS; RELATIVISTIC ELECTRONS; GEOMAGNETIC STORMS; INNER MAGNETOSPHERE; ENERGETIC PARTICLE; PLASMASPHERIC HISS; SLOT REGION; EVOLUTION AB The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6-3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions. C1 [Li, Jinxing; Bortnik, Jacob; Thorne, Richard M.; Li, Wen; Ma, Qianli] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. [Baker, Daniel N.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Reeves, Geoffrey D.] Los Alamos Natl Lab, Space Sci & Applicat Grp, Los Alamos, NM USA. [Fennell, Joseph F.; Blake, J. Bernard.] Aerosp Corp, Space Sci Applicat Lab, El Segundo, CA 90245 USA. [Spence, Harlan E.] Univ New Hampshire, Each Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Kletzing, Craig A.; Kurth, William S.; Hospodarsky, George B.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Angelopoulos, Vassilis] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA. [Angelopoulos, Vassilis] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90024 USA. RP Li, JX (reprint author), Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA 90095 USA. EM jinxing.li.87@gmail.com OI Ma, Qianli/0000-0001-5452-4756; Reeves, Geoffrey/0000-0002-7985-8098 FU EMFISIS [1001057397:01]; ECT [13-041]; NSF Geospace Environment Modeling grant [AGS-1103064]; NASA [NNX13AI61G, NNX11AR64G, NNX15AF61G, NNX15AI96G, NAS5-01072]; AFOSR [FA9550-15-1-0158]; JHU/APL [967399, 921647] FX The work was supported by the EMFISIS subaward 1001057397:01; the ECT subaward 13-041; NSF Geospace Environment Modeling grant AGS-1103064; NASA grants of NNX13AI61G, NNX11AR64G, NNX15AF61G, and NNX15AI96G; and the AFOSR grant of FA9550-15-1-0158. This work was also supported by JHU/APL contracts 967399 and 921647 under NASA's prime contract NAS5-01072. We acknowledge the Van Allen Probes data from the REPT and MagEIS instruments obtained from http://www.rbsp-ect.lanl.gov/data_pub/ and EMFISIS instrument obtained from https://emfisis.physics.uiowa.edu/data/index. We greatly appreciate the NOAA POES data obtained from http://satdat.ngdc.noaa.gov/sem/poes/data/ and the NOAA POES team for providing helpful advice. We also thank the World Data Center for Geomagnetism, Kyoto for providing SYM-H and AL indexes (http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html), and the Space Physics Data Facility at the NASA Goddard Space Flight Center for providing the OMNI2 data (ftp://spdf.gsfc.nasa.gov/pub/data/omni/omni_cdaweb/). We thank Z. Pu, L. Xie (Peking University), and B. Ni (Wuhan University) for their great discussions on this work. NR 53 TC 4 Z9 4 U1 1 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2016 VL 121 IS 4 BP 3212 EP 3222 DI 10.1002/2016JA022370 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR5RO UT WOS:000379960300027 ER PT J AU Zhao, H Li, X Baker, DN Claudepierre, SG Fennell, JF Blake, JB Larsen, BA Skoug, RM Funsten, HO Friedel, RHW Reeves, GD Spence, HE Mitchell, DG Lanzerotti, LJ AF Zhao, H. Li, X. Baker, D. N. Claudepierre, S. G. Fennell, J. F. Blake, J. B. Larsen, B. A. Skoug, R. M. Funsten, H. O. Friedel, R. H. W. Reeves, G. D. Spence, H. E. Mitchell, D. G. Lanzerotti, L. J. TI Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID RADIATION BELT; INNER MAGNETOSPHERE; MAGNETIC STORMS; SOLAR-WIND; AMPTE-CCE; RBSPICE INSTRUMENT; ENERGY CONTENT; ION; DST; PARTICLES AB Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, onemoderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to similar to 12% for the moderate storm and similar to 7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to similar to 30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk. C1 [Zhao, H.; Li, X.; Baker, D. N.] Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA. [Zhao, H.; Li, X.] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. [Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.] Aerosp Corp, Space Sci Dept, POB 92957, Los Angeles, CA 90009 USA. [Larsen, B. A.; Skoug, R. M.; Funsten, H. O.; Friedel, R. H. W.; Reeves, G. D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Larsen, B. A.; Friedel, R. H. W.; Reeves, G. D.] New Mexico Consortium, Los Alamos, NM USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Mitchell, D. G.] Johns Hopkins Univ, Appl Phys Lab, Space Dept, Laurel, MD USA. [Lanzerotti, L. J.] New Jersey Inst Technol, Ctr Solar Terr Res, Newark, NJ 07102 USA. RP Zhao, H (reprint author), Univ Colorado, Atmospher & Space Phys Lab, Campus Box 392, Boulder, CO 80309 USA.; Zhao, H (reprint author), Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA. EM hong.zhao@lasp.colorado.edu OI Reeves, Geoffrey/0000-0002-7985-8098 FU NSF [AGS 1131869]; NASA [NNH14AX18I, NAS5-01072]; NASA/Van Allen Probes ECT and EFW funding through JHU/APL [967399] FX The work at the University of Colorado was supported in part by NSF grant AGS 1131869 and NASA grant NNH14AX18I, and by NASA/Van Allen Probes ECT and EFW funding through JHU/APL contract 967399 under prime NASA contract NAS5-01072. Van Allen Probes HOPE, MagEIS, and REPT data used in this paper are available from the ECT Science Operations and Data Center (http://www.rbsp-ect.lanl.gov). Van Allen Probes RBSPICE data are available at http://rbspice.ftecs.com. We thank the World Data Center for Geomagnetism, Kyoto, for providing Dst and AE indices. NR 55 TC 5 Z9 5 U1 0 U2 1 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9380 EI 2169-9402 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD APR PY 2016 VL 121 IS 4 BP 3333 EP 3346 DI 10.1002/2016JA022358 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DR5RO UT WOS:000379960300035 ER PT J AU Corapcioglu, G Gulgun, MA Kisslinger, K Sturm, S Jha, SK Raj, R AF Corapcioglu, Gulcan Gulgun, Mehmet Ali Kisslinger, Kim Sturm, Saso Jha, Shikhar. K. Raj, Rishi TI Microstructure and microchemistry of flash sintered K0.5Na0.5NbO3 SO JOURNAL OF THE CERAMIC SOCIETY OF JAPAN LA English DT Article DE Flash sintering; TEM; STEM-EDX; Lead-free; Core-shell ID LEAD-FREE PIEZOCERAMICS; SODIUM NIOBATE CERAMICS; PIEZOELECTRIC PROPERTIES; GRAIN-BOUNDARIES; ELECTRIC-FIELD; CONDUCTIVITY; MECHANISM; ALUMINA AB Flash sintering experiments were performed, for the first time, on sodium potassium niobate (KNN) ceramics. A theoretical density of 94% was achieved in 30 s under 250 V/cm electric-field at 990 degrees C. These conditions are similar to 100 degrees C lower and faster than the conventional sintering conditions. Grains tended to grow after 30 s. flash sintering duration under constant electric-field. Detailed microstructural and chemical investigations of the sample showed that there was inhomogenous Na, K distribution and it resembles a core-shell structure where K is more in the shell and Na is more in the core region. The inhomogenous distribution of Na and K was correlated with the doubling of the unit cell within the grain along 002 direction. Compositional equilibrium is achieved after a heat treatment at 1000 degrees C for 4 h. The compositional variations appeared to have been linked to grain boundary melting during flash and consequent recrystallization as the sample cooled. (C) 2016 The Ceramic Society of Japan. All rights reserved. C1 [Corapcioglu, Gulcan; Gulgun, Mehmet Ali] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey. [Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Sturm, Saso] Jozef Stefan Inst, Nanostruct Mat, Ljubljana, Slovenia. [Jha, Shikhar. K.; Raj, Rishi] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. RP Corapcioglu, G (reprint author), Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey. EM gulcanc@sabanciuniv.edu FU Scientific and Technological Research Council of Turkey (TUBITAK); U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]; 2214/A Program [1059B141300914] FX This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with 2214/A Program under Grant 1059B141300914.; This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. NR 31 TC 4 Z9 4 U1 7 U2 14 PU CERAMIC SOC JAPAN-NIPPON SERAMIKKUSU KYOKAI PI TOKYO PA 22-17, HYAKUNIN-CHO 2-CHOME, SHINJUKU-KU, TOKYO, 169-0073, JAPAN SN 1882-0743 EI 1348-6535 J9 J CERAM SOC JPN JI J. Ceram. Soc. Jpn. PD APR PY 2016 VL 124 IS 4 BP 321 EP 328 DI 10.2109/jcersj2.15290 PG 8 WC Materials Science, Ceramics SC Materials Science GA DR0PT UT WOS:000379610100009 ER PT J AU Guttman, S Ocko, BM Deutsch, M Sloutskin, E AF Guttman, Shani Ocko, Benjamin M. Deutsch, Moshe Sloutskin, Eli TI From faceted vesicles to liquid icoshedra: Where topology and crystallography meet SO CURRENT OPINION IN COLLOID & INTERFACE SCIENCE LA English DT Review DE Emulsion; Topological defect; Spontaneous emulsification; Alkane; Surfactant ID SPONTANEOUS EMULSIFICATION; ELASTIC MEMBRANES; CHAIN MOLECULES; SURFACE; SEGREGATION; ICOSAHEDRA; INTERFACES; STABILITY; DYNAMICS; DROPLETS AB Many common amphiphiles spontaneously self-assemble in aqueous solutions, forming membranes and unilamellar vesicles. While the vesicular membranes are bilayers, with the hydrophilic moieties exposed to the solution, the structure formed by amphiphiles at the oil-water (i.e., alkane-water) interfaces, such as the surface of an oil droplet in water, is typically a monolayer. It has recently been demonstrated that these monolayers and bilayers may crystallize on cooling, with the thermodynamic conditions for this transition set by the geometry of the constituent molecules. While a planar hexagonal packing motif is particularly abundant in these crystals, a hexagonal lattice is incompatible with a closed-surface topology, such as a closed vesicle or the surface of a droplet. Thus, (at least) 12 five-fold defects form, giving rise to a complex interplay between the stretching and the bending energies of these two-dimensional crystals; in addition, a central role is also played by the interfacial tension. This interplay, part of which has been theoretically studied in the past, gives rise to a range of unexpected and counterintuitive phenomena, such as the recently-observed temperature-tunable formation of stable liquid polyhedra, and a tail growing and droplet-splitting akin to the spontaneous emulsification effect. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Guttman, Shani; Deutsch, Moshe; Sloutskin, Eli] Bar Ilan Univ, Dept Phys, IL-5290002 Ramat Gan, Israel. [Guttman, Shani; Deutsch, Moshe; Sloutskin, Eli] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel. [Ocko, Benjamin M.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Sloutskin, E (reprint author), Bar Ilan Univ, Dept Phys, IL-5290002 Ramat Gan, Israel.; Sloutskin, E (reprint author), Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-5290002 Ramat Gan, Israel. EM eli.sloutskin@biu.ac.il FU American Chemical Society Petroleum Research Fund [ACS PRF 54804-ND5]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0012704] FX We thank T. Zemb, D. C. Rapaport, S. A. Safran and Z. Sapir for discussions. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research under grant ACS PRF 54804-ND5. B.M.O. acknowledges support by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 53 TC 3 Z9 3 U1 7 U2 13 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1359-0294 EI 1879-0399 J9 CURR OPIN COLLOID IN JI Curr. Opin. Colloid Interface Sci. PD APR PY 2016 VL 22 BP 35 EP 40 DI 10.1016/j.cocis.2016.02.002 PG 6 WC Chemistry, Physical SC Chemistry GA DQ1LT UT WOS:000378963200007 ER PT J AU Hatch, A Chain, P Gans, J Vuyisich, M AF Hatch, A. Chain, P. Gans, J. Vuyisich, M. TI SPIDR-WEB: an NGS biotechnology platform for diagnostic and transcriptomic applications SO INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES LA English DT Meeting Abstract C1 [Hatch, A.; Chain, P.; Gans, J.; Vuyisich, M.] Los Alamos Natl Lab, Los Alamos, NM USA. OI Chain, Patrick/0000-0003-3949-3634 NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1201-9712 EI 1878-3511 J9 INT J INFECT DIS JI Int. J. Infect. Dis. PD APR PY 2016 VL 45 SU 1 MA 41.262 BP 194 EP 194 DI 10.1016/j.ijid.2016.02.449 PG 1 WC Infectious Diseases SC Infectious Diseases GA DK4GZ UT WOS:000374876700393 ER PT J AU Zhou, YL Wu, XC Ju, WM Chen, JM Wang, SQ Wang, HM Yuan, WP Black, TA Jassal, R Ibrom, A Han, SJ Yan, JH Margolis, H Roupsard, O Li, YN Zhao, FH Kiely, G Starr, G Pavelka, M Montagnani, L Wohlfahrt, G D'Odorico, P Cook, D Arain, MA Bonal, D Beringer, J Blanken, PD Loubet, B Leclerc, MY Matteucci, G Nagy, Z Olejnik, J U, KTP Varlagin, A AF Zhou, Yanlian Wu, Xiaocui Ju, Weimin Chen, Jing M. Wang, Shaoqiang Wang, Huimin Yuan, Wenping Black, T. Andrew Jassal, Rachhpal Ibrom, Andreas Han, Shijie Yan, Junhua Margolis, Hank Roupsard, Olivier Li, Yingnian Zhao, Fenghua Kiely, Gerard Starr, Gregory Pavelka, Marian Montagnani, Leonardo Wohlfahrt, Georg D'Odorico, Petra Cook, David Arain, M. Altaf Bonal, Damien Beringer, Jason Blanken, Peter D. Loubet, Benjamin Leclerc, Monique Y. Matteucci, Giorgio Nagy, Zoltan Olejnik, Janusz U, Kyaw Tha Paw Varlagin, Andrej TI Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID NET ECOSYSTEM EXCHANGE; PHOTOSYNTHETICALLY ACTIVE RADIATION; CARBON-DIOXIDE EXCHANGE; TERRESTRIAL PRIMARY PRODUCTION; EDDY COVARIANCE TECHNIQUE; WATER-VAPOR EXCHANGE; NCEP-NCAR REANALYSIS; LAND-SURFACE MODEL; DECIDUOUS FOREST; DIFFUSE-RADIATION AB Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (epsilon(msh)) was 2.63 to 4.59 times that of sunlit leaves (epsilon(msu)). Generally, the relationships of epsilon(msh) and epsilon(msu) with epsilon(max) were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR. C1 [Zhou, Yanlian] Nanjing Univ, Sch Geog & Oceanog Sci, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Nanjing 210008, Jiangsu, Peoples R China. [Zhou, Yanlian; Wu, Xiaocui; Chen, Jing M.] Joint Ctr Global Change Studies, Beijing, Peoples R China. [Wu, Xiaocui; Ju, Weimin; Chen, Jing M.] Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210008, Jiangsu, Peoples R China. [Ju, Weimin] Jiangsu Ctr Collaborat Innovat Geog Informat Res, Nanjing, Jiangsu, Peoples R China. [Wang, Shaoqiang; Wang, Huimin; Zhao, Fenghua] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Ecosyst Network Observat & Modeling, Beijing, Peoples R China. [Yuan, Wenping] Beijing Normal Univ, Future Earth Res Inst, State Key Lab Earth Surface Proc & Resource, Beijing 100875, Peoples R China. [Black, T. Andrew; Jassal, Rachhpal] Univ British Columbia, Fac Land & Food Syst, Vancouver, BC V5Z 1M9, Canada. [Ibrom, Andreas] Tech Univ Denmark DTU, Dept Environm Engn, Lyngby, Denmark. [Han, Shijie] Chinese Acad Sci, Inst Appl Ecol, Shenyang 110016, Peoples R China. [Yan, Junhua] Chinese Acad Sci, South China Bot Garden, Guangzhou, Guangdong, Peoples R China. [Margolis, Hank] Univ Laval, Fac Forestry Geog & Geomat, Ctr Forest Studies, Quebec City, PQ, Canada. [Roupsard, Olivier] SupAgro CIRAD INRA IRD, UMR Ecol Fonctionnelle & Biogeochim Sols & Agroec, CIRAD Persyst, Montpellier, France. [Roupsard, Olivier] CATIE Trop Agr Ctr Res & Higher Educ, Turrialba, Costa Rica. [Li, Yingnian] Chinese Acad Sci, Northwest Inst Plateau Biol, Xining, Peoples R China. [Kiely, Gerard] Univ Coll Cork, Civil & Environm Engn Dept, Environm ntal Res Inst, Cork, Ireland. [Starr, Gregory] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL USA. [Pavelka, Marian] Inst Syst Biol & Ecol AS CR, Lab Plants Ecol Physiol, Prague, Czech Republic. [Montagnani, Leonardo] Forest Serv, Autonomous Prov Bolzano, Bolzano, Italy. [Montagnani, Leonardo] Free Univ Bolzano, Fac Sci & Technol, Bolzano, Italy. [Wohlfahrt, Georg] Univ Innsbruck, Inst Ecol, A-6020 Innsbruck, Austria. [Wohlfahrt, Georg] European Acad Bolzano, Bolzano, Italy. [D'Odorico, Petra] Swiss Fed Inst Technol, Inst Agr Sci, Grassland Sci Grp, Zurich, Switzerland. [Cook, David] Argonne Natl Lab, Div Environm Sci, Atmospher & Climate Res Program, 9700 S Cass Ave, Argonne, IL 60439 USA. [Arain, M. Altaf] McMaster Univ, McMaster Ctr Climate Change, Hamilton, ON, Canada. [Arain, M. Altaf] McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada. [Bonal, Damien] INRA Nancy, UMR EEF, Nancy, France. [Beringer, Jason] Univ Western Australia, Sch Earth & Environm, Crawley, Australia. [Blanken, Peter D.] Univ Colorado, Dept Geog, Boulder, CO 80309 USA. [Loubet, Benjamin] Univ Paris Saclay, AgroParisTech, INRA, UMR ECOSYS, Thiverval Grignon, France. [Leclerc, Monique Y.] Univ Georgia, Coll Agr & Environm Sci, Dept Crop & Soil Sci, Athens, GA 30602 USA. [Matteucci, Giorgio] Univ Tuscia, Viea San Camillo Ed LellisViterbo, Viterbo, Italy. [Nagy, Zoltan] Szent Istvan Univ, MTA SZIE Plant Ecol Res Grp, Godollo, Hungary. [Olejnik, Janusz] Poznan Univ Life Sci, Meteorol Dept, Poznan, Poland. [Olejnik, Janusz] Global Change Res Ctr, Dept Matter & Energy Fluxes, Brno, Czech Republic. [U, Kyaw Tha Paw] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [U, Kyaw Tha Paw] MIT, Joint Program Sci & Policy Global Change, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Varlagin, Andrej] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia. RP Ju, WM (reprint author), Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210008, Jiangsu, Peoples R China.; Ju, WM (reprint author), Jiangsu Ctr Collaborat Innovat Geog Informat Res, Nanjing, Jiangsu, Peoples R China. EM juweimin@nju.edu.cn RI Montagnani, Leonardo/F-1837-2016; Pavelka, Marian/I-8754-2012; Wohlfahrt, Georg/D-2409-2009; zhao, fenghua/B-5235-2013; Beringer, Jason/B-8528-2008; OI Montagnani, Leonardo/0000-0003-2957-9071; Wohlfahrt, Georg/0000-0003-3080-6702; zhao, fenghua/0000-0003-1447-0460; Beringer, Jason/0000-0002-4619-8361; Ibrom, Andreas/0000-0002-1341-921X; Varlagin, Andrej/0000-0002-2549-5236; Matteucci, Giorgio/0000-0002-4790-9540 FU National Natural Science Foundation of China [41371070]; Special climate change fund [CCSF201412]; Chinese Academy of Sciences [XDA05050602-1]; Department of Energy's (DOE) National Institute for Climate Change Research (NICCR) [07-SC-NICCR-1059]; National Science Foundation(NSF) Division of Atmospheric and Geospace Sciences (AGS), Atmospheric Chemistry program [1233006]; NSF [EF1137306/MIT, 5710003122]; NSF through the Florida Coastal Everglades Long Term Ecological Research program [DBI-0620409, DEB-9910514]; AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program) [DE-FG02-04ER63917, DE-FG02-04ER63911]; CFCAS; NSERC; BIOCAP; Environment Canada; NRCan; CarboEuropeIP; FAO-GTOS-TCO; iLEAPS; Max Planck Institute for Biogeochemistry; National Science Foundation; University of Tuscia; Universite Laval and Environment Canada; U.S. Department of Energy FX This work was supported by National Natural Science Foundation of China (41371070), Special climate change fund (CCSF201412), and Chinese Academy of Sciences (XDA05050602-1). This research is based in part on support from the Department of Energy's (DOE) National Institute for Climate Change Research (NICCR) (07-SC-NICCR-1059), the National Science Foundation(NSF) Division of Atmospheric and Geospace Sciences (AGS), Atmospheric Chemistry program (1233006), NSF award EF1137306/MIT subaward 5710003122 to the University of California, Davis and NSF through the Florida Coastal Everglades Long Term Ecological Research program (DBI-0620409 and DEB-9910514). The data for this paper are available at FLUXNET data set (http://www.fluxdata.org/DataInfo). Data set: LaThuile. The data acquired by the FLUXNET community as part of the La Thuile collection and in particular by the following networks: AmeriFlux (U.S. Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, and USCCC. We appreciate the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Universite Laval and Environment Canada, and U.S. Department of Energy and the database development and technical support from Bekeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California-Berkeley, University of Virginia. NR 164 TC 2 Z9 2 U1 16 U2 28 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD APR PY 2016 VL 121 IS 4 BP 1045 EP 1072 DI 10.1002/2014JG002876 PG 28 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DP7TT UT WOS:000378702800002 ER PT J AU Noh, DH Ajo-Franklin, JB Kwon, TH Muhunthan, B AF Noh, Dong-Hwa Ajo-Franklin, Jonathan B. Kwon, Tae-Hyuk Muhunthan, Balasingam TI P and S wave responses of bacterial biopolymer formation in unconsolidated porous media SO JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES LA English DT Article ID LEUCONOSTOC-MESENTEROIDES GROWTH; ATOMIC-FORCE MICROSCOPE; GAS HYDRATE; IN-SITU; PROFILE MODIFICATION; SATURATED ROCKS; BENDER ELEMENT; BIOFILM GROWTH; ATTENUATION; DEXTRAN AB This study investigated the P and S wave responses and permeability reduction during bacterial biopolymer formation in unconsolidated porous media. Column experiments with fine sands, where the model bacteria Leuconostoc mesenteroides were stimulated to produce insoluble biopolymer, were conducted while monitoring changes in permeability and P and S wave responses. The bacterial biopolymer reduced the permeability by more than 1 order of magnitude, occupying similar to 10% pore volume after 38 days of growth. This substantial reduction was attributed to the bacterial biopolymer with complex internal structures accumulated at pore throats. S wave velocity (V-S) increased by more than similar to 50% during biopolymer accumulation; this indicated that the bacterial biopolymer caused a certain level of stiffening effect on shear modulus of the unconsolidated sediment matrix at low confining stress conditions. Whereas replacing pore water by insoluble biopolymer was observed to cause minimal changes in P wave velocity (V-P) due to the low elastic moduli of insoluble biopolymer. The spectral ratio analyses revealed that the biopolymer formation caused a similar to 50-80% increase in P wave attenuation (1/Q(P)) at the both ultrasonic and subultrasonic frequency ranges, at hundreds of kHz and tens of kHz, respectively, and a similar to 50-60% increase in S wave attenuation (1/Q(S)) in the frequency band of several kHz. Our results reveal that in situ biopolymer formation and the resulting permeability reduction can be effectively monitored by using P and S wave attenuation in the ultrasonic and subultrasonic frequency ranges. This suggests that field monitoring using seismic logging techniques, including time-lapse dipole sonic logging, may be possible. C1 [Noh, Dong-Hwa; Kwon, Tae-Hyuk] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon, South Korea. [Ajo-Franklin, Jonathan B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Geosci Div, Berkeley, CA 94720 USA. [Muhunthan, Balasingam] Washington State Univ, Dept Civil & Environm Engn, Pullman, WA 99164 USA. RP Kwon, TH (reprint author), Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, Daejeon, South Korea. EM t.kwon@kaist.ac.kr RI Ajo-Franklin, Jonathan/G-7169-2015; Kwon, Tae-Hyuk/F-2183-2013 FU Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT Future Planning [2014R1A1003419]; Korea Institute of Energy Technology Evaluation and Planning (KETEP); Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea [20152520100760] FX We would like to thank D. Ntarlagiannis and two anonymous reviewers for providing valuable comments and suggestions. All of the images and acquired data used in the figures can be requested by email (t.kwon@kaist.ac.kr). This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT Future Planning (2014R1A1003419) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (20152520100760). NR 54 TC 0 Z9 0 U1 2 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-8953 EI 2169-8961 J9 J GEOPHYS RES-BIOGEO JI J. Geophys. Res.-Biogeosci. PD APR PY 2016 VL 121 IS 4 BP 1158 EP 1177 DI 10.1002/2015JG003118 PG 20 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA DP7TT UT WOS:000378702800009 ER PT J AU Muckley, ES Nelson, AJ Jacobs, CB Ivanov, IN AF Muckley, Eric S. Nelson, Anthony J. Jacobs, Christopher B. Ivanov, Ilia N. TI Multimodal probing of oxygen and water interaction with metallic and semiconducting carbon nanotube networks under ultraviolet irradiation SO JOURNAL OF PHOTONICS FOR ENERGY LA English DT Article DE carbon; nanotubes; ultraviolet; water; oxygen; sorption; quartz crystal microbalance ID UV-IRRADIATION; C-60 FILMS; THIN-FILMS; GRAPHENE; ADSORPTION; PHOTODESORPTION; MOLECULES; PRISTINE; BUNDLES; SENSOR AB Interaction between ultraviolet (UV) light and carbon nanotube (CNT) networks plays a central role in gas adsorption, sensor sensitivity, and stability of CNT-based electronic devices. To determine the effect of UV light on sorption kinetics and resistive gas/vapor response of different CNT networks, films of semiconducting single-wall nanotubes (s-SWNTs), metallic single-wall nanotubes, and multiwall nanotubes were exposed to O-2 and H2O vapor in the dark and under UV irradiation. Changes in film resistance and mass were measured in situ. In the dark, resistance of metallic nanotube networks increases in the presence of O-2 and H2O, whereas resistance of s-SWNT networks decreases. UVirradiation decreases the resistance of metallic nanotube networks in the presence of O-2 and H2O and increases the gas/vapor sensitivity of s-SWNT networks by nearly a factor of 2 compared to metallic nanotube networks. s-SWNT networks show evidence of delamination from the gold-plated quartz crystal microbalance crystal, possibly due to preferential adsorption of O-2 and H2O on gold. UV irradiation increases the sensitivity of all CNT networks to O-2 and H2O by an order of magnitude, which demonstrates the importance of UV light for enhancing response and lowering detection limits in CNT-based gas/vapor sensors. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Muckley, Eric S.; Jacobs, Christopher B.; Ivanov, Ilia N.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. [Muckley, Eric S.] Bredesen Ctr Interdisciplinary Res & Grad Educ, 444 Greve Hall,821 Volunteer Blvd, Knoxville, TN 37996 USA. [Nelson, Anthony J.] Virginia Tech, Norris Hall,Room 333N,495 Old Turner St, Blacksburg, VA 24061 USA. RP Muckley, ES; Ivanov, IN (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA.; Muckley, ES (reprint author), Bredesen Ctr Interdisciplinary Res & Grad Educ, 444 Greve Hall,821 Volunteer Blvd, Knoxville, TN 37996 USA. EM muckleyes@ornl.gov; ivanovin@ornl.gov RI ivanov, ilia/D-3402-2015; OI ivanov, ilia/0000-0002-6726-2502; Jacobs, Christopher/0000-0001-7906-6368; Muckley, Eric/0000-0001-7114-5424 FU MWCNT [CNMS2014-324]; U.S. Department of Energy [DE-AC05-00OR22725]; Laboratory Directed Research and Development program FX The research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. The sample of MWCNT was provided through user-project CNMS2014-324. This article has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. CJ was supported by the Laboratory Directed Research and Development program. NR 35 TC 3 Z9 3 U1 3 U2 4 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1947-7988 J9 J PHOTON ENERGY JI J. Photonics Energy PD APR-JUN PY 2016 VL 6 IS 2 AR 025506 DI 10.1117/1.JPE.6.025506 PG 10 WC Materials Science, Multidisciplinary; Optics; Physics, Applied SC Materials Science; Optics; Physics GA DQ0JZ UT WOS:000378886600011 ER PT J AU Yartys, VA Lototskyy, M Linkov, V Grant, D Stuart, A Eriksen, J Denys, R Bowman, RC AF Yartys, Volodymyr A. Lototskyy, Mykhaylo Linkov, Vladimir Grant, David Stuart, Alastair Eriksen, Jon Denys, Roman Bowman, Robert C., Jr. TI Metal hydride hydrogen compression: recent advances and future prospects SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID SYSTEMS; STORAGE; INTERMETALLICS; ISOTOPES AB Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa. C1 [Yartys, Volodymyr A.] Inst Energy Technol, POB 40, N-2027 Kjeller, Norway. [Yartys, Volodymyr A.] Norwegian Univ Sci & Technol, N-7491 Trondheim, Norway. [Lototskyy, Mykhaylo; Linkov, Vladimir] Univ Western Cape, South African Inst Adv Mat Chem, Robert Sobukwe Rd,Private Bag X17, ZA-7535 Bellville, South Africa. [Grant, David; Stuart, Alastair] Univ Nottingham, Fac Engn, Nottingham NG7 2RD, England. [Eriksen, Jon; Denys, Roman] HYSTORSYS AS, POB 45, N-2027 Kjeller, Norway. [Bowman, Robert C., Jr.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Yartys, VA (reprint author), Inst Energy Technol, POB 40, N-2027 Kjeller, Norway.; Yartys, VA (reprint author), Norwegian Univ Sci & Technol, N-7491 Trondheim, Norway. EM volodymyr.yartys@ife.no; mlototskyy@uwc.ac.za; vlinkov@uwc.ac.za; David.Grant@nottingham.ac.uk; Alastair.Stuart@nottingham.ac.uk; jon.eriksen@hystorsys.no; roman.denys@hystorsys.no; rcbjr1967@gmail.com RI Lototskyy, Mykhaylo/H-7401-2013; OI Yartys, Volodymyr/0000-0003-4207-9127; Lototskyy, Mykhaylo/0000-0001-8387-2856; Grant, David/0000-0002-6786-7720; Bowman, Robert/0000-0002-2114-1713 FU Research Council of Norway [191106, 180344]; Nordic Energy Research (Project NORSTORE); NRF in South Africa [180344]; Eskom Holdings Ltd. from South Africa; Impala Platinum Ltd. from South Africa; Department of Science and Technology (DST) in South Africa via Hydrogen South Africa National Flagship Hydrogen and Fuel Cell Programme (HySA) [KP3-S02]; Engineering and Physical Science Research Council [EP/K021117/1]; Research Council of Norway; Akershus County Council; Transnova; Akershus Energy and Innovation Norway; Norsk Innovasjonskapital III AS (NIK III); Fuel Cell Technology Office of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy [DE-AC05-00OR22725] FX This work is a part of the activities within IEA Task 32 Hydrogen Based Energy Storage. We are grateful for the task coordinator Dr. Michael Hirscher and all the experts from the Task 32 for the fruitful collaboration. Volodymyr A. Yartys acknowledges the support from the Research Council of Norway (Project 191106 "Thermally Driven systems for Storage, Compression and Supply of Hydrogen Gas") and Nordic Energy Research (Project NORSTORE). Development and characterization of MH materials for hydrogen compression was done via Program of Research Cooperation between Norway and South Africa funded by Research Council of Norway and NRF in South Africa (Project No. 180344 was coordinated by V.A. Yartys and M.V. Lototskyy). Mykhaylo Lototskyy and Vladimir Linkov acknowledge the support of Eskom Holdings Ltd. and Impala Platinum Ltd. (both from South Africa) for the funding of the developments of MH hydrogen compressors at South African Institute for Advanced Materials Chemistry. Furthermore, ML and VL acknowledge the support from the Department of Science and Technology (DST) in South Africa via Hydrogen South Africa National Flagship Hydrogen and Fuel Cell Programme (HySA; Project KP3-S02). David Grant, Alastair Stuart would like to thank the Engineering and Physical Science Research Council for funding under EP/K021117/1 and Evangelos Gkanas, Kandavel Manickam and Gavin Walker (University of Nottingham) for their valuable support. HYSTORSYS AS would like to acknowledge the support and dedicated contribution from the Eurostars-programme and the HYPROCOM-partners HyGear B.V. and Air Products and Chemicals, Inc., Hynor Lillestrom AS for hosting the compressor test site and managing the HyNor-project, the founding bodies of the HyNor Lillestrom-project being the Research Council of Norway, Akershus County Council, Transnova, Akershus Energy and Innovation Norway, and last but not least-Norsk Innovasjonskapital III AS (NIK III) for their committed financing of the company. Robert C. Bowman, Jr. thanks the Fuel Cell Technology Office of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy for their support of his work at the Oak Ridge National Laboratory. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. VAY and ML appreciate help from Latchezar Bozoukov (LabTech Int. Co. Ltd.), Dyre Rostald (Raufoss Fuel Systems ASA), Prof. Jan Ketil Sollberg (Norwegian University of Science and Technology), as well as Jan Petter Maehlen, Nils Jorgen Svensen and Kristin Wickstrom (Institute for Energy Technology) received at various stages of the work on the metal hydride compression at Institute for Energy Technology. NR 34 TC 2 Z9 2 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD APR PY 2016 VL 122 IS 4 AR 415 DI 10.1007/s00339-016-9863-7 PG 18 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DP4VG UT WOS:000378494300002 ER PT J AU Milewicz, R Vanka, R Tuck, J Quinlan, D Pirkelbauer, P AF Milewicz, Reed Vanka, Rajesh Tuck, James Quinlan, Daniel Pirkelbauer, Peter TI Lightweight runtime checking of C programs with RTC SO COMPUTER LANGUAGES SYSTEMS & STRUCTURES LA English DT Article; Proceedings Paper CT 30th ACM Symposium on Applied Computing (SAC) CY APR 13-17, 2015 CL Salamanca, SPAIN SP ACM, ACM Special Interest Grp Appl Comp, Telefonica, IBM DE Runtime monitoring; Source code instrumentation; Static analysis; C; C plus ID SOFTWARE AB The C Programming Language is known for being an efficient language that can be compiled on almost any architecture and operating system. However the absence of dynamic safety checks and a relatively weak type system allows programmer oversights that are hard to spot. In this paper, we present RTC, a runtime monitoring tool that instruments unsafe code and monitors the program execution. RTC is built on top of the ROSE compiler infrastructure. RTC finds memory bugs and arithmetic overflows and underfiows, and run-time type violations. Most of the instrumentations are directly added to the source file and only require a minimal runtime system. As a result, the instrumented code remains portable. In tests against known error detection benchmarks, RTC found 98% of all memory related bugs and had zero false positives. In performance tests conducted with well known algorithms, such as binary search and MD5, we determined that our tool has an average run-time overhead rate of 9.7 x and memory overhead rate of 3.5 x. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Milewicz, Reed; Pirkelbauer, Peter] Univ Alabama Birmingham, Birmingham, AL 35233 USA. [Vanka, Rajesh] Matlab, San Jose, CA USA. [Tuck, James] N Carolina State Univ, Raleigh, NC 27695 USA. [Quinlan, Daniel] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Milewicz, R (reprint author), Univ Alabama Birmingham, Birmingham, AL 35233 USA. EM rmmilewi@cis.uab.edu; rvanka@ncsu.edu; jtuck@ncsu.edu; dquinlan@llnl.gov; pirkelbauer@uab.edu NR 33 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1477-8424 EI 1873-6866 J9 COMPUT LANG SYST STR JI Comput. Lang. Syst. Struct. PD APR PY 2016 VL 45 BP 191 EP 203 DI 10.1016/j.cl.2016.01.001 PG 13 WC Computer Science, Software Engineering SC Computer Science GA DP4JD UT WOS:000378461300011 ER PT J AU Banerjee, S Guedj, J Ribeiro, RM Moses, M Perelson, AS AF Banerjee, Soumya Guedj, Jeremie Ribeiro, Ruy M. Moses, Melanie Perelson, Alan S. TI Estimating biologically relevant parameters under uncertainty for experimental within-host murine West Nile virus infection SO JOURNAL OF THE ROYAL SOCIETY INTERFACE LA English DT Article DE West Nile virus infection; within-host viral dynamics; ordinary differential equation models; parameter estimation; biologically relevant parameters; basic reproductive number ID HEPATITIS-C VIRUS; DYNAMICS IN-VIVO; INFLUENZA-A INFECTIONS; VIRAL DYNAMICS; HIV-INFECTION; ENCEPHALITIS-VIRUS; CELL-CULTURE; T-CELLS; B-VIRUS; THERAPY AB West Nile virus (WNV) is an emerging pathogen that has decimated bird populations and caused severe outbreaks of viral encephalitis in humans. Currently, little is known about the within-host viral kinetics of WNV during infection. We developed mathematical models to describe viral replication, spread and host immune response in wild-type and immunocompromised mice. Our approach fits a target cell-limited model to viremia data from immunocompromised knockout mice and an adaptive immune response model to data from wild-type mice. Using this approach, we first estimate parameters governing viral production and viral spread in the host using simple models without immune responses. We then use these parameters in a more complex immune response model to characterize the dynamics of the humoral immune response. Despite substantial uncertainty in input parameters, our analysis generates relatively precise estimates of important viral characteristics that are composed of nonlinear combinations of model parameters: we estimate the mean within-host basic reproductive number, R-0, to be 2.3 (95% of values in the range 1.7-2.9); the mean infectious virion burst size to be 2.9 plaque-forming units (95% of values in the range 1.7-4.7); and the average number of cells infected per infectious virion to be between 0.3 and 0.99. Our analysis gives mechanistic insights into the dynamics of WNV infection and produces estimates of viral characteristics that are difficult to measure experimentally. These models are a first step towards a quantitative understanding of the timing and effectiveness of the humoral immune response in reducing host viremia and consequently the epidemic spread of WNV. C1 [Banerjee, Soumya; Moses, Melanie] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Moses, Melanie] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Banerjee, Soumya; Guedj, Jeremie; Ribeiro, Ruy M.; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. [Perelson, Alan S.] Santa Fe Inst, External Fac, Santa Fe, NM 87501 USA. [Guedj, Jeremie] Univ Paris Diderot, INSERM, UMR 738, Sorbonne Paris Cite, F-75018 Paris, France. RP Banerjee, S (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. EM neel.soumya@gmail.com RI Guedj, Jeremie/A-6842-2017; OI Guedj, Jeremie/0000-0002-5534-5482; Ribeiro, Ruy/0000-0002-3988-8241 FU National Institutes of Health [R01-AI104373, R01-AI028433, RR018754, R01-OD011095]; National Science Foundation [NSF EF 1038682]; NIH contract [HHSN272201000055C]; James S. McDonnell Foundation Complex Systems Scholar Award; US Department of Energy [DE-AC52-06NA25396] FX This work was supported by National Institutes of Health grants (R01-AI104373, R01-AI028433, RR018754 and R01-OD011095), a National Science Foundation grant (NSF EF 1038682), NIH contract HHSN272201000055C and a James S. McDonnell Foundation Complex Systems Scholar Award. Portions of this work were done under the auspices of the US Department of Energy under contract DE-AC52-06NA25396. NR 65 TC 1 Z9 1 U1 4 U2 4 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 1742-5689 EI 1742-5662 J9 J R SOC INTERFACE JI J. R. Soc. Interface PD APR 1 PY 2016 VL 13 IS 117 AR 20160130 DI 10.1098/rsif.2016.0130 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DP2IM UT WOS:000378311800013 ER PT J AU Slater, T Chen, YQ Auton, G Zaluzec, N Haigh, S AF Slater, Thomas Chen, Yiqiang Auton, Gregory Zaluzec, Nestor Haigh, Sarah TI X-Ray Absorption Correction for Quantitative Scanning Transmission Electron Microscopic Energy-Dispersive X-Ray Spectroscopy of Spherical Nanoparticles SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE XEDS; STEM; nanoparticles; quantification; absorption correction ID IRON-OXIDE NANOPARTICLES; MAGNETIC-PROPERTIES; CHEMICAL-ANALYSIS; THIN SPECIMENS AB A new method to perform X-ray absorption correction for spherical particles in quantitative energy-dispersive X-ray spectroscopy in the scanning transmission electron microscope is presented. An absorption correction factor is derived and simulated data is presented encompassing a range of X-ray absorption conditions. Theoretical calculations are compared with experimental data of X-ray counts from Au nanoparticles to verify the derived methodology. The effect of detector elevation angle is considered and a comparison with thin-film absorption correction is included. C1 [Slater, Thomas; Chen, Yiqiang; Zaluzec, Nestor; Haigh, Sarah] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England. [Auton, Gregory] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. [Zaluzec, Nestor] Argonne Natl Lab, Ctr Nanoscale Mat, Electron Microscopy Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Slater, T; Haigh, S (reprint author), Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England. EM thomas.slater-2@manchester.ac.uk; sarah.haigh@manchester.ac.uk OI Slater, Thomas/0000-0003-0372-1551 FU North-West Nanoscience Doctoral Training Center; EPSRC [EP/G03737X/1, EP/M010619]; Defence Threat Reduction Agency [HDTRA1-12-1-0013]; Electron Microscopy Center at the Center for Nanoscale Materials of Argonne National Laboratory; US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357]; HM Government (UK) [G2 80-200 S/TEM]; University of Manchester eScholar Data Repository FX T.J.A.S. and S.J.H. gratefully acknowledge support from the North-West Nanoscience Doctoral Training Center, EPSRC grant EP/G03737X/1, EPSRC grant EP/M010619, and the Defence Threat Reduction Agency grant number HDTRA1-12-1-0013. N.J.Z. also acknowledges support from the Electron Microscopy Center at the Center for Nanoscale Materials of Argonne National Laboratory, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357, as well as a visiting appointment in the School of Materials at the University of Manchester. The authors wish to acknowledge the support from HM Government (UK) for the provision of the funds for the FEI Titan G2 80-200 S/TEM associated with research capability of the Nuclear Advanced Manufacturing Research Center. The data associated with the paper is openly available from The University of Manchester eScholar Data Repository (http://dx.doi.org/10.15127/1.269245). The computer code associated with this paper is available from GitHub (http://dx.doi.org/10.5281/zenodo. 21030). NR 25 TC 0 Z9 0 U1 5 U2 10 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 EI 1435-8115 J9 MICROSC MICROANAL JI Microsc. microanal. PD APR PY 2016 VL 22 IS 2 BP 440 EP 447 DI 10.1017/S1431927616000064 PG 8 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA DP1UJ UT WOS:000378274600019 PM 27050041 ER PT J AU Schumacher, KM Chen, RLY Cohn, AEM Castaing, J AF Schumacher, Kathryn M. Chen, Richard Li-Yang Cohn, Amy E. M. Castaing, Jeremy TI Algorithm to Solve a Chance-Constrained Network Capacity Design Problem with Stochastic Demands and Finite Support SO NAVAL RESEARCH LOGISTICS LA English DT Article DE network design; chance constraints; greedy algorithm ID PROBABILISTIC CONSTRAINTS; DISCRETE-DISTRIBUTIONS; OPTIMIZATION; UNCERTAINTY; PROGRAMS; FLOWS; COST AB We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real-world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum-cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as a foundation, our primary focus is on a chance-constrained version of the problem in which alpha% of the scenarios must be feasible under the chosen capacity, where a is a user-defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut-sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches. (C) 2016 Wiley Periodicals, Inc. C1 [Schumacher, Kathryn M.] Gen Motors, Res & Dev, Warren, MI 48092 USA. [Chen, Richard Li-Yang] Sandia Natl Labs, Quantitat Modeling & Anal, Livermore, CA 94551 USA. [Cohn, Amy E. M.; Castaing, Jeremy] Univ Michigan, Ind & Operat Engn, Ann Arbor, MI 48109 USA. RP Schumacher, KM (reprint author), Gen Motors, Res & Dev, Warren, MI 48092 USA. EM kathryn.schumacher@gm.com FU NSF; Sandia National Laboratories' Laboratory-Directed Research; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by an NSF Graduate Student Fellowship. Sandia National Laboratories' Laboratory-Directed Research funded portions of this work. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned; subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 45 TC 0 Z9 0 U1 5 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0894-069X EI 1520-6750 J9 NAV RES LOG JI Nav. Res. Logist. PD APR PY 2016 VL 63 IS 3 BP 236 EP 246 DI 10.1002/nav.21685 PG 11 WC Operations Research & Management Science SC Operations Research & Management Science GA DO9ZI UT WOS:000378146400003 ER PT J AU Qian, SX Geng, YL Wang, Y Ling, JZ Hwang, YH Radermacher, R Takeuchi, I Cui, J AF Qian, Suxin Geng, Yunlong Wang, Yi Ling, Jiazhen Hwang, Yunho Radermacher, Reinhard Takeuchi, Ichiro Cui, Jun TI A review of elastocaloric cooling: Materials, cycles and, system integrations SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Review DE Shape memory alloys; Not-in-kind cooling; Nitinol; Martensitic transformation; Thermoelastic; Vapor compression; Refrigeration; Thermodynamics ID SHAPE-MEMORY ALLOYS; MARTENSITIC-TRANSFORMATION; THERMOELASTIC MARTENSITE; ADSORPTION CHILLER; ENTROPY CHANGE; THERMODYNAMICS; REFRIGERATION; HYSTERESIS; PSEUDOELASTICITY; STRAIN AB Elastocaloric cooling is a new alternative solid-state cooling technology undergoing early stage research and development. This study presents a comprehensive review of key issues related to achieving a successful elastocaloric cooling system. Fundamentals in elastocaloric materials are reviewed. The basic and advanced thermodynamic cycles are presented based on analogy from other solid-state cooling technologies. System integration issues are discussed to characterize the next generation elastocaloric cooling prototype. Knowledge acquired from the elastocaloric heat engines is provided as the basis for the design of cooling system configuration. Commercially available drivers enabling proper compression and tension are also presented. A few performance assessment indices are proposed and discussed as guidelines for design and evaluation of future elastocaloric cooling system. A brief summary of the up-to-date elastocaloric cooling prototypes is presented as well. (C) 2015 Elsevier Ltd and IIR. All rights reserved. C1 [Qian, Suxin; Ling, Jiazhen; Hwang, Yunho; Radermacher, Reinhard] Univ Maryland, Dept Mech Engn, Ctr Environm Energy Engn, 4164 Glenn L Martin Hall Bldg, College Pk, MD 20742 USA. [Qian, Suxin] Xi An Jiao Tong Univ, Dept Refrigerat & Cryogen Engn, Sch Energy & Power Engn, Xian 710049, Peoples R China. [Geng, Yunlong; Wang, Yi; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, 1242 Jeong H Kim Engn Bldg, College Pk, MD 20742 USA. [Cui, Jun] Iowa State Univ, Ames Lab, Ames, IA USA. [Cui, Jun] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA USA. RP Hwang, YH (reprint author), Univ Maryland, Dept Mech Engn, Ctr Environm Energy Engn, 4164 Glenn L Martin Hall Bldg, College Pk, MD 20742 USA. EM yhhwang@umd.edu FU U.S. DOE [ARPA-E DEAR0000131]; Center for Environmental Energy Engineering (CEEE) at the University of Maryland FX The authors gratefully acknowledge the support of this effort from the U.S. DOE (ARPA-E DEAR0000131) and the Center for Environmental Energy Engineering (CEEE) at the University of Maryland. NR 98 TC 10 Z9 10 U1 22 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 EI 1879-2081 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD APR PY 2016 VL 64 BP 1 EP 19 DI 10.1016/j.ijrefrig.2015.12.001 PG 19 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA DO5OX UT WOS:000377833600002 ER PT J AU Singh, N Khalid, S Bindu, R AF Singh, Navneet Khalid, S. Bindu, R. TI Local structural effects in Sr3NiRhO6 across magnetic transitions SO MATERIALS RESEARCH EXPRESS LA English DT Article DE quasi-one-dimensional system; x-ray absorption spectroscopy; strongly correlated electron systems ID CA3CO2O6; OXIDES AB We investigate the temperature dependence of the structural parameters of quasi-one-dimensional Sr3NiRhO6 across the region of magnetic phase transitions using Ni K-edge and Sr K-edge x-ray absorption spectroscopy (XAS). The features in the x-ray absorption near-edge region are identified using multiple scattering calculations. The temperature-dependent extended x-ray absorption fine structure (EXAFS) studies show that the setting of the intra-chain super exchange interaction starts at similar to 200 K, which is well above the first transition temperature (45 K) revealed by magnetic susceptibility studies. The onset of the inter-chain super-super exchange interaction appears to be at similar to 125 K. Interestingly, the role played by direct exchange interaction between the Ni 3d and Rh 4d states in stabilising the magnetic interaction is less significant. The present results shed light on the generic features exhibited by isostructural compounds and may help in identifying the magnetic exchange pathways useful for understanding the unusual properties exhibited by such compounds. C1 [Singh, Navneet; Bindu, R.] Indian Inst Technol Mandi, Sch Basic Sci, Kamand 175005, Himachal Prades, India. [Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Bindu, R (reprint author), Indian Inst Technol Mandi, Sch Basic Sci, Kamand 175005, Himachal Prades, India. EM bindu@iitmandi.ac.in FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886DE-SC0012704] FX The authors acknowledge EV Sampathkumaran, TIFR, India for introducing us to the problem, providing the sample and useful discussions. The use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No DE-AC02-98CH10886. The use of the National Synchrotron Light Source II, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 19 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2053-1591 J9 MATER RES EXPRESS JI Mater. Res. Express PD APR PY 2016 VL 3 IS 4 AR 046301 DI 10.1088/2053-1591/3/4/046301 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA DO5GL UT WOS:000377811500038 ER PT J AU Dahms, RN AF Dahms, Rainer N. TI Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; EQUATION-OF-STATE; FLAME FRONT PROPAGATION; SPARK-IGNITION ENGINE; SEMI-EMPIRICAL THEORY; SURFACE-TENSION; GRADIENT THEORY; HIGH-PRESSURE; FLUID INTERFACES; FREE-ENERGY AB A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper. Published by AIP Publishing. C1 [Dahms, Rainer N.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. RP Dahms, RN (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM Rndahms@sandia.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC04-94AL85000] FX This research was funded by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. This research was performed at the Combustion Research Facility, Sandia National Laboratories, Livermore, California. I thank Dr. Eric W. Lemmon of NIST, Boulder, CO and Dr. Ahren Jasper of Sandia National Laboratories, Livermore, CA for their assistance and suggestions during the development of the presented framework. I also thank Greg de Bord of Sandia National Laboratories, Livermore, CA for his technical support. NR 134 TC 0 Z9 0 U1 4 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD APR PY 2016 VL 28 IS 4 AR 042108 DI 10.1063/1.4946000 PG 44 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA DO3UZ UT WOS:000377709000013 ER PT J AU Mellors, R Yang, X White, JA Ramirez, A Wagoner, J Camp, DW AF Mellors, Robert Yang, X. White, J. A. Ramirez, A. Wagoner, J. Camp, D. W. TI Advanced geophysical underground coal gasification monitoring SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE Underground coal gasification; UCG; Electrical resistivity tomography; ERT; Interferometric synthetic aperture radar; InSAR ID COLLAPSE; SURFACE; INSAR AB Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods - seismic, electromagnetic, and remote sensing techniques - may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Active and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations. C1 [Mellors, Robert; Yang, X.; White, J. A.; Ramirez, A.; Wagoner, J.; Camp, D. W.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Mellors, R (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM mellors1@llnl.gov; yang25@llnl.gov; white230@llnl.gov; ramirez3@llnl.gov; wagoner1@llnl.gov; camp2@llnl.gov RI Mellors, Robert/K-7479-2014 OI Mellors, Robert/0000-0002-2723-5163 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX S. Hunter and W. Foxall provided useful input and the results benefitted greatly from discussions of the LLNL UCG group. We also appreciate the guidance and comments from two reviewers that greatly improved the paper. ALOS SAR data copyright JAXA [2007]. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Submission LLNL-JRNL-641052. NR 24 TC 0 Z9 0 U1 2 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 EI 1573-1596 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD APR PY 2016 VL 21 IS 4 SI SI BP 487 EP 500 DI 10.1007/s11027-014-9584-1 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA DO0MQ UT WOS:000377473400002 ER PT J AU Chang, KY Chen, CS Chiu, TY Huang, WB Chiu, TS AF Chang, Ke-Yang Chen, Chih-Shin Chiu, Tsan-Yu Huang, Wen-Bin Chiu, Tai-Sheng TI Argentine Shortfin Squid (Illex argentinus) Stock Assessment in the Southwest Atlantic Using Geostatistical Techniques SO TERRESTRIAL ATMOSPHERIC AND OCEANIC SCIENCES LA English DT Article DE Illex argentines; Abundance; Geostatistics; Squid fishery ID SHORT-FINNED SQUID; FALKLAND ISLANDS; LOLIGO-GAHI; OMMASTREPHES-BARTRAMII; SCOTTISH WATERS; FISHERIES; ABUNDANCE; CEPHALOPODA; MANAGEMENT; VARIABILITY AB The spatial and temporal variation in Argentine shortfin squid Illex argentinus abundance distribution was examined over its fishing phase on the Patagonia Shelf and shelf break, Southwest Atlantic (SWA), using Taiwanese jigger's fishery data. Geostatistical techniques were applied to characterize the spatial and temporal variability in the squid abundance and its relation to seawater temperature. The experimental semivariograms indicated that the abundance of Argentine shortfin squid was spatially structured in the SWA, with various abundance levels. The spherical models for all years, except 2010, explained most spatial information from the annual squid abundance distribution patterns. The linear regression analysis confirmed a negative relationship between the annual squid abundance and seawater temperature in the studied years. High squid abundance was estimated using Kriging interpolations along the 200-m isobath from 40 S to as far south as 50 S. The elliptical isopleth lines extended a longer distance from the 200-m isobath to the shelf side in high abundance years, such as 1999 and 2007. Scattered patches of low values were observed in the very low-abundance year of 2004. The integrated total squid biomass using Kriging interpolation upheld a healthy stock status in the SWA fishing ground. Our research showed that the geostatistical procedure is effective in describing the annual spatial pattern, and the parameters resulting from stationary modeling are valuable and useful in estimating the annual total biomass in the realized fishing ground. C1 [Chang, Ke-Yang; Chiu, Tai-Sheng] Natl Taiwan Univ, Dept Life Sci, Taipei 10764, Taiwan. [Chang, Ke-Yang] Council Agr, Fisheries Res Inst, Keelung, Taiwan. [Chen, Chih-Shin] Natl Taiwan Ocean Univ, Inst Marine Affairs & Resource Management, Keelung, Taiwan. [Chiu, Tsan-Yu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, Berkeley, CA 94720 USA. [Chiu, Tsan-Yu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Huang, Wen-Bin] Natl Dong Hwa Univ, Dept Nat Resources & Environm Studies, Hualien 97401, Taiwan. RP Chiu, TS (reprint author), Natl Taiwan Univ, Dept Life Sci, Taipei 10764, Taiwan. EM tschiu@ntu.edu.tw FU Fisheries Agency, Council of Agriculture [102AS-11.1.1-FA-F5]; Ministry of Science and Technology [NSC 102-2313-B-002-022] FX We thank the Overseas Fisheries Development Council of the Republic of China (Taiwan) for collecting fisheries logbooks, and the Fisheries Agency, Council of Agriculture for preparing the datasets. Financial support was funded in part by the Fisheries Agency, Council of Agriculture through grant No.: 102AS-11.1.1-FA-F5 (2), and the Ministry of Science and Technology through grant: No.: NSC 102-2313-B-002-022. NR 59 TC 0 Z9 0 U1 6 U2 6 PU CHINESE GEOSCIENCE UNION PI TAIPEI PA PO BOX 23-59, TAIPEI 10764, TAIWAN SN 1017-0839 EI 2311-7680 J9 TERR ATMOS OCEAN SCI JI Terr. Atmos. Ocean. Sci. PD APR PY 2016 VL 27 IS 2 BP 281 EP 292 DI 10.3319/TAO.2015.11.05.01(Oc) PG 12 WC Geosciences, Multidisciplinary; Meteorology & Atmospheric Sciences; Oceanography SC Geology; Meteorology & Atmospheric Sciences; Oceanography GA DO2WF UT WOS:000377641000010 ER PT J AU Moges, E Demissie, Y Li, HY AF Moges, Edom Demissie, Yonas Li, Hong-Yi TI Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty SO WATER RESOURCES RESEARCH LA English DT Article ID RAINFALL-RUNOFF MODELS; DYNAMIC IDENTIFIABILITY ANALYSIS; STREAMFLOW SIMULATION; PARAMETER-ESTIMATION; SPATIAL VARIABILITY; CALIBRATION; CATCHMENT; PREDICTION; ERROR; JOINT AB In most water resources applications, any particular model structure might be inadequate to capture the dynamic multiscale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integrate expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses were used to identify the presence of multiple dominant processes, and the adequacy of a single model, as well as to develop the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response. C1 [Moges, Edom; Demissie, Yonas] Washington State Univ, Dept Civil & Environm Engn, Richland, WA USA. [Li, Hong-Yi] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Moges, E (reprint author), Washington State Univ, Dept Civil & Environm Engn, Richland, WA USA. EM edom.moges@wsu.edu FU State of Washington Water Research Center [G11AP20113]; Office of Science of the U.S. Department of Energy Biological and Environmental Research as part of the Integrated Assessment Research Program; U.S. Department of Energy [DE-AC05-76RLO1830] FX The data used in this study are taken from the Model Parameter Estimation Experiment - MOPEX data page (http://www.nws.noaa.gov/oh/mopex/). This study was supported in part by the State of Washington Water Research Center under grant G11AP20113. H. Li was supported by the Office of Science of the U.S. Department of Energy Biological and Environmental Research as part of the Integrated Assessment Research Program. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RLO1830. NR 61 TC 0 Z9 0 U1 4 U2 6 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR PY 2016 VL 52 IS 4 BP 2551 EP 2570 DI 10.1002/2015WR018266 PG 20 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DN9XA UT WOS:000377432800011 ER PT J AU Vasco, DW Pride, SR Commer, M AF Vasco, D. W. Pride, Steven R. Commer, Michael TI Trajectory-based modeling of fluid transport in a medium with smoothly varying heterogeneity SO WATER RESOURCES RESEARCH LA English DT Article ID ANISOTROPIC POROUS-MEDIA; SOLUTE TRANSPORT; MACROSCOPIC DISPERSION; ASYMPTOTIC APPROACH; STOCHASTIC-ANALYSIS; REACTIVE TRANSPORT; FINITE-THICKNESS; FLOW; DIFFUSION; EQUATION AB Using an asymptotic methodology, valid in the presence of smoothly varying heterogeneity and prescribed boundaries, we derive a trajectory-based solution for tracer transport. The analysis produces a Hamilton-Jacobi partial differential equation for the phase of the propagating tracer front. The trajectories follow from the characteristic equations that are equivalent to the Hamilton-Jacobi equation. The paths are determined by the fluid velocity field, the total porosity, and the dispersion tensor. Due to their dependence upon the local hydrodynamic dispersion, they differ from conventional streamlines. This difference is borne out in numerical calculations for both uniform and dipole flow fields. In an application to the computational X-ray imaging of a saline tracer test, we illustrate that the trajectories may serve as the basis for a form of tracer tomography. In particular, we use the onset time of a change in attenuation for each volume element of the X-ray image as a measure of the arrival time of the saline tracer. The arrival times are used to image the spatial variation of the effective hydraulic conductivity within the laboratory sample. C1 [Vasco, D. W.; Pride, Steven R.; Commer, Michael] Univ Calif Berkeley, Energy Geosci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Vasco, DW (reprint author), Univ Calif Berkeley, Energy Geosci Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dwvasco@lbl.gov RI Vasco, Donald/G-3696-2015; Commer, Michael/G-3350-2015 OI Vasco, Donald/0000-0003-1210-8628; Commer, Michael/0000-0003-0015-9217 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division [DE-AC02-05CH11231] FX This material is based upon work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under contract DE-AC02-05CH11231. The X-ray data are available upon request from the corresponding author. NR 84 TC 0 Z9 0 U1 5 U2 14 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR PY 2016 VL 52 IS 4 BP 2618 EP 2646 DI 10.1002/2015WR017646 PG 29 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DN9XA UT WOS:000377432800015 ER PT J AU Newcomer, ME Hubbard, SS Fleckenstein, JH Maier, U Schmidt, C Thullner, M Ulrich, C Flipo, N Rubin, Y AF Newcomer, Michelle E. Hubbard, Susan S. Fleckenstein, Jan H. Maier, Ulrich Schmidt, Christian Thullner, Martin Ulrich, Craig Flipo, Nicolas Rubin, Yoram TI Simulating bioclogging effects on dynamic riverbed permeability and infiltration SO WATER RESOURCES RESEARCH LA English DT Article ID SATURATED POROUS-MEDIA; STREAMBED HYDRAULIC CONDUCTIVITY; MICROBIAL-GROWTH; PORE-SCALE; UNSATURATED SOILS; MODEL DEVELOPMENT; NETWORK MODEL; FLOW; TRANSPORT; GROUNDWATER AB Bioclogging in rivers can detrimentally impact aquifer recharge. This is particularly so in dry regions, where losing rivers are common, and where disconnection between surface water and groundwater (leading to the development of an unsaturated zone) can occur. Reduction in riverbed permeability due to biomass growth is a time-variable parameter that is often neglected, yet permeability reduction from bioclogging can introduce order of magnitude changes in seepage fluxes from rivers over short (i.e., monthly) timescales. To address the combined effects of bioclogging and disconnection on infiltration, we developed numerical representations of bioclogging processes within a one-dimensional, variably saturated flow model representing losing-connected and losing-disconnected rivers. We tested these formulations using a synthetic case study informed with biological data obtained from the Russian River, California, USA. Our findings show that modeled biomass growth reduced seepage for losing-connected and losing-disconnected rivers. However, for rivers undergoing disconnection, infiltration declines occurred only after the system was fully disconnected. Before full disconnection, biologically induced permeability declines were not significant enough to offset the infiltration gains introduced by disconnection. The two effects combine to lead to a characteristic infiltration curve where peak infiltration magnitude and timing is controlled by permeability declines relative to hydraulic gradient gains. Biomass growth was found to hasten the onset of full disconnection; a condition we term 'effective disconnection'. Our results show that river infiltration can respond dynamically to bioclogging and subsequent permeability declines that are highly dependent on river connection status. C1 [Newcomer, Michelle E.; Rubin, Yoram] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Newcomer, Michelle E.; Fleckenstein, Jan H.; Maier, Ulrich; Schmidt, Christian] UFZ Helmholtz Ctr Environm Res, Dept Hydrogeol, Leipzig, Germany. [Hubbard, Susan S.; Ulrich, Craig] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Thullner, Martin] UFZ Helmholtz Ctr Environm Res, Dept Environm Microbiol, Leipzig, Germany. [Flipo, Nicolas] PSL Res Univ, MINES ParisTech, Dept Geosci, Paris, France. RP Rubin, Y (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM rubin@ce.berkeley.edu RI Fleckenstein, Jan/B-1382-2014; Hubbard, Susan/E-9508-2010; Thullner, Martin/D-8752-2016; Schmidt, Christian/F-6709-2012 OI Fleckenstein, Jan/0000-0001-7213-9448; Thullner, Martin/0000-0001-9723-4601; Schmidt, Christian/0000-0001-9787-8327 FU University of California, Berkeley; Sonoma County Water Agency (SCWA); Roy G. Post Foundation Scholarship; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany FX This research was supported by the Jane Lewis Fellowship from the University of California, Berkeley, the Sonoma County Water Agency (SCWA), the Roy G. Post Foundation Scholarship, the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under award DE-AC02-05CH11231, and the UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany. We thank Marcus Trotta, Donald Seymour, John Mendoza, and Jay Jasperse of SCWA for their useful suggestions. We would also like to acknowledge the efforts of Markus Neubauer, Gerrit Laube, Falk Hebe, Changhong Wang, Brad Harken, Heather Savoy, Karina Cucchi, Jon Sege, and the anonymous reviewers for their helpful comments and ideas. Supporting information can be found in the online version of this article. NR 64 TC 0 Z9 0 U1 9 U2 16 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD APR PY 2016 VL 52 IS 4 BP 2883 EP 2900 DI 10.1002/2015WR018351 PG 18 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA DN9XA UT WOS:000377432800030 ER PT J AU Peters, JW Miller, AF Jones, AK King, PW Adams, MWW AF Peters, John W. Miller, Anne-Frances Jones, Anne K. King, Paul W. Adams, Michael W. W. TI Electron bifurcation SO CURRENT OPINION IN CHEMICAL BIOLOGY LA English DT Review ID Q-CYCLE; TRANSFERRING FLAVOPROTEIN; SULFIDE DEHYDROGENASE; OXIDATION-REDUCTION; PYROCOCCUS-FURIOSUS; ANAEROBIC-BACTERIA; COMPLEX; FERREDOXIN; SULFUR; POTENTIALS AB Electron bifurcation is the recently recognized third mechanism of biological energy conservation. It simultaneously couples exergonic and endergonic oxidation-reduction reactions to circumvent thermodynamic barriers and minimize free energy loss. Little is known about the details of how electron bifurcating enzymes function, but specifics are beginning to emerge for several bifurcating enzymes. To date, those characterized contain a collection of redox cofactors including flavins and iron-sulfur clusters. Here we discuss the current understanding of bifurcating enzymes and the mechanistic features required to reversibly partition multiple electrons from a single redox site into exergonic and endergonic electron transfer paths. C1 [Peters, John W.] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Miller, Anne-Frances] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Jones, Anne K.] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA. [King, Paul W.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. RP Peters, JW (reprint author), Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA.; Adams, MWW (reprint author), Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. EM john.peters@chemistry.montana.edu; adamsm@uga.edu RI King, Paul/D-9979-2011; OI King, Paul/0000-0001-5039-654X; Peters, John/0000-0001-9117-9568 FU Biological and Electron Transfer and Catalysis (BETCy) EFRC, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science [DE-SC0012518]; U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work is supported as part of the Biological and Electron Transfer and Catalysis (BETCy) EFRC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science (DE-SC0012518). P.W.K. was supported by the U.S. Department of Energy under contract no. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. We thank the entire BETCy team for helpful discussions. NR 25 TC 3 Z9 3 U1 13 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1367-5931 EI 1879-0402 J9 CURR OPIN CHEM BIOL JI Curr. Opin. Chem. Biol. PD APR PY 2016 VL 31 BP 146 EP 152 DI 10.1016/j.cbpa.2016.03.007 PG 7 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DN1NN UT WOS:000376832800020 PM 27016613 ER PT J AU Arini, A Cavallin, JE Berninger, JP Marfil-Vega, R Mills, M Villeneuve, DL Basu, N AF Arini, Adeline Cavallin, Jenna E. Berninger, Jason P. Marfil-Vega, Ruth Mills, Marc Villeneuve, Daniel L. Basu, Niladri TI In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern SO ENVIRONMENTAL POLLUTION LA English DT Article DE Wastewater; Neurochemistry; In vitro cell-free assay; Dopamine; GABA ID MONOAMINE-OXIDASE ACTIVITY; SEWAGE-TREATMENT PLANT; NEUROENDOCRINE DISRUPTION; ELLIPTIO-COMPLANATA; FISH; RECEPTORS; INDUCTION; MERCURY; STREAM; PHARMACEUTICALS AB Wastewater treatment plant (WWTP) effluents contain potentially neuroactive chemicals though few methods are available to screen for the presence of such agents. Here, two parallel approaches (in vivo and in vitro) were used to assess WWTP exposure-related changes to neurochemistry. First, fathead minnows (FHM, Pimephales promelas) were caged for four days along a WWTP discharge zone into the Maumee River (Ohio, USA). Grab water samples were collected and extracts obtained for the detection of alkylphenols, bisphenol A (BPA) and steroid hormones. Second, the extracts were then used as a source of in vitro exposure to brain tissues from FHM and four additional species relevant to the Great Lakes ecosystem (rainbow trout (RT), river otter (RO), bald eagle (BE) and human (HU)). The ability of the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine oxidase (MAO) and glutamine synthetase (GS)) and receptors (dopamine (D2) and N-methyl-D-aspartate receptor (NMDA)) involved in dopamine and glutamate-dependent neurotransmission were examined on brain homogenates. In vivo exposure of FHM led to significant decreases of NMDA receptor binding in females (24 -42%), and increases of MAO activity in males (2.8- to 3.2-fold). In vitro, alkylphenol-targeted extracts significantly inhibited D2 (66% in FHM) and NMDA (24-54% in HU and RT) receptor binding, and induced MAO activity in RT, RO, and BE brains. Steroid hormone-targeted extracts inhibited GS activity in all species except FHM. BPA-targeted extracts caused a MAO inhibition in FHM, RT and BE brains. Using both in vivo and in vitro approaches, this study shows that WWTP effluents contain agents that can interact with neurochemicals important in reproduction and other neurological functions. Additional work is needed to better resolve in vitro to in vivo extrapolations (IVIVE) as well as cross-species differences. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Arini, Adeline; Basu, Niladri] Univ Michigan, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA. [Arini, Adeline; Basu, Niladri] McGill Univ, Fac Agr & Environm Sci, Montreal, PQ, Canada. [Cavallin, Jenna E.] US EPA, ORISE Res Participat Program, Midcontinent Ecol Div, Duluth, MN USA. [Berninger, Jason P.] US Geol Survey, Columbia Environm Res Ctr, Columbia, MO USA. [Marfil-Vega, Ruth] Amer Water Innovat & Environm Stewardship, Belleville, IL USA. [Mills, Marc] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. [Villeneuve, Daniel L.] US EPA, Midcontinent Ecol Div, Duluth, MN USA. RP Basu, N (reprint author), 21,111 Lakeshore, Ste Anne De Bellevue, PQ H9X 3V9, Canada. EM nialdri.basu@mcgill.ca RI Berninger, Jason/O-2401-2016; Mills, Marc/C-3449-2017; OI Berninger, Jason/0000-0003-3045-7899; Mills, Marc/0000-0002-0169-3086; Basu, Niladri/0000-0002-2695-1037 FU U.S. EPA Science to Achieve Results (STAR) Program [R835170] FX This research was partly supported by funding from the U.S. EPA Science to Achieve Results (STAR) Program to NB (grant number R835170). Additional support for the caged fish exposures, sample collection, and logistics were provided by Evan P. Eid, Kyle E. Stevens, Megan N. Hughes, Michael D. Kahl, Kathleen M. Jensen, JoAnn Banda. We thank Dr. Johan F. Gottgens, University of Toledo for providing lab space for the fish necropsy. Thanks to Scott Weasel, Christine Harmon, Chris Middlebrough at the Toledo Bay View Wastewater Treatment Plant. The contents of this paper have been reviewed by the US EPA Office of Research and Development. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. The contents neither constitute, nor necessarily reflect, official US EPA policy. NR 41 TC 0 Z9 0 U1 13 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD APR PY 2016 VL 211 BP 9 EP 19 DI 10.1016/j.envpol.2015.12.028 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA DM9OY UT WOS:000376696800002 PM 26736051 ER PT J AU Nord, B Amara, A Refregier, A Gamper, L Gamper, L Hambrecht, B Chang, C Forero-Romero, JE Serrano, S Cunha, C Coles, O Nicola, A Busha, M Bauer, A Saunders, W Jouvel, S Kirk, D Wechsler, R AF Nord, B. Amara, A. Refregier, A. Gamper, La Gamper, Lu Hambrecht, B. Chang, C. Forero-Romero, J. E. Serrano, S. Cunha, C. Coles, O. Nicola, A. Busha, M. Bauer, A. Saunders, W. Jouvel, S. Kirk, D. Wechsler, R. TI SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys SO ASTRONOMY AND COMPUTING LA English DT Article DE Computation; Cosmology; Simulation; Spectroscopy; Extragalactic; Galaxies ID DIGITAL SKY SURVEY; MASS ASSEMBLY GAMA; DARK ENERGY SURVEY; LUMINOSITY FUNCTION; TILING ALGORITHM; GALAXY; SEPARATION AB The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherent data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). We discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally. (C) 2016 Elsevier B.V. All rights reserved. C1 [Nord, B.] Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. [Amara, A.; Refregier, A.; Gamper, La; Gamper, Lu; Hambrecht, B.; Chang, C.; Nicola, A.] ETH, Dept Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland. [Cunha, C.; Wechsler, R.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Wechsler, R.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd,MS 29, Menlo Pk, CA 94025 USA. [Cunha, C.; Busha, M.; Wechsler, R.] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, 452 Lomita Mall, Stanford, CA 94305 USA. [Forero-Romero, J. E.] Univ Los Andes, Dept Fis, Cra 1 18A-10,Edificio Ip, Bogota, Colombia. [Serrano, S.; Bauer, A.; Jouvel, S.] Fac Ciencias, IEEC CSIC, Inst Ciencies Espai, Campus UAB,Torre C5 Par 2, Barcelona 08193, Spain. [Saunders, W.] Australian Astron Observ, POB 915, N Ryde, NSW 1670, Australia. [Coles, O.; Kirk, D.] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England. RP Nord, B (reprint author), Fermilab Natl Accelerator Lab, Fermilab Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. EM nord@fnal.gov OI Forero-Romero, Jaime/0000-0002-2890-3725 NR 51 TC 1 Z9 1 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD APR PY 2016 VL 15 BP 1 EP 15 DI 10.1016/j.ascom.2016.02.001 PG 15 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA DM7LV UT WOS:000376543000001 ER PT J AU Salomon, R Valbuena-Carabana, M Teskey, R McGuire, MA Aubrey, D Gonzalez-Doncel, I Gil, L Rodriguez-Calcerrada, J AF Salomon, Roberto Valbuena-Carabana, Maria Teskey, Robert McGuire, Mary Anne Aubrey, Doug Gonzalez-Doncel, Ines Gil, Luis Rodriguez-Calcerrada, Jesus TI Seasonal and diel variation in xylem CO2 concentration and sap pH in sub-Mediterranean oak stems SO JOURNAL OF EXPERIMENTAL BOTANY LA English DT Article DE Oak (Quercus pyrenaica); sap pH; sap [CO2] misestimation; seasonal variation; stem respiration; summer drought; xylem CO2 transport ID QUERCUS-PYRENAICA WILLD.; VESSEL-ASSOCIATED CELLS; FAGUS-SYLVATICA L; CARBON-DIOXIDE; TREE STEMS; ECOSYSTEM RESPIRATION; NORWAY SPRUCE; CENTRAL SPAIN; BEECH FOREST; EFFLUX AB Since a substantial portion of respired CO2 remains within the stem, diel and seasonal trends in stem CO2 concentration ([CO2]) are of major interest in plant respiration and carbon budget research. However, continuous long-term stem [CO2] studies are scarce, and generally absent in Mediterranean climates. In this study, stem [CO2] was monitored every 15min together with stem and air temperature, sap flow, and soil water storage during a growing season in 16 stems of Quercus pyrenaica to elucidate the main drivers of stem [CO2] at different temporal scales. Fluctuations in sap pH were also assessed during two growing seasons to evaluate potential errors in estimates of the concentration of CO2 dissolved in xylem sap ([CO2*]) calculated using Henry's law. Stem temperature was the best predictor of stem [CO2] and explained more than 90% and 50% of the variability in stem [CO2] at diel and seasonal scales, respectively. Under dry conditions, soil water storage was the main driver of stem [CO2]. Likewise, the first rains after summer drought caused intense stem [CO2] pulses, suggesting enhanced stem and root respiration and increased resistance to radial CO2 diffusion. Sap flow played a secondary role in controlling stem [CO2] variations. We observed night-time sap pH acidification and progressive seasonal alkalinization. Thus, if the annual mean value of sap pH (measured at midday) was assumed to be constant, night-time sap [CO2*] was substantially overestimated (40%), and spring and autumn sap [CO2*] were misestimated by 25%. This work highlights that diel and seasonal variations in temperature, tree water availability, and sap pH substantially affect xylem [CO2] and sap [CO2*]. C1 [Salomon, Roberto; Valbuena-Carabana, Maria; Gonzalez-Doncel, Ines; Gil, Luis; Rodriguez-Calcerrada, Jesus] Tech Univ Madrid, ETS Forestry Engn, Forest Genet & Ecophysiol Res Grp, Ciudad Univ S-N, Madrid 28040, Spain. [Teskey, Robert; McGuire, Mary Anne; Aubrey, Doug] Univ Georgia, Warnell Sch Forestry & Nat Resources, 180 East Green St, Athens, GA 30602 USA. [Aubrey, Doug] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Rodriguez-Calcerrada, J (reprint author), Tech Univ Madrid, ETS Forestry Engn, Forest Genet & Ecophysiol Res Grp, Ciudad Univ S-N, Madrid 28040, Spain. EM jesus.rcalcerrada@upm.es OI Salomon, Roberto Luis/0000-0003-2674-1731 FU Comunidad de Madrid [CAM P2009/AMB-1668, P2013/MAE-2760]; Universidad Politecnica de Madrid; Spanish Ministry of Economy and Competitiveness FX We are grateful to Javier Dones for economic and logistic support. We also thank Elena Zafra, Matias Milleron, Cesar Otero, Guillermo Gonzalez, Paula Guzman, and Aida Rodriguez for their inestimable help in field work. This work was funded by the Comunidad de Madrid through projects CAM P2009/AMB-1668 and P2013/MAE-2760. RS was supported by a PhD scholarship from the Universidad Politecnica de Madrid. JR-C was supported by a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitiveness. NR 60 TC 0 Z9 0 U1 9 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0022-0957 EI 1460-2431 J9 J EXP BOT JI J. Exp. Bot. PD APR PY 2016 VL 67 IS 9 BP 2817 EP 2827 DI 10.1093/jxb/erw121 PG 11 WC Plant Sciences SC Plant Sciences GA DM5JV UT WOS:000376385800025 PM 27012285 ER PT J AU Carpenter, TS Lightstone, FC AF Carpenter, Timothy S. Lightstone, Felice C. TI An Electrostatic Funnel in the GABA-Binding Pathway SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID NICOTINIC ACETYLCHOLINE-RECEPTORS; POISSON-BOLTZMANN EQUATION; GAMMA-AMINOBUTYRIC-ACID; MOLECULAR-DYNAMICS; PROTEIN STRUCTURES; CORRELATION-ENERGY; COMPARATIVE MODELS; LIGAND-BINDING; DENTATE GYRUS; GRANULE CELLS AB The gamma-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site. C1 [Carpenter, Timothy S.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biosci & Biotechnol Div, Livermore, CA USA. RP Lightstone, FC (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Biosci & Biotechnol Div, Livermore, CA USA. EM lightstone1@llnl.gov FU Laboratory Directed Research and Development grant [13-LW-085]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-674894] FX This project was internally funded. We thank the Livermore Institutional Grand Challenge for the computing time. We thank the Laboratory Directed Research and Development grant 13-LW-085 for funding. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-674894. NR 66 TC 0 Z9 0 U1 3 U2 7 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD APR PY 2016 VL 12 IS 4 AR e1004831 DI 10.1371/journal.pcbi.1004831 PG 23 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA DM8BA UT WOS:000376584400013 PM 27119953 ER PT J AU Gillies, K Krone, SM Nagler, JJ Schultz, IR AF Gillies, Kendall Krone, Stephen M. Nagler, James J. Schultz, Irvin R. TI A Computational Model of the Rainbow Trout Hypothalamus-Pituitary-Ovary-Liver Axis SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID FOLLICLE-STIMULATING-HORMONE; GONADOTROPIN-RELEASING-HORMONE; SUBUNIT GENE-EXPRESSION; ACCELERATED PHOTOPERIOD REGIMES; SALMON ONCORHYNCHUS-KISUTCH; HEALTHY FEMALE VOLUNTEERS; REPRODUCTIVE-CYCLE; FISH GONADOTROPINS; FATHEAD MINNOW; OOCYTE GROWTH AB Reproduction in fishes and other vertebrates represents the timely coordination of many endocrine factors that culminate in the production of mature, viable gametes. In recent years there has been rapid growth in understanding fish reproductive biology, which has been motivated in part by recognition of the potential effects that climate change, habitat destruction and contaminant exposure can have on natural and cultured fish populations. New approaches to understanding the impacts of these stressors are being developed that require a systems biology approach with more biologically accurate and detailed mathematical models. We have developed a multi-scale mathematical model of the female rainbow trout hypothalamus-pituitary-ovary-liver axis to use as a tool to help understand the functioning of the system and for extrapolation of laboratory findings of stressor impacts on specific components of the axis. The model describes the essential endocrine components of the female rainbow trout reproductive axis. The model also describes the stage specific growth of maturing oocytes within the ovary and permits the presence of sub-populations of oocytes at different stages of development. Model formulation and parametrization was largely based on previously published in vivo and in vitro data in rainbow trout and new data on the synthesis of gonadotropins in the pituitary. Model predictions were validated against several previously published data sets for annual changes in gonadotropins and estradiol in rainbow trout. Estimates of select model parameters can be obtained from in vitro assays using either quantitative (direct estimation of rate constants) or qualitative (relative change from control values) approaches. This is an important aspect of mathematical models as in vitro, cell-based assays are expected to provide the bulk of experimental data for future risk assessments and will require quantitative physiological models to extrapolate across biological scales. C1 [Gillies, Kendall; Schultz, Irvin R.] Battelle Mem Inst, Pacific NW Natl Lab, Marine Sci Lab, Washington, DC USA. [Krone, Stephen M.] Univ Idaho, Dept Math, Moscow, ID 83843 USA. [Nagler, James J.] Univ Idaho, Dept Biol Sci, Moscow, ID 83843 USA. [Nagler, James J.] Ctr Reprod Biol, Moscow, ID USA. RP Schultz, IR (reprint author), Battelle Mem Inst, Pacific NW Natl Lab, Marine Sci Lab, Washington, DC USA. EM irv.schultz@pnnl.gov FU USEPA-Science [R835167]; National Science Foundation [DMS-054069377]; United States Environmental Protection Agency FX Financial support was provided by the USEPA-Science To Achieve Results award R835167 and National Science Foundation under grant DMS-054069377. Although the research described in this article has been funded in part by the United States Environmental Protection Agency it has not been subjected to the Agency's required peer and policy review and therefore, does not necessarily reflect the views of the Agency and no official endorsement should be inferred. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 66 TC 1 Z9 1 U1 4 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD APR PY 2016 VL 12 IS 4 AR e1004874 DI 10.1371/journal.pcbi.1004874 PG 27 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA DM8BA UT WOS:000376584400004 PM 27096735 ER PT J AU Upadhyay, AA Fleetwood, AD Adebali, O Finn, RD Zhulin, IB AF Upadhyay, Amit A. Fleetwood, Aaron D. Adebali, Ogun Finn, Robert D. Zhulin, Igor B. TI Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID MULTIPLE SEQUENCE ALIGNMENT; 2-COMPONENT SIGNAL-TRANSDUCTION; AMINO-ACID CHEMORECEPTORS; LIGAND-BINDING REGIONS; HISTIDINE KINASE; ESCHERICHIA-COLI; STRUCTURE PREDICTION; ASPARTATE RECEPTOR; ANALYSIS WORKBENCH; BACILLUS-SUBTILIS AB Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes. C1 [Upadhyay, Amit A.; Adebali, Ogun; Zhulin, Igor B.] Univ Tennessee, Oak Ridge Natl Lab, Genome Sci & Technol Grad Program, Knoxville, TN USA. [Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; Zhulin, Igor B.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; Zhulin, Igor B.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Finn, Robert D.] Wellcome Trust Genome Campus, European Bioinformat Inst, European Mol Biol Lab, Cambridge, England. RP Zhulin, IB (reprint author), Univ Tennessee, Oak Ridge Natl Lab, Genome Sci & Technol Grad Program, Knoxville, TN USA.; Zhulin, IB (reprint author), Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA.; Zhulin, IB (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. EM ijouline@utk.edu RI Adebali, Ogun/N-4159-2016; OI Adebali, Ogun/0000-0001-9213-4070; Finn, Robert/0000-0001-8626-2148 FU National Institute of General Medical Sciences [R01GM0722285] FX This work was supported in part by the National Institute of General Medical Sciences under award number R01GM0722285. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 79 TC 4 Z9 4 U1 4 U2 8 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-734X EI 1553-7358 J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD APR PY 2016 VL 12 IS 4 AR e1004862 DI 10.1371/journal.pcbi.1004862 PG 21 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA DM8BA UT WOS:000376584400017 PM 27049771 ER PT J AU Negishi, K Ishikawa, A Yamamoto, H Abdesselam, A Adachi, I Aihara, H Al Said, A Asner, DM Aulchenko, V Aushev, T Ayad, R Babu, V Badhrees, I Bahinipati, S Bakich, AM Barberio, E Biswal, J Bonvicini, G Bozek, A Bracko, M Browder, TE Chekelian, V Chen, A Cheon, BG Chilikin, K Chistov, R Cho, K Chobanova, V Choi, SK Choi, Y Cinabro, D Dalseno, J Danilov, M Dolezal, Z Drutskoy, A Dutta, D Eidelman, S Farhat, H Fast, JE Ferber, T Fulsom, BG Gaur, V Gabyshev, N Garmash, A Getzkow, D Gillard, R Glattauer, R Goh, YM Goldenzweig, P Golob, B Grzymkowska, O Haba, J Hara, T Hayasaka, K Hayashii, H He, XH Horiguchi, T Hou, WS Iijima, T Inami, K Itoh, R Iwasaki, Y Jaegle, I Joffe, D Joo, KK Julius, T Kang, KH Kawasaki, T Kiesling, C Kim, DY Kim, JB Kim, JH Kim, KT Kim, MJ Kim, SH Kim, YJ Kinoshita, K Ko, BR Kodys, P Korpar, S Krizan, P Krokovny, P Kumita, T Kuzmin, A Kwon, YJ Lange, JS Lee, IS Lewis, P Li, Y Gioi, LL Libby, J Liventsev, D Lukin, P Masuda, M Matvienko, D Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Moll, A Moon, HK Mussa, R Nakao, M Nanut, T Natkaniec, Z Nayak, M Nisar, NK Nishida, S Ogawa, S Okuno, S Onuki, Y Pakhlov, P Pakhlova, G Pal, B Park, CW Park, H Pedlar, TK Pesantez, L Pestotnik, R Petric, M Piilonen, LE Pulvermacher, C Ribezl, E Ritter, M Rostomyan, A Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Savinov, V Schneider, O Schnell, G Schwanda, C Senyo, K Sevior, ME Shebalin, V Shen, CP Shibata, TA Shiu, JG Simon, F Sohn, YS Solovieva, E Stanic, S Staric, M Steder, M Sumihama, M Sumiyoshi, T Tamponi, U Teramoto, Y Uchida, M Unno, Y Uno, S Urquijo, P Van Hulse, C Vanhoefer, P Varner, G Vinokurova, A Vossen, A Wagner, MN Wang, CH Wang, MZ Wang, P Wang, XL Watanabe, M Watanabe, Y Wehle, S Williams, KM Won, E Yamaoka, J Yamashita, Y Yashchenko, S Yelton, J Yook, Y Yuan, CZ Yusa, Y Zhang, ZP Zhilich, V Zhulanov, V Zupanc, A AF Negishi, K. Ishikawa, A. Yamamoto, H. Abdesselam, A. Adachi, I. Aihara, H. Al Said, A. Asner, D. M. Aulchenko, V. Aushev, T. Ayad, R. Babu, V. Badhrees, I. Bahinipati, S. Bakich, A. M. Barberio, E. Biswal, J. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Chekelian, V. Chen, A. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Chobanova, V. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Danilov, M. Dolezal, Z. Drutskoy, A. Dutta, D. Eidelman, S. Farhat, H. Fast, J. E. Ferber, T. Fulsom, B. G. Gaur, V. Gabyshev, N. Garmash, A. Getzkow, D. Gillard, R. Glattauer, R. Goh, Y. M. Goldenzweig, P. Golob, B. Grzymkowska, O. Haba, J. Hara, T. Hayasaka, K. Hayashii, H. He, X. H. Horiguchi, T. Hou, W. -S. Iijima, T. Inami, K. Itoh, R. Iwasaki, Y. Jaegle, I. Joffe, D. Joo, K. K. Julius, T. Kang, K. H. Kawasaki, T. Kiesling, C. Kim, D. Y. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kinoshita, K. Ko, B. R. Kodys, P. Korpar, S. Krizan, P. Krokovny, P. Kumita, T. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, I. S. Lewis, P. Li, Y. Gioi, L. Li Libby, J. Liventsev, D. Lukin, P. Masuda, M. Matvienko, D. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Moon, H. K. Mussa, R. Nakao, M. Nanut, T. Natkaniec, Z. Nayak, M. Nisar, N. K. Nishida, S. Ogawa, S. Okuno, S. Onuki, Y. Pakhlov, P. Pakhlova, G. Pal, B. Park, C. W. Park, H. Pedlar, T. K. Pesantez, L. Pestotnik, R. Petric, M. Piilonen, L. E. Pulvermacher, C. Ribezl, E. Ritter, M. Rostomyan, A. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Savinov, V. Schneider, O. Schnell, G. Schwanda, C. Senyo, K. Sevior, M. E. Shebalin, V. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Simon, F. Sohn, Y. -S. Solovieva, E. Stanic, S. Staric, M. Steder, M. Sumihama, M. Sumiyoshi, T. Tamponi, U. Teramoto, Y. Uchida, M. Unno, Y. Uno, S. Urquijo, P. Van Hulse, C. Vanhoefer, P. Varner, G. Vinokurova, A. Vossen, A. Wagner, M. N. Wang, C. H. Wang, M. -Z. Wang, P. Wang, X. L. Watanabe, M. Watanabe, Y. Wehle, S. Williams, K. M. Won, E. Yamaoka, J. Yamashita, Y. Yashchenko, S. Yelton, J. Yook, Y. Yuan, C. Z. Yusa, Y. Zhang, Z. P. Zhilich, V. Zhulanov, V. Zupanc, A. TI First model-independent Dalitz analysis of B-0 -> DK*(0), D -> K-S(0)pi(+)pi(-) decay SO PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS LA English DT Article ID CP-VIOLATION; PHI(3) MEASUREMENT; BELLE AB We report a measurement of the amplitude ratio r(S) of B-0 -> (DK)-K-0*(0) and B-0 -> (D) over bar K-0*(0) decays with a Dalitz analysis of D -> K-S(0)pi(+)pi(-) decays, for the first time using a model-independent method. We set an upper limit r(S) < 0.87 at the 68% confidence level, using the full data sample of 711 fb(-1) corresponding to 772 x 10(6) B<(B)over bar> pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB e(+)e(-) collider. This result is obtained from observables x(-) = +0.4(-0.6-0.1)(+1.0+0.0) +/- 0.0, y(-) = -0.6(-1.0-0.0)(+0.8+0.1) +/- 0.1, x(+) = +0.1(-0.4-0.1)(+0.7+0.0) +/- 0.1, and y(+) = +0.3(-0.8-0.1)(+0.5+0.0) +/- 0.1, where x(+/-) = r(S) cos(delta(S) +/- phi(3)), y(+/-) = r(S) sin(delta(S) +/- phi(3)), and phi(3) (delta(S)) is the weak (strong) phase difference between B-0 -> D0K*(0) and B-0 -> (D) over bar K-0*(0). C1 [Negishi, K.; Ishikawa, A.; Yamamoto, H.; Horiguchi, T.; Sanuki, T.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Abdesselam, A.; Al Said, A.; Ayad, R.; Badhrees, I.] Univ Tabuk, Dept Phys, Fac Sci, Tabuk 71451, Saudi Arabia. [Abdesselam, A.; Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Santelj, L.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Abdesselam, A.; Adachi, I.; Haba, J.; Hara, T.; Itoh, R.; Nakao, M.; Nishida, S.; Sakai, Y.; Uno, S.] SOKENDAI Grad Univ Adv Studies, Hayama 2400193, Japan. [Aihara, H.; Onuki, Y.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Al Said, A.] King Abdulaziz Univ, Dept Phys, Fac Sci, Jeddah 21589, Saudi Arabia. [Asner, D. M.; Fast, J. E.; Fulsom, B. G.; Yamaoka, J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Abdesselam, A.; Aulchenko, V.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Vinokurova, A.; Zhilich, V.; Zhulanov, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Aulchenko, V.; Eidelman, S.; Gabyshev, N.; Garmash, A.; Krokovny, P.; Kuzmin, A.; Lukin, P.; Matvienko, D.; Shebalin, V.; Vinokurova, A.; Zhilich, V.; Zhulanov, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Aushev, T.; Pakhlova, G.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Abdesselam, A.; Aushev, T.; Chilikin, K.; Chistov, R.; Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Babu, V.; Dutta, D.; Gaur, V.; Mohanty, G. B.; Nisar, N. K.; Sandilya, S.] Tata Inst Fundamental Res, Mumbai 400005, Maharashtra, India. [Badhrees, I.] King Abdulaziz City Sci & Technol, Riyadh 11442, Saudi Arabia. [Bahinipati, S.] Indian Inst Technol Bhubaneswar, Satya Nagar 751007, India. [Bakich, A. M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Barberio, E.; Julius, T.; Sevior, M. E.; Urquijo, P.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Abdesselam, A.; Biswal, J.; Bracko, M.; Golob, B.; Korpar, S.; Krizan, P.; Nanut, T.; Pestotnik, R.; Petric, M.; Ribezl, E.; Staric, M.; Zupanc, A.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Bozek, A.; Grzymkowska, O.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. Univ Maribor, SLO-2000 Maribor, Slovenia. [Browder, T. E.; Jaegle, I.; Lewis, P.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Abdesselam, A.; Chekelian, V.; Chobanova, V.; Dalseno, J.; Kiesling, C.; Gioi, L. Li; Moll, A.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Cheon, B. G.; Goh, Y. M.; Kim, S. H.; Lee, I. S.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Daejeon 305806, South Korea. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Choi, Y.; Park, C. W.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Dalseno, J.; Moll, A.; Simon, F.] Tech Univ Munich, Excellence Cluster Universe, D-85748 Garching, Germany. [Danilov, M.; Drutskoy, A.; Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Dolezal, Z.; Kodys, P.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Ferber, T.; Rostomyan, A.; Steder, M.; Wehle, S.; Yashchenko, S.] DESY, D-22607 Hamburg, Germany. [Getzkow, D.; Lange, J. S.; Wagner, M. N.] Univ Giessen, D-35392 Giessen, Germany. [Glattauer, R.; Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Goldenzweig, P.; Pulvermacher, C.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [He, X. H.] Peking Univ, Beijing 100871, Peoples R China. [Hou, W. -S.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Iijima, T.; Inami, K.; Sato, Y.] Nagoya Univ, Sch Sci, Nagoya, Aichi 4648602, Japan. [Joffe, D.] Kennesaw State Univ, Kennesaw, GA 30144 USA. [Joo, K. K.] Chonnam Natl Univ, Kwangju 660701, South Korea. [Kang, K. H.; Kim, M. J.; Park, H.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Kawasaki, T.; Miyata, H.; Watanabe, M.; Yusa, Y.] Niigata Univ, Niigata 9502181, Japan. [Kim, D. Y.] Soongsil Univ, Seoul 156743, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Moon, H. K.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Moon, H. K.; Won, E.] Korea Univ, Seoul 136713, South Korea. [Kinoshita, K.; Pal, B.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Kwon, Y. -J.; Sohn, Y. -S.; Yook, Y.] Yonsei Univ, Seoul 120749, South Korea. [Li, Y.; Liventsev, D.; Piilonen, L. E.; Wang, X. L.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Libby, J.; Nayak, M.] Indian Inst Technol Madras, Chennai 600036, Tamil Nadu, India. [Masuda, M.] Univ Tokyo, Res Inst, Tokyo 1130032, Japan. [Mussa, R.; Tamponi, U.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Pesantez, L.] Univ Bonn, D-53115 Bonn, Germany. [Savinov, V.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Schnell, G.] Basque Fdn Sci, IKERBASQUE, Bilbao 48013, Spain. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Stanic, S.] Univ Nova Gorica, Nova Gorica 5000, Slovenia. [Sumihama, M.] Gifu Univ, Gifu 5011193, Japan. [Tamponi, U.] Univ Turin, I-10124 Turin, Italy. [Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Vossen, A.] Indiana Univ, Bloomington, IN 47408 USA. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Wang, P.; Yuan, C. Z.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Yelton, J.] Univ Florida, Gainesville, FL 32611 USA. [Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. RP Negishi, K; Ishikawa, A; Yamamoto, H (reprint author), Tohoku Univ, Sendai, Miyagi 9808578, Japan. EM negishi@epx.phys.tohoku.ac.jp; akimasa@epx.phys.tohoku.ac.jp; yhitoshi@epx.phys.tohoku.ac.jp RI Aihara, Hiroaki/F-3854-2010; Danilov, Mikhail/C-5380-2014; Chistov, Ruslan/B-4893-2014; Drutskoy, Alexey/C-8833-2016; Mizuk, Roman/B-3751-2014; Pakhlova, Galina/C-5378-2014; Pakhlov, Pavel/K-2158-2013; Solovieva, Elena/B-2449-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Danilov, Mikhail/0000-0001-9227-5164; Chistov, Ruslan/0000-0003-1439-8390; Drutskoy, Alexey/0000-0003-4524-0422; Pakhlova, Galina/0000-0001-7518-3022; Pakhlov, Pavel/0000-0001-7426-4824; Solovieva, Elena/0000-0002-5735-4059 FU SCOAP FX Open Access funding: SCOAP3. NR 35 TC 0 Z9 0 U1 4 U2 12 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PD APR PY 2016 IS 4 AR 043C01 DI 10.1093/ptep/ptw030 PG 16 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA DM4YW UT WOS:000376354300006 ER PT J AU Florando, JN El-Dasher, BS Chen, CQ Swift, DC Barton, NR McNaney, JM Ramesh, KT Hemker, KJ Kumar, M AF Florando, Jeffrey N. El-Dasher, Bassem S. Chen, Changqiang Swift, Damian C. Barton, Nathan R. McNaney, James M. Ramesh, K. T. Hemker, Kevin J. Kumar, Mukul TI Effect of strain rate and dislocation density on the twinning behavior in tantalum SO AIP ADVANCES LA English DT Article ID GRAIN-SIZE; NANOCRYSTALLINE MATERIALS; TUNGSTEN ALLOYS; SINGLE-CRYSTALS; DEFORMATION; MOLYBDENUM; IRON AB The conditions which affect twinning in tantalum have been investigated across a range of strain rates and initial dislocation densities. Tantalum samples were subjected to a range of strain rates, from 10(-4)/s to 10(3)/s under uniaxial stress conditions, and under laser-induced shock-loading conditions. In this study, twinning was observed at 77K at strain rates from 1/s to 10(3)/s, and during laser-induced shock experiments. The effect of the initial dislocation density, which was imparted by deforming the material to different amounts of pre-strain, was also studied, and it was shown that twinning is suppressed after a given amount of pre-strain, even as the global stress continues to increase. These results indicate that the conditions for twinning cannot be represented solely by a critical global stress value, but are also dependent on the evolution of the dislocation density. In addition, the analysis shows that if twinning is initiated, the nucleated twins may continue to grow as a function of strain, even as the dislocation density continues to increase. (C) 2016 Author(s). C1 [Florando, Jeffrey N.; Swift, Damian C.; Barton, Nathan R.; McNaney, James M.; Kumar, Mukul] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. [El-Dasher, Bassem S.] TerraPower LLC, Bellevue, WA 98005 USA. [Chen, Changqiang] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA. [Ramesh, K. T.; Hemker, Kevin J.] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. RP Florando, JN (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM florando1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy, under Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The authors would like to thank Mary LeBlanc for the mechanical testing, Thomas LeGrange for the TEM, Barry Olsen for material processing, Edwin Sedillo for SEM operations, Jackson Go for sample preparation, and Ben Hammel, James Hawreliak, Amy Lazicki, and Laura Chen for assisting with the laser shock experiments. The authors would also like to acknowledge the assistance from the staff at the Jupiter and Trident Laser Facilities, both operated by the U.S. Department of Energy, under Lawrence Livermore National Laboratory (Contract DE-AC52-07NA27344), and Los Alamos National Laboratory (Contract DE-AC52-06NA25396), respectively. NR 24 TC 1 Z9 1 U1 7 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD APR PY 2016 VL 6 IS 4 AR 045120 DI 10.1063/1.4948528 PG 13 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DL7UH UT WOS:000375845100045 ER PT J AU Giunchi, G Turrioni, D Kashikhin, V Nguyen, H Barzi, E AF Giunchi, Giovanni Turrioni, Daniele Kashikhin, Vladimir Hogan Nguyen Barzi, Emanuela TI Feasibility Study of a MgB2 Superconducting Magnetic Cloak SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Infiltration process; magnetic cloaking; magnetic shielding; MgB2; mixture permeability ID INFILTRATION; FIELDS; TUBES AB The magnetic shielding capability of bulk MgB2 hollow cylinders can be fruitfully combined with an external paramagnetic sheath, to tailor the shape of the external magnetic flux lines. By appropriate selection of the external sheath permeability and thickness, it is possible to leave the magnetic flux lines unaltered by the shield (cloaking effect). Preliminary measurements have been performed at 4.2 K on shielding capability of bulk cylinders, which are subjected to axial and transversal magnetic fields up to 5 T. The cloaking conditions have been modeled to find the optimized thickness to realize the cloaking effect. The MgB2 material of the superconducting shield is also optimized to avoid low-temperature flux jumps, without losing its shielding capability. C1 [Giunchi, Giovanni] Via Teodosio 8, I-20131 Milan, Italy. [Turrioni, Daniele; Kashikhin, Vladimir; Hogan Nguyen; Barzi, Emanuela] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Giunchi, G (reprint author), Via Teodosio 8, I-20131 Milan, Italy. EM giovanni.giunchi@gmail.com FU FNAL [621102] FX GG acknowledges the FNAL Contract N. 621102 to manufacture MgB2 shielding tubes and Paolo Arosio and Rinaldo Gabardi of E.P.C. srl (Italy) for their support in the MgB2 samples preparation. NR 13 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD APR PY 2016 VL 26 IS 3 AR 8801005 DI 10.1109/TASC.2016.2539261 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DM2OO UT WOS:000376186300001 ER PT J AU Aad, G Abbott, B Abdallah, J Abdinov, O Aben, R Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Abreu, R Abulaiti, Y Acharya, BS Adamczyk, L Adams, DL Adelman, J Adomeit, S Adye, T Affolder, AA Agatonovic-Jovin, T Aguilar-Saavedra, JA Ahlen, SP Ahmadov, F Aielli, G Akerstedt, H Aring;kesson, TPA Akimoto, G Akimov, AV Alberghi, GL Albert, J Albrand, S Verzini, MJA Aleksa, M Aleksandrov, IN Alexa, C Alexander, G Alexopoulos, T Alhroob, M Alimonti, G Alio, L Alison, J Alkire, SP Allbrooke, BMM Allport, PP Aloisio, A Alonso, A Alonso, F Alpigiani, C Altheimer, A Gonzalez, BA Piqueras, DA Alviggi, MG Amadio, BT Amako, K Coutinho, YA Amelung, C Amidei, D Dos Santos, SPA Amorim, A Amoroso, S Amram, N Amundsen, G Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anders, JK Anderson, KJ Andreazza, A Andrei, V Angelidakis, S Angelozzi, I Anger, P Angerami, A Anghinolfi, F Anisenkov, AV Anjos, N Annovi, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Bella, LA Arabidze, G Arai, Y Araque, JP Arce, ATH Arduh, FA Arguin, JF Argyropoulos, S Arik, M Armbruster, AJ Arnaez, O Arnal, V Arnold, H Arratia, M Arslan, O Artamonov, A Artoni, G Asai, S Asbah, N Ashkenazi, A Aring;sman, B Asquith, L Assamagan, K Astalos, R Atkinson, M Atlay, NB Auerbach, B Augsten, K Aurousseau, M Avolio, G Axen, B Ayoub, MK Azuelos, G Baak, MA Baas, AE Bacci, C Bachacou, H Bachas, K Backes, M Backhaus, M Bagiacchi, P Bagnaia, P Bai, Y Bain, T Baines, JT Baker, OK Balek, P Balestri, T Balli, F Banas, E Banerjee, S Bannoura, AAE Bansil, HS Barak, L Barberio, EL Barberis, D Barbero, M Barillari, T Barisonzi, M Barklow, T Barlow, N Barnes, SL Barnett, BM Barnett, RM Barnovska, Z Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartos, P Basalaev, A Bassalat, A Basye, A Bates, RL Batista, SJ Batley, JR Battaglia, M Bauce, M Bauer, F Bawa, HS Beacham, JB Beattie, MD Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, M Becker, S Beckingham, M Becot, C Beddall, AJ Beddall, A Bednyakov, VA Bee, CP Beemster, LJ Beermann, TA Begel, M Behr, JK Belanger-Champagne, C Bell, WH Bella, G Bellagamba, L Bellerive, A Bellomo, M Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bender, M Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjamin, DP Bensinger, JR Bentvelsen, S Beresford, L Beretta, M Berge, D Kuutmann, EB Berger, N Berghaus, F Beringer, J Bernard, C Bernard, NR Bernius, C Bernlochner, FU Berry, T Berta, P Bertella, C Bertoli, G Bertolucci, F Bertsche, C Bertsche, D Besana, MI Besjes, GJ Bylund, OB Bessner, M Besson, N Betancourt, C Bethke, S Bevan, AJ Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Biglietti, M De Mendizabal, JB Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Black, CW Black, JE Black, KM Blackburn, D Blair, RE Blanchard, JB Blanco, JE Blazek, T Bloch, I Blocker, C Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Bock, C Boehler, M Bogaerts, JA Bogdanchikov, AG Bohm, C Boisvert, V Bold, T Boldea, V Boldyrev, AS Bomben, M Bona, M Boonekamp, M Borisov, A Borissov, G Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boudreau, J Bouffard, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozic, I Bracinik, J Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brendlinger, K Brennan, AJ Brenner, L Brenner, R Bressler, S Bristow, K Bristow, TM Britton, D Britzger, D Brochu, FM Brock, I Brock, R Bronner, J Brooijmans, G Brooks, T Brooks, WK Brosamer, J Brost, E Brown, J de Renstrom, PAB Bruncko, D Bruneliere, R Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Buchholz, P Buckley, AG Buda, SI Budagov, IA Buehrer, F Bugge, L Bugge, MK Bulekov, O Bullock, D Burckhart, H Burdin, S Burghgrave, B Burke, S Burmeister, I Busato, E Buscher, D Buscher, V Bussey, P Butler, JM Butt, AI Buttar, CM Butterworth, JM Butti, P Buttinger, W Buzatu, A Buzykaev, AR Urban, SC Caforio, D Cairo, VM Cakir, O Calafiura, P Calandri, A Calderini, G Calfayan, P Caloba, LP Calvet, D Calvet, S Toro, RC Camarda, S Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Campoverde, A Canale, V Canepa, A Bret, MC Cantero, J Cantrill, R Cao, T Garrido, MDMC Caprini, I Caprini, M Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, JR Carvalho, J Casadei, D Casado, MP Casolino, M Castaneda-Miranda, E Castelli, A Gimenez, VC Castro, NF Catastini, P Catinaccio, A Catmore, JR Cattai, A Caudron, J Cavaliere, V Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerio, BC Cerny, K Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cerv, M Cervelli, A Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chang, P Chapleau, B Chapman, JD Charlton, DG Chau, CC Barajas, CAC Cheatham, S Chegwidden, A Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, K Chen, L Chen, S Chen, X Chen, Y Cheng, HC Cheng, Y Cheplakov, A Cheremushkina, E El Mourslie, RC Chernyatin, V Cheu, E Chevalier, L Chiarella, V Childers, JT Chiodini, G Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choi, K Chouridou, S Chow, BKB Christodoulou, V Chromek-Burckhart, D Chu, ML Chudoba, J Chuinard, AJ Chwastowski, JJ Chytka, L Ciapetti, G Ciftci, AK Cinca, D Cindro, V Cioara, IA Ciocio, A Citron, ZH Ciubancan, M Clark, A Clark, BL Clark, PJ Clarke, RN Cleland, W Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Cole, B Cole, S Colijn, AP Collot, J Colombo, T Compostella, G Muino, PC Coniavitis, E Connell, SH Connelly, IA Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Cornelissen, T Corradi, M Corriveau, F Corso-Radu, A Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Cottin, G Cowan, G Cox, BE Cranmer, K Cree, G Crepe-Renaudin, S Crescioli, F Cribbs, WA Ortuzar, MC Cristinziani, M Croft, V Crosetti, G Donszelmann, TC Cummings, J Curatolo, M Cuthbert, C Czirr, H Czodrowski, P D'Auria, S D'Onofrio, M De Sousa, MJDS Da Via, C Dabrowski, W Dafinca, A Dai, T Dale, O Dallaire, F Dallapiccola, C Dam, M Dandoy, JR Dang, NP Daniells, AC Danninger, M Hoffmann, MD Dao, V Darbo, G Darmora, S Dassoulas, J Dattagupta, A Davey, W David, C Davidek, T Davies, E Davies, M Davison, P Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K De Asmundis, R De Castro, S De Cecco, S De Groot, N de Jong, P De la Torre, H De Lorenzi, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dearnaley, WJ Debbe, R Debenedetti, C Dedovich, DV Deigaard, I Del Peso, J Del Prete, T Delgove, D Deliot, F Delitzsch, CM Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Dell'Orso, M Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C DeMarco, DA Demers, S Demichev, M Demilly, A Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Deterre, C Deviveiros, PO Dewhurst, A Dhaliwal, S Di Ciaccio, A Di Ciaccio, L Di Domenico, A Di Donato, C Di Girolamo, A Di Girolamo, B Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Di Valentino, D Diaconu, C Diamond, M Dias, FA Diaz, MA Diehl, EB Dietrich, J Diglio, S Dimitrievska, A Dingfelder, J Dita, P Dita, S Dittus, F Djama, F Djobava, T Djuvsland, JI do Vale, MAB Dobos, D Dobre, M Doglioni, C Dohmae, T Dolejsi, J Dolezal, Z Dolgoshein, BA Donadelli, M Donati, S Dondero, P Donini, J Dopke, J Doria, A Dova, MT Doyle, AT Drechsler, E Dris, M Dubreuil, E Duchovni, E Duckeck, G Ducu, OA Duda, D Dudarev, A Duflot, L Duguid, L Duhrssen, M Dunford, M Yildiz, HD Duren, M Durglishvili, A Duschinger, D Dyndal, M Eckardt, C Ecker, KM Edgar, RC Edson, W Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Elliot, AA Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Enari, Y Endner, OC Endo, M Erdmann, J Ereditato, A Ernis, G Ernst, J Ernst, M Errede, S Ertel, E Escalier, M Esch, H Escobar, C Esposito, B Etienvre, AI Etzion, E Evans, H Ezhilov, A Fabbri, L Facini, G Fakhrutdinov, RM Falciano, S Falla, RJ Faltova, J Fang, Y Fanti, M Farbin, A Farilla, A Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Giannelli, MF Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Feigl, S Feligioni, L Feng, C Feng, EJ Feng, H Fenyuk, AB Martinez, PF Perez, SF Ferrando, J Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filipuzzi, M Filthaut, F Fincke-Keeler, M Finelli, KD Fiolhais, MCN Fiorini, L Firan, A Fischer, A Fischer, C Fischer, J Fisher, WC Fitzgerald, EA Flechl, M Fleck, I Fleischmann, P Fleischmann, S Fletcher, GT Fletcher, G Flick, T Floderus, A Castillo, LRF Flowerdew, MJ Formica, A Forti, A Fournier, D Fox, H Fracchia, S Francavilla, P Franchini, M Francis, D Franconi, L Franklin, M Fraternali, M Freeborn, D French, ST Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Gabrielli, A Gabrielli, A Gadatsch, S Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallop, BJ Gallus, P Galster, G Gan, KK Gao, J Gao, Y Gao, YS Walls, FMG Garberson, F Garcia, C Navarro, JEG Garcia-Sciveres, M Gardner, RW Garelli, N Garonne, V Gatti, C Gaudiello, A Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Geisler, MP Gemme, C Genest, MH Gentile, S George, M George, S Gerbaudo, D Gershon, A Ghazlane, H Giacobbe, B Giagu, S Giangiobbe, V Giannetti, P Gibbard, B Gibson, SM Gilchriese, M Gillam, TPS Gillberg, D Gilles, G Gingrich, DM Giokaris, N Giordani, MP Giorgi, FM Giorgi, FM Giraud, PF Giromini, P Giugni, D Giuliani, C Giulini, M Gjelsten, BK Gkaitatzis, S Gkialas, I Gkougkousis, EL Gladilin, LK Glasman, C Glatzer, J Glaysher, PCF Glazov, A Goblirsch-Kolb, M Goddard, JR Godlewski, J Goldfarb, S Golling, T Golubkov, D Gomes, A Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Gonzalez-Sevilla, S Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorini, B Gorini, E Gorisek, A Gornicki, E Goshaw, AT Gossling, C Gostkin, MI Goujdami, D Goussiou, AG Govender, N Grabas, HMX Graber, L Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramling, J Gramstad, E Grancagnolo, S Grassi, V Gratchev, V Gray, HM Graziani, E Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grillo, AA Grimm, K Grinstein, S Gris, P Grivaz, JF Grohs, JP Grohsjean, A Gross, E Grosse-Knetter, J Grossi, GC Grout, ZJ Guan, L Guenther, J Guescini, F Guest, D Gueta, O Guido, E Guillemin, T Guindon, S Gul, U Gumpert, C Guo, J Gupta, S Gutierrez, P Ortiz, NGG Gutschow, C Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haber, C Hadavand, HK Haddad, N Haefner, P Hagebock, S Hajduk, Z Hakobyan, H Haleem, M Haley, J Hall, D Halladjian, G Hallewell, GD Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamity, GN Hamnett, PG Han, L Hanagaki, K Hanawa, K Hance, M Hanke, P Hanna, R Hansen, JB Hansen, JD Hansen, MC Hansen, PH Hara, K Hard, AS Harenberg, T Hariri, F Harkusha, S Harrington, RD Harrison, PF Hartjes, F Hasegawa, M Hasegawa, S Hasegawa, Y Hasib, A Hassani, S Haug, S Hauser, R Hauswald, L Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayashi, T Hayden, D Hays, CP Hays, JM Hayward, HS Haywood, SJ Head, SJ Heck, T Hedberg, V Heelan, L Heim, S Heim, T Heinemann, B Heinrich, L Hejbal, J Helary, L Hellman, S Hellmich, D Helsens, C Henderson, J Henderson, RCW Heng, Y Hengler, C Henrichs, A Correia, AMH Henrot-Versille, S Herbert, GH Jimenez, YH Herrberg-Schubert, R Herten, G Hertenberger, R Hervas, L Hesketh, GG Hessey, NP Hetherly, JW Hickling, R Higon-Rodriguez, E Hill, E Hill, JC Hiller, KH Hillier, SJ Hinchliffe, I Hines, E Hinman, RR Hirose, M Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoenig, F Hohlfeld, M Hohn, D Holmes, TR Homann, M Hong, TM van Huysduynen, LH Hopkins, WH Horii, Y Horton, AJ Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hrabovsky, M Hristova, I Hrivnac, J Hryn'ova, T Hrynevich, A Hsu, C Hsu, PJ Hsu, SC Hu, D Hub, Q Hu, X Huang, Y Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hulsing, TA Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibragimov, I Iconomidou-Fayard, L Ideal, E Idrissi, Z Iengo, P Igonkina, O Iizawa, T Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Ilic, N Inamaru, Y Ince, T Ioannou, P Iodice, M Iordanidou, K Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ponce, JMI Iuppa, R Ivarsson, J Iwanski, W Iwasaki, H Izen, JM Izzo, V Jabbar, S Jackson, B Jackson, M Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, T Jakubek, J Jamin, DO Jana, DK Jansen, E Jansky, R Janssen, J Janus, M Jarlskog, G Javadov, N Javurek, T Jeanty, L Jejelava, J Jeng, GY Jennens, D Jenni, P Jentzsch, J Jeske, C Jezequel, S Ji, H Jia, J Jiang, Y Jiggins, S Pena, JJ Jin, S Jinaru, A Jinnouchi, O Joergensen, MD Johansson, P Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Jongmanns, J Jorge, PM Joshi, KD Jovicevic, J Ju, X Jung, CA Jussel, P Rozas, AJ Kaci, M Kaczmarska, A Kado, M Kagan, H Kagan, M Kahn, SJ Kajomovitz, E Kalderon, CW Kama, S Kamenshchikov, A Kanaya, N Kaneda, M Kaneti, S Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karakostas, K Karamaoun, A Karastathis, N Kareem, MJ Karnevskiy, M Karpov, SN Karpova, ZM Karthik, K Kartvelishvili, V Karyukhin, AN Kashif, L Kass, RD Kastanas, A Kataoka, Y Katre, A Katzy, J Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Kehoe, R Keller, JS Kempster, JJ Keoshkerian, H Kepka, O Kersevan, BP Kersten, S Keyes, RA Khalil-zada, F Khandanyan, H Khanov, A Kharlamov, AG Khoo, TJ Khovanskiy, V Khramov, E Khubua, J Kim, HY Kim, H Kim, SH Kim, YK Kimura, N Kind, M King, BT King, M King, RSB King, SB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kiss, F Kiuchi, K Kivernyk, O Kladiva, E Klein, MH Klein, M Klein, U Kleinknecht, K Klimek, P Klimentov, A Klingenberg, R Klinger, JA Klioutchnikova, T Kluge, EE Kluit, P Kluth, S Kneringer, E Knoops, EBFG Knue, A Kobayashi, A Kobayashi, D Kobayashi, T Kobel, M Kocian, M Kodys, P Koffas, T Koffeman, E Kogan, LA Kohlmann, S Kohout, Z Kohriki, T Koi, T Kolanoski, H Koletsou, I Komar, AA Komori, Y Kondo, T Kondrashova, N Koneke, K Konig, AC Konig, S Kono, T Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Kopke, L Kopp, AK Korcyl, K Kordas, K Korn, A Korol, AA Korolkov, I Korolkova, EV Kortner, O Kortner, S Kosek, T Kostyukhin, VV Kotov, VM Kotwal, A Kourkoumeli-Charalampidi, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kramarenko, VA Kramberger, G Krasnopevtsev, D Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Kretz, M Kretzschmar, J Kreutzfeldt, K Krieger, P Krizka, K Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumnack, N Krumshteyn, ZV Kruse, A Kruse, MC Kruskal, M Kubota, T Kucuk, H Kuday, S Kuehn, S Kugel, A Kuger, F Kuhl, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunigo, T Kupco, A Kurashige, H Kurochkin, YA Kurumida, R Kus, V Kuwertz, ES Kuze, M Kvita, J Kwan, T Kyriazopoulos, D La Rosa, A Navarro, JLL La Rotonda, L Lacasta, C Lacava, F Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Lambourne, L Lammers, S Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, JC Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Manghi, FL Lassnig, M Laurelli, P Lavrijsen, W Law, AT Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeBlanc, M LeCompte, T Ledroit-Guillon, F Lee, CA Lee, SC Lee, L Lefebvre, G Lefebvre, M Legger, F Leggett, C Lehan, A Miotto, GL Lei, X Leight, WA Leisos, A Leister, AG Leite, MAL Leitner, R Lellouch, D Lemmer, B Leney, KJC Lenz, T Lenzi, B Leone, R Leone, S Leonidopoulos, C Leontsinis, S Leroy, C Lester, CG Levchenko, M Leveque, J Levin, D Levinson, LJ Levy, M Lewis, A Leyko, AM Leyton, M Li, B Li, H Li, HL Li, L Li, L Li, S Li, Y Liang, Z Liao, H Liberti, B Liblong, A Lichard, P Lie, K Liebal, J Liebig, W Limbach, C Limosani, A Lin, SC Lin, TH Linde, F Lindquist, BE Linnemann, JT Lipeles, E Lipniacka, A Lisovyi, M Liss, TM Lissauer, D Lister, A Litke, AM Liu, B Liu, D Liu, J Liu, JB Liu, K Liu, L Liu, M Liu, M Liu, Y Livan, M Lleres, A Merino, JL Lloyd, SL Lo Sterzo, F Lobodzinska, E Loch, P Lockman, WS Loebinger, FK Loevschall-Jensen, AE Loginov, A Lohse, T Lohwasser, K Lokajicek, M Long, BA Long, JD Long, RE Looper, KA Lopes, L Mateos, DL Paredes, BL Paz, IL Lorenz, J Martinez, NL Losada, M Loscutoff, P Losel, PJ Lou, X Lounis, A Love, J Love, PA Lu, N Lubatti, HJ Luci, C Lucotte, A Luehring, F Lukas, W Luminari, L Lundberg, O Lund-Jensen, B Lynn, D Lysak, R Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macdonald, CM Miguens, JM Macina, D Madaffari, D Madar, R Maddocks, HJ Mader, WF Madsen, A Maeland, S Maeno, T Maevskiy, A Magradze, E Mahboubi, K Mahlstedt, J Maiani, C Maidantchik, C Maier, AA Maier, T Maio, A Majewski, S Makida, Y Makovec, N Malaescu, B Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, VM Malyukov, S Mamuzic, J Mancini, G Mandelli, B Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JM Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Mantifel, R Mantoani, M Mapelli, L March, L Marchiori, G Marcisovsky, M Marino, CP Marjanovic, M Marroquim, F Marsden, SP Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, TA Martin, VJ Latour, BMD Martinez, M Martin-Haugh, S Martoiu, VS Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massa, L Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mattig, P Mattmann, J Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazza, SM Mazzaferro, L Mc Goldrick, G Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA Mchedlidze, G McMahon, SJ McPherson, RA Medinnis, M Meehan, S Mehlhase, S Mehta, A Meier, K Meineck, C Meirose, B Garcia, BRM Meloni, F Mengarelli, A Menke, S Meoni, E Mercurio, KM Mergelmeyer, S Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Middleton, RP Miglioranzi, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Milesi, M Milic, A Miller, DW Mills, C Milov, A Milstead, DA Minaenko, AA Minami, Y Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mitani, T Mitrevski, J Mitsou, VA Miucci, A Miyagawa, PS Mjornmark, JU Moa, T Mochizuki, K Mohapatra, S Mohr, W Molander, S Moles-Valls, R Monig, K Monini, C Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Morange, N Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morinaga, M Morisbak, V Moritz, S Morley, AK Mornacchi, G Morris, JD Mortensen, SS Morton, A Morvaj, L Mosidze, M Moss, J Motohashi, K Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Muanza, S Mudd, RD Mueller, F Mueller, J Mueller, K Mueller, RSP Mueller, T Muenstermann, D Mullen, P Munwes, Y Quijada, JAM Murray, WJ Musheghyan, H Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagai, Y Nagano, K Nagarkar, A Nagasaka, Y Nagata, K Nagel, M Nagy, E Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Namasivayam, H Garcia, RFN Narayan, R Naumann, T Navarro, G Nayyar, R Neal, HA Nechaeva, PY Neep, TJ Nef, PD Negri, A Negrini, M Nektarijevic, S Nellist, C Nelson, A Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neves, RM Nevski, P Newman, PR Nguyen, DH Nickerson, RB Nicolaidou, R Nicquevert, B Nielsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolopoulos, K Nilsen, JK Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Nooney, T Norberg, S Nordberg, M Novgorodova, O Nowak, S Nozaki, M Nozka, L Ntekas, K Hanninger, GN Nunnemann, T Nurse, E Nuti, F O'Brien, BJ O'grady, F O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Obermann, T Ocariz, J Ochi, A Ochoa, I Ochoa-Ricoux, JP Oda, S Odaka, S Ogren, H Oh, A Oh, SH Ohm, CC Ohman, H Oide, H Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Pino, SAO Damazio, DO Garcia, EO Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Garzon, GOY Otono, H Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Oussoren, KP Ouyang, Q Ovcharova, A Owen, M Owen, RE Ozcan, VE Ozturk, N Pachal, K Pages, AP Aranda, CP Pagacova, M Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Palestini, S Palka, M Pallin, D Palma, A Pan, YB Panagiotopoulou, ES Pandini, CE Vazquez, JGP Pani, P Panitkin, S Pantea, D Paolozzi, L Papadopoulou, TD Papageorgiou, K Paramonov, A Hernandez, DP Parker, MA Parker, KA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passaggio, S Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, ND Pater, JR Pauly, T Pearce, J Pearson, B Pedersen, LE Pedersen, M Lopez, SP Pedro, R Peleganchuk, SV Pelikan, D Peng, H Penning, B Penwell, J Perepelitsa, DV Codina, EP Garcia-Estan, MTP Perini, L Pernegger, H Perrella, S Peschke, R Peshekhonov, VD Peters, K Peters, RFY Petersen, BA Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Pettersson, NE Pezoa, R Phillips, PW Piacquadio, G Pianori, E Picazio, A Piccaro, E Piccinini, M Pickering, MA Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinfold, JL Pingel, A Pinto, B Pires, S Pitt, M Pizio, C Plazak, L Pleier, MA Pleskot, V Plotnikova, E Plucinski, P Pluth, D Poettgen, R Poggioli, L Pohl, D Polesello, G Policicchio, A Polifka, R Polini, A Pollard, CS Polychronakos, V Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Pospisil, S Potamianos, K Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Pralavorio, P Pranko, A Prasad, S Prell, S Price, D Price, LE Primavera, M Prince, S Proissl, M Prokofiev, K Prokoshin, F Protopapadaki, E Protopopescu, S Proudfoot, J Przybycien, M Ptacek, E Puddu, D Pueschel, E Puldon, D Purohit, M Puzo, P Qian, J Qin, G Qin, Y Quadt, A Quarrie, DR Quayle, WB Queitsch-Maitland, M Quilty, D Raddum, S Radeka, V Radescu, V Radhakrishnan, SK Radloff, P Rados, P Ragusa, F Rahal, G Rajagopalan, S Rammensee, M Rangel-Smith, C Rauscher, F Rave, S Ravenscroft, T Raymond, M Read, AL Readioff, NP Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Rehnisch, L Reisin, H Relich, M Rembser, C Ren, H Renaud, A Rescigno, M Resconi, S Rezanova, OL Reznicek, P Rezvani, R Richter, R Richter, S Richter-Was, E Ricken, O Ridel, M Rieck, P Riegel, CJ Rieger, J Rijssenbeek, M Rimoldi, A Rinaldi, L Ristic, B Ritsch, E Riu, I Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A Roda, C Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Saez, SMR Adam, ER Rompotis, N Ronzani, M Roos, L Ros, E Rosati, S Rosbach, K Rose, P Rosendahl, PL Rosenthal, O Rossetti, V Rossi, E Rossi, LP Rosten, R Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Rud, VI Rudolph, C Rudolph, MS Ruhr, F Ruiz-Martinez, A Rurikova, Z Rusakovich, NA Ruschke, A Russell, HL Rutherfoord, JP Ruthmann, N Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sabato, G Sacerdoti, S Saddique, A Sadrozinski, HFW Sadykov, R Tehrani, FS Saimpert, M Sakamoto, H Sakurai, Y Salamanna, G Salamon, A Saleem, M Salek, D De Bruin, PHS Salihagic, D Salnikov, A Salt, J Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Sanchez, A Sanchez, J Martinez, VS Sandaker, H Sandbach, RL Sander, HG Sanders, MP Sandhoff, M Sandoval, C Sandstroem, R Sankey, DPC Sannino, M Sansoni, A Santoni, C Santonico, R Santos, H Castillo, IS Sapp, K Sapronov, A Saraiva, JG Sarrazin, B Sasaki, O Sasaki, Y Sato, K Sauvage, G Sauvan, E Savage, G Savard, P Sawyer, C Sawyer, L Saxon, J Sbarra, C Sbrizzi, A Scanlon, T Scannicchio, DA Scarcella, M Scarfone, V Schaarschmidt, J Schacht, P Schaefer, D Schaefer, R Schaeffer, J Schaepe, S Schaetzel, S Schafer, U Schaffer, AC Schaile, D Schamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Schiavi, C Schillo, C Schioppa, M Schlenker, S Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitt, S Schneider, B Schnellbach, YJ Schnoor, U Schoeffel, L Schoening, A Schoenrock, BD Schopf, E Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schramm, S Schreyer, M Schroeder, C Schuh, N Schultens, MJ Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwarz, TA Schwegler, P Schweiger, H Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scuri, F Scutti, F Searcy, J Sedov, G Sedykh, E Seema, P Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekhon, K Sekula, SJ Selbach, KE Seliverstov, DM Semprini-Cesari, N Serfon, C Serin, L Serkin, L Serre, T Sessa, M Seuster, R Severini, H Sfiligoj, T Sforza, F Sfyrla, A Shabalina, E Shamim, M Shan, LY Shang, R Shank, JT Shapiro, M Shatalov, PB Shaw, K Shaw, SM Shcherbakova, A Shehu, CY Sherwood, P Shi, L Shimizu, S Shimmin, CO Shimojima, M Shiyakova, M Shmeleva, A Saadi, DS Shochet, MJ Shojaii, S Shrestha, S Shulga, E Shupe, MA Shushkevich, S Sicho, P Sidiropoulou, O Sidorov, D Sidoti, A Siegert, F Sijacki, D Silva, J Silver, Y Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simon, D Simoniello, R Sinervo, P Sinev, NB Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinner, MB Skottowe, HP Skubic, P Slater, M Slavicek, T Slawinska, M Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, MNK Smith, RW Smizanska, M Smolek, K Snesarev, AA Snidero, G Snyder, S Sobie, R Socher, F Soffer, A Soh, DA Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Solodkov, AA Soloshenko, A Solovyanov, OV Solovyev, V Sommer, P Song, HY Soni, N Sood, A Sopczak, A Sopko, B Sopko, V Sorin, V Sosa, D Sosebee, M Sotiropoulou, CL Soualah, R Soueid, P Soukharev, AM South, D Sowden, BC Spagnolo, S Spalla, M Spano, F Spearman, WR Spettel, F Spighi, R Spigo, G Spiller, LA Spousta, M Spreitzer, T St Denis, RD Staerz, S Stahlman, J Stamen, R Stamm, S Stanecka, E Stanek, RW Stanescu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Stavina, P Steinberg, P Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoicea, G Stolte, P Stonjek, S Stradling, AR Straessner, A Stramaglia, ME Strandberg, J Strandberg, S Strandlie, A Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Stroynowski, R Strubig, A Stucci, SA Stugu, B Styles, NA Su, D Su, J Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, S Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, S Suzuki, Y Svatos, M Swedish, S Swiatlowski, M Sykora, I Sykora, T Ta, D Taccini, C Tackmann, K Taenzer, J Taffard, A Tafirout, R Taiblum, N Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, AA Tam, JYC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tannenwald, BB Tannoury, N Tapprogge, S Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tashiro, T Tassi, E Delgado, AT Tayalati, Y Taylor, FE Taylor, GN Taylor, W Teischinger, FA Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Teoh, JJ Tepel, F Terada, S Terashi, K Terron, J Terzo, S Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thomas, JP Thomas-Wilsker, J Thompson, EN Thompson, PD Thompson, RJ Thompson, AS Thomsen, LA Thomson, E Thomson, M Thun, RP Tibbetts, MJ Torres, RET Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisserant, S Todorov, T Todorova-Nova, S Tojo, J Tokar, S Tokushuku, K Tollefson, K Tolley, E Tomlinson, L Tomoto, M Tompkins, L Toms, K Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M Trovatelli, M True, P Truong, L Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiareshka, PV Tsionou, D Tsipolitis, G Tsirintanis, N Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsuno, S Tsybychev, D Tudorache, A Tudorache, V Tuna, AN Tupputi, SA Turchikhin, S Turecek, D Turra, R Turvey, AJ Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Uchida, K Ueda, I Ueno, R Ughetto, M Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Ungaro, FC Unno, Y Unverdorben, C Urban, J Urquijo, P Urrejola, P Usai, G Usanova, A Vacavant, L Vacek, V Vachon, B Valderanis, C Valencic, N Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van den Wollenberg, W Van der Deijl, PC van der Geer, R van der Graaf, H Van der Leeuw, R van Eldik, N van Gemmeren, P Van Nieuwkoop, J van Vulpen, I van Woerden, MC Vanadia, M Vandelli, W Vanguri, R Vaniachine, A Vannucci, F Vardanyan, G Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Veatch, J Veloce, LM Veloso, F Velz, T Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Venturini, A Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viazlo, O Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Vigne, R Villa, M Perez, MV Vilucchi, E Vincter, MG Vinogradov, VB Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, M Vokac, P Volpi, G Volpi, M von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorobev, K Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Vuillermet, R Vukotic, I Vykydal, Z Wagner, P Wagner, W Wahlberg, H Wahrmund, S Wakabayashi, J Walder, J Walker, R Walkowiak, W Wang, C Wang, F Wang, H Wang, H Wang, J Wang, J Wang, K Wang, R Wang, SM Wang, T Wang, X Wanotayaroj, C Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, BM Webb, S Weber, MS Weber, SW Webster, JS Weidberg, AR Weinert, B Weingarten, J Weiser, C Weits, H Wells, PS Wenaus, T Wengler, T Wenig, S Wermes, N Werner, M Werner, P Wessels, M Wetter, J Whalen, K Wharton, AM White, A White, MJ White, R White, S Whiteson, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wildauer, A Wilkens, HG Williams, HH Williams, S Willis, C Willocq, S Wilson, A Wilson, JA Wingerter-Seez, I Winklmeier, F Winter, BT Wittgen, M Wittkowski, J Wollstadt, SJ Wolter, MW Wolters, H Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wu, M Wu, M Wu, SL Wu, X Wu, Y Wyatt, TR Wynne, BM Xella, S Xu, D Xu, L Yabsley, B Yacoob, S Yakabe, R Yamada, M Yamaguchi, Y Yamamoto, A Yamamoto, S Yamanaka, T Yamauchi, K Yamazaki, Y Yan, Z Yang, H Yang, H Yang, Y Yao, L Yao, WM Yasu, Y Yatsenko, E Wong, KHY Ye, J Ye, S Yeletskikh, I Yen, AL Yildirim, E Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJS Youssef, S Yu, DR Yu, J Yu, JM Yu, J Yuan, L Yurkewicz, A Yusuff, I Zabinski, B Zaidan, R Zaitsev, AM Zalieckas, J Zaman, A Zambito, S Zanello, L Zanzi, D Zeitnitz, C Zeman, M Zemla, A Zengel, K Zenin, O Zenis, T Zerwas, D Zhang, D Zhang, F Zhang, J Zhang, L Zhang, R Zhang, X Zhang, Z Zhao, X Zhao, Y Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, C Zhou, L Zhou, L Zhou, N Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhukov, K Zibell, A Zieminska, D Zimine, NI Zimmermann, C Zimmermann, S Zinonos, Z Zinser, M Ziolkowski, M Zivkovic, L Zobernig, G Zoccoli, A zur Nedden, M Zurzolo, G Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdinov, O. Aben, R. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Abreu, R. Abulaiti, Y. Acharya, B. S. Adamczyk, L. Adams, D. L. Adelman, J. Adomeit, S. Adye, T. Affolder, A. A. Agatonovic-Jovin, T. Aguilar-Saavedra, J. A. Ahlen, S. P. Ahmadov, F. Aielli, G. Akerstedt, H. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alberghi, G. L. Albert, J. Albrand, S. Alconada Verzini, M. J. Aleksa, M. Aleksandrov, I. N. Alexa, C. Alexander, G. Alexopoulos, T. Alhroob, M. Alimonti, G. Alio, L. Alison, J. Alkire, S. P. Allbrooke, B. M. M. Allport, P. P. Aloisio, A. Alonso, A. Alonso, F. Alpigiani, C. Altheimer, A. Gonzalez, B. Alvarez Alvarez Piqueras, D. Alviggi, M. G. Amadio, B. T. Amako, K. Coutinho, Y. Amaral Amelung, C. Amidei, D. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Amundsen, G. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anders, J. K. Anderson, K. J. Andreazza, A. Andrei, V. Angelidakis, S. Angelozzi, I. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. V. Anjos, N. Annovi, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Bella, L. Aperio Arabidze, G. Arai, Y. Araque, J. P. Arce, A. T. H. Arduh, F. A. Arguin, J-F. Argyropoulos, S. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Arnold, H. Arratia, M. Arslan, O. Artamonov, A. Artoni, G. Asai, S. Asbah, N. Ashkenazi, A. Asman, B. Asquith, L. Assamagan, K. Astalos, R. Atkinson, M. Atlay, N. B. Auerbach, B. Augsten, K. Aurousseau, M. Avolio, G. Axen, B. Ayoub, M. K. Azuelos, G. Baak, M. A. Baas, A. E. Bacci, C. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Bagiacchi, P. Bagnaia, P. Bai, Y. Bain, T. Baines, J. T. Baker, O. K. Balek, P. Balestri, T. Balli, F. Banas, E. Banerjee, Sw. Bannoura, A. A. E. Bansil, H. S. Barak, L. Barberio, E. L. Barberis, D. Barbero, M. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnes, S. L. Barnett, B. M. Barnett, R. M. Barnovska, Z. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartos, P. Basalaev, A. Bassalat, A. Basye, A. Bates, R. L. Batista, S. J. Batley, J. R. Battaglia, M. Bauce, M. Bauer, F. Bawa, H. S. Beacham, J. B. Beattie, M. D. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, M. Becker, S. Beckingham, M. Becot, C. Beddall, A. J. Beddall, A. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Beermann, T. A. Begel, M. Behr, J. K. Belanger-Champagne, C. Bell, W. H. Bella, G. Bellagamba, L. Bellerive, A. Bellomo, M. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bender, M. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjamin, D. P. Bensinger, J. R. Bentvelsen, S. Beresford, L. Beretta, M. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Beringer, J. Bernard, C. Bernard, N. R. Bernius, C. Bernlochner, F. U. Berry, T. Berta, P. Bertella, C. Bertoli, G. Bertolucci, F. Bertsche, C. Bertsche, D. Besana, M. I. Besjes, G. J. Bylund, O. Bessidskaia Bessner, M. Besson, N. Betancourt, C. Bethke, S. Bevan, A. J. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Biglietti, M. De Mendizabal, J. Bilbao Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Black, C. W. Black, J. E. Black, K. M. Blackburn, D. Blair, R. E. Blanchard, J. -B. Blanco, J. E. Blazek, T. Bloch, I. Blocker, C. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Bock, C. Boehler, M. Bogaerts, J. A. Bogdanchikov, A. G. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Boldyrev, A. S. Bomben, M. Bona, M. Boonekamp, M. Borisov, A. Borissov, G. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boudreau, J. Bouffard, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozic, I. Bracinik, J. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brendlinger, K. Brennan, A. J. Brenner, L. Brenner, R. Bressler, S. Bristow, K. Bristow, T. M. Britton, D. Britzger, D. Brochu, F. M. Brock, I. Brock, R. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brosamer, J. Brost, E. Brown, J. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Buchholz, P. Buckley, A. G. Buda, S. I. Budagov, I. A. Buehrer, F. Bugge, L. Bugge, M. K. Bulekov, O. Bullock, D. Burckhart, H. Burdin, S. Burghgrave, B. Burke, S. Burmeister, I. Busato, E. Buescher, D. Buescher, V. Bussey, P. Butler, J. M. Butt, A. I. Buttar, C. M. Butterworth, J. M. Butti, P. Buttinger, W. Buzatu, A. Buzykaev, A. R. Cabrera Urban, S. Caforio, D. Cairo, V. M. Cakir, O. Calafiura, P. Calandri, A. Calderini, G. Calfayan, P. Caloba, L. P. Calvet, D. Calvet, S. Toro, R. Camacho Camarda, S. Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Campoverde, A. Canale, V. Canepa, A. Bret, M. Cano Cantero, J. Cantrill, R. Cao, T. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Casolino, M. Castaneda-Miranda, E. Castelli, A. Castillo Gimenez, V. Castro, N. F. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Caudron, J. Cavaliere, V. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerio, B. C. Cerny, K. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cerv, M. Cervelli, A. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chang, P. Chapleau, B. Chapman, J. D. Charlton, D. G. Chau, C. C. Barajas, C. A. Chavez Cheatham, S. Chegwidden, A. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, K. Chen, L. Chen, S. Chen, X. Chen, Y. Cheng, H. C. Cheng, Y. Cheplakov, A. Cheremushkina, E. Cherkaoui El Mourslie, R. Chernyatin, V. Cheu, E. Chevalier, L. Chiarella, V. Childers, J. T. Chiodini, G. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choi, K. Chouridou, S. Chow, B. K. B. Christodoulou, V. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Chuinard, A. J. Chwastowski, J. J. Chytka, L. Ciapetti, G. Ciftci, A. K. Cinca, D. Cindro, V. Cioara, I. A. Ciocio, A. Citron, Z. H. Ciubancan, M. Clark, A. Clark, B. L. Clark, P. J. Clarke, R. N. Cleland, W. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Cole, B. Cole, S. Colijn, A. P. Collot, J. Colombo, T. Compostella, G. Muino, P. Conde Coniavitis, E. Connell, S. H. Connelly, I. A. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cornelissen, T. Corradi, M. Corriveau, F. Corso-Radu, A. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Cottin, G. Cowan, G. Cox, B. E. Cranmer, K. Cree, G. Crepe-Renaudin, S. Crescioli, F. Cribbs, W. A. Ortuzar, M. Crispin Cristinziani, M. Croft, V. Crosetti, G. Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Cuthbert, C. Czirr, H. Czodrowski, P. D'Auria, S. D'Onofrio, M. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, W. Dafinca, A. Dai, T. Dale, O. Dallaire, F. Dallapiccola, C. Dam, M. Dandoy, J. R. Dang, N. P. Daniells, A. C. Danninger, M. Hoffmann, M. Dano Dao, V. Darbo, G. Darmora, S. Dassoulas, J. Dattagupta, A. Davey, W. David, C. Davidek, T. Davies, E. Davies, M. Davison, P. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. De Asmundis, R. De Castro, S. De Cecco, S. De Groot, N. de Jong, P. De la Torre, H. De Lorenzi, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dearnaley, W. J. Debbe, R. Debenedetti, C. Dedovich, D. V. Deigaard, I. Del Peso, J. Del Prete, T. Delgove, D. Deliot, F. Delitzsch, C. M. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Dell'Orso, M. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. DeMarco, D. A. Demers, S. Demichev, M. Demilly, A. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Deterre, C. Deviveiros, P. O. Dewhurst, A. Dhaliwal, S. Di Ciaccio, A. Di Ciaccio, L. Di Domenico, A. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Di Valentino, D. Diaconu, C. Diamond, M. Dias, F. A. Diaz, M. A. Diehl, E. B. Dietrich, J. Diglio, S. Dimitrievska, A. Dingfelder, J. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. Djuvsland, J. I. do Vale, M. A. B. Dobos, D. Dobre, M. Doglioni, C. Dohmae, T. Dolejsi, J. Dolezal, Z. Dolgoshein, B. A. Donadelli, M. Donati, S. Dondero, P. Donini, J. Dopke, J. Doria, A. Dova, M. T. Doyle, A. T. Drechsler, E. Dris, M. Dubreuil, E. Duchovni, E. Duckeck, G. Ducu, O. A. Duda, D. Dudarev, A. Duflot, L. Duguid, L. Duehrssen, M. Dunford, M. Yildiz, H. Duran Dueren, M. Durglishvili, A. Duschinger, D. Dyndal, M. Eckardt, C. Ecker, K. M. Edgar, R. C. Edson, W. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Elliot, A. A. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Enari, Y. Endner, O. C. Endo, M. Erdmann, J. Ereditato, A. Ernis, G. Ernst, J. Ernst, M. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Esposito, B. Etienvre, A. I. Etzion, E. Evans, H. Ezhilov, A. Fabbri, L. Facini, G. Fakhrutdinov, R. M. Falciano, S. Falla, R. J. Faltova, J. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Giannelli, M. Faucci Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Feigl, S. Feligioni, L. Feng, C. Feng, E. J. Feng, H. Fenyuk, A. B. Fernandez Martinez, P. Perez, S. Fernandez Ferrando, J. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filipuzzi, M. Filthaut, F. Fincke-Keeler, M. Finelli, K. D. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, A. Fischer, C. Fischer, J. Fisher, W. C. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleischmann, P. Fleischmann, S. Fletcher, G. T. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Flowerdew, M. J. Formica, A. Forti, A. Fournier, D. Fox, H. Fracchia, S. Francavilla, P. Franchini, M. Francis, D. Franconi, L. Franklin, M. Fraternali, M. Freeborn, D. French, S. T. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Gabrielli, A. Gabrielli, A. Gadatsch, S. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallop, B. J. Gallus, P. Galster, G. Gan, K. K. Gao, J. Gao, Y. Gao, Y. S. Walls, F. M. Garay Garberson, F. Garcia, C. Garcia Navarro, J. E. Garcia-Sciveres, M. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudiello, A. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Geisler, M. P. Gemme, C. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gershon, A. Ghazlane, H. Giacobbe, B. Giagu, S. Giangiobbe, V. Giannetti, P. Gibbard, B. Gibson, S. M. Gilchriese, M. Gillam, T. P. S. Gillberg, D. Gilles, G. Gingrich, D. M. Giokaris, N. Giordani, M. P. Giorgi, F. M. Giorgi, F. M. Giraud, P. F. Giromini, P. Giugni, D. Giuliani, C. Giulini, M. Gjelsten, B. K. Gkaitatzis, S. Gkialas, I. Gkougkousis, E. L. Gladilin, L. K. Glasman, C. Glatzer, J. Glaysher, P. C. F. Glazov, A. Goblirsch-Kolb, M. Goddard, J. R. Godlewski, J. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez-Sevilla, S. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Goshaw, A. T. Goessling, C. Gostkin, M. I. Goujdami, D. Goussiou, A. G. Govender, N. Grabas, H. M. X. Graber, L. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramling, J. Gramstad, E. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Graziani, E. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grivaz, J. -F. Grohs, J. P. Grohsjean, A. Gross, E. Grosse-Knetter, J. Grossi, G. C. Grout, Z. J. Guan, L. Guenther, J. Guescini, F. Guest, D. Gueta, O. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gumpert, C. Guo, J. Gupta, S. Gutierrez, P. Ortiz, N. G. Gutierrez Gutschow, C. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haber, C. Hadavand, H. K. Haddad, N. Haefner, P. Hageboeck, S. Hajduk, Z. Hakobyan, H. Haleem, M. Haley, J. Hall, D. Halladjian, G. Hallewell, G. D. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamity, G. N. Hamnett, P. G. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Hanke, P. Hanna, R. Hansen, J. B. Hansen, J. D. Hansen, M. C. Hansen, P. H. Hara, K. Hard, A. S. Harenberg, T. Hariri, F. Harkusha, S. Harrington, R. D. Harrison, P. F. Hartjes, F. Hasegawa, M. Hasegawa, S. Hasegawa, Y. Hasib, A. Hassani, S. Haug, S. Hauser, R. Hauswald, L. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayashi, T. Hayden, D. Hays, C. P. Hays, J. M. Hayward, H. S. Haywood, S. J. Head, S. J. Heck, T. Hedberg, V. Heelan, L. Heim, S. Heim, T. Heinemann, B. Heinrich, L. Hejbal, J. Helary, L. Hellman, S. Hellmich, D. Helsens, C. Henderson, J. Henderson, R. C. W. Heng, Y. Hengler, C. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Herbert, G. H. Hernandez Jimenez, Y. Herrberg-Schubert, R. Herten, G. Hertenberger, R. Hervas, L. Hesketh, G. G. Hessey, N. P. Hetherly, J. W. Hickling, R. Higon-Rodriguez, E. Hill, E. Hill, J. C. Hiller, K. H. Hillier, S. J. Hinchliffe, I. Hines, E. Hinman, R. R. Hirose, M. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoenig, F. Hohlfeld, M. Hohn, D. Holmes, T. R. Homann, M. Hong, T. M. van Huysduynen, L. Hooft Hopkins, W. H. Horii, Y. Horton, A. J. Hostachy, J-Y. Hou, S. Hoummada, A. Howard, J. Howarth, J. Hrabovsky, M. Hristova, I. Hrivnac, J. Hryn'ova, T. Hrynevich, A. Hsu, C. Hsu, P. J. Hsu, S. -C. Hu, D. Hub, Q. Hu, X. Huang, Y. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Huelsing, T. A. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibragimov, I. Iconomidou-Fayard, L. Ideal, E. Idrissi, Z. Iengo, P. Igonkina, O. Iizawa, T. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Ilic, N. Inamaru, Y. Ince, T. Ioannou, P. Iodice, M. Iordanidou, K. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ponce, J. M. Iturbe Iuppa, R. Ivarsson, J. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jabbar, S. Jackson, B. Jackson, M. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, T. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansky, R. Janssen, J. Janus, M. Jarlskog, G. Javadov, N. Javurek, T. Jeanty, L. Jejelava, J. Jeng, G. -Y. Jennens, D. Jenni, P. Jentzsch, J. Jeske, C. Jezequel, S. Ji, H. Jia, J. Jiang, Y. Jiggins, S. Jimenez Pena, J. Jin, S. Jinaru, A. Jinnouchi, O. Joergensen, M. D. Johansson, P. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Jongmanns, J. Jorge, P. M. Joshi, K. D. Jovicevic, J. Ju, X. Jung, C. A. Jussel, P. Juste Rozas, A. Kaci, M. Kaczmarska, A. Kado, M. Kagan, H. Kagan, M. Kahn, S. J. Kajomovitz, E. Kalderon, C. W. Kama, S. Kamenshchikov, A. Kanaya, N. Kaneda, M. Kaneti, S. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karakostas, K. Karamaoun, A. Karastathis, N. Kareem, M. J. Karnevskiy, M. Karpov, S. N. Karpova, Z. M. Karthik, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kass, R. D. Kastanas, A. Kataoka, Y. Katre, A. Katzy, J. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Kehoe, R. Keller, J. S. Kempster, J. J. Keoshkerian, H. Kepka, O. Kersevan, B. P. Kersten, S. Keyes, R. A. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharlamov, A. G. Khoo, T. J. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Y. Kim, H. Kim, S. H. Kim, Y. K. Kimura, N. Kind, M. King, B. T. King, M. King, R. S. B. King, S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kiss, F. Kiuchi, K. Kivernyk, O. Kladiva, E. Klein, M. H. Klein, M. Klein, U. Kleinknecht, K. Klimek, P. Klimentov, A. Klingenberg, R. Klinger, J. A. Klioutchnikova, T. Kluge, E. -E. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. F. G. Knue, A. Kobayashi, A. Kobayashi, D. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koffas, T. Koffeman, E. Kogan, L. A. Kohlmann, S. Kohout, Z. Kohriki, T. Koi, T. Kolanoski, H. Koletsou, I. Komar, A. A. Komori, Y. Kondo, T. Kondrashova, N. Koeneke, K. Konig, A. C. Koenig, S. Kono, T. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Koepke, L. Kopp, A. K. Korcyl, K. Kordas, K. Korn, A. Korol, A. A. Korolkov, I. Korolkova, E. V. Kortner, O. Kortner, S. Kosek, T. Kostyukhin, V. V. Kotov, V. M. Kotwal, A. Kourkoumeli-Charalampidi, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kramarenko, V. A. Kramberger, G. Krasnopevtsev, D. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Kretz, M. Kretzschmar, J. Kreutzfeldt, K. Krieger, P. Krizka, K. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumnack, N. Krumshteyn, Z. V. Kruse, A. Kruse, M. C. Kruskal, M. Kubota, T. Kucuk, H. Kuday, S. Kuehn, S. Kugel, A. Kuger, F. Kuhl, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunigo, T. Kupco, A. Kurashige, H. Kurochkin, Y. A. Kurumida, R. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwan, T. Kyriazopoulos, D. La Rosa, A. La Rosa Navarro, J. L. La Rotonda, L. Lacasta, C. Lacava, F. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Lambourne, L. Lammers, S. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, J. C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Manghi, F. Lasagni Lassnig, M. Laurelli, P. Lavrijsen, W. Law, A. T. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeBlanc, M. LeCompte, T. Ledroit-Guillon, F. Lee, C. A. Lee, S. C. Lee, L. Lefebvre, G. Lefebvre, M. Legger, F. Leggett, C. Lehan, A. Miotto, G. Lehmann Lei, X. Leight, W. A. Leisos, A. Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lemmer, B. Leney, K. J. C. Lenz, T. Lenzi, B. Leone, R. Leone, S. Leonidopoulos, C. Leontsinis, S. Leroy, C. Lester, C. G. Levchenko, M. Leveque, J. Levin, D. Levinson, L. J. Levy, M. Lewis, A. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, H. L. Li, L. Li, L. Li, S. Li, Y. Liang, Z. Liao, H. Liberti, B. Liblong, A. Lichard, P. Lie, K. Liebal, J. Liebig, W. Limbach, C. Limosani, A. Lin, S. C. Lin, T. H. Linde, F. Lindquist, B. E. Linnemann, J. T. Lipeles, E. Lipniacka, A. Lisovyi, M. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, B. Liu, D. Liu, J. Liu, J. B. Liu, K. Liu, L. Liu, M. Liu, M. Liu, Y. Livan, M. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lo Sterzo, F. Lobodzinska, E. Loch, P. Lockman, W. S. Loebinger, F. K. Loevschall-Jensen, A. E. Loginov, A. Lohse, T. Lohwasser, K. Lokajicek, M. Long, B. A. Long, J. D. Long, R. E. Looper, K. A. Lopes, L. Mateos, D. Lopez Paredes, B. Lopez Lopez Paz, I. Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Loesel, P. J. Lou, X. Lounis, A. Love, J. Love, P. A. Lu, N. Lubatti, H. J. Luci, C. Lucotte, A. Luehring, F. Lukas, W. Luminari, L. Lundberg, O. Lund-Jensen, B. Lynn, D. Lysak, R. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macdonald, C. M. Miguens, J. Machado Macina, D. Madaffari, D. Madar, R. Maddocks, H. J. Mader, W. F. Madsen, A. Maeland, S. Maeno, T. Maevskiy, A. Magradze, E. Mahboubi, K. Mahlstedt, J. Maiani, C. Maidantchik, C. Maier, A. A. Maier, T. Maio, A. Majewski, S. Makida, Y. Makovec, N. Malaescu, B. Malecki, Pa. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. M. Malyukov, S. Mamuzic, J. Mancini, G. Mandelli, B. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. Manjarres Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Mantifel, R. Mantoani, M. Mapelli, L. March, L. Marchiori, G. Marcisovsky, M. Marino, C. P. Marjanovic, M. Marroquim, F. Marsden, S. P. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martinez, M. Martin-Haugh, S. Martoiu, V. S. Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massa, L. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Maettig, P. Mattmann, J. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazza, S. M. Mazzaferro, L. Mc Goldrick, G. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. Mchedlidze, G. McMahon, S. J. McPherson, R. A. Medinnis, M. Meehan, S. Mehlhase, S. Mehta, A. Meier, K. Meineck, C. Meirose, B. Garcia, B. R. Mellado Meloni, F. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mergelmeyer, S. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Middleton, R. P. Miglioranzi, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Milesi, M. Milic, A. Miller, D. W. Mills, C. Milov, A. Milstead, D. A. Minaenko, A. A. Minami, Y. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mitani, T. Mitrevski, J. Mitsou, V. A. Miucci, A. Miyagawa, P. S. Mjornmark, J. U. Moa, T. Mochizuki, K. Mohapatra, S. Mohr, W. Molander, S. Moles-Valls, R. Moenig, K. Monini, C. Monk, J. Monnier, E. Montejo Berlingen, J. Monticelli, F. Monzani, S. Moore, R. W. Morange, N. Moreno, D. Llacer, M. Moreno Morettini, P. Morgenstern, M. Morii, M. Morinaga, M. Morisbak, V. Moritz, S. Morley, A. K. Mornacchi, G. Morris, J. D. Mortensen, S. S. Morton, A. Morvaj, L. Mosidze, M. Moss, J. Motohashi, K. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Muanza, S. Mudd, R. D. Mueller, F. Mueller, J. Mueller, K. Mueller, R. S. P. Mueller, T. Muenstermann, D. Mullen, P. Munwes, Y. Quijada, J. A. Murillo Murray, W. J. Musheghyan, H. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagai, Y. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagata, K. Nagel, M. Nagy, E. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Namasivayam, H. Garcia, R. F. Naranjo Narayan, R. Naumann, T. Navarro, G. Nayyar, R. Neal, H. A. Nechaeva, P. Yu. Neep, T. J. Nef, P. D. Negri, A. Negrini, M. Nektarijevic, S. Nellist, C. Nelson, A. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neves, R. M. Nevski, P. Newman, P. R. Nguyen, D. H. Nickerson, R. B. Nicolaidou, R. Nicquevert, B. Nielsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, J. K. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Nooney, T. Norberg, S. Nordberg, M. Novgorodova, O. Nowak, S. Nozaki, M. Nozka, L. Ntekas, K. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nuti, F. O'Brien, B. J. O'grady, F. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Obermann, T. Ocariz, J. Ochi, A. Ochoa, I. Ochoa-Ricoux, J. P. Oda, S. Odaka, S. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohman, H. Oide, H. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Pino, S. A. Olivares Damazio, D. Oliveira Oliver Garcia, E. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Otero Y Garzon, G. Otono, H. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Oussoren, K. P. Ouyang, Q. Ovcharova, A. Owen, M. Owen, R. E. Ozcan, V. E. Ozturk, N. Pachal, K. Pacheco Pages, A. Padilla Aranda, C. Pagacova, M. Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Palestini, S. Palka, M. Pallin, D. Palma, A. Pan, Y. B. Panagiotopoulou, E. St. Pandini, C. E. Vazquez, J. G. Panduro Pani, P. Panitkin, S. Pantea, D. Paolozzi, L. Papadopoulou, Th. D. Papageorgiou, K. Paramonov, A. Hernandez, D. Paredes Parker, M. A. Parker, K. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passaggio, S. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. D. Pater, J. R. Pauly, T. Pearce, J. Pearson, B. Pedersen, L. E. Pedersen, M. Pedraza Lopez, S. Pedro, R. Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penwell, J. Perepelitsa, D. V. Codina, E. Perez Perez Garcia-Estan, M. T. Perini, L. Pernegger, H. Perrella, S. Peschke, R. Peshekhonov, V. D. Peters, K. Peters, R. F. Y. Petersen, B. A. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Pettersson, N. E. Pezoa, R. Phillips, P. W. Piacquadio, G. Pianori, E. Picazio, A. Piccaro, E. Piccinini, M. Pickering, M. A. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinfold, J. L. Pingel, A. Pinto, B. Pires, S. Pitt, M. Pizio, C. Plazak, L. Pleier, M. -A. Pleskot, V. Plotnikova, E. Plucinski, P. Pluth, D. Poettgen, R. Poggioli, L. Pohl, D. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Pollard, C. S. Polychronakos, V. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Pospisil, S. Potamianos, K. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Pralavorio, P. Pranko, A. Prasad, S. Prell, S. Price, D. Price, L. E. Primavera, M. Prince, S. Proissl, M. Prokofiev, K. Prokoshin, F. Protopapadaki, E. Protopopescu, S. Proudfoot, J. Przybycien, M. Ptacek, E. Puddu, D. Pueschel, E. Puldon, D. Purohit, M. Puzo, P. Qian, J. Qin, G. Qin, Y. Quadt, A. Quarrie, D. R. Quayle, W. B. Queitsch-Maitland, M. Quilty, D. Raddum, S. Radeka, V. Radescu, V. Radhakrishnan, S. K. Radloff, P. Rados, P. Ragusa, F. Rahal, G. Rajagopalan, S. Rammensee, M. Rangel-Smith, C. Rauscher, F. Rave, S. Ravenscroft, T. Raymond, M. Read, A. L. Readioff, N. P. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Rehnisch, L. Reisin, H. Relich, M. Rembser, C. Ren, H. Renaud, A. Rescigno, M. Resconi, S. Rezanova, O. L. Reznicek, P. Rezvani, R. Richter, R. Richter, S. Richter-Was, E. Ricken, O. Ridel, M. Rieck, P. Riegel, C. J. Rieger, J. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Ristic, B. Ritsch, E. Riu, I. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. Roda, C. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Saez, S. M. Romano Romero Adam, E. Rompotis, N. Ronzani, M. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, P. Rosendahl, P. L. Rosenthal, O. Rossetti, V. Rossi, E. Rossi, L. P. Rosten, R. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Rud, V. I. Rudolph, C. Rudolph, M. S. Ruehr, F. Ruiz-Martinez, A. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Russell, H. L. Rutherfoord, J. P. Ruthmann, N. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sabato, G. Sacerdoti, S. Saddique, A. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Saimpert, M. Sakamoto, H. Sakurai, Y. Salamanna, G. Salamon, A. Saleem, M. Salek, D. De Bruin, P. H. Sales Salihagic, D. Salnikov, A. Salt, J. Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Sanchez, A. Sanchez, J. Sanchez Martinez, V. Sandaker, H. Sandbach, R. L. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sannino, M. Sansoni, A. Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Sapp, K. Sapronov, A. Saraiva, J. G. Sarrazin, B. Sasaki, O. Sasaki, Y. Sato, K. Sauvage, G. Sauvan, E. Savage, G. Savard, P. Sawyer, C. Sawyer, L. Saxon, J. Sbarra, C. Sbrizzi, A. Scanlon, T. Scannicchio, D. A. Scarcella, M. Scarfone, V. Schaarschmidt, J. Schacht, P. Schaefer, D. Schaefer, R. Schaeffer, J. Schaepe, S. Schaetzel, S. Schaefer, U. Schaffer, A. C. Schaile, D. Schamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Schiavi, C. Schillo, C. Schioppa, M. Schlenker, S. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitt, S. Schneider, B. Schnellbach, Y. J. Schnoor, U. Schoeffel, L. Schoening, A. Schoenrock, B. D. Schopf, E. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schramm, S. Schreyer, M. Schroeder, C. Schuh, N. Schultens, M. J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwarz, T. A. Schwegler, Ph. Schweiger, H. Schwemling, Ph. Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scuri, F. Scutti, F. Searcy, J. Sedov, G. Sedykh, E. Seema, P. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekhon, K. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Serre, T. Sessa, M. Seuster, R. Severini, H. Sfiligoj, T. Sforza, F. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shang, R. Shank, J. T. Shapiro, M. Shatalov, P. B. Shaw, K. Shaw, S. M. Shcherbakova, A. Shehu, C. Y. Sherwood, P. Shi, L. Shimizu, S. Shimmin, C. O. Shimojima, M. Shiyakova, M. Shmeleva, A. Saadi, D. Shoaleh Shochet, M. J. Shojaii, S. Shrestha, S. Shulga, E. Shupe, M. A. Shushkevich, S. Sicho, P. Sidiropoulou, O. Sidorov, D. Sidoti, A. Siegert, F. Sijacki, Dj. Silva, J. Silver, Y. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simioni, E. Simmons, B. Simon, D. Simoniello, R. Sinervo, P. Sinev, N. B. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinner, M. B. Skottowe, H. P. Skubic, P. Slater, M. Slavicek, T. Slawinska, M. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu. Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, M. N. K. Smith, R. W. Smizanska, M. Smolek, K. Snesarev, A. A. Snidero, G. Snyder, S. Sobie, R. Socher, F. Soffer, A. Soh, D. A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu. Soldevila, U. Solodkov, A. A. Soloshenko, A. Solovyanov, O. V. Solovyev, V. Sommer, P. Song, H. Y. Soni, N. Sood, A. Sopczak, A. Sopko, B. Sopko, V. Sorin, V. Sosa, D. Sosebee, M. Sotiropoulou, C. L. Soualah, R. Soueid, P. Soukharev, A. M. South, D. Sowden, B. C. Spagnolo, S. Spalla, M. Spano, F. Spearman, W. R. Spettel, F. Spighi, R. Spigo, G. Spiller, L. A. Spousta, M. Spreitzer, T. St Denis, R. D. Staerz, S. Stahlman, J. Stamen, R. Stamm, S. Stanecka, E. Stanek, R. W. Stanescu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Stavina, P. Steinberg, P. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoicea, G. Stolte, P. Stonjek, S. Stradling, A. R. Straessner, A. Stramaglia, M. E. Strandberg, J. Strandberg, S. Strandlie, A. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Stroynowski, R. Strubig, A. Stucci, S. A. Stugu, B. Styles, N. A. Su, D. Su, J. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, S. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, S. Suzuki, Y. Svatos, M. Swedish, S. Swiatlowski, M. Sykora, I. Sykora, T. Ta, D. Taccini, C. Tackmann, K. Taenzer, J. Taffard, A. Tafirout, R. Taiblum, N. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. A. Tam, J. Y. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tannenwald, B. B. Tannoury, N. Tapprogge, S. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tashiro, T. Tassi, E. Tavares Delgado, A. Tayalati, Y. Taylor, F. E. Taylor, G. N. Taylor, W. Teischinger, F. A. Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Teoh, J. J. Tepel, F. Terada, S. Terashi, K. Terron, J. Terzo, S. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thomas, J. P. Thomas-Wilsker, J. Thompson, E. N. Thompson, P. D. Thompson, R. J. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thun, R. P. Tibbetts, M. J. Torres, R. E. Ticse Tikhomirov, V. O. Tikhonov, Yu. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisserant, S. Todorov, T. Todorova-Nova, S. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tolley, E. Tomlinson, L. Tomoto, M. Tompkins, L. Toms, K. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. Trovatelli, M. True, P. Truong, L. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsirintanis, N. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsuno, S. Tsybychev, D. Tudorache, A. Tudorache, V. Tuna, A. N. Tupputi, S. A. Turchikhin, S. Turecek, D. Turra, R. Turvey, A. J. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Uchida, K. Ueda, I. Ueno, R. Ughetto, M. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Ungaro, F. C. Unno, Y. Unverdorben, C. Urban, J. Urquijo, P. Urrejola, P. Usai, G. Usanova, A. Vacavant, L. Vacek, V. Vachon, B. Valderanis, C. Valencic, N. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van den Wollenberg, W. Van der Deijl, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. van Vulpen, I. van Woerden, M. C. Vanadia, M. Vandelli, W. Vanguri, R. Vaniachine, A. Vannucci, F. Vardanyan, G. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Veatch, J. Veloce, L. M. Veloso, F. Velz, T. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Venturini, A. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viazlo, O. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Vigne, R. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinogradov, V. B. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, M. Vokac, P. Volpi, G. Volpi, M. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobev, K. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Vuillermet, R. Vukotic, I. Vykydal, Z. Wagner, P. Wagner, W. Wahlberg, H. Wahrmund, S. Wakabayashi, J. Walder, J. Walker, R. Walkowiak, W. Wang, C. Wang, F. Wang, H. Wang, H. Wang, J. Wang, J. Wang, K. Wang, R. Wang, S. M. Wang, T. Wang, X. Wanotayaroj, C. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, B. M. Webb, S. Weber, M. S. Weber, S. W. Webster, J. S. Weidberg, A. R. Weinert, B. Weingarten, J. Weiser, C. Weits, H. Wells, P. S. Wenaus, T. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Wessels, M. Wetter, J. Whalen, K. Wharton, A. M. White, A. White, M. J. White, R. White, S. Whiteson, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wildauer, A. Wilkens, H. G. Williams, H. H. Williams, S. Willis, C. Willocq, S. Wilson, A. Wilson, J. A. Wingerter-Seez, I. Winklmeier, F. Winter, B. T. Wittgen, M. Wittkowski, J. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wu, M. Wu, M. Wu, S. L. Wu, X. Wu, Y. Wyatt, T. R. Wynne, B. M. Xella, S. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yakabe, R. Yamada, M. Yamaguchi, Y. Yamamoto, A. Yamamoto, S. Yamanaka, T. Yamauchi, K. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, Y. Yao, L. Yao, W-M. Yasu, Y. Yatsenko, E. Wong, K. H. Yau Ye, J. Ye, S. Yeletskikh, I. Yen, A. L. Yildirim, E. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. S. Youssef, S. Yu, D. R. Yu, J. Yu, J. M. Yu, J. Yuan, L. Yurkewicz, A. Yusuff, I. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zalieckas, J. Zaman, A. Zambito, S. Zanello, L. Zanzi, D. Zeitnitz, C. Zeman, M. Zemla, A. Zengel, K. Zenin, O. Zenis, T. Zerwas, D. Zhang, D. Zhang, F. Zhang, J. Zhang, L. Zhang, R. Zhang, X. Zhang, Z. Zhao, X. Zhao, Y. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, C. Zhou, L. Zhou, L. Zhou, N. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhukov, K. Zibell, A. Zieminska, D. Zimine, N. I. Zimmermann, C. Zimmermann, S. Zinonos, Z. Zinser, M. Ziolkowski, M. Zivkovic, L. Zobernig, G. Zoccoli, A. zur Nedden, M. Zurzolo, G. Zwalinski, L. CA ATLAS Collaboration TI Performance of b-jet identification in the ATLAS experiment SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Large detector systems for particle and astroparticle physics; Large detector-systems performance; Pattern recognition, cluster finding, calibration and fitting methods; Performance of High Energy Physics Detectors ID PRODUCTION CROSS-SECTION; QUARK PAIR PRODUCTION; ROOT-S=7 TEV; PARTON DISTRIBUTIONS; HADRONIC COLLISIONS; MATRIX-ELEMENTS; LHC; COLLIDERS; DETECTOR; CHANNEL AB The identification of jets containing b hadrons is important for the physics programme of the ATLAS experiment at the Large Hadron Collider. Several algorithms to identify jets containing b hadrons are described, ranging from those based on the reconstruction of an inclusive secondary vertex or the presence of tracks with large impact parameters to combined tagging algorithms making use of multi-variate discriminants. An independent b-tagging algorithm based on the reconstruction of muons inside jets as well as the b-tagging algorithm used in the online trigger are also presented. The b-jet tagging efficiency, the c-jet tagging efficiency and the mistag rate for light flavour jets in data have been measured with a number of complementary methods. The calibration results are presented as scale factors defined as the ratio of the efficiency (or mistag rate) in data to that in simulation. In the case of b jets, where more than one calibration method exists, the results from the various analyses have been combined taking into account the statistical correlation as well as the correlation of the sources of systematic uncertainty. C1 [Jackson, P.; Lee, L.; Soni, N.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia. [Bouffard, J.; Edson, W.; Ernst, J.; Fischer, A.; Guindon, S.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Butt, A. I.; Czodrowski, P.; Dassoulas, J.; Gingrich, D. M.; Jabbar, S.; Karamaoun, A.; Moore, R. W.; Pinfold, J. L.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Yildiz, H. Duran] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Kuday, S.] Istanbul Aydin Univ, Istanbul, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Barnovska, Z.; Berger, N.; Delmastro, M.; Di Ciaccio, L.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] CNRS, IN2P3, LAPP, Annecy Le Vieux, France. [Barnovska, Z.; Berger, N.; Delmastro, M.; Elles, S.; Hryn'ova, T.; Jezequel, S.; Koletsou, I.; Lafaye, R.; Leveque, J.; Massol, N.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Simard, O.; Todorov, T.; Wingerter-Seez, I.; Yatsenko, E.] Univ Savoie Mont Blanc, Annecy Le Vieux, France. [Auerbach, B.; Blair, R. E.; Chekanov, S.; Childers, J. T.; Feng, E. J.; LeCompte, T.; Love, J.; Malon, D.; Nguyen, D. H.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Wang, R.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Ashkenazi, A.; Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Leone, R.; Loch, P.; Nayyar, R.; O'grady, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.; Veatch, J.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Bullock, D.; Carrillo-Montoya, G. D.; Cote, D.; Darmora, S.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Kim, H. Y.; Ozturk, N.; Schovancova, J.; Sosebee, M.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. [Angelidakis, S.; Chouridou, S.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tsirintanis, N.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Benekos, N.; Dris, M.; Gazis, E. N.; Karakostas, K.; Karastathis, N.; Leontsinis, S.; Maltezos, S.; Ntekas, K.; Panagiotopoulou, E. St.; Papadopoulou, Th. D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Ahmadov, F.; Huseynov, N.; Javadov, N.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Anjos, N.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Casolino, M.; Cavalli-Sforza, M.; Cortes-Gonzalez, A.; Farooque, T.; Fischer, C.; Fracchia, S.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Juste Rozas, A.; Korolkov, I.; Lange, J. C.; Le Menedeu, E.; Lopez Paz, I.; Martinez, M.; Mir, L. M.; Montejo Berlingen, J.; Pacheco Pages, A.; Padilla Aranda, C.; Riu, I.; Sorin, V.; Succurro, A.; Tripiana, M. F.; Tsiskaridze, S.; Valery, L.] Barcelona Inst Sci & Technol, Inst Fis Altes Energies, Barcelona, Spain. [Agatonovic-Jovin, T.; Bozic, I.; Dimitrievska, A.; Krstic, J.; Marjanovic, M.; Popovic, D. S.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes; Zivkovic, L.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Buanes, T.; Dale, O.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Maeland, S.; Latour, B. Martin Dit; Rosendahl, P. L.; Sjursen, T. B.; Smestad, L.; Stugu, B.; Ugland, M.; Zalieckas, J.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Amadio, B. T.; Axen, B.; Barnett, R. M.; Beringer, J.; Brosamer, J.; Calafiura, P.; Caminada, L. M.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Einsweiler, K.; Farrell, S.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hinman, R. R.; Holmes, T. R.; Jeanty, L.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Marshall, Z.; Ohm, C. C.; Ovcharova, A.; Griso, S. Pagan; Potamianos, K.; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Sood, A.; Tibbetts, M. J.; Trottier-McDonald, M.; Tsulaia, V.; Viel, S.; Wang, H.; Yao, W-M.; Yu, D. R.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Dietrich, J.; Giorgi, F. M.; Grancagnolo, S.; Herbert, G. H.; Herrberg-Schubert, R.; Hristova, I.; Kind, M.; Kolanoski, H.; Lacker, H.; Lohse, T.; Nikiforov, A.; Rehnisch, L.; Rieck, P.; Schulz, H.; Stamm, S.; zur Nedden, M.] Humboldt Univ, Dept Phys, Invalidenstr 110, Berlin, Germany. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Beck, H. P.; Cervelli, A.; Ereditato, A.; Haug, S.; Marti, L. F.; Meloni, F.; Sciacca, F. G.; Stramaglia, M. E.; Stucci, S. A.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Allport, P. P.; Bella, L. Aperio; Bansil, H. S.; Bingul, A.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Daniells, A. C.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Levy, M.; Mudd, R. D.; Quijada, J. A. Murillo; Newman, P. R.; Nikolopoulos, K.; Owen, R. E.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Cetin, S. A.] Dogus Univ, Dept Phys, Istanbul, Turkey. [Alberghi, G. L.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Giacobbe, B.; Giorgi, F. M.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Spighi, R.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Alberghi, G. L.; De Castro, S.; Fabbri, L.; Franchini, M.; Gabrielli, A.; Grafstrom, P.; Manghi, F. Lasagni; Massa, I.; Massa, L.; Mengarelli, A.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Sidoti, A.; Tupputi, S. A.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Arslan, O.; Bechtle, P.; Bernlochner, F. U.; Brock, I.; Cioara, I. A.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Hageboeck, S.; Hansen, M. C.; Hellmich, D.; Hohn, D.; Huegging, F.; Janssen, J.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lenz, T.; Leyko, A. M.; Liebal, J.; Limbach, C.; Mergelmeyer, S.; Mijovic, L.; Mueller, K.; Obermann, T.; Pohl, D.; Ricken, O.; Sarrazin, B.; Schaepe, S.; Schopf, E.; Schultens, M. J.; Schwindt, T.; Scutti, F.; Seema, P.; Stillings, J. A.; Tannoury, N.; Therhaag, J.; Uhlenbrock, M.; Velz, T.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Winter, B. T.; Wong, K. H. Yau] Univ Bonn, Inst Phys, Nussallee 12, Bonn, Germany. [Ahlen, S. P.; Bernard, C.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Kruskal, M.; Long, B. A.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, 590 Commonwealth Ave, Boston, MA 02215 USA. [Amelung, C.; Amundsen, G.; Artoni, G.; Bassalat, A.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Dhaliwal, S.; Fitzgerald, E. A.; Sciolla, G.; Venturini, A.; Zengel, K.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Coutinho, Y. Amaral; Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Fed Univ Juiz de Fora UFJF, Elect Circuits Dept, Juiz De Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Leite, M. A. L.] Univ Sao Paulo, Inst Fis, CP 20516, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Basye, A.; Begel, M.; Buttinger, W.; Chen, H.; Chernyatin, V.; Debbe, R.; Ernst, M.; Gibbard, B.; Iakovidis, G.; Klimentov, A.; Kouskoura, V.; Kravchenko, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Metcalfe, J.; Mountricha, E.; Nevski, P.; Nilsson, P.; Damazio, D. Oliveira; Paige, F.; Perepelitsa, D. V.; Pleier, M. -A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rajagopalan, S.; Redlinger, G.; Snyder, S.; Steinberg, P.; Takai, H.; Undrus, A.; Wenaus, T.; Ye, S.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Dita, P.; Dita, S.; Dobre, M.; Jinaru, A.; Martoiu, V. S.; Maurer, J.; Olariu, A.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Popeneciu, G. A.] Natl Inst Res & Dev Isotop & Mol Technol, Dept Phys, Cluj Napoca, Romania. Univ Politehn Bucuresti, Bucharest, Romania. West Univ Timisoara, Timisoara, Romania. [Otero Y Garzon, G.; Piegaia, R.; Reisin, H.; Sacerdoti, S.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Arratia, M.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Carter, J. R.; Chapman, J. D.; Cottin, G.; French, S. T.; Gillam, T. P. S.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. G.; Mueller, T.; Parker, M. A.; Robinson, D.; Thomson, M.; Ward, C. P.; Yusuff, I.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Bellerive, A.; Cree, G.; Di Valentino, D.; Koffas, T.; Lacey, J.; Leight, W. A.; McCarthy, T. G.; Nomidis, I.; Oakham, F. G.; Pasztor, G.; Tarrade, F.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abreu, R.; Aleksa, M.; Gonzalez, B. Alvarez; Andari, N.; Anders, G.; Anghinolfi, F.; Armbruster, A. J.; Arnaez, O.; Ashkenazi, A.; Avolio, G.; Baak, M. A.; Backes, M.; Backhaus, M.; Barak, L.; Baroncelli, A.; Bassalat, A.; Beltramello, O.; Bianco, M.; Bingul, A.; Bogaerts, J. A.; Boveia, A.; Boyd, J.; Burckhart, H.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Cattai, A.; Cerv, M.; Chromek-Burckhart, D.; Conti, G.; Dell'Acqua, A.; Deviveiros, P. O.; Di Girolamo, A.; Di Girolamo, B.; Dittus, F.; Dobos, D.; Dudarev, A.; Duehrssen, M.; Eifert, T.; Ellis, N.; Elsing, M.; Farthouat, P.; Fassnacht, P.; Feigl, S.; Perez, S. Fernandez; Francis, D.; Froidevaux, D.; Gillberg, D.; Glatzer, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Hawkings, R. J.; Helsens, C.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Iengo, P.; Jaekel, M. R.; Jakobsen, S.; Jenni, P.; Kaneda, M.; Klioutchnikova, T.; Krasznahorkay, A.; Lantzsch, K.; Lapoire, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, D.; Malyukov, S.; Mandelli, B.; Mapelli, L.; Marzin, A.; Milic, A.; Mornacchi, G.; Nairz, A. M.; Nakahama, Y.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Oide, H.; Palestini, S.; Pauly, T.; Pernegger, H.; Peters, K.; Petersen, B. A.; Pommes, K.; Poppleton, A.; Poulard, G.; Poveda, J.; Prasad, S.; Rammensee, M.; Raymond, M.; Rembser, C.; Roe, S.; Ruiz-Martinez, A.; Salzburger, A.; Schaefer, D.; Schlenker, S.; Schmieden, K.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Stelzer, H. J.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van Woerden, M. C.; Vandelli, W.; Vigne, R.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Wotschack, J.; Young, C. J. S.; Zwalinski, L.] CERN, Geneva, Switzerland. [Alison, J.; Anderson, K. J.; Toro, R. Camacho; Cheng, Y.; Dandoy, J. R.; Facini, G.; Fiascaris, M.; Gardner, R. W.; Ilchenko, Y.; Kapliy, A.; Kim, Y. K.; Krizka, K.; Li, H. L.; Merritt, F. S.; Miller, D. W.; Narayan, R.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Saxon, J.; Shochet, M. J.; Vukotic, I.; Webster, J. S.; Wu, M.] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. [Carquin, E.; Diaz, M. A.; Ochoa-Ricoux, J. P.; Vogel, M.] Pontificia Univ Catolica Chile, Dept Fis, Alameda 340, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.; White, R.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lou, X.; Ouyang, Q.; Ren, H.; Shan, L. Y.; Sun, X.; Wang, J.; Xu, D.; Yao, L.; Zhu, H.; Zhuang, X.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Gao, J.; Guan, L.; Han, L.; Jiang, Y.; Li, B.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Song, H. Y.; Xu, L.; Zhang, R.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Li, Y.; Wang, C.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Chen, L.; Feng, C.; Ge, P.; Liu, B.; Ma, L. L.; Zhang, X.; Zhao, Y.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Guo, J.; Li, L.; Yang, H.] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, Dept Phys & Astron, Shanghai 200030, Peoples R China. [Chen, X.] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Phys Corpusculaire Lab, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gilles, G.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Donini, J.; Dubreuil, E.; Gris, Ph.; Liao, H.; Madar, R.; Pallin, D.; Saez, S. M. Romano; Santoni, C.; Simon, D.; Theveneaux-Pelzer, T.; Vazeille, F.] Univ Clermont Ferrand, Photochim Mol & Macromol Lab, CNRS, IN2P3, F-63177 Clermont Ferrand, France. [Alkire, S. P.; Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Bassalat, A.; Brooijmans, G.; Cole, B.; Hu, D.; Hughes, E. W.; Iordanidou, K.; Klein, M. H.; Mohapatra, S.; Nikiforou, N.; Parsons, J. A.; Smith, M. N. K.; Smith, R. W.; Thompson, E. N.; Tuts, P. M.; Zhou, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Alonso, A.; Dam, M.; Galster, G.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Joergensen, M. D.; Loevschall-Jensen, A. E.; Monk, J.; Mortensen, S. S.; Pedersen, L. E.; Petersen, T. C.; Pingel, A.; Wiglesworth, C.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Cairo, V. M.; Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Policicchio, A.; Salvatore, D.; Scarfone, V.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, I-87036 Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, W.; Dyndal, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.; Zemla, A.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. [Palka, M.; Richter-Was, E.] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland. [Banas, E.; Bassalat, A.; de Renstrom, P. A. Bruckman; Chwastowski, J. J.; Derendarz, D.; Godlewski, J.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Wolter, M. W.; Wosiek, B. K.; Zabinski, B.] Polish Acad Sci, Inst Nucl Phys, Krakow, Poland. [Cao, T.; Firan, A.; Hetherly, J. W.; Kama, S.; Kehoe, R.; Sekula, S. J.; Stroynowski, R.; Turvey, A. J.; Varol, T.; Wang, H.; Ye, J.; Zhao, X.; Zhou, L.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Izen, J. M.; Leyton, M.; Meirose, B.; Namasivayam, H.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Notkestr 85, Hamburg, Germany. [Argyropoulos, S.; Asbah, N.; Bessner, M.; Bloch, I.; Borroni, S.; Britzger, D.; Camarda, S.; Deterre, C.; Eckardt, C.; Filipuzzi, M.; Glazov, A.; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Haleem, M.; Hamnett, P. G.; Hengler, C.; Hiller, K. H.; Howarth, J.; Huang, Y.; Katzy, J.; Keller, J. S.; Kondrashova, N.; Kuhl, T.; Lobodzinska, E.; Lohwasser, K.; Mamuzic, J.; Medinnis, M.; Moenig, K.; Garcia, R. F. Naranjo; Naumann, T.; Peschke, R.; Petit, E.; Radescu, V.; Rubinskiy, I.; Schaefer, R.; Schmitt, S.; Sedov, G.; Shushkevich, S.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Wang, J.; Wasicki, C.; Yildirim, E.] DESY, Zeuthen, Germany. [Burmeister, I.; Erdmann, J.; Esch, H.; Goessling, C.; Homann, M.; Jentzsch, J.; Jung, C. A.; Klingenberg, R.; Kroeninger, K.] Tech Univ Dortmund, Inst Expt Phys 4, D-44221 Dortmund, Germany. [Anger, P.; Duschinger, D.; Friedrich, F.; Grohs, J. P.; Gumpert, C.; Gutschow, C.; Hauswald, L.; Kobel, M.; Mader, W. F.; Morgenstern, M.; Novgorodova, O.; Rudolph, C.; Schnoor, U.; Siegert, F.; Socher, F.; Staerz, S.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Cerio, B. C.; Goshaw, A. T.; Kajomovitz, E.; Kotwal, A.; Kruse, M. C.; Li, L.; Li, S.; Liu, M.; Oh, S. H.; Zhou, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Bristow, T. M.; Clark, P. J.; Dias, F. A.; Edwards, N. C.; Gao, Y.; Walls, F. M. Garay; Glaysher, P. C. F.; Harrington, R. D.; Leonidopoulos, C.; Martin, V. J.; Mills, C.; O'Brien, B. J.; Pino, S. A. Olivares; Proissl, M.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Antonelli, M.; Baroncelli, A.; Beretta, M.; Bilokon, H.; Chiarella, V.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Giromini, P.; Laurelli, P.; Maccarrone, G.; Mancini, G.; Sansoni, A.; Testa, M.; Vilucchi, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Amoroso, S.; Arnold, H.; Betancourt, C.; Boehler, M.; Bruneliere, R.; Buehrer, F.; Buescher, D.; Coniavitis, E.; Consorti, V.; Dang, N. P.; Dao, V.; Di Simone, A.; Flechl, M.; Giuliani, C.; Herten, G.; Jakobs, K.; Javurek, T.; Jenni, P.; Kiss, F.; Koeneke, K.; Kopp, A. K.; Kuehn, S.; Lai, S.; Landgraf, U.; Mahboubi, K.; Mohr, W.; Pagacova, M.; Parzefall, U.; Ronzani, M.; Rosbach, K.; Ruehr, F.; Rurikova, Z.; Ruthmann, N.; Schillo, C.; Schmidt, E.; Schumacher, M.; Sommer, P.; Sundermann, J. E.; Temming, K. K.; Tsiskaridze, V.; Ungaro, F. C.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Zhang, L.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. [Ancu, L. S.; Barone, G.; Bell, W. H.; Noccioli, E. Benhar; De Mendizabal, J. Bilbao; Clark, A.; Delitzsch, C. M.; della Volpe, D.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Golling, T.; Gonzalez-Sevilla, S.; Gramling, J.; Guescini, F.; Iacobucci, G.; Katre, A.; La Rosa, A.; Mermod, P.; Miucci, A.; Muenstermann, D.; Nessi, M.; Paolozzi, L.; Picazio, A.; Ristic, B.; Tykhonov, A.; Vallecorsa, S.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beddall, A.; Darbo, G.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodi, F.; Passaggio, S.; Rossi, L. P.; Sannino, M.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Barberis, D.; Favareto, A.; Parodi, A. Ferretto; Gagliardi, G.; Gaudiello, A.; Guido, E.; Osculati, B.; Parodi, F.; Sannino, M.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Jejelava, J.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Durglishvili, A.; Khubua, J.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Bates, R. L.; Britton, D.; Buckley, A. G.; Bussey, P.; Buttar, C. M.; Buzatu, A.; Cinca, D.; D'Auria, S.; Doyle, A. T.; Ferrando, J.; de Lima, D. E. Ferreira; Gul, U.; Ortiz, N. G. Gutierrez; Kar, D.; Knue, A.; Morton, A.; Mullen, P.; O'Shea, V.; Barrera, C. Oropeza; Owen, M.; Pollard, C. S.; Qin, G.; Quilty, D.; Ravenscroft, T.; Robson, A.; St Denis, R. D.; Stewart, G. A.; Thompson, A. S.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bindi, M.; Blumenschein, U.; Brandt, G.; Drechsler, E.; George, M.; Graber, L.; Grosse-Knetter, J.; Hamer, M.; Kareem, M. J.; Kawamura, G.; Lemmer, B.; Magradze, E.; Mantoani, M.; Mchedlidze, G.; Llacer, M. Moreno; Musheghyan, H.; Nackenhorst, O.; Nadal, J.; Quadt, A.; Rieger, J.; Schorlemmer, A. L. S.; Shabalina, E.; Stolte, P.; Weingarten, J.; Zinonos, Z.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Brown, J.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Gabaldon, C.; Genest, M. H.; Hostachy, J-Y.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Monini, C.; Stark, J.; Trocme, B.; Wu, M.] Univ Grenoble Alpes, Lab Phys Subat & Cosmol, CNRS, IN2P3, Grenoble, France. [McFarlane, K. W.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Catastini, P.; Clark, B. L.; Franklin, M.; Huth, J.; Ippolito, V.; Mateos, D. Lopez; Mercurio, K. M.; Morii, M.; Skottowe, H. P.; Spearman, W. R.; Sun, S.; Tolley, E.; Yen, A. L.; Zambito, S.] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Baas, A. E.; Brandt, O.; Davygora, Y.; Djuvsland, J. I.; Dunford, M.; Geisler, M. P.; Hanke, P.; Jongmanns, J.; Kluge, E. -E.; Lang, V. S.; Meier, K.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Giulini, M.; Lisovyi, M.; Schaetzel, S.; Schmitt, S.; Schoening, A.; Sosa, D.] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Colombo, T.; Kretz, M.; Kugel, A.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Bortolotto, V.; Castillo, L. R. Flores] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China. [Bortolotto, V.] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Bortolotto, V.; Prokofiev, K.] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong, Peoples R China. [Choi, K.; Dattagupta, A.; Evans, H.; Gagnon, P.; Lammers, S.; Martinez, N. Lorenzo; Luehring, F.; Ogren, H.; Penwell, J.; Weinert, B.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jansky, R.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.; Usanova, A.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Mallik, U.; Mandrysch, R.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzi, F.; Krumnack, N.; Pluth, D.; Prell, S.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Ahmadov, F.; Aleksandrov, I. N.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Gostkin, M. I.; Javadov, N.; Karpov, S. N.; Karpova, Z. M.; Kazarinov, M. Y.; Khramov, E.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Peshekhonov, V. D.; Plotnikova, E.; Potrap, I. N.; Pozdnyakov, V.; Rusakovich, N. A.; Sadykov, R.; Sapronov, A.; Shiyakova, M.; Sisakyan, A. N.; Soloshenko, A.; Vinogradov, V. B.; Yeletskikh, I.; Zhemchugov, A.; Zimine, N. I.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Amako, K.; Aoki, M.; Arai, Y.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Kono, T.; Makida, Y.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, S.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Chen, Y.; Hasegawa, M.; Inamaru, Y.; Kishimoto, T.; Kurashige, H.; Kurumida, R.; Ochi, A.; Shimizu, S.; Takeda, H.; Yakabe, R.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Kunigo, T.; Sumida, T.; Tashiro, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Otono, H.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Univ Nacl La Plata, Inst Fis La Plata, RA-1900 La Plata, Buenos Aires, Argentina. [Alconada Verzini, M. J.; Alonso, F.; Arduh, F. A.; Dova, M. T.; Monticelli, F.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Beattie, M. D.; Borissov, G.; Bouhova-Thacker, E. V.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, J.; Love, P. A.; Maddocks, H. J.; Skinner, M. B.; Smizanska, M.; Walder, J.; Wharton, A. M.] Univ Lancaster, Dept Phys, Lancaster, England. [Chiodini, G.; Gorini, E.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Gorini, E.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Affolder, A. A.; Anders, J. K.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Gwilliam, C. B.; Hayward, H. S.; Jackson, M.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kretzschmar, J.; Laycock, P.; Lehan, A.; Maxfield, S. J.; Mehta, A.; Readioff, N. P.; Schnellbach, Y. J.; Vossebeld, J. H.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mandic, I.; Mikuz, M.; Sfiligoj, T.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Mikuz, M.; Sfiligoj, T.] Univ Ljubljana, Ljubljana, Slovenia. [Alpigiani, C.; Bevan, A. J.; Bona, M.; Bret, M. Cano; Cerrito, L.; Fletcher, G.; Goddard, J. R.; Hays, J. M.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Morris, J. D.; Nooney, T.; Piccaro, E.; Rizvi, E.; Sandbach, R. L.; Snidero, G.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Berry, T.; Blanco, J. E.; Boisvert, V.; Brooks, T.; Connelly, I. A.; Cowan, G.; Duguid, L.; Giannelli, M. Faucci; George, S.; Gibson, S. M.; Kempster, J. J.; Vazquez, J. G. Panduro; Pastore, Fr.; Savage, G.; Sowden, B. C.; Spano, F.; Teixeira-Dias, P.; Thomas-Wilsker, J.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Aloisio, A.; Basalaev, A.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Casadei, D.; Chislett, R. T.; Christodoulou, V.; Cooper, B. D.; Davison, P.; Falla, R. J.; Freeborn, D.; Gregersen, K.; Hesketh, G. G.; Jansen, E.; Jiggins, S.; Konstantinidis, N.; Korn, A.; Kucuk, H.; Lambourne, L.; Leney, K. J. C.; Martyniuk, A. C.; Nurse, E.; Richter, S.; Scanlon, T.; Sherwood, P.; Simmons, B.; Wardrope, D. R.; Waugh, B. M.] UCL, Dept Phys & Astron, London, England. [Baroncelli, A.; Greenwood, Z. D.; Grossi, G. C.; Jana, D. K.; Sawyer, L.; Subramaniam, R.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Ashkenazi, A.; Bassalat, A.; Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Calderini, G.; Crescioli, F.; De Cecco, S.; Demilly, A.; Derue, F.; Francavilla, P.; Krasny, M. W.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lefebvre, G.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Pandini, C. E.; Pires, S.; Ridel, M.; Roos, L.; Trincaz-Duvoid, S.; Vannucci, F.; Varouchas, D.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Ivarsson, J.; Jarlskog, G.; Lytken, E.; Mjornmark, J. U.; Smirnova, O.; Viazlo, O.] Lund Univ, Inst Fys, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Becker, M.; Bertella, C.; Blum, W.; Buescher, V.; Caputo, R.; Caudron, J.; Ellinghaus, F.; Endner, O. C.; Ertel, E.; Fiedler, F.; Torregrosa, E. Fullana; Heck, T.; Hohlfeld, M.; Huelsing, T. A.; Karnevskiy, M.; Kleinknecht, K.; Konig, A. C.; Koepke, L.; Lin, T. H.; Masetti, L.; Mattmann, J.; Meyer, C.; Moritz, S.; Poettgen, R.; Rave, S.; Sander, H. G.; Schaeffer, J.; Schaefer, U.; Schmitt, C.; Schott, M.; Schroeder, C.; Schuh, N.; Simioni, E.; Tapprogge, S.; Urrejola, P.; Valderanis, C.; Wollstadt, S. J.; Zimmermann, C.; Zinser, M.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Balli, F.; Barnes, S. L.; Cox, B. E.; Da Via, C.; Forti, A.; Ponce, J. M. Iturbe; Joshi, K. D.; Keoshkerian, H.; Klinger, J. A.; Loebinger, F. K.; Marsden, S. P.; Masik, J.; Neep, T. J.; Oh, A.; Ospanov, R.; Pater, J. R.; Peters, R. F. Y.; Pilkington, A. D.; Price, D.; Qin, Y.; Queitsch-Maitland, M.; Robinson, J. E. M.; Schwanenberger, C.; Schweiger, H.; Shaw, S. M.; Thompson, R. J.; Tomlinson, L.; Watts, S.; Webb, S.; Woudstra, M. J.; Wyatt, T. R.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aad, G.; Alio, L.; Barbero, M.; Chen, L.; Coadou, Y.; Diaconu, C.; Diglio, S.; Djama, F.; Ducu, O. A.; Feligioni, L.; Gao, J.; Hallewell, G. D.; Hubaut, F.; Kahn, S. J.; Knoops, E. B. F. G.; Le Guirriec, E.; Liu, J.; Liu, K.; Madaffari, D.; Mochizuki, K.; Monnier, E.; Muanza, S.; Nagai, Y.; Nagy, E.; Pralavorio, P.; Rozanov, A.; Serre, T.; Talby, M.; Torres, R. E. Ticse; Tiouchichine, E.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Bellomo, M.; Bernard, N. R.; Brau, B.; Dallapiccola, C.; Daya-Ishmukhametova, R. K.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Chuinard, A. J.; Corriveau, F.; Keyes, R. A.; Mantifel, R.; Prince, S.; Robertson, S. H.; Robichaud-Veronneau, A.; Stoebe, M.; Vachon, B.; Schroeder, T. Vazquez; Wang, K.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Brennan, A. J.; Dawe, E.; Jennens, D.; Kubota, T.; Milesi, M.; Hanninger, G. Nunes; Nuti, F.; Rados, P.; Spiller, L. A.; Tan, K. G.; Taylor, G. N.; Urquijo, P.; Volpi, M.; Zanzi, D.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Amidei, D.; Chelstowska, M. A.; Cheng, H. C.; Dai, T.; Diehl, E. B.; Edgar, R. C.; Feng, H.; Ferretti, C.; Fleischmann, P.; Goldfarb, S.; Hu, X.; Levin, D.; Long, J. D.; Lu, N.; Mc Kee, S. P.; McCarn, A.; Neal, H. A.; Qian, J.; Schwarz, T. A.; Searcy, J.; Sekhon, K.; Thun, R. P.; Wilson, A.; Wu, Y.; Xu, L.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Chegwidden, A.; Fisher, W. C.; Halladjian, G.; Hauser, R.; Hayden, D.; Huston, J.; Linnemann, J. T.; Martin, B.; Pope, B. G.; Schoenrock, B. D.; Schwienhorst, R.; Ta, D.; Tollefson, K.; True, P.; Willis, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alimonti, G.; Andreazza, A.; Ashkenazi, A.; Besana, M. I.; Carminati, L.; Cavalli, D.; Consonni, S. M.; Costa, G.; Fanti, M.; Giugni, D.; Lari, T.; Mandelli, L.; Mazza, S. M.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Shojaii, S.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Perez, M. Villaplana] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy. [Andreazza, A.; Carminati, L.; Consonni, S. M.; Fanti, M.; Mazza, S. M.; Perini, L.; Pizio, C.; Ragusa, F.; Shojaii, S.; Simoniello, R.; Turra, R.; Perez, M. Villaplana] Univ Milan, Dipartimento Fis, Milan, Italy. [Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Hrynevich, A.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Dallaire, F.; Gauthier, L.; Leroy, C.; Rezvani, R.; Saadi, D. Shoaleh; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.; Zhukov, K.] Russian Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Krasnopevtsev, D.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu.; Smirnov, Y.; Soldatov, E. Yu.; Timoshenko, S.; Vorobev, K.] Natl Res Nucl Univ MEPhI, Moscow, Russia. [Boldyrev, A. S.; Gladilin, L. K.; Kramarenko, V. A.; Maevskiy, A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Becker, S.; Bender, M.; Biebel, O.; Bock, C.; Bortfeldt, J.; Calfayan, P.; Chow, B. K. B.; Duckeck, G.; Elmsheuser, J.; Hertenberger, R.; Hoenig, F.; Legger, F.; Lorenz, J.; Loesel, P. J.; Maier, T.; Mann, A.; Mehlhase, S.; Meineck, C.; Mitrevski, J.; Mueller, R. S. P.; Nunnemann, T.; Rauscher, F.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Unverdorben, C.; Vladoiu, D.; Walker, R.; Wittkowski, J.] Univ Munich, Fak Phys, Munich, Germany. [Barillari, T.; Bethke, S.; Bronner, J.; Compostella, G.; Cortiana, G.; Ecker, K. M.; Flowerdew, M. J.; Goblirsch-Kolb, M.; Ince, T.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kroha, H.; Macchiolo, A.; Maier, A. A.; Manfredini, A.; Menke, S.; Mueller, F.; Nagel, M.; Nisius, R.; Nowak, S.; Oberlack, H.; Pahl, C.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Schwegler, Ph.; Sforza, F.; Spettel, F.; Stern, S.; Stonjek, S.; Terzo, S.; von der Schmitt, H.; Wildauer, A.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Hasegawa, S.; Horii, Y.; Morvaj, L.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Basalaev, A.; Canale, V.; Carlino, G.; Conventi, F.; De Asmundis, R.; Della Pietra, M.; Doria, A.; Izzo, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Sekhniaidze, G.; Zurzolo, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Merola, L.; Perrella, S.; Rossi, E.; Sanchez, A.; Zurzolo, G.] Univ Naples Federico II, Dipartimento Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Croft, V.; De Groot, N.; Filthaut, F.; Galea, C.; Koenig, S.; Nektarijevic, S.; Salvucci, A.; Strubig, A.] Radboud Univ Nijmegen, Nikhef, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Aben, R.; Angelozzi, I.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Butti, P.; Castelli, A.; Colijn, A. P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Aben, R.; Angelozzi, I.; Ashkenazi, A.; Basalaev, A.; Beemster, L. J.; Bentvelsen, S.; Berge, D.; Bobbink, G. J.; Bos, K.; Brenner, L.; Butti, P.; Castelli, A.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deigaard, I.; Deluca, C.; Ferrari, P.; Gadatsch, S.; Geerts, D. A. A.; Hartjes, F.; Hessey, N. P.; Hod, N.; Igonkina, O.; Karastathis, N.; Kluit, P.; Koffeman, E.; Linde, F.; Mahlstedt, J.; Meyer, J.; Oussoren, K. P.; Sabato, G.; Salek, D.; Slawinska, M.; Valencic, N.; Van den Wollenberg, W.; Van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.; Weits, H.; Williams, S.] Univ Amsterdam, Amsterdam, Netherlands. [Adelman, J.; Burghgrave, B.; Chakraborty, D.; Cole, S.; Suhr, C.; Yurkewicz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Anisenkov, A. V.; Bobrovnikov, V. S.; Bogdanchikov, A. G.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Malyshev, V. M.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Budker Inst Nucl Phys, SB RAS, Novosibirsk 630090, Russia. [Bernius, C.; Cranmer, K.; Haas, A.; Heinrich, L.; van Huysduynen, L. Hooft; Kaplan, B.; Karthik, K.; Konoplich, R.; Kreiss, S.; Mincer, A. I.; Nemethy, P.; Neves, R. M.] NYU, Dept Phys, 4 Washington Pl, New York, NY 10003 USA. [Beacham, J. B.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Looper, K. A.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Shrestha, S.; Tannenwald, B. B.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Alhroob, M.; Bertsche, C.; Gutierrez, P.; Hasib, A.; Norberg, S.; Pearson, B.; Saleem, M.; Severini, H.; Skubic, P.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baroncelli, A.; Bousson, N.; Haley, J.; Khanov, A.; Rizatdinova, F.; Sidorov, D.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Angerami, A.; Chytka, L.; Hamal, P.; Hrabovsky, M.; Kvita, J.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Brost, E.; Hopkins, W. H.; Majewski, S.; Potter, C. T.; Ptacek, E.; Radloff, P.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.; Wanotayaroj, C.; Winklmeier, F.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Ayoub, M. K.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] Univ Paris 11, LAL, Orsay, France. [Ayoub, M. K.; Baroncelli, A.; Bassalat, A.; Becot, C.; Binet, S.; Bourdarios, C.; De Regie, J. B. De Vivie; Delgove, D.; Escalier, M.; Fayard, L.; Fournier, D.; Gkougkousis, E. L.; Grivaz, J. -F.; Guillemin, T.; Hariri, F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Kado, M.; Li, Y.; Lounis, A.; Makovec, N.; Morange, N.; Nellist, C.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Schaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Zerwas, D.; Zhang, Z.; Zhao, Y.] CNRS, IN2P3, F-91405 Orsay, France. [Endo, M.; Hanagaki, K.; Nomachi, M.; Okamura, W.; Sugaya, Y.; Teoh, J. J.; Yamaguchi, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Beddall, A.; Bugge, L.; Bugge, M. K.; Cameron, D.; Catmore, J. R.; Franconi, L.; Garonne, V.; Gjelsten, B. K.; Gramstad, E.; Morisbak, V.; Nilsen, J. K.; Ould-Saada, F.; Pajchel, K.; Pedersen, M.; Raddum, S.; Read, A. L.; Rohne, O.; Sandaker, H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Barr, A. J.; Bassalat, A.; Becker, K.; Behr, J. K.; Beresford, L.; Cooper-Sarkar, A. M.; Ortuzar, M. Crispin; Dafinca, A.; Davies, E.; Frost, J. A.; Gallas, E. J.; Gupta, S.; Gwenlan, C.; Hall, D.; Hays, C. P.; Henderson, J.; Howard, J.; Huffman, T. B.; Issever, C.; Kalderon, C. W.; King, R. S. B.; Kogan, L. A.; Lewis, A.; Nagai, K.; Nickerson, R. B.; Pickering, M. A.; Ryder, N. C.; Sawyer, C.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Conta, C.; Dondero, P.; Ferrari, R.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Conta, C.; Dondero, P.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy. [Brendlinger, K.; Heim, S.; Hines, E.; Jackson, B.; Kroll, J.; Lipeles, E.; Miguens, J. Machado; Meyer, C.; Stahlman, J.; Thomson, E.; Tuna, A. N.; Vanguri, R.; Williams, H. H.; Yoshihara, K.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Basalaev, A.; Ezhilov, A.; Fedin, O. L.; Gratchev, V.; Levchenko, M.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] BP Konstantinov Petersburg Nucl Phys Inst, Kurchatov Inst, Natl Res Ctr, St Petersburg, Russia. [Annovi, A.; Beccherle, R.; Beddall, A.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, S.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Annovi, A.; Beccherle, R.; Bertolucci, F.; Cavasinni, V.; Del Prete, T.; Dell'Orso, M.; Donati, S.; Giannetti, P.; Leone, S.; Roda, C.; Scuri, F.; Sotiropoulou, C. L.; Spalla, M.; Volpi, G.; White, A.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Bianchi, R. M.; Bourdarios, C.; Cleland, W.; Escobar, C.; Hong, T. M.; Mueller, J.; Sapp, K.; Su, J.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Aloisio, A.; Amor Dos Santos, S. P.; Amorim, A.; Araque, J. P.; Cantrill, R.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Goncalo, R.; Jorge, P. M.; Lopes, L.; Maio, A.; Maneira, J.; Onofre, A.; Palma, A.; Pedro, R.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Tavares Delgado, A.; Veloso, F.; Wolters, H.] LIP, Lab Instrumentacao & Fis Expt Particulas, P-1000 Lisbon, Portugal. [Amorim, A.; Muino, P. Conde; Da Cunha Sargedas De Sousa, M. J.; Gomes, A.; Jorge, P. M.; Miguens, J. Machado; Maio, A.; Maneira, J.; Palma, A.; Pedro, R.; Pina, J.; Tavares Delgado, A.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amor Dos Santos, S. P.; Carvalho, J.; Fiolhais, M. C. N.; Galhardo, B.; Veloso, F.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Gomes, A.; Maio, A.; Pina, J.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Ctr Fis Nucl, Lisbon, Portugal. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. Univ Nova Lisboa, Dept Fis, Caparica, Portugal. Univ Nova Lisboa, Fac Ciencias & Tecnol, CEFITEC, Caparica, Portugal. [Chudoba, J.; Havranek, M.; Hejbal, J.; Jakoubek, T.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Lysak, R.; Marcisovsky, M.; Mikestikova, M.; Nemecek, S.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Caforio, D.; Gallus, P.; Guenther, J.; Jakubek, J.; Kohout, Z.; Myska, M.; Pospisil, S.; Seifert, F.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopczak, A.; Sopko, B.; Sopko, V.; Suk, M.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Vykydal, Z.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Cerny, K.; Chalupkova, I.; Davidek, T.; Dolejsi, J.; Dolezal, Z.; Faltova, J.; Kodys, P.; Kosek, T.; Leitner, R.; Pleskot, V.; Reznicek, P.; Scheirich, D.; Spousta, M.; Sykora, T.; Tas, P.; Todorova-Nova, S.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Borisov, A.; Cheremushkina, E.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Kamenshchikov, A.; Karyukhin, A. N.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.] Inst High Energy Phys Protvino, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Beddall, A.; Bellerive, A.; Bingul, A.; Burke, S.; Davies, E.; Dewhurst, A.; Dopke, J.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Haywood, S. J.; Kirk, J.; Martin-Haugh, S.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Anulli, F.; Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; De Pedis, D.; De Salvo, A.; Di Domenico, A.; Di Donato, C.; Falciano, S.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luminari, L.; Marzano, F.; Messina, A.; Monzani, S.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Vanadia, M.; Vari, R.; Veneziano, S.; Verducci, M.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bagiacchi, P.; Bagnaia, P.; Bauce, M.; Bini, C.; Ciapetti, G.; Corradi, M.; Di Domenico, A.; Di Donato, C.; Gabrielli, A.; Gauzzi, P.; Gentile, S.; Giagu, S.; Kuna, M.; Lacava, F.; Luci, C.; Messina, A.; Monzani, S.; Vanadia, M.; Verducci, M.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Di Ciaccio, A.; Iuppa, R.; Liberti, B.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Di Ciaccio, A.; Iuppa, R.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, Via E Carnevale, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Ceradini, F.; Di Micco, B.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Stanescu, C.; Taccini, C.; Trovatelli, M.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Ceradini, F.; Di Micco, B.; Orestano, D.; Pastore, F.; Puddu, D.; Salamanna, G.; Sessa, M.; Taccini, C.; Trovatelli, M.] Univ Rome Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy. [Benchekroun, D.; Chafaq, A.; Hoummada, A.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, LPHEA, Fac Sci Semlalia, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Cherkaoui El Mourslie, R.; Fassi, F.; Haddad, N.; Idrissi, Z.] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J. -B.; Boonekamp, M.; Calandri, A.; Chevalier, L.; Hoffmann, M. Dano; Deliot, F.; Etienvre, A. I.; Formica, A.; Giraud, P. F.; Da Costa, J. Goncalves Pinto Firmino; Guyot, C.; Hanna, R.; Hassani, S.; Kivernyk, O.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Maiani, C.; Mansoulie, B.; Meyer, J-P.; Nicolaidou, R.; Ouraou, A.; Protopapadaki, E.; Royon, C. R.; Saimpert, M.; Schoeffel, L.; Schune, Ph.; Schwemling, Ph.; Schwindling, J.] CEA Saclay, DSM IRFU Inst Recherches Lois Fondament Univers, F-91191 Gif Sur Yvette, France. [Battaglia, M.; Debenedetti, C.; Grabas, H. M. X.; Grillo, A. A.; Kuhl, A.; Law, A. T.; Liang, Z.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Nielsen, J.; Reece, R.; Rose, P.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Blackburn, D.; Coccaro, A.; Goussiou, A. G.; Hsu, S. -C.; Lubatti, H. J.; Marx, M.; Rompotis, N.; Rosten, R.; Rothberg, J.; Russell, H. L.; De Bruin, P. H. Sales; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Fletcher, G. T.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Kyriazopoulos, D.; Paredes, B. Lopez; Macdonald, C. M.; Miyagawa, P. S.; Paganis, E.; Parker, K. A.; Tovey, D. R.; Vickey, T.; Boeriu, O. E. Vickey] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Atlay, N. B.; Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Ibragimov, I.; Rosenthal, O.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Buat, Q.; Horton, A. J.; O'Neil, D. C.; Pachal, K.; Stelzer, B.; Torres, H.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Barklow, T.; Bartoldus, R.; Bawa, H. S.; Black, J. E.; Cogan, J. G.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Ilic, N.; Kagan, M.; Kocian, M.; Koi, T.; Malone, C.; Mount, R.; Nef, P. D.; Piacquadio, G.; Rubbo, F.; Salnikov, A.; Schwartzman, A.; Strauss, E.; Su, D.; Swiatlowski, M.; Tompkins, L.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Astalos, R.; Bartos, P.; Blazek, T.; Federic, P.; Plazak, L.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Kladiva, E.; Strizenec, P.; Urban, J.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Hamilton, A.; Meehan, S.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Aurousseau, M.; Castaneda-Miranda, E.; Connell, S. H.; Govender, N.; Lee, C. A.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, K.; Hamity, G. N.; Hsu, C.; March, L.; Garcia, B. R. Mellado; Ruan, X.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Bohm, C.; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Abulaiti, Y.; Akerstedt, H.; Asman, B.; Bendtz, K.; Bertoli, G.; Bylund, O. Bessidskaia; Clement, C.; Cribbs, W. A.; Hellman, S.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, P.; Lundberg, O.; Milstead, D. A.; Moa, T.; Molander, S.; Pani, P.; Petridis, A.; Plucinski, P.; Rossetti, V.; Shcherbakova, A.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Ughetto, M.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Morley, A. K.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Balestri, T.; Bee, C. P.; Campoverde, A.; Chen, K.; Grassi, V.; Hobbs, J.; Jia, J.; Li, H.; Lindquist, B. E.; Mastrandrea, P.; McCarthy, R. L.; Puldon, D.; Radhakrishnan, S. K.; Rijssenbeek, M.; Schamberger, R. D.; Tsybychev, D.; Zaman, A.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Asquith, L.; Cerri, A.; Barajas, C. A. Chavez; De Sanctis, U.; De Santo, A.; Grout, Z. J.; Potter, C. J.; Salvatore, F.; Castillo, I. Santoyo; Shehu, C. Y.; Suruliz, K.; Sutton, M. R.; Vivarelli, I.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Black, C. W.; Cuthbert, C.; Finelli, K. D.; Jeng, G. -Y.; Limosani, A.; Patel, N. D.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Abdallah, J.; Chu, M. L.; Hou, S.; Hsu, P. J.; Jamin, D. O.; Lee, S. C.; Liu, B.; Liu, D.; Lo Sterzo, F.; Mazini, R.; Shi, L.; Soh, D. A.; Teng, P. K.; Wang, S. M.; Yang, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Abreu, H.; Cheatham, S.; Di Mattia, A.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; van Eldik, N.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Ashkenazi, A.; Bella, G.; Benary, O.; Benhammou, Y.; Davies, M.; Etzion, E.; Gershon, A.; Gueta, O.; Munwes, Y.; Oren, Y.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Gkaitatzis, S.; Gkialas, I.; Iliadis, D.; Kimura, N.; Kordas, K.; Kourkoumeli-Charalampidi, A.; Leisos, A.; Orlando, N.; Papageorgiou, K.; Hernandez, D. Paredes; Petridou, C.; Sampsonidis, D.; Tsionou, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamanaka, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Dohmae, T.; Enari, Y.; Hanawa, K.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kobayashi, A.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Minami, Y.; Morinaga, M.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.] Univ Tokyo, Dept Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Hirose, M.; Ishitsuka, M.; Jinnouchi, O.; Kobayashi, D.; Kuze, M.; Motohashi, K.; Nagai, R.; Nobe, T.; Pettersson, N. E.] Tokyo Inst Technol, Dept Phys, Oh Okayama, Tokyo 152, Japan. [AbouZeid, O. S.; Batista, S. J.; Chau, C. C.; DeMarco, D. A.; Di Sipio, R.; Diamond, M.; Krieger, P.; Liblong, A.; Mc Goldrick, G.; Orr, R. S.; Polifka, R.; Rudolph, M. S.; Savard, P.; Schramm, S.; Sinervo, P.; Spreitzer, T.; Taenzer, J.; Teuscher, R. J.; Trischuk, W.; Veloce, L. M.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Chekulaev, S. V.; Gingrich, D. M.; Jovicevic, J.; Koutsman, A.; Oakham, F. G.; Oram, C. J.; Codina, E. Perez; Savard, P.; Schneider, B.; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Ramos, J. Manjarres; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Nagata, K.; Okawa, H.; Sato, K.; Ukegawa, F.] Univ Tsukuba, Ctr Integrated Res Fundamental Sci & Engn, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Meoni, E.; Rolli, S.; Sliwa, K.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Moreno, D.; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Corso-Radu, A.; Gerbaudo, D.; Lankford, A. J.; Mete, A. S.; Nelson, A.; Relich, M.; Scannicchio, D. A.; Schernau, M.; Shimmin, C. O.; Taffard, A.; Unel, G.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Barisonzi, M.; Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Quayle, W. B.; Serkin, L.; Shaw, K.; Soualah, R.; Truong, L.] Ist Nazl Fis Nucl, Grp Collegato Udine, Sez Trieste, Udine, Italy. [Acharya, B. S.; Barisonzi, M.; Quayle, W. B.; Serkin, L.; Shaw, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Brazzale, S. F.; Cobal, M.; Giordani, M. P.; Miglioranzi, S.; Pinamonti, M.; Soualah, R.; Truong, L.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Cavaliere, V.; Chang, P.; Errede, S.; Lie, K.; Liss, T. M.; Liu, L.; Neubauer, M. S.; Rybar, M.; Shang, R.; Vichou, I.] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA. [Kuutmann, E. Bergeaas; Brenner, R.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Madsen, A.; Ohman, H.; Pelikan, D.; Rangel-Smith, C.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Alvarez Piqueras, D.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Jimenez Pena, J.; Kaci, M.; King, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estan, M. T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez, J.; Sanchez Martinez, V.; Soldevila, U.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Vos, M.] CSIC, Valencia, Spain. [Danninger, M.; Fedorko, W.; Gay, C.; Gecse, Z.; King, S. B.; Lister, A.; Swedish, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Berghaus, F.; David, C.; Elliot, A. A.; Fincke-Keeler, M.; Hamano, K.; Hill, E.; Keeler, R.; Kowalewski, R.; Kuwertz, E. S.; Kwan, T.; LeBlanc, M.; Lefebvre, M.; Marino, C. P.; McPherson, R. A.; Ouellette, E. A.; Pearce, J.; Sobie, R.; Venturi, M.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Beckingham, M.; Beddall, A.; Farrington, S. M.; Harrison, P. F.; Janus, M.; Jeske, C.; Jones, G.; Martin, T. A.; Murray, W. J.; Pianori, E.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Iizawa, T.; Mitani, T.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Bressler, S.; Citron, Z. H.; Duchovni, E.; Gross, E.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Pitt, M.; Roth, I.; Schaarschmidt, J.; Smakhtin, V.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hard, A. S.; Heng, Y.; Ji, H.; Ju, X.; Kashif, L.; Kruse, A.; Ming, Y.; Pan, Y. B.; Wang, F.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zhang, F.; Zobernig, G.] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. [Kuger, F.; Redelbach, A.; Schreyer, M.; Sidiropoulou, O.; Siragusa, G.; Stroehmer, R.; Tam, J. Y. C.; Trefzger, T.; Weber, S. W.; Zibell, A.] Univ Wurzburg, Fak Phys & Astron, D-97070 Wurzburg, Germany. [Bannoura, A. A. E.; Beermann, T. A.; Braun, H. M.; Cornelissen, T.; Duda, D.; Ernis, G.; Fischer, J.; Fleischmann, S.; Flick, T.; Gabizon, O.; Hamacher, K.; Harenberg, T.; Heim, T.; Hirschbuehl, D.; Kersten, S.; Kohlmann, S.; Maettig, P.; Neumann, M.; Pataraia, S.; Riegel, C. J.; Sandhoff, M.; Tepel, F.; Wagner, W.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Baker, O. K.; Cummings, J.; Demers, S.; Garberson, F.; Guest, D.; Henrichs, A.; Ideal, E.; Lagouri, T.; Leister, A. G.; Loginov, A.; Thomsen, L. A.; Tipton, P.; Wang, X.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.; Vardanyan, G.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Rahal, G.] IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Anisenkov, A. V.; Bobrovnikov, V. S.; Buzykaev, A. R.; Kazanin, V. F.; Kharlamov, A. G.; Korol, A. A.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Rezanova, O. L.; Soukharev, A. M.; Talyshev, A. A.; Tikhonov, Yu. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Bawa, H. S.; Gao, Y. S.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beck, H. P.] Univ Fribourg, Dept Phys, CH-1700 Fribourg, Switzerland. [Castro, N. F.] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre 823, P-4100 Oporto, Portugal. [Chelkov, G. A.] Tomsk State Univ, Tomsk 634050, Russia. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Corriveau, F.; McPherson, R. A.; Robertson, S. H.; Sobie, R.; Teuscher, R. J.] Inst Particle Phys, Sackville, NB, Canada. [Fedin, O. L.] St Petersburg State Polytech Univ, Dept Phys, St Petersburg, Russia. [Grinstein, S.; Juste Rozas, A.; Martinez, M.] ICREA, Inst Catalana Rec & Estudis Avancats, Barcelona, Spain. [Hsu, P. J.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Ilchenko, Y.; Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Jejelava, J.] Ilia State Univ, Inst Theoret Phys, Tbilisi, Rep of Georgia. [Khubua, J.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Kono, T.] Ochanomizu Univ, Ochadai Acad Prod, Tokyo 112, Japan. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Leisos, A.] Hellen Open Univ, Patras, Greece. [Li, B.; Song, H. Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Myagkov, A. G.; Nikolaenko, V.; Zaitsev, A. M.] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Pinamonti, M.] SISSA, Int Sch Adv Studies, I-34014 Trieste, Italy. [Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Shi, L.; Soh, D. A.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Smirnova, L. N.; Turchikhin, S.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Tompkins, L.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. [Yusuff, I.] Univ Malaya, Dept Phys, Kuala Lumpur 59100, Malaysia. RP Aad, G (reprint author), Aix Marseille Univ, CPPM, Marseille, France.; Aad, G (reprint author), CNRS, IN2P3, Marseille, France. RI Camarri, Paolo/M-7979-2015; Mindur, Bartosz/A-2253-2017; Mashinistov, Ruslan/M-8356-2015; Gutierrez, Phillip/C-1161-2011; Fabbri, Laura/H-3442-2012; Kantserov, Vadim/M-9761-2015; Chekulaev, Sergey/O-1145-2015; Snesarev, Andrey/H-5090-2013; Solodkov, Alexander/B-8623-2017; Carli, Ina/C-2189-2017; Zaitsev, Alexandre/B-8989-2017; Martinez, Mario /I-3549-2015; Peleganchuk, Sergey/J-6722-2014; messina, andrea/C-2753-2013; Prokoshin, Fedor/E-2795-2012; Doyle, Anthony/C-5889-2009; Brooks, William/C-8636-2013; Zhukov, Konstantin/M-6027-2015; Boyko, Igor/J-3659-2013; Villa, Mauro/C-9883-2009; Coccaro, Andrea/P-5261-2016; Staroba, Pavel/G-8850-2014; Gavrilenko, Igor/M-8260-2015; Di Domenico, Antonio/G-6301-2011; Gauzzi, Paolo/D-2615-2009; Maleev, Victor/R-4140-2016; Yang, Haijun/O-1055-2015; Li, Liang/O-1107-2015; Monzani, Simone/D-6328-2017; Kuday, Sinan/C-8528-2014; Gladilin, Leonid/B-5226-2011; Livan, Michele/D-7531-2012; Carvalho, Joao/M-4060-2013; Mitsou, Vasiliki/D-1967-2009; Guo, Jun/O-5202-2015; Warburton, Andreas/N-8028-2013; La Rosa Navarro, Jose Luis/K-4221-2016; Vanadia, Marco/K-5870-2016; Tikhomirov, Vladimir/M-6194-2015; Ippolito, Valerio/L-1435-2016; Smirnova, Oxana/A-4401-2013; Maneira, Jose/D-8486-2011 OI Camarri, Paolo/0000-0002-5732-5645; Mindur, Bartosz/0000-0002-5511-2611; Mashinistov, Ruslan/0000-0001-7925-4676; Fabbri, Laura/0000-0002-4002-8353; Kantserov, Vadim/0000-0001-8255-416X; Solodkov, Alexander/0000-0002-2737-8674; Carli, Ina/0000-0002-0411-1141; Zaitsev, Alexandre/0000-0002-4961-8368; Peleganchuk, Sergey/0000-0003-0907-7592; Prokoshin, Fedor/0000-0001-6389-5399; Doyle, Anthony/0000-0001-6322-6195; Brooks, William/0000-0001-6161-3570; Boyko, Igor/0000-0002-3355-4662; Villa, Mauro/0000-0002-9181-8048; Coccaro, Andrea/0000-0003-2368-4559; Di Domenico, Antonio/0000-0001-8078-2759; Gauzzi, Paolo/0000-0003-4841-5822; Farrington, Sinead/0000-0001-5350-9271; Robson, Aidan/0000-0002-1659-8284; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Veneziano, Stefano/0000-0002-2598-2659; Belanger-Champagne, Camille/0000-0003-2368-2617; Terzo, Stefano/0000-0003-3388-3906; Smirnov, Sergei/0000-0002-6778-073X; Li, Liang/0000-0001-6411-6107; Monzani, Simone/0000-0002-0479-2207; Kuday, Sinan/0000-0002-0116-5494; Gladilin, Leonid/0000-0001-9422-8636; Cristinziani, Markus/0000-0003-3893-9171; Galhardo, Bruno/0000-0003-0641-301X; Pina, Joao /0000-0001-8959-5044; Livan, Michele/0000-0002-5877-0062; Carvalho, Joao/0000-0002-3015-7821; Mitsou, Vasiliki/0000-0002-1533-8886; Guo, Jun/0000-0001-8125-9433; Warburton, Andreas/0000-0002-2298-7315; Vanadia, Marco/0000-0003-2684-276X; Tikhomirov, Vladimir/0000-0002-9634-0581; Ippolito, Valerio/0000-0001-5126-1620; Smirnova, Oxana/0000-0003-2517-531X; Maneira, Jose/0000-0002-3222-2738 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW, Austria; FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR Czech Republic; MPO CR Czech Republic; VSC CR, Czech Republic; DNRF Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; HGF, Germany; MPG, Germany; GSRT, Greece; RGC, China; Hong Kong SAR, China; ISF, Israel; I-CORE, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Geneva, Switzerland; SNSF, Geneva, Switzerland; Cantons of Bern, Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE, United States of America; NSF, United States of America; BCKDF; Canada Council; CANARIE; CRC; Compute Canada; FQRNT; Ontario Innovation Trust, Canada; EPLANET; ERC; FP7; Horizon 2020; Marie Sklodowska-Curie Actions; European Union; Investissements d'Avenir Labex and Idex; ANR; Region Auvergne and Fondation Partager le Savoir, France; DFG, Germany; AvH Foundation, Germany; EU-ESF; Greek NSRF; BSF; GIF; Minerva, Israel; BRF, Norway; Royal Society; Leverhulme Trust, United Kingdom FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. NR 78 TC 6 Z9 6 U1 17 U2 43 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04008 DI 10.1088/1748-0221/11/04/P04008 PG 126 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400027 ER PT J AU Adam, W Bergauer, T Dragicevic, M Friedl, M Fruehwirth, R Hoch, M Hrubec, J Krammer, M Treberspurg, W Waltenberger, W Alderweireldt, S Beaumont, W Janssen, X Luyckx, S Van Mechelen, P Van Remortel, N Van Spilbeeck, A Barria, P Caillol, C Clerbaux, B De Lentdecker, G Dobur, D Favart, L Grebenyuk, A Lenzi, T Leonard, A Maerschalk, T Mohammadi, A Pernie, L Randle-Conde, A Reis, T Seva, T Thomas, L Velde, CV Vanlaer, P Wang, J Zenoni, F Abu Zeid, S Blekman, F De Bruyn, I D'Hondt, J Daci, N Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Tavernier, S Van Mulders, P Van Onsem, G Van Parijs, I Strom, DA Basegmez, S Bruno, G Castello, R Caudron, A Ceard, L De Callatay, B Delaere, C Du Pree, T Forthomme, L Giammanco, A Hollar, J Jez, P Michotte, D Nuttens, C Perrini, L Pagano, D Quertenmont, L Selvaggi, M Marono, MV Beliy, N Caebergs, T Daubie, E Hammad, GH Harkonen, J Lampen, T Luukka, PR Maenpaa, T Peltola, T Tuominen, E Tuovinen, E Eerola, P Tuuva, T Beaulieu, G Boudoul, G Combaret, C Contardo, D Gallbit, G Lumb, N Mathez, H Mirabito, L Perries, S Sabes, D Donckt, MV Verdier, P Viret, S Zoccarato, Y Agram, JL Conte, E Fontaine, JC Andrea, J Bloch, D Bonnin, C Brom, JM Chabert, E Charles, L Goetzmann, C Gross, L Hosselet, J Mathieu, C Richer, M Skovpen, K Pistone, C Fluegge, G Kuensken, A Geisler, M Pooth, O Stahl, A Autermann, C Edelhoff, M Esser, H Feld, L Karpinski, W Klein, K Lipinski, M Ostapchuk, A Pierschel, G Preuten, M Raupach, F Sammet, J Schael, S Schwering, G Wittmer, B Wlochal, M Zhukov, V Bartosik, N Behr, J Burgmeier, A Calligaris, L Dolinska, G Eckerlin, G Eckstein, D Eichhorn, T Fluke, G Garcia, JG Gizhko, A Hansen, K Harb, A Hauk, J Kalogeropoulos, A Kleinwort, C Korol, I Lange, W Lohmann, W Mankel, R Maser, H Mittag, G Muhl, C Mussgiller, A Nayak, A Ntomari, E Perrey, H Pitzl, D Schroeder, M Seitz, C Spannagel, S Zuber, A Biskop, H Blobel, V Buhmann, P Centis-Vignali, M Draeger, AR Erfle, J Garutti, E Haller, J Hoffmann, M Junkes, A Lapsien, T Mattig, S Matysek, M Perieanu, A Poehlsen, J Poehlsen, T Scharf, C Schleper, P Schmidt, A Sola, V Steinbruck, G Wellhausen, J Barvich, T Barth, C Boegelspacher, F De Boer, W Butz, E Casele, M Colombo, F Dierlamm, A Eber, R Freund, B Hartmann, F Hauth, T Heindl, S Hoffmann, KH Husemann, U Kornmeyer, A Mallows, S Muller, T Nuernberg, A Printz, M Simonis, HJ Steck, P Weber, M Weiler, T Bhardwaj, A Kumar, A Kumar, A Ranjan, K Bakhshiansohl, H Behnamian, H Khakzad, M Naseri, M Cariola, P De Robertis, G Fiore, L Franco, M Loddo, F Sala, G Silvestris, L Creanza, D De Palma, M Maggi, G My, S Selvaggi, G Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, F Di Mattia, A Potenza, R Saizu, MA Tricomi, A Tuve, C Barbagli, G Brianzi, M Ciaranfi, R Civinini, C Gallo, E Meschini, M Paoletti, S Sguazzoni, G Ciulli, V D'Alessandro, R Gonzi, S Gori, V Focardi, E Lenzi, P Scarlini, E Tropiano, A Viliani, L Ferro, F Robutti, E Lo Vetere, M Gennai, S Malvezzi, S Menasce, D Moroni, L Pedrini, D Dinardo, M Fiorendi, S Manzoni, RA Azzi, P Bacchetta, N Bisello, D Dall'Osso, M Dorigo, T Giubilato, P Pozzobon, N Tosi, M Zucchetta, A De Canio, F Gaioni, L Manghisoni, M Nodari, B Re, V Traversi, G Comotti, D Ratti, L Bilei, GM Bissi, L Checcucci, B Magalotti, D Menichelli, M Saha, A Servoli, L Storchi, L Biasini, M Conti, E Ciangottini, D Fano, L Lariccia, P Mantovani, G Passeri, D Placidi, P Salvatore, M Santocchia, A Solestizi, LA Spiezia, A Androsov, K Azzurri, P Arezzini, S Bagliesi, G Basti, A Boccali, T Bosi, F Castaldi, R Ciampa, A Ciocci, MA Dell'Orso, R Fedi, G Giassi, A Grippo, MT Lomtadze, T Magazzu, G Mazzoni, E Minuti, M Moggi, A Moon, CS Morsani, F Palla, F Palmonari, F Raffaelli, F Savoy-Navarro, A Serban, AT Spagnolo, P Tenchini, R Venturi, A Verdini, PG Martini, L Messineo, A Rizzi, A Tonelli, G Calzolari, F Donato, S Fiori, F Ligabue, F Vernieri, C Demaria, N Rivetti, A Bellan, R Casasso, S Costa, M Covarelli, R Migliore, E Monteil, E Musich, M Pacher, L Ravera, F Romero, A Solano, A Trapani, P Echeverria, RJ Fernandez, M Gomez, G Moya, D Sanchez, FJG Sanchez, FJM Vila, I Virto, AL Abbaneo, D Ahmed, I Albert, E Auzinger, G Berruti, G Bianchi, G Blanchot, G Breuker, H Ceresa, D Christiansen, J Cichy, K Daguin, J D'Alfonso, M D'Auria, A Detraz, S De Visscher, S Deyrail, D Faccio, F Felici, D Frank, N Gill, K Giordano, D Harris, P Honma, A Kaplon, J Kornmayer, A Kottelat, L Kovacs, M Mannelli, M Marchioro, A Marconi, S Martina, S Mersi, S Michelis, S Moll, M Onnela, A Pakulski, T Pavis, S Peisert, A Pernot, JF Petagna, P Petrucciani, G Postema, H Rose, P Rzonca, M Stoye, M Tropea, P Troska, J Tsirou, A Vasey, F Vichoudis, P Verlaat, B Zwalinski, L Bachmair, F Becker, R Bani, L di Calafiori, D Casal, B Djambazov, L Donega, M Dunser, M Eller, P Grab, C Hits, D Horisberger, U Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Perrozzi, L Roeser, U Rossini, M Starodumov, A Takahashi, M Wallny, R Amsler, C Bosiger, K Caminada, L Canelli, F Chiochia, V de Cosa, A Galloni, C Hreus, T Kilminster, B Lange, C Maier, R Ngadiuba, J Pinna, D Robmann, P Taroni, S Yang, Y Bertl, W Deiters, K Erdmann, W Horisberger, R Kaestli, HC Kotlinski, D Langenegger, U Meier, B Rohe, T Streuli, S Chen, PH Dietz, C Grundler, U Hou, WS Lu, RS Moya, M Wilken, R Cussans, D Flacher, H Goldstein, J Grimes, M Jacob, J El Nasr-Storey, SS Cole, J Hobson, P Leggat, D Reid, ID Teodorescu, L Bainbridge, R Dauncey, P Fulcher, J Hall, G Magnan, AM Pesaresi, M Raymond, DM Uchida, K Coughlan, JA Harder, K Ilic, J Tomalin, IR Garabedian, A Heintz, U Narain, M Nelson, J Sagir, S Speer, T Swanson, J Tersegno, D Watson-Daniels, J Chertok, M Conway, J Conway, R Flores, C Lander, R Pellett, D Ricci-Tam, F Squires, M Thomson, J Yohay, R Burt, K Ellison, J Hanson, G Malberti, M Olmedo, M Cerati, G Sharma, V Vartak, A Yagil, A Della Porta, GZ Dutta, V Gouskos, L Incandela, J Kyre, S McColl, N Mullin, S White, D Cumalat, JP Ford, WT Gaz, A Krohn, M Stenson, K Wagner, SR Baldin, B Bolla, G Burkett, K Butler, J Cheung, H Chramowicz, J Christian, D Cooper, WE Deptuch, G Derylo, G Gingu, C Gruenendahl, S Hasegawa, S Hoff, J Howell, J Hrycyk, M Jindariani, S Johnson, M Jung, A Joshi, U Kahlid, F Lei, CM Lipton, R Liu, T Los, S Matulik, M Merkel, P Nahn, S Prosser, A Rivera, R Shenai, A Spiegel, L Tran, N Uplegger, L Voirin, E Yin, H Adams, MR Berry, DR Evdokimov, A Evdokimov, O Gerber, CE Hofman, DJ Kapustka, BK O'Brien, C Gonzalez, DIS Trauger, H Turner, P Parashar, N Stupak, J Bortoletto, D Bubna, M Hinton, N Jones, M Miller, DH Shi, X Tan, P Baringer, P Bean, A Benelli, G Gray, J Majumder, D Noonan, D Sanders, S Stringer, R Ivanov, A Makouski, M Skhirtladze, N Taylor, R Anderson, I Fehling, D Gritsan, A Maksimovic, P Martin, C Nash, K Osherson, M Swartz, M Xiao, M Acosta, JG Cremaldi, LM Oliveros, S Perera, L Summers, D Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Meier, F Monroy, J Hahn, K Sevova, S Sung, K Trovato, M Bartz, E Duggan, D Halkiadakis, E Lath, A Park, M Schnetzer, S Stone, R Walker, M Malik, S Mendez, H Vargas, JER Alyari, M Dolen, J George, J Godshalk, A Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Alexander, J Chaves, J Chu, J Dittmer, S Kaufman, G Mirman, N Ryd, A Salvati, E Skinnari, L Thom, J Thompson, J Tucker, J Winstrom, L Akgun, B Ecklund, KM Nussbaum, T Zabel, J Betchart, B Covarelli, R Demina, R Hindrichs, O Petrillo, G Eusebi, R Osipenkov, I Perloff, A Ulmer, KA Delannoy, AG D'Angelo, P Johns, W AF Adam, W. Bergauer, T. Dragicevic, M. Friedl, M. Fruehwirth, R. Hoch, M. Hrubec, J. Krammer, M. Treberspurg, W. Waltenberger, W. Alderweireldt, S. Beaumont, W. Janssen, X. Luyckx, S. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Barria, P. Caillol, C. Clerbaux, B. De Lentdecker, G. Dobur, D. Favart, L. Grebenyuk, A. Lenzi, Th. Leonard, A. Maerschalk, Th. Mohammadi, A. Pernie, L. Randle-Conde, A. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Zenoni, F. Abu Zeid, S. Blekman, F. De Bruyn, I. D'Hondt, J. Daci, N. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Tavernier, S. Van Mulders, P. Van Onsem, G. Van Parijs, I. Strom, D. A. Basegmez, S. Bruno, G. Castello, R. Caudron, A. Ceard, L. De Callatay, B. Delaere, C. Du Pree, T. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Michotte, D. Nuttens, C. Perrini, L. Pagano, D. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Harkonen, J. Lampen, T. Luukka, P. -R. Maenpaa, T. Peltola, T. Tuominen, E. Tuovinen, E. Eerola, P. Tuuva, T. Beaulieu, G. Boudoul, G. Combaret, C. Contardo, D. Gallbit, G. Lumb, N. Mathez, H. Mirabito, L. Perries, S. Sabes, D. Donckt, M. Vander Verdier, P. Viret, S. Zoccarato, Y. Agram, J. -L. Conte, E. Fontaine, J. -Ch. Andrea, J. Bloch, D. Bonnin, C. Brom, J. -M. Chabert, E. Charles, L. Goetzmann, Ch. Gross, L. Hosselet, J. Mathieu, C. Richer, M. Skovpen, K. Pistone, C. Fluegge, G. Kuensken, A. Geisler, M. Pooth, O. Stahl, A. Autermann, C. Edelhoff, M. Esser, H. Feld, L. Karpinski, W. Klein, K. Lipinski, M. Ostapchuk, A. Pierschel, G. Preuten, M. Raupach, F. Sammet, J. Schael, S. Schwering, G. Wittmer, B. Wlochal, M. Zhukov, V. Bartosik, N. Behr, J. Burgmeier, A. Calligaris, L. Dolinska, G. Eckerlin, G. Eckstein, D. Eichhorn, T. Fluke, G. Garcia, J. Garay Gizhko, A. Hansen, K. Harb, A. Hauk, J. Kalogeropoulos, A. Kleinwort, C. Korol, I. Lange, W. Lohmann, W. Mankel, R. Maser, H. Mittag, G. Muhl, C. Mussgiller, A. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Schroeder, M. Seitz, C. Spannagel, S. Zuber, A. Biskop, H. Blobel, V. Buhmann, P. Centis-Vignali, M. Draeger, A. -R. Erfle, J. Garutti, E. Haller, J. Hoffmann, M. Junkes, A. Lapsien, T. Maettig, S. Matysek, M. Perieanu, A. Poehlsen, J. Poehlsen, T. Scharf, Ch. Schleper, P. Schmidt, A. Sola, V. Steinbrueck, G. Wellhausen, J. Barvich, T. Barth, Ch. Boegelspacher, F. De Boer, W. Butz, E. Casele, M. Colombo, F. Dierlamm, A. Eber, R. Freund, B. Hartmann, F. Hauth, Th. Heindl, S. Hoffmann, K. -H. Husemann, U. Kornmeyer, A. Mallows, S. Muller, Th. Nuernberg, A. Printz, M. Simonis, H. J. Steck, P. Weber, M. Weiler, Th. Bhardwaj, A. Kumar, A. Kumar, A. Ranjan, K. Bakhshiansohl, H. Behnamian, H. Khakzad, M. Naseri, M. Cariola, P. De Robertis, G. Fiore, L. Franco, M. Loddo, F. Sala, G. Silvestris, L. Creanza, D. De Palma, M. Maggi, G. My, S. Selvaggi, G. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, F. Di Mattia, A. Potenza, R. Saizu, M. A. Tricomi, A. Tuve, C. Barbagli, G. Brianzi, M. Ciaranfi, R. Civinini, C. Gallo, E. Meschini, M. Paoletti, S. Sguazzoni, G. Ciulli, V. D'Alessandro, R. Gonzi, S. Gori, V. Focardi, E. Lenzi, P. Scarlini, E. Tropiano, A. Viliani, L. Ferro, F. Robutti, E. Lo Vetere, M. Gennai, S. Malvezzi, S. Menasce, D. Moroni, L. Pedrini, D. Dinardo, M. Fiorendi, S. Manzoni, R. A. Azzi, P. Bacchetta, N. Bisello, D. Dall'Osso, M. Dorigo, T. Giubilato, P. Pozzobon, N. Tosi, M. Zucchetta, A. De Canio, F. Gaioni, L. Manghisoni, M. Nodari, B. Re, V. Traversi, G. Comotti, D. Ratti, L. Bilei, G. M. Bissi, L. Checcucci, B. Magalotti, D. Menichelli, M. Saha, A. Servoli, L. Storchi, L. Biasini, M. Conti, E. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Passeri, D. Placidi, P. Salvatore, M. Santocchia, A. Solestizi, L. A. Spiezia, A. Androsov, K. Azzurri, P. Arezzini, S. Bagliesi, G. Basti, A. Boccali, T. Bosi, F. Castaldi, R. Ciampa, A. Ciocci, M. A. Dell'Orso, R. Fedi, G. Giassi, A. Grippo, M. T. Lomtadze, T. Magazzu, G. Mazzoni, E. Minuti, M. Moggi, A. Moon, C. S. Morsani, F. Palla, F. Palmonari, F. Raffaelli, F. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Tenchini, R. Venturi, A. Verdini, P. G. Martini, L. Messineo, A. Rizzi, A. Tonelli, G. Calzolari, F. Donato, S. Fiori, F. Ligabue, F. Vernieri, C. Demaria, N. Rivetti, A. Bellan, R. Casasso, S. Costa, M. Covarelli, R. Migliore, E. Monteil, E. Musich, M. Pacher, L. Ravera, F. Romero, A. Solano, A. Trapani, P. Jaramillo Echeverria, R. Fernandez, M. Gomez, G. Moya, D. Gonzalez Sanchez, F. J. Munoz Sanchez, F. J. Vila, I. Virto, A. L. Abbaneo, D. Ahmed, I. Albert, E. Auzinger, G. Berruti, G. Bianchi, G. Blanchot, G. Breuker, H. Ceresa, D. Christiansen, J. Cichy, K. Daguin, J. D'Alfonso, M. D'Auria, A. Detraz, S. De Visscher, S. Deyrail, D. Faccio, F. Felici, D. Frank, N. Gill, K. Giordano, D. Harris, P. Honma, A. Kaplon, J. Kornmayer, A. Kottelat, L. Kovacs, M. Mannelli, M. Marchioro, A. Marconi, S. Martina, S. Mersi, S. Michelis, S. Moll, M. Onnela, A. Pakulski, T. Pavis, S. Peisert, A. Pernot, J. -F. Petagna, P. Petrucciani, G. Postema, H. Rose, P. Rzonca, M. Stoye, M. Tropea, P. Troska, J. Tsirou, A. Vasey, F. Vichoudis, P. Verlaat, B. Zwalinski, L. Bachmair, F. Becker, R. Bani, L. di Calafiori, D. Casal, B. Djambazov, L. Donega, M. Dunser, M. Eller, P. Grab, C. Hits, D. Horisberger, U. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Perrozzi, L. Roeser, U. Rossini, M. Starodumov, A. Takahashi, M. Wallny, R. Amsler, C. Bosiger, K. Caminada, L. Canelli, F. Chiochia, V. de Cosa, A. Galloni, C. Hreus, T. Kilminster, B. Lange, C. Maier, R. Ngadiuba, J. Pinna, D. Robmann, P. Taroni, S. Yang, Y. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Kaestli, H. -C. Kotlinski, D. Langenegger, U. Meier, B. Rohe, T. Streuli, S. Chen, P. -H. Dietz, C. Grundler, U. Hou, W. -S. Lu, R. -S. Moya, M. Wilken, R. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Jacob, J. El Nasr-Storey, S. Seif Cole, J. Hobson, P. Leggat, D. Reid, I. D. Teodorescu, L. Bainbridge, R. Dauncey, P. Fulcher, J. Hall, G. Magnan, A. -M. Pesaresi, M. Raymond, D. M. Uchida, K. Coughlan, J. A. Harder, K. Ilic, J. Tomalin, I. R. Garabedian, A. Heintz, U. Narain, M. Nelson, J. Sagir, S. Speer, T. Swanson, J. Tersegno, D. Watson-Daniels, J. Chertok, M. Conway, J. Conway, R. Flores, C. Lander, R. Pellett, D. Ricci-Tam, F. Squires, M. Thomson, J. Yohay, R. Burt, K. Ellison, J. Hanson, G. Malberti, M. Olmedo, M. Cerati, G. Sharma, V. Vartak, A. Yagil, A. Della Porta, G. Zevi Dutta, V. Gouskos, L. Incandela, J. Kyre, S. McColl, N. Mullin, S. White, D. Cumalat, J. P. Ford, W. T. Gaz, A. Krohn, M. Stenson, K. Wagner, S. R. Baldin, B. Bolla, G. Burkett, K. Butler, J. Cheung, H. Chramowicz, J. Christian, D. Cooper, W. E. Deptuch, G. Derylo, G. Gingu, C. Gruenendahl, S. Hasegawa, S. Hoff, J. Howell, J. Hrycyk, M. Jindariani, S. Johnson, M. Jung, A. Joshi, U. Kahlid, F. Lei, C. M. Lipton, R. Liu, T. Los, S. Matulik, M. Merkel, P. Nahn, S. Prosser, A. Rivera, R. Shenai, A. Spiegel, L. Tran, N. Uplegger, L. Voirin, E. Yin, H. Adams, M. R. Berry, D. R. Evdokimov, A. Evdokimov, O. Gerber, C. E. Hofman, D. J. Kapustka, B. K. O'Brien, C. Gonzalez, D. I. Sandoval Trauger, H. Turner, P. Parashar, N. Stupak, J., III Bortoletto, D. Bubna, M. Hinton, N. Jones, M. Miller, D. H. Shi, X. Tan, P. Baringer, P. Bean, A. Benelli, G. Gray, J. Majumder, D. Noonan, D. Sanders, S. Stringer, R. Ivanov, A. Makouski, M. Skhirtladze, N. Taylor, R. Anderson, I. Fehling, D. Gritsan, A. Maksimovic, P. Martin, C. Nash, K. Osherson, M. Swartz, M. Xiao, M. Acosta, J. G. Cremaldi, L. M. Oliveros, S. Perera, L. Summers, D. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Meier, F. Monroy, J. Hahn, K. Sevova, S. Sung, K. Trovato, M. Bartz, E. Duggan, D. Halkiadakis, E. Lath, A. Park, M. Schnetzer, S. Stone, R. Walker, M. Malik, S. Mendez, H. Vargas, J. E. Ramirez Alyari, M. Dolen, J. George, J. Godshalk, A. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Alexander, J. Chaves, J. Chu, J. Dittmer, S. Kaufman, G. Mirman, N. Ryd, A. Salvati, E. Skinnari, L. Thom, J. Thompson, J. Tucker, J. Winstrom, L. Akgun, B. Ecklund, K. M. Nussbaum, T. Zabel, J. Betchart, B. Covarelli, R. Demina, R. Hindrichs, O. Petrillo, G. Eusebi, R. Osipenkov, I. Perloff, A. Ulmer, K. A. Delannoy, A. G. D'Angelo, P. Johns, W. CA CMS Collaboration TI Trapping in proton irradiated p(+)-n-n(+) silicon sensors at fluences anticipated at the HL-LHC outer tracker SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Radiation damage to detector materials (solid state); Radiation-hard detectors; Si microstrip and pad detectors ID DETECTORS; ELECTRONS; HOLES AB The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 mu m thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3.10(15) neq/cm(2). Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggest an improved tracker performance over initial expectations. C1 [Adam, W.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.] Osterreich Akad Wissensch HEPHY, Inst Hochenergiephys, Vienna, Austria. [Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Leonard, A.; Maerschalk, Th.; Mohammadi, A.; Pernie, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Zenoni, F.] Brussels ULB, Brussels, Belgium. [Abu Zeid, S.; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D. A.] Brussels VUB, Brussels, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Du Pree, T.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, CP3 IRMP, Louvain La Neuve, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Harkonen, J.; Lampen, T.; Luukka, P. -R.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.] Helsinki Inst Phys, Helsinki, Finland. [Eerola, P.] Univ Helsinki, FIN-00014 Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Donckt, M. Vander; Verdier, P.; Viret, S.; Zoccarato, Y.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. [Agram, J. -L.; Conte, E.; Fontaine, J. -Ch.] Univ Haute Alsace, Grp Rech Phys Hautes Energies, Mulhouse, France. [Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J. -M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, IN2P3 CNRS, Strasbourg, France. [Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 3, Aachen, Germany. [Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garcia, J. Garay; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.] DESY, Notkestr 85, Hamburg, Germany. [Biskop, H.; Blobel, V.; Centis-Vignali, M.; Draeger, A. -R.; Erfle, J.; Garutti, E.; Haller, J.; Hoffmann, M.; Junkes, A.; Lapsien, T.; Maettig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Sola, V.; Steinbrueck, G.; Wellhausen, J.] Univ Hamburg, Hamburg, Germany. [Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K. -H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.] Karlsruhe IEKP, Hamburg, Germany. [Bhardwaj, A.; Kumar, A.; Ranjan, K.] Univ Delhi, Dept Phys & Astrophys, Delhu 110007, India. [Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.] INFN Bari, Bari, Italy. [Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.] Dipartimento Interateneo Fis, Bari, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Lo Vetere, M.; Dinardo, M.; Fiorendi, S.; Manzoni, R. A.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Solestizi, L. A.; Spiezia, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.] INFN, Bari, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.] Univ Catania, I-95124 Catania, Italy. [Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.] INFN Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.] Univ Florence, I-50121 Florence, Italy. [Ferro, F.; Robutti, E.] INFN Genova, Genoa, Italy. [Lo Vetere, M.] Univ Genoa, Genoa, Italy. [Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.] INFN Milano Bicocca, Milan, Italy. [Dinardo, M.; Fiorendi, S.; Manzoni, R. A.] Univ Milano Bicocca, Milan, Italy. [Azzi, P.; Bacchetta, N.] INFN Padova, Padua, Italy. [Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.] Univ Padua, I-35100 Padua, Italy. [De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.] INFN Pavia, Pavia, Italy. [De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.] Univ Bergamo, Bergamo, Italy. [Comotti, D.; Ratti, L.] Univ Pavia, I-27100 Pavia, Italy. [Bilei, G. M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.] INFN Perugia, Perugia, Italy. [Biasini, M.; Conti, E.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L. A.; Spiezia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Lomtadze, T.; Magazzu, G.; Mazzoni, E.; Minuti, M.; Moggi, A.; Moon, C. S.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.] INFN Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, I-56100 Pisa, Italy. [Calzolari, F.; Donato, S.; Fiori, F.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Demaria, N.; Rivetti, A.] INFN Torino, Turin, Italy. [Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.] Univ Turin, I-10124 Turin, Italy. [Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; Gonzalez Sanchez, F. J.; Munoz Sanchez, F. J.; Vila, I.; Virto, A. L.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hartmann, F.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J. -F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bachmair, F.; Becker, R.; Bani, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dunser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.] ETH, Zurich, Switzerland. [Amsler, C.; Bosiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.] Univ Zurich, CH-8006 Zurich, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H. -C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.] Paul Scherrer Inst, Villigen, Switzerland. [Chen, P. -H.; Dietz, C.; Grundler, U.; Hou, W. -S.; Lu, R. -S.; Moya, M.; Wilken, R.] Natl Taiwan Univ, Taipei, Taiwan. [Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; El Nasr-Storey, S. Seif] Univ Bristol, Bristol, Avon, England. [Cole, J.; Hobson, P.; Leggat, D.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A. -M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.] Univ London Imperial Coll Sci Technol & Med, London, England. [Coughlan, J. A.; Harder, K.; Ilic, J.; Tomalin, I. R.] Rutherford Appleton Lab, STFC, Didcot OX11 0QX, Oxon, England. [Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.] Brown Univ, Providence, RI 02912 USA. [Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, San Diego, CA USA. [Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C. M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Adams, M. R.; Berry, D. R.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Kapustka, B. K.; O'Brien, C.; Gonzalez, D. I. Sandoval; Trauger, H.; Turner, P.] Univ Illinois, Chicago, IL USA. [Parashar, N.; Stupak, J., III] Purdue Univ Calumet, Hammond, IN USA. [Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.] Purdue Univ, W Lafayette, IN 47907 USA. [Tan, P.] Univ Iowa, Iowa City, IA USA. [Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.] Kansas State Univ, Manhattan, KS 66506 USA. [Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.] Johns Hopkins Univ, Baltimore, MD USA. [Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Meier, F.; Monroy, J.] Univ Nebraska, Lincoln, NE USA. [Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.] Northwestern Univ, Evanston, IL USA. [Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Malik, S.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY USA. [Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.] Cornell Univ, Ithaca, NY USA. [Akgun, B.; Ecklund, K. M.; Nussbaum, T.; Zabel, J.] Rice Univ, Houston, TX USA. [Covarelli, R.; Betchart, B.; Demina, R.; Hindrichs, O.; Petrillo, G.] Univ Rochester, Rochester, NY 14627 USA. [Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Delannoy, A. G.; D'Angelo, P.; Johns, W.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Saizu, M. A.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania. [Magalotti, D.] Modena & Reggio Emilia Univ, Reggio Emilia, Italy. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.; Moon, C. S.] Univ Siena, I-53100 Siena, Italy. [Savoy-Navarro, A.] CNRS, IN2P3, Paris, France. [Serban, A. T.] Univ Bucharest, Bucharest, Romania. [Amsler, C.] Univ Bern, CH-3012 Bern, Switzerland. RP Poehlsen, T (reprint author), Univ Hamburg, Hamburg, Germany. EM thomas.poehlsen@cern.ch RI Stahl, Achim/E-8846-2011; TUVE', Cristina/P-3933-2015; Canelli, Florencia/O-9693-2016; Tuominen, Eija/A-5288-2017; ciocci, maria agnese /I-2153-2015; OI Luukka, Panja/0000-0003-2340-4641; Stahl, Achim/0000-0002-8369-7506; TUVE', Cristina/0000-0003-0739-3153; Canelli, Florencia/0000-0001-6361-2117; Tuominen, Eija/0000-0002-7073-7767; ciocci, maria agnese /0000-0003-0002-5462; FORD, WILLIAM/0000-0001-8703-6943; Viliani, Lorenzo/0000-0002-1909-6343; Reis, Thomas/0000-0003-3703-6624; Jacob, Jeson/0000-0001-6895-5493 FU European Commission under FP7 Research Infrastructures project AIDA [262025]; Helmholtz Alliance "Physics at the Terascale"; German Ministry of Science, BMBF through Forschungsschwerpunkt "Particle Physics with CMS-Experiment" FX The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025. The information herein only reflects the views of its authors and not those of the European Commission and no warranty expressed or implied is made with regard to such information or its use. Support was also provided by the Helmholtz Alliance "Physics at the Terascale" and the German Ministry of Science, BMBF, through the Forschungsschwerpunkt "Particle Physics with the CMS-Experiment". The measurements presented in this document have been performed at the University of Hamburg. NR 19 TC 0 Z9 0 U1 4 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04023 DI 10.1088/1748-0221/11/04/P04023 PG 18 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400042 ER PT J AU Adams, T Adzic, P Ahuja, S Anderson, D Andrews, MB Antropov, I Antunovic, Z Arcidiacono, R Arenton, MW Argiro, S Askew, A Attikis, A Auffray, E Baccaro, S Baffioni, S Bailleux, D Baillon, P Barney, D Barone, L Bartoloni, A Bartosik, N Becheva, E Bein, S Silva, CBDE Bell, KW Benaglia, A Bendavid, J Berry, D Besancon, M Betev, B Bialas, W Bianchini, L Biino, C Bitioukov, S Bornheim, A Brianza, L Brinkerhoff, A Brown, RM Brummitt, A Busson, P Candelise, V Montoya, CAC Cartiglia, N Cavallari, F Chang, YW Chen, KF Chevenier, G Chipaux, R Clement, E Cockerill, DJA Corpe, L Couderc, F Courbon, B Cox, B Cucciati, G Cussans, D D'imperio, G Di Calafiori, DRD Dafinei, I Daguin, J Daskalakis, G Mendes, ADT De Guio, F Degano, A Dejardin, M Del Re, D Della Ricca, G Denegri, D Depasse, P Dev, N Deyrail, D Di Marco, E Diamond, B Diemoz, M Dissertori, G Dittmar, M Djambazov, L Doan, TH Dobrzynski, L Dolgopolov, A Donega, M Dordevic, M Droge, M Durkin, T Dutta, D El Mamouni, H Elliott-Peisert, A Elmalis, E Fabbro, B Fasanella, G Faure, J Fay, J Fedorov, A Ferri, F Francis, B Frank, N Franzoni, G Funk, W Ganjour, S Gascon, S Gastal, M Geerebaert, Y Gelli, S Gerosa, R Ghezzi, A Giakoumopoulou, VA Givernaud, A Gninenko, S Godinovic, N Goeckner-Wald, N Golubev, N Govoni, P Gras, P Guilloux, F Haller, C de Monchenault, GH Hansen, M Hansen, P Hardenbrook, J Heath, HF Hill, J Hirosky, R Hobson, PR Holme, O Honma, A Hou, WS Hsiung, Y Liyama, Y Ille, B Ingram, Q Jain, S Jarry, P Jessop, C Jovanovic, D Kachanov, V Kalafut, S Kao, KY Kellams, N Kesisoglou, S Khatiwada, A Konoplyannikov, A Konstantinov, D Korzhik, M Kovac, M Kubota, Y Kucher, I Kumar, A Kumar, A Kuo, C Kyberd, P Kyriakis, A Latyshev, G Lecoq, P Ledovskoy, A Lei, YJ Lelas, D Lethuillier, M Li, H Lin, W Liu, YF Locci, E Longo, E Loukas, D Lu, RS Lucchini, MT Lustermann, W Mackay, CK Magniette, F Malcles, J Malhotra, S Mandjavidze, I Maravin, Y Margaroli, F Marinelli, N Marini, AC Martelli, A Marzocchi, B Massironi, A Matveev, V Mechinsky, V Meng, F Meridiani, P Micheli, F Milosevic, J Mousa, J Musella, P Nessi-Tedaldi, F Neu, C Newman, H Nicolaou, C Nourbakhsh, S Obertino, MM Organtini, G Orimoto, T Paganini, P Paganis, E Paganoni, M Pandolfi, F Panov, V Paramatti, R Parracho, P Pastrone, N Paulini, M Pauss, F Pauwels, K Pellegrino, F Pena, C Pernie, L Peruzzi, M Petrakou, E Petyt, D Pigazzini, S Piroue, P Planer, M Plestina, R Polic, D Prosper, H Ptochos, F Puljak, I Quittnat, M Ragazzi, S Rahatlou, S Rander, J Ranjan, K Da Silva, JR Razis, PA Romanteau, T Rosowsky, A Rovelli, C Rusack, R Salerno, R Santanastasio, F Santra, A Schonenberger, M Seez, C Sharma, V Shepherd-Themistocleous, C Shiu, JG Shivpuri, RK Singovsky, A Sinthuprasith, T Sirois, Y Smiljkovic, N Soffi, L Sun, M Symonds, P de Fatis, TT Tambe, N Tarasov, I Taroni, S De Lima, RT Thea, A Theofilatos, K Thiant, F Titov, M Torbet, M Trapani, PP Tropea, P Tsai, JF Tsirou, A Turkewitz, J Tyurin, N Tzeng, YM Uzunian, A Valls, N Varela, J Veeraraghavan, V Verdini, PG Vichoudis, P Vlassov, E Wang, J Wang, T Weinberg, M Wolfe, E Wood, J Zabi, A Zahid, S Zelepoukine, S Zghiche, A Zhang, L Zhu, K Zhu, R Zuyeuski, R AF Adams, T. Adzic, P. Ahuja, S. Anderson, D. Andrews, M. B. Antropov, I. Antunovic, Z. Arcidiacono, R. Arenton, M. W. Argiro, S. Askew, A. Attikis, A. Auffray, E. Baccaro, S. Baffioni, S. Bailleux, D. Baillon, P. Barney, D. Barone, L. Bartoloni, A. Bartosik, N. Becheva, E. Bein, S. Beirao Da Cruz E Silva, C. Bell, K. W. Benaglia, A. Bendavid, J. Berry, D. Besancon, M. Betev, B. Bialas, W. Bianchini, L. Biino, C. Bitioukov, S. Bornheim, A. Brianza, L. Brinkerhoff, A. Brown, R. M. Brummitt, A. Busson, P. Candelise, V. Montoya, C. A. Carrillo Cartiglia, N. Cavallari, F. Chang, Y. W. Chen, K. F. Chevenier, G. Chipaux, R. Clement, E. Cockerill, D. J. A. Corpe, L. Couderc, F. Courbon, B. Cox, B. Cucciati, G. Cussans, D. D'imperio, G. Da Silva Di Calafiori, D. R. Dafinei, I. Daguin, J. Daskalakis, G. Tinoco Mendes, A. D. De Guio, F. Degano, A. Dejardin, M. Del Re, D. Della Ricca, G. Denegri, D. Depasse, P. Dev, N. Deyrail, D. Di Marco, E. Diamond, B. Diemoz, M. Dissertori, G. Dittmar, M. Djambazov, L. Doan, T. H. Dobrzynski, L. Dolgopolov, A. Donega, M. Dordevic, M. Droge, M. Durkin, T. Dutta, D. El Mamouni, H. Elliott-Peisert, A. Elmalis, E. Fabbro, B. Fasanella, G. Faure, J. Fay, J. Fedorov, A. Ferri, F. Francis, B. Frank, N. Franzoni, G. Funk, W. Ganjour, S. Gascon, S. Gastal, M. Geerebaert, Y. Gelli, S. Gerosa, R. Ghezzi, A. Giakoumopoulou, V. A. Givernaud, A. Gninenko, S. Godinovic, N. Goeckner-Wald, N. Golubev, N. Govoni, P. Gras, P. Guilloux, F. Haller, C. de Monchenault, G. Hamel Hansen, M. Hansen, P. Hardenbrook, J. Heath, H. F. Hill, J. Hirosky, R. Hobson, P. R. Holme, O. Honma, A. Hou, W. -S. Hsiung, Y. Liyama, Y. Ille, B. Ingram, Q. Jain, S. Jarry, P. Jessop, C. Jovanovic, D. Kachanov, V. Kalafut, S. Kao, K. Y. Kellams, N. Kesisoglou, S. Khatiwada, A. Konoplyannikov, A. Konstantinov, D. Korzhik, M. Kovac, M. Kubota, Y. Kucher, I. Kumar, A. Kumar, A. Kuo, C. Kyberd, P. Kyriakis, A. Latyshev, G. Lecoq, P. Ledovskoy, A. Lei, Y. J. Lelas, D. Lethuillier, M. Li, H. Lin, W. Liu, Y. F. Locci, E. Longo, E. Loukas, D. Lu, R. -S. Lucchini, M. T. Lustermann, W. Mackay, C. K. Magniette, F. Malcles, J. Malhotra, S. Mandjavidze, I. Maravin, Y. Margaroli, F. Marinelli, N. Marini, A. C. Martelli, A. Marzocchi, B. Massironi, A. Matveev, V. Mechinsky, V. Meng, F. Meridiani, P. Micheli, F. Milosevic, J. Mousa, J. Musella, P. Nessi-Tedaldi, F. Neu, C. Newman, H. Nicolaou, C. Nourbakhsh, S. Obertino, M. M. Organtini, G. Orimoto, T. Paganini, P. Paganis, E. Paganoni, M. Pandolfi, F. Panov, V. Paramatti, R. Parracho, P. Pastrone, N. Paulini, M. Pauss, F. Pauwels, K. Pellegrino, F. Pena, C. Pernie, L. Peruzzi, M. Petrakou, E. Petyt, D. Pigazzini, S. Piroue, P. Planer, M. Plestina, R. Polic, D. Prosper, H. Ptochos, F. Puljak, I. Quittnat, M. Ragazzi, S. Rahatlou, S. Rander, J. Ranjan, K. Rasteiro Da Silva, J. Razis, P. A. Romanteau, T. Rosowsky, A. Rovelli, C. Rusack, R. Salerno, R. Santanastasio, F. Santra, A. Schonenberger, M. Seez, C. Sharma, V. Shepherd-Themistocleous, C. Shiu, J. G. Shivpuri, R. K. Singovsky, A. Sinthuprasith, T. Sirois, Y. Smiljkovic, N. Soffi, L. Sun, M. Symonds, P. de Fatis, T. Tabarelli Tambe, N. Tarasov, I. Taroni, S. De Lima, R. Teixeira Thea, A. Theofilatos, K. Thiant, F. Titov, M. Torbet, M. Trapani, P. P. Tropea, P. Tsai, J. F. Tsirou, A. Turkewitz, J. Tyurin, N. Tzeng, Y. M. Uzunian, A. Valls, N. Varela, J. Veeraraghavan, V. Verdini, P. G. Vichoudis, P. Vlassov, E. Wang, J. Wang, T. Weinberg, M. Wolfe, E. Wood, J. Zabi, A. Zahid, S. Zelepoukine, S. Zghiche, A. Zhang, L. Zhu, K. Zhu, R. Zuyeuski, R. TI Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeters; Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Radiation-hard detectors; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ID LEAD TUNGSTATE; SYSTEM AB The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5x5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 x 10(13) and 1.3 x 10(14) cm(-2). These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity eta = 2.6 after about 500 fb(-1) and 3000 fb(-1) respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. The experimental results obtained can be used to estimate the long term performance of the CMS ECAL. C1 [Kesisoglou, S.] Univ Athens, Athens 15771, Greece. [Plestina, R.] Inst High Energy Phys, 19B Yuquan Lu, Beijing 100049, Peoples R China. [Clement, E.; Cussans, D.; Heath, H. F.] Univ Bristol, Senate House,Tyndall Ave, Bristol BS8 1TH, Avon, England. [Hobson, P. R.; Kyberd, P.; Mackay, C. K.; Symonds, P.; Zahid, S.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Fasanella, G.] Univ Libre Bruxelles, Franklin Rooseveltlaan 50, B-1050 Brussels, Belgium. [Newman, H.; Pena, C.; Zhang, L.; Zhu, K.; Zhu, R.] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. [Andrews, M. B.; Goeckner-Wald, N.; Paulini, M.; Sun, M.] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Auffray, E.; Baillon, P.; Barney, D.; Bialas, W.; Cucciati, G.; Daguin, J.; Tinoco Mendes, A. D.; De Guio, F.; Deyrail, D.; Di Marco, E.; Dordevic, M.; Elliott-Peisert, A.; Frank, N.; Franzoni, G.; Funk, W.; Gastal, M.; Hansen, M.; Honma, A.; Konoplyannikov, A.; Lecoq, P.; Lucchini, M. T.; Martelli, A.; Parracho, P.; Pauwels, K.; Peruzzi, M.; Tarasov, I.; Tropea, P.; Tsirou, A.; Vichoudis, P.] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. [Doan, T. H.; Kuo, C.; Lin, W.] Natl Cent Univ, 300 Zhongda Rd, Chungli 320, Taiwan. [Soffi, L.] Cornell Univ, 144 East Ave, Ithaca, NY 14850 USA. [Kumar, A.; Malhotra, S.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Daskalakis, G.; Elmalis, E.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.] Inst Nucl Phys Demokritos, 27 Neapoleos Str, Athens, Greece. [Matveev, V.] Joint Nucl Res Inst, Joliot Curie 6, Dubna, Russia. [Bailleux, D.; Chevenier, G.; Dolgopolov, A.] Fermilab Natl Accelerator Lab, Wilson St & Kirk Rd, Batavia, IL 60510 USA. [Askew, A.; Bein, S.; Diamond, B.; Khatiwada, A.; Prosper, H.; Santra, A.; Veeraraghavan, V.; Wang, J.; Weinberg, M.] Florida State Univ, 600 W Coll Ave, Tallahassee, FL 32306 USA. [Maravin, Y.] Kansas State Univ, Manhattan, KS 66506 USA. [Dutta, D.] Saha Inst Nucl Phys, Block AF,Sect 1,Bidhan Nagar, Kolkata 700064, W Bengal, India. [Beirao Da Cruz E Silva, C.; Rasteiro Da Silva, J.; Varela, J.] Lab Instrument & Fis Expt Particulas, Av Elias Garcia 14, P-1000 Lisbon, Portugal. [Corpe, L.; Seez, C.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Montoya, C. A. Carrillo; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Lethuillier, M.] IN2P3 CNRS, Inst Phys Nucl, 4 Rue Enrico Fermi, F-69622 Villeurbanne, France. [Montoya, C. A. Carrillo; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Lethuillier, M.] Univ Lyon 1, 4 Rue Enrico Fermi, F-69622 Villeurbanne, France. [Brianza, L.; Courbon, B.; Ghezzi, A.; Govoni, P.; Marzocchi, B.; Paganoni, M.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy. [Brianza, L.; Ghezzi, A.; Govoni, P.; Marzocchi, B.; Paganoni, M.; Pigazzini, S.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Piazza Sci 3, I-20126 Milan, Italy. [Nourbakhsh, S.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, 3 Morrill Hall 100 Church St SE, Minneapolis, MN USA. [Fedorov, A.; Korzhik, M.; Mechinsky, V.; Panov, V.; Zuyeuski, R.] Belarusian State Univ, Res Inst Nucl Problems, Bobruiskaya Str 11, Minsk 220030, Byelarus. [Liyama, Y.; Marini, A. C.; Wang, T.] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Gninenko, S.; Golubev, N.] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary Pr 7a, Moscow 117312, Russia. [Vlassov, E.] Inst Theoret & Expt Phys, Bolshaya Cheremushkinskaya Ul 25c2, Moscow 117259, Russia. [Attikis, A.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, 1 Panepistimiou Ave, CY-2109 Nicosia, Cyprus. [Massironi, A.; Orimoto, T.; De Lima, R. Teixeira] Northeastern Univ, 360 Huntington Ave, Boston, MA 02115 USA. [Berry, D.; Brinkerhoff, A.; Dev, N.; Jessop, C.; Kellams, N.; Marini, A. C.; Meng, F.; Planer, M.; Taroni, S.; Valls, N.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Verdini, P. G.] INFN, Sez Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy. [Antropov, I.; Baffioni, S.; Becheva, E.; Busson, P.; Dobrzynski, L.; Geerebaert, Y.; Magniette, F.; Paganini, P.; Romanteau, T.; Salerno, R.; Sirois, Y.; Thiant, F.; Zabi, A.] Ecole Polytech, Lab Leprince Ringuet, Ave Chasles, F-91120 Palaiseau, France. [Benaglia, A.; Hardenbrook, J.; Piroue, P.] Princeton Univ, Princeton, NJ 08544 USA. [Bitioukov, S.; Kachanov, V.; Konstantinov, D.; Latyshev, G.; Tyurin, N.; Uzunian, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Moscow 142281, Russia. [Ingram, Q.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Bell, K. W.; Brown, R. M.; Brummitt, A.; Cockerill, D. J. A.; Durkin, T.; Hill, J.; Petyt, D.; Shepherd-Themistocleous, C.; Thea, A.; Torbet, M.] Rutherford Appleton Lab, Sci & Technol Facil Council, Harwell Campus, Didcot OX11 0QX, Oxon, England. [Baccaro, S.; Barone, L.; Bartoloni, A.; Cavallari, F.; D'imperio, G.; Dafinei, I.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.] INFN, Sez Roma, Ple Aldo Moro 2, I-00185 Rome, Italy. [Baccaro, S.; Barone, L.; Bartoloni, A.; Cavallari, F.; D'imperio, G.; Dafinei, I.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Pellegrino, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.] Univ Roma La Sapienza, Ple Aldo Moro 2, I-00185 Rome, Italy. [Besancon, M.; Chipaux, R.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Guilloux, F.; de Monchenault, G. Hamel; Jarry, P.; Kucher, I.; Locci, E.; Malcles, J.; Mandjavidze, I.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM DAPNIA, F-91191 Gif Sur Yvette, France. Univ Estadual Paulista, R Pamplona 145, Sao Paulo, Brazil. [Betev, B.] Inst Syst Engn & Robot, G Bonchev Str, Sofia, Bulgaria. [Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, R Boskovica 32, Split 21000, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Livanjska 5, Split 21000, Croatia. [Chang, Y. W.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Kumar, A.; Lei, Y. J.; Liu, Y. F.; Lu, R. -S.; Paganis, E.; Petrakou, E.; Shiu, J. G.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, 4 Roosevelt Rd, Taipei 10764, Taiwan. [Pernie, L.] Texas A&M Univ, 400 Bizzell St, College Stn, TX 77840 USA. [Jain, S.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Arcidiacono, R.; Argiro, S.; Bartosik, N.; Biino, C.; Cartiglia, N.; Degano, A.; Obertino, M. M.; Pastrone, N.; Trapani, P. P.] Univ Turin, INFN, Sez Torino, Via Pietro Giuria 1, I-10125 Turin, Italy. [Candelise, V.; Della Ricca, G.] INFN, Sez Trieste, Padriciano 99, I-34149 Trieste, Italy. [Candelise, V.; Della Ricca, G.] Univ Trieste, Padriciano 99, I-34149 Trieste, Italy. [Gerosa, R.; Wood, J.] Univ Calif San Diego, Gilman Dr, San Diego, CA USA. [Adzic, P.; Jovanovic, D.; Milosevic, J.; Smiljkovic, N.] Univ Belgrade, Vinca Inst Nucl Sci, POB 522, Belgrade 11001, Serbia. [Adzic, P.; Jovanovic, D.; Milosevic, J.; Smiljkovic, N.] Univ Belgrade, Fac Phys, POB 522, Belgrade 11001, Serbia. [Arenton, M. W.; Cox, B.; Francis, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wolfe, E.] Univ Virginia, Charlottesville, VA 22904 USA. [Bianchini, L.; Da Silva Di Calafiori, D. R.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Donega, M.; Droge, M.; Haller, C.; Holme, O.; Lustermann, W.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Quittnat, M.; Schonenberger, M.; Theofilatos, K.; Zelepoukine, S.] ETH, Inst Particle Phys, Otto Stern Weg 5, CH-8093 Zurich, Switzerland. Univ Piemonte Orientale, Via Duomo 6, I-13100 Novara, Italy. RP Lucchini, MT (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland. EM marco.toliman.lucchini@cern.ch RI Della Ricca, Giuseppe/B-6826-2013; Varela, Joao/K-4829-2016; Govoni, Pietro/K-9619-2016; Paulini, Manfred/N-7794-2014; Puljak, Ivica/D-8917-2017; OI Della Ricca, Giuseppe/0000-0003-2831-6982; Varela, Joao/0000-0003-2613-3146; Govoni, Pietro/0000-0002-0227-1301; Paulini, Manfred/0000-0002-6714-5787; Brianza, Luca/0000-0001-5770-6037; Ptochos, Fotios/0000-0002-3432-3452 NR 28 TC 1 Z9 1 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04012 DI 10.1088/1748-0221/11/04/P04012 PG 31 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400031 ER PT J AU Affolder, A Andelkovic, M Arndt, K Bates, R Blue, A Bortoletto, D Buttar, C Caragiulo, P Cindro, V Das, D Dopke, J Dragone, A Ehrler, F Fadeyev, V Galloway, Z Gorisek, A Grabas, H Gregor, IM Grenier, P Grillo, A Hommels, LBA Huffman, T John, J Kanisauskas, K Kenney, C Kramberger, G Liang, Z Mandic, I Maneuski, D McMahon, S Mikuz, M Muenstermann, D Nickerson, R Peric, I Phillips, P Plackett, R Rubbo, F Segal, J Seiden, A Shipsey, I Song, W Stanitzki, M Su, D Tamma, C Turchetta, R Vigani, L Volk, J Wang, R Warren, M Wilson, F Worm, S Xiu, Q Zavrtanik, M Zhang, J Zhu, H AF Affolder, A. Andelkovic, M. Arndt, K. Bates, R. Blue, A. Bortoletto, D. Buttar, C. Caragiulo, P. Cindro, V. Das, D. Dopke, J. Dragone, A. Ehrler, F. Fadeyev, V. Galloway, Z. Gorisek, A. Grabas, H. Gregor, I. M. Grenier, P. Grillo, A. Hommels, L. B. A. Huffman, T. John, J. Kanisauskas, K. Kenney, C. Kramberger, G. Liang, Z. Mandic, I. Maneuski, D. McMahon, S. Mikuz, M. Muenstermann, D. Nickerson, R. Peric, I. Phillips, P. Plackett, R. Rubbo, F. Segal, J. Seiden, A. Shipsey, I. Song, W. Stanitzki, M. Su, D. Tamma, C. Turchetta, R. Vigani, L. Volk, J. Wang, R. Warren, M. Wilson, F. Worm, S. Xiu, Q. Zavrtanik, M. Zhang, J. Zhu, H. TI Charge collection studies in irradiated HV-CMOS particle detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Charge induction; Radiation-hard detectors; Si microstrip and pad detectors; Solid state detectors ID ACTIVE PIXEL SENSORS; SILICON DETECTORS; TRACKING; TIME; PERFORMANCE; TECHNOLOGY; ELECTRONS; DESIGN; HOLES AB Charge collection properties of particle detectors made in HV-CMOS technology were investigated before and after irradiation with reactor neutrons. Two different sensor types were designed and processed in 180 and 350 nm technology by AMS. Edge-TCT and charge collection measurements with electrons from Sr-90 source were employed. Diffusion of generated carriers from undepleted substrate contributes significantly to the charge collection before irradiation, while after irradiation the drift contribution prevails as shown by charge measurements at different shaping times. The depleted region at a given bias voltage was found to grow with irradiation in the fluence range of interest for strip detectors at the HL-LHC. This leads to large gains in the measured charge with respect to the one before irradiation. The increase of the depleted region was attributed to removal of effective acceptors. The evolution of depleted region with fluence was investigated and modeled. Initial studies show a small effect of short term annealing on charge collection. C1 [Affolder, A.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Andelkovic, M.] Univ Nis, Fac Elect Engn, Nish, Serbia. [Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; Kanisauskas, K.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.] Univ Oxford, Oxford, England. [Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Das, D.; Dopke, J.; McMahon, S.; Phillips, P.; Turchetta, R.; Wilson, F.; Worm, S.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Ehrler, F.; Peric, I.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A.; Liang, Z.; Seiden, A.; Volk, J.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Gregor, I. M.; Stanitzki, M.] DESY, Hamburg, Germany. [Hommels, L. B. A.] Univ Cambridge, Cambridge, England. [Cindro, V.; Gorisek, A.; Kramberger, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.] Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia. [Mikuz, M.] Univ Ljubljana, Ljubljana, Slovenia. [Muenstermann, D.] Univ Lancaster, Lancaster, England. [Zhang, J.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Warren, M.] UCL, London, England. [Song, W.; Xiu, Q.; Zhu, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. RP Kramberger, G (reprint author), Jozef Stefan Inst, Jamova 39, SI-1000 Ljubljana, Slovenia. EM Gregor.Kramberger@ijs.si RI Blue, Andrew/C-9882-2016; OI Blue, Andrew/0000-0002-7716-5626; Arndt, Kirk/0000-0002-6826-8340; John, Jaya/0000-0001-6831-6501; Muenstermann, Daniel/0000-0001-6223-2497 NR 28 TC 4 Z9 4 U1 2 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04007 DI 10.1088/1748-0221/11/04/P04007 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400026 ER PT J AU Arenz, M Babutzka, M Bahr, M Barrett, JP Bauer, S Beck, M Beglarian, A Behrens, J Bergmann, T Besserer, U Blumer, J Bodine, LI Bokeloh, K Bonn, J Bornschein, B Bornschein, L Busch, S Burritt, TH Chilingaryan, S Corona, TJ De Viveiros, L Doe, PJ Dragoun, O Drexlin, G Dyba, S Ebenhoch, S Eitel, K Ellinger, E Enomoto, S Erhard, M Eversheim, D Fedkevych, M Felden, A Fischer, S Formaggio, JA Frankle, F Furse, D Ghilea, M Gil, W Gluck, F Urena, AG Gorhardt, S Groh, S Grohmann, S Grossle, R Gumbsheimer, R Hackenjos, M Hannen, V Harms, F Haussmann, N Heizmann, F Helbing, K Herz, W Hickford, S Hilk, D Hillen, B Hohn, T Holzapfel, B Hotzel, M Howe, MA Huber, A Jansen, A Kernert, N Kippenbrock, L Kleesiek, M Klein, M Kopmann, A Kosmider, A Kovalik, A Krasch, B Kraus, M Krause, H Krause, M Kuckert, L Kuffner, B La Cascio, L Lebeda, O Leiber, B Letnev, J Lobashev, VM Lokhov, A Malcherek, E Mark, M Martin, EL Mertens, S Mirz, S Monreal, B Muller, K Neuberger, M Neumann, H Niemes, S Noe, M Oblath, NS Off, A Ortjohann, HW Osipowicz, A Otten, E Parno, DS Plischke, P Poon, AWP Prall, M Priester, F Ranitzsch, PCO Reich, J Rest, O Robertson, RGH Rollig, M Rosendahl, S Rupp, S Rysavy, M Schlosser, K Schlosser, M Schonung, K Schrank, M Schwarz, J Seiler, W Seitz-Moskaliuk, H Sentkerestiova, J Skasyrskaya, A Slezak, M Spalek, A Steidl, M Steinbrink, N Sturm, M Suesser, M Telle, HH Thummler, T Titov, N Tkachev, I Trost, N Unru, A Valerius, K Venos, D Vianden, R Vocking, S Wall, BL Wandkowsky, N Weber, M Weinheimer, C Weiss, C Welte, S Wendel, J Wierman, KL Wilkerson, JF Winzen, D Wolf, J Wustling, S Zacher, M Zadoroghny, S Zboril, M AF Arenz, M. Babutzka, M. Bahr, M. Barrett, J. P. Bauer, S. Beck, M. Beglarian, A. Behrens, J. Bergmann, T. Besserer, U. Bluemer, J. Bodine, L. I. Bokeloh, K. Bonn, J. Bornschein, B. Bornschein, L. Buesch, S. Burritt, T. H. Chilingaryan, S. Corona, T. J. De Viveiros, L. Doe, P. J. Dragoun, O. Drexlin, G. Dyba, S. Ebenhoech, S. Eitel, K. Ellinger, E. Enomoto, S. Erhard, M. Eversheim, D. Fedkevych, M. Felden, A. Fischer, S. Formaggio, J. A. Fraenkle, F. Furse, D. Ghilea, M. Gil, W. Glueck, F. Gonzalez Urena, A. Goerhardt, S. Groh, S. Grohmann, S. Groessle, R. Gumbsheimer, R. Hackenjos, M. Hannen, V. Harms, F. Haussmann, N. Heizmann, F. Helbing, K. Herz, W. Hickford, S. Hilk, D. Hillen, B. Hoehn, T. Holzapfel, B. Hoetzel, M. Howe, M. A. Huber, A. Jansen, A. Kernert, N. Kippenbrock, L. Kleesiek, M. Klein, M. Kopmann, A. Kosmider, A. Kovalik, A. Krasch, B. Kraus, M. Krause, H. Krause, M. Kuckert, L. Kuffner, B. La Cascio, L. Lebeda, O. Leiber, B. Letnev, J. Lobashev, V. M. Lokhov, A. Malcherek, E. Mark, M. Martin, E. L. Mertens, S. Mirz, S. Monreal, B. Mueller, K. Neuberger, M. Neumann, H. Niemes, S. Noe, M. Oblath, N. S. Off, A. Ortjohann, H. -W. Osipowicz, A. Otten, E. Parno, D. S. Plischke, P. Poon, A. W. P. Prall, M. Priester, F. Ranitzsch, P. C. -O. Reich, J. Rest, O. Robertson, R. G. H. Roellig, M. Rosendahl, S. Rupp, S. Rysavy, M. Schloesser, K. Schloesser, M. Schoenung, K. Schrank, M. Schwarz, J. Seiler, W. Seitz-Moskaliuk, H. Sentkerestiova, J. Skasyrskaya, A. Slezak, M. Spalek, A. Steidl, M. Steinbrink, N. Sturm, M. Suesser, M. Telle, H. H. Thuemmler, T. Titov, N. Tkachev, I. Trost, N. Unru, A. Valerius, K. Venos, D. Vianden, R. Voecking, S. Wall, B. L. Wandkowsky, N. Weber, M. Weinheimer, C. Weiss, C. Welte, S. Wendel, J. Wierman, K. L. Wilkerson, J. F. Winzen, D. Wolf, J. Wuestling, S. Zacher, M. Zadoroghny, S. Zboril, M. TI Commissioning of the vacuum system of the KATRIN Main Spectrometer SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Gas systems and purification; Neutrino detectors; Spectrometers; Vacuum-based detectors ID TRITIUM BETA-DECAY; TURBOMOLECULAR PUMPS; MAGNETIC-FIELDS; MASS; ELECTRONS AB The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer ("Main Spectrometer"), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m(3), and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 degrees C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10(-11) mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016. C1 [Arenz, M.; Eversheim, D.; Vianden, R.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, Nussallee 14-16, D-53115 Bonn, Germany. [Babutzka, M.; Drexlin, G.; Erhard, M.; Groh, S.; Harms, F.; Heizmann, F.; Hilk, D.; Hoetzel, M.; Kleesiek, M.; Klein, M.; Kraus, M.; Krause, M.; Kuckert, L.; La Cascio, L.; Seitz-Moskaliuk, H.; Vianden, R.; Wolf, J.] Karlsruhe Inst Technol, Inst Expt Nucl Phys IEKP, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany. [Bahr, M.; De Viveiros, L.; Ghilea, M.; Monreal, B.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Barrett, J. P.; Formaggio, J. A.; Fraenkle, F.; Oblath, N. S.] MIT, Nucl Sci Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bauer, S.; Behrens, J.; Bokeloh, K.; Dyba, S.; Fedkevych, M.; Hannen, V.; Hillen, B.; Ortjohann, H. -W.; Prall, M.; Ranitzsch, P. C. -O.; Rest, O.; Rosendahl, S.; Steinbrink, N.; Voecking, S.; Weinheimer, C.; Winzen, D.; Zacher, M.; Zboril, M.] Univ Munster, Inst Kernphys, Wilhelm Klemm Str 9, D-48149 Munster, Germany. [Beck, M.; Bonn, J.; Otten, E.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Beglarian, A.; Bergmann, T.; Chilingaryan, S.; Kopmann, A.; Weber, M.; Wuestling, S.] Karlsruhe Inst Technol, Inst Data Proc & Elect IPE, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Besserer, U.; Bornschein, B.; Fischer, S.; Groessle, R.; Hackenjos, M.; Herz, W.; Holzapfel, B.; Krasch, B.; Mirz, S.; Neumann, H.; Niemes, S.; Noe, M.; Off, A.; Priester, F.; Roellig, M.; Rupp, S.; Schloesser, K.; Schloesser, M.; Sturm, M.; Suesser, M.; Welte, S.; Wendel, J.] Karlsruhe Inst Technol, Inst Tech Phys ITeP, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Bluemer, J.; Bonn, J.; Bornschein, L.; Ebenhoech, S.; Eitel, K.; Felden, A.; Fraenkle, F.; Gil, W.; Glueck, F.; Goerhardt, S.; Gumbsheimer, R.; Hoehn, T.; Huber, A.; Jansen, A.; Kernert, N.; Kosmider, A.; Krause, H.; Kuffner, B.; Leiber, B.; Malcherek, E.; Mark, M.; Mertens, S.; Mueller, K.; Plischke, P.; Reich, J.; Schloesser, K.; Schrank, M.; Schwarz, J.; Steidl, M.; Thuemmler, T.; Trost, N.; Valerius, K.; Voecking, S.; Winzen, D.] Karlsruhe Inst Technol, Inst Nucl Phys IKP, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Bodine, L. I.; Burritt, T. H.; Doe, P. J.; Kippenbrock, L.; Martin, E. L.; Parno, D. S.; Robertson, R. G. H.; Wall, B. L.] Univ Washington, Ctr Expt Nucl Phys & Astrophys, Seattle, WA 98195 USA. [Bodine, L. I.; Burritt, T. H.; Doe, P. J.; Enomoto, S.; Kippenbrock, L.; Parno, D. S.; Robertson, R. G. H.; Wall, B. L.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Buesch, S.; Neuberger, M.; Weiss, C.] Karlsruhe Inst Technol, Project Proc & Qual Management PPQ, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany. [Corona, T. J.; Fraenkle, F.; Howe, M. A.; Wierman, K. L.; Wilkerson, J. F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Dragoun, O.; Kovalik, A.; Lebeda, O.; Rysavy, M.; Sentkerestiova, J.; Slezak, M.; Spalek, A.; Venos, D.; Zboril, M.] CAS, Inst Nucl Phys, Vvi, CZ-25068 Rez, Czech Republic. [Ellinger, E.; Haussmann, N.; Helbing, K.; Hickford, S.] Univ Wuppertal, Fac Math & Nat Sci, Dept Phys, Gauss Str 20, D-42119 Wuppertal, Germany. [Gonzalez Urena, A.; Schloesser, M.; Telle, H. H.] Univ Complutense Madrid, Inst Pluridisciplinar, Paseo Juan 23 1, Madrid 28040, Spain. [Telle, H. H.] Swansea Univ, Dept Phys, Singleton Pk, Swansea SA2 8PP, W Glam, Wales. [Letnev, J.; Osipowicz, A.; Seiler, W.; Unru, A.] Univ Appl Sci FH Fulda, Leipziger Str 123, D-36037 Fulda, Germany. [Lobashev, V. M.; Lokhov, A.; Skasyrskaya, A.; Titov, N.; Tkachev, I.; Zadoroghny, S.] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary,Prospect 7a, Moscow 117312, Russia. [Mertens, S.; Poon, A. W. P.] Lawrence Berkeley Natl Lab, Inst Nucl & Particle Astrophys, Berkeley, CA 94720 USA. [Mertens, S.; Poon, A. W. P.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Wolf, J (reprint author), Karlsruhe Inst Technol, Inst Expt Nucl Phys IEKP, Wolfgang Gaede Str 1, D-76131 Karlsruhe, Germany. EM joachim.wolf@kit.edu RI Kopmann, Andreas/B-3454-2013; Grohmann, Steffen/M-8671-2016; Parno, Diana/B-7546-2017 OI Kopmann, Andreas/0000-0002-2362-3943; Grohmann, Steffen/0000-0003-1298-5110; Parno, Diana/0000-0002-9363-0401 FU German Helmholtz Association (HGF); German Ministry for Education and Research BMBF [05A14VK2, 05A14PMA]; Helmholtz Alliance for Astroparticle Physics (HAP); Grant Agency of the Czech Republic (GACR) [P203/12/1896]; US Department of Energy [DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41041, DE-FG02-97ER41033, DE-AC02-05CH11231] FX We want to thank Christian Day, Volker Hauer and Xueli Luo from the Institute for Technical Physics at KIT, as well as the ASTEC vacuum group at Daresbury lab (Joe Herbert, Oleg Malyshev, Keith Middleman, and Ron Reid) for many helpful discussions and their contributions to the design of the main spectrometer vacuum system. In addition we want to thank Volker Hauer for calibrating our vacuum gauges with his calibration system. We also thank our colleagues from the XENON group at Munster University for providing the gas purification system, which was vital for the successful commissioning of the Main Spectrometer. We acknowledge the support of the German Helmholtz Association (HGF), the German Ministry for Education and Research BMBF (05A14VK2 and 05A14PMA), the Helmholtz Alliance for Astroparticle Physics (HAP), the Grant Agency of the Czech Republic (GACR) P203/12/1896, and the US Department of Energy through grants DE-FG02-97ER41020, DE-FG02-94ER40818, DE-SC0004036, DE-FG02-97ER41041, and DE-FG02-97ER41033. Lawrence Berkeley National Laboratory (LBNL) is operated by The Regents of the University of California (UC) for the U.S. Department of Energy (DOE) under Federal Prime Agreement DE-AC02-05CH11231. NR 38 TC 0 Z9 0 U1 3 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04011 DI 10.1088/1748-0221/11/04/P04011 PG 36 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400030 ER PT J AU Billing, MG Conway, JV Crittenden, JA Greenwald, S Li, Y Meller, RE Strohman, CR Sikora, JP Calvey, JR Palmer, MA AF Billing, M. G. Conway, J. V. Crittenden, J. A. Greenwald, S. Li, Y. Meller, R. E. Strohman, C. R. Sikora, J. P. Calvey, J. R. Palmer, M. A. TI The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: electron cloud diagnostics SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator Subsystems and Technologies; Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Detector design and construction technologies and materials; Data acquisition circuits ID BEAM AB Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to the test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focusses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESRTA focussed on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. C1 [Billing, M. G.; Conway, J. V.; Crittenden, J. A.; Greenwald, S.; Li, Y.; Meller, R. E.; Strohman, C. R.; Sikora, J. P.] Cornell Univ, Cornell Lab Accelerator Based Sci & Educ, 161 Synchrotron Dr, Ithaca, NY 14850 USA. [Calvey, J. R.] Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL USA. [Palmer, M. A.] Fermilab Natl Accelerator Lab, Wilson St & Kirk Rd, Batavia, IL 60510 USA. RP Billing, MG (reprint author), Cornell Univ, Cornell Lab Accelerator Based Sci & Educ, 161 Synchrotron Dr, Ithaca, NY 14850 USA. EM mgb9@cornell.edu NR 29 TC 1 Z9 1 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04025 DI 10.1088/1748-0221/11/04/P04025 PG 35 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400044 ER PT J AU Holtzapple, RL Billing, MG Campbell, RC Dugan, GF Flanagan, J McArdle, KE Miller, MI Palmer, MA Ramirez, GA Sonnad, KG Totten, MM Tucker, SL Williams, HA AF Holtzapple, R. L. Billing, M. G. Campbell, R. C. Dugan, G. F. Flanagan, J. McArdle, K. E. Miller, M. I. Palmer, M. A. Ramirez, G. A. Sonnad, K. G. Totten, M. M. Tucker, S. L. Williams, H. A. TI Observation of Electron Cloud Instabilities and Emittance Dilution at the Cornell Electron-Positron Storage Ring Test Accelerator SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Beam dynamics; Coherent instabilities AB Electron cloud related emittance dilution and instabilities of bunch trains limit the performance of high intensity circular colliders. One of the key goals of the Cornell electron-positron storage ring Test Accelerator (CesrTA) research program is to improve our understanding of how the electron cloud alters the dynamics of bunches within the train. Single bunch beam diagnotics have been developed to measure the beam spectra, vertical beam size, two important dynamical effects of beams interacting with the electron cloud, for bunch trains on a turn-byturn basis. Experiments have been performed at CesrTA to probe the interaction of the electron cloud with stored positron bunch trains. The purpose of these experiments was to characterize the dependence of beam-electron cloud interactions on the machine parameters such as bunch spacing, vertical chromaticity, and bunch current. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 1) a gated beam position monitor (BPM) and spectrum analyzer to measure the bunch-by-bunch frequency spectrum of the bunch trains; 2) an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and analyze the effects of the electron cloud on the stability of bunches in a train under many different operational conditions. C1 [Holtzapple, R. L.; Campbell, R. C.; McArdle, K. E.; Miller, M. I.; Totten, M. M.; Tucker, S. L.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. [Billing, M. G.; Dugan, G. F.; Ramirez, G. A.; Sonnad, K. G.; Williams, H. A.] Cornell Univ, Cornell Lab Accelerator Based Sci & Educ, Ithaca, NY 14850 USA. [Palmer, M. A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Flanagan, J.; Sonnad, K. G.] High Energy Accelerator Org, KEK, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. RP Holtzapple, RL (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 93407 USA. EM rholtzap@calpoly.edu NR 21 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04013 DI 10.1088/1748-0221/11/04/P04013 PG 37 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400032 ER PT J AU Lucchini, MT Auffray, E Benaglia, A Cavallari, F Cockerill, D Dolgopolov, A Faure, JL Golubev, N Hobson, PR Jain, S Korjik, M Mechinski, V Singovski, A de Fatis, TT Tarasov, I Zahid, S AF Lucchini, M. T. Auffray, E. Benaglia, A. Cavallari, F. Cockerill, D. Dolgopolov, A. Faure, J. L. Golubev, N. Hobson, P. R. Jain, S. Korjik, M. Mechinski, V. Singovski, A. de Fatis, T. Tabarelli Tarasov, I. Zahid, S. TI Double side read-out technique for mitigation of radiation damage effects in PbWO4 crystals SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Calorimeter methods; Calorimeters; Radiation damage to detector materials (solid state); Radiation-hard detectors ID PROTON-INDUCED DAMAGE; CALORIMETER CRYSTALS; SIMULATION AB Test beam results of a calorimetric module based on 3 x 3 x 22 cm(3) PbWO4 crystals, identical to those used in the CMS ECAL Endcaps, read out by a pair of photodetectors coupled to the two opposite sides (front and rear) of each crystal are presented. Nine crystals with different level of induced absorption, from 0 to 20 m(-1), have been tested using electrons in the 50-200 GeV energy range. Photomultiplier tubes have been chosen as photodetectors to allow for a precise measurement of highly damaged crystals. The information provided by this double side read-out configuration allows to correct for event-by-event fluctuations of the longitudinal development of electromagnetic showers. By strongly mitigating the effect of non-uniform light collection efficiency induced by radiation damage, the double side read-out technique significantly improves the energy resolution with respect to a single side read-out configuration. The non-linearity of the response arising in damaged crystals is also corrected by a double side read-out configuration and the response linearity of irradiated crystals is restored. In high radiation environments at future colliders, as it will be the case for detectors operating during the High Luminosity phase of the Large Hadron Collider, defects can be created inside the scintillator volume leading to a non-uniform response of the calorimetric cell. The double side read-out technique presented in this study provides a valuable way to improve the performance of calorimeters based on scintillators whose active volumes are characterized by high aspect ratio cells similar to those used in this study. C1 [Lucchini, M. T.; Auffray, E.; Benaglia, A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Singovski, A.] Univ Minnesota, 3 Morrill Hall 100 Church St SE, Minneapolis, MN 55455 USA. [de Fatis, T. Tabarelli] Univ Milano Bicocca, Piazza Ateneo Nuovo 1, I-20125 Milan, Italy. [Cockerill, D.] STFC Rutherford Appleton Lab, Harwell Campus, Didcot OX11 0QX, Oxon, England. [Cavallari, F.] Ist Nazl Fis Nucl, Sez Roma, Ple Aldo Moro 2, I-00185 Rome, Italy. [Cavallari, F.] Univ Roma La Sapienza, Ple Aldo Moro 2, I-00185 Rome, Italy. [Korjik, M.; Mechinski, V.] Byelorussian State Univ, Res Inst Nucl Problems, Bobruiskaya Str 11, Minsk 220030, Byelarus. [Golubev, N.] Russian Acad Sci, Inst Nucl Res, 60th October Anniversary Pr 7A, Moscow 117312, Russia. [Jain, S.] Natl Cent Univ, 300 Zhongda Rd, Taoyuan 32001, Taiwan. [Dolgopolov, A.] Fermilab Natl Accelerator Lab, Wilson St & Kirk Rd, Batavia, IL 60510 USA. [Tarasov, I.] Helmholtzzentrum Schwerionenforsch GmbH, GSI, Planckstr 1, D-64291 Darmstadt, Germany. [Hobson, P. R.; Zahid, S.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Faure, J. L.] Ctr Etud Saclay, CEA IRFU, F-91191 Gif Sur Yvette, France. RP Lucchini, MT (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. EM marco.toliman.lucchini@cern.ch FU CERN SPS North Area FX We would like to acknowledge the support from the CERN SPS North Area, in particular Adrian Fabich for his assistance in optimizing particles beam. We also thank Maurice Glaser and Federico Ravotti who have been responsible for the proton irradiation at the CERN PS IRRAD facility. We are grateful to the CMS ECAL collaboration for the support given to the present work. NR 16 TC 0 Z9 0 U1 2 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04021 DI 10.1088/1748-0221/11/04/P04021 PG 19 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400040 ER PT J AU Ryll, H Simson, M Hartmann, R Holl, P Huth, M Ihle, S Kondo, Y Kotula, P Liebel, A Muller-Caspary, K Rosenauer, A Sagawa, R Schmidt, J Soltau, H Struder, L AF Ryll, H. Simson, M. Hartmann, R. Holl, P. Huth, M. Ihle, S. Kondo, Y. Kotula, P. Liebel, A. Mueller-Caspary, K. Rosenauer, A. Sagawa, R. Schmidt, J. Soltau, H. Strueder, L. TI A pnCCD-based, fast direct single electron imaging camera for TEM and STEM SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Pixelated detectors and associated VLSI electronics; Radiation-hard detectors; Solid state detectors; Very low-energy charged particle detectors ID MICROSCOPY; EFFICIENCY; RESOLUTION; DETECTOR AB We report on a new camera that is based on a pnCCD sensor for applications in scanning transmission electron microscopy. Emerging new microscopy techniques demand improved detectors with regards to readout rate, sensitivity and radiation hardness, especially in scanning mode. The pnCCD is a 2D imaging sensor that meets these requirements. Its intrinsic radiation hardness permits direct detection of electrons. The pnCCD is read out at a rate of 1; 150 frames per second with an image area of 264 x 264 pixel. In binning or windowing modes, the readout rate is increased almost linearly, for example to 4; 000 frames per second at 4x binning (264 x 66 pixel). Single electrons with energies from 300 keV down to 5 keV can be distinguished due to the high sensitivity of the detector. Three applications in scanning transmission electron microscopy are highlighted to demonstrate that the pnCCD satisfies experimental requirements, especially fast recording of 2D images. In the first application, 65; 536 2D diffraction patterns were recorded in 70 s. STEM images corresponding to intensities of various diffraction peaks were reconstructed. For the second application, the microscope was operated in a Lorentz-like mode. Magnetic domains were imaged in an area of 256 x 256 sample points in less than 37 seconds for a total of 65; 536 images each with 264 x 132 pixels. Due to information provided by the two-dimensional images, not only the amplitude but also the direction of the magnetic field could be determined. In the third application, millisecond images of a semiconductor nanostructure were recorded to determine the lattice strain in the sample. A speed-up in measurement time by a factor of 200 could be achieved compared to a previously used camera system. C1 [Ryll, H.; Hartmann, R.; Holl, P.; Strueder, L.] PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany. [Simson, M.; Huth, M.; Ihle, S.; Liebel, A.; Schmidt, J.; Soltau, H.] PNDetector GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany. [Kondo, Y.; Sagawa, R.] JEOL Ltd, 3-1-2 Musashino, Akishima, Tokyo 1968558, Japan. [Kotula, P.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Mueller-Caspary, K.; Rosenauer, A.] Univ Bremen, Otto Hahn Allee 1, D-28359 Bremen, Germany. [Strueder, L.] Univ Siegen, Walter Flex Str 3, D-57068 Siegen, Germany. RP Ryll, H (reprint author), PNSensor GmbH, Otto Hahn Ring 6, D-81739 Munich, Germany. EM henning.ryll@pnsensor.com RI Kotula, Paul/A-7657-2011; OI Kotula, Paul/0000-0002-7521-2759; Rosenauer, Andreas/0000-0003-4742-0451 NR 33 TC 3 Z9 3 U1 4 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD APR PY 2016 VL 11 AR P04006 DI 10.1088/1748-0221/11/04/P04006 PG 19 WC Instruments & Instrumentation SC Instruments & Instrumentation GA DL6JV UT WOS:000375746400025 ER PT J AU Hirshman, SP Shafer, MW Seal, SK Canik, JM AF Hirshman, S. P. Shafer, M. W. Seal, S. K. Canik, J. M. TI Investigation of island formation due to RMPs in DIII-D plasmas with the SIESTA resistive MHD equilibrium code SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID D TOKAMAK; RECONSTRUCTION AB The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant m = 2, n = -1 resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the m = 2 (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces) of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology. C1 [Hirshman, S. P.; Shafer, M. W.; Canik, J. M.] Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37831 USA. [Seal, S. K.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Hirshman, SP (reprint author), Oak Ridge Natl Lab, Fus & Mat Nucl Syst Div, Oak Ridge, TN 37831 USA. EM hirshmansp@ornl.gov OI Shafer, Morgan/0000-0001-9808-6305 FU US Department of Energy, Office of Science [DE-AC05-00OR22725]; UT-Battelle, LLC; DIII-D team FX The authors thank T. Evans and L. Lao for useful discussions and are grateful for the support of the DIII-D team. The comments from the referees were quite valuable for improving the exposition of the manuscript. This material based on work is supported both by the US Department of Energy, Office of Science, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 15 TC 0 Z9 0 U1 2 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD APR PY 2016 VL 82 AR 905820202 DI 10.1017/S0022377816000143 PN 2 PG 18 WC Physics, Fluids & Plasmas SC Physics GA DM0EG UT WOS:000376015000001 ER PT J AU Myra, JR D'Ippolito, DA Russell, DA Umansky, MV Baver, DA AF Myra, J. R. D'Ippolito, D. A. Russell, D. A. Umansky, M. V. Baver, D. A. TI Analytical and numerical study of the transverse Kelvin-Helmholtz instability in tokamak edge plasmas SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID MAGNETIC-FIELD; VELOCITY SHEAR; TURBULENCE; TRANSPORT; MODES; DRIVEN; DRIFT; CONFINEMENT; PHYSICS; CODE AB Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared E x B flows, ion diamagnetism (including gyro -viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summary that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at, and just outside of, the separatrix as a result of the distribution of magnetic shear. Finally implications for reduced edge turbulence modelling codes are discussed. C1 [Myra, J. R.; D'Ippolito, D. A.; Russell, D. A.; Baver, D. A.] Lodestar Res Corp, Boulder, CO USA. [Umansky, M. V.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Myra, JR (reprint author), Lodestar Res Corp, Boulder, CO USA. EM jrmryra@lodestar.com FU US Department of Energy Office of Science, Office of Fusion Energy Sciences [DE-FG02-97ER54392] FX This material is based upon work supported by the US Department of Energy Office of Science, Office of Fusion Energy Sciences under Award number DE-FG02-97ER54392. NR 36 TC 1 Z9 1 U1 1 U2 6 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD APR PY 2016 VL 82 DI 10.1017/S0022377816000301 PN 2 PG 21 WC Physics, Fluids & Plasmas SC Physics GA DM0EG UT WOS:000376015000014 ER PT J AU Schekochihin, AA Parker, JT Highcock, EG Dellar, PJ Dorland, W Hammett, GW AF Schekochihin, A. A. Parker, J. T. Highcock, E. G. Dellar, P. J. Dorland, W. Hammett, G. W. TI Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID GRADIENT-DRIVEN TURBULENCE; LANDAU FLUID MODEL; SOLAR-WIND TURBULENCE; TEMPERATURE-GRADIENT; MAGNETOHYDRODYNAMIC TURBULENCE; VELOCITY-SPACE; DENSITY-FLUCTUATIONS; MAGNETIC FIELD; GYROKINETIC TURBULENCE; TOKAMAK TURBULENCE AB A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating E x B flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid -like. The velocity -space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free -energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the 'anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti -phase -mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the 'critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does). C1 [Schekochihin, A. A.; Highcock, E. G.; Dorland, W.; Hammett, G. W.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England. [Schekochihin, A. A.; Dorland, W.; Hammett, G. W.] Univ Oxford Merton Coll, Merton St, Oxford OX1 4JD, England. [Parker, J. T.; Dellar, P. J.] Univ Oxford, Math Inst, OCIAM, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England. [Parker, J. T.; Highcock, E. G.] Brasenose Coll, Radcliffe Sq, Oxford OX1 4AJ, England. [Dorland, W.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Hammett, G. W.] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Schekochihin, AA (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, 1 Keble Rd, Oxford OX1 3NP, England.; Schekochihin, AA (reprint author), Univ Oxford Merton Coll, Merton St, Oxford OX1 4JD, England. EM alex.schekochihin@physics.ox.ac.uk RI Hammett, Gregory/D-1365-2011 OI Hammett, Gregory/0000-0003-1495-6647 FU UK Engineering and Physical Sciences Research Council; EUROfusion Fusion Researcher Fellowship [WP14-FRF-CCFE/Highcock]; US DoE [DE-FG02-93ER54197, DE-FC02-08ER54964] FX We are grateful to I. Abel, M. Barnes, S. Cowley, A. Kanekar, N. Loureiro, F. Parra, C. Staines, and L. Stipani for many important discussions on this and related topics. I. Abel, N. Loureiro and L. Stipani have read this paper in manuscript and made useful comments. Constructive critique from two anonymous but diligent referees have helped improve our exposition, for which we are thankful A.A.S. is indebted to R. Jeffrey for his collaboration on an unpublished early precursor to this project. J.T.P. was supported by the UK Engineering and Physical Sciences Research Council through a Doctoral Training Grant award. E.G.H.'s work has been carried out within the framework of the EUROfusion Consortium and was supported by a EUROfusion Fusion Researcher Fellowship (WP14-FRF-CCFE/Highcock). The views and opinions expressed herein do not necessarily reflect those of the European Commission. W.D. was supported by the US DoE grants DE-FG02-93ER54197 and DE-FC02-08ER54964. All authors are grateful to the Wolfgang Pauli Institute, University of Vienna, for its hospitality on several occasions. NR 132 TC 8 Z9 8 U1 2 U2 4 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD APR PY 2016 VL 82 DI 10.1017/S0022377816000374 PN 2 PG 47 WC Physics, Fluids & Plasmas SC Physics GA DM0EG UT WOS:000376015000020 ER PT J AU Squire, J Bhattacharjee, A AF Squire, J. Bhattacharjee, A. TI The magnetic shear-current effect: generation of large-scale magnetic fields by the small-scale dynamo SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID MEAN ELECTROMOTIVE-FORCE; MAGNETOROTATIONAL INSTABILITY; REYNOLDS-NUMBERS; ACCRETION DISKS; TURBULENCE; ALPHA; SIMULATIONS; DIFFUSIVITY; TRANSPORT; FLOW AB A novel large-scale dynamo mechanism, the magnetic shear-current effect, is discussed and explored. The effect relies on the interaction of magnetic fluctuations with a mean shear flow, meaning the saturated state of the small-scale dynamo can drive a large-scale dynamo in some sense the inverse of dynamo quenching. The dynamo is non-helical, with the mean field a coefficient zero, and is caused by the interaction between an off-diagonal component of the turbulent resistivity and the stretching of the large-scale field by shear flow. Following up on previous numerical and analytic work, this paper presents further details of the numerical evidence for the effect, as well as an heuristic description of how magnetic fluctuations can interact with shear flow to produce the required electromotive force. The pressure response of the fluid is fundamental to this mechanism, which helps explain why the magnetic effect is stronger than its kinematic cousin, and the basic idea is related to the well-known lack of turbulent resistivity quenching by magnetic fluctuations. As well as being interesting for its applications to general high Reynolds number astrophysical turbulence, where strong small-scale magnetic fluctuations are expected to be prevalent, the magnetic shear -current effect is a likely candidate for large-scale dynamo in the unstratified regions of ionized accretion disks. Evidence for this is discussed, as well as future research directions and the challenges involved with understanding details of the effect in astrophysically relevant regimes. C1 [Squire, J.] CALTECH, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA. [Squire, J.; Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA. [Squire, J.; Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bhattacharjee, A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08543 USA. [Bhattacharjee, A.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Squire, J (reprint author), CALTECH, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA.; Squire, J (reprint author), Princeton Univ, Dept Astrophys Sci, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA.; Squire, J (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. EM jsquire@caltech.edu FU Burke Fellowship; Sherman Fairchild Foundation at Caltech; Procter Fellowship at Princeton University; US Department of Energy [DE-AC02-09-CH11466] FX The authors would like to thank J Krommes, J. Goodman, H. Ji, G Hammett, and A. Schekochihin for enlightening discussion and useful suggestions, as well as G. Lesur for distribution of the SNOOPY code. J.S. acknowledges the generous support of a Burke Fellowship and the Sherman Fairchild Foundation at Caltech, as well as a Procter Fellowship at Princeton University. This work was funded by US Department of Energy grant no. DE-AC02-09-CH11466 and computations were carried out on the Dawson cluster at PPPL. NR 64 TC 1 Z9 1 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD APR PY 2016 VL 82 DI 10.1017/S0022377816000258 PN 2 PG 29 WC Physics, Fluids & Plasmas SC Physics GA DM0EG UT WOS:000376015000009 ER PT J AU Wang, ZH Lunsford, R Mansfield, DK Nichols, JH AF Wang, Zhehui Lunsford, Robert Mansfield, Dennis K. Nichols, Jacob H. TI Existing and new applications of micropellet injection (MPI) in magnetic fusion SO JOURNAL OF PLASMA PHYSICS LA English DT Article ID DUST BEAM INJECTION; PELLET INJECTION; TOKAMAKS; CARBON; ENERGY AB The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high -temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma -material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI. C1 [Wang, Zhehui] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.] Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. RP Wang, ZH (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM zwang@lanl.gov NR 40 TC 1 Z9 1 U1 6 U2 8 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-3778 EI 1469-7807 J9 J PLASMA PHYS JI J. Plasma Phys. PD APR PY 2016 VL 82 DI 10.1017/S0022377816000404 PN 2 PG 16 WC Physics, Fluids & Plasmas SC Physics GA DM0EG UT WOS:000376015000023 ER PT J AU Banerjee, S Diallo, A Zweben, SJ AF Banerjee, Santanu Diallo, A. Zweben, S. J. TI Observation of quasi-coherent edge fluctuations in Ohmic plasmas on National Spherical Torus Experiment SO PHYSICS OF PLASMAS LA English DT Article ID TOKAMAK; MODE AB A quasi-coherent edge density mode with frequency integral(mode) similar to 40 kHz is observed in Ohmic plasmas in National Spherical Torus Experiment using the gas puff imaging diagnostic. This mode is located predominantly just inside the separatrix, with a maximum fluctuation amplitude significantly higher than that of the broadband turbulence in the same frequency range. The quasi-coherent mode has a poloidal wavelength lambda(pol) similar to 16 cm and a poloidal phase velocity of V-pol similar to 4.9 +/- 0.3 km s(-1) in the electron diamagnetic direction, which are similar to the characteristics expected from a linear drift-wave-like mode in the edge. This is the first observation of a quasi-coherent edge mode in an Ohmic diverted tokamak, and so may be useful for validating tokamak edge turbulence codes. Published by AIP Publishing. C1 [Banerjee, Santanu] Inst Plasma Res, Gandhinagar 382428, Gujarat, India. [Diallo, A.; Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Banerjee, S (reprint author), Inst Plasma Res, Gandhinagar 382428, Gujarat, India. FU U.S. DOE [DE-AC02-09CH11466] FX Support and contributions from N. Crocker, E. Fredrickson, S. Kaye, S. Kubota, B. LeBlanc, R. Maingi, R. Maqueda, T. Munsat, S. Sabbagh, Y. Sechrest, J. R. Myra, D. A. Russell, and the National Spherical Torus Experiment Team are gratefully acknowledged. One of the authors (S. B.) would also like to thank H. Zushi and J. Ghosh for many useful discussions during the course of this work. This work was supported by U.S. DOE Contract DE-AC02-09CH11466. The digital data for this paper can be found at http://arks.princeton.edu/ark:/88435/dsp0170795b055. NR 14 TC 2 Z9 2 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 044502 DI 10.1063/1.4946871 PG 4 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500092 ER PT J AU del-Castillo-Negrete, D Blazevski, D AF del-Castillo-Negrete, Diego Blazevski, Daniel TI Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields SO PHYSICS OF PLASMAS LA English DT Article ID PLASMAS AB Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses. Published by AIP Publishing. C1 [del-Castillo-Negrete, Diego; Blazevski, Daniel] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP del-Castillo-Negrete, D (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI del-Castillo-Negrete, Diego/0000-0001-7183-801X FU Office of Fusion Energy Sciences of the U.S. Department of Energy at Oak Ridge National Laboratory [DE-AC05-00OR22725] FX We thank Morgan Shafer for kindly proving the SIESTA magnetic field data. This work was sponsored by the Office of Fusion Energy Sciences of the U.S. Department of Energy at Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 042505 DI 10.1063/1.4946869 PG 14 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500033 ER PT J AU Gao, L Ji, HT Fiksel, G Fox, W Evans, M Alfonso, N AF Gao, Lan Ji, Hantao Fiksel, Gennady Fox, William Evans, Michelle Alfonso, Noel TI Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current SO PHYSICS OF PLASMAS LA English DT Article ID INTENSITY; PLASMAS AB Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two similar to 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of similar to 3 x 10(16) W/cm(2). The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show similar to 40-50 T magnetic fields at the center of the coil similar to 3-4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science. (C) 2016 AIP Publishing LLC. C1 [Gao, Lan; Ji, Hantao] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Gao, Lan; Ji, Hantao; Fox, William] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Fiksel, Gennady; Evans, Michelle] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Evans, Michelle; Alfonso, Noel] Gen Atom Co, San Diego, CA 92816 USA. [Fiksel, Gennady] Univ Michigan, Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. RP Gao, L (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Gao, L (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Gao, Lan/K-7187-2016 OI Gao, Lan/0000-0002-4119-2825 FU National Laser Users Facility [DE-NA0002205] FX This work was supported by the National Laser Users Facility under Grant No. DE-NA0002205. The authors express their gratitude to J. Y. Zhong and Y. T. Li for providing ideas on target design, to Q. L. Dong, P. Nilson, and K. Hill for useful discussions, to General Atomics and the Laboratory for Laser Energetics (LLE) for target fabrication, and to the OMEGA EP crew for technical support. NR 31 TC 2 Z9 2 U1 8 U2 16 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 043106 DI 10.1063/1.4945643 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500058 ER PT J AU Hager, R Chang, CS AF Hager, Robert Chang, C. S. TI Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions SO PHYSICS OF PLASMAS LA English DT Article ID FINITE-ASPECT-RATIO; ARBITRARY COLLISIONALITY; PLASMA; TRANSPORT; MODEL; CONDUCTIVITY; EQUILIBRIA AB As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator-that conserves mass, momentum, and energy-is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed. (c) 2016 AIP Publishing LLC. C1 [Hager, Robert; Chang, C. S.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Hager, R; Chang, CS (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rhager@pppl.gov; cschang@pppl.gov OI Hager, Robert/0000-0002-4624-3150 FU DOE Office of Science User Facilities [DE-AC02-09CH11466, DE-FC02-99ER54512]; Scientific Discovery through Advanced Computing (SciDAC) program - U.S. Department of Energy Office of Advanced Scientific Computing Research; Office of Fusion Energy Sciences; Princeton University [DE-AC02-09CH11466]; DOE Office of Science [DE-AC02-06CH11357, DE-AC02-05CH11231] FX The authors would like to thank Stephane Ethier and Weixing Wang for helpful discussions about results from the GTC-NEO code, We thank Emily Belli for pointing out the possibility of an error in Koh et al.'s formula and for allowing us to use the NEO code. We also thank Eleonora Viezzer, Samuli Saarelma and JET contributors, Ahmed Diallo, and Michael Churchill for providing us with data for our ASDEX-Upgrade,36 the model JET equilibrium.35'42 NSTX,37-39 and C-Mod34 simulations, respectively. NSTX and Alcator C-Mod are DOE Office of Science User Facilities supported under Contract Nos. DE-AC02-09CH11466 and DE-FC02-99ER54512. We also thank Greg Hammett and Ian Abel for fruitful discussions about the asymptotic behavior of the Sauter formula, Olivier Sauter for discussing the confidence regime of his formula with us, and Rob Andre and Luca Guazzotto for their help with the ISOLVER32 and FLOW.33 Support for this work was as provided through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy Office of Advanced Scientific Computing Research and the Office of Fusion Energy Sciences. The work was performed at Princeton Plasma Physics Laboratory; which is managed by Princeton University under Contract No, DE-AC02-09CH11466. Awards of computer time were provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research mostly used large scale resources of the Argonne Leadership Computing Facility (ALCF) Mira, and some small scale simulations also used the National Energy Research Scientific Computing Center (NERSC). ALCF and NERSC are DOE Office of Science User Facilities supported under Contract Nos. DE-AC02-06CH11357 and DE-AC02-05CH11231, respectively. NR 49 TC 3 Z9 3 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 042503 DI 10.1063/1.4945615 PG 21 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500031 ER PT J AU Hu, SX Collins, LA Goncharov, VN Kress, JD McCrory, RL Skupsky, S AF Hu, S. X. Collins, L. A. Goncharov, V. N. Kress, J. D. McCrory, R. L. Skupsky, S. TI First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications SO PHYSICS OF PLASMAS LA English DT Article ID DENSE HYDROGEN; PLASMAS; GAS AB Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (rho = 0.5 to 100 g/cm(3) and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a "Saha-type" model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atom model in conjunction with the pressure-matching mixing rule. The thermal conductivities (kappa(QMD)) of CH, derived directly from the Kohn-Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(ln Lambda)(QMD)] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation-hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium-tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted similar to 20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations. (C) 2016 AIP Publishing LLC. C1 [Hu, S. X.; Goncharov, V. N.; McCrory, R. L.; Skupsky, S.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Collins, L. A.; Kress, J. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [McCrory, R. L.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14623 USA. [McCrory, R. L.] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA. RP Hu, SX (reprint author), Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. EM shu@lle.rochester.edu RI Hu, Suxing/A-1265-2007 OI Hu, Suxing/0000-0003-2465-3818 FU Department of Energy National Nuclear Security Administration [DE-NA0001944]; University of Rochester; New York State Energy Research and Development Authority; U.S. Department of Energy [DE-AC52-06NA25396] FX This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. This work was also supported by Scientific Campaign 10 at the Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 64 TC 1 Z9 1 U1 7 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 042704 DI 10.1063/1.4945753 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500046 ER PT J AU Khan, SF MacLaren, SA Salmonson, JD Ma, T Kyrala, GA Pino, JE Rygg, JR Field, JE Tommasini, R Ralph, JE Turnbull, DP Mackinnon, AJ Baker, KL Benedetti, LR Bradley, DK Celliers, PM Dewald, EL Dittrich, TR Hopkins, LB Izumi, N Kervin, ML Kline, JL Nagel, SR Pak, A Tipton, RE AF Khan, S. F. MacLaren, S. A. Salmonson, J. D. Ma, T. Kyrala, G. A. Pino, J. E. Rygg, J. R. Field, J. E. Tommasini, R. Ralph, J. E. Turnbull, D. P. Mackinnon, A. J. Baker, K. L. Benedetti, L. R. Bradley, D. K. Celliers, P. M. Dewald, E. L. Dittrich, T. R. Hopkins, L. Berzak Izumi, N. Kervin, M. L. Kline, J. L. Nagel, S. R. Pak, A. Tipton, R. E. TI Symmetry tuning of a near one-dimensional 2-shock platform for code validation at the National Ignition Facility SO PHYSICS OF PLASMAS LA English DT Article ID SIMULATIONS AB We introduce a new quasi 1-D implosion experimental platform at the National Ignition Facility designed to validate physics models as well as to study various Inertial Confinement Fusion aspects such as implosion symmetry, convergence, hydrodynamic instabilities, and shock timing. The platform has been developed to maintain shell sphericity throughout the compression phase and produce a round hot core at stagnation. This platform utilizes a 2-shock 1MJ pulse with 340 TW peak power in a near-vacuum Au Hohlraum and a CH ablator capsule uniformly doped with 1% Si. We have performed several inflight radiography, symmetry capsule, and shock timing experiments in order to tune the symmetry of the capsule to near round throughout several epochs of the implosion. Adjusting the relative powers of the inner and outer cones of beams has allowed us to control the drive at the poles and equator of the capsule, thus providing the mechanism to achieve a spherical capsule convergence. Details and results of the tuning experiments are described. Published by AIP Publishing. C1 [Khan, S. F.; MacLaren, S. A.; Salmonson, J. D.; Ma, T.; Pino, J. E.; Rygg, J. R.; Field, J. E.; Tommasini, R.; Ralph, J. E.; Turnbull, D. P.; Baker, K. L.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Dewald, E. L.; Dittrich, T. R.; Hopkins, L. Berzak; Izumi, N.; Kervin, M. L.; Nagel, S. R.; Pak, A.; Tipton, R. E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Kyrala, G. A.; Kline, J. L.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Mackinnon, A. J.] Stanford Univ, Stanford, CA 94025 USA. RP Khan, SF (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RI IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The author would like to acknowledge the efforts of the NIF operations, laser performance, target diagnostics, and target fabrication teams. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. IM Release No. LLNL-JRNL-678736. NR 31 TC 5 Z9 5 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 042708 DI 10.1063/1.4947223 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500050 ER PT J AU Meneghini, O Snyder, PB Smith, SP Candy, J Staebler, GM Belli, EA Lao, LL Park, JM Green, DL Elwasif, W Grierson, BA Holland, C AF Meneghini, O. Snyder, P. B. Smith, S. P. Candy, J. Staebler, G. M. Belli, E. A. Lao, L. L. Park, J. M. Green, D. L. Elwasif, W. Grierson, B. A. Holland, C. TI Integrated fusion simulation with self-consistent core-pedestal coupling SO PHYSICS OF PLASMAS LA English DT Article ID TOKAMAKS; TRANSPORT; COLLISIONALITY; PROFILES; MODEL AB Accurate prediction of fusion performance in present and future tokamaks requires taking into account the strong interplay between core transport, pedestal structure, current profile, and plasma equilibrium. An integrated modeling workflow capable of calculating the steady-state self-consistent solution to this strongly coupled problem has been developed. The workflow leverages state-of-the-art components for collisional and turbulent core transport, equilibrium and pedestal stability. Testing against a DIII-D discharge shows that the workflow is capable of robustly predicting the kinetic profiles (electron and ion temperature and electron density) from the axis to the separatrix in a good agreement with the experiments. An example application is presented, showing self-consistent optimization for the fusion performance of the 15 MA D-T ITER baseline scenario as functions of the pedestal density and ion effective charge Z(eff). Published by AIP Publishing. C1 [Meneghini, O.; Snyder, P. B.; Smith, S. P.; Candy, J.; Staebler, G. M.; Belli, E. A.; Lao, L. L.] Gen Atom Co, San Diego, CA 92121 USA. [Park, J. M.; Green, D. L.; Elwasif, W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Grierson, B. A.] Princeton Plasma Phys Lab, Princeton, NJ 08536 USA. [Holland, C.] Univ Calif San Diego, San Diego, CA 92093 USA. RP Meneghini, O (reprint author), Gen Atom Co, San Diego, CA 92121 USA. EM meneghini@fusion.gat.com OI Elwasif, Wael/0000-0003-0554-1036 FU Office of Science of the U.S. Department of Energy [DE-SC0012656, DE-AC05-000R22725, DE-SC0012633, DE-FG02-95ER54309, DE-FC02-06ER54873, DE-FG02-04ER54698, DE-AC02-05CH11231] FX This work was supported by the Office of Science of the U.S. Department of Energy under Contract Nos. DE-SC0012656 (GA AToM SciDAC), DE-AC05-000R22725 (ORNL AToM SciDAC), DE-SC0012633 (UCSD AToM SciDAC), DE-FG02-95ER54309 (GA theory), DE-FC02-06ER54873 (ESL), and DE-FG02-04ER54698 (DIII-D). This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 47 TC 1 Z9 1 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 042507 DI 10.1063/1.4947204 PG 11 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500035 ER PT J AU Stepanov, AD Gilson, EP Grisham, LR Kaganovich, ID Davidson, RC AF Stepanov, Anton D. Gilson, Erik P. Grisham, Larry R. Kaganovich, Igor D. Davidson, Ronald C. TI Dynamics of ion beam charge neutralization by ferroelectric plasma sources SO PHYSICS OF PLASMAS LA English DT Article ID NDCX-II; ELECTRON-EMISSION AB Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to 5 mu s after the driving pulse is applied to the FEPS and can last for 35 mu s. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied. Published by AIP Publishing. C1 [Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Stepanov, AD (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU U.S. Department of Energy [DE-AC0209CH11466] FX This research was supported by the U.S. Department of Energy Contract No. DE-AC0209CH11466. NR 21 TC 0 Z9 0 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 043113 DI 10.1063/1.4947562 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500065 ER PT J AU Sung, C White, AE Mikkelsen, DR Greenwald, M Holland, C Howard, NT Churchill, R Theiler, C Team, ACM AF Sung, C. White, A. E. Mikkelsen, D. R. Greenwald, M. Holland, C. Howard, N. T. Churchill, R. Theiler, C. Team, Alcator C-Mod TI Quantitative comparison of electron temperature fluctuations to nonlinear gyrokinetic simulations in C-Mod Ohmic L-mode discharges SO PHYSICS OF PLASMAS LA English DT Article ID ENERGY CONFINEMENT; GRADIENT MODES; ASPECT RATIO; TRANSPORT; TURBULENCE; TOKAMAKS; PLASMA AB Long wavelength turbulent electron temperature fluctuations (k(y)rho(s)< 0.3) are measured in the outer core region (r/a> 0.8) of Ohmic L-mode plasmas at Alcator C-Mod [E. S. Marmar et al., Nucl. Fusion 49, 104014 (2009)] with a correlation electron cyclotron emission diagnostic. The relative amplitude and frequency spectrum of the fluctuations are compared quantitatively with nonlinear gyrokinetic simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] in two different confinement regimes: linear Ohmic confinement (LOC) regime and saturated Ohmic confinement (SOC) regime. When comparing experiment with nonlinear simulations, it is found that local, electrostatic ion-scale simulations (k(y)rho(s) less than or similar to 1.7) performed at r/a similar to 0.85 reproduce the experimental ion heat flux levels, electron temperature fluctuation levels, and frequency spectra within experimental error bars. In contrast, the electron heat flux is robustly under-predicted and cannot be recovered by using scans of the simulation inputs within error bars or by using global simulations. If both the ion heat flux and the measured temperature fluctuations are attributed predominantly to long-wavelength turbulence, then under-prediction of electron heat flux strongly suggests that electron scale turbulence is important for transport in C-Mod Ohmic L-mode discharges. In addition, no evidence is found from linear or nonlinear simulations for a clear transition from trapped electron mode to ion temperature gradient turbulence across the LOC/SOC transition, and also there is no evidence in these Ohmic L-mode plasmas of the "Transport Shortfall" [C. Holland et al., Phys. Plasmas 16, 052301 (2009)]. (c) 2016 AIP Publishing LLC. C1 [Sung, C.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [White, A. E.; Greenwald, M.; Howard, N. T.; Team, Alcator C-Mod] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Mikkelsen, D. R.; Churchill, R.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Holland, C.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Theiler, C.] Ecole Polytech Fed Lausanne, SPC, CH-1015 Lausanne, Switzerland. RP Sung, C (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM csung@physics.ucla.edu OI Theiler, Christian/0000-0003-3926-1374; Churchill, Randy/0000-0001-5711-746X FU U.S. Department of Energy [DE-SC0006419, DE-FC02-99ER54512]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank J. E. Rice, M. L. Reinke, and C. Gao for HIREX analysis, J. Walk and J. W. Hughes for Thomson Scattering analysis, A. E. Hubbard for GPC analysis, and S. Wolfe for EFIT analysis. Experimental work was supported by the U.S. Department of Energy Grant Nos. DE-SC0006419 and DE-FC02-99ER54512. Special thanks to J. Wright and T. Baker for maintaining the LOKI computer cluster used for linear GYRO simulations. The nonlinear GYRO simulations were carried out at the National Energy Research Scientific Computing Center, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 60 TC 0 Z9 0 U1 1 U2 2 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 042303 DI 10.1063/1.4945620 PG 17 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500019 ER PT J AU Xie, T Qin, H Zhang, YZ Mahajan, SM AF Xie, T. Qin, H. Zhang, Y. Z. Mahajan, S. M. TI The unified ballooning theory with weak up-down asymmetric mode structure and the numerical studies SO PHYSICS OF PLASMAS LA English DT Article ID TOROIDAL ALFVEN EIGENMODES; DRIFT-WAVE EIGENMODES; TOKAMAKS; PLASMAS; SHEAR; INSTABILITIES; TRANSPORT; STABILITY; EQUATIONS; GEOMETRY AB A unified ballooning theory, constructed on the basis of two special theories [Zhang et al., Phys. Fluids B 4, 2729 (1992); Y. Z. Zhang and T. Xie, Nucl. Fusion Plasma Phys. 33, 193 (2013)], shows that a weak up-down asymmetric mode structure is normally formed in an up-down symmetric equilibrium; the weak up-down asymmetry in mode structure is the manifestation of non-trivial higher order effects beyond the standard ballooning equation. It is shown that the asymmetric mode may have even higher growth rate than symmetric modes. The salient features of the theory are illustrated by investigating a fluid model for the ion temperature gradient (ITG) mode. The two dimensional (2D) analytical form of the ITG mode, solved in ballooning representation, is then converted into the radial-poloidal space to provide the natural boundary condition for solving the 2D mathematical local eigenmode problem. We find that the analytical expression of the mode structure is in a good agreement with finite difference solution. This sets a reliable framework for quasi-linear computation. Published by AIP Publishing. C1 [Xie, T.; Qin, H.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Xie, T.] Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. [Qin, H.] Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Zhang, Y. Z.] Chinese Acad Sci, Ctr Magnet Fus Theory, Hefei 230026, Anhui, Peoples R China. [Mahajan, S. M.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. RP Xie, T (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China.; Xie, T (reprint author), Chinese Acad Sci, Key Lab Geospace Environm, Hefei 230026, Anhui, Peoples R China. EM xietao@ustc.edu.cn FU CAS Program for Interdisciplinary Collaboration Team; JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics [NSFC-11261140328]; ITER-China Program [2014GB124005]; Fundamental Research Funds for the Central Universities [WK2030040052]; U.S. Department of Energy [DE-FG02-04ER-54742] FX This research was supported by CAS Program for Interdisciplinary Collaboration Team, by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC-11261140328), by ITER-China Program (2014GB124005), by the Fundamental Research Funds for the Central Universities (WK2030040052), and by the U.S. Department of Energy Grant DE-FG02-04ER-54742. NR 52 TC 2 Z9 2 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD APR PY 2016 VL 23 IS 4 AR 042514 DI 10.1063/1.4947556 PG 10 WC Physics, Fluids & Plasmas SC Physics GA DL7YE UT WOS:000375855500042 ER PT J AU Faulkner, JS Stocks, GM AF Faulkner, J. Sam Stocks, G. Malcolm TI Jan Korringa OBITUARY SO PHYSICS TODAY LA English DT Biographical-Item C1 [Faulkner, J. Sam] Florida Atlantic Univ, Boca Raton, FL USA. [Stocks, G. Malcolm] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Faulkner, JS (reprint author), Florida Atlantic Univ, Boca Raton, FL USA. RI Stocks, George Malcollm/Q-1251-2016 OI Stocks, George Malcollm/0000-0002-9013-260X NR 1 TC 0 Z9 0 U1 0 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0031-9228 EI 1945-0699 J9 PHYS TODAY JI Phys. Today PD APR PY 2016 VL 69 IS 4 BP 70 EP 71 PG 3 WC Physics, Multidisciplinary SC Physics GA DL7YU UT WOS:000375857100024 ER PT J AU Medina, S Houze, RA AF Medina, Socorro Houze, Robert A., Jr. TI Kelvin-Helmholtz waves in extratropical cyclones passing over mountain ranges SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE orographic precipitation; Kelvin-Helmholtz; extratropical cyclone ID OROGRAPHIC PRECIPITATION EVENT; AIRBORNE DOPPLER RADAR; CLEAR-AIR TURBULENCE; 2001 IMPROVE-2 EVENT; SIERRA BARRIER JETS; NORTHERN CALIFORNIA; ATMOSPHERIC RIVERS; SHEAR-FLOW; BILLOWS; MAP AB Kelvin-Helmholtz billows with horizontal scales of 3-4km have been observed in midlatitude cyclones moving over the Italian Alps and the Oregon Cascades when the atmosphere was mostly statically stable with high amounts of shear and Ri<0.25. In one case, data from a mobile radar located within a windward facing valley documented a layer in which the shear between down-valley flow below 1.2km and strong upslope cross-barrier flow above was large. Several episodes of Kelvin-Helmholtz waves were observed within the shear layer. The occurrence of the waves appears to be related to the strength of the shear: when the shear attained large values, an episode of billows occurred, followed by a sharp decrease in the shear. The occurrence of large values of shear and Kelvin-Helmholtz billows over two different mountain ranges suggests that they may be important features occurring when extratropical cyclones with statically stable flow pass over mountain ranges. C1 [Medina, Socorro; Houze, Robert A., Jr.] Univ Washington, Dept Atmospher Sci, Seattle, WA 98195 USA. [Houze, Robert A., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Houze, RA (reprint author), 604 ATG Bldg,Box 351640,3920 Okanogan Lane NE, Seattle, WA 98195 USA. EM houze@uw.edu FU National Science Foundation [AGS-1503155] FX This research was supported by the National Science Foundation under Grant AGS-1503155. Beth Tully processed the graphics. We would like to acknowledge two anonymous reviewers for their comments and suggestions. NR 40 TC 1 Z9 1 U1 5 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD APR PY 2016 VL 142 IS 696 BP 1311 EP 1319 DI 10.1002/qj.2734 PN A PG 9 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DL9BF UT WOS:000375935600011 ER PT J AU Romps, DM Jeevanjee, N AF Romps, David M. Jeevanjee, Nadir TI On the sizes and lifetimes of cold pools SO QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY LA English DT Article DE cold pools; sizes; lifetimes; entrainment ID CONVECTIVE WAKE PARAMETERIZATION; GRAVITY CURRENTS; EFFECTIVE BUOYANCY; DEEP CONVECTION; DRIVEN; MODELS; SURFACE; FLUXES AB Cold pools of air, which are formed by evaporating precipitation, play a critical role in the triggering of new precipitation. Despite their recognized importance, little effort has been devoted to building simple models of their dynamics. Here, analytical equations are derived for the radius, height, and buoyancy of a cylindrical cold pool as a function of time, and a scale analysis reveals that entrainment is a dominant influence. These governing equations yield simple expressions for the maximum sizes and lifetimes of cold pools. The terminal radius of a cold pool is relatively insensitive to its initial conditions, with a typical maximum radius of about 14 times the initial radius, give or take a factor of 2. The terminal time of a cold pool, on the other hand, can vary over orders of magnitude depending on its initial potential and kinetic energies. These predictions are validated against large-eddy simulations. C1 [Romps, David M.; Jeevanjee, Nadir] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA USA. [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Jeevanjee, Nadir] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Romps, DM (reprint author), Univ Calif Berkeley, 307 McCone Hall, Berkeley, CA 94720 USA. EM romps@berkeley.edu FU Scientific Discovery through Advanced Computing (SciDAC) program - US Department of Energy Office of Advanced Scientific Computing Research [DE-AC02-05CH11231]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [ACI-1053575]; Scientific Discovery through Advanced Computing (SciDAC) program, - US Department of Energy Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) program, funded by the US Department of Energy Office of Advanced Scientific Computing Research and Office of Biological and Environmental Research under Contract No. DE-AC02-05CH11231. This research used computing resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under Contract DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. NR 27 TC 0 Z9 0 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0035-9009 EI 1477-870X J9 Q J ROY METEOR SOC JI Q. J. R. Meteorol. Soc. PD APR PY 2016 VL 142 IS 696 BP 1517 EP 1527 DI 10.1002/qj.2754 PN A PG 11 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DL9BF UT WOS:000375935600026 ER PT J AU Grossmann, J Suslov, A Yong, G Boatner, LA Svitelskiy, O AF Grossmann, John Suslov, Alexey Yong, Grace Boatner, Lynn A. Svitelskiy, Oleksiy TI Highly sensitive simple homodyne phase detector for ultrasonic pulse-echo measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID KTA1-XNBXO3 AB We have designed and built a modern versatile research-grade instrument for ultrasound pulse-echo probing of the elastic properties of a wide range of materials under laboratory conditions. The heart of the instrument lies in an AD8302 microchip: a gain and phase detector from Analog Devices, Inc. To construct the device, we have implemented a schematic that utilizes the homodyne principle for signal processing instead of the traditional superheterodyne approach. This design allows one to measure phase shifts with high precision and linearity over the entire range of 0 degrees-3600 degrees. The system is simple in construction and usage; it makes ultrasound measurements easily accessible to a broad range of researchers. It was tested by measuring the temperature dependence of the ultrasound speed and attenuation in a KTa0.92Nb0.08O3 (KTN) single crystal at a frequency of similar to 40 MHz. The tests were performed in the vicinity of the ferroelectric transitions where the large variations of the speed and attenuation demand a detector with outstanding characteristics. The described detector has a wide dynamic range and allows for measuring in a single run over the whole temperature range of the ferroelectric transitions, rather than just in limited intervals available previously. Moreover, due to the wide dynamic range of the gain measurements and high sensitivity this instrument was able to reveal previously unresolvable features associated with the development of the ferroelectric transitions of KTN crystals. (C) 2016 AIP Publishing LLC. C1 [Grossmann, John] Colgate Univ, Hamilton, NY 13346 USA. [Suslov, Alexey] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Yong, Grace] Towson Univ, Towson, MD 21252 USA. [Boatner, Lynn A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Svitelskiy, Oleksiy] Gordon Coll, Wenham, MA 01984 USA. RP Svitelskiy, O (reprint author), Gordon Coll, Wenham, MA 01984 USA. EM oleksiy.svitelskiy@gordon.edu RI Suslov, Alexey/M-7511-2014; OI Suslov, Alexey/0000-0002-2224-153X; Grossmann, John/0000-0003-3111-5591 FU Colgate University Research Council; Department of Physics and Astronomy at Colgate University; National Science Foundation [DMR-1157490]; State of Florida; US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division FX This work was partially supported by the Colgate University Research Council and the Department of Physics and Astronomy at Colgate University. The National High Magnetic Field Laboratory (for A.S.) is supported by National Science Foundation Cooperative Agreement No. DMR-1157490, and the State of Florida. Research at the Oak Ridge National Laboratory (for L.A.B.) is sponsored by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences, and Engineering Division. J.G. and O.S. are thankful to Professor K. Segall, Professor J. Amato, Professor E. Galvez, Professor B. Parks, and Professor R. Metzler for various help throughout the whole project and to Professor C. H. Holbrow for the critical review of this work. The authors are grateful to Mr. C. Augusta for providing technical support on AD8302, to Analog Devices, Inc., for donating microchips, and to Sensing Devices, Inc., for donating temperature sensors. NR 11 TC 0 Z9 0 U1 2 U2 7 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2016 VL 87 IS 4 AR 044901 DI 10.1063/1.4945361 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DL7TH UT WOS:000375842500050 PM 27131694 ER PT J AU Ito, TM Ramsey, JC Yao, W Beck, DH Cianciolo, V Clayton, SM Crawford, C Currie, SA Filippone, BW Griffith, WC Makela, M Schmid, R Seidel, GM Tang, Z Wagner, D Wei, W Williamson, SE AF Ito, T. M. Ramsey, J. C. Yao, W. Beck, D. H. Cianciolo, V. Clayton, S. M. Crawford, C. Currie, S. A. Filippone, B. W. Griffith, W. C. Makela, M. Schmid, R. Seidel, G. M. Tang, Z. Wagner, D. Wei, W. Williamson, S. E. TI An apparatus for studying electrical breakdown in liquid helium at 0.4 K and testing electrode materials for the neutron electric dipole moment experiment at the Spallation Neutron Source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID THERMAL EXPANSION; MOLAR VOLUME; FIELD; PRESSURE; DEPENDENCE; PROFILES AB We have constructed an apparatus to study DC electrical breakdown in liquid helium at temperatures as low as 0.4 K and at pressures between the saturated vapor pressure and similar to 600 Torr. The apparatus can house a set of electrodes that are 12 cm in diameter with a gap of 1-2 cm between them, and a potential up to +/- 50 kV can be applied to each electrode. Initial results demonstrated that it is possible to apply fields exceeding 100 kV/cm in a 1 cm gap between two electropolished stainless steel electrodes 12 cm in diameter for a wide range of pressures at 0.4 K. We also measured the current between two electrodes. Our initial results, I < 1 pA at 45 kV, correspond to a lower bound on the effective volume resistivity of liquid helium of rho(V) > 5 x 10(18) Omega cm. This lower bound is 5 times larger than the bound previously measured. We report the design, construction, and operational experience of the apparatus, as well as initial results. Published by AIP Publishing. C1 [Ito, T. M.; Ramsey, J. C.; Clayton, S. M.; Currie, S. A.; Griffith, W. C.; Makela, M.; Tang, Z.; Wei, W.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Yao, W.; Cianciolo, V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Beck, D. H.; Williamson, S. E.] Univ Illinois, Loomis Lab Phys, 1110 W Green St, Urbana, IL 61801 USA. [Crawford, C.; Wagner, D.] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA. [Filippone, B. W.; Schmid, R.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Seidel, G. M.] Brown Univ, Dept Phys, Providence, RI 02912 USA. RP Ito, TM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM ito@lanl.gov OI Beck, Douglas/0000-0003-1196-6620; Makela, Mark/0000-0003-0592-3683; Griffith, William Clark/0000-0002-0260-1956; Currie, Scott/0000-0002-6164-7321; Ito, Takeyasu/0000-0003-3494-6796; Clayton, Steven/0000-0002-1401-2761 FU United States Department of Energy Office of Nuclear Physics; Physics Division; AOT Division FX This work was supported by the United States Department of Energy Office of Nuclear Physics. Development of acrylic-substrate electrodes was supported by the Laboratory Directed Research and Development (LDRD) of Oak Ridge National Laboratory. We gratefully acknowledge the support of Physics and AOT Divisions as well as the former LANSCE Division of Los Alamos National Laboratory. We also are grateful to Brown University Physics Department for making the 3He refrigerator and the cryostat available for this effort. One of the authors (T.M.I.) expresses his gratitude to Dr. M. Hardiman of the University of Sussex for fruitful discussions. NR 39 TC 1 Z9 1 U1 2 U2 5 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2016 VL 87 IS 4 AR 045113 DI 10.1063/1.4946896 PG 13 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DL7TH UT WOS:000375842500069 PM 27131713 ER PT J AU Li, XY Deng, ZD Rauchenstein, LT Carlson, TJ AF Li, Xinya Deng, Zhiqun Daniel Rauchenstein, Lynn T. Carlson, Thomas J. TI Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Review ID WIRELESS SENSOR NETWORKS; ACOUSTIC TELEMETRY SYSTEM; MAXIMUM-LIKELIHOOD LOCALIZATION; PASSIVE SOURCE LOCALIZATION; CDMA-CELLULAR-SYSTEMS; JUVENILE SALMON; ONCORHYNCHUS-TSHAWYTSCHA; PHYSETER-MACROCEPHALUS; ECHOLOCATION SIGNALS; POSITION ESTIMATION AB Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia. (C) 2016 Author(s). C1 [Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Deng, ZD (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. EM zhiqun.deng@pnnl.gov RI Deng, Daniel/A-9536-2011; OI Deng, Daniel/0000-0002-8300-8766; Rauchenstein, Lindy/0000-0003-3935-6031 FU U.S. Department of Energy Wind and Water Power Technologies Office FX The study was funded by the U.S. Department of Energy Wind and Water Power Technologies Office. The study was conducted at Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy. NR 136 TC 0 Z9 0 U1 18 U2 30 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2016 VL 87 IS 4 AR 041502 DI 10.1063/1.4947001 PG 12 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DL7TH UT WOS:000375842500003 PM 27131647 ER PT J AU Pace, DC Cooper, CM Taussig, D Eidietis, NW Hollmann, EM Riso, V Van Zeeland, MA Watkins, M AF Pace, D. C. Cooper, C. M. Taussig, D. Eidietis, N. W. Hollmann, E. M. Riso, V. Van Zeeland, M. A. Watkins, M. TI Gamma ray imager on the DIII-D tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electrons in the energy range of 1-60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons. (C) 2016 AIP Publishing LLC. C1 [Pace, D. C.; Taussig, D.; Eidietis, N. W.; Van Zeeland, M. A.; Watkins, M.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Cooper, C. M.] Oak Ridge Associated Univ, Oak Ridge, TN 37830 USA. [Hollmann, E. M.] Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. [Riso, V.] SUNY Buffalo, 12 Capen Hall, Buffalo, NY 14260 USA. RP Pace, DC (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM pacedc@fusion.gat.com FU US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility [DE-FC02-04ER54698, DE-AC05-06OR23100, DE-FG02-07ER54912]; U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program FX The authors would like to thank Vasily Kiptily, Rita Costa Pereira, and Ana Fernandes for valuable discussions and assistance in implementing the pulse height analysis methods; and Paul Schotanus and his colleagues at SCIONIX for their rapid support throughout the commissioning of the GRI. The GRI was designed and fabricated under General Atomics Internal Research and Development support. Testing of the camera on DIII-D was supported in part by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award Nos. DE-FC02-04ER54698, DE-AC05-06OR23100, and DE-FG02-07ER54912. The participation of V. Riso was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program. DIII-D data shown in this paper can be obtained by following the links at https://fusion.gat.com/global/D3D_DMP. NR 15 TC 1 Z9 1 U1 4 U2 4 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2016 VL 87 IS 4 AR 043507 DI 10.1063/1.4945566 PG 7 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DL7TH UT WOS:000375842500030 PM 27131674 ER PT J AU Simpson, R Danly, C Glebov, VY Hurlbut, C Merrill, FE Volegov, PL Wilde, C AF Simpson, R. Danly, C. Glebov, V. Yu. Hurlbut, C. Merrill, F. E. Volegov, P. L. Wilde, C. TI Solid polystyrene and deuterated polystyrene light output response to fast neutrons SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented. Published by AIP Publishing. C1 [Simpson, R.; Danly, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Glebov, V. Yu.] Univ Rochester, Laser Energet Lab, 250 E River Rd, Rochester, NY 14623 USA. [Hurlbut, C.] Eljen Technol, Sweetwater, TX 79556 USA. RP Simpson, R (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM raspberry@lanl.gov FU U.S. Department of Energy [10] FX Additional credit goes to the dedicated staff and technicians of the LLE OMEGA facility and WNR facility, whose hard work and operational expertise provided the data that are shown here. This work has been performed under the auspices of the U.S. Department of Energy for NNSA Campaign 10. NR 8 TC 1 Z9 1 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2016 VL 87 IS 4 AR 043513 DI 10.1063/1.4947515 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DL7TH UT WOS:000375842500036 PM 27131680 ER PT J AU Sopori, B Devayajanam, S Basnyat, P AF Sopori, B. Devayajanam, S. Basnyat, P. TI A method for determining average damage depth of sawn crystalline silicon wafers SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB The depth of surface damage (or simply, damage) in crystalline silicon wafers, caused by wire sawing of ingots, is determined by performing a series of minority carrier lifetime (MCLT) measurements. Samples are sequentially etched to remove thin layers from each surface and MCLT is measured after each etch step. The thickness-removed (delta t) at which the lifetime reaches a peak value corresponds to the damage depth. This technique also allows the damage to be quantified in terms of effective surface recombination velocity (S-eff). To accomplish this, the MCLT data are converted into an S-eff vs delta t plot, which represents a quantitative distribution of the degree of damage within the surface layer. We describe a wafer preparation procedure to attain reproducible etching and MCLT measurement results. We also describe important characteristics of an etchant used for controllably removing thin layers from the wafer surfaces. Some typical results showing changes in the MCLT vs delta t plots for different cutting parameters are given. (C) 2016 AIP Publishing LLC. C1 [Sopori, B.; Devayajanam, S.; Basnyat, P.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Devayajanam, S.; Basnyat, P.] New Jersey Inst Technol, Newark, NJ 07102 USA. RP Sopori, B (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM bhushan.sopori@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory, Golden, CO, USA FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory, Golden, CO, USA. NR 16 TC 1 Z9 1 U1 3 U2 3 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2016 VL 87 IS 4 AR 045104 DI 10.1063/1.4944792 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DL7TH UT WOS:000375842500060 PM 27131704 ER PT J AU Tian, Y Reijnders, AA Osterhoudt, GB Valmianski, I Ramirez, JG Urban, C Zhong, RD Schneeloch, J Gu, GD Henslee, I Burch, KS AF Tian, Yao Reijnders, Anjan A. Osterhoudt, Gavin B. Valmianski, Ilya Ramirez, J. G. Urban, Christian Zhong, Ruidan Schneeloch, John Gu, Genda Henslee, Isaac Burch, Kenneth S. TI Low vibration high numerical aperture automated variable temperature Raman microscope SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID METAL-INSULATOR-TRANSITION; SPECTROSCOPY; SCATTERING; SILICON; SPECTRA; BI2SE3; FILMS; CRYOMICROSCOPY; PHONONS; BI2TE3 AB Raman micro-spectroscopy is well suited for studying a variety of properties and has been applied to a wide range of areas. Combined with tuneable temperature, Raman spectra can offer even more insights into the properties of materials. However, previous designs of variable temperature Raman microscopes have made it extremely challenging to measure samples with low signal levels due to thermal and positional instabilities as well as low collection efficiencies. Thus contemporary Raman microscope has found limited applicability to probing the subtle physics involved in phase transitions and hysteresis. This paper describes a new design of a closed-cycle, Raman microscope with full polarization rotation. High collection efficiency, thermal stability, and mechanical stability are ensured by both deliberate optical, cryogenic, and mechanical design. Measurements on two samples, Bi2Se3 and V2O3, which are challenging due to low thermal conductivities, low signal levels, and/or hysteretic effects, are measured with previously undemonstrated temperature resolution. (C) 2016 AIP Publishing LLC. C1 [Tian, Yao] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Tian, Yao] Univ Toronto, Inst Opt Sci, 60 St George St, Toronto, ON M5S 1A7, Canada. [Reijnders, Anjan A.; Henslee, Isaac] Montana Instruments, 151 Evergreen Dr, Bozeman, MT 59715 USA. [Osterhoudt, Gavin B.; Burch, Kenneth S.] Boston Coll, Dept Phys, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA. [Valmianski, Ilya; Ramirez, J. G.; Urban, Christian] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Valmianski, Ilya; Ramirez, J. G.; Urban, Christian] Univ Calif San Diego, Ctr Adv Nanosci, La Jolla, CA 92093 USA. [Zhong, Ruidan; Schneeloch, John; Gu, Genda] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Ramirez, J. G.] Univ Los Andes, Dept Phys, Bogota 111711, Colombia. RP Burch, KS (reprint author), Boston Coll, Dept Phys, 140 Commonwealth Ave, Chestnut Hill, MA 02467 USA. EM ks.burch@bc.edu RI Zhong, Ruidan/D-5296-2013; OI Zhong, Ruidan/0000-0003-1652-9454; Ramirez, Juan Gabriel/0000-0001-8546-6966 FU NSERC; CFI; ORF; National Science Foundation [DMR-1410846]; AFOSR [FA9550-12-1-0381]; National Security Science and Engineering Faculty Fellowship (NSSEFF); [DE-SC00112704] FX We would like to thank Kerry Neal at Montana Instruments, Inc., for technical help and insightful discussions. Work at the University of Toronto was supported by NSERC, CFI, and ORF. K.S.B. acknowledges support from the National Science Foundation (Grant No. DMR-1410846). Work performed at Brookhaven was funded through Contract No. DE-SC00112704. V2O3 thin films' fabrication and characterization in Ivan K. Schullers lab at UCSD were supported by the AFOSR Grant No. FA9550-12-1-0381. I.K.S. thanks the U.S. Department of Defense for support from a National Security Science and Engineering Faculty Fellowship (NSSEFF). NR 57 TC 4 Z9 4 U1 5 U2 14 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD APR PY 2016 VL 87 IS 4 AR 043105 DI 10.1063/1.4944559 PG 10 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA DL7TH UT WOS:000375842500008 PM 27131652 ER PT J AU Chang, WB Fang, HY Liu, J Evans, CM Russ, B Popere, BC Patel, SN Chabinyc, ML Segalman, RA AF Chang, William B. Fang, Haiyu Liu, Jun Evans, Christopher M. Russ, Boris Popere, Bhooshan C. Patel, Shrayesh N. Chabinyc, Michael L. Segalman, Rachel A. TI Electrochemical Effects in Thermoelectric Polymers SO ACS MACRO LETTERS LA English DT Article ID BISMUTH-ANTIMONY TELLURIDE; PSS THIN-FILMS; ORGANIC SEMICONDUCTORS; PROTON CONDUCTIVITY; POWER FACTORS; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); TEMPERATURE; PERFORMANCE; COMPOSITES; DEPENDENCE AB Conductive polymers such as PEDOT:PSS hold great promise as flexible thermoelectric devices. The thermoelectric power factor of PEDOT:PSS is small relative to inorganic materials because the Seebeck coefficient is small. Ion conducting materials have previously been demonstrated to have very large Seebeck coefficients, and a major advantage of polymers over inorganics is the high room temperature ionic conductivity. Notably, PEDOT:PSS demonstrates a significant but short-term increase in Seebeck coefficient which is attributed to a large ionic Seebeck contribution. By controlling whether electrochemistry occurs at the PEDOT:PSS/electrode interface, the duration of the ionic Seebeck enhancement can be controlled, and a material can be designed with long-lived ionic Seebeck enhancements. C1 [Chang, William B.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Fang, Haiyu; Evans, Christopher M.; Popere, Bhooshan C.; Segalman, Rachel A.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Fang, Haiyu; Evans, Christopher M.; Popere, Bhooshan C.; Patel, Shrayesh N.; Chabinyc, Michael L.; Segalman, Rachel A.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Liu, Jun] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Russ, Boris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Segalman, RA (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA.; Segalman, RA (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. EM segalman@engineering.ucsb.edu RI Fang, Haiyu/C-4545-2015 OI Fang, Haiyu/0000-0002-4224-0235 FU AFOSR MURI [FA9550-12-1-0002]; MRSEC Program of the National Science Foundation [DMR 1121053] FX We would like to thank Prof. David Cahill at University of Illinois Urbana Champaign for helpful discussion and TDTR resources. This work was supported by AFOSR MURI FA9550-12-1-0002. CME and BCP were supported by the MRSEC Program of the National Science Foundation under Award No. DMR 1121053. NR 38 TC 7 Z9 7 U1 18 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD APR PY 2016 VL 5 IS 4 BP 455 EP 459 DI 10.1021/acsmacrolett.6b00054 PG 5 WC Polymer Science SC Polymer Science GA DK2AJ UT WOS:000374716700007 ER PT J AU Jouault, N Crawford, MK Chi, CZ Smalley, RJ Wood, B Jestin, J Melnichenko, YB He, LL Guise, WE Kumar, SK AF Jouault, Nicolas Crawford, Michael K. Chi, Changzai Smalley, Robert J. Wood, Barbara Jestin, Jacques Melnichenko, Yuri B. He, Lilin Guise, William E. Kumar, Sanat K. TI Polymer Chain Behavior in Polymer Nanocomposites with Attractive Interactions SO ACS MACRO LETTERS LA English DT Article ID ANGLE NEUTRON-SCATTERING; POLY(METHYL METHACRYLATE); MODEL NANOCOMPOSITES; FILLER STRUCTURE; X-RAY; CONFORMATION; TEMPERATURE; DISPERSION; THICKNESS; MIXTURES AB Chain behavior has been determined in polymer nanocomposites (PNCs) comprised of well-dispersed 12 nm diameter silica nanoparticles (NPs) in poly(methyl methacrylate) (PMMA) matrices by Small-Angle Neutron Scattering (SANS) measurements under the Zero Average Contrast (ZAC) condition. In particular, we directly characterize the bound polymer layer surrounding the NPs, revealing the bound layer profile. The SANS spectra in the high-q region also show no significant change in the bulk polymer radius of gyration on the addition of the NPs. We thus suggest that the bulk polymer conformation in PNCs should generally be determined using the high q region of SANS data. C1 [Jouault, Nicolas] Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, Case 51,4 Pl Jussieu, F-75005 Paris, France. [Jouault, Nicolas; Kumar, Sanat K.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Crawford, Michael K.; Chi, Changzai; Smalley, Robert J.; Wood, Barbara; Guise, William E.] DuPont Cent Res & Dev, E400-5424, Wilmington, DE 19803 USA. [Jestin, Jacques] CEA Saclay, LLB, F-91191 Gif Sur Yvette, France. [Melnichenko, Yuri B.; He, Lilin] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Guise, William E.] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA. RP Jouault, N (reprint author), Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, Case 51,4 Pl Jussieu, F-75005 Paris, France.; Jouault, N; Kumar, SK (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA.; Crawford, MK (reprint author), DuPont Cent Res & Dev, E400-5424, Wilmington, DE 19803 USA. EM nicolas.jouault@upmc.fr; mkcrawford987@gmail.com; sk2794@columbia.edu OI He, Lilin/0000-0002-9560-8101 FU National Science Foundation [DMR-1408323]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Northwestern University; E.I. DuPont de Nemours Co.; Dow Chemical Company; DOE Office of Science [DE-AC02-06CH11357] FX N.J. and S.K.K. acknowledge financial support from National Science Foundation (DMR-1408323). A portion of this research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Portions of this work were performed at the DuPont Northwestern-Dow Collaborative Access Team (DND-CAT), located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by Northwestern University, E.I. DuPont de Nemours & Co., and The Dow Chemical Company. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. NR 29 TC 5 Z9 5 U1 23 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-1653 J9 ACS MACRO LETT JI ACS Macro Lett. PD APR PY 2016 VL 5 IS 4 BP 523 EP 527 DI 10.1021/acsmacrolett.6b00164 PG 5 WC Polymer Science SC Polymer Science GA DK2AJ UT WOS:000374716700020 ER PT J AU Palumbiny, CM Schlipf, J Hexemer, A Wang, C Muller-Buschbaum, P AF Palumbiny, Claudia M. Schlipf, Johannes Hexemer, Alexander Wang, Cheng Mueller-Buschbaum, Peter TI The Morphological Power of Soap: How Surfactants Lower the Sheet Resistance of PEDOT:PSS by Strong Impact on Inner Film Structure and Molecular Interface Orientation SO ADVANCED ELECTRONIC MATERIALS LA English DT Article DE GISAXS; interface orientation; morphology; PEDOT:PSS conductivity; P-SoXS; Zonyl (fluoro)surfactant ID X-RAY-SCATTERING; POLYMER SOLAR-CELLS; WORK FUNCTION; PEDOT/PSS FILMS; THIN-FILMS; ELECTRODES; CONDUCTIVITY; LAYERS; PHOTOVOLTAICS; MECHANISM AB In the rapid development of organic electronics, there is a strong need for highly conductive and transparent electrode (TE) materials to act as charge transport layers. In this context, poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) is a highly promising candidate, because it can act directly as TE. This makes the use of brittle, rare, and expensive indium tin oxide electrodes dispensable. Modification of the inner film morphology, e.g., by solvent additives can dramatically reduce the sheet resistance of PEDOT:PSS. In this work, it is investigated how the (fluoro)surfactant Zonyl and the co-solvent ethylene glycol influence the electrical and optical properties of the film, namely, the sheet resistance, the transmission, and the figure of merit for TEs. The electronic characteristics are then related to the morphological changes investigated with grazing incidence small angle X-ray scattering (GISAXS) and polarized resonant soft X-ray scattering (P-SoXS). Using GISAXS, structure evolutions are related to sheet resistances and device characteristics in organic solar cells. Further, the influence of (fluoro)surfactant on the phase separation and relative molecular orientation at polymer interfaces is investigated utilizing P-SoXS. Transparent PEDOT:PSS films with low sheet resistance are essential for market introduction and mark the next milestone for the success of future organic electronic materials. C1 [Palumbiny, Claudia M.; Schlipf, Johannes; Mueller-Buschbaum, Peter] Tech Univ Munich, Dept Phys, Lehrstuhl Funkt Mat, James Franck Str 1, D-85748 Garching, Germany. [Hexemer, Alexander; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Muller-Buschbaum, P (reprint author), Tech Univ Munich, Dept Phys, Lehrstuhl Funkt Mat, James Franck Str 1, D-85748 Garching, Germany. EM muellerb@ph.tum.de RI Wang, Cheng/A-9815-2014; Muller-Buschbaum, Peter/C-3397-2017; OI Muller-Buschbaum, Peter/0000-0002-9566-6088; Schlipf, Johannes/0000-0001-8692-6389 FU EuroTech Universities; International Graduate School of Science and Engineering (IGSSE), TUM; Nanosystems Initiative Munich (NIM); International Doctorate Program in NanoBioTechnology (IDK-NBT)-Elite Network of Bavaria; Center for NanoScience (CeNS); U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the GreenTech Initiative-Interface Science for Photovoltaics (ISPV) of the EuroTech Universities together with the International Graduate School of Science and Engineering (IGSSE), TUM, and by the Nanosystems Initiative Munich (NIM). C.M.P. thanks the International Doctorate Program in NanoBioTechnology (IDK-NBT)-Elite Network of Bavaria for a doctoral fellowship and the Center for NanoScience (CeNS) for support. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 of the Advanced Light Source which is supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 1 Z9 1 U1 6 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2199-160X J9 ADV ELECTRON MATER JI Adv. Electron. Mater. PD APR PY 2016 VL 2 IS 4 AR 1500377 DI 10.1002/aelm.201500377 PG 9 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DJ6PQ UT WOS:000374335800015 ER PT J AU Dong, ZX Zhang, RB Ji, DS Chernova, NA Karki, K Sallis, S Piper, L Whittingham, MS AF Dong, Zhixin Zhang, Ruibo Ji, Dongsheng Chernova, Natasha A. Karki, Khim Sallis, Shawn Piper, Louis Whittingham, M. Stanley TI The Anode Challenge for Lithium-Ion Batteries: A Mechanochemically Synthesized Sn-Fe-C Composite Anode Surpasses Graphitic Carbon SO ADVANCED SCIENCE LA English DT Article DE anode; high energy ball mill; lithium-ion battery; Sn2Fe; volumetric capacity ID ALLOYED SN-FE(-C) POWDERS; ELECTROCHEMICAL PERFORMANCE; IN-SITU; LI; TIN; ELECTRODE; NANOMATERIALS; NANOSPHERES; STORAGE; SYSTEM AB Carbon-based anodes are the key limiting factor in increasing the volumetric capacity of lithium-ion batteries. Tin-based composites are one alternative approach. Nanosized Sn-Fe-C anode materials are mechanochemically synthesized by reducing SnO with Ti in the presence of carbon. The optimum synthesis conditions are found to be 1:0.25:10 for initial ratio of SnO, Ti, and graphite with a total grinding time of 8 h. This optimized composite shows excellent extended cycling at the C/10 rate, delivering a first charge capacity as high as 740 mAh g(-1) and 60% of which still remained after 170 cycles. The calculated volumetric capacity significantly exceeds that of carbon. It also exhibits excellent rate capability, delivering volumetric capacity higher than 1.6 Ah cc(-1) over 140 cycles at the 1 C rate. C1 [Dong, Zhixin; Zhang, Ruibo; Chernova, Natasha A.; Karki, Khim; Sallis, Shawn; Piper, Louis; Whittingham, M. Stanley] SUNY Binghamton, Mat Sci & Engn, Binghamton, NY 13902 USA. [Ji, Dongsheng; Whittingham, M. Stanley] SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. [Karki, Khim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Whittingham, MS (reprint author), SUNY Binghamton, Mat Sci & Engn, Binghamton, NY 13902 USA.; Whittingham, MS (reprint author), SUNY Binghamton, Dept Chem, Binghamton, NY 13902 USA. EM stanwhit@binghamton.edu RI Piper, Louis/C-2960-2011 OI Piper, Louis/0000-0002-3421-3210 FU DOE-EERE [DE-EE0006852]; U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory [DE-SC0012704]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research was supported by DOE-EERE under Award No. DE-EE0006852. Transmission electron microscopy (TEM) characterization was performed at the Center for Functional Nanomaterials, which is an U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 40 TC 1 Z9 1 U1 7 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2198-3844 J9 ADV SCI JI Adv. Sci. PD APR PY 2016 VL 3 IS 4 AR 1500229 DI 10.1002/advs.201500229 PG 8 WC Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DJ9UP UT WOS:000374558800005 PM 27812462 ER PT J AU Liu, YH Tornos, J te Velthuis, SGE Freeland, JW Zhou, H Steadman, P Bencok, P Leon, C Santamaria, J AF Liu, Yaohua Tornos, J. te Velthuis, S. G. E. Freeland, J. W. Zhou, H. Steadman, P. Bencok, P. Leon, C. Santamaria, J. TI Induced Ti magnetization at La0.7Sr0.3MnO3 and BaTiO3 interfaces SO APL MATERIALS LA English DT Article ID OXIDE HETEROSTRUCTURES; TUNNEL-JUNCTIONS AB In artificial multiferroics hybrids consisting of ferromagnetic La0.7Sr0.3MnO3 (LSMO) and ferroelectric BaTiO3 epitaxial layers, net Ti moments are found from polarized resonant soft x-ray reflectivity and absorption. The Ti dichroic reflectivity follows the Mn signal during the magnetization reversal, indicating exchange coupling between the Ti and Mn ions. However, the Ti dichroic reflectivity shows stronger temperature dependence than the Mn dichroic signal. Besides a reduced ferromagnetic exchange coupling in the interfacial LSMO layer, this may also be attributed to a weak Ti-Mn exchange coupling that is insufficient to overcome the thermal energy at elevated temperatures. (C) 2016 Author(s). C1 [Liu, Yaohua] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Liu, Yaohua; te Velthuis, S. G. E.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Tornos, J.; Leon, C.; Santamaria, J.] Univ Complutense Madrid, Inst Magnetismo Aplicado, GFMC, E-28040 Madrid, Spain. [Freeland, J. W.; Zhou, H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Steadman, P.; Bencok, P.] Div Sci, Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Liu, YH (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA.; Liu, YH (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM liuyh@ornl.gov RI Liu, Yaohua/B-2529-2009; te Velthuis, Suzanne/I-6735-2013; Santamaria, Jacobo/N-8783-2016; Leon, Carlos/A-5587-2008; Chapon, Laurent/A-1653-2011 OI Liu, Yaohua/0000-0002-5867-5065; te Velthuis, Suzanne/0000-0002-1023-8384; Santamaria, Jacobo/0000-0003-4594-2686; Leon, Carlos/0000-0002-3262-1843; FU Division of Scientific User Facilities of the Office of Basic Energy Sciences (BES), US Department of Energy (DOE); U.S. DOE, Office of Science, BES, Materials Sciences and Engineering Division; Spanish MICINN [MAT2014-52405-C02-01, 2010-CSD2009-00013]; CAM [S2014/MAT-PHAMA II]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357] FX We thank J. Pearson for assistance with SQUID magnetometry study. Work at ORNL is supported by the Division of Scientific User Facilities of the Office of Basic Energy Sciences (BES), US Department of Energy (DOE). Work at MSD, ANL was supported by the U.S. DOE, Office of Science, BES, Materials Sciences and Engineering Division. Research at UCM was supported by Spanish MICINN through Grant Nos. MAT2014-52405-C02-01 and Consolider Ingenio 2010-CSD2009-00013 (Imagine), by CAM through Grant No. S2014/MAT-PHAMA II. This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We also thank Diamond Light Source for access to beamline I10. NR 33 TC 0 Z9 0 U1 8 U2 23 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 2166-532X J9 APL MATER JI APL Mater. PD APR PY 2016 VL 4 IS 4 AR 046105 DI 10.1063/1.4946756 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA DL7UR UT WOS:000375846100008 ER PT J AU Yoo, J Prikhodko, V Parks, JE Perfetto, A Geckler, S Partridge, WP AF Yoo, Jihyung Prikhodko, Vitaly Parks, James E. Perfetto, Anthony Geckler, Sam Partridge, William P. TI High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy SO APPLIED SPECTROSCOPY LA English DT Article DE Exhaust gas recirculation (EGR); Carbon dioxide (CO2); Combustion uniformity; Tunable diode laser absorption spectroscopy (TDLAS) ID TUNABLE DIODE-LASER; DIESEL-ENGINE; TEMPERATURE AB The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 mu m. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. C1 [Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Partridge, William P.] Natl Transportat Res Ctr, Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. [Perfetto, Anthony; Geckler, Sam] Cummins Inc, Cummins Tech Ctr, Columbus, IN USA. RP Partridge, WP (reprint author), Natl Transportat Res Ctr, Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, 2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM partridgewp@ornl.gov FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, with Gurpreet Singh, Ken Howden, and Leo Breton as the Program Managers. NR 30 TC 1 Z9 1 U1 4 U2 10 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0003-7028 EI 1943-3530 J9 APPL SPECTROSC JI Appl. Spectrosc. PD APR PY 2016 VL 70 IS 4 BP 572 EP 584 DI 10.1177/0003702816636802 PG 13 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA DK2FH UT WOS:000374729500001 PM 27091946 ER PT J AU DeBenedictis, EP AF DeBenedictis, Erik P. TI The Boolean Logic Tax SO COMPUTER LA English DT Article AB Moore's law relies on device size reduction for progress, but an energy tax due to Boolean logic properties could block this progress. There are alternatives. C1 [DeBenedictis, Erik P.] Sandia Natl Labs, Livermore, CA 94550 USA. RP DeBenedictis, EP (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM epdeben@sandia.gov NR 6 TC 1 Z9 1 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD APR PY 2016 VL 49 IS 4 BP 79 EP 82 PG 4 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA DK5LQ UT WOS:000374961800013 ER PT J AU Liu, DG Hu, RB Palla, KJ Tuskan, GA Yang, XH AF Liu, Degao Hu, Rongbin Palla, Kaitlin J. Tuskan, Gerald A. Yang, Xiaohan TI Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research SO CURRENT OPINION IN PLANT BIOLOGY LA English DT Review ID TRANSCRIPTIONAL REGULATION; AGROBACTERIUM-TUMEFACIENS; TARGETED MUTAGENESIS; CRISPR-CAS9 SYSTEM; TRANSGENIC PLANTS; GENE-EXPRESSION; TRAIT STACKING; HUMAN-CELLS; RNA; TRANSFORMATION AB Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. This article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation of gene expression, and identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort. C1 [Liu, Degao; Hu, Rongbin; Palla, Kaitlin J.; Tuskan, Gerald A.; Yang, Xiaohan] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Yang, XH (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM yangx@ornl.gov RI Liu, Degao/L-3682-2016; Tuskan, Gerald/A-6225-2011; HU, RONGBIN/B-2225-2017; Yang, Xiaohan/A-6975-2011; OI Liu, Degao/0000-0002-0090-9455; Tuskan, Gerald/0000-0003-0106-1289; Yang, Xiaohan/0000-0001-5207-4210; HU, RONGBIN/0000-0001-5921-6891 FU Department of Energy (DOE), Office of Science, Genomic Science Program [DE-SC0008834]; US DOE [DE-AC05-00OR22725] FX This research is supported by the Department of Energy (DOE), Office of Science, Genomic Science Program under Award Number DE-SC0008834. The authors would like to thank Lee E. Gunter for critical review and comments on the manuscript. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US DOE under Contract Number DE-AC05-00OR22725. NR 73 TC 11 Z9 11 U1 29 U2 74 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1369-5266 EI 1879-0356 J9 CURR OPIN PLANT BIOL JI Curr. Opin. Plant Biol. PD APR PY 2016 VL 30 BP 70 EP 77 DI 10.1016/j.pbi.2016.01.007 PG 8 WC Plant Sciences SC Plant Sciences GA DL7KH UT WOS:000375819100011 PM 26896588 ER PT J AU Gentine, P Guerin, M Uriarte, M McDowell, NG Pockman, WT AF Gentine, Pierre Guerin, Marceau Uriarte, Maria McDowell, Nate G. Pockman, Willam T. TI An allometry-based model of the survival strategies of hydraulic failure and carbon starvation SO ECOHYDROLOGY LA English DT Article DE cavitation; embolism; carbon starvation; physical model; allometry; tree diameter; isohydric anoisohydric ID PINYON-JUNIPER WOODLAND; FOREST WATER-USE; STOMATAL CONTROL; TEMPERATURE SENSITIVITY; VEGETATION MORTALITY; EXPERIMENTAL DROUGHT; SOIL-MOISTURE; SAVANNA TREES; MURRAYS LAW; DIE-OFF AB A simplified soil-plant-atmosphere-continuum model of carbon starvation and hydraulic failure is developed and tested against observations from a drought-manipulation experiment in a woodland dominated by pinon pine (Pinus edulis) and juniper (Juniperus monosperma) in New Mexico. The number of model parameters is reduced using allometric relationships. The model can represent more isohydric (pinon) and more anisohydric (juniper) responses. Analysis of the parameter space suggests four main controls on hydraulic failure and carbon starvation: xylem vulnerability curve, root:shoot area ratio, rooting depth and water use efficiency. For pinon, an intermediate optimal (1.5-2 m(2) m(-2)) tree leaf area index reduces the risk of hydraulic failure. For both pinons and junipers, hydraulic failure was relatively insensitive to root:shoot ratio across a range of tree LAI. Higher root: shoot ratios however strongly decreased the time to carbon starvation. The hydraulic safety margin of pinons is strongly diminished by large diurnal variations in xylem/leaf water potential. Diurnal drops of water potential are mitigated by high maximum hydraulic conductivity, high root:shoot ratio and stomatal regulation (more isohydric). The safety margin of junipers is not very sensitive to diurnal drops in water potential so that there is little benefit in stomatal regulation (more anisohydric). Narrower tracheid diameter and a narrower distribution of tracheid diameters reduce the risk of hydraulic failure and carbon starvation by reducing diurnal xylem water potential drop. Simulated tree diameter-dependent mortality varies between these two species, with pinon mortality decreasing with increasing tree size, whereas juniper mortality increases with tree size. Juvenile pinons might thus be overimpacted by water stress. Copyright (C) 2015 John Wiley & Sons, Ltd. C1 [Gentine, Pierre] Columbia Univ, Earth Inst, 500 W 120th St,Off 842D, New York, NY 10027 USA. [Gentine, Pierre; Guerin, Marceau] Columbia Univ, Dept Earth & Environm Engn, 500 W 120th St,Off 842D, New York, NY 10027 USA. [Uriarte, Maria] Columbia Univ, Dept Ecol & Evolutionary Biol, New York, NY 10027 USA. [McDowell, Nate G.] Los Alamos Natl Lab, Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. [Pockman, Willam T.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Gentine, P (reprint author), Columbia Univ, Earth Inst, 500 W 120th St,Off 842D, New York, NY 10027 USA.; Gentine, P (reprint author), Columbia Univ, Dept Earth & Environm Engn, 500 W 120th St,Off 842D, New York, NY 10027 USA. EM pg2328@columbia.edu RI Pockman, William/D-4086-2014 OI Pockman, William/0000-0002-3286-0457 FU Office of Science, United States Department of Energy; National Science Foundation Long Term Ecological Research (LTER) program via the Sevilleta LTER FX The authors would like to thank Caroline Farrior for help with her model, Gabriel Katul, Paolo D'Odorico and Amilcare Porporato for discussions of our preliminary results. Collection of the experimental data used to test the model was supported by the Office of Science, United States Department of Energy and the National Science Foundation Long Term Ecological Research (LTER) program via the Sevilleta LTER. NR 79 TC 5 Z9 5 U1 11 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1936-0584 EI 1936-0592 J9 ECOHYDROLOGY JI Ecohydrology PD APR PY 2016 VL 9 IS 3 BP 529 EP 546 DI 10.1002/eco.1654 PG 18 WC Ecology; Environmental Sciences; Water Resources SC Environmental Sciences & Ecology; Water Resources GA DJ9OP UT WOS:000374543100012 ER PT J AU Satzer, P Svec, F Sekot, G Jungbauer, A AF Satzer, Peter Svec, Frantisek Sekot, Gerhard Jungbauer, Alois TI Protein adsorption onto nanoparticles induces conformational changes: Particle size dependency, kinetics, and mechanisms SO ENGINEERING IN LIFE SCIENCES LA English DT Article DE Adsorption; Conformational change; Curvature; Nanoparticles; Particle size ID SILICA NANOPARTICLES; IMMUNOLOGICAL-PROPERTIES; SECONDARY STRUCTURE; CORONA; NANOMATERIALS; CURVATURE; LYSOZYME; SURFACES; SPECTRA; COMPLEX AB The use of nanomaterials in bioapplications demands a detailed understanding of protein-nanoparticle interactions. Proteins can undergo conformational changes while adsorbing onto nanoparticles, but studies on the impact of particle size on conformational changes are scarce. We have shown that conformational changes happening upon adsorption of myoglobin and BSA are dependent on the size of the nanoparticle they are adsorbing to. Out of eight initially investigated model proteins, two (BSA and myoglobin) showed conformational changes, and in both cases this conformational change was dependent on the size of the nanoparticle. Nanoparticle sizes ranged from 30 to 1000nm and, in contrast to previous studies, we attempted to use a continuous progression of sizes in the range found in live viruses, which is an interesting size of nanoparticles for the potential use as drug delivery vehicles. Conformational changes were only visible for particles of 200nm and bigger. Using an optimized circular dichroism protocol allowed us to follow this conformational change with regard to the nanoparticle size and, thanks to the excellent temporal resolution also in time. We uncovered significant differences between the unfolding kinetics of myoglobin and BSA. In this study, we also evaluated the plausibility of commonly used explanations for the phenomenon of nanoparticle size-dependent conformational change. Currently proposed mechanisms are mostly based on studies done with relatively small particles, and fall short in explaining the behavior seen in our studies. C1 [Satzer, Peter; Jungbauer, Alois] Univ Nat Resources & Life Sci, Dept Biotechnol, Vienna, Austria. [Svec, Frantisek] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Sekot, Gerhard; Jungbauer, Alois] Austrian Ctr Ind Biotechnol, Muthgasse 18, A-1190 Vienna, Austria. RP Jungbauer, A (reprint author), Austrian Ctr Ind Biotechnol, Muthgasse 18, A-1190 Vienna, Austria. EM alois.jungbauer@boku.ac.at OI Jungbauer, Alois/0000-0001-8182-7728 FU Austrian Science Fund [FWFW1224]; Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy [DE-AC02-05CH11231]; ACIB; Federal Ministry of Economy, Family and Youth (BMWFJ); Federal Ministry of Traffic, Innovation and Technology (bmvit); Styrian Business Promotion Agency SFG; Standortagentur Tirol; ZIT-Technology Agency of the City of Vienna through the COMET-Funding Program FX This work was supported by Austrian Science Fund (FWFW1224-Doctoral Program on Biomolecular Technology of Proteins-BioToP). Some experimental and characterization work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division of the US Department of Energy, under Contract No.: DE-AC02-05CH11231. GS was financed by ACIB. ACIB is supported by the Federal Ministry of Economy, Family and Youth (BMWFJ), the Federal Ministry of Traffic, Innovation and Technology (bmvit), the Styrian Business Promotion Agency SFG, the Standortagentur Tirol and ZIT-Technology Agency of the City of Vienna through the COMET-Funding Program managed by the Austrian Research Promotion Agency FFG. We would like to thank Dr. Nico Lingg for his critical review of the manuscript. NR 37 TC 4 Z9 4 U1 10 U2 28 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1618-0240 EI 1618-2863 J9 ENG LIFE SCI JI Eng. Life Sci. PD APR PY 2016 VL 16 IS 3 BP 238 EP 246 DI 10.1002/elsc.201500059 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DJ8WC UT WOS:000374492900004 ER PT J AU Wharton, S Falk, M AF Wharton, Sonia Falk, Matthias TI Climate indices strongly influence old-growth forest carbon exchange SO ENVIRONMENTAL RESEARCH LETTERS LA English DT Article DE AmeriFlux; old-growth forest; eddy covariance; net ecosystem exchange; interannual variability; Pacific teleconnections ID PSEUDOTSUGA-TSUGA FOREST; DOUGLAS-FIR FOREST; PACIFIC-NORTHWEST; ECOSYSTEM EXCHANGE; EL-NINO; RESPIRATION; VARIABILITY; HEIGHT; FLUXES; WATER AB We present a decade and a half (1998-2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Nino/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F-NEE) at Wind River AmeriFlux was -32 +/- 84 g Cm-2 yr(-1) indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g Cm-2 yr(-1)) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Nina years (mean F-NEE = -90 g Cm-2 yr(-1)) than during El Nino when the stand turns carbon neutral or into a small net carbon source (mean F-NEE = +17 g Cm-2 yr(-1)). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F-ANPP) is associated with cool phases of both the PNA and PDO. These measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought. C1 [Wharton, Sonia] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave,L-103, Livermore, CA 94550 USA. [Falk, Matthias] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. RP Wharton, S (reprint author), Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, 7000 East Ave,L-103, Livermore, CA 94550 USA. EM wharton4@llnl.gov FU University of Washington; USDA Forest Service/PNW Station; US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344] FX SW dedicates this manuscript to Jacqueline Wharton (1949-2015), whose encouragement of my curiosity about the natural world will not be forgotten. The authors would like to thank the staff at the Wind River Field Station for their hospitality and assistance. Special thanks go to our field technician Matt Schroeder who calibrated and maintained equipment through even the wettest of PNW winters. Gratitude goes to the former Principal Investigators Dr Kyaw Tha Paw U at the University of California, Davis and Dr Ken Bible at the University of Washington, Seattle. The Wind River Field Station is operated under a joint sponsorship of the University of Washington and the USDA Forest Service/PNW Station and we acknowledge both for significant support. Lawrence Livermore is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. NR 44 TC 0 Z9 0 U1 10 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-9326 J9 ENVIRON RES LETT JI Environ. Res. Lett. PD APR PY 2016 VL 11 IS 4 AR 044016 DI 10.1088/1748-9326/11/4/044016 PG 11 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL6JZ UT WOS:000375746800020 ER PT J AU Zhao, S Hahn, EN Kad, B Remington, BA Bringa, EM Meyers, MA AF Zhao, S. Hahn, E. N. Kad, B. Remington, B. A. Bringa, E. M. Meyers, M. A. TI Shock compression of [001] single crystal silicon SO EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS LA English DT Article ID MOLECULAR-DYNAMICS; HIGH-PRESSURE; SIMULATION; ORDER; TRANSITION; BEHAVIOR; SHEAR AB Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression. C1 [Zhao, S.; Hahn, E. N.; Kad, B.; Meyers, M. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Remington, B. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bringa, E. M.] Univ Nacl Cuyo, RA-5500 Mendoza, Argentina. [Bringa, E. M.] Consejo Nacl Invest Cient & Tecn, RA-5500 Mendoza, Argentina. RP Meyers, MA (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM mameyers@eng.ucsd.edu RI Meyers, Marc/A-2970-2016; OI Meyers, Marc/0000-0003-1698-5396; Hahn, Eric/0000-0002-2305-0532 NR 31 TC 0 Z9 0 U1 10 U2 19 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1951-6355 EI 1951-6401 J9 EUR PHYS J-SPEC TOP JI Eur. Phys. J.-Spec. Top. PD APR PY 2016 VL 225 IS 2 BP 335 EP 341 DI 10.1140/epjst/e2016-02634-7 PG 7 WC Physics, Multidisciplinary SC Physics GA DK0DX UT WOS:000374583900010 ER PT J AU Ulsh, M Porter, JM Bittinat, DC Bender, G AF Ulsh, M. Porter, J. M. Bittinat, D. C. Bender, G. TI Defect Detection in Fuel Cell Gas Diffusion Electrodes Using Infrared Thermography SO FUEL CELLS LA English DT Article DE Defect Detection; Fuel Cell; Gas Diffusion Electrode; Manufacturing; PEMFC; Thermography ID LAYER-THICKNESS; IR THERMOGRAPHY; RAPID DETECTION; MEMBRANE; PLATINUM; HYDROGEN; DEGRADATION; TEMPERATURE; PERFORMANCE; COMBUSTION AB Polymer electrolyte membrane fuel cells are energy conversion devices that offer high power densities and high efficiencies for mobile and other applications. Successful introduction into the marketplace requires addressing cost barriers such as production volumes and platinum loading. For cost reduction, it is vital to minimize waste and maximize quality during the manufacturing of platinum-containing electrodes, including gas diffusion electrodes (GDEs). In this work, we report on developing a quality control diagnostic for GDEs, involving creating an ex situ exothermic reaction on the electrode surface and using infrared thermography to measure the resulting temperature profile. Experiments with a moving GDE containing created defects were conducted to demonstrate the applicability of the diagnostic for real-time web-line inspection. C1 [Ulsh, M.; Bittinat, D. C.; Bender, G.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Porter, J. M.; Bittinat, D. C.] Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. RP Ulsh, M (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM michael.ulsh@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The funding was provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office. We would also like to thank Dr. Canan Karakaya for helpful discussions on hydrogen oxidation over a platinum catalyst. NR 54 TC 1 Z9 1 U1 3 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1615-6846 EI 1615-6854 J9 FUEL CELLS JI Fuel Cells PD APR PY 2016 VL 16 IS 2 BP 170 EP 178 DI 10.1002/fuce.201500137 PG 9 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA DK2HT UT WOS:000374736000004 ER PT J AU Castro, M Lythe, G Molina-Paris, C Ribeiro, RM AF Castro, Mario Lythe, Grant Molina-Paris, Carmen Ribeiro, Ruy M. TI Mathematics in modern immunology SO INTERFACE FOCUS LA English DT Review DE mathematical modelling; immunology; T cell; two-photon microscopy; T-cell receptor; diversity ID CD8(+) T-CELLS; RECENT THYMIC EMIGRANTS; SIMIAN IMMUNODEFICIENCY VIRUS; RECEPTOR EXCISION CIRCLES; HIV-1 INFECTION; LYMPH-NODES; DENDRITIC CELLS; IMMUNE-SYSTEM; TCR REPERTOIRE; 2-PHOTON MICROSCOPY AB Mathematical and statistical methods enable multidisciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. We collect a representative sample of studies in T-cell biology that illustrate the benefits of modelling-experimental collaborations and that have proven valuable or even groundbreaking. We conclude that it is possible to find excellent examples of synergy between mathematical modelling and experiment in immunology, which have brought significant insight that would not be available without these collaborations, but that much remains to be discovered. C1 [Castro, Mario] Univ Pontificia Comillas, E-28015 Madrid, Spain. [Lythe, Grant; Molina-Paris, Carmen] Univ Leeds, Dept Appl Math, Sch Math, Leeds LS2 9JT, W Yorkshire, England. [Ribeiro, Ruy M.] Los Alamos Natl Lab, Theoret Biol & Biophys, POB 1663, Los Alamos, NM 87545 USA. RP Molina-Paris, C (reprint author), Univ Leeds, Dept Appl Math, Sch Math, Leeds LS2 9JT, W Yorkshire, England. EM carmen@maths.leeds.ac.uk OI Lythe, Grant/0000-0001-7966-5571; Ribeiro, Ruy/0000-0002-3988-8241 FU BBSRC [BB/F003811/1, BB/G023395/1, FIS2013-47949-C2-2-P, PIRSES-GA-2012-317893]; National Institutes of Health [R01-AI104373] FX This work has been partially supported by grants BBSRC BB/F003811/1 (G.L., C.M.P.), BBSRC BB/G023395/1 (C.M.P.), FIS2013-47949-C2-2-P (M.C., G.L., C.M.P.), PIRSES-GA-2012-317893 (M.C., G.L., C.M.P.) and National Institutes of Health grant no. R01-AI104373 (R.M.R.). This work has been possible with travel support from the EU, via the FP7 IRSES Network INDOEUROPEAN-MATHDS: Mathematics for health and disease. NR 151 TC 1 Z9 1 U1 6 U2 15 PU ROYAL SOC PI LONDON PA 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND SN 2042-8898 EI 2042-8901 J9 INTERFACE FOCUS JI Interface Focus PD APR PY 2016 VL 6 IS 2 AR 20150093 DI 10.1098/rsfs.2015.0093 PG 14 WC Biology SC Life Sciences & Biomedicine - Other Topics GA DL1RY UT WOS:000375410900007 PM 27051512 ER PT J AU Weekley, RA Goodrich, RK Cornman, LB AF Weekley, R. Andrew Goodrich, R. Kent Cornman, Larry B. TI Aerosol Plume Detection Algorithm Based on Image Segmentation of Scanning Atmospheric Lidar Data SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID IMPROVED MOMENT ESTIMATION; DOPPLER SPECTRA; TIME AB An image-processing algorithm has been developed to identify aerosol plumes in scanning lidar backscatter data. The images in this case consist of lidar data in a polar coordinate system. Each full lidar scan is taken as a fixed image in time, and sequences of such scans are considered functions of time. The data are analyzed in both the original backscatter polar coordinate system and a lagged coordinate system. The lagged coordinate system is a scatterplot of two datasets, such as subregions taken from the same lidar scan (spatial delay), or two sequential scans in time (time delay). The lagged coordinate system processing allows for finding and classifying clusters of data. The classification step is important in determining which clusters are valid aerosol plumes and which are from artifacts such as noise, hard targets, or background fields. These cluster classification techniques have skill since both local and global properties are used. Furthermore, more information is available since both the original data and the lag data are used. Performance statistics are presented for a limited set of data processed by the algorithm, where results from the algorithm were compared to subjective truth data identified by a human. C1 [Weekley, R. Andrew] Natl Renewable Energy Lab, Golden, CO USA. [Goodrich, R. Kent] Univ Colorado, Natl Ctr Atmospher Res, Boulder, CO 80309 USA. [Goodrich, R. Kent] Univ Colorado, Dept Math, Boulder, CO 80309 USA. [Goodrich, R. Kent] Sci & Technol Atmospher Res LLC, Boulder, CO USA. [Cornman, Larry B.] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. RP Weekley, RA (reprint author), Strateg Energy Anal Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM andrew.weekley@nrel.gov FU National Center for Atmospheric Research; STAR LLC; National Renewable Energy Laboratory FX The authors acknowledge the funding provided by the National Center for Atmospheric Research and STAR LLC to conduct and publish this research. We acknowledge the support provided by the National Renewable Energy Laboratory to publish this work. We thank the reviewers for the many useful editorial suggestions. We also thank one of the reviewers for sharing technical information about the REAL. NR 25 TC 0 Z9 0 U1 1 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD APR PY 2016 VL 33 IS 4 BP 697 EP 712 DI 10.1175/JTECH-D-15-0125.1 PG 16 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA DL6FV UT WOS:000375736000006 ER PT J AU Freeland, JW van Veenendaal, M Chakhalian, J AF Freeland, John W. van Veenendaal, Michel Chakhalian, Jak TI Evolution of electronic structure across the rare-earth RNiO3 series SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA LA English DT Article DE Complex oxides; X-ray absorption spectroscopy; Nickelates; Metal to insulation transition ID METAL-INSULATOR-TRANSITION; X-RAY-ABSORPTION; PHOTOEMISSION-SPECTROSCOPY; NICKEL COMPOUNDS; BAND-GAP; PEROVSKITES; VALENCE; OXIDES; SPIN; NIO AB The perovksite rare-earth nickelates, RNiO3 (R = La center dot center dot center dot Lu), are a class of materials displaying a rich phase diagram of metallic and insulating phases associated with charge and magnetic order. Being in the charge transfer regime, Ni3+ in octahedral coordination displays a strong hybridization with oxygen to form 3d-2p mixed states, which results in a strong admixture of 3d(8)(L) under bar into 3d(7), where (L) under bar denotes a hole on the oxygen. To understand the nature of this strongly hybridized ground state, we present a detailed study of the Ni and O electronic structure using-high-resolution soft X-ray absorption spectroscopy (XAS). Through a comparison of the evolution of the XAS line-shape at Ni L- and O K-edges across the phase diagram, we explore the changes in the electronic signatures in connection with the insulating and metallic phases that support the idea of hybridization playing a fundamental role. (C) 2015 Elsevier B.V. All rights reserved. C1 [Freeland, John W.; van Veenendaal, Michel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [van Veenendaal, Michel] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Chakhalian, Jak] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. RP Freeland, JW (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM freeland@anl.gov RI Chakhalian, Jak/F-2274-2015 FU U.S. Department of Energy, Office of Science [DEAC02-06CH11357]; U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-03ER46097]; NIU's Institute for Nanoscience, Engineering, and Technology; Gordon and Betty Moore Foundation's EPiQS Initiative [GBMF4534]; DOD-ARO [0402-17291] FX This article is dedicated to D.D. Sarma whose discusssions, insight and invaluable comments concerning this data over the last several years have made this paper possible. The authors thank Bogdan Dabrowski for providing the high-quality RNiO3 samples. Work at the Advanced Photon Source, Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science under Grant No. DEAC02-06CH11357. MvV was supported by the U. S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-03ER46097 and NIU's Institute for Nanoscience, Engineering, and Technology. The work at the University of Arkansas is funded in part by the Gordon and Betty Moore Foundation's EPiQS Initiative through Grant GBMF4534 and by the DOD-ARO under Grant No. 0402-17291. NR 69 TC 4 Z9 4 U1 12 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0368-2048 EI 1873-2526 J9 J ELECTRON SPECTROSC JI J. Electron Spectrosc. Relat. Phenom. PD APR PY 2016 VL 208 SI SI BP 56 EP 62 DI 10.1016/j.elspec.2015.07.006 PG 7 WC Spectroscopy SC Spectroscopy GA DL6GY UT WOS:000375738900010 ER PT J AU Piper, DM Lee, Y Son, SB Evans, T Lin, F Nordlund, D Xiao, XC George, SM Lee, SH Ban, CM AF Piper, Daniela Molina Lee, Younghee Son, Seoung-Bum Evans, Tyler Lin, Feng Nordlund, Dennis Xiao, Xingcheng George, Steven M. Lee, Se-Hee Ban, Chunmei TI Cross-linked aluminum dioxybenzene coating for stabilization of silicon electrodes SO NANO ENERGY LA English DT Article DE Surface modification; Molecular layer deposition; Silicon; Lithium-ion batteries ID LITHIUM-ION BATTERIES; MOLECULAR LAYER DEPOSITION; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; CATHODE MATERIALS; CARBON-DIOXIDE; ALLOY ANODES; HYDROQUINONE; SPECTROSCOPY; CHALLENGES AB Progress toward a commercially viable silicon anode for lithium-ion batteries has been impeded by silicon's rapid capacity fade caused by large volumetric expansion and unstable solid electrolyte interphases. This study focuses on developing unique coating chemistries to stabilize the surface of silicon (Si) electrodes via molecular layer deposition (MLD), as well as to accommodate volume changes during electrochemical reactions. A new reaction precursor - an aromatic organic diol, hydroquinone - combined with trimethylaluminum, has led to a robust, elastic, conductive surface coating composed of aluminum dioxybenzene. We studied the chemical and physical properties of this surface coating using X-ray absorption spectroscopy, electrochemical impedance, and nanoindentation. The flexibility of the coating enables the accommodation of volumetric changes and maintenance of the mechanical integrity of the Si electrodes. By applying this robust and conductive trimethylaluminum-hydroquinone coating, we demonstrate a Si anode that is reversible and capable of high performance and high rate, achieving over 200 cycles with capacities of nearly 1500 mAh g(-1). This research elucidates the significance of surface modification for high-energy battery materials with large volume changes, and also provides a platform for a new design of electrode surface coatings, with the aim of achieving durable, high energy density lithium-ion batteries. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Piper, Daniela Molina; Evans, Tyler; George, Steven M.; Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [Lee, Younghee] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. [Son, Seoung-Bum; Ban, Chunmei] Natl Renewable Energy Lab, Ctr Chem & Nanosci, Golden, CO 80401 USA. [Lin, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Nordlund, Dennis] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Xiao, Xingcheng] Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA. RP Lee, SH (reprint author), Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA.; Ban, CM (reprint author), Natl Renewable Energy Lab, Ctr Chem & Nanosci, Golden, CO 80401 USA. EM sehee.lee@colorado.edu; chunmei.ban@nrel.gov RI Lee, Sehee/A-5989-2011; Son, Seoung-Bum/C-6783-2014 FU Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under the Batteries for Advanced Transportation Technologies (BATT) Program [DE-AC02-05CH11231, DE-AC-36-08GO28308]; U.S. Department of Energy under NREL [NFT-8-88527-01]; National Science Foundation (NSF) [DMR-1206462] FX The work at NREL was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231, Subcontract no. DE-AC-36-08GO28308 under the Batteries for Advanced Transportation Technologies (BATT) Program. The work at the University of Colorado at Boulder was funded by the U.S. Department of Energy under NREL subcontract number NFT-8-88527-01. The synthesis and materials characterization at CU Boulder were funded by a Grant from the National Science Foundation (NSF), DMR-1206462. The synchrotron X-ray portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. The authors would also like to acknowledge Dr. J.S. Lee and G. Kerr for technical support at SSRL Beam Line 8-2. NR 48 TC 2 Z9 2 U1 25 U2 72 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD APR PY 2016 VL 22 BP 202 EP 210 DI 10.1016/j.nanoen.2016.02.021 PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DK0TO UT WOS:000374625300021 ER PT J AU Pascoe, AR Yang, MJ Kopidakis, N Zhu, K Reese, MO Rumbles, G Fekete, M Duffy, NW Cheng, YB AF Pascoe, Alexander R. Yang, Mengjin Kopidakis, Nikos Zhu, Kai Reese, Matthew O. Rumbles, Garry Fekete, Monika Duffy, Noel W. Cheng, Yi-Bing TI Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics SO NANO ENERGY LA English DT Article DE Perovskite; Solar cells; Time-resolved microwave conductivity; Time-resolved photoluminescence ID LEAD HALIDE PEROVSKITE; FILM SOLAR-CELLS; SEPARATION EFFICIENCY; CARRIER MOBILITY; SINGLE-CRYSTALS; DIFFUSION; PERFORMANCE; DEPOSITION; LENGTHS; TIO2 AB Perovskite solar cells (PSCs) employing planar and mesoscopic architectures have both resulted in high efficiency devices. However, there is presently a limited understanding of the inherent advantages of both systems, particularly in terms of the charge transport and recombination dynamics. In the present study we characterize the relative benefits of the two most prominent CH3NH3PbI3 morphologies, primarily through time-resolved microwave conductivity (TRMC) and time-resolved photoluminescence (TRPL) measurements. The comparatively large perovskite grains, typical of planar assemblies, exhibited higher charge mobilities and slower trap mediated recombination compared to the mesoscopic architectures. These findings reveal the injurious influence of grain boundaries on both charge transport and recombination kinetics, and suggest an innate advantage of planar morphologies. However, through impedance spectroscopy (IS) measurements, mesoscopic architectures were found to limit the interfacial recombination at the transparent conductive oxide (TCO) substrate. The lessons learnt through the characterization measurements were subsequently utilized to produce an optimized cell morphology, resulting in a maximum conversion efficiency of 16%. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Pascoe, Alexander R.; Cheng, Yi-Bing] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia. [Yang, Mengjin; Kopidakis, Nikos; Zhu, Kai; Reese, Matthew O.; Rumbles, Garry] Natl Renewable Energy Lab, Denver W Pkwy, Golden, CO 80401 USA. [Fekete, Monika] Monash Univ, Dept Chem, Clayton, Vic 3800, Australia. [Duffy, Noel W.] CSIRO, Clayton, Vic 3169, Australia. RP Cheng, YB (reprint author), Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia.; Zhu, K; Rumbles, G (reprint author), Natl Renewable Energy Lab, Denver W Pkwy, Golden, CO 80401 USA. EM kai.zhu@nrel.gov; garry.rumbles@nrel.gov; yibing.cheng@monash.edu RI Duffy, Noel/G-5590-2010 OI Duffy, Noel/0000-0001-9390-8402 FU Australian Renewable Energy Agency (ARENA); Australian Centre for Advanced Photovoltaics (ACAP); U.S. Department of Energy [DE-AC36-08-GO28308] FX AP, MF and YBC acknowledge financial support from the Australian Renewable Energy Agency (ARENA) and the Australian Centre for Advanced Photovoltaics (ACAP). The authors acknowledge use of the facilities and the kind assistance of Manda Xiao at the Monash Centre for Electron Microscopy (MCEM). We are greatly appreciative of the efforts contributed by Ben Hibbs and Dr. Julia Braunger in the widefield fluorescence mapping. This work was performed in part at the Materials Characterization and Fabrication Platform (MCFP) at the University of Melbourne. The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy under Contract no. DE-AC36-08-GO28308. NK, KZ and GR acknowledge the support for the fp-TRMC experiments and some film preparation and impedance analysis by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 50 TC 8 Z9 9 U1 29 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD APR PY 2016 VL 22 BP 439 EP 452 DI 10.1016/j.nanoen.2016.02.031 PG 14 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DK0TO UT WOS:000374625300041 ER PT J AU Jang, S Yoon, J Ha, K Kim, MC Kim, DH Kim, SM Kang, SM Park, SJ Jung, HS Choi, M AF Jang, Segeun Yoon, Jungjin Ha, Kyungyeon Kim, Min-Cheol Kim, Dong Hoe Kim, Sang Moon Kang, Seong Min Park, Sei Jin Jung, Hyun Suk Choi, Mansoo TI Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells SO NANO ENERGY LA English DT Article DE Aerosol; 3-D nanostructure; PDMS; Perovskite; Light scattering; Charge collection ID ORGANOMETAL HALIDE PEROVSKITES; NANOPARTICLES; FILMS; RECOMBINATION; LITHOGRAPHY; ENHANCEMENT; DEPOSITION; TRANSPORT; AREA AB The capability of fabricating three dimensional (3-D) nanostructures with desired morphology is a key to realizing effective light-harvesting strategy in optical applications. In this work, we report a novel 3-D nanopatterning technique that combines ion-assisted aerosol lithography (IAAL) and soft lithography that serves as a facile method to fabricate 3-D nanostructures. Aerosol nanoparticles can be assembled into desired 3-D nanostructures via ion-induced electrostatic focusing and antenna effects from charged nanoparticle structures. Replication of the structures with a polymeric mold allows high throughput fabrication of 3-D nanostructures with various liquid-soluble materials. 3-D flower-patterned polydimethylsiloxane (PDMS) stamp was prepared using the reported technique and utilized for fabricating 3-D nanopatterned mesoporous TiO2 layer, which was employed as the electron transport layer in perovskite solar cells. By incorporating the 3-D nanostructures, absorbed photon-to-current efficiency of > 95% at 650 nm wavelength and overall power conversion efficiency of 15.96% were achieved. The enhancement can be attributed to an increase in light harvesting efficiency in a broad wavelength range from 400 to 800 nm and more efficient charge collection from enlarged interfacial area between TiO2 and perovskite layers. This hybrid nanopatterning technique has demonstrated to be an effective method to create textures that increase light harvesting and charge collection with 3-D nanostructures in solar cells. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Jang, Segeun; Yoon, Jungjin; Ha, Kyungyeon; Kim, Min-Cheol; Kim, Sang Moon; Kang, Seong Min; Park, Sei Jin; Choi, Mansoo] Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151742, South Korea. [Jang, Segeun; Yoon, Jungjin; Ha, Kyungyeon; Kim, Min-Cheol; Kim, Sang Moon; Kang, Seong Min; Park, Sei Jin; Choi, Mansoo] Seoul Natl Univ, Global Frontier Ctr Multiscale Energy Syst, Seoul 151744, South Korea. [Jung, Hyun Suk] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. [Kim, Dong Hoe] Natl Renewable Energy Lab, Chem & Mat Sci Ctr, Golden, CO 80401 USA. RP Choi, M (reprint author), Seoul Natl Univ, Dept Mech & Aerosp Engn, Seoul 151742, South Korea.; Jung, HS (reprint author), Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea. EM hsjung1@skku.edu; mchoi@snu.ac.kr RI Jung, Hyun Suk/H-3659-2015 FU Global Frontier R&D Program on Center for Multiscale Energy System - National Research Foundation under the Ministry of Science, ICT Future, Korea [2011-0031561, 2012M3A6A7054855] FX We thank Byeong Jo Kim for his insightful advice on the experimental methods. This work was supported by the Global Frontier R&D Program on Center for Multiscale Energy System funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (Grants nos. 2011-0031561 and 2012M3A6A7054855). NR 50 TC 6 Z9 6 U1 33 U2 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-2855 EI 2211-3282 J9 NANO ENERGY JI Nano Energy PD APR PY 2016 VL 22 BP 499 EP 506 PG 8 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DK0TO UT WOS:000374625300048 ER PT J AU Cao, Y Wang, Q Waugh, JA Reber, TJ Li, HX Zhou, XQ Parham, S Park, SR Plumb, NC Rotenberg, E Bostwick, A Denlinger, JD Qi, TF Hermele, MA Cao, G Dessau, DS AF Cao, Yue Wang, Qiang Waugh, Justin A. Reber, Theodore J. Li, Haoxiang Zhou, Xiaoqing Parham, Stephen Park, S-R Plumb, Nicholas C. Rotenberg, Eli Bostwick, Aaron Denlinger, Jonathan D. Qi, Tongfei Hermele, Michael A. Cao, Gang Dessau, Daniel S. TI Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4 SO NATURE COMMUNICATIONS LA English DT Article ID FERMI ARCS; PHASE; TEMPERATURE; PSEUDOGAP; STATE; BI2SR2CACU2O8+DELTA; SUPERCONDUCTIVITY; TRANSITIONS; DRIVEN AB The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed in doped cuprates-pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the material's proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation. C1 [Cao, Yue; Wang, Qiang; Waugh, Justin A.; Reber, Theodore J.; Li, Haoxiang; Zhou, Xiaoqing; Parham, Stephen; Park, S-R; Hermele, Michael A.; Dessau, Daniel S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Park, S-R] Incheon Natl Univ, Dept Phys, Inchon 22012, South Korea. [Plumb, Nicholas C.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. [Rotenberg, Eli; Bostwick, Aaron; Denlinger, Jonathan D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Qi, Tongfei; Cao, Gang] Univ Kentucky, Dept Phys & Astron, Ctr Adv Mat, Lexington, KY 40506 USA. [Cao, Yue; Reber, Theodore J.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Wang, Qiang] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Cao, Y; Dessau, DS (reprint author), Univ Colorado, Dept Phys, Boulder, CO 80309 USA.; Cao, Y (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM ycao@colorado.edu; Dessau@colorado.edu RI Plumb, Nicholas/B-8059-2013; Rotenberg, Eli/B-3700-2009; OI Plumb, Nicholas/0000-0002-2334-8494; Rotenberg, Eli/0000-0002-3979-8844; Cao, Yue/0000-0002-3989-158X FU U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-FG0203ER4606, DE-FG02-10ER46686]; NSF [DMR 1265162]; National Science Foundation [DMR-0537588]; University of Wisconsin-Madison; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Y.C. and D.S.D. acknowledge J.-X. Dai, K. McElroy, D. Reznik, X.-W. Zhang, A. Zunger, G. Arnold, D. Haskel, J.P. Clancy and Y.-J. Kim for insights and discussions. Y.C. also thanks Y.-D. Chuang, M. Bissen, M. Severson for their help in setting up the experiment. D.S.D. acknowledges support from the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # DE-FG0203ER4606. G.C. acknowledges support by NSF via grant DMR 1265162. M.A.H. was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # DE-FG02-10ER46686. The ARPES data were collected in part from the Synchrotron Radiation Center, University of Wisconsin-Madison, which was initially supported by the National Science Foundation under Award No. DMR-0537588, and later primarily funded by the University of Wisconsin-Madison with supplemental support from facility Users and the University of Wisconsin-Milwaukee. The ARPES data were also taken from the Advanced Light Source and the Swiss Light Source. The former is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 45 TC 8 Z9 8 U1 29 U2 55 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11367 DI 10.1038/ncomms11367 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DK0DQ UT WOS:000374583200001 PM 27102065 ER PT J AU Dieni, CV Panichi, R Aimone, JB Kuo, CT Wadiche, JI Overstreet-Wadiche, L AF Dieni, Cristina V. Panichi, Roberto Aimone, James B. Kuo, Chay T. Wadiche, Jacques I. Overstreet-Wadiche, Linda TI Low excitatory innervation balances high intrinsic excitability of immature dentate neurons SO NATURE COMMUNICATIONS LA English DT Article ID GENERATED GRANULE CELLS; ADULT HIPPOCAMPAL NEUROGENESIS; ENHANCED SYNAPTIC PLASTICITY; PATTERN SEPARATION; BORN NEURONS; GYRUS; MATURATION; INTEGRATION; NETWORKS; MEMORY AB Persistent neurogenesis in the dentate gyrus produces immature neurons with high intrinsic excitability and low levels of inhibition that are predicted to be more broadly responsive to afferent activity than mature neurons. Mounting evidence suggests that these immature neurons are necessary for generating distinct neural representations of similar contexts, but it is unclear how broadly responsive neurons help distinguish between similar patterns of afferent activity. Here we show that stimulation of the entorhinal cortex in mouse brain slices paradoxically generates spiking of mature neurons in the absence of immature neuron spiking. Immature neurons with high intrinsic excitability fail to spike due to insufficient excitatory drive that results from low innervation rather than silent synapses or low release probability. Our results suggest that low synaptic connectivity prevents immature neurons from responding broadly to cortical activity, potentially enabling excitable immature neurons to contribute to sparse and orthogonal dentate representations. C1 [Dieni, Cristina V.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda] Univ Alabama Birmingham, Dept Neurobiol, Birmingham, AL 35294 USA. [Dieni, Cristina V.; Wadiche, Jacques I.; Overstreet-Wadiche, Linda] Univ Alabama Birmingham, Evelyn McKnight Brain Inst, Birmingham, AL 35294 USA. [Dieni, Cristina V.; Panichi, Roberto] Univ Perugia, Sect Physiol & Biochem, Dept Expt Med, I-06126 Perugia, Italy. [Aimone, James B.] Sandia Natl Labs, Data Driven & Neural Comp Dept, POB 5800, Albuquerque, NM 87185 USA. [Kuo, Chay T.] Duke Univ, Sch Med, Dept Cell Biol & Neurobiol, Durham, NC 27710 USA. RP Wadiche, JI; Overstreet-Wadiche, L (reprint author), Univ Alabama Birmingham, Dept Neurobiol, Birmingham, AL 35294 USA.; Wadiche, JI; Overstreet-Wadiche, L (reprint author), Univ Alabama Birmingham, Evelyn McKnight Brain Inst, Birmingham, AL 35294 USA. EM jwadiche@uab.edu; lwadiche@uab.edu FU NIH [NS064025, NS065920, NS047466, MH105416, NS078192]; NSF [1539034]; Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank members of the Wadiche Labs for helpful discussion throughout this project, and Antoine Madar and Dr Mathew Jones for comments on the manuscript. This work was supported by NIH NS064025 (L.O.-W.), NIH NS065920, NSF 1539034 (J.I.W.) and NIH NS047466. C.T.K. is supported by NIH MH105416 and NS078192. J.B.A. is supported by Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 58 TC 3 Z9 3 U1 1 U2 4 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11313 DI 10.1038/ncomms11313 PG 13 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DJ9WK UT WOS:000374563800001 PM 27095423 ER PT J AU Gali, A Demjan, T Voros, M Thiering, G Cannuccia, E Marini, A AF Gali, Adam Demjan, Tamas Voros, Marton Thiering, Gergo Cannuccia, Elena Marini, Andrea TI Electron-vibration coupling induced renormalization in the photoemission spectrum of diamondoids SO NATURE COMMUNICATIONS LA English DT Article ID ADAMANTANE; MOLECULES; SYSTEMS; SOLIDS AB The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born-Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron-vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron-vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born-Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn-Teller effect. C1 [Gali, Adam; Demjan, Tamas; Thiering, Gergo] Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary. [Gali, Adam; Thiering, Gergo] Budapest Univ Technol & Econ, Dept Atom Phys, Budafoki Ut 8, H-1111 Budapest, Hungary. [Demjan, Tamas] Eotvos Lorand Univ, Inst Phys, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary. [Voros, Marton] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Voros, Marton] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [Cannuccia, Elena] Aix Marseille Univ, CNRS, PIIM UMR 7345, F-13397 Marseille, France. [Marini, Andrea] CNR, ISM, Via Salaria Km 29-3,CP 10, I-00016 Monterotondo, Italy. RP Gali, A (reprint author), Hungarian Acad Sci, Wigner Res Ctr Phys, Inst Solid State Phys & Opt, POB 49, H-1525 Budapest, Hungary.; Gali, A (reprint author), Budapest Univ Technol & Econ, Dept Atom Phys, Budafoki Ut 8, H-1111 Budapest, Hungary. EM gali.adam@wigner.mta.hu RI Marini, Andrea/D-1813-2009; OI Marini, Andrea/0000-0001-9289-5750; Voros, Marton/0000-0003-1321-9207; Gali, Adam/0000-0002-3339-5470 FU Lendulet program of the Hungarian Academy of Sciences; PRACE DECI6 DIASIC project; PRACE DECI7 DIAVIB project [FP7 RI-283493]; NIIF Supercomputer Center [1090]; Futuro in Ricerca grant of the Italian Ministry of Education, University and Research MIUR [RBFR12SW0J]; European Union [676598, 654360]; U.S. DOE, Office of Science [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX A.G. acknowledges the support from the Lendulet program of the Hungarian Academy of Sciences, the PRACE DECI6 DIASIC project and the PRACE DECI7 DIAVIB project (FP7 RI-283493) for the resources CINECA in Italy and HUYGENS in Netherlands. The technical assistance of Andrew Emerson from CINECA and Dr Jorg Hertzer from High Performance Computing Center, Germany is gratefully acknowledged. A.G. and M.V. also acknowledge the support from the NIIF Supercomputer Center Grant No. 1090. A.M. acknowledges financial support by the Futuro in Ricerca grant No. RBFR12SW0J of the Italian Ministry of Education, University and Research MIUR, the European Union project MaX Materials design at the eXascale H2020-EINFRA-2015-1, Grant agreement No. 676598 and Nanoscience Foundries and Fine Analysis - Europe H2020-INFRAIA-2014-2015, Grant agreement No. 654360. This work was also supported by U.S. DOE, Office of Science under Contract No. DE-AC02-06CH11357 (M.V.). This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 1 Z9 1 U1 4 U2 17 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11327 DI 10.1038/ncomms11327 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DK0AI UT WOS:000374574300001 PM 27103340 ER PT J AU Prabhakaran, V Mehdi, BL Ditto, JJ Engelhard, MH Wang, BB Gunaratne, KDD Johnson, DC Browning, ND Johnson, GE Laskin, J AF Prabhakaran, Venkateshkumar Mehdi, B. Layla Ditto, Jeffrey J. Engelhard, Mark H. Wang, Bingbing Gunaratne, K. Don D. Johnson, David C. Browning, Nigel D. Johnson, Grant E. Laskin, Julia TI Rational design of efficient electrode-electrolyte interfaces for solid-state energy storage using ion soft landing SO NATURE COMMUNICATIONS LA English DT Article ID MASS-SELECTED IONS; CARBON NANOTUBES; SURFACE MODIFICATION; LITHIUM BATTERIES; ACTIVATED CARBON; DEPOSITION; SUPERCAPACITOR; FILMS; OXIDE; FABRICATION AB The rational design of improved electrode-electrolyte interfaces (EEI) for energy storage is critically dependent on a molecular-level understanding of ionic interactions and nanoscale phenomena. The presence of non-redox active species at EEI has been shown to strongly influence Faradaic efficiency and long-term operational stability during energy storage processes. Herein, we achieve substantially higher performance and long-term stability of EEI prepared with highly dispersed discrete redox-active cluster anions (50 ng of pure similar to 0.75 nm size molybdenum polyoxometalate (POM) anions on 25 mu g (similar to 0.2 wt%) carbon nanotube (CNT) electrodes) by complete elimination of strongly coordinating non-redox species through ion soft landing (SL). Electron microscopy provides atomically resolved images of a uniform distribution of individual POM species soft landed directly on complex technologically relevant CNT electrodes. In this context, SL is established as a versatile approach for the controlled design of novel surfaces for both fundamental and applied research in energy storage. C1 [Prabhakaran, Venkateshkumar; Mehdi, B. Layla; Gunaratne, K. Don D.; Browning, Nigel D.; Johnson, Grant E.; Laskin, Julia] Pacific NW Natl Lab, Div Phys Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. [Ditto, Jeffrey J.; Johnson, David C.] Univ Oregon, Dept Chem, Eugene, OR 97403 USA. [Engelhard, Mark H.; Wang, Bingbing] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Wang, Bingbing] Xiamen Univ, State Key Lab Marine & Environm Sci, Xiamen 361102, Peoples R China. [Wang, Bingbing] Xiamen Univ, Coll Ocean & Earth Sci, Xiamen 361102, Peoples R China. RP Laskin, J (reprint author), Pacific NW Natl Lab, Div Phys Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Prabhakaran, Venkateshkumar/0000-0001-6692-6488 FU U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub FX This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences and performed in EMSL, a national scientific user facility located at Pacific Northwest National Laboratory (PNNL). TEM work was supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub. PNNL is operated by Battelle for DOE. We thank Sigracet SGL carbon GmbH for providing the CNT substrates used in this study. NR 70 TC 4 Z9 4 U1 72 U2 132 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11399 DI 10.1038/ncomms11399 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DK0EN UT WOS:000374585500001 PM 27097686 ER PT J AU Hooks, DE Cawkwell, MJ Ramos, KJ AF Hooks, Daniel E. Cawkwell, Marc J. Ramos, Kyle J. TI Plasticity in Crystalline Molecular Explosives - A Key to Unraveling "Unpredictable" Responses SO PROPELLANTS EXPLOSIVES PYROTECHNICS LA English DT Editorial Material ID STACKING-FAULT ENERGIES; CYCLOTRIMETHYLENE TRINITRAMINE; PENTAERYTHRITOL TETRANITRATE; ENERGETIC MATERIALS; SHOCK INITIATION; DISLOCATIONS; ORIENTATION C1 [Hooks, Daniel E.; Cawkwell, Marc J.; Ramos, Kyle J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hooks, DE (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. OI Cawkwell, Marc/0000-0002-8919-3368 NR 24 TC 0 Z9 0 U1 5 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0721-3115 EI 1521-4087 J9 PROPELL EXPLOS PYROT JI Propellants Explos. Pyrotech. PD APR PY 2016 VL 41 IS 2 BP 203 EP 204 DI 10.1002/prep.201680231 PG 2 WC Chemistry, Applied; Engineering, Chemical SC Chemistry; Engineering GA DK1UI UT WOS:000374699500001 ER PT J AU Rao, NSV Poole, SW Ma, CYT He, F Zhuang, J Yau, DKY AF Rao, Nageswara S. V. Poole, Stephen W. Ma, Chris Y. T. He, Fei Zhuang, Jun Yau, David K. Y. TI Defense of Cyber Infrastructures Against Cyber-Physical Attacks Using Game-Theoretic Models SO RISK ANALYSIS LA English DT Article DE Cyber infrastructures; cyber-physical networks; game theory ID SECURITY RESOURCE-ALLOCATION; EQUILIBRIUM; DECEPTION; TERRORISM; NETWORKS; SECRECY; FACE AB The operation of cyber infrastructures relies on both cyber and physical components, which are subject to incidental and intentional degradations of different kinds. Within the context of network and computing infrastructures, we study the strategic interactions between an attacker and a defender using game-theoretic models that take into account both cyber and physical components. The attacker and defender optimize their individual utilities, expressed as sums of cost and system terms. First, we consider a Boolean attack-defense model, wherein the cyber and physical subinfrastructures may be attacked and reinforced as individual units. Second, we consider a component attack-defense model wherein their components may be attacked and defended, and the infrastructure requires minimum numbers of both to function. We show that the Nash equilibrium under uniform costs in both cases is computable in polynomial time, and it provides high-level deterministic conditions for the infrastructure survival. When probabilities of successful attack and defense, and of incidental failures, are incorporated into the models, the results favor the attacker but otherwise remain qualitatively similar. This approach has been motivated and validated by our experiences with UltraScience Net infrastructure, which was built to support high-performance network experiments. The analytical results, however, are more general, and we apply them to simplified models of cloud and high-performance computing infrastructures. C1 [Rao, Nageswara S. V.; Poole, Stephen W.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Ma, Chris Y. T.] Adv Digital Sci Ctr, Singapore, Singapore. [He, Fei] Texas A&M Univ, Dept Mech & Ind Engn, Kingsville, TX USA. [Zhuang, Jun] State Univ New York, Dept Ind & Syst Engn, Buffalo, NY USA. [Yau, David K. Y.] Singapore Univ Technol & Design, Dept Comp Sci, Singapore, Singapore. RP Rao, NSV (reprint author), Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. EM raons@ornl.gov OI Rao, Nageswara/0000-0002-3408-5941 FU Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, U.S. Department of Energy; Extreme Scale Systems Center - U.S. Department of Defense; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was funded by the Mathematics of Complex, Distributed, Interconnected Systems Program, Office of Advanced Computing Research, U.S. Department of Energy, and by Extreme Scale Systems Center, sponsored by U.S. Department of Defense, and performed at Oak Ridge National Laboratory managed by UT-Battelle, LLC for U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 36 TC 1 Z9 1 U1 13 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0272-4332 EI 1539-6924 J9 RISK ANAL JI Risk Anal. PD APR PY 2016 VL 36 IS 4 SI SI BP 694 EP 710 DI 10.1111/risa.12362 PG 17 WC Public, Environmental & Occupational Health; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Public, Environmental & Occupational Health; Mathematics; Mathematical Methods In Social Sciences GA DK1TT UT WOS:000374697900009 PM 25847370 ER PT J AU Bell, SM Angrish, MM Wood, CE Edwards, SW AF Bell, Shannon M. Angrish, Michelle M. Wood, Charles E. Edwards, Stephen W. TI Integrating Publicly Available Data to Generate Computationally Predicted Adverse Outcome Pathways for Fatty Liver SO TOXICOLOGICAL SCIENCES LA English DT Article DE computationally predicted adverse outcome pathways; cpAOP; TG-GATEs; network integration; fatty liver; steatosis ID CARBON-TETRACHLORIDE; ONTOLOGY; DISEASE; BIOLOGY; IDENTIFICATION; BIOCONDUCTOR; STRATEGIES; FRAMEWORK; CHEMICALS; OBESITY AB New in vitro testing strategies make it possible to design testing batteries for large numbers of environmental chemicals. Full utilization of the results requires knowledge of the underlying biological networks and the adverse outcome pathways (AOPs) that describe the route from early molecular perturbations to an adverse outcome. Curation of a formal AOP is a time-intensive process and a rate-limiting step to designing these test batteries. Here, we describe a method for integrating publicly available data in order to generate computationally predicted AOP (cpAOP) scaffolds, which can be leveraged by domain experts to shorten the time for formal AOP development. A network-based workflow was used to facilitate the integration of multiple data types to generate cpAOPs. Edges between graph entities were identified through direct experimental or literature information, or computationally inferred using frequent itemset mining. Data from the TG-GATEs and ToxCast programs were used to channel large-scale toxicogenomics information into a cpAOP network (cpAOPnet) of over 20 000 relationships describing connections between chemical treatments, phenotypes, and perturbed pathways as measured by differential gene expression and high-throughput screening targets. The resulting fatty liver cpAOPnet is available as a resource to the community. Subnetworks of cpAOPs for a reference chemical (carbon tetrachloride, CCl4) and outcome (fatty liver) were compared with published mechanistic descriptions. In both cases, the computational approaches approximated the manually curated AOPs. The cpAOPnet can be used for accelerating expert-curated AOP development and to identify pathway targets that lack genomic markers or high-throughput screening tests. It can also facilitate identification of key events for designing test batteries and for classification and grouping of chemicals for follow up testing. C1 [Bell, Shannon M.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Bell, Shannon M.; Angrish, Michelle M.; Wood, Charles E.; Edwards, Stephen W.] US EPA, Integrated Syst Toxicol Div, Natl Hlth & Environm Effects Res Lab, Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Bell, Shannon M.] NTP Interagcy Ctr Evaluat Alternat Toxicol Method, Res Triangle Pk, NC USA. RP Edwards, SW (reprint author), US EPA, Integrated Syst Toxicol Div, Natl Hlth & Environm Effects Res Lab, Off Res & Dev, 109 TW Alexander Dr,Mail Code B105-03, Res Triangle Pk, NC 27709 USA. EM edwards.stephen@epa.gov FU U. S. Environmental Protection Agency FX This work was supported by the U. S. Environmental Protection Agency. S.M.B. was supported by an appointment to the Internship/Research Participation Program at the Office of Research and Development, U.S. EPA, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the U.S. EPA. NR 33 TC 5 Z9 5 U1 4 U2 16 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 EI 1096-0929 J9 TOXICOL SCI JI Toxicol. Sci. PD APR PY 2016 VL 150 IS 2 BP 510 EP 520 DI 10.1093/toxsci/kfw017 PG 11 WC Toxicology SC Toxicology GA DJ5ET UT WOS:000374230300022 PM 26895641 ER PT J AU Wadud, Z MacKenzie, D Leiby, P AF Wadud, Zia MacKenzie, Don Leiby, Paul TI Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles SO TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE LA English DT Article DE Vehicle automation; Energy demand; Travel demand; Carbon emission; Self-driving vehicle; Autonomous cars ID OPTIMIZATION AB Experts predict that new automobiles will be capable of driving themselves under limited conditions within 5-10 years, and under most conditions within 10-20 years. Automation may affect road vehicle energy consumption and greenhouse gas (GHG) emissions in a host of ways, positive and negative, by causing changes in travel demand, vehicle design, vehicle operating profiles, and choices of fuels. In this paper, we identify specific mechanisms through which automation may affect travel and energy demand and resulting GHG emissions and bring them together using a coherent energy decomposition framework. We review the literature for estimates of the energy impacts of each mechanism and, where the literature is lacking, develop our own estimates using engineering and economic analysis. We consider how widely applicable each mechanism is, and quantify the potential impact of each mechanism on a common basis: the percentage change it is expected to cause in total GHG emissions from light-duty or heavy-duty vehicles in the U.S. Our primary focus is travel related energy consumption and emissions, since potential lifecycle impacts are generally smaller in magnitude. We explore the net effects of automation on emissions through several illustrative scenarios, finding that automation might plausibly reduce road transport GHG emissions and energy use by nearly half - or nearly double them - depending on which effects come to dominate. We also find that many potential energy-reduction benefits may be realized through partial automation, while the major energy/emission downside risks appear more likely at full automation. We close by presenting some implications for policymakers and identifying priority areas for further research. (C) 2016 The Authors. Published by Elsevier Ltd. C1 [Wadud, Zia] Univ Leeds, Inst Transport Studies, Ctr Integrated Energy Res, Leeds LS2 9JT, W Yorkshire, England. [Wadud, Zia] Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England. [MacKenzie, Don] Univ Washington, Dept Civil & Environm Engn, POB 352700, Seattle, WA 98195 USA. [Leiby, Paul] Oak Ridge Natl Lab, POB 2008,MS 6036, Oak Ridge, TN 37831 USA. RP Wadud, Z (reprint author), Univ Leeds, Inst Transport Studies, Ctr Integrated Energy Res, Leeds LS2 9JT, W Yorkshire, England.; Wadud, Z (reprint author), Univ Leeds, Sch Chem & Proc Engn, Leeds LS2 9JT, W Yorkshire, England. EM z.wadud@leeds.ac.uk; dwhm@uw.edu; leibypn@ornl.gov OI Wadud, Zia/0000-0003-2692-8299 NR 67 TC 6 Z9 6 U1 24 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0965-8564 J9 TRANSPORT RES A-POL JI Transp. Res. Pt. A-Policy Pract. PD APR PY 2016 VL 86 BP 1 EP 18 DI 10.1016/j.tra.2015.12.001 PG 18 WC Economics; Transportation; Transportation Science & Technology SC Business & Economics; Transportation GA DJ6WV UT WOS:000374354800001 ER PT J AU Proetto, MT Anderton, CR Hu, DH Szymanski, CJ Zhu, ZH Patterson, JP Kammeyer, JK Nilewski, LG Rush, AM Bell, NC Evans, JE Orr, G Howell, SB Gianneschi, NC AF Proetto, Maria T. Anderton, Christopher R. Hu, Dehong Szymanski, Craig J. Zhu, Zihua Patterson, Joseph P. Kammeyer, Jacquelin K. Nilewski, Lizanne G. Rush, Anthony M. Bell, Nia C. Evans, James E. Orr, Galya Howell, Stephen B. Gianneschi, Nathan C. TI Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy SO ACS NANO LA English DT Article DE NanoSIMS; SIM; drug-loaded nanoparticles; drug delivery; platinum(II) complexes; cytotoxicity; fluorescence ID ANTICANCER DRUGS; FLUORESCENCE MICROSCOPY; SPHINGOLIPID DOMAINS; ELECTRON-MICROSCOPY; POLYMERIC MICELLES; PLASMA-MEMBRANES; BLOCK-COPOLYMERS; TUMOR-CELLS; CISPLATIN; NANOSIMS AB Direct polymerization of an oxaliplatin analogue was used to reproducibly generate amphiphiles in one pot, which consistently and spontaneously self-assemble into well-defined nanoparticles (NPs). Despite inefficient drug leakage in cell-free assays, the NPs were observed to be as cytotoxic as free oxaliplatin in cell culture experiments. We investigated this phenomenon by super-resolution fluorescence structured illumination microscopy (SIM) and nanoscale secondary ion mass spectrometry (NanoSIMS). In combination, these techniques revealed NPs are taken up via endocytic pathways before intracellular release of their cytotoxic cargo. As with other drug-carrying nanomaterials, these systems have potential as cellular delivery vehicles. However, high-resolution methods to track nanocarriers and their cargo at the micro- and nanoscale have been underutilized in general, limiting our understanding of their interactions with cells and tissues. We contend this type of combined optical and isotopic imaging strategy represents a powerful and potentially generalizable methodology for cellular tracking of nanocarriers and their cargo. C1 [Proetto, Maria T.; Patterson, Joseph P.; Kammeyer, Jacquelin K.; Nilewski, Lizanne G.; Rush, Anthony M.; Bell, Nia C.; Gianneschi, Nathan C.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Howell, Stephen B.] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA. [Anderton, Christopher R.; Hu, Dehong; Szymanski, Craig J.; Zhu, Zihua; Evans, James E.; Orr, Galya] Pacific NW Natl Lab, EMSL, Richland, WA 99354 USA. RP Gianneschi, NC (reprint author), Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. EM ngianneschi@ucsd.edu RI Hu, Dehong/B-4650-2010; Zhu, Zihua/K-7652-2012; Patterson, Joseph/M-9981-2016; OI Hu, Dehong/0000-0002-3974-2963; Patterson, Joseph/0000-0002-1975-1854; Nilewski, Lizanne/0000-0003-0949-9170 FU NIH [DP2OD008724, R37 GM-03350]; ROT [R0IEB011633, CA152185, CA095298]; UCSD CRIN; ARO [W911NF-13-1-0321]; UCSD Neuroscience Microscopy Shared Facility [P30 NS047101]; Department of Energy's Office of Biological and Environmental Research FX NIH Director's New Innovator Award (DP2OD008724) and ROT grants R0IEB011633, CA152185, and CA095298 are acknowledged. M.T.P. thanks the UCSD CRIN for a postdoctoral fellowship and the mentorship of Dr. A. Rummel within that program. We thank ARO for a DURIP grant (W911NF-13-1-0321) to purchase a PerkinElmer plate reader used in these studies. We acknowledge use of the UCSD Cryo-EM Facility, which is supported by NIH grant R37 GM-03350 to Dr. T. S. Baker and a gift from the Agouron Institute to UCSD. M.T.P. thanks the UCSD Neuroscience Microscopy Shared Facility, which is supported via the P30 NS047101 grant. M.T.P. also thanks Dr. D. Stramski and J. Tatarkiewicz from Scripps Institution of Oceanography, UCSD, for making available the NanoSight instrument. M.T.P. also thanks Dr. P. R. Castillo and C. MacIsaac from Scripps Institution of Oceanography, UCSD, for their assistance with the ICP-OES experiments. M.T.P. thanks Dr. E. Loureiro, Dr. E. Caro, G. Manorek, A. Carlini, and P. Schwarzbock for their assistance with the cell culture techniques and the preparation of the manuscript. Part of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 34 TC 1 Z9 1 U1 14 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD APR PY 2016 VL 10 IS 4 BP 4046 EP 4054 DI 10.1021/acsnano.5b06477 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DK9IV UT WOS:000375245000019 PM 27022832 ER PT J AU Parkin, WM Balan, A Liang, LB Das, PM Lamparski, M Naylor, CH Rodriguez-Manzo, JA Johnson, ATC Meunier, V Drndic, M AF Parkin, William M. Balan, Adrian Liang, Liangbo Das, Paul Masih Lamparski, Michael Naylor, Carl H. Rodriguez-Manzo, Julio A. Johnson, A. T. Charlie Meunier, Vincent Drndic, Marija TI Raman Shifts in Electron-Irradiated Monolayer MoS2 SO ACS NANO LA English DT Article DE MoS2; two-dimensional material; Raman; in situ transmission electron microscopy; transition-metal dichalcogenide ID SINGLE-LAYER MOS2; TRANSITION-METAL DICHALCOGENIDES; MOLYBDENUM-DISULFIDE MONOLAYERS; CHEMICAL-VAPOR-DEPOSITION; INTEGRATED-CIRCUITS; ATOMIC LAYERS; DEFECTS; PHOTOLUMINESCENCE; TRANSISTORS; GROWTH AB We report how the presence of electron beam -induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy two-terminal conductivity of monolayer MoS2 under electron irradiation. We observe a red-shift in the E' Raman peak and a less pronounced blue-shift in the A'(1) peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy and selected-area electron diffraction, we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %). This allows us to quantitatively correlate the frequency shifts with vacancy concentration, as rationalized by first-principles density functional theory calculations. In situ device current measurements show an exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS2-based transport channels. C1 [Parkin, William M.; Balan, Adrian; Das, Paul Masih; Naylor, Carl H.; Rodriguez-Manzo, Julio A.; Johnson, A. T. Charlie; Drndic, Marija] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Liang, Liangbo; Lamparski, Michael; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Liang, Liangbo] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Drndic, M (reprint author), Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA.; Meunier, V (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM meuniv@rpi.edu; drndic@physics.upenn.edu RI Liang, Liangbo/H-4486-2011; OI Liang, Liangbo/0000-0003-1199-0049; Balan, Adrian/0000-0001-9122-3848; Masih Das, Paul/0000-0003-2644-2280 FU NIH [R21HG004767, R21HG007856]; NSF [EFRI-1542707]; New York State under NYSTAR program [C080117]; Office of Naval Research; Eugene P. Wigner Fellowship at Oak Ridge National Laboratory; UES/Air Force Research Laboratory; NSF PFI AIR [ENG-1312202]; NSF Major Research Instrumentation Grant [DMR-0923245] FX The authors thank M. Puster for assistance with experiments. This work was supported by NIH Grant R21HG004767, NIH Grant R21HG007856, and NSF Grant NSF EFRI-1542707. We gratefully acknowledge use of the TEM in the NSF-MRSEC electron microscopy facility at the University of Pennsylvania and the use of the AC-TEM facility at Lehigh University. We thank D. Yates at the University of Pennsylvania and R. Keyse at Lehigh University for their assistance with electron microscopy. The theoretical work at Rensselaer Polytechnic Institute (RPI) was supported by New York State under NYSTAR program C080117 and the Office of Naval Research. The computations were performed using the resources of the Center for Computational Innovation at RPI. L.L. was supported by a Eugene P. Wigner Fellowship at Oak Ridge National Laboratory and also acknowledges work at the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility. C.H.N. and A.T.C.J. acknowledge support from UES/Air Force Research Laboratory and NSF PFI AIR ENG-1312202. NSF Major Research Instrumentation Grant DMR-0923245 is acknowledged. NR 44 TC 13 Z9 13 U1 35 U2 73 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD APR PY 2016 VL 10 IS 4 BP 4134 EP 4142 DI 10.1021/acsnano.5b07388 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DK9IV UT WOS:000375245000029 PM 26998814 ER PT J AU Verde, MG Baggetto, L Balke, N Veith, GM Seo, JK Wang, ZY Meng, YS AF Verde, Michael G. Baggetto, Loic Balke, Nina Veith, Gabriel M. Seo, Joon Kyo Wang, Ziying Meng, Ying Shirley TI Elucidating the Phase Transformation of Li4Ti5O12 Lithiation at the Nanoscale SO ACS NANO LA English DT Article DE Li4Ti5O12; LTO; Li-ion battery; anode; thin-film; c-AFM; XPS ID LITHIUM-ION BATTERIES; TOTAL-ENERGY CALCULATIONS; IMPROVED RATE CAPABILITY; WAVE BASIS-SET; DOPED LI4TI5O12; ELECTROCHEMICAL PROPERTIES; ANODE MATERIALS; AB-INITIO; SPINEL LI4TI5O12; RATE PERFORMANCE AB This work provides insight regarding the fundamental lithiation and delithiation mechanism of the popular lithium ion battery anode material, Li4Ti5O12 (LTO). Our results quantify the extent of reaction between Li4Ti5O12 and Li4Ti5O12 at the nanoscale, during the first cycle. Lithium titanate's discharge (lithiation) and charge (delithiation) reactions are notoriously difficult to characterize due to the zero-strain transition occurring between the end members Li4Ti5O12 and Li7Ti5O12. Interestingly, however, the latter compound is electronically conductive, while the former is an insulator. We take advantage of this critical property difference by using conductive atomic force microscopy (c-AFM) to locally monitor the phase transition between the two structures at various states of charge. To do so, we perform ex situ characterization on electrochemically cycled LTO thin-films that are never exposed to air. We provide direct confirmation of the manner in which the reaction occurs, which proceeds via percolation channels within single grains. We complement scanning probe analyses with an X-ray photoelectron spectroscopy (XPS) study that identifies and explains changes in the LTO surface structure and composition. In addition, we provide a computational analysis to describe the unique electronic differences between LTO and its lithiated form. C1 [Verde, Michael G.; Wang, Ziying; Meng, Ying Shirley] Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. [Baggetto, Loic; Veith, Gabriel M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Balke, Nina] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Seo, Joon Kyo] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA. [Baggetto, Loic] CNRS, CIRIMAT, UMR5085, 4 Allee Emile Monso,BP 44362, F-31030 Toulouse 4, France. RP Verde, MG; Meng, YS (reprint author), Univ Calif San Diego, Dept NanoEngn, La Jolla, CA 92093 USA. EM mverdejr@gmail.com; shmeng@ucsd.edu RI Balke, Nina/Q-2505-2015; Baggetto, Loic/D-5542-2017 OI Balke, Nina/0000-0001-5865-5892; Baggetto, Loic/0000-0002-9029-2363 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-10ER46672 (DE-SC0002357)]; U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; National Science Foundation [ACI-1053575] FX The authors are grateful for the financial support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Award Number DE-FG02-10ER46672 (DE-SC0002357). The U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division also supported a portion of this work (thin-film preparation, XPS, electrochemistry, L.B, G.M.V.) The AFM experiments were performed at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575. NR 58 TC 6 Z9 6 U1 22 U2 77 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD APR PY 2016 VL 10 IS 4 BP 4312 EP 4321 DI 10.1021/acsnano.5b07875 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DK9IV UT WOS:000375245000049 PM 26978597 ER PT J AU Zang, HD Routh, PK Huang, Y Chen, JS Sutter, E Sutter, P Cotlet, M AF Zang, Huidong Routh, Prahlad K. Huang, Yuan Chen, Jia-Shiang Sutter, Eli Sutter, Peter Cotlet, Mircea TI Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide SO ACS NANO LA English DT Article DE layered metal dichalcogenides; quantum dots; hybrid nanomaterial; energy transfer; single nanocrystal spectroscopy ID FLUORESCENCE INTERMITTENCY; ELECTRON-TRANSFER; PHOTOLUMINESCENCE; BLINKING; NANOCRYSTALS; CORE; PERFORMANCE; NANORODS; MOS2; WS2 AB The combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D-2D hybrids with enhanced light absorption properties. These 0D-2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D-2D hybrids increases with added number of SnS2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing. C1 [Zang, Huidong; Routh, Prahlad K.; Huang, Yuan; Chen, Jia-Shiang; Cotlet, Mircea] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Routh, Prahlad K.; Chen, Jia-Shiang; Cotlet, Mircea] SUNY Stony Brook, Dept Mat Sci, Stony Brook, NY 11794 USA. [Sutter, Eli] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Sutter, Peter] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. RP Cotlet, M (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.; Cotlet, M (reprint author), SUNY Stony Brook, Dept Mat Sci, Stony Brook, NY 11794 USA.; Sutter, P (reprint author), Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. EM psutter@unl.edu; cotlet@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. NR 37 TC 6 Z9 6 U1 21 U2 54 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD APR PY 2016 VL 10 IS 4 BP 4790 EP 4796 DI 10.1021/acsnano.6b01538 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA DK9IV UT WOS:000375245000104 PM 27031885 ER PT J AU Chong, KE Wang, L Staude, I James, AR Dominguez, J Liu, S Subramania, GS Decker, M Neshev, DN Brener, I Kiyshar, YS AF Chong, Katie E. Wang, Lei Staude, Isabelle James, Anthony R. Dominguez, Jason Liu, Sheng Subramania, Ganapathi S. Decker, Manuel Neshev, Dragomir N. Brener, Igal Kiyshar, Yuri S. TI Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens' Metasurfaces Based on Dielectric Resonant Meta-atoms SO ACS PHOTONICS LA English DT Article DE wavefront control; Huygens' surface; metasurface; holography; all-dielectric nanophotonics; silicon photonics ID SUBWAVELENGTH GRATINGS; HIGH-TRANSMISSION; OPTICAL-ELEMENTS; FANO RESONANCES; VISIBLE-LIGHT; BEAM SPLITTER; HOLOGRAMS; PHASE; MANIPULATION; PROPAGATION AB Metasurfaces have shown great promise for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens' metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a polarization-insensitive holographic Huygens' metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecommunication wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens' metasurfaces based on resonant dielectric meta-atoms are a big step toward practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultrathin optics, security, and data storage devices. C1 [Chong, Katie E.; Wang, Lei; Staude, Isabelle; Decker, Manuel; Neshev, Dragomir N.; Kiyshar, Yuri S.] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, GPO Box 4, Canberra, ACT 2601, Australia. [Staude, Isabelle] Univ Jena, Inst Appl Phys, Abbe Ctr Photon, D-07743 Jena, Germany. [James, Anthony R.; Dominguez, Jason; Liu, Sheng; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. [Subramania, Ganapathi S.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Neshev, DN (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, GPO Box 4, Canberra, ACT 2601, Australia. EM dragomir.neshev@anu.edu.au RI Neshev, Dragomir/A-3759-2008 OI Neshev, Dragomir/0000-0002-4508-8646 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Australian Nanotechnology Network Overseas Travel Fellowships; Australian National University Vice Chancellor's HDR Travel Grants; Thuringian State Government within its ProExcellence initiative [ACP2020]; Erasmus Mundus NANOPHI project [2013 5659/002-001]; Australian Research Council FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. K.E.C. acknowledges support from the Australian Nanotechnology Network Overseas Travel Fellowships 2014 and the Australian National University Vice Chancellor's HDR Travel Grants 2014. I.S. gratefully acknowledges financial support by the Thuringian State Government within its ProExcellence initiative (ACP2020). K.E.C., I.S., M.D., D.N.N., and Y.S.K also acknowledge their participation in the Erasmus Mundus NANOPHI project, contract number 2013 5659/002-001. The authors also acknowledge support from the Australian Research Council. NR 42 TC 15 Z9 15 U1 28 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD APR PY 2016 VL 3 IS 4 BP 514 EP 519 DI 10.1021/acsphotonics.5b00678 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DK3JA UT WOS:000374811700003 ER PT J AU Agbo, P Xu, T Sturzbecher-Hoehne, M Abergel, RJ AF Agbo, Peter Xu, Tao Sturzbecher-Hoehne, Manuel Abergel, Rebecca J. TI Enhanced Ultraviolet Photon Capture in Ligand-Sensitized Nanocrystals SO ACS PHOTONICS LA English DT Article DE sensitization; lanthanide; ligand antenna; energy transfer; nanocrystal ID DOWNCONVERSION LUMINESCENCE; UP-CONVERSION; HIGHLY LUMINESCENT; NAYF4 NANOCRYSTALS; LAF3 NANOCRYSTALS; NANOPARTICLES; EFFICIENCY; COMPLEXES; PHOTOLUMINESCENCE; EMISSION AB The small absorption cross sections (epsilon < 10 M-1 cm(-1)) characteristic of Laporte-forbidden transitions in the f-elements have limited the practical implementation of lanthanide nanoparticles in solar capture devices. While various strategies designed to circumvent the problems of low f-f oscillator strengths have been investigated, comparatively little work has explored the utility of organic ligands with high absorption coefficients (epsilon approximate to 10(3)-10(5) M-1 cm(-1)) in sensitizing excited states in lanthanide nanocrystals. Here, we detail the photophysics of NaGd1-xEuxF4 nanoparticles featuring surface display of the ligand 3,4,3-L1(1,2-HOPO), an aromatic antenna functioning as the terminal light absorber in this system. The result is a ligand-nanocrystal hybrid that converts UV (250-360 nm) light into red Eu(III) luminescence with an external quantum yield of 3.3%. We analyze this sensitization process, responsible for a 10(4)-fold increase in luminescence relative to metal-centered excitation, through between ligand and metal states. a quantitative treatment of energy transfer C1 [Agbo, Peter; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Xu, Tao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Abergel, RJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM rjabergel@lbl.gov RI Xu, Tao/N-2539-2013 OI Xu, Tao/0000-0001-5436-0077 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Department of Energy, Office of Science Early Career Award FX We thank Fan Liu, Joseph Varghese, and Akram Boukai for helpful comments during writing of the manuscript. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division at the Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. R.J.A. is the recipient of a U.S. Department of Energy, Office of Science Early Career Award. NR 33 TC 1 Z9 1 U1 12 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD APR PY 2016 VL 3 IS 4 BP 547 EP 552 DI 10.1021/acsphotonics.6b00118 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DK3JA UT WOS:000374811700009 ER PT J AU Fang, M Huang, ZX Koschny, T Soukoulis, CM AF Fang, Ming Huang, Zhixiang Koschny, Thomas Soukoulis, Costas M. TI Electrodynamic Modeling of Quantum Dot Luminescence in Plasmonic Metamaterials SO ACS PHOTONICS LA English DT Article DE photoluminescence; plasmonics; metamaterials; quantum dots; finite-different time-domain; spontaneous emission ID NEGATIVE-INDEX METAMATERIALS; OPTICAL METAMATERIALS; GAIN; RESONANCES; DYNAMICS; LOSSES; ARRAYS AB A self-consistent approach is proposed to simulate a coupled system of quantum dots (QDs) and metallic metamaterials. Using a four-level atomic system, an artificial source is introduced to simulate the spontaneous emission process in the QDs. We numerically show that the metamaterials can lead to multifold enhancement and spectral narrowing of photoluminescence from QDs. These results are consistent with recent experimental studies. The proposed method represents an essential step for developing and understanding a metamaterial system with gain medium inclusions. C1 [Fang, Ming; Huang, Zhixiang] Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230001, Peoples R China. [Fang, Ming; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Fang, Ming; Koschny, Thomas; Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.] FORTH, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. RP Fang, M; Huang, ZX (reprint author), Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230001, Peoples R China.; Fang, M (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA.; Fang, M (reprint author), Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. EM ahu_mingfang@yahoo.com; zxhuang@ahu.edu.cn RI Huang, Zhixiang/C-3416-2014; Soukoulis, Costas/A-5295-2008 OI Huang, Zhixiang/0000-0002-8023-9075; FU U.S. Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) [DE-AC02-07CH11358]; National Natural Science Foundation of China [61101064, 51277001, 51477039, 61201122]; NCET of China [NCET-12-0596]; DFMEC [20123401110009]; European Research Council under ERC Advanced Grant (PHOTOMETA) [320081]; Anhui Provincial Natural Science Foundation [1508085JD03, 1508185QF130] FX Work at Ames Laboratory was partially supported by the U.S. Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) under Contract No. DE-AC02-07CH11358. This work was supported by the National Natural Science Foundation of China under Grant Nos. 61101064, 51277001, 51477039, 61201122, NCET (NCET-12-0596) of China and DFMEC (No. 20123401110009), European Research Council under the ERC Advanced Grant No. 320081 (PHOTOMETA), and Anhui Provincial Natural Science Foundation (Nos. 1508085JD03, 1508185QF130). NR 36 TC 0 Z9 1 U1 10 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD APR PY 2016 VL 3 IS 4 BP 558 EP 563 DI 10.1021/acsphotonics.5b00499 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DK3JA UT WOS:000374811700011 ER PT J AU Sampat, S Guo, TL Zhang, KH Robinson, JA Ghosh, Y Acharya, KP Htoon, H Hollingsworth, JA Gartstein, YN Malko, AV AF Sampat, Siddharth Guo, Tianle Zhang, Kehao Robinson, Joshua A. Ghosh, Yagnaseni Acharya, Krishna P. Htoon, Han Hollingsworth, Jennifer A. Gartstein, Yuri N. Malko, Anton V. TI Exciton and Trion Energy Transfer from Giant Semiconductor Nanocrystals to MoS2 Monolayers SO ACS PHOTONICS LA English DT Article DE TMDCs; MoS2; giant nanocrystal quantum dots; energy transfer; trions and excitons ID QUANTUM DOTS; CDSE/CDS NANOCRYSTALS; AUGER RECOMBINATION; LAYER MOS2; BLINKING; PHOTOLUMINESCENCE AB We investigate nonradiative energy transfer (NRET) between CdSe/CdS core/shell "giant" nanocrystal quantum dots (gNQDs) and monolayer domains of molybdenum disulfide (MoS2) grown by chemical vapor deposition. We employ three sets of gNQDs with varied core/shell parameters that exhibit radiative emission from neutral and charged excitons (trions) at different spectral positions from 590 to 660 nm as confirmed by photon statistics of individual nanocrystals. Strong photoluminescence (PL) emission quenching is observed for the donor gNQDs placed on MoS2 domains, indicative of the efficient NRET. Analysis of the double-component PL decays reveals NRET from both neutral excitons and charged trions with the same efficiency. Applying a macroscopic electrodynamics model for the decay of electric-dipole emitters in the vicinity of an ultrathin semiconducting layer with a strong in-plane excitonic polarizability, we confirm high NRET efficiencies from >95% to 85% for dots with diameters from 10 to 20 nm. This demonstration opens new possibilities for studies of energy transfer between zero-dimensional emitters and two-dimensional absorbers, potentially enabling new avenues for multiexciton harvesting and utilization. C1 [Sampat, Siddharth; Guo, Tianle; Gartstein, Yuri N.; Malko, Anton V.] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. [Zhang, Kehao; Robinson, Joshua A.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Ghosh, Yagnaseni; Acharya, Krishna P.; Htoon, Han; Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Mat Phys & Applicat Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. RP Malko, AV (reprint author), Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA. EM anton.malko@utdallas.edu OI Htoon, Han/0000-0003-3696-2896 FU Department of Energy, Office of Basic Energy Science (DOE/OBES) [DE-SC0010697]; Center for Integrated Nanotechnologies (CINT), a DOE/OBES Nanoscale Science Research Center User Facility [U2013B0072]; Single Investigator Small Group Research Grant [2009LANL1096]; Division of Materials Science and Engineering (MSE), DOE/OBES; National Science Foundation [NSF-EFRI-1433307] FX Optical studies and modeling of energy transfer were performed by the UT Dallas group (S.S., T.G., Y.N.G., and A.V.M.) and supported by the Department of Energy, Office of Basic Energy Science (DOE/OBES), grant DE-SC0010697. Nanocrystal synthesis was performed at the Center for Integrated Nanotechnologies (CINT), a DOE/OBES Nanoscale Science Research Center & User Facility, under the User Project U2013B0072. The LANL group (J.A.H. and H.H.) acknowledges the support by a Single Investigator Small Group Research Grant (2009LANL1096), Division of Materials Science and Engineering (MSE), DOE/OBES. CVD growth of monolayer MoS2 domains was done by the Penn State group (K.Z. and J.A.R.) and supported by the National Science Foundation, award NSF-EFRI-1433307. NR 35 TC 3 Z9 3 U1 13 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2330-4022 J9 ACS PHOTONICS JI ACS Photonics PD APR PY 2016 VL 3 IS 4 BP 708 EP 715 DI 10.1021/acsphotonics.6b00088 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA DK3JA UT WOS:000374811700031 ER PT J AU Casper, KM Beresh, SJ Henfling, JF Spillers, RW Pruett, BOM Schneider, SP AF Casper, Katya M. Beresh, Steven J. Henfling, John F. Spillers, Russell W. Pruett, Brian O. M. Schneider, Steven P. TI Hypersonic Wind-Tunnel Measurements of Boundary-Layer Transition on a Slender Cone SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 52nd AIAA Aerospace Sciences Meeting CY JAN 12-18, 2014 CL National Harbor, MD SP AIAA ID INSTABILITY; LAMINAR AB Boundary-layer transition was studied on a sharp 7 deg cone in two hypersonic wind tunnels at Mach numbers of 5, 6, 8, and 14 over a range of freestream Reynolds numbers between 3.3 and 15.4 x 10(6)/m. High-speed schlieren measurements visualized the intermittent formation of instabilities and turbulent spots within the transitional boundary layer. Surface pressure and heat-transfer measurements revealed how the intermittent behavior of the boundary layer produces the mean character of these quantities. Transition at Mach 5 appeared to be initiated by a combination of first-and second-mode instabilities. These disturbances were isolated and surrounded by an otherwise smooth boundary layer. At higher Mach numbers, the boundary layer was dominated by second-mode instabilities, which covered most of the model before breakdown into turbulent spots. The spots remain surrounded by second-mode waves throughout the transitional region. These differences alter the pressure fluctuations and heat transfer profiles during transition. Higher frequency pressure measurements peaked upstream of the onset of transition because of the growth of second-mode instabilities. Lower frequency pressure fluctuations and the surface heat transfer did not rise significantly until further downstream where turbulent regions developed. C1 [Casper, Katya M.; Beresh, Steven J.] Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. [Henfling, John F.; Spillers, Russell W.; Pruett, Brian O. M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Schneider, Steven P.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. RP Casper, KM (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM kmcaspe@sandia.gov NR 44 TC 0 Z9 0 U1 4 U2 7 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD APR PY 2016 VL 54 IS 4 BP 1250 EP 1263 DI 10.2514/1.J054033 PG 14 WC Engineering, Aerospace SC Engineering GA DK4HH UT WOS:000374877600010 ER PT J AU Ghosh, D Constantinescu, EM AF Ghosh, Debojyoti Constantinescu, Emil M. TI Well-Balanced, Conservative Finite Difference Algorithm for Atmospheric Flows SO AIAA JOURNAL LA English DT Article; Proceedings Paper CT 7th AIAA Atmospheric and Space Environments Conference CY JUN 22-26, 2015 CL Dallas, TX SP AIAA ID ESSENTIALLY NONOSCILLATORY SCHEMES; DISCONTINUOUS GALERKIN METHODS; NONLINEAR COMPACT SCHEMES; SHOCK-CAPTURING SCHEMES; NAVIER-STOKES EQUATIONS; EFFICIENT IMPLEMENTATION; WENO SCHEMES; SOURCE TERMS; GRAVITATIONAL-FIELDS; HYPERBOLIC SYSTEMS AB The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essential because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature. C1 [Ghosh, Debojyoti; Constantinescu, Emil M.] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Ghosh, D; Constantinescu, EM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ghosh@mcs.anl.gov; emconsta@mcs.anl.gov NR 58 TC 2 Z9 2 U1 2 U2 2 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0001-1452 EI 1533-385X J9 AIAA J JI AIAA J. PD APR PY 2016 VL 54 IS 4 BP 1370 EP 1385 DI 10.2514/1.J054580 PG 16 WC Engineering, Aerospace SC Engineering GA DK4HH UT WOS:000374877600020 ER PT J AU Ward, PA Corgnale, C Teprovich, JA Motyka, T Hardy, B Sheppard, D Buckley, C Zidan, R AF Ward, Patrick A. Corgnale, Claudio Teprovich, Joseph A., Jr. Motyka, Theodore Hardy, Bruce Sheppard, Drew Buckley, Craig Zidan, Ragaiy TI Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID HEAT-TRANSFER FLUIDS; SOLAR POWER APPLICATIONS; CENTRAL RECEIVER SYSTEMS; HYDROGEN PERMEATION; STAINLESS-STEEL; COMBUSTION SYNTHESIS; TRITIUM PERMEATION; RESISTANCE; COATINGS; BARRIER AB Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 degrees C. Operation at temperatures >600 degrees C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated. C1 [Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A., Jr.; Motyka, Theodore; Hardy, Bruce; Zidan, Ragaiy] Savannah River Natl Lab, Clean Energy Directorate, Aiken, SC 29803 USA. [Sheppard, Drew; Buckley, Craig] Curtin Univ, Dept Phys Astron & Med Radiat Sci, Fuels & Energy Technol Inst, Hydrogen Storage Res Grp, GPO Box U1987, Perth, WA 6845, Australia. RP Zidan, R (reprint author), Savannah River Natl Lab, Clean Energy Directorate, Aiken, SC 29803 USA. EM Ragaiy.Zidan@srnl.doe.gov NR 57 TC 1 Z9 1 U1 5 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD APR PY 2016 VL 122 IS 4 AR 462 DI 10.1007/s00339-016-9909-x PG 10 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DL2DU UT WOS:000375444000044 ER PT J AU Bhat, PN Meegan, CA von Kienlin, A Paciesas, WS Briggs, MS Burgess, JM Burns, E Chaplin, V Cleveland, WH Collazzi, AC Connaughton, V Diekmann, AM Fitzpatrick, G Gibby, MH Giles, MM Goldstein, AM Greiner, J Jenke, PA Kippen, RM Kouveliotou, C Mailyan, B McBreen, S Pelassa, V Preece, RD Roberts, OJ Sparke, LS Stanbro, M Veres, P Wilson-Hodge, CA Xiong, SL Younes, G Yu, HF Zhang, BB AF Bhat, P. Narayana Meegan, Charles A. von Kienlin, Andreas Paciesas, William S. Briggs, Michael S. Burgess, J. Michael Burns, Eric Chaplin, Vandiver Cleveland, William H. Collazzi, Andrew C. Connaughton, Valerie Diekmann, Anne M. Fitzpatrick, Gerard Gibby, Melissa H. Giles, Misty M. Goldstein, Adam M. Greiner, Jochen Jenke, Peter A. Kippen, R. Marc Kouveliotou, Chryssa Mailyan, Bagrat McBreen, Sheila Pelassa, Veronique Preece, Robert D. Roberts, Oliver J. Sparke, Linda S. Stanbro, Matthew Veres, Peter Wilson-Hodge, Colleen A. Xiong, Shaolin Younes, George Yu, Hoi-Fung Zhang, Binbin TI THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general ID MONITOR; FLASHES; TRIGGER; ORIGIN; BATSE; GRBS AB Since its launch in 2008, the Fermi Gamma-ray Burst Monitor (GBM) has triggered and located on average approximately two.-ray bursts (GRBs) every three days. Here, we present the third of a series of catalogs of GRBs detected by GBM, extending the second catalog by two more years through the middle of 2014 July. The resulting list includes 1405 triggers identified as GRBs. The intention of the GBM GRB catalog is to provide information to the community on the most important observables of the GBM-detected GRBs. For each GRB, the location and main characteristics of the prompt emission, the duration, peak flux, and fluence are derived. The latter two quantities are calculated for the 50-300 keV energy band where the maximum energy release of GRBs in the instrument reference system is observed, and also for a broader energy band from 10 to 1000 keV, exploiting the full energy range of GBM's low-energy [NaI[Tl)] detectors. Using statistical methods to assess clustering, we find that the hardness and duration of GRBs are better fit by a two-component model with short-hard and long-soft bursts than by a model with three components. Furthermore, information is provided on the settings and modifications of the triggering criteria and exceptional operational conditions during years five and six in the mission. This third catalog is an official product of the Fermi GBM science team, and the data files containing the complete results are available from the High-Energy Astrophysics Science Archive Research Center. C1 [Bhat, P. Narayana; Meegan, Charles A.; Briggs, Michael S.; Burns, Eric; Chaplin, Vandiver; Fitzpatrick, Gerard; Jenke, Peter A.; Mailyan, Bagrat; Pelassa, Veronique; Stanbro, Matthew; Veres, Peter; Zhang, Binbin] Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Bhat, P. Narayana; Briggs, Michael S.; Connaughton, Valerie; Jenke, Peter A.; Preece, Robert D.] Univ Alabama, Dept Space Sci, 320 Sparkman Dr, Huntsville, AL 35899 USA. [von Kienlin, Andreas; Greiner, Jochen; Yu, Hoi-Fung] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Paciesas, William S.; Cleveland, William H.; Connaughton, Valerie] Univ Space Res Assoc, 320 Sparkman Dr, Huntsville, AL 35805 USA. [Burgess, J. Michael] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Burgess, J. Michael] AlbaNova Univ Ctr, KTH Royal Inst Technol, Dept Phys, SE-10691 Stockholm, Sweden. [Chaplin, Vandiver] Vanderbilt Univ, Inst Imaging Sci, 1161 21st Ave South,Med Ctr North,AA 1105, Nashville, TN 37232 USA. [Collazzi, Andrew C.] SciTec Inc, 100 Wall St, Princeton, NJ 08540 USA. [Diekmann, Anne M.; Gibby, Melissa H.; Giles, Misty M.] Jacobs Technol Inc, Huntsville, AL USA. [Fitzpatrick, Gerard; McBreen, Sheila; Roberts, Oliver J.] Univ Coll Dublin, Sch Phys, Stillorgan Rd, Dublin 4, Ireland. [Goldstein, Adam M.; Wilson-Hodge, Colleen A.] NASA, George C Marshall Space Flight Ctr, Astrophys Off ZP12, Huntsville, AL 35812 USA. [Greiner, Jochen; Yu, Hoi-Fung] Tech Univ Munich, Excellence Cluster Universe, Boltzmannstr 2, D-85748 Garching, Germany. [Kippen, R. Marc] Los Alamos Natl Lab, MS B244,POB 1663, Los Alamos, NM 87545 USA. [Kouveliotou, Chryssa; Younes, George] George Washington Univ, Dept Phys, 725 21st St NW, Washington, DC 20052 USA. [Pelassa, Veronique] Fred Lawrence Whipple Observ, 670 Mt Hopkins Rd, Amado, AZ 85645 USA. [Sparke, Linda S.] NASA, HQ, Sci Mission Directorate, Astrophys, 300 E St SW, Washington, DC 20546 USA. [Xiong, Shaolin] Inst High Energy Phys, Key Lab Particle Astrophys, 19B Yuquan Rd, Beijing 100049, Peoples R China. [Zhang, Binbin] CSIC, IAA, POB 03004, E-18080 Granada, Spain. RP Bhat, PN (reprint author), Univ Alabama, CSPAR, 320 Sparkman Dr, Huntsville, AL 35805 USA.; Bhat, PN (reprint author), Univ Alabama, Dept Space Sci, 320 Sparkman Dr, Huntsville, AL 35899 USA. RI Roberts, Oliver/N-6284-2016; OI Roberts, Oliver/0000-0002-7150-9061; von Kienlin, Andreas/0000-0002-0221-5916; Burgess, James/0000-0003-3345-9515; McBreen, Sheila/0000-0002-1477-618X FU Bundesministerium fur Bildung und Forschung (BMBF) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) [50 QV 0301]; Bundesministeriums fur Wirtschaft und Technologie (BMWi) through DLR [50 OG 1101]; Science Foundation Ireland [12/IP/1288]; DFG cluster of excellence "Origin and Structure of the universe"; NASA Postdoctoral Program through Oak Ridge Associated Universities; NASA [NNM11AA01A] FX Support for the German contribution to G.B.M. was provided by the Bundesministerium fur Bildung und Forschung (BMBF) via the Deutsches Zentrum fur Luft und Raumfahrt (DLR) under contract number 50 QV 0301. A.v.K. was supported by the Bundesministeriums fur Wirtschaft und Technologie (BMWi) through DLR grant 50 OG 1101. S.M. B. and O.J.R. acknowledge support from Science Foundation Ireland under grant No. 12/IP/1288. H.F.Y. acknowledges support by the DFG cluster of excellence "Origin and Structure of the universe." A.G. is funded by the NASA Postdoctoral Program through Oak Ridge Associated Universities. The UAH co-authors gratefully acknowledge NASA funding from co-operative agreement NNM11AA01A. C.K. and C.A.W.H. gratefully acknowledge NASA funding through the Fermi GBM project. NR 44 TC 4 Z9 4 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD APR PY 2016 VL 223 IS 2 AR 28 DI 10.3847/0067-0049/223/2/28 PG 18 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DL0EI UT WOS:000375304600010 ER PT J AU Rappazzo, KM Warren, JL Meyer, RE Herring, AH Sanders, AP Brownstein, NC Luben, TJ AF Rappazzo, Kristen M. Warren, Joshua L. Meyer, Robert E. Herring, Amy H. Sanders, Alison P. Brownstein, Naomi C. Luben, Thomas J. TI Maternal residential exposure to agricultural pesticides and birth defects in a 2003 to 2005 North Carolina birth cohort SO BIRTH DEFECTS RESEARCH PART A-CLINICAL AND MOLECULAR TERATOLOGY LA English DT Article DE pesticide exposure; residential; agriculture; birth defects; congenital anomalies; GIS ID SAN-JOAQUIN VALLEY; NEURAL-TUBE DEFECTS; ATRAZINE EXPOSURE; UNITED-STATES; RISK; CALIFORNIA; HYPOSPADIAS; PROXIMITY; PREGNANCY; CHILDREN AB BackgroundBirth defects are responsible for a large proportion of disability and infant mortality. Exposure to a variety of pesticides have been linked to increased risk of birth defects. MethodsWe conducted a case-control study to estimate the associations between a residence-based metric of agricultural pesticide exposure and birth defects. We linked singleton live birth records for 2003 to 2005 from the North Carolina (NC) State Center for Health Statistics to data from the NC Birth Defects Monitoring Program. Included women had residence at delivery inside NC and infants with gestational ages from 20 to 44 weeks (n=304,906). Pesticide exposure was assigned using a previously constructed metric, estimating total chemical exposure (pounds of active ingredient) based on crops within 500 meters of maternal residence, specific dates of pregnancy, and chemical application dates based on the planting/harvesting dates of each crop. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals for four categories of exposure (<10(th), 10-50(th), 50-90(th), and >90(th) percentiles) compared with unexposed. Models were adjusted for maternal race, age at delivery, education, marital status, and smoking status. ResultsWe observed elevated ORs for congenital heart defects and certain structural defects affecting the gastrointestinal, genitourinary and musculoskeletal systems (e.g., OR [95% confidence interval] [highest exposure vs. unexposed] for tracheal esophageal fistula/esophageal atresia=1.98 [0.69, 5.66], and OR for atrial septal defects: 1.70 [1.34, 2.14]). ConclusionOur results provide some evidence of associations between residential exposure to agricultural pesticides and several birth defects phenotypes. Birth Defects Research (Part A) 106:240-249, 2016. (c) 2016 Wiley Periodicals, Inc. C1 [Rappazzo, Kristen M.] US EPA, Natl Ctr Environm Assessment, Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA. [Warren, Joshua L.] Yale Univ, Sch Publ Hlth, Dept Biostat, New Haven, CT USA. [Meyer, Robert E.] North Carolina Dept Hlth & Human Serv, Raleigh, NC USA. [Herring, Amy H.] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Biostat, Chapel Hill, NC USA. [Sanders, Alison P.] Icahn Sch Med Mt Sinai, Dept Prevent Med, New York, NY 10029 USA. [Brownstein, Naomi C.] Florida State Univ, Coll Med, Dept Behav Sci & Social Med, Tallahassee, FL 32306 USA. [Brownstein, Naomi C.] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA. [Luben, Thomas J.] US EPA, Natl Ctr Environm Assessment, Res Triangle Pk, NC 27711 USA. RP Rappazzo, KM (reprint author), US EPA, Natl Ctr Environm Assessment, Oak Ridge Inst Sci & Educ, Res Triangle Pk, NC 27711 USA. EM rappazzo.kristen@epa.gov OI Brownstein, Naomi/0000-0002-9991-427X; Sanders, Alison/0000-0001-8252-4016 FU U.S. Department of Energy; EPA; National Institute of Environmental Health Sciences [T32ES007018, P30ES010126, R01ES020619]; National Birth Defect Prevention Study CDC funds; NSF [0646083] FX Supported in part by an appointment to the Internship/Research Participation Program at Office of Research and Development (National Center for Environmental Assessment), U.S. Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and EPA. This research was supported in part by grants from the National Institute of Environmental Health Sciences (T32ES007018, P30ES010126, R01ES020619), National Birth Defect Prevention Study CDC funds, and the NSF Graduate Research Fellowship Program grant 0646083. NR 35 TC 1 Z9 1 U1 3 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1542-0752 EI 1542-0760 J9 BIRTH DEFECTS RES A JI Birth Defects Res. Part A-Clin. Mol. Teratol. PD APR PY 2016 VL 106 IS 4 BP 240 EP 249 DI 10.1002/bdra.23479 PG 10 WC Developmental Biology; Toxicology SC Developmental Biology; Toxicology GA DJ7GN UT WOS:000374380000003 PM 26970546 ER PT J AU Cao, YF Terebus, A Liang, J AF Cao, Youfang Terebus, Anna Liang, Jie TI State Space Truncation with Quantified Errors for Accurate Solutions to Discrete Chemical Master Equation SO BULLETIN OF MATHEMATICAL BIOLOGY LA English DT Article DE Stochastic biological networks; Discrete chemical master equation; State space truncation ID ESCHERICHIA-COLI; PHAGE-LAMBDA; BACTERIOPHAGE-LAMBDA; GENE-REGULATION; KINETICS; COOPERATIVITY; SENSITIVITY; LUMPABILITY; ACTIVATION; INITIATION AB The discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized. Here we describe a novel method for state space truncation. By partitioning a reaction network into multiple molecular equivalence groups (MEGs), we truncate the state space by limiting the total molecular copy numbers in each MEG. We further describe a theoretical framework for analysis of the truncation error in the steady-state probability landscape using reflecting boundaries. By aggregating the state space based on the usage of a MEG and constructing an aggregated Markov process, we show that the truncation error of a MEG can be asymptotically bounded by the probability of states on the reflecting boundary of the MEG. Furthermore, truncating states of an arbitrary MEG will not undermine the estimated error of truncating any other MEGs. We then provide an overall error estimate for networks with multiple MEGs. To rapidly determine the appropriate size of an arbitrary MEG, we also introduce an a priori method to estimate the upper bound of its truncation error. This a priori estimate can be rapidly computed from reaction rates of the network, without the need of costly trial solutions of the dCME. As examples, we show results of applying our methods to the four stochastic networks of (1) the birth and death model, (2) the single gene expression model, (3) the genetic toggle switch model, and (4) the phage lambda bistable epigenetic switch model. We demonstrate how truncation errors and steady-state probability landscapes can be computed using different sizes of the MEG(s) and how the results validate our theories. Overall, the novel state space truncation and error analysis methods developed here can be used to ensure accurate direct solutions to the dCME for a large number of stochastic networks. C1 [Cao, Youfang; Terebus, Anna; Liang, Jie] Univ Illinois, Dept Bioengn, Chicago, IL USA. [Cao, Youfang] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Theoret Biol & Biophys T6, Los Alamos, NM USA. RP Liang, J (reprint author), Univ Illinois, Dept Bioengn, Chicago, IL USA. EM youfangcao@gmail.com; atereb2@uic.edu; jliang@uic.edu FU NIH [GM079804]; NSF [MCB1415589]; Chicago Biomedical Consortium; Searle Funds at The Chicago Community Trust; LDRD program of CNLS at LANL FX This work is supported by NIH Grant GM079804, NSF Grant MCB1415589, and the Chicago Biomedical Consortium with support from the Searle Funds at The Chicago Community Trust. We thank Dr. Ao Ma for helpful discussions and comments. YC is also supported by the LDRD program of CNLS at LANL. NR 57 TC 2 Z9 3 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0092-8240 EI 1522-9602 J9 B MATH BIOL JI Bull. Math. Biol. PD APR PY 2016 VL 78 IS 4 BP 617 EP 661 DI 10.1007/s11538-016-0149-1 PG 45 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA DL1UX UT WOS:000375419200001 PM 27105653 ER PT J AU Xie, C Toops, TJ Lance, MJ Qu, J Viola, MB Lewis, SA Leonard, DN Hagaman, EW AF Xie, Chao Toops, Todd J. Lance, Michael J. Qu, Jun Viola, Michael B. Lewis, Samuel A. Leonard, Donovan N. Hagaman, Edward W. TI Impact of Lubricant Additives on the Physicochemical Properties and Activity of Three-Way Catalysts SO CATALYSTS LA English DT Article DE three way catalysts; phosphorus deactivation; ZDDP; ionic liquid; lubricant additive ID MISCIBLE IONIC LIQUID; PD/AL2O3; EXHAUST; ZDDP AB As alternative lubricant anti-wear additives are sought to reduce friction and improve overall fuel economy, it is important that these additives are also compatible with current emissions control catalysts. In the present work, an oil-miscible phosphorous-containing ionic liquid (IL), trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate ([P-66614][DEHP]), is evaluated for its impact on three-way catalysts (TWC) and benchmarked against the industry standard zinc-dialkyl-dithio-phosphate (ZDDP). The TWCs are aged in different scenarios: neat gasoline (no-additive, or NA), gasoline+ZDDP, and gasoline+IL. The aged samples, along with the as-received TWC, are characterized through various analytical techniques including catalyst reactivity evaluation in a bench-flow reactor. The temperatures of 50% conversion (T50) for the ZDDP-aged TWCs increased by 30, 24, and 25 degrees C for NO, CO, and C3H6, respectively, compared to the no-additive case. Although the IL-aged TWC also increased in T50 for CO and C3H6, it was notably less than ZDDP, 7 and 9 degrees C, respectively. Additionally, the IL-aged samples had higher water-gas-shift reactivity and oxygen storage capacity than the ZDDP-aged TWC. Characterization of the aged samples indicated the predominant presence of CePO4 in the ZDDP-aged TWC aged by ZDDP, while its formation was retarded in the case of IL where higher levels of AlPO4 is observed. Thus, results in this work indicate that the phosphonium-phosphate IL potentially has less adverse impact on TWC than ZDDP. C1 [Xie, Chao; Toops, Todd J.; Lance, Michael J.; Qu, Jun; Lewis, Samuel A.; Leonard, Donovan N.; Hagaman, Edward W.] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. [Viola, Michael B.] Gen Motors Inc, Warren, MI 48093 USA. [Xie, Chao] Tenneco Oil Co Inc, Grass Lake, MI 49240 USA. RP Toops, TJ (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM cxie1@tenneco.com; toopstj@ornl.gov; lancem@ornl.gov; qujn@ornl.gov; michael.b.viola@gm.com; lewissasr@ornl.gov; leonarddn@ornl.gov; hagamanew@ornl.gov RI Lance, Michael/I-8417-2016; OI Lance, Michael/0000-0001-5167-5452; Qu, Jun/0000-0001-9466-3179 FU Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, US Department of Energy (DOE); U.S. Department of Energy [DE-AC0500OR22725]; United States Government; Department of Energy FX Research was sponsored by the Vehicle Technologies Office, Office of Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The authors gratefully acknowledge the support and guidance of program managers Kevin Stork and Steve Przesmitzki at DOE. The authors thank E. Bardasz from Lubrizol for providing the ZDDP. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 21 TC 1 Z9 1 U1 8 U2 17 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4344 J9 CATALYSTS JI Catalysts PD APR PY 2016 VL 6 IS 4 AR 54 DI 10.3390/catal6040054 PG 15 WC Chemistry, Physical SC Chemistry GA DK8WZ UT WOS:000375210900006 ER PT J AU Wang, J Wu, ZX Han, LL Liu, YY Guo, JP Xin, HLL Wang, DL AF Wang, Jie Wu, Ze-Xing Han, Li-Li Liu, Yuan-Yang Guo, Jun-Po Xin, Huolin L. Wang, De-Li TI Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction SO CHINESE CHEMICAL LETTERS LA English DT Article DE Graphene nanoribbons; Carbon nanotube; Doping; Electrocatalyst; Oxygen reduction reaction ID METAL-FREE ELECTROCATALYSTS; CATALYST-FREE SYNTHESIS; CARBON NANOTUBES; BORON; NETWORKS; SURFACES; MELAMINE; COBALT AB In the present work, we report nitrogen and phosphorus co-doped 3-D structured carbon nanotube intercalated graphene nanoribbon composite. The graphene nanoribbons are prepared via partial exfoliation of multi-walled carbon nanotubes. In the graphene nanoribbons/CNTs composite, carbon nanotubes play a role of skeleton and support the exfoliated graphene nanoribbons to form the stereo structure. After high temperature heat-treatment with ammonium dihydrogen phosphate, the unique structure reserves both the properties of carbon nanotube and graphene, exhibiting excellent catalytic performance for the ORR with excellent onset and half-wave potential, which is similar to commercial Pt/C electrocatalysts. (C) 2016 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved. C1 [Wang, Jie; Wu, Ze-Xing; Liu, Yuan-Yang; Guo, Jun-Po; Wang, De-Li] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Hubei Key Lab Mat Chem & Serv Failure, Minist Educ,Key Lab Mat Chem Energy Convers & Sto, Wuhan 430074, Peoples R China. [Han, Li-Li; Xin, Huolin L.] Brookhaven Natl Lab, Ctr Funct Nanomat, Brookhaven, NY 11973 USA. [Han, Li-Li] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China. RP Wang, DL (reprint author), Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Hubei Key Lab Mat Chem & Serv Failure, Minist Educ,Key Lab Mat Chem Energy Convers & Sto, Wuhan 430074, Peoples R China. EM wangdl81125@hust.edu.cn RI Wang, Deli/K-5029-2012; Wang, Jie/H-3638-2015; Xin, Huolin/E-2747-2010 OI Wang, Jie/0000-0002-7188-3053; Xin, Huolin/0000-0002-6521-868X FU National Natural Science Foundation of China [21306060, 21573083]; Program for New Century Excellent Talents in University of Ministry of Education of China [NCET-13-0237]; Doctoral Fund of Ministry of Education of China [20130142120039]; Fundamental Research Funds for the Central University [2013TS136, 2014YQ009]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-SC0012704] FX This work was supported by the National Natural Science Foundation of China (Nos. 21306060, 21573083), the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-13-0237), the Doctoral Fund of Ministry of Education of China (No. 20130142120039), the Fundamental Research Funds for the Central University (Nos. 2013TS136, 2014YQ009). We thank Analytical and Testing Center of Huazhong University of Science and Technology for allowing us to use its facilities. S/TEM work was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences (No. DE-SC0012704). NR 32 TC 5 Z9 5 U1 25 U2 38 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1001-8417 EI 1878-5964 J9 CHINESE CHEM LETT JI Chin. Chem. Lett. PD APR PY 2016 VL 27 IS 4 BP 597 EP 601 DI 10.1016/j.cclet.2016.03.011 PG 5 WC Chemistry, Multidisciplinary SC Chemistry GA DL3AM UT WOS:000375506600024 ER PT J AU Leng, GY Tang, QH Huang, SZ Zhang, XJ AF Leng, Guoyong Tang, Qiuhong Huang, Shengzhi Zhang, Xuejun TI Extreme hot summers in China in the CMIP5 climate models SO CLIMATIC CHANGE LA English DT Article ID 2 DEGREES-C; PRECIPITATION EXTREMES; TEMPERATURE EXTREMES; HUMAN HEALTH; HEAT; IMPACT; RISK; SIMULATIONS; VARIABILITY; PROJECTIONS AB Given the severe impacts of hot summers on human and natural systems, we attempt to quantify future changes in extreme hot summer frequency in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) projections. Unlike previous studies focusing on fixed future time slices, we investigate the changes as a function of global mean temperature (GMT) rise. Analyses show that extreme hot summers (June-July-August mean temperature higher than 90% quantile of 1971-2000 climatology) are projected to occur at least 80% of the time across China with a GMT rise of 2 degrees C. The fraction of land area with extreme hot summers becoming the norm (median of future summer temperatures exceed the extreme) will increase from similar to 15 % with 0.5 degrees C of GMT rise to similar to 97 % with 2.5 degrees C GMT rise, which is much greater than for the global land surface as a whole. A distinct spatial pattern of the GMT rise threshold over which the local extreme hot summer first becomes the norm is revealed. When averaged over the country, the GMT rise threshold is 0.96 degrees C. Earth system models exhibit comparable results to climate system models, but with a relatively larger spread. Further analysis shows that the concurrence of hot and dry summers will increase significantly with the spatial structure of responses depending on the definition of drying. The increase of concurrent hot and dry conditions will induce potential droughts which would be more severe than those induced by only precipitation deficits. C1 [Leng, Guoyong; Tang, Qiuhong; Zhang, Xuejun] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China. [Leng, Guoyong] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Huang, Shengzhi] Xian Univ Technol, State Key Lab Base Ecohydraul Engn Arid Area, Xian 710048, Peoples R China. [Zhang, Xuejun] Univ Chinese Acad Sci, Beijing 100049, Peoples R China. RP Tang, QH (reprint author), Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China. EM tangqh@igsnrr.ac.cn OI Tang, Qiuhong/0000-0002-0886-6699 FU National Basic Research Program of China [2012CB955403]; National Natural Science Foundation of China [41425002, 41171031] FX We thank the editor and four anonymous reviewers for their thoughtful suggestions and comments that led to substantial improvements of the manuscript. This work was supported by the National Basic Research Program of China (Grant No. 2012CB955403), National Natural Science Foundation of China (Grant Nos. 41425002 and 41171031). We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. NR 57 TC 0 Z9 0 U1 6 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD APR PY 2016 VL 135 IS 3-4 BP 669 EP 681 DI 10.1007/s10584-015-1576-y PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DL2LQ UT WOS:000375466700022 ER PT J AU Li, G Caldwell, S Clark, JA Gulick, S Hecht, A Lascar, DD Levand, T Morgan, G Orford, R Savard, G Sharma, KS Van Schelt, J AF Li, Gang Caldwell, Shane Clark, Jason A. Gulick, Sidney Hecht, Adam Lascar, Daniel D. Levand, Tony Morgan, Graeme Orford, Rodney Savard, Guy Sharma, Kumar S. Van Schelt, Jonathon TI A compact cryogenic pump SO CRYOGENICS LA English DT Article DE Cryogenic pump; Liquid nitrogen; Centrifugal pump AB A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Li, Gang; Gulick, Sidney; Orford, Rodney] McGill Univ, Dept Phys, 3600 Univ St, Montreal, PQ H3A 2T8, Canada. [Li, Gang; Caldwell, Shane; Clark, Jason A.; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Orford, Rodney; Savard, Guy; Van Schelt, Jonathon] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Li, Gang] Canadian Nucl Labs, Div Nucl Sci, Chalk River, ON K0J 1J0, Canada. [Caldwell, Shane; Savard, Guy; Van Schelt, Jonathon] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Hecht, Adam] Univ New Mexico, Dept Nucl Engn, Albuquerque, NM 87131 USA. [Lascar, Daniel D.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Morgan, Graeme; Sharma, Kumar S.] Univ Manitoba, Dept Phys & Astron, Winnipeg, MB R3T 2N2, Canada. RP Li, G (reprint author), Canadian Nucl Labs, Div Nucl Sci, Chalk River, ON K0J 1J0, Canada. FU NSERC, Canada [216974]; U.S. Department of Energy [DE-AC02-06CH11357] FX The authors would like to thank Daniel Burke and Bruce Zabransky of Argonne National Laboratory, for productive conversations about mechanical engineering and cryogenic pumping. This work was carried out under the auspices of the NSERC, Canada, Application No. 216974, and the U.S. Department of Energy, by Argonne National Laboratory, under Contract No. DE-AC02-06CH11357. NR 11 TC 0 Z9 0 U1 7 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0011-2275 EI 1879-2235 J9 CRYOGENICS JI Cryogenics PD APR PY 2016 VL 75 BP 35 EP 37 DI 10.1016/j.cryogenics.2015.12.006 PG 3 WC Thermodynamics; Physics, Applied SC Thermodynamics; Physics GA DL0QW UT WOS:000375338600006 ER PT J AU Cate, JHD Ball, AS AF Cate, Jamie H. D. Ball, Andrew S. TI Editorial overview: Energy biotechnology SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Editorial Material C1 [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Bioimaging Div, Berkeley, CA 94720 USA. [Ball, Andrew S.] RMIT Univ, Sch Sci, Ctr Environm Sustainabil & Remediat, Bundoora, Vic 3083, Australia. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA.; Cate, JHD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Cate, JHD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Bioimaging Div, Berkeley, CA 94720 USA.; Ball, AS (reprint author), RMIT Univ, Sch Sci, Ctr Environm Sustainabil & Remediat, Bundoora, Vic 3083, Australia. EM jcate@lbl.gov; andy.ball@rmit.edu.au NR 1 TC 0 Z9 0 U1 1 U2 1 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD APR PY 2016 VL 38 BP V EP VII DI 10.1016/j.copbio.2016.02.019 PG 3 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DK3HO UT WOS:000374807900001 PM 26965392 ER PT J AU Estrela, R Cate, JHD AF Estrela, Raissa Cate, Jamie Harrison Doudna TI Energy biotechnology in the CRISPR-Cas9 era SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Review ID SACCHAROMYCES-CEREVISIAE; GENE-EXPRESSION; CAS SYSTEM; TARGETED MUTAGENESIS; CRISPR/CAS9 SYSTEM; GENOME; PLANTS; ACTIVATION; ENDONUCLEASE; REPRESSION AB The production of bioenergy from plant biomass previously relied on using microorganisms that rapidly and efficiently convert simple sugars into fuels and chemicals. However, to exploit the far more abundant carbon fixed in plant cell walls, future industrial production hosts will need to be engineered to leverage the most efficient biochemical pathways and most robust traits that can be found in nature. The CRISPR-Cas9 genome editing technology now enables writing the genome at will, which will allow biotechnology to become an 'information science.' This review covers recent advances in using CRISPR-Cas9 to engineer the genomes of a wide variety of organisms that could be use in the industrial production of biofuels and renewable chemicals. C1 [Estrela, Raissa; Cate, Jamie Harrison Doudna] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Cate, Jamie Harrison Doudna] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie Harrison Doudna] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Bioimaging Div, Berkeley, CA 94720 USA. RP Cate, JHD (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Cate, JHD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.; Cate, JHD (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Bioimaging Div, Berkeley, CA 94720 USA. EM jcate@lbl.gov FU CAPES [BEX18813127]; Energy Biosciences Institute FX RE acknowledges the financial support received from CAPES (BEX18813127). This work was also funded by the Energy Biosciences Institute. NR 52 TC 1 Z9 1 U1 26 U2 60 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD APR PY 2016 VL 38 BP 79 EP 84 DI 10.1016/j.copbio.2016.01.005 PG 6 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DK3HO UT WOS:000374807900013 PM 26874259 ER PT J AU Song, HS Ramkrishna, D AF Song, Hyun-Seob Ramkrishna, Doraiswami TI Comment on "Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production" by Baroukh et al. [Curr Opin Biotechnol. 2015, 33:198-205] SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Editorial Material ID MODES; COLI C1 [Song, Hyun-Seob] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Ramkrishna, Doraiswami] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. RP Song, HS (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM HyunSeob.Song@pnnl.gov NR 11 TC 1 Z9 1 U1 3 U2 10 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD APR PY 2016 VL 38 BP 198 EP 199 DI 10.1016/j.copbio.2016.02.026 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DK3HO UT WOS:000374807900029 PM 26994667 ER PT J AU Liu, WS Stewart, CN AF Liu, Wusheng Stewart, C. Neal, Jr. TI Plant synthetic promoters and transcription factors (vol 37, pg 36, 2016) SO CURRENT OPINION IN BIOTECHNOLOGY LA English DT Correction C1 [Liu, Wusheng; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN USA. [Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN USA.; Stewart, CN (reprint author), Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN USA. EM nealstewart@utk.edu NR 1 TC 0 Z9 0 U1 3 U2 3 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0958-1669 EI 1879-0429 J9 CURR OPIN BIOTECH JI Curr. Opin. Biotechnol. PD APR PY 2016 VL 38 BP 203 EP 203 PG 1 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA DK3HO UT WOS:000374807900031 PM 27064128 ER PT J AU Nogales, E Zhang, R AF Nogales, Eva Zhang, Rui TI Visualizing microtubule structural transitions and interactions with associated proteins SO CURRENT OPINION IN STRUCTURAL BIOLOGY LA English DT Article ID ALPHA-BETA-TUBULIN; NDC80 KINETOCHORE COMPLEX; 8 ANGSTROM RESOLUTION; PLUS-END-TRACKING; DYNAMIC INSTABILITY; STRUCTURES REVEAL; DYNACTIN COMPLEX; BINDING DOMAIN; GTP HYDROLYSIS; X-RAY AB Microtubules (MTs) have been the subject of cryo-electron microscopy (cryo-EM) studies since the birth of this technique. Although MTs pose some unique challenges, having to do with the presence of a MT seam, lattice variability and disorder, MT cryo-EM reconstructions are steadily improving in resolution and providing exciting new insights into MT structure and function. Recent work has lead to the atomic-detail visualization of lateral contacts between tubulin subunits and the conformational changes that give rise to strain in the MT lattice accompanying GTP hydrolysis. Cryo-EM has also been invaluable in describing the interactions between MTs and MT associated proteins (MAPs), which function to regulate MT dynamic instability, move cargoes, or contribute to other MT cellular processes. C1 [Nogales, Eva] Univ Calif Berkeley, Mol & Cell Biol Dept, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA. [Nogales, Eva; Zhang, Rui] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Nogales, Eva; Zhang, Rui] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. RP Nogales, E (reprint author), Univ Calif Berkeley, Mol & Cell Biol Dept, Berkeley, CA 94720 USA.; Nogales, E (reprint author), Univ Calif Berkeley, Inst QB3, Berkeley, CA 94720 USA.; Nogales, E (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA.; Nogales, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrat Bioimaging Div, Berkeley, CA 94720 USA. EM enogales@lbl.gov FU NIGMS [GM051487] FX This work was funded by a grant from NIGMS (GM051487 to E.N.). E.N. is a Howard Hughes Medical Institute investigator. NR 45 TC 7 Z9 7 U1 3 U2 8 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0959-440X EI 1879-033X J9 CURR OPIN STRUC BIOL JI Curr. Opin. Struct. Biol. PD APR PY 2016 VL 37 BP 90 EP 96 DI 10.1016/j.sbi.2015.12.009 PG 7 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA DK8FQ UT WOS:000375163000013 PM 26803284 ER PT J AU Ben, HX Jarvis, MW Nimlos, MR Gjersing, EL Sturgeon, MR Foust, TD Ragauskas, AJ Biddy, MJ AF Ben, Haoxi Jarvis, Mark W. Nimlos, Mark R. Gjersing, Erica L. Sturgeon, Matthew R. Foust, Thomas D. Ragauskas, Arthur J. Biddy, Mary J. TI Application of a Pyroprobe-Deuterium NMR System: Deuterium Tracing and Mechanistic Study of Upgrading Process for Lignin Model Compounds SO ENERGY & FUELS LA English DT Article ID RING-OPENING CATALYSTS; BIO-OIL; 1ST-PRINCIPLES CALCULATIONS; BIFUNCTIONAL CATALYSTS; REACTION NETWORK; HYDRODEOXYGENATION; METHYLCYCLOPENTANE; METHYLCYCLOHEXANE; PYROLYSIS; CYCLOHEXANE AB In this study, a pyroprobe-deuterium (H-2) NMR system has been used to identify isotopomer products formed during the deuteration and ring opening of lignin model compounds. Several common model compounds for lignin and its upgraded products, including guaiacol, syringol, toluene, p-xylene, phenol, catechol, cyclohexane, methylcyclohexane, and methylcydopentane, have been examined for selective ring opening. Similar pathways for upgrading of toluene and p-xylene has been found, which will undergo hydrogenation, methyl group elimination, and ring opening process, and benzene, cyclohexane, and methylcyclohexane have been found as major intermediates before ring opening. Very interestingly, the 2H NMR analysis for the deuterium-traced ring opening of catechol on Ir/gamma-Al2O3 is almost identical to the ring opening process for phenol. The ring opening processes for guaiacol and syringol appeared to be very complicated, as expected. Benzene, phenol, toluene, cyclohexane, and methylcyclohexane have been determined to be the major products. C1 [Ben, Haoxi; Jarvis, Mark W.; Nimlos, Mark R.; Gjersing, Erica L.; Sturgeon, Matthew R.; Foust, Thomas D.; Biddy, Mary J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Ragauskas, Arthur J.] Univ Tennessee, Dept Chem & Biomol Engn, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. RP Ben, HX; Jarvis, MW; Nimlos, MR; Biddy, MJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM benhaoxi@gmail.com; Mark.Jarvis@nrel.gov; Mark.Nimlos@nrel.gov; Mary.Biddy@nrel.gov OI Ragauskas, Arthur/0000-0002-3536-554X FU National Advanced Biofuels Consortium (NABC); U.S. Department of Energy FX The authors thank the National Advanced Biofuels Consortium (NABC) and the U.S. Department of Energy for supporting this research. NR 34 TC 1 Z9 1 U1 12 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD APR PY 2016 VL 30 IS 4 BP 2968 EP 2974 DI 10.1021/acs.energyfuels.5b02729 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DK3GF UT WOS:000374804400046 ER PT J AU Yazdanpanah, F Sokhansanj, S Lim, CJ Lau, A Bi, X AF Yazdanpanah, F. Sokhansanj, S. Lim, C. J. Lau, A. Bi, X. TI Gas Adsorption Capacity of Wood Pellets SO ENERGY & FUELS LA English DT Article ID DESORPTION METHOD; CARBON-MONOXIDE; EMISSIONS; STORAGE AB In this study, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material. C1 [Yazdanpanah, F.; Sokhansanj, S.; Lim, C. J.; Lau, A.; Bi, X.] Univ British Columbia, Chem & Biol Engn Dept, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. RP Yazdanpanah, F (reprint author), Univ British Columbia, Chem & Biol Engn Dept, Vancouver, BC V6T 1Z3, Canada. EM fyazdanpanah@chbe.ubc.ca NR 18 TC 0 Z9 0 U1 6 U2 7 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD APR PY 2016 VL 30 IS 4 BP 2975 EP 2981 DI 10.1021/acs.energyfuels.5b02736 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DK3GF UT WOS:000374804400047 ER PT J AU Linhoff, B Longmire, P Rearick, M McQuillan, D Perkins, G AF Linhoff, Benjamin Longmire, Patrick Rearick, Michael McQuillan, Denis Perkins, George TI Water quality and hydrogeochemistry of a basin and range watershed in a semi-arid region of northern New Mexico SO ENVIRONMENTAL EARTH SCIENCES LA English DT Article DE Uranium; Arsenic; Groundwater; Geochemistry; Water quality ID STABLE-ISOTOPES; FRESH-WATER; OXYGEN; GROUNDWATER; NITRATE; CHLORIDE/BROMIDE; SEAWATER; SYSTEMS; CARBON; RATIOS AB Hundreds of domestic wells in northern New Mexico, have concentrations of U, As, and NO3- that exceed the Environmental Protection Agency's (EPA) maximum contaminant level (MCL) for drinking water consumption. As part of a case study in groundwater quality, we collected groundwater samples from 749 domestic wells throughout the eastern half of the Espanola Basin. All water samples were analyzed for major ions, trace metals, and alkalinity. Selected samples were also analyzed for stable isotopes of O, H, and N. Of the wells we measured, 15, 173, and 99 had respective NO3-, U, and As concentrations that exceeded the EPA's MCL. Total dissolved solids (TDS), U, and HCO3- were elevated in the Sangre de Cristo mountain block and around the town of Nambe. Our findings suggest that roll-front U deposits and devitrification of volcanic ash result in elevated U near Nambe,while weathering of granitic rocks accounts for high U in the mountain block. Arsenic concentrations were high in much of the study area with the exception of the Santa Fe metro region and the mountain block. Elevated As concentrations can be explained by devitrification of volcanic ash, anion exchange with clays, and mixing with hydrothermal fluids. In wells with high NO3- concentrations, analysis of N isotopes are consistent with contamination from domestic wastewater effluent. Our findings suggest that the geochemistry of the region is largely influenced by local geology while groundwater contamination from domestic water treatment and wastewater effluent is an emerging issue. C1 [Linhoff, Benjamin; Longmire, Patrick; Rearick, Michael; Perkins, George] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Linhoff, Benjamin] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, 266 Woods Hole Rd,MS 25, Woods Hole, MA 02543 USA. [Longmire, Patrick] DOE Oversight Bur, NM Environm Dept, POB 1663,MS M894, Los Alamos, NM 87544 USA. [McQuillan, Denis] New Mexico Environm Dept, Harold Runnels Bldg, Santa Fe, NM 87505 USA. RP Linhoff, B (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA.; Linhoff, B (reprint author), Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, 266 Woods Hole Rd,MS 25, Woods Hole, MA 02543 USA. EM blinhoff@whoi.edu FU New Mexico Small Business Grant FX Funding for this work is provided by the New Mexico Small Business Grant. Data entry was provided by Mark Williams and Rebecca Boerigter. Fieldwork was completed by Lisa Henne, Maria Medina, Robert Italiano, Claudia Borchert, Melanie Delgado, Julia Oliver, Jesse Belcher, Gloria Miller, Jessica Tapia, Roberta Vigil, Brenda Sandoval, James Vincent, Melanie Sanchez, Benny Martinez, Doug Sayre, Mike Rearick, Karen Torres, Amanda King, Robert Gallegos, Dennis McQuillan, Patrick Longmire, and Ben Linhoff. We would also like to thank the reviewers of this article. NR 27 TC 0 Z9 0 U1 11 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6280 EI 1866-6299 J9 ENVIRON EARTH SCI JI Environ. Earth Sci. PD APR PY 2016 VL 75 IS 8 AR UNSP 640 DI 10.1007/s12665-015-5179-8 PG 13 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DK6VK UT WOS:000375063400011 ER PT J AU Weidemann, E Andersson, PL Bidleman, T Boman, C Carlin, DJ Collina, E Cormier, SA Gouveia-Figueira, SC Gullett, BK Johansson, C Lucas, D Lundin, L Lundstedt, S Marklund, S Nording, ML Ortuno, N Sallam, AA Schmidt, FM Jansson, S AF Weidemann, Eva Andersson, Patrik L. Bidleman, Terry Boman, Christoffer Carlin, Danielle J. Collina, Elena Cormier, Stephania A. Gouveia-Figueira, Sandra C. Gullett, Brian K. Johansson, Christer Lucas, Donald Lundin, Lisa Lundstedt, Staffan Marklund, Stellan Nording, Malin L. Ortuno, Nuria Sallam, Asmaa A. Schmidt, Florian M. Jansson, Stina TI 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Products of incomplete combustion; Human health; Soot; Particles; Polychlorinated dibenzo-p-dioxins; Polychlorinated dibenzofurans; Congress paper ID MASS-SPECTROMETRY; VIRUS-INFECTION; FLUE-GAS; WASTE; PYROLYSIS; DECOMPOSITION; EMISSION; LIGNINS; DIOXINS; CARBON AB The 14th International Congress on Combustion By-Products and Their Health Effects was held in UmeAyen, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants. C1 [Weidemann, Eva; Andersson, Patrik L.; Bidleman, Terry; Gouveia-Figueira, Sandra C.; Lundin, Lisa; Lundstedt, Staffan; Nording, Malin L.; Jansson, Stina] Umea Univ, Dept Chem, Umea, Sweden. [Boman, Christoffer; Schmidt, Florian M.] Umea Univ, Dept Appl Phys & Elect, Thermochem Energy Convers Lab, Umea, Sweden. [Carlin, Danielle J.] NIEHS, Dept Hlth & Human Serv, NIH, POB 12233, Res Triangle Pk, NC 27709 USA. [Collina, Elena] Univ Milano Bicocca, Dept Earth & Environm Sci, Milan, Italy. [Cormier, Stephania A.; Sallam, Asmaa A.] Univ Tennessee, Ctr Hlth Sci, Dept Pediat, Memphis, TN 38163 USA. [Cormier, Stephania A.; Sallam, Asmaa A.] Le Bonheur Childrens Hosp, Childrens Fdn Res Inst, Memphis, TN USA. [Gullett, Brian K.] US EPA, Off Res & Dev, Natl Risk Management Res Lab, Res Triangle Pk, NC 27711 USA. [Johansson, Christer] Stockholm Univ, Dept Environm Sci & Analyt Chem, S-10691 Stockholm, Sweden. [Johansson, Christer] Environm & Hlth Adm, Stockholm, Sweden. [Lucas, Donald] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Marklund, Stellan] Umea Univ, Bio4Energy, Umea, Sweden. [Ortuno, Nuria] Univ Alicante, Dept Chem Engn, E-03080 Alicante, Spain. RP Weidemann, E (reprint author), Umea Univ, Dept Chem, Umea, Sweden. EM eva.weidemann@umu.se RI Ortuno Garcia, Nuria/E-7127-2017; OI Ortuno Garcia, Nuria/0000-0003-0442-4890; Nording, Malin/0000-0002-1732-8147; Weidemann, Eva/0000-0001-5415-9330 FU National Institutes of Environmental Health Sciences; Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning-Formas [219-2014-291] FX The 14th Combustion By-Products and Their Health Effects Congress was supported by funds from National Institutes of Environmental Health Sciences to SC, and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning-Formas (219-2014-291) to SJ, CB, MLN, LL, and EW. NR 23 TC 0 Z9 0 U1 9 U2 19 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD APR PY 2016 VL 23 IS 8 BP 8141 EP 8159 DI 10.1007/s11356-016-6308-y PG 19 WC Environmental Sciences SC Environmental Sciences & Ecology GA DK5XN UT WOS:000374994600105 PM 26906006 ER PT J AU Nagle, RD Congdon, JD AF Nagle, Roy D. Congdon, Justin D. TI REPRODUCTIVE ECOLOGY OF GRAPTEMYS GEOGRAPHICA OF THE JUNIATA RIVER IN CENTRAL PENNSYLVANIA, WITH RECOMMENDATIONS FOR CONSERVATION SO HERPETOLOGICAL CONSERVATION AND BIOLOGY LA English DT Article DE body temperature; clutch size; coal tailings; Graptemys geographica; map turtle; mitigation; nesting; offspring size; reproductive frequency ID FRESH-WATER TURTLES; CHRYSEMYS-PICTA-MARGINATA; COMMON SNAPPING TURTLE; LONG-LIVED ORGANISMS; ADULT LIFE-SPAN; CHELYDRA-SERPENTINA; NESTING ECOLOGY; MAP TURTLES; ROAD MORTALITY; BODY-SIZE AB From 2000-2008, we examined the reproductive and nesting ecology of Northern Map Turtles (Graptemys geographica) in central Pennsylvania, USA, at a mitigated nesting area associated with construction of a new highway and at an adjacent area of coal tailings. The first day of nesting varied by 29 d among years and was correlated with the number of heating degree days in May (i.e., colder springs were associated with later start dates). Substantial variation in body size was found among reproductive females, with a range of carapace lengths (CL) of 79 mm and a 3.8-fold difference in body mass. Larger females showed a weak but significant tendency to nest earlier than smaller females each year. Females captured on coal tailings had significantly higher body temperatures than females in the mitigated area. We estimated minimum female age at maturity at 9 y and the median age at 14 y from counts of scute annuli. Population age structure was probably much broader (and older) than that indicated by our age estimates, however, because more than a quarter of all adult females appeared to be too old to accurately age. Clutch size averaged 10.3 eggs and increased with female body size. Larger and heavier females also produced larger and heavier hatchlings. We estimate that 12-21% of females produced two clutches annually, and 0.5% of females produced three clutches. Our primary goals of protecting adult females and documenting reproductive ecology were achieved, yet additional work is needed to ensure long-term success of the mitigated nesting area. Several conservation challenges threaten the Mount Union site that may impact future population viability of Northern Map Turtles of the Juniata River. C1 [Nagle, Roy D.] Juniata Coll, Environm Sci & Studies, 1700 Moore St, Huntingdon, PA 16652 USA. [Congdon, Justin D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Congdon, Justin D.] Bar Boot Ranch, Box 1128, Douglas, AZ 85608 USA. RP Nagle, RD (reprint author), Juniata Coll, Environm Sci & Studies, 1700 Moore St, Huntingdon, PA 16652 USA. EM nagle@juniata.edu FU Office of Biological and Environmental Research, U.S. Department of Energy [DE-FC09-96SR18546] FX We thank Dain Davis, Tom Yocum, and Warren Rourke of the Pennsylvania Department of Transportation, Jeff Schmid and Chris Urban of the Pennsylvania Fish and Boat Commission, and Tom Pluto of the U.S. Army Corps of Engineers for support. We also thank Clayton Lutz, Juliana Hillegass, Jessica Taylor, David Hayes, Andy Pyle, Vince Eilenberger, and Tim Enedy for field assistance and Joe and Nathan Kovalchick for providing access to the coal tailings area. Drafts of the manuscript were improved by comments from Nancy Dickson, Christopher Grant, Tracy Lynch, and Mike Pappas. Our research was conducted within the American Society of Ichthyologists and Herpetologists guidelines and protocols were approved by Juniata's Institutional Animal Care and Use Committee (2008-02-002). Research and manuscript preparation were aided by the Office of Biological and Environmental Research, U.S. Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation and the Savannah River Ecology Laboratory. NR 69 TC 0 Z9 0 U1 3 U2 3 PU HERPETOLOGICAL CONSERVATION & BIOLOGY PI CORVALLIS PA C/O R BRUCE BURY, USGS FOREST & RANGELAND, CORVALLIS, OR 00000 USA SN 2151-0733 EI 1931-7603 J9 HERPETOL CONSERV BIO JI Herpetol. Conserv. Biol. PD APR PY 2016 VL 11 IS 1 BP 232 EP 243 PG 12 WC Zoology SC Zoology GA DK9LL UT WOS:000375251800024 ER PT J AU Tom, N Yeung, RW AF Tom, Nathan Yeung, Ronald W. TI Experimental Confirmation of Nonlinear-Model-Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion SO IEEE JOURNAL OF OCEANIC ENGINEERING LA English DT Article DE Bang-bang control; energy capture; marine technology; nonlinear constrained optimization; power control; surface waves; wave energy ID PHASE-CONTROL; CONVERTERS; POWER; DEVICE; BUOY AB To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control. C1 [Tom, Nathan; Yeung, Ronald W.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Tom, Nathan] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yeung, RW (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM rwyeung@berkeley.edu FU King Abdullah University of Science and Technology (KAUST)/University of California Berkeley [25478]; U.S. Office of Naval Research [N00014-09-1-1086]; American Bureau of Shipping, under an Endowed Chair in Ocean Engineering FX This work was supported in part by the King Abdullah University of Science and Technology (KAUST)/University of California Berkeley under Grant 25478; by the U.S. Office of Naval Research under Grant N00014-09-1-1086; and by the American Bureau of Shipping, under an Endowed Chair in Ocean Engineering of the correspondence author. NR 51 TC 0 Z9 0 U1 5 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0364-9059 EI 1558-1691 J9 IEEE J OCEANIC ENG JI IEEE J. Ocean. Eng. PD APR PY 2016 VL 41 IS 2 BP 281 EP 295 DI 10.1109/JOE.2015.2439871 PG 15 WC Engineering, Civil; Engineering, Ocean; Engineering, Electrical & Electronic; Oceanography SC Engineering; Oceanography GA DK5MC UT WOS:000374963000005 ER PT J AU Sabbi, G Ghini, JB Gourlay, SA Marchevsky, M Ravaioli, E ten Kate, H Verweij, A Wang, XR AF Sabbi, Gianluca Ghini, Jonas Blomberg Gourlay, Stephen A. Marchevsky, Maxim Ravaioli, Emmanuele ten Kate, Herman Verweij, Arjan Wang, Xiaorong TI Design Study of a 16-T Block Dipole for FCC SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE CLIQ; Nb3Sn accelerator dipoles ID TESLA NB3SN DIPOLE; 35 MM BORE; MAGNET; HD2 AB The Future Circular Collider (FCC) study at CERN is investigating the design of a proton-proton collider with a center of mass energy of 100 TeV and a tunnel circumference of 100 km (FCC-hh). Nb3Sn arc dipoles with 50-mm aperture and 16-T operating field are required for this application. Among the possible magnetic layouts, block coils offer attractive features, in terms of conductor packing, separation between high-field and high-stress locations, use of flat cables, and simpler geometries for windings and parts. In order to assess these potential advantages, the HD series of block-coil models was developed at LBNL. These models achieved fields of 15-16 T in technology tests, and 13-14 T in accelerator relevant configurations, with bore diameters of 36-43 mm. In this paper, we discuss the implications of increasing the bore diameter to 50 mm, which is consistent with the latest FCC-hh design targets. A detailed quench protection analysis is performed using the new coupling-loss-based CLIQ system, expanding the safe parameter space with respect to the traditional approach based on quench heaters. Finally, alternative magnet design options, and further studies required to select among them, are outlined. C1 [Sabbi, Gianluca; Gourlay, Stephen A.; Marchevsky, Maxim; Wang, Xiaorong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ghini, Jonas Blomberg; Ravaioli, Emmanuele; ten Kate, Herman; Verweij, Arjan] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. RP Sabbi, G; Gourlay, SA; Marchevsky, M; Wang, XR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Ghini, JB; Ravaioli, E; ten Kate, H; Verweij, A (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. EM GLSabbi@lbl.gov; Jonas.Blomberg.Ghini@cern.ch; SAGourlay@lbl.gov; MMartchevskii@lbl.gov; Emmanuele.Ravaioli@cern.ch; Herman.TenKate@cern.ch; Arjan.Verweij@cern.ch; XRWang@lbl.gov FU U.S. DOE Office of High Energy Physics [DE-AC02-05CH11231] FX This work was supported in part by the U.S. DOE Office of High Energy Physics under Contract DE-AC02-05CH11231. NR 29 TC 1 Z9 1 U1 3 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD APR PY 2016 VL 26 IS 3 AR 4004705 DI 10.1109/TASC.2016.2537538 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DK5WF UT WOS:000374991100001 ER PT J AU Benaglia, A Auffray, E Lecoq, P Wenzel, H Para, A AF Benaglia, Andrea Auffray, Etiennette Lecoq, Paul Wenzel, Hans Para, Adam TI Space-Time Development of Electromagnetic and Hadronic Showers and Perspectives for Novel Calorimetric Techniques SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Dual readout; hadron calorimetry; simulation; timing AB The performance of hadronic calorimeters will be a key parameter at the next generation of High Energy Physics accelerators. A detector combining fine granularity with excellent timing information would prove beneficial for the reconstruction of both jets and electromagnetic particles with high energy resolution. In this work, the space and time structure of high energy showers is studied by means of a GEANT4-based simulation toolkit. In particular, the relevant time scales of the different physics phenomena contributing to the energy loss are investigated. A correlation between the fluctuations of the energy deposition of high energy hadrons and the time development of the showers is observed, which allows for an event-by-event correction to be computed to improve the energy resolution of the calorimeter. These studies are intended to set the basic requirements for the development of a new-concept, total absorption time-imaging calorimeter, which seems now within reach thanks to major technological advancements in the production of fast scintillating materials and compact photodetectors. C1 [Benaglia, Andrea; Auffray, Etiennette; Lecoq, Paul] CERN, CH-1211 Geneva, Switzerland. [Wenzel, Hans; Para, Adam] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Benaglia, A (reprint author), CERN, CH-1211 Geneva, Switzerland.; Para, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM andrea.benaglia@cern.ch; para@fnal.gov FU European Research Council under the European Union's Seventh Framework Programme (FP) under ERC Grant [338953-TICAL, 289355-PicoSEC-MCNet]; United States Department of Energy [DE-AC02-07CH11359] FX The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) under ERC Grant Agreement 338953-TICAL and under Grant Agreement 289355-PicoSEC-MCNet. Fermilab is operated by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the United States Department of Energy. NR 11 TC 1 Z9 1 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 574 EP 579 DI 10.1109/TNS.2016.2527758 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JF UT WOS:000375028700027 ER PT J AU Anderson, D Apresyan, A Bornheim, A Duarte, J Pena, C Ronzhin, A Spiropulu, M Trevor, J Xie, S AF Anderson, Dustin Apresyan, Artur Bornheim, Adolf Duarte, Javier Pena, Cristian Ronzhin, Anatoly Spiropulu, Maria Trevor, Jason Xie, Si TI Precision Timing Calorimeter for High Energy Physics SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Calorimetry; Large Hadron Collider; timing ID CRYSTALS AB We present studies on the performance and characterization of the time resolution of LYSO-based calorimeters. Results for an LYSO sampling calorimeter and an LYSO-tungsten Shashlik calorimeter are presented. We demonstrate that a time resolution of 30 ps is achievable for the LYSO sampling calorimeter. We discuss timing calorimetry as a tool for mitigating the effects due to the large number of simultaneous interactions in the high luminosity environment foreseen for the Large Hadron Collider. C1 [Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Duarte, Javier; Pena, Cristian; Spiropulu, Maria; Trevor, Jason; Xie, Si] CALTECH, Dept Phys, Pasadena, CA 91125 USA. [Ronzhin, Anatoly] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Pena, C (reprint author), CALTECH, Dept Phys, Pasadena, CA 91125 USA.; Ronzhin, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM cristian.pena@caltech.edu; ronzhin@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy; California Institute of Technology High Energy Physics [DE-SC0011925] FX This work was supported in part by Fermi Research Alliance, LLC under Contract no. DE-AC02-07CH11359 with the United States Department of Energy and in part by the California Institute of Technology High Energy Physics under Contract DE-SC0011925 with the United States Department of Energy. NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 591 EP 595 DI 10.1109/TNS.2016.2528166 PN 1 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JF UT WOS:000375028700030 ER PT J AU Abu-Nimeh, FT Ito, J Moses, WW Peng, QY Choong, WS AF Abu-Nimeh, Faisal T. Ito, Jennifer Moses, William W. Peng, Qiyu Choong, Woon-Seng TI Architecture and Implementation of OpenPET Firmware and Embedded Software SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Electronics; instrumentation; nuclear imaging; open source hardware; open source software AB OpenPET is an open source, modular, extendible, and high-performance platform suitable for multi-channel data acquisition and analysis. Due to the flexibility of the hardware, firmware, and software architectures, the platform is capable of interfacing with a wide variety of detector modules not only in medical imaging but also in homeland security applications. Analog signals from radiation detectors share similar characteristics-a pulse whose area is proportional to the deposited energy and whose leading edge is used to extract a timing signal. As a result, a generic design method of the platform is adopted for the hardware, firmware, and software architectures and implementations. The analog front-end is hosted on a module called a Detector Board, where each board can filter, combine, timestamp, and process multiple channels independently. The processed data is formatted and sent through a backplane bus to a module called Support Board, where 1 Support Board can host up to eight Detector Board modules. The data in the Support Board, coming from 8 Detector Board modules, can be aggregated or correlated (if needed) depending on the algorithm implemented or runtime mode selected. It is then sent out to a computer workstation for further processing. The number of channels (detector modules), to be processed, mandates the overall OpenPET System Configuration, which is designed to handle up to 1,024 channels using 16-channel Detector Boards in the Standard System Configuration and 16,384 channels using 32-channel Detector Boards in the Large System Configuration. C1 [Abu-Nimeh, Faisal T.; Ito, Jennifer; Moses, William W.; Peng, Qiyu; Choong, Woon-Seng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Abu-Nimeh, FT (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ftabunimeh@lbl.gov OI Abu-Nimeh, Faisal/0000-0001-9009-9953 FU Office of Science, Office of Biological and Environmental Research, Medical Science Division of the U.S. Department of Energy [DE-AC02-05CH11231]; National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering [R01EB016104] FX This work was supported in part by the Director, Office of Science, Office of Biological and Environmental Research, Medical Science Division of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and in part by the National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering under Grant R01EB016104. NR 3 TC 0 Z9 0 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 620 EP 629 DI 10.1109/TNS.2015.2499600 PN 1 PG 10 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JF UT WOS:000375028700034 PM 27110034 ER PT J AU Oktyabrsky, S Yakimov, M Tokranov, V Murat, P AF Oktyabrsky, Serge Yakimov, Michael Tokranov, Vadim Murat, Pavel TI Integrated Semiconductor Quantum Dot Scintillation Detector: Ultimate Limit for Speed and Light Yield SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Optical waveguides; quantum dots; semiconductor radiation detectors; solid scintillation detectors ID LIFT-OFF; ELECTRONIC-STRUCTURE; GAAS; LAYER; HETEROSTRUCTURES; DEVICES; FILMS; ALAS AB A picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<10(15) cm(-3)), fast (similar to 5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductor scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (>1 cm(3)) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates > 100 MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information. C1 [Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim] SUNY Albany, Coll Nanoscale Sci, Albany, NY 12203 USA. [Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim] SUNY Albany, Coll Engn, Albany, NY 12203 USA. [Murat, Pavel] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Oktyabrsky, S; Yakimov, M; Tokranov, V (reprint author), SUNY Albany, Coll Nanoscale Sci, Albany, NY 12203 USA.; Oktyabrsky, S; Yakimov, M; Tokranov, V (reprint author), SUNY Albany, Coll Engn, Albany, NY 12203 USA.; Murat, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM soktyabrsky@sunycnse.com; myakimov@sunycnse.com; vtokranov@suny-cnse.com; murat@fnal.gov NR 38 TC 0 Z9 0 U1 5 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 656 EP 663 DI 10.1109/TNS.2015.2502426 PN 1 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JF UT WOS:000375028700040 ER PT J AU Quiter, BJ Joshi, THY Bandstra, MS Vetter, K AF Quiter, Brian J. Joshi, Tenzing H. Y. Bandstra, Mark S. Vetter, Kai TI CsI(Na) Detector Array Characterization for ARES Program SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma-ray detectors; position sensitive particle detectors; solid scintillation detectors; radiation imaging; security applications AB Researchers at Lawrence Berkeley National Laboratory have been supporting the Transformational and Applied Research Directorate in the Domestic Nuclear Detection Office of the Department of Homeland Security to define needs for, to develop, and to test a scintillator-based radiation detection and localization system to be fielded on a helicopter platform the so-called Airborne Radiological Enhanced-sensor System. The system comprises an array of 92 CsI(Na) detectors that are arranged to function as an active mask to encode the directionality in the roll-dimension of measured gamma rays and is additionally capable of Compton imaging. Additional contextual sensors and specially-developed algorithms are also being fielded for characterization with the goal of detecting, localizing, and helping to interdict radiological and nuclear threats via airborne search. The algorithms that are being developed leverage contextual information including topography, geography, hyperspectral imagery, video tracking, and platform positioning. This paper describes recent characterization efforts of the CsI(Na) detector system including energy, position, and timing resolution and synchronization between the 184 individual photomultiplier tubes. C1 [Quiter, Brian J.; Joshi, Tenzing H. Y.; Bandstra, Mark S.; Vetter, Kai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Appl Nucl Phys Program, MS50C3396, Berkeley, CA 94720 USA. [Vetter, Kai] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Quiter, BJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Appl Nucl Phys Program, MS50C3396, Berkeley, CA 94720 USA. FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-11-X-00380] FX This work was supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office under IAA HSHQDC-11-X-00380. This support does not constitute an express or implied endorsement on the part of the Government. NR 4 TC 0 Z9 0 U1 2 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 673 EP 678 DI 10.1109/TNS.2016.2523883 PN 1 PG 6 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JF UT WOS:000375028700042 ER PT J AU Biedron, S Chin, YH Craievich, P Fabris, A Zwaska, R AF Biedron, Sandra Chin, Yong Ho Craievich, Paolo Fabris, Alessandro Zwaska, Robert TI 2016 Special Issue Dedicated to Particle Accelerators Comments by the Editors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Editorial Material C1 [Biedron, Sandra] Colorado State Univ, Ft Collins, CO 80523 USA. [Biedron, Sandra] Univ Ljubljana, Ljubljana, Slovenia. [Chin, Yong Ho] KEK High Energy Accelerator Res Org, Ibaraki, Japan. [Craievich, Paolo] Paul Scherrer Inst, Villigen, Switzerland. [Fabris, Alessandro] Elettra Sincrotrone Trieste, Basovizza, Italy. [Zwaska, Robert] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Biedron, S (reprint author), Colorado State Univ, Ft Collins, CO 80523 USA.; Biedron, S (reprint author), Univ Ljubljana, Ljubljana, Slovenia. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 691 EP 692 DI 10.1109/TNS.2016.2546819 PN 2 PG 2 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000001 ER PT J AU Nassiri, A Chase, B Craievich, P Fabris, A Frischholz, H Jacob, J Jensen, E Jensen, M Kustom, R Pasquinelli, R AF Nassiri, A. Chase, B. Craievich, P. Fabris, A. Frischholz, H. Jacob, J. Jensen, E. Jensen, M. Kustom, R. Pasquinelli, R. TI History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Cavity; colliders; energy recovery linac (ERL); inductive output tube (IOT); klystron; linac; magnetron; particle accelerator; radio frequency (RF); solid-state amplifier; storage ring; superconducting radio frequency (RF); synchrotron; tetrode ID RESONATOR; CAVITY; LINACS; FIELD AB This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideroe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators. C1 [Nassiri, A.; Kustom, R.] Argonne Natl Lab, Lemont, IL 60439 USA. [Chase, B.; Pasquinelli, R.] Fermi Natl Accelerator Natl Lab FNAL, Batavia, IL 60510 USA. [Craievich, P.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Fabris, A.] Elettra Sincrotrone Trieste SCpA, I-34149 Trieste, Italy. [Frischholz, H.; Jensen, E.] European Org Nucl Res CERN, CH-1211 Geneva 23, Switzerland. [Jacob, J.] European Synchrotron Radiat Facil, F-38000 Grenoble, France. [Jensen, M.] European Spallat Source, S-22363 Lund, Sweden. RP Kustom, R (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA.; Chase, B; Pasquinelli, R (reprint author), Fermi Natl Accelerator Natl Lab FNAL, Batavia, IL 60510 USA.; Craievich, P (reprint author), Paul Scherrer Inst, CH-5232 Villigen, Switzerland.; Fabris, A (reprint author), Elettra Sincrotrone Trieste SCpA, I-34149 Trieste, Italy.; Jensen, E (reprint author), European Org Nucl Res CERN, CH-1211 Geneva 23, Switzerland.; Jacob, J (reprint author), European Synchrotron Radiat Facil, F-38000 Grenoble, France.; Jensen, M (reprint author), European Spallat Source, S-22363 Lund, Sweden. EM chase@fnal.gov; paolo.craievich@psi.ch; Alessandro.fabris@elettra.eu; frischcom@sunrise.ch; jacob@esrf.fr; Erk.Jensen@cern.ch; Morten.Jensen@esss.se; rlk@aps.anl.gov; pasquin@fnal.gov NR 244 TC 0 Z9 0 U1 7 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 707 EP 750 DI 10.1109/TNS.2015.2485164 PN 2 PG 44 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000004 ER PT J AU Bottura, L Gourlay, SA Yamamoto, A Zlobin, AV AF Bottura, Luca Gourlay, Stephen A. Yamamoto, Akira Zlobin, Alexander V. TI Superconducting Magnets for Particle Accelerators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Accelerator; magnet; superconducting ID LOW-BETA INSERTIONS; PARC NEUTRINO EXPERIMENT; DIPOLE MAGNET; STORAGE-RING; HIGH-ENERGY; BEAM LINE; DESIGN; SYSTEM; LHC; QUADRUPOLES AB In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications. C1 [Bottura, Luca] CERN, TE-MSC M24500, CH-1211 Geneva 23, Switzerland. [Gourlay, Stephen A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Yamamoto, Akira] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Yamamoto, Akira] CERN, Tsukuba, Ibaraki 3050801, Japan. [Zlobin, Alexander V.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RP Bottura, L (reprint author), CERN, TE-MSC M24500, CH-1211 Geneva 23, Switzerland.; Gourlay, SA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Yamamoto, A (reprint author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan.; Zlobin, AV (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM Luca.Bottura@cern.ch; sagourlay@lbl.gov; akira.yamamoto@kek.jp; zlobin@fnal.gov NR 169 TC 0 Z9 0 U1 4 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 751 EP 776 DI 10.1109/TNS.2015.2485159 PN 2 PG 26 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000005 ER PT J AU Barzi, E Zlobin, AV AF Barzi, Emanuela Zlobin, Alexander V. TI Research and Development of Nb3Sn Wires and Cables for High-Field Accelerator Magnets SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Accelerator magnets; composite wire; Nb3Sn superconductor; Rutherford cable; R&D directions ID RUTHERFORD-TYPE CABLES; INTERSTRAND CONTACT RESISTANCE; CRITICAL-CURRENT DENSITY; FINE-GRAIN SIZE; CONDUCTOR DEVELOPMENT; HEAT-TREATMENT; INTERNAL-TIN; SUPERCONDUCTING PROPERTIES; MULTIFILAMENTARY STRANDS; PHASE GROWTH AB The latest strategic plans for high energy physics endorse steadfast superconducting magnet technology R&D for future energy frontier facilities. This includes 10 to 16 T Nb3Sn accelerator magnets for the luminosity upgrades of the Large Hadron Collider and eventually for a future 100 TeV-scale proton-proton (pp) collider. This paper describes the multi-decade R&D investment in the Nb3Sn superconductor technology, which was crucial to produce the first reproducible 10 to 12 T accelerator-quality dipoles and quadrupoles, as well as their scale-up. We also indicate prospective research areas in superconducting Nb3Sn wires and cables to achieve the next goals for superconducting accelerator magnets. Emphasis is on increasing performance and decreasing costs while pushing the Nb3Sn technology to its limits for future colliders. C1 [Barzi, Emanuela; Zlobin, Alexander V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Barzi, E; Zlobin, AV (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM barzi@fnal.gov; zlobin@fnal.gov NR 141 TC 1 Z9 1 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 783 EP 803 DI 10.1109/TNS.2015.2500440 PN 2 PG 21 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000007 ER PT J AU Shchegolkov, DY Simakov, EI Zholents, AA AF Shchegolkov, Dmitry Y. Simakov, Evgenya I. Zholents, Alexander A. TI Towards a Practical Multi-Meter Long Dielectric Wakefield Accelerator: Problems and Solutions SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Beam breakup instability; BNS damping; collinear wakefield accelerator; dielectric wakefield accelerator; electron bunch shaping ID WAKE FIELDS; WAVE-GUIDE AB A multi-meter long collinear dielectric wakefield accelerator is considered, and it is shown that a single bunch breakup instability is a major limiting factor for obtaining highly efficient energy transfer from the drive bunch to the main bunch. Different methods for instability suppression are studied. Numerical simulations using a 6D particle tracking computer code are performed and tolerances to various errors are defined. C1 [Shchegolkov, Dmitry Y.; Simakov, Evgenya I.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Zholents, Alexander A.] Argonne Natl Lab, Lemont, IL 60439 USA. RP Shchegolkov, DY (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM d_shcheg@lanl.gov OI Shchegolkov, Dmitry/0000-0002-0721-3397; Simakov, Evgenya/0000-0002-7483-1152 NR 28 TC 0 Z9 0 U1 1 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 804 EP 811 DI 10.1109/TNS.2015.2482820 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000008 ER PT J AU Zobov, M Valishev, A Shatilov, D Milardi, C De Santis, A Drago, A Gallo, A AF Zobov, Mikhail Valishev, Alexander Shatilov, Dmitry Milardi, Catia De Santis, Antonio Drago, Alessandro Gallo, Alessandro TI Simulation of Crab Waist Collisions in DA Phi NE with KLOE-2 Interaction Region SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Colliding beam accelerators; particle beam optics; storage rings AB After the successful completion of the SIDDHARTA experiment run with crab waist collisions, the electron-positron collider DA Phi NE has started routine operations for the KLOE-2 detector. Similarly to the SIDDHARTA configuration, the new interaction region exploits the crab waist collision scheme, but features certain complications including the experimental detector solenoid, compensating anti-solenoids, and tilted quadrupole magnets, that lead to significant coupling of the horizontal and vertical betatron motion. It is not immediately obvious if the crab waist scheme would be as efficient in the strongly coupled case as it was in the uncoupled configuration. We have performed simulations of beam-beam interactions in the collider taking into account the real machine nonlinear lattice. In particular, we have evaluated the effect of crab waist sextupoles and beam-beam interactions on the collider dynamical aperture and energy acceptance. A new betatron tune working point has been proposed for the DA Phi NE electron ring, and its implementation resulted in more than 20% background reduction and injection efficiency improvement. Exploiting this working point has allowed reaching the best present luminosity of 2.0 x 10(32) cm(-2) s(-1). The numerical simulations have shown that for the given bunch currents in collision, the powering of the crab waist sextupoles should decrease the beam core blow up by a factor of 2 indicating that even higher luminosity can be achieved in DA Phi NE thus encouraging further collider optimization. C1 [Valishev, Alexander] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Zobov, Mikhail; Milardi, Catia; De Santis, Antonio; Drago, Alessandro; Gallo, Alessandro] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Rome, Italy. [Shatilov, Dmitry] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. RP Valishev, A (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM valishev@fnal.gov RI De Santis, Antonio/J-1453-2012 OI De Santis, Antonio/0000-0002-8613-8128 NR 18 TC 0 Z9 0 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 818 EP 822 DI 10.1109/TNS.2016.2536439 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000010 ER PT J AU Fabris, A Byrd, J D'Auria, G Doolittle, L Gelmetti, F Huang, G Jones, J Milloch, M Predonzani, M Ratti, A Rohlev, T Salom, A Serrano, C Stettler, M AF Fabris, A. Byrd, J. D'Auria, G. Doolittle, L. Gelmetti, F. Huang, G. Jones, J. Milloch, M. Predonzani, M. Ratti, A. Rohlev, T. Salom, A. Serrano, C. Stettler, M. TI The LLRF System for the S-Band RF Plants of the FERMI Linac SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Closed loop systems; feedback; field-programmable gate arrays (FPGAs); linear particle accelerator; radio frequency (RF) ID FREE-ELECTRON LASER AB Specifications on electron beam quality for the operation of a linac-based free-electron laser (FEL), as FERMI in Trieste (Italy), impose stringent requirements on the stability of the electromagnetic fields of the accelerating sections. These specifications can be met only with state-of-the-art low-level RF (LLRF) systems based on advanced digital technologies. Design considerations, construction, and performance results of the FERMI digital LLRF are presented in this paper. The stability requirements derived by simulations are better than 0.1% in amplitude and 0.1 degrees S-band in phase. The system installed in the FERMI Linac S-band RF plants has met these specifications and is in operation on a 24-h basis as a user facility. Capabilities of the system allow planning for new developments that are also described here. C1 [Fabris, A.; D'Auria, G.; Gelmetti, F.; Milloch, M.; Predonzani, M.; Rohlev, T.; Salom, A.] Elettra Sincrotrone Trieste SCpA, I-34149 Trieste, Italy. [Byrd, J.; Doolittle, L.; Huang, G.; Jones, J.; Ratti, A.; Serrano, C.; Stettler, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rohlev, T.] TSR Engn, I-34100 Trieste, Italy. [Salom, A.] ALBA CELLS Synchrotron, Cerdanyola Del Valles 08290, Spain. RP Fabris, A; D'Auria, G; Gelmetti, F; Milloch, M; Predonzani, M; Rohlev, T; Salom, A (reprint author), Elettra Sincrotrone Trieste SCpA, I-34149 Trieste, Italy.; Byrd, J; Doolittle, L; Huang, G; Jones, J; Ratti, A; Serrano, C; Stettler, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Rohlev, T (reprint author), TSR Engn, I-34100 Trieste, Italy.; Salom, A (reprint author), ALBA CELLS Synchrotron, Cerdanyola Del Valles 08290, Spain. EM alessandro.fabris@elettra.eu; JMByrd@lbl.gov; gerardo.dauria@elettra.eu; LRDoolittle@lbl.gov; federico.gel-metti@elettra.eu; GHuang@lbl.gov; JA-Jones@lbl.gov; massimo.milloch@elettra.eu; mauro.predonzani@elettra.eu; ARatti@lbl.gov; trohlev@gmail.com; asalom@cells.es; CSerrano@lbl.gov; MWStettler@lbl.gov NR 18 TC 0 Z9 0 U1 3 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 861 EP 868 DI 10.1109/TNS.2015.2501649 PN 2 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000015 ER PT J AU Edelen, AL Biedron, SG Chase, BE Edstrom, D Milton, SV Stabile, P AF Edelen, A. L. Biedron, S. G. Chase, B. E. Edstrom, D., Jr. Milton, S. V. Stabile, P. TI Neural Networks for Modeling and Control of Particle Accelerators SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Adaptive control; artificial intelligence; control systems; machine learning; neural networks; particle accelerators; predictive control ID PREDICTIVE CONTROL; GENETIC ALGORITHM; INDUSTRIAL-PROCESSES; OPTIMIZATION; JET; MACHINE; SYSTEMS; TIME; IDENTIFICATION; INSTABILITIES AB Particle accelerators are host to myriad nonlinear and complex physical phenomena. They often involve a multitude of interacting systems, are subject to tight performance demands, and should be able to run for extended periods of time with minimal interruptions. Often times, traditional control techniques cannot fully meet these requirements. One promising avenue is to introduce machine learning and sophisticated control techniques inspired by artificial intelligence, particularly in light of recent theoretical and practical advances in these fields. Within machine learning and artificial intelligence, neural networks are particularly well-suited to modeling, control, and diagnostic analysis of complex, nonlinear, and time-varying systems, as well as systems with large parameter spaces. Consequently, the use of neural network-based modeling and control techniques could be of significant benefit to particle accelerators. For the same reasons, particle accelerators are also ideal test-beds for these techniques. Many early attempts to apply neural networks to particle accelerators yielded mixed results due to the relative immaturity of the technology for such tasks. The purpose of this paper is to re-introduce neural networks to the particle accelerator community and report on some work in neural network control that is being conducted as part of a dedicated collaboration between Fermilab and Colorado State University (CSU). We describe some of the challenges of particle accelerator control, highlight recent advances in neural network techniques, discuss some promising avenues for incorporating neural networks into particle accelerator control systems, and describe a neural network-based control system that is being developed for resonance control of an RF electron gun at the Fermilab Accelerator Science and Technology (FAST) facility, including initial experimental results from a benchmark controller. C1 [Edelen, A. L.; Biedron, S. G.; Milton, S. V.] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. [Biedron, S. G.] Univ Ljubljana, Fac Elect & Comp Engn, Trzaska 25, SI-1000 Ljubljana, Slovenia. [Chase, B. E.; Edstrom, D., Jr.; Stabile, P.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Stabile, P.] ADAM, CERN Spin Off, CH-1211 Geneva 23, Switzerland. RP Edelen, AL (reprint author), Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA. EM auralee.morin@colostate.edu NR 125 TC 1 Z9 1 U1 9 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 878 EP 897 DI 10.1109/TNS.2016.2543203 PN 2 PG 20 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000017 ER PT J AU Carlsten, BE Bishofberger, KA Duffy, LD Lewellen, JW Marksteiner, QR Yampolsky, NA AF Carlsten, Bruce E. Bishofberger, Kip A. Duffy, Leanne D. Lewellen, John W. Marksteiner, Quinn R. Yampolsky, Nikolai A. TI Using Emittance Partitioning Instead of a Laser Heater to Suppress the Microbunch Instability SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Electron accelerators; electron beams; free-electron lasers; particle accelerators ID FREE-ELECTRON LASERS; QUANTUM FLUCTUATIONS; UNDULATOR RADIATION; BEAM AB At the Linac Coherent Light Source (LCLS) X-ray free-electron laser, a laser "heater" is used to generate an uncorrelated 20-keV energy spread on an electron beam to suppress the microbunching instability in downstream bunch compressors. Here we describe an alternative approach using emittance partitioning, where the increase in energy spread is generated by moving phase space volume from the transverse dimensions into the longitudinal dimension. For LCLS-relevant beam parameters, about a factor of six reduction in the product of both transverse emittances is feasible with the same amount of induced energy spread, with additional improvements possible with an optimized setup. C1 [Carlsten, Bruce E.; Bishofberger, Kip A.; Duffy, Leanne D.; Lewellen, John W.; Marksteiner, Quinn R.; Yampolsky, Nikolai A.] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Carlsten, BE; Bishofberger, KA; Duffy, LD; Lewellen, JW; Marksteiner, QR; Yampolsky, NA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM bcarlsten@lanl.gov; kbish@lanl.gov; ldd@lanl.gov; jwlewellen@lanl.gov; qrm@lanl.gov; nyampols@lanl.gov RI Yampolsky, Nikolai/A-7521-2011; OI Carlsten, Bruce/0000-0001-5619-907X NR 40 TC 0 Z9 0 U1 2 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 921 EP 929 DI 10.1109/TNS.2015.2498619 PN 2 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000021 ER PT J AU Metral, E Argyropoulos, T Bartosik, H Biancacci, N Buffat, X Muller, JFE Herr, W Iadarola, G Lasheen, A Li, K Oeftiger, A Pieloni, T Quartullo, D Rumolo, G Salvant, B Schenk, M Shaposhnikova, E Tambasco, C Timko, H Zannini, C Burov, A Banfi, D Barranco, J Mounet, N Boine-Frankenheim, O Niedermayer, U Kornilov, V White, S AF Metral, E. Argyropoulos, T. Bartosik, H. Biancacci, N. Buffat, X. Muller, J. F. Esteban Herr, W. Iadarola, G. Lasheen, A. Li, K. Oeftiger, A. Pieloni, T. Quartullo, D. Rumolo, G. Salvant, B. Schenk, M. Shaposhnikova, E. Tambasco, C. Timko, H. Zannini, C. Burov, A. Banfi, D. Barranco, J. Mounet, N. Boine-Frankenheim, O. Niedermayer, U. Kornilov, V. White, S. TI Beam Instabilities in Hadron Synchrotrons SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT International Particle Accelerator Conference CY MAY 03-08, 2015 CL Richmond, VA SP IEEE Nucl & Plasma Sci Soc DE Beam coupling impedance; beam-beam; chromaticity; coherent instability; electron cloud; Landau damping; octupoles; space charge; stability diagram; transverse damper/feed-back; wake field ID MODE COUPLING INSTABILITY; BOUNDARY-ELEMENT METHOD; WAKE-FIELD COMPUTATION; TIME-DOMAIN; RESISTIVE INSTABILITIES; PARTICLE ACCELERATORS; MICROWAVE INSTABILITY; NUMERICAL-SOLUTION; BUNCHED BEAMS; IMPEDANCE AB Beam instabilities cover a wide range of effects in particle accelerators and they have been the subjects of intense research for several decades. As the machines performance was pushed new mechanisms were revealed and nowadays the challenge consists in studying the interplays between all these intricate phenomena, as it is very often not possible to treat the different effects separately. The aim of this paper is to review the main mechanisms, discussing in particular the recent developments of beam instability theories and simulations. C1 [Metral, E.; Argyropoulos, T.; Bartosik, H.; Biancacci, N.; Buffat, X.; Muller, J. F. Esteban; Herr, W.; Iadarola, G.; Lasheen, A.; Li, K.; Oeftiger, A.; Pieloni, T.; Quartullo, D.; Rumolo, G.; Salvant, B.; Schenk, M.; Shaposhnikova, E.; Tambasco, C.; Timko, H.; Zannini, C.] CERN, CH-1211 Geneva, Switzerland. [Burov, A.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Banfi, D.; Barranco, J.; Mounet, N.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Boine-Frankenheim, O.; Kornilov, V.] GSI Darmstadt, Darmstadt, Germany. [Boine-Frankenheim, O.; Niedermayer, U.] TUD, Darmstadt, Germany. [White, S.] ESRF, Grenoble, France. RP Metral, E (reprint author), CERN, CH-1211 Geneva, Switzerland. EM Elias.Metral@cern.ch NR 282 TC 0 Z9 0 U1 2 U2 3 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 SI SI BP 1001 EP 1050 DI 10.1109/TNS.2015.2513752 PN 2 PG 50 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6JQ UT WOS:000375030000028 ER PT J AU Egarievwe, SU Hossain, A Okwechime, IO Egarievwe, AA Jones, DE Roy, UN James, RB AF Egarievwe, Stephen U. Hossain, Anwar Okwechime, Ifechukwude O. Egarievwe, Alexander A. Jones, Dominique E. Roy, Utpal N. James, Ralph B. TI Effects of Chemical Treatments on CdZnTe X-Ray and Gamma-Ray Detectors SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article; Proceedings Paper CT 21st Symposium on Room-Temperature Semiconductor Detectors (RTSD) CY NOV 08-15, 2014 CL Seattle, WA DE CdZnTe detectors; charge collection; electrical characterization; gamma-rays; semiconductor detectors; X-rays ID TELLURIDE RADIATION DETECTORS; PASSIVATION; PERFORMANCE; UNCERTAINTIES; CONTACTS; XPS AB Room-temperature semiconductor detectors, such as cadmium zinc telluride (CdZnTe), often are subjected to surface damage during fabrication, thus reducing their performance in detecting X-rays and gamma-rays. In this study, we compared two surface-passivation chemical solutions: Ammonium fluoride in hydrogen peroxide (NH4F+ H2O2 + H2O) and potassium hydroxide in hydrogen peroxide (0.1 g of KOH + 10 ml of 30% H2O2). X-ray photoelectron spectroscopic analysis showed that the NH4F-based solution is more effective at converting Te species on the CdZnTe surfaces into a more stable TeO2 layer, attaining values of 4.90 and 5.34 for the Te3d(3/2)O(2)/Te3d(3/2) and Te3d(5/2)O(2)/Te3d(5/2) peak-height ratios respectively, compared to the KOH-based solution with 1.25 and 1.19, respectively. The current-voltage measurements showed an increase in the bulk leakage current for freshly passivated samples compared to those of mechanically polished samples. However, within a period of about three to 14 days, their leakage currents reduced to values in the range of the mechanically polished samples. The resistivity of the CdZnTe samples is on the order of 10(10) Omega-cm. The NH4F-based chemical contributed less to the leakage current. Its leakage current at 60 V is 6.3 times that of the mechanically polished sample, compared to 30.5 for the sample passivated with the KOH-based solution. Analysis of the 59.5-keV peak of Am-241 showed that the sample passivated with the NH4F-based solution has a better energy resolution compared to the one passivated with the KOH-based solution. C1 [Egarievwe, Stephen U.] Alabama A&M Univ, Dept Elect Engn & Comp Sci, Normal, AL 35762 USA. [Egarievwe, Stephen U.; Egarievwe, Alexander A.; Jones, Dominique E.] Alabama A&M Univ, Nucl Engn & Radiol Sci Ctr, Normal, AL 35762 USA. [Hossain, Anwar; Roy, Utpal N.; James, Ralph B.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. [Okwechime, Ifechukwude O.] Univ Tennessee, Dept Biomed & Diagnost Sci, Knoxville, TN 37996 USA. RP Egarievwe, SU (reprint author), Alabama A&M Univ, Dept Elect Engn & Comp Sci, Normal, AL 35762 USA.; Hossain, A; Roy, UN; James, RB (reprint author), Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA.; Okwechime, IO (reprint author), Univ Tennessee, Dept Biomed & Diagnost Sci, Knoxville, TN 37996 USA. EM stephen.egarievwe@aamu.edu; hossain@bnl.gov; iokwechi@vols.utk.edu; uroy@bnl.gov; rjames@bnl.gov NR 34 TC 0 Z9 0 U1 5 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 1091 EP 1098 DI 10.1109/TNS.2016.2527779 PN 3 PG 8 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6LQ UT WOS:000375035800005 ER PT J AU Joshi, TH Cooper, RJ Curtis, J Bandstra, M Cosofret, BR Shokhirev, K Konno, D AF Joshi, T. H. Cooper, R. J. Curtis, J. Bandstra, M. Cosofret, B. R. Shokhirev, K. Konno, D. TI A Comparison of the Detection Sensitivity of the Poisson Clutter Split and Region of Interest Algorithms on the RadMAP Mobile System SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Gamma-ray detection; gamma-ray spectral analysis; homeland security; radioactive source search ID GAMMA; IDENTIFICATION; SPECTROSCOPY AB This analysis uses source injection into background data collected by the Radiological Multi-sensor Analysis Platform (RadMAP) to characterize the performance of the Poisson Clutter Split algorithm and compare it with a region-of-interest algorithm. This comparison is performed for varying detector array sizes and false alarm rates using data from Sodium Iodide and High Purity Germanium detector arrays. The application of the Poisson Clutter Split algorithm is found to yield significant performance gains for both medium-and high-resolution detector arrays. Furthermore, trade-offs between energy resolution, array size, cost, and detection performance are explored. In doing so, it is shown that the choice of detection algorithm is a key factor in determining the overall system performance and should be an important consideration in system design. C1 [Joshi, T. H.; Cooper, R. J.; Curtis, J.; Bandstra, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Cosofret, B. R.; Shokhirev, K.; Konno, D.] Phys Sci Inc, 20 New England Business Ctr, Andover, MA 01810 USA. RP Joshi, TH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM thjoshi@lbl.gov FU US Department of Homeland Security, Domestic Nuclear Detection Office (DNDO) [HSQDC-13-X-B0003]; US Department of Energy [DE-AC02-05CH11231] FX The work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office (DNDO) under contract number HSQDC-13-X-B0003. This support does not constitute an express or implied endorsement on the part of the Government. This work was performed under the auspices of the US Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231. NR 18 TC 1 Z9 1 U1 0 U2 0 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 1218 EP 1226 DI 10.1109/TNS.2016.2537206 PN 3 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6LQ UT WOS:000375035800017 ER PT J AU Farmer, WA Cohen, BI Eng, CD AF Farmer, William A. Cohen, Bruce I. Eng, Chester D. TI On the Validity of Certain Approximations Used in the Modeling of Nuclear EMP SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE EM analysis; EMP radiation effects; high-altitude electromagnetic pulse (HEMP); nuclear explosions; radiative interference ID EXPLOSIONS AB In legacy codes developed for the modeling of EMP, multiple scattering of Compton electrons has typically been modeled by the obliquity factor. A recent publication has examined this approximation in the context of the generated Compton current [W. A. Farmer and A. Friedman, IEEE Trans. Nucl. Sc. 62, 1695 (2015)]. Here, this previous analysis is extended to include the generation of the electromagnetic fields. Obliquity factor predictions are compared with Monte-Carlo models. In using a Monte-Carlo description of scattering, two distributions of scattering angles are considered: Gaussian and a Gaussian with a single-scattering tail. Additionally, legacy codes also neglect the radial derivative of the backward-traveling wave for computational efficiency. The neglect of this derivative improperly treats the backward-traveling wave. These approximations are examined in the context of a high-altitude burst, and it is shown that in comparison to more complete models, the discrepancy between field amplitudes is roughly two to three percent and between rise-times, 10%. Further, it is concluded that the biggest factor in determining the rise time of the signal is not the dynamics of the Compton current, but is instead the conductivity. C1 [Farmer, William A.; Cohen, Bruce I.; Eng, Chester D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Farmer, WA (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM farmer10@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) [15-ERD-066] FX This work was supported in part by the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in part by the Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) under project 15-ERD-066. NR 24 TC 0 Z9 0 U1 5 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 EI 1558-1578 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD APR PY 2016 VL 63 IS 2 BP 1259 EP 1267 DI 10.1109/TNS.2016.2518181 PN 3 PG 9 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA DK6LQ UT WOS:000375035800022 ER PT J AU Stamber, KL Unis, CJ Shirah, DN Gibson, JA Fogleman, WE Kaplan, P AF Stamber, Kevin L. Unis, Carl J. Shirah, Donald N. Gibson, Jessica A. Fogleman, William E. Kaplan, Paul TI Population as a Proxy for Infrastructure in the Determination of Event Response and Recovery Resource Allocations SO JOURNAL OF HOMELAND SECURITY AND EMERGENCY MANAGEMENT LA English DT Article DE disaster response; infrastructure density; modeling; population density; resource prioritization; resource quantification ID UNITED-STATES; DENSITY; CITIES AB Research into modeling of the quantification and prioritization of resources used in the recovery of lifeline critical infrastructure following disruptive incidents, such as hurricanes and earthquakes, has shown several factors to be important. Among these are population density and infrastructure density, event effects on infrastructure, and existence of an emergency response plan. The social sciences literature has a long history of correlating the population density and infrastructure density at a national scale, at a country-to-country level, mainly focused on transportation networks. This effort examines whether these correlations can be repeated at smaller geographic scales, for a variety of infrastructure types, so as to be able to use population data as a proxy for infrastructure data where infrastructure data is either incomplete or insufficiently granular. Using the best data available, this effort shows that strong correlations between infrastructure density for multiple types of infrastructure (e.g. miles of roads, hospital beds, miles of electric power transmission lines, and number of petroleum terminals) and population density do exist at known geographic boundaries (e.g. counties, service area boundaries) with exceptions that are explainable within the social sciences literature. The correlations identified provide a useful basis for ongoing research into the larger resource utilization problem. C1 [Stamber, Kevin L.; Unis, Carl J.; Shirah, Donald N.; Kaplan, Paul] Sandia Natl Labs, POB 5800,MS 1137, Albuquerque, NM 87114 USA. [Gibson, Jessica A.; Fogleman, William E.] Georelat Informat Syst, Albuquerque, NM USA. RP Stamber, KL (reprint author), Sandia Natl Labs, POB 5800,MS 1137, Albuquerque, NM 87114 USA. EM klstamb@sandia.gov NR 25 TC 0 Z9 0 U1 2 U2 3 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 2194-6361 EI 1547-7355 J9 J HOMEL SECUR EMERG JI J. Homel. Secur. Emerg. Manag. PD APR PY 2016 VL 13 IS 1 BP 35 EP 50 DI 10.1515/jhsem-2015-0023 PG 16 WC Public Administration SC Public Administration GA DK5KB UT WOS:000374957700003 ER PT J AU Hanson, TA AF Hanson, Todd A. TI Being Sine Qua Non: Maritime Archeology and the Archaeology of the Cold War SO JOURNAL OF MARITIME ARCHAEOLOGY LA English DT Editorial Material C1 [Hanson, Todd A.] Los Alamos Natl Lab, MS J596, Los Alamos, NM 87545 USA. RP Hanson, TA (reprint author), Los Alamos Natl Lab, MS J596, Los Alamos, NM 87545 USA. EM tahanson@lanl.gov OI Hanson, Todd/0000-0002-8440-4760 NR 3 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1557-2285 EI 1557-2293 J9 J MARIT ARCHAEOL JI J. Marit. Archaeol. PD APR PY 2016 VL 11 IS 1 BP 5 EP 8 DI 10.1007/s11457-016-9156-5 PG 4 WC Archaeology SC Archaeology GA DK5IW UT WOS:000374954600002 ER PT J AU Kolev, TV Xu, JC Zhu, YR AF Kolev, Tzanio V. Xu, Jinchao Zhu, Yunrong TI Multilevel Preconditioners for Reaction-Diffusion Problems with Discontinuous Coefficients SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Reaction-diffusion equations; Multigrid; BPX; Discontinuous coefficients; Robust solver; Multilevel preconditioners ID DOMAIN DECOMPOSITION PRECONDITIONERS; CONJUGATE-GRADIENT-METHOD; ELLIPTIC PROBLEMS; JUMP COEFFICIENTS; ITERATIVE METHODS; MULTIGRID METHODS; ADDITIVE SCHWARZ; SPACE; APPROXIMATIONS; EQUATIONS AB In this paper, we extend some of the multilevel convergence results obtained by Xu and Zhu in [Xu and Zhu, M3AS 2008], to the case of second order linear reaction-diffusion equations. Specifically, we consider the multilevel preconditioners for solving the linear systems arising from the linear finite element approximation of the problem, where both diffusion and reaction coefficients are piecewise-constant functions. We discuss in detail the influence of both the discontinuous reaction and diffusion coefficients to the performance of the classical BPX and multigrid V-cycle preconditioner. C1 [Kolev, Tzanio V.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, POB 808,L-561, Livermore, CA 94551 USA. [Xu, Jinchao] Penn State Univ, Dept Math, University Pk, PA 16802 USA. [Zhu, Yunrong] Idaho State Univ, Dept Math, Pocatello, ID 83209 USA. RP Zhu, YR (reprint author), Idaho State Univ, Dept Math, Pocatello, ID 83209 USA. EM kolev1@llnl.gov; xu@math.psu.edu; zhuyunr@isu.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-663816]; NSF [DMS 1217142, DMS 1319110]; DOE [DE-SC0009249]; University Research Committee at Idaho State University, Pocatello, Idaho [F119] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-663816. Jinchao Xu was supported in part by NSF DMS 1217142 and DOE Award #DE-SC0009249. Yunrong Zhu was supported in part by NSF DMS 1319110, and in part by University Research Committee Grant No. F119 at Idaho State University, Pocatello, Idaho. NR 35 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD APR PY 2016 VL 67 IS 1 BP 324 EP 350 DI 10.1007/s10915-015-0083-7 PG 27 WC Mathematics, Applied SC Mathematics GA DJ7TR UT WOS:000374416400016 ER PT J AU Chen, S Bronevetsky, G Peng, L Li, B Fu, X AF Chen, Sui Bronevetsky, Greg Peng, Lu Li, Bin Fu, Xin TI Soft error resilience in Big Data kernels through modular analysis SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE Soft faults; High-performance computing; Numerical errors; Fault resilience; Big data AB The shrinking processor feature and operating voltages of processor circuits are making them increasingly vulnerable to soft faults, which calls for fault resilience techniques at both the software and hardware levels under the big data context. To assist software developers in writing fault-resilient big data applications, we propose the tool ErrorSight, which helps them to focus their efforts on code regions and data structures that are most vulnerable to soft errors, understand how numerical errors propagate through the program, and apply fault resilience techniques effectively. ErrorSight achieves this through efficient generation of error profiles leveraging the predictive power of the Boosted Regression Tree model. We use four big data kernels to illustrate the modular analysis mechanism of ErrorSight and show its usefulness in the development of numerical fault-resilience in Big Data. C1 [Chen, Sui; Peng, Lu] Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA. [Bronevetsky, Greg] Lawrence Livermore Natl Lab, Livermore, CA USA. [Li, Bin] Louisiana State Univ, Dept Expt Stat, Baton Rouge, LA 70803 USA. [Fu, Xin] Univ Houston, Dept Elect & Comp Engn, Houston, TX USA. RP Peng, L (reprint author), Louisiana State Univ, Div Elect & Comp Engn, Baton Rouge, LA 70803 USA. EM lpeng@lsu.edu NR 18 TC 0 Z9 0 U1 1 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 EI 1573-0484 J9 J SUPERCOMPUT JI J. Supercomput. PD APR PY 2016 VL 72 IS 4 BP 1570 EP 1596 DI 10.1007/s11227-016-1682-2 PG 27 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DJ6NN UT WOS:000374330300015 ER PT J AU Patel, VK Seyed-Yagoobi, J Robinson, F Didion, JR AF Patel, Viral K. Seyed-Yagoobi, Jamal Robinson, Franklin Didion, Jeffrey R. TI Effect of Gravity on Electrohydrodynamic Conduction Driven Liquid Film Flow Boiling SO JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER LA English DT Article ID MICROGRAVITY; TERRESTRIAL; FIELD AB Liquid film flow boiling is used in many terrestrial thermal management applications as a heat transport mechanism. However, it suffers in microgravity applications such as spacecraft thermal management because the gravitational body force is not present to facilitate liquid film flow and bubble removal from the heater surface. One way of overcoming these constraints is to use an electrical field to move a liquid film in the absence as well as in the presence of gravity. In this experimental study, electrohydrodynamic conduction pumping is used to rewet the heater surface during liquid film flow boiling. The experiments are performed both terrestrially and onboard a variable-gravity parabolic flight. Terrestrial steady-state results show a maximum superheat reduction of 6 degrees C and a 62% increase in critical heat flux when the electrohydrodynamic pump is moderately activated. The parabolic flight transient results indicate that, although there was an adverse effect of electrohydrodynamic on heater surface temperature at heat flux less than 3.0 W/cm(2) (due to delayed onset of nucleate boiling), heater surface temperatures were actually lowered at higher heat flux due to activation of the electrohydrodynamic conduction pump. The microgravity results onboard the parabolic flights also pave the way for full-scale orbital testing of electrohydrodynamic-driven liquid film flow boiling onboard the International Space Station. C1 [Patel, Viral K.] Worcester Polytech Inst, Multi Scale Heat Transfer Lab, Dept Mech Engn, Worcester, MA 01609 USA. [Seyed-Yagoobi, Jamal] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA. [Robinson, Franklin] NASA, Goddard Space Flight Ctr, Thermal Technol Dev Lab, Greenbelt, MD 20771 USA. [Didion, Jeffrey R.] NASA, Goddard Space Flight Ctr, Nanotechol Facil, Greenbelt, MD 20771 USA. RP Patel, VK (reprint author), Worcester Polytech Inst, Multi Scale Heat Transfer Lab, Dept Mech Engn, Worcester, MA 01609 USA.; Patel, VK (reprint author), Oak Ridge Natl Lab, Bldg Equipment Res Grp, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. FU NASA Headquarters Micro-Gravity Fluid Physics Program FX This project was financially supported by the NASA Headquarters Micro-Gravity Fluid Physics Program. NR 19 TC 0 Z9 0 U1 1 U2 1 PU AMER INST AERONAUTICS ASTRONAUTICS PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0887-8722 EI 1533-6808 J9 J THERMOPHYS HEAT TR JI J. Thermophys. Heat Transf. PD APR PY 2016 VL 30 IS 2 BP 429 EP 437 DI 10.2514/1.T4696 PG 9 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA DK4CA UT WOS:000374863100019 ER PT J AU Ondondo, B Murakoshi, H Clutton, G Abdul-Jawad, S Wee, EGT Gatanaga, H Oka, S McMichael, AJ Takiguchi, M Korber, B Hanke, T AF Ondondo, Beatrice Murakoshi, Hayato Clutton, Genevieve Abdul-Jawad, Sultan Wee, Edmund G-T Gatanaga, Hiroyuki Oka, Shinichi McMichael, Andrew J. Takiguchi, Masafumi Korber, Bette Hanke, Tomas TI Novel Conserved-region T-cell Mosaic Vaccine With High Global HIV-1 Coverage Is Recognized by Protective Responses in Untreated Infection SO MOLECULAR THERAPY LA English DT Article ID PATHOGENIC SIV; VIRAL LOAD; TRIAL; BROAD; IMMUNODOMINANCE; MUTATIONS; SEQUENCES; DOMINANCE; PROTEINS; EPITOPES AB An effective human immunodeficiency virus type 1 (HIV1) vaccine is the best solution for halting the acquired immune deficiency syndrome epidemic. Here, we describe the design and preclinical immunogenicity of T-cell vaccine expressing novel immunogens tHIVconsvX, vectored by DNA, simian (chimpanzee) adenovirus, and poxvirus modified vaccinia virus Ankara (MVA), a combination highly immunogenic in humans. The tHIVconsvX immunogens combine the three leading strategies for elicitation of effective CD8(+) T cells: use of regions of HIV-1 proteins functionally conserved across all M group viruses (to make HIV-1 escape costly on viral fitness), inclusion of bivalent complementary mosaic immunogens (to maximize global epitope matching and breadth of responses, and block common escape paths), and inclusion of epitopes known to be associated with low viral load in infected untreated people (to induce field-proven protective responses). tHIVconsvX was highly immunogenic in two strains of mice. Furthermore, the magnitude and breadth of CD8(+) T-cell responses to tHIVconsvX-derived peptides in treatment-naive HIV-1(+) patients significantly correlated with high CD4(+) T-cell count and low viral load. Overall, the tHIVconsvX design, combining the mosaic and conserved-region approaches, provides an indisputably better coverage of global HIV-1 variants than previous T-cell vaccines. These immunogens delivered in a highly immunogenic framework of adenovirus prime and MVA boost are ready for clinical development. C1 [Ondondo, Beatrice; Clutton, Genevieve; Abdul-Jawad, Sultan; Wee, Edmund G-T; Hanke, Tomas] Univ Oxford, Jenner Inst, Old Rd Campus Res Bldg,Roosevelt Dr, Oxford OX3 7DQ, England. [Murakoshi, Hayato; Gatanaga, Hiroyuki; Oka, Shinichi; Takiguchi, Masafumi] Kumamoto Univ, Ctr AIDS Res, Kumamoto, Japan. [Clutton, Genevieve] Univ N Carolina, Dept Microbiol & Immunol, Chapel Hill, NC USA. [Gatanaga, Hiroyuki; Oka, Shinichi] Natl Ctr Global Hlth & Med, AIDS Clin Ctr, Tokyo, Japan. [McMichael, Andrew J.] Univ Oxford, NDM Res Bldg, Oxford OX3 7DQ, England. [Takiguchi, Masafumi; Hanke, Tomas] Kumamoto Univ, Int Res Ctr Med Sci, Kumamoto, Japan. [Korber, Bette] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM USA. [Korber, Bette] New Mexico Consortium, Los Alamos, NM USA. RP Hanke, T (reprint author), Univ Oxford, Jenner Inst, Old Rd Campus Res Bldg,Roosevelt Dr, Oxford OX3 7DQ, England. EM tomas.hanke@ndm.ox.ac.uk RI Takiguchi, Masafumi/E-7468-2013; OI Korber, Bette/0000-0002-2026-5757 FU UK Medical Research Council [MRC G1001757]; UK Department for International Development (DFID) under MRC/DFID Concordat agreements; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery [UM1 AI100645]; AIDS International Collaborative Project Grant in Center for AIDS Research Kumamoto University; International Vaccine Initiative; United States Agency for International Development (USAID) FX The authors would like to thank Jo Cox, Jill Gilmour, Eddy Sayeed, Jan De Bont, Pat Fast, Wayne Koff, and Bart Haynes for useful discussions. The following reagents were obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: HIV-1 p24 Gag Monoclonal (#24-2) from Michael H. Malim; mAbs toHIV-1 p24 (specificity clone, 71-31, 91-5) from Susan Zola-Pazner. The work is jointly funded by the UK Medical Research Council (MRC G1001757) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreements, the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (UM1 AI100645) and AIDS International Collaborative Project Grant in Center for AIDS Research Kumamoto University. T.H. and A.J.McM. are the Jenner Institute Investigators. B.O. was funded in part by the International Vaccine Initiative and made possible by the support of the United States Agency for International Development (USAID) and other donors. The full list of IAVI donors is available at http://www.iavi.org. The authors have no competing interests other than T.H., B.K., and A.J.McM., the inventors on PCT Application No. PCT/US2014/058422. NR 47 TC 8 Z9 8 U1 1 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1525-0016 EI 1525-0024 J9 MOL THER JI Mol. Ther. PD APR PY 2016 VL 24 IS 4 BP 832 EP 842 DI 10.1038/mt.2016.3 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Medicine, Research & Experimental SC Biotechnology & Applied Microbiology; Genetics & Heredity; Research & Experimental Medicine GA DJ7EO UT WOS:000374374900024 PM 26743582 ER PT J AU Kushwaha, SK Pletikosic, I Liang, T Gyenis, A Lapidus, SH Tian, Y Zhao, H Burch, KS Lin, JJ Wang, WD Ji, HW Fedorov, AV Yazdani, A Ong, NP Valla, T Cava, RJ AF Kushwaha, S. K. Pletikosic, I. Liang, T. Gyenis, A. Lapidus, S. H. Tian, Yao Zhao, He Burch, K. S. Lin, Jingjing Wang, Wudi Ji, Huiwen Fedorov, A. V. Yazdani, Ali Ong, N. P. Valla, T. Cava, R. J. TI Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties SO NATURE COMMUNICATIONS LA English DT Article ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; SURFACE-STATES; BI2TE3; BI2SE3; OSCILLATIONS; REALIZATION; SYSTEM; SB2TE3 AB A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states. C1 [Kushwaha, S. K.; Ji, Huiwen; Cava, R. J.] Princeton Univ, Dept Chem, Frick Chem Lab, Princeton, NJ 08544 USA. [Pletikosic, I.; Liang, T.; Gyenis, A.; Lin, Jingjing; Wang, Wudi; Yazdani, Ali; Ong, N. P.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Pletikosic, I.; Valla, T.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Lapidus, S. H.] Argonne Natl Lab, Adv Photon Source, X Ray Sci Div, Argonne, IL 60439 USA. [Tian, Yao] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada. [Zhao, He; Burch, K. S.] Boston Coll, Dept Phys, Boston, MA 02467 USA. [Fedorov, A. V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kushwaha, SK (reprint author), Princeton Univ, Dept Chem, Frick Chem Lab, Princeton, NJ 08544 USA. EM satya1phy@gmail.com; rcava@princeton.edu RI Pletikosic, Ivo/A-5683-2010; Kushwaha, Satya/B-8287-2017 OI Pletikosic, Ivo/0000-0003-4697-8912; Kushwaha, Satya/0000-0002-3169-969X FU ARO MURI [W911NF-12-1-0461]; ARO [W911NF-12-1-0461]; MRSEC programme at the Princeton Center for Complex Materials [NSF-DMR-1420541]; LBNL grant; BNL grant [DE-AC02-05CH11231, DE-SC0012704]; DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]; National Science Foundation [DMR-1410846] FX This research was supported by the ARO MURI on TIs, grant W911NF-12-1-0461, ARO grant W911NF-12-1-0461 and the MRSEC programme at the Princeton Center for Complex Materials, grant NSF-DMR-1420541. The ARPES experiments were performed under the LBNL and BNL grants DE-AC02-05CH11231 and DE-SC0012704. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The Raman experiments were conducted with support from the National Science Foundation (grant DMR-1410846). NR 45 TC 6 Z9 6 U1 32 U2 60 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11456 DI 10.1038/ncomms11456 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DK4NZ UT WOS:000374896600001 PM 27118032 ER PT J AU Woods, DP McKeown, MA Dong, YX Preston, JC Amasino, RM AF Woods, Daniel P. McKeown, Meghan A. Dong, Yinxin Preston, Jill C. Amasino, Richard M. TI Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering SO PLANT PHYSIOLOGY LA English DT Article ID BARLEY HORDEUM-VULGARE; MADS-BOX GENES; LOCUS-T; MOLECULAR CHARACTERIZATION; BRACHYPODIUM-DISTACHYON; ALLELIC VARIATION; TIME GENES; WHEAT; CEREALS; DAYLENGTH AB Flowering of many plant species is coordinated with seasonal environmental cues such as temperature and photoperiod. Vernalization provides competence to flower after prolonged cold exposure, and a vernalization requirement prevents flowering from occurring prior to winter. In winter wheat (Triticum aestivum) and barley (Hordeum vulgare), three genes VRN1, VRN2, and FT form a regulatory loop that regulates the initiation of flowering. Prior to cold exposure, VRN2 represses FT. During cold, VRN1 expression increases, resulting in the repression of VRN2, which in turn allows activation of FT during long days to induce flowering. Here, we test whether the circuitry of this regulatory loop is conserved across Pooideae, consistent with their niche transition from the tropics to the temperate zone. Our phylogenetic analyses of VRN2-like genes reveal a duplication event occurred before the diversification of the grasses that gave rise to a CO9 and VRN2/Ghd7 clade and support orthology between wheat/barley VRN2 and rice (Oryza sativa) Ghd7. Our Brachypodium distachyon VRN1 and VRN2 knockdown and overexpression experiments demonstrate functional conservation of grass VRN1 and VRN2 in the promotion and repression of flowering, respectively. However, expression analyses in a range of pooids demonstrate that the cold repression of VRN2 is unique to core Pooideae such as wheat and barley. Furthermore, VRN1 knockdown in B. distachyon demonstrates that the VRN1-mediated suppression of VRN2 is not conserved. Thus, the VRN1-VRN2 feature of the regulatory loop appears to have evolved late in the diversification of temperate grasses. C1 [Woods, Daniel P.; Amasino, Richard M.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, US Dept Energy, Genet Lab, Madison, WI 53706 USA. [Woods, Daniel P.; Dong, Yinxin; Amasino, Richard M.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [McKeown, Meghan A.; Preston, Jill C.] Univ Vermont, Dept Plant Biol, Burlington, VT 05405 USA. [Dong, Yinxin] Northwest A&F Univ, Coll Hort, Yangling 712100, Shaanxi, Peoples R China. RP Amasino, RM (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, US Dept Energy, Genet Lab, Madison, WI 53706 USA.; Amasino, RM (reprint author), Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. EM amasino@biochem.wisc.edu FU USDA-HATCH; National Science Foundation [IOS-1353056, IOS-1258126]; Great Lakes Bioenergy Research Center (Department of Energy Biological and Environmental Research Office of Science) [DE-FCO2-07ER64494]; National Institutes of Health; China Scholarship Council FX J.C.P. was supported by USDA-HATCH and by the National Science Foundation (IOS-1353056). R.M.A. was supported by the National Science Foundation (Grant IOS-1258126) and by the Great Lakes Bioenergy Research Center (Department of Energy Biological and Environmental Research Office of Science Grant DE-FCO2-07ER64494). D.P.W. was supported in part by a National Institutes of Health-sponsored predoctoral training fellowship to the University of Wisconsin Genetics Training Program. Y.D. was funded by the China Scholarship Council. NR 57 TC 8 Z9 8 U1 4 U2 11 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD APR PY 2016 VL 170 IS 4 BP 2124 EP 2135 DI 10.1104/pp.15.01279 PG 12 WC Plant Sciences SC Plant Sciences GA DL1WR UT WOS:000375424200018 PM 26848096 ER PT J AU LaBonte, A AF LaBonte, Alison TI Catalyzing Advancements in Ocean Energy SO SEA TECHNOLOGY LA English DT Editorial Material C1 [LaBonte, Alison] US DOE, Wind & Water Power Technol Off, Marine & Hydrokinet Technol Program, Washington, DC 20585 USA. RP LaBonte, A (reprint author), US DOE, Wind & Water Power Technol Off, Marine & Hydrokinet Technol Program, Washington, DC 20585 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU COMPASS PUBLICATIONS, INC PI ARLINGTON PA 1501 WILSON BLVD., STE 1001, ARLINGTON, VA 22209-2403 USA SN 0093-3651 J9 SEA TECHNOL JI Sea Technol. PD APR PY 2016 VL 57 IS 4 BP 65 EP 65 PG 1 WC Engineering, Ocean SC Engineering GA DK4WS UT WOS:000374921600011 ER PT J AU Emmez, E Boscoboinik, JA Tenney, S Sutter, P Shaikhutdinov, S Freund, HJ AF Emmez, Emre Boscoboinik, J. Anibal Tenney, Samuel Sutter, Peter Shaikhutdinov, Shamil Freund, Hans-Joachim TI Oxidation of the Ru(0001) surface covered by weakly bound, ultrathin silicate films SO SURFACE SCIENCE LA English DT Article DE Ultrathin oxide films; Surface oxidation; Ru oxide; Passivation ID SCANNING-TUNNELING-MICROSCOPY; CATALYTIC CO OXIDATION; PRESSURE GAP; OXYGEN; RUO2(110); OXIDE; RUTHENIUM; CHEMISTRY; ZEOLITES; GRAPHENE AB Bilayer silicate films grown on metal substrates are weakly bound to the metal surfaces, which allows ambient gas molecules to intercalate the oxide/metal interface. In this work, we studied the interaction of oxygen with Ru(0001) supported ultrathin silicate and aluminosilicate films at elevated 02 pressures (10(-5)-10 mbar) and temperatures (450-923 K). The results show that the silicate films stay essentially intact under these conditions, and oxygen in the film does not exchange with oxygen in the ambient. 02 molecules readily penetrate the film and dissociate on the underlying Ru surface underneath. The silicate layer does however strongly passivate the Ru surface towards RuO2(110) oxide formation that readily occurs on bare Ru(0001) under the same conditions. The results indicate considerable spatial effects for oxidation reactions on metal surfaces in the confined space at the interface. Moreover, the aluminosilicate films completely suppress the Ru oxidation, providing some rationale for using crystalline aluminosilicates in anti-corrosion coatings. (C) 2015 Elsevier B.V. All rights reserved. C1 [Emmez, Emre; Shaikhutdinov, Shamil; Freund, Hans-Joachim] MPG, Fritz Haber Inst, Chem Phys Abt, Faradayweg 4-6, D-14195 Berlin, Germany. [Boscoboinik, J. Anibal; Tenney, Samuel; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Shaikhutdinov, S (reprint author), MPG, Fritz Haber Inst, Chem Phys Abt, Faradayweg 4-6, D-14195 Berlin, Germany.; Boscoboinik, JA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM jboscoboinik@bnl.gov; shaikhutdinov@fhi-berlin.mpg.de FU Deutsche Forschungsgemeinschaft through collaborative research program SFB 1109; International Max Planck Research School "Functional interfaces in physics and chemistry"; Alexander von Humboldt Foundation; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We acknowledge financial support from Deutsche Forschungsgemeinschaft through collaborative research program SFB 1109. E.E. thanks the International Max Planck Research School "Functional interfaces in physics and chemistry" for the fellowship. J.A.B. acknowledges Alexander von Humboldt Foundation for the fellowship while his staying at FHI. We are grateful to Dr. Yu. Martynova for providing us unpublished results for RuOx films on Pt(111). Research was carried out in part at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 41 TC 4 Z9 4 U1 4 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD APR PY 2016 VL 646 SI SI BP 19 EP 25 DI 10.1016/j.susc.2015.06.019 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DK4UX UT WOS:000374916900005 ER PT J AU Hattab, H Hupalo, M Hershberger, MT von Hoegen, MH Tringides, MC AF Hattab, H. Hupalo, M. Hershberger, M. T. von Hoegen, M. Horn Tringides, M. C. TI A combined STM and SPA-LEED study of the "explosive" nucleation and collective diffusion in Pb/Si(111) SO SURFACE SCIENCE LA English DT Article DE Epitaxial growth; Nucleation; Surface diffusion; STM, SPALEED; Pb/Si(111) ID LOW-TEMPERATURES; SI(111) 7X7; GROWTH; PB; EVOLUTION; ISLANDS; FILMS AB A novel type of very fast nucleation was recently found in Pb/Si(111) with 4- to 7-layer high islands becoming crystalline in an "explosive" way, when the Pb deposited amount in the wetting layer is compressed to theta(c) similar to 1.22 ML, well above the metallic Pb(111) density. This "explosive" nucleation is very different from classical nucleation when island growth is more gradual and islands grow in size by single adatom aggregation [8]. In order to identify the key parameters that control the nucleation we used scanning tunneling microscopy (STM) and spot profile analysis low energy electron diffraction (SPA-LEED). It was found that the number and duration of steps in iterative deposition used to approach theta(c), and the flux rate have dramatic effects on the crystallization process. Larger depositions over shorter times induce greater spatial coverage fluctuations, so local areas can reach the critical coverage theta(c), easier. This can trigger the collective motion of the wetting layer from far away to build the Pb islands "explosively". The SPA-LEED experiments show that even low flux experiments in iterative deposition experiments can trigger transfer of material to the superstable 7-layer islands, as seen from the stronger satellite rings close to the (00) spot. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hattab, H.; Hupalo, M.; Hershberger, M. T.; Tringides, M. C.] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. [Hershberger, M. T.; Tringides, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [von Hoegen, M. Horn] Univ Duisburg Essen, Dept Phys, Lotharstr 1, D-47057 Duisburg, Germany. [von Hoegen, M. Horn] Univ Duisburg Essen, Ctr Nanointegrat CENIDE, Lotharstr 1, D-47057 Duisburg, Germany. RP Tringides, MC (reprint author), Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA. EM mctringi@iastate.edu FU Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy (USDOE) with the U.S. Department of Energy [DE-AC02-07CH11358]; Leopoldina Fellowship Program LPDS of the German National Academy of Sciences FX This work was supported by the Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy (USDOE), under Contract No. DE-AC02-07CH11358 with the U.S. Department of Energy. H.H. was sponsored by a postdoctoral fellowship of the Leopoldina Fellowship Program LPDS 2013-14 of the German National Academy of Sciences. NR 20 TC 0 Z9 0 U1 5 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD APR PY 2016 VL 646 SI SI BP 50 EP 55 DI 10.1016/j.susc.2015.08.017 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DK4UX UT WOS:000374916900010 ER PT J AU Fu, J Yang, XF Menning, CA Chen, JGG Koel, BE AF Fu, Jie Yang, Xiaofang Menning, Carl A. Chen, Jingguang G. Koel, Bruce E. TI Composition, structure and stability of surfaces formed by Ni deposition on Pd(111) SO SURFACE SCIENCE LA English DT Article DE Bimetallic surface; Subsurface monolayer; Surface segregation; STM; LEIS; DFT ID NI/PT(111) BIMETALLIC SURFACES; TOTAL-ENERGY CALCULATIONS; ULTRA-THIN FILMS; WAVE BASIS-SET; PHOTOELECTRON DIFFRACTION; SEGREGATION PROFILE; PD ALLOYS; PT(111); OXYGEN; HYDROGENATION AB Surface composition and structure of deposited Ni ultrathin films grown on a Pd(111) surface and their thermal stability have been studied using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS) and scanning tunneling microscopy (STM). In experiments where up to 2 mono layers (ML) of Ni was deposited onto Pd(111) at 300 K, the initial film growth followed a non-ideal layer-by-layer growth mode, in which the majority of the surface was covered by a single atomic layer of Ni, but the second Ni layer started to appear before the first layer was completed. Annealing the Ni/Pd(111) surface to 600 K caused Ni interdiffusion into subsurface layers and the outermost surface was mainly Pd. This structure, designated as Pd-Ni-Pd(111), was not stable in the presence of surface oxygen. Ni segregated to the topmost surface layer to forth a (2 x 2) superstructure after exposing the Pd-Ni-Pd(111) surface at 590 K to 350 L O-2. The oxygen-induced segregation of Ni is consistent with predictions from density functional theory (DFT) calculations. (C) 2015 Elsevier B.V. All rights reserved. C1 [Fu, Jie; Yang, Xiaofang; Koel, Bruce E.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. [Yang, Xiaofang; Menning, Carl A.] Univ Delaware, Dept Chem Engn, Catalysis Ctr Energy Innovat, Newark, DE 19716 USA. [Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Yang, Xiaofang] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Koel, BE (reprint author), Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. EM bkoel@princeton.edu OI Fu, Jie/0000-0002-4307-0696 FU National Science Foundation [CBET-1264737]; Catalysis Center for Energy Innovation, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001004] FX BEK acknowledges that part of this work was supported by the National Science Foundation under Grant No. CBET-1264737. JGC and BEK acknowledge that this material is based upon work supported by the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001004. NR 44 TC 1 Z9 1 U1 14 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD APR PY 2016 VL 646 SI SI BP 56 EP 64 DI 10.1016/j.susc.2015.05.026 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DK4UX UT WOS:000374916900011 ER PT J AU Favaro, M Rizzi, GA Nappini, S Magnano, E Bondino, F Agnoli, S Granozzi, G AF Favaro, M. Rizzi, G. A. Nappini, S. Magnano, E. Bondino, F. Agnoli, S. Granozzi, G. TI A synchrotron-based spectroscopic study of the electronic structure of N-doped HOPG and PdY/N-doped HOPG SO SURFACE SCIENCE LA English DT Article DE HOPG; N-doped HOPG; NP/support interaction; Ion implantation; Synchrotron radiation; HR-PES; ResPES; PdY nanoparticles ID ORIENTED PYROLYTIC-GRAPHITE; OXYGEN REDUCTION REACTION; X-RAY-ABSORPTION; CONDUCTION-BAND; GRAPHENE; NANOPARTICLES; CARBON; PLATINUM; EMISSION; SURFACES AB N-doped Highly Oriented Pyrolytic Graphite (HOPG) (obtained by ion implantation) was used as a model system for mimicking the effect of N-doping in sp(2) hybridized carbon based supports. The electronic structure of such system has been careful characterized by means of spectroscopic techniques adopting synchrotron radiation. We demonstrate that it is possible to tailor different functional groups simply by tuning the annealing temperature after ion implantation. On such chemical modified HOPG, PdY catalyst nanoparticles have been deposited under strictly controlled conditions in ultra-high-vacuum (UHV) and the nanoparticle/support interactions studied by photoemission. The formation of the Pd3Y alloy is evidenced by core level shift in Y 3d and Pd 3d states due to charge transfer. (C) 2015 Elsevier B.V. All rights reserved. C1 [Favaro, M.; Rizzi, G. A.; Agnoli, S.; Granozzi, G.] Univ Padua, Dept Chem Sci, Via Marzolo 1, I-35131 Padua, Italy. [Nappini, S.; Magnano, E.; Bondino, F.] IOM CNR, Lab TASC, Area Sci Pk Basovizza,Ss 14 Km 163,5 Basovizza, I-34149 Trieste, Italy. [Favaro, M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, ALS, JCAP, 1 Cyclotron Rd,M-S 6R2100, Berkeley, CA 94720 USA. RP Granozzi, G (reprint author), Univ Padua, Dept Chem Sci, Via Marzolo 1, I-35131 Padua, Italy. EM gaetano.granozzi@unipd.it OI gaetano, granozzi/0000-0002-9509-6142; Nappini, Silvia/0000-0002-4944-5487; Favaro, Marco/0000-0002-3502-8332; Bondino, Federica/0000-0001-6505-9319 FU Fondazione Cariparo; Fuel Cell and Hydrogen Initiative Joint Undertaking (FCH-JU) within the CathCat project [303492] FX MF acknowledges Fondazione Cariparo for financial support. We acknowledge also financial support from the Fuel Cell and Hydrogen Initiative Joint Undertaking (FCH-JU) within the CathCat project under contract No. 303492. NR 47 TC 1 Z9 1 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD APR PY 2016 VL 646 SI SI BP 132 EP 139 DI 10.1016/j.susc.2015.08.012 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA DK4UX UT WOS:000374916900020 ER PT J AU Belk, MC Billman, EJ Ellsworth, C McMillan, BR AF Belk, Mark C. Billman, Eric J. Ellsworth, Craig McMillan, Brock R. TI Does Habitat Restoration Increase Coexistence of Native Stream Fishes with Introduced Brown Trout: A Case Study on the Middle Provo River, Utah, USA SO WATER LA English DT Article DE species-specific responses; habitat restoration; invasive species; brown trout ID BONNEVILLE CUTTHROAT TROUT; SALMO-TRUTTA; LEATHERSIDE CHUB; PREDATOR; CONSERVATION; PERFORMANCE; POPULATION; IMPACTS; ECOLOGY; QUALITY AB Restoration of altered or degraded habitats is often a key component in the conservation plan of native aquatic species, but introduced species may influence the response of the native community to restoration. Recent habitat restoration of the middle section of the Provo River in central Utah, USA, provided an opportunity to evaluate the effect of habitat restoration on the native fish community in a system with an introduced, dominant predator brown trout (Salmo trutta). To determine the change in distribution of fish species and community composition, we surveyed 200 m of each of the four study reaches both before restoration (1998) and after restoration (2007 and 2009). Juveniles and adults of six native species increased in distribution after restoration. The variation in fish community structure among reaches was lower post-restoration than pre-restoration. Overall, restoration of complex habitat in the middle Provo River led to increased pattern of coexistence between native fishes and introduced brown trout, but restoration activities did not improve the status of the river's two rarest native fish species. Habitat restoration may only be completely successful in terms of restoring native communities when the abundance of invasive species can be kept at low levels. C1 [Belk, Mark C.; Billman, Eric J.] Brigham Young Univ, Dept Biol, 4102 LSB, Provo, UT 84602 USA. [Ellsworth, Craig] US DOE, Western Area Power Adm, 150 S East Social Hall Ave, Salt Lake City, UT 84111 USA. [McMillan, Brock R.] Brigham Young Univ, Dept Plant & Wildlife Sci, 4105B LSB, Provo, UT 84602 USA. RP Belk, MC (reprint author), Brigham Young Univ, Dept Biol, 4102 LSB, Provo, UT 84602 USA. EM mark_belk@byu.edu; ericbillman@gmail.com; crgllswrth@gmail.com; brock_mcmillan@byu.edu FU Utah Reclamation, Mitigation, and Conservation Commission; Utah Division of Wildlife Resources FX The Utah Reclamation, Mitigation, and Conservation Commission, and the Utah Division of Wildlife Resources provided funding and personnel for this study. Dan Zvirzdin, Josh Kreitzer, and other graduate and undergraduate students at BYU provided technical assistance. Richard Hepworth and Mike Slater of the Utah Division of Wildlife Resources provided access to reports and important information about reintroduction of Bonneville cutthroat trout. NR 32 TC 0 Z9 0 U1 13 U2 24 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4441 J9 WATER-SUI JI Water PD APR PY 2016 VL 8 IS 4 AR 121 DI 10.3390/w8040121 PG 9 WC Water Resources SC Water Resources GA DK8DK UT WOS:000375157200012 ER PT J AU Yen, H Daggupati, P White, MJ Srinivasan, R Gossel, A Wells, D Arnold, JG AF Yen, Haw Daggupati, Prasad White, Michael J. Srinivasan, Raghavan Gossel, Arndt Wells, David Arnold, Jeffrey G. TI Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS) SO WATER LA English DT Article DE decision support system; watershed modeling; web-based application; model calibration; SWAT ID ASSESSMENT-TOOL; CALIBRATION; VALIDATION; SIMULATIONS; IMPACT; SWAT AB In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT) has been demonstrated to provide superior performance with a large amount of referencing databases. However, it is cumbersome to perform tedious initialization steps such as preparing inputs and developing a model with each changing targeted study area. In this study, the Hydrologic and Water Quality System (HAWQS) is introduced to serve as a national-scale Decision Support System (DSS) to conduct challenging watershed modeling tasks. HAWQS is a web-based DSS developed and maintained by Texas A & M University, and supported by the U.S. Environmental Protection Agency. Three different spatial resolutions of Hydrologic Unit Code (HUC8, HUC10, and HUC12) and three temporal scales (time steps in daily/monthly/annual) are available as alternatives for general users. In addition, users can specify preferred values of model parameters instead of using the pre-defined sets. With the aid of HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by only providing the ending HUC number of the targeted watershed and the simulation period. In the case study, HAWQS was implemented on the Illinois River Basin, USA, with graphical demonstrations and associated analytical results. Scientists and/or decision-makers can take advantage of the HAWQS framework while conducting relevant topics or policies in the future. C1 [Yen, Haw] Texas A&M Univ, Blackland Res & Extens Ctr, Texas A&M Agrilife Res, 720 East Blackland Rd, Temple, TX 76502 USA. [Daggupati, Prasad; Srinivasan, Raghavan] Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA. [White, Michael J.; Arnold, Jeffrey G.] USDA ARS, Grassland Soil & Water Res Lab, 808 East Blackland Rd, Temple, TX 76502 USA. [Gossel, Arndt] US EPA, Oak Ridge Inst Sci & Educ, Off Water, Washington, DC 20460 USA. [Wells, David] US EPA, Off Water, Washington, DC 20460 USA. RP Yen, H (reprint author), Texas A&M Univ, Blackland Res & Extens Ctr, Texas A&M Agrilife Res, 720 East Blackland Rd, Temple, TX 76502 USA. EM haw.yen@gmail.com; pdaggupati@tamu.edu; mike.white@ars.usda.gov; r-srinivasan@tamu.edu; gossel.arndt@epa.gov; dwells@his.com; jeff.arnold@ars.usda.gov RI Srinivasan, R/D-3937-2009; Daggupati, Prasad/D-8886-2017 OI Daggupati, Prasad/0000-0002-7044-3435 FU U.S. Environmental Protection Agency; United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) Conservation Effects Assessment Project (CEAP)-Wildlife and Cropland components FX This project was funded by grants from (i) U.S. Environmental Protection Agency; and (ii) United States Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS) Conservation Effects Assessment Project (CEAP)-Wildlife and Cropland components. The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the United States Environmental Protection Agency and the United States Department of Agriculture. USDA is an equal opportunity provider and employer. NR 38 TC 3 Z9 3 U1 6 U2 13 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4441 J9 WATER-SUI JI Water PD APR PY 2016 VL 8 IS 4 AR 164 DI 10.3390/w8040164 PG 23 WC Water Resources SC Water Resources GA DK8DK UT WOS:000375157200055 ER PT J AU Taddia, F Sollerman, J Fremling, C Migotto, K Gal-Yam, A Armen, S Duggan, G Ergon, M Filippenko, AV Fransson, C Hosseinzadeh, G Kasliwal, MM Laher, RR Leloudas, G Leonard, DC Lunnan, R Masci, FJ Moon, DS Silverman, JM Wozniak, PR AF Taddia, F. Sollerman, J. Fremling, C. Migotto, K. Gal-Yam, A. Armen, S. Duggan, G. Ergon, M. Filippenko, A. V. Fransson, C. Hosseinzadeh, G. Kasliwal, M. M. Laher, R. R. Leloudas, G. Leonard, D. C. Lunnan, R. Masci, F. J. Moon, D. -S. Silverman, J. M. Wozniak, P. R. TI Long-rising Type II supernovae from Palomar Transient Factory and Caltech Core-Collapse Project SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE supernovae: general; Galaxy: abundances ID EXPANDING PHOTOSPHERE METHOD; EMISSION-LINE GALAXIES; LIGHT-CURVES; SN 1987A; LOW-RESOLUTION; HOST GALAXIES; MASS-LOSS; EXPLOSION; PROGENITOR; TELESCOPE AB Context. Supernova (SN) 1987A was a peculiar hydrogen-rich event with a long-rising (similar to 84 d) light curve, stemming from the explosion of a compact blue supergiant star. Only a few similar events have been presented in the literature in recent decades. Aims. We present new data for a sample of six long-rising Type II SNe (SNe II), three of which were discovered and observed by the Palomar Transient Factory (PTF) and three observed by the Caltech Core-Collapse Project (CCCP). Our aim is to enlarge this small family of long-rising SNe II, characterizing their differences in terms of progenitor and explosion parameters. We also study the metallicity of their environments. Methods. Optical light curves, spectra, and host-galaxy properties of these SNe are presented and analyzed. Detailed comparisons with known SN 1987A-like events in the literature are shown, with particular emphasis on the absolute magnitudes, colors, expansion velocities, and host-galaxy metallicities. Bolometric properties are derived from the multiband light curves. By modeling the early-time emission with scaling relations derived from the SuperNova Explosion Code (SNEC) models of MESA progenitor stars, we estimate the progenitor radii of these transients. The modeling of the bolometric light curves also allows us to estimate other progenitor and explosion parameters, such as the ejected Ni-56 mass, the explosion energy, and the ejecta mass. Results. We present PTF12kso, a long-rising SN II that is estimated to have the largest amount of ejected Ni-56 mass measured for this class. PTF09gpn and PTF12kso are found at the lowest host metallicities observed for this SN group. The variety of early light-curve luminosities depends on the wide range of progenitor radii of these SNe, from a few tens of R-circle dot (SN 2005ci) up to thousands (SN 2004ek) with some intermediate cases between 100 R-circle dot (PTF09gpn) and 300 R-circle dot (SN 2004em). Conclusions. We confirm that long-rising SNe II with light-curve shapes closely resembling that of SN 1987A generally arise from blue supergiant (BSG) stars. However, some of them, such as SN 2004em, likely have progenitors with larger radii (similar to 300 R-circle dot, typical of yellow supergiants) and can thus be regarded as intermediate cases between normal SNe IIP and SN 1987A-like SNe. Some extended red supergiant (RSG) stars such as the progenitor of SN 2004ek can also produce long-rising SNe II if they synthesized a large amount of Ni-56 in the explosion. Low host metallicity is confirmed as a characteristic of the SNe arising from compact BSG stars. C1 [Taddia, F.; Sollerman, J.; Fremling, C.; Migotto, K.; Ergon, M.; Fransson, C.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, S-10691 Stockholm, Sweden. [Gal-Yam, A.] Weizmann Inst Sci, Dept Particle Phys & Astrophys, IL-76100 Rehovot, Israel. [Armen, S.; Leonard, D. C.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Duggan, G.; Lunnan, R.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Filippenko, A. V.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Hosseinzadeh, G.] Las Cumbres Observ Global Telescope, 6740 Cortona Dr,Suite 102, Goleta, CA 93117 USA. [Hosseinzadeh, G.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Kasliwal, M. M.] Carnegie Inst Sci, Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA. [Laher, R. R.] CALTECH, Spitzer Sci Ctr, M-S 314-6, Pasadena, CA 91125 USA. [Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark. [Masci, F. J.] CALTECH, Infrared Proc & Anal Ctr, MS 100-22, Pasadena, CA 91125 USA. [Moon, D. -S.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Silverman, J. M.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Wozniak, P. R.] Los Alamos Natl Lab, MS D436, Los Alamos, NM 87545 USA. RP Taddia, F (reprint author), Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, S-10691 Stockholm, Sweden. EM francesco.taddia@astro.su.se OI Lunnan, Ragnhild/0000-0001-9454-4639; Sollerman, Jesper/0000-0003-1546-6615; Hosseinzadeh, Griffin/0000-0002-0832-2974; Wozniak, Przemyslaw/0000-0002-9919-3310 FU Swedish Research Council; Knut and Alice Wallenberg Foundation; EU/FP7 via ERC [307260]; Quantum Universe I-Core program by the Israeli Committee for Planning and Budgeting; ISF; Minerva grant; ISF grant; Weizmann-UK "making connections" program; Kimmel award; ARCHES award; Christopher R. Redlich Fund; TABASGO Foundation; NSF [AST-1211916, AST-1009571, AST-1210311]; NSF Astronomy and Astrophysics Postdoctoral Fellowship [AST-1302771]; Robert Martin Ayers Sciences Fund; W. M. Keck Foundation; US Department of Energy as part of the Laboratory Directed Research and Development program FX We thank the staffs of the various observatories (Palomar, Lick, Keck, etc.) where data for this study were obtained. The Oskar Klein Centre is funded by the Swedish Research Council. We gratefully acknowledge the support from the Knut and Alice Wallenberg Foundation. A.G.-Y. is supported by the EU/FP7 via ERC grant No. 307260, the Quantum Universe I-Core program by the Israeli Committee for Planning and Budgeting and the ISF; by Minerva and ISF grants; by the Weizmann-UK "making connections" program; and by Kimmel and ARCHES awards. A.V.F.'s research is supported by the Christopher R. Redlich Fund, the TABASGO Foundation, and NSF grant AST-1211916. D.C.L. and S.F.A. acknowledge support from NSF grants AST-1009571 and AST-1210311, under which part of this research (photometry data collected at MLO) was carried out. We thank Joseph Fedrow, Alyssa Del Rosario, Chuck Horst, and David Jaimes for assistance with the MLO observations. J.M.S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1302771. This research has made use of the APASS database, located at the AAVSO web site; funding for APASS has been provided by the Robert Martin Ayers Sciences Fund. Research at Lick Observatory is partially supported by a generous gift from Google. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. We acknowledge contributions to CCCP by S. B. Cenko, D. Fox, D. Sand, and A. Soderberg. We acknowledge M. Sullivan and K. Sharon for helping with the CCCP spectral observations. LANL participation in iPTF is supported by the US Department of Energy as part of the Laboratory Directed Research and Development program. NR 92 TC 5 Z9 4 U1 0 U2 2 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD APR PY 2016 VL 588 AR A5 DI 10.1051/0004-6361/201527811 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI0SQ UT WOS:000373207800017 ER PT J AU Asadchikov, VE Butashin, AV Buzmakov, AV Deryabin, AN Kanevsky, VM Prokhorov, IA Roshchin, BS Volkov, YO Zolotov, DA Jafari, A Alexeev, P Cecilia, A Baumbach, T Bessas, D Danilewsky, AN Sergueev, I Wille, HC Hermann, RP AF Asadchikov, Victor E. Butashin, Andrey V. Buzmakov, Alexey V. Deryabin, Alexander N. Kanevsky, Vladimir M. Prokhorov, Igor A. Roshchin, Boris S. Volkov, Yuri O. Zolotov, Denis A. Jafari, Atefeh Alexeev, Pavel Cecilia, Angelica Baumbach, Tilo Bessas, Dimitrios Danilewsky, Andreas N. Sergueev, Ilya Wille, Hans-Christian Hermann, Raphael P. TI Single-crystal sapphire microstructure for high-resolution synchrotron X-ray monochromators SO CRYSTAL RESEARCH AND TECHNOLOGY LA English DT Article DE X-ray optics; topography; sapphire; dislocations ID NUCLEAR RESONANT SCATTERING; RADIATION; DISLOCATIONS; MIRRORS AB We report on the growth and characterization of sapphire single crystals for X-ray optics applications. Structural defects were studied by means of laboratory double-crystal X-ray diffractometry and white-beam synchrotron-radiation topography. The investigations confirmed that the main defect types are dislocations. The best quality crystal was grown using the Kyropoulos technique. Therein the dislocation density was 10(2)-10(3) cm(-2) and a small area with approximately 2*2 mm(2) did not show dislocation contrast in many reflections. This crystal has suitable quality for application as a backscattering monochromator. A clear correlation between growth rate and dislocation density is observed, though growth rate is not the only parameter impacting the quality. C1 [Asadchikov, Victor E.; Butashin, Andrey V.; Buzmakov, Alexey V.; Deryabin, Alexander N.; Kanevsky, Vladimir M.; Roshchin, Boris S.; Volkov, Yuri O.; Zolotov, Denis A.] Shubnikov Inst Crystallog RAS, 119333 Leninskii Pr-T 59, Moscow, Russia. [Asadchikov, Victor E.] Moscow MV Lomonosov State Univ, Fac Phys, GSP 1,1-2 Leninskiye Gory, Moscow 119991, Russia. [Prokhorov, Igor A.] Inst Crystallog RAS, Kaluga Branch Shubnikov, Res Ctr Space Mat Sci, Kaluga 248640, Russia. [Jafari, Atefeh; Alexeev, Pavel; Hermann, Raphael P.] Forschungszentrum Julich, JCNS, D-52425 Julich, Germany. [Jafari, Atefeh; Alexeev, Pavel; Hermann, Raphael P.] Forschungszentrum Julich, PGI, D-52425 Julich, Germany. [Jafari, Atefeh; Hermann, Raphael P.] Univ Liege, Fac Sci, B-4000 Liege, Belgium. [Jafari, Atefeh; Bessas, Dimitrios] European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. [Alexeev, Pavel; Sergueev, Ilya; Wille, Hans-Christian] DESY, D-22607 Hamburg, Germany. [Cecilia, Angelica; Baumbach, Tilo] Inst Photon Sci & Synchrotron Radiat, Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany. [Cecilia, Angelica; Baumbach, Tilo] ANKA Synchrotron Radiat Facil, D-76344 Eggenstein Leopoldshafen, Germany. [Danilewsky, Andreas N.] Univ Freiburg, Crystallog Inst Geo & Environm Sci, D-79104 Freiburg, Germany. [Hermann, Raphael P.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Hermann, RP (reprint author), Forschungszentrum Julich, JCNS, D-52425 Julich, Germany.; Hermann, RP (reprint author), Forschungszentrum Julich, PGI, D-52425 Julich, Germany.; Hermann, RP (reprint author), Univ Liege, Fac Sci, B-4000 Liege, Belgium.; Hermann, RP (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM hermannrp@ornl.gov RI Hermann, Raphael/F-6257-2013; Roshchin, Boris/F-5519-2014 OI Hermann, Raphael/0000-0002-6138-5624; Roshchin, Boris/0000-0001-8001-870X FU Helmholtz Association of German Research Center [HRJRG-402]; Russian ministry of science and education [RFMEFI62114x0005]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy FX The Helmholtz Association of German Research Center and the Russian ministry of science and education are acknowledged for the Helmholtz-Russia Joint Research Group under grant HRJRG-402 and RFMEFI62114x0005, respectively. RPH acknowledges support from the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. Provision of synchrotron radiation beam time at TOPO-TOMO, ANKA, Karlsruhe and P01, Petra III, DESY, Hamburg is gratefully acknowledged. Monocrystal, Stavropol, Russia is acknowledged for provision of a commercial crystal. Jurgen Hartwig, Ben Larson, Gene Ice and Tom Watkins are acknowledged for helpful discussions. NR 24 TC 2 Z9 2 U1 2 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0232-1300 EI 1521-4079 J9 CRYST RES TECHNOL JI Cryst. Res. Technol. PD APR PY 2016 VL 51 IS 4 BP 290 EP 298 DI 10.1002/crat.201500343 PG 9 WC Crystallography SC Crystallography GA DJ6KZ UT WOS:000374323000005 ER PT J AU Burt, T Yoshida, K Lappin, G Vuong, L John, C de Wildt, SN Sugiyama, Y Rowland, M AF Burt, T. Yoshida, K. Lappin, G. Vuong, L. John, C. de Wildt, S. N. Sugiyama, Y. Rowland, M. TI Microdosing and Other Phase 0 Clinical Trials: Facilitating Translation in Drug Development SO CTS-CLINICAL AND TRANSLATIONAL SCIENCE LA English DT Review ID POSITRON-EMISSION-TOMOGRAPHY; ACCELERATOR MASS-SPECTROMETRY; PROOF-OF-CONCEPT; HEALTHY-SUBJECTS; PEDIATRIC MICRODOSE; DNA-ADDUCTS; PHARMACOKINETICS; CANCER; PET; TRANSPORTERS C1 [Burt, T.] Burt Consultancy, Durham, NC 27705 USA. [Yoshida, K.; John, C.] US FDA, Off Clin Pharmacol, Off Translat Sci, Ctr Drug Evaluat & Res, Silver Spring, MD USA. [Yoshida, K.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Lappin, G.] Lincoln Univ, Sch Pharm, Joseph Banks Labs, Pharmacol, Lincoln LN6 7DL, England. [Vuong, L.] LTV Consulting, Davis, CA USA. [Vuong, L.] BioCore, Seoul, South Korea. [de Wildt, S. N.] Erasmus MC Sophia Childrens Hosp, Intens Care & Pediat Surg, Rotterdam, Netherlands. [Sugiyama, Y.] RIKEN, Innovat Ctr, Sugiyama Lab, Tsurumi Ku, 1-7-22 Suehiro Cho, Yokohama, Kanagawa 2300045, Japan. [Rowland, M.] Univ Manchester, Ctr Appl Pharmacokinet Res, Manchester M13 9PT, Lancs, England. [Rowland, M.] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA. RP Burt, T (reprint author), Burt Consultancy, Durham, NC 27705 USA. EM tal.burt@duke.edu OI de Wildt, Saskia/0000-0002-0502-0647 FU Netherlands Organisation for Health Research and Development [13202007] FX K.Y. was supported in part by an appointment to the Research Participation Program at the Center for Drug Evaluation and Research, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and the FDA. S.N.W. microdosing research is supported by a grant from the The Netherlands Organisation for Health Research and Development (project number 13202007). NR 93 TC 2 Z9 2 U1 6 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1752-8054 EI 1752-8062 J9 CTS-CLIN TRANSL SCI JI CTS-Clin. Transl. Sci. PD APR PY 2016 VL 9 IS 2 BP 74 EP 88 DI 10.1111/cts.12390 PG 15 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA DJ6NU UT WOS:000374331000002 PM 26918865 ER PT J AU Cheng, Z Luo, L Wang, SX Wang, YG Sharma, S Shimadera, H Wang, XL Bressi, M de Miranda, RM Jiang, JK Zhou, W Fajardo, O Yan, NQ Hao, JM AF Cheng, Zhen Luo, Lina Wang, Shuxiao Wang, Yungang Sharma, Sumit Shimadera, Hikari Wang, Xiaoliang Bressi, Michael de Miranda, Regina Maura Jiang, Jingkun Zhou, Wei Fajardo, Oscar Yan, Naiqiang Hao, Jiming TI Status and characteristics of ambient PM2.5 pollution in global megacities SO ENVIRONMENT INTERNATIONAL LA English DT Article DE PM2.5 (fine particulate matter); Megacity; Air pollution; Chemical composition ID FINE PARTICULATE MATTER; YANGTZE-RIVER DELTA; LONG-TERM EXPOSURE; SOURCE APPORTIONMENT; AIR-POLLUTION; CHEMICAL-CHARACTERIZATION; MASS CONCENTRATIONS; CHINESE CITIES; AEROSOL; POLLUTANTS AB Ambient PM2.5 pollution is a substantial threat to public health in global megacities. This paper reviews the PM2.5 pollution of 45 global megacities in 2013, based on mass concentration from official monitoring networks and composition data reported in the literature. The results showed that the five most polluted megacities were Delhi, Cairo, Xi'an, Tianjin and Chengdu, all of which had an annual average concentration of PM2.5 greater than 89 mu g/m(3). The five cleanest megacities were Miami, Toronto, New York, Madrid and Philadelphia, the annual averages of which were less than 10 mu g/m(3). Spatial distribution indicated that the highly polluted megacities are concentrated in east-central China and the Indo-Gangetic Plain. Organic matter and SNA (sum of sulfate, nitrate and ammonium) contributed 30% and 36%, respectively, of the average PM2.5 mass for all megacities. Notable seasonal variation of PM2.5 polluted days was observed, especially for the polluted megacities of China and India, resulting in frequent heavy pollution episodes occurring during more polluted seasons such as winter. Marked differences in PM2.5 pollution between developing and developed megacities require more effort on local emissions reduction as well as global cooperation to address the PM2.5 pollution of those megacities mainly in Asia. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Cheng, Zhen; Luo, Lina; Yan, Naiqiang] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China. [Wang, Shuxiao; Jiang, Jingkun; Zhou, Wei; Fajardo, Oscar; Hao, Jiming] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Wang, Yungang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Sharma, Sumit] Energy & Resources Inst, Earth Sci & Climate Change Div, IHC Complex,Lodi Rd, New Delhi 3, India. [Shimadera, Hikari] Osaka Univ, Grad Sch Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan. [Wang, Xiaoliang] Desert Res Inst, Div Atmospher Sci, 2215 Raggio Pkwy, Reno, NV 89512 USA. [Bressi, Michael] Commiss European Communities, Joint Res Ctr, Inst Environm & Sustainabil, Ispra, VA, Italy. [de Miranda, Regina Maura] Univ Sao Paulo, Sch Arts Sci & Humanities, Rua Arlindo Bettio 1000, BR-03828000 Sao Paulo, Brazil. [Wang, Yungang] GAGO Inc, San Jose, CA 95131 USA. RP Wang, SX (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. EM shxwang@tsinghua.edu.cn RI wang, shuxiao/H-5990-2011 OI wang, shuxiao/0000-0001-9727-1963 FU Ministry of Environmental Protection's Special Funds for Research on Public Welfares [201409002]; National Science and Technology Supporting Plan [2014BAC22B01]; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex [SCAPC201409] FX This work is supported by the Ministry of Environmental Protection's Special Funds for Research on Public Welfares (No. 201409002), the National Science and Technology Supporting Plan (No. 2014BAC22B01) and State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex (No. SCAPC201409). We acknowledge Olga Kislova of Russian State Environmental Protection Institution, Rafael Borge of Technical University of Madrid, Nestor Y. Rojas of National University of Colombia, van Donkelaar of Dalhousie University and Jie Wang of Zhejiang University for their help with the data collection and process. NR 68 TC 9 Z9 12 U1 46 U2 101 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0160-4120 EI 1873-6750 J9 ENVIRON INT JI Environ. Int. PD APR-MAY PY 2016 VL 89-90 BP 212 EP 221 DI 10.1016/j.envint.2016.02.003 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA DK0LI UT WOS:000374603900024 PM 26891184 ER PT J AU Oulas, A Polymenakou, PN Seshadri, R Tripp, HJ Mandalakis, M Paez-Espino, AD Pati, A Chain, P Nomikou, P Carey, S Kilias, S Christakis, C Kotoulas, G Magoulas, A Ivanova, NN Kyrpides, NC AF Oulas, Anastasis Polymenakou, Paraskevi N. Seshadri, Rekha Tripp, H. James Mandalakis, Manolis Paez-Espino, A. David Pati, Amrita Chain, Patrick Nomikou, Paraskevi Carey, Steven Kilias, Stephanos Christakis, Christos Kotoulas, Georgios Magoulas, Antonios Ivanova, Natalia N. Kyrpides, Nikos C. TI Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID INORGANIC SULFUR-COMPOUNDS; TRICARBOXYLIC-ACID CYCLE; SEA HYDROTHERMAL VENTS; MID-OKINAWA TROUGH; GROUP-A BACTERIA; DE-FUCA RIDGE; GEN.-NOV.; PHYLUM CHLOROFLEXI; OXIDIZING BACTERIA; METHANE OXIDATION AB Hydrothermal vents represent a deep, hot, aphotic biosphere where chemosynthetic primary producers, fuelled by chemicals from Earth's subsurface, form the basis of life. In this study, we examined microbial mats from two distinct volcanic sites within the Hellenic Volcanic Arc (HVA). The HVA is geologically and ecologically unique, with reported emissions of CO2-saturated fluids at temperatures up to 220 degrees C and a notable absence of macrofauna. Metagenomic data reveals highly complex prokaryotic communities composed of chemolithoautotrophs, some methanotrophs, and to our surprise, heterotrophs capable of anaerobic degradation of aromatic hydrocarbons. Our data suggest that aromatic hydrocarbons may indeed be a significant source of carbon in these sites, and instigate additional research into the nature and origin of these compounds in the HVA. Novel physiology was assigned to several uncultured prokaryotic lineages; most notably, a SAR406 representative is attributed with a role in anaerobic hydrocarbon degradation. This dataset, the largest to date from submarine volcanic ecosystems, constitutes a significant resource of novel genes and pathways with potential biotechnological applications. C1 [Oulas, Anastasis; Polymenakou, Paraskevi N.; Mandalakis, Manolis; Christakis, Christos; Kotoulas, Georgios; Magoulas, Antonios] Hellen Ctr Marine Res, Inst Marine Biol Biotechnol & Aquaculture, POB 2214, Iraklion 71003, Crete, Greece. [Seshadri, Rekha; Tripp, H. James; Paez-Espino, A. David; Pati, Amrita; Ivanova, Natalia N.; Kyrpides, Nikos C.] Joint Genome Inst, Dept Energy, Microbial Genome & Metagenome Program, Walnut Creek, CA USA. [Chain, Patrick] Los Alamos Natl Lab, Los Alamos, NM USA. [Nomikou, Paraskevi; Kilias, Stephanos] Univ Athens, Fac Geol & Geoenvironm, Athens 11528, Greece. [Carey, Steven] Univ Rhode Isl, Grad Sch Oceanog, Kingston, RI 02881 USA. [Kyrpides, Nikos C.] King Abdulaziz Univ, Dept Biol Sci, Jeddah 21413, Saudi Arabia. RP Kyrpides, NC (reprint author), Joint Genome Inst, Dept Energy, Microbial Genome & Metagenome Program, Walnut Creek, CA USA.; Kyrpides, NC (reprint author), King Abdulaziz Univ, Dept Biol Sci, Jeddah 21413, Saudi Arabia. EM nckyrpides@lbl.gov RI Kyrpides, Nikos/A-6305-2014; Fac Sci, KAU, Biol Sci Dept/L-4228-2013; OI Kyrpides, Nikos/0000-0002-6131-0462; Kilias, Stephanos/0000-0002-5192-7039; Chain, Patrick/0000-0003-3949-3634 FU Hellenic Initiative of MikroBioKosmos; US Department of Energy's Office of Science, Biological and Environmental Research Program; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; European program MARBIGEN FP7-REGPOT-1; Hellenic Centre for Marine Research - Crete Department, Greece FX The officers and the crew of the R/V Endeavor of the Rhode Island University are gratefully acknowledged for their important contribution to the field work during the Thera 2006 Expedition (http://oceanexplorer.noaa.gov/explorations/06blacksea/logs/summary_ther a/summary_thera.html). This work was performed under the auspices of the Hellenic Initiative of MikroBioKosmos, the US Department of Energy's Office of Science, Biological and Environmental Research Program, the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, and the European program MARBIGEN FP7-REGPOT-2010-1 (grant to A.M.). DNA extraction was supported by the Hellenic Centre for Marine Research - Crete Department, Greece. We thank Dr. Susannah Tringe from the Department of Energy Joint Genome Institute for guidance and advice on analyses. We are also grateful to Matthew Schrenk from Michigan State University and Michael Rappe from Hawaii Institute of Marine Biology at University of Hawaii at Manoa for allowing us the use of their metagenomic data, as well as clarification on metadata for those samples. NR 72 TC 1 Z9 1 U1 6 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD APR PY 2016 VL 18 IS 4 BP 1122 EP 1136 DI 10.1111/1462-2920.13095 PG 15 WC Microbiology SC Microbiology GA DK1BY UT WOS:000374648500005 PM 26487573 ER PT J AU Varaljay, VA Satagopan, S North, JA Witte, B Dourado, MN Anantharaman, K Arbing, MA McCann, SH Oremland, RS Banfield, JF Wrighton, KC Tabita, FR AF Varaljay, Vanessa A. Satagopan, Sriram North, Justin A. Witte, Brian Dourado, Manuella N. Anantharaman, Karthik Arbing, Mark A. McCann, Shelley Hoeft Oremland, Ronald S. Banfield, Jillian F. Wrighton, Kelly C. Tabita, F. Robert TI Functional metagenomic selection of ribulose 1,5-bisphosphate carboxylase/oxygenase from uncultivated bacteria SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE; UNCULTURED MICROORGANISMS; MONO LAKE; RUBISCO; PHOTOSYNTHESIS; METABOLISM; CALIFORNIA; DIVERSITY; EVOLUTION; HYDROGEN AB Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2-dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO-encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of the Gallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possess CO2/O-2 specificity typical of form II enzymes. X-ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2-fixing enzymes not previously characterized. C1 [Varaljay, Vanessa A.; Satagopan, Sriram; North, Justin A.; Wrighton, Kelly C.; Tabita, F. Robert] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. [Witte, Brian] Bot Res Inst Texas, Ft Worth, TX 76107 USA. [Dourado, Manuella N.] Univ Sao Paulo, Dept Genet, ESALQ, Sao Paulo, Brazil. [Anantharaman, Karthik; Banfield, Jillian F.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Arbing, Mark A.] Univ Calif Los Angeles, UCLA DOE Inst, Prot Express Technol Ctr, Los Angeles, CA 90095 USA. [McCann, Shelley Hoeft; Oremland, Ronald S.] US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. RP Tabita, FR (reprint author), Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. EM tabita.1@osu.edu RI Satagopan, Sriram/B-3198-2011 OI Satagopan, Sriram/0000-0002-4867-531X FU National Institutes of Health [GM095742]; National Institutes of Health under the Ruth L. Kirschstein National Research Service Award from the National Institute of General Medical Sciences [F32GM109547]; Department of Energy [DE-FC02-02ER63421] FX We wish to thank O. Lenz and B. Friedrich for plasmid 3716; R. Daly for DNA extraction advice; A. Dangel for CbbR binding analysis (see Supplementary section); A. Shin for assistance with protein purification; B. Amer for assistance with SEC-MALS; M. Collazo (UCLA Crystallization Core Facility) for screening crystallization conditions; D. Cascio for expert advice on x-ray crystallography; and D. Eisenberg for his generous support for the project. This work was supported by grant GM095742 to F.R. Tabita from the National Institutes of Health. J. North was supported by the National Institutes of Health under the Ruth L. Kirschstein National Research Service Award (F32GM109547) from the National Institute of General Medical Sciences. Structural studies of GWS1B RubisCO were performed at the UCLA-DOE Protein Expression Technology Center and UCLA-DOE X-ray Crystallography Core Facility, both supported by the Department of Energy Grant DE-FC02-02ER63421. NR 43 TC 4 Z9 4 U1 9 U2 25 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD APR PY 2016 VL 18 IS 4 BP 1187 EP 1199 DI 10.1111/1462-2920.13138 PG 13 WC Microbiology SC Microbiology GA DK1BY UT WOS:000374648500010 PM 26617072 ER PT J AU King, AE Stieber, SCE Henson, NJ Kozimor, SA Scott, BL Smythe, NC Sutton, AD Gordon, JC AF King, Amanda E. Stieber, S. Chantal E. Henson, Neil J. Kozimor, Stosh A. Scott, Brian L. Smythe, Nathan C. Sutton, Andrew D. Gordon, John C. TI Ni(bpy)(cod): A Convenient Entryway into the Efficient Hydroboration of Ketones, Aldehydes, and Imines SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Homogeneous catalysis; Nickel; Hydroboration; Redox chemistry; Electronic structure ID REDOX-ACTIVE LIGANDS; FUNCTIONAL THEORETICAL CALCULATIONS; ELECTRONIC-STRUCTURE DETERMINATION; CATALYZED ALKENE HYDROGENATION; CARBONYL-COMPOUNDS; BIS(ALPHA-DIIMINE)IRON COMPLEXES; REDUCTIVE-ELIMINATION; OXIDATIVE-ADDITION; TRANSITION-METALS; KINETIC-ANALYSIS AB The catalytic hydroboration of ketones, aldehydes, and imines with pinacol borane and Ni(bpy)(cod) has been demonstrated in benzene at room temperature and low catalyst loadings (0.03-0.3 mol-%). Spectroscopic and structural evidence support the formulation of Ni(bpy)(cod) as containing a NiI cation and a bpy(center dot-) ligand. The Ni(bpy)(cod) complex reacts quickly with ketonic substrates to form an adduct that appears to function as an entryway into catalytic activity. C1 [King, Amanda E.; Stieber, S. Chantal E.; Kozimor, Stosh A.; Smythe, Nathan C.; Sutton, Andrew D.; Gordon, John C.] Los Alamos Natl Lab, Div Chem, MS K558, Los Alamos, NM USA. [Stieber, S. Chantal E.] Calif State Polytech Univ Pomona, Dept Chem & Biochem, Pomona, CA 91768 USA. [Henson, Neil J.] Los Alamos Natl Lab, Mat Phys Applicat Div, Los Alamos, NM USA. [Scott, Brian L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP King, AE; Smythe, NC; Sutton, AD; Gordon, JC (reprint author), Los Alamos Natl Lab, Div Chem, MS K558, Los Alamos, NM USA. EM aeking@lanl.gov; nsmythe@lanl.gov; adsutton@lanl.gov; jgordon@lanl.gov RI Scott, Brian/D-8995-2017; OI Scott, Brian/0000-0003-0468-5396; Henson, Neil/0000-0002-1842-7884 FU Laboratory Directed Research and Development (LDRD) program; LANL Glenn T. Seaborg Institute Postdoctoral Fellowship; College of Science at the California State Polytechnic University, Pomona; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; National Nuclear Security Administration of U.S. Department of Energy [DE-AC52-06NA25396] FX The authors thank the Laboratory Directed Research and Development (LDRD) program for a Director's Postdoctoral Fellowship to A. E. K. S. C. E. S. was supported by a LANL Glenn T. Seaborg Institute Postdoctoral Fellowship and by startup funding from the College of Science at the California State Polytechnic University, Pomona. Additional funding was provided by the under the Heavy Element Chemistry Program at LANL by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (grants to S. A. K., S. C. E. S.). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (contract DE-AC52-06NA25396). NR 86 TC 4 Z9 4 U1 10 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1434-1948 EI 1099-0682 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD APR PY 2016 IS 11 BP 1635 EP 1640 DI 10.1002/ejic.201600143 PG 6 WC Chemistry, Inorganic & Nuclear SC Chemistry GA DK1VC UT WOS:000374701900002 ER PT J AU Rupich, MW Sathyamurthy, S Fleshler, S Li, Q Solovyov, V Ozaki, T Welp, U Kwok, WK Leroux, M Koshelev, AE Miller, DJ Kihlstrom, K Civale, L Eley, S Kayani, A AF Rupich, Martin W. Sathyamurthy, Srivatsan Fleshler, Steven Li, Qiang Solovyov, Vyacheslav Ozaki, Toshinori Welp, Ulrich Kwok, Wai-Kwong Leroux, Maxime Koshelev, Alexei E. Miller, Dean J. Kihlstrom, Karen Civale, Leonardo Eley, Serena Kayani, Asghar TI Engineered Pinning Landscapes for Enhanced 2G Coil Wire SO IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY LA English DT Article DE Critical current density; flux pinning; high-temperature superconductors; irradiation; roll-to-roll processing ID HIGH-TEMPERATURE SUPERCONDUCTORS; VORTICES AB We demonstrate a twofold increase in the in-field critical current of AMSC's standard 2G coil wire by irradiation with 18-MeV Au ions. The optimum pinning enhancement is achieved with a dose of 6 x 10(11) Au ions/cm(2). Although the 77 K, self-field critical current is reduced by about 35%, the in-field critical current (H//c) shows a significant enhancement between 4 and 50 K in fields > 1 T. The process was used for the roll-to-roll irradiation of AMSC's standard 46-mm-wide production coated conductor strips, which were further processed into standard copper laminated coil wire. The long-length wires show the same enhancement as attained with short static irradiated samples. The roll-to-roll irradiation process can be incorporated in the standard 2G wire manufacturing, with no modifications to the current process. The enhanced performance of the wire will benefit rotating machine and magnet applications. C1 [Rupich, Martin W.; Sathyamurthy, Srivatsan; Fleshler, Steven] Amer Superconductor Corp, Devens, MA 01434 USA. [Li, Qiang; Solovyov, Vyacheslav; Ozaki, Toshinori] Brookhaven Natl Lab, Upton, NY 11973 USA. [Welp, Ulrich; Kwok, Wai-Kwong; Leroux, Maxime; Koshelev, Alexei E.; Miller, Dean J.; Kihlstrom, Karen] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Civale, Leonardo; Eley, Serena] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kayani, Asghar] Western Michigan Univ, Kalamazoo, MI 49008 USA. RP Rupich, MW; Sathyamurthy, S; Fleshler, S (reprint author), Amer Superconductor Corp, Devens, MA 01434 USA.; Li, Q; Solovyov, V (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA.; Welp, U; Kwok, WK; Leroux, M; Koshelev, AE; Miller, DJ; Kihlstrom, K (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA.; Civale, L; Eley, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA.; Kayani, A (reprint author), Western Michigan Univ, Kalamazoo, MI 49008 USA. EM marty.rupich@amsc.com; srivatsan.sathymurthy@amsc.com; steven.fleshler@amsc.com; liqiang@bnl.gov; solov@bnl.gov; welp@anl.gov; kwok@anl.gov; mleroux@anl.gov; koshelev@anl.gov; miller@nal.gov; kihlstrom@anl.gov; lcivale@lanl.gov; seley@lanl.gov; Asghar.Kayani@wmich.edu RI Leroux, Maxime/E-8703-2016; OI Leroux, Maxime/0000-0001-9778-323X; Civale, Leonardo/0000-0003-0806-3113; Eley, Serena/0000-0002-2928-5316 FU Advanced Research Projects Agency-Energy; Center for Emergent Superconductivity an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported in part by the Advanced Research Projects Agency-Energy and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 15 TC 1 Z9 1 U1 8 U2 17 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1051-8223 EI 1558-2515 J9 IEEE T APPL SUPERCON JI IEEE Trans. Appl. Supercond. PD APR PY 2016 VL 26 IS 3 AR 6601904 DI 10.1109/TASC.2016.2542270 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA DJ7NM UT WOS:000374398100001 ER PT J AU Merkli, M Berman, GP Sayre, RT Gnanakaran, S Konenberg, M Nesterov, AI Song, H AF Merkli, M. Berman, G. P. Sayre, R. T. Gnanakaran, S. Koenenberg, M. Nesterov, A. I. Song, H. TI Dynamics of a chlorophyll dimer in collective and local thermal environments SO JOURNAL OF MATHEMATICAL CHEMISTRY LA English DT Article DE Light-harvesting photosynthetic complex; Photosynthetic dimer; Exciton transfer; Transfer rate; Relaxation rate; Decoherence rate; Marcus formula; Local environment; Collective environment; Strong environment coupling; Open quantum systems; Dynamical quantum resonance theory ID ELECTRON-TRANSFER; TEMPERATURE; ANTENNA; SYSTEM; NOISE; MODEL AB We present a theoretical analysis of exciton transfer and decoherence effects in a photosynthetic dimer interacting with collective (correlated) and local (uncorrelated) protein-solvent environments. Our approach is based on the framework of the spin-boson model. We derive explicitly the thermal relaxation and decoherence rates of the exciton transfer process, valid for arbitrary temperatures and for arbitrary (in particular, large) interaction constants between the dimer and the environments. We establish a generalization of the Marcus formula, giving reaction rates for dimer levels possibly individually and asymmetrically coupled to environments. We identify rigorously parameter regimes for the validity of the generalized Marcus formula. The existence of long living quantum coherences at ambient temperatures emerges naturally from our approach. C1 [Merkli, M.; Koenenberg, M.] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada. [Berman, G. P.; Gnanakaran, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Berman, G. P.; Sayre, R. T.] New Mexico Consortium, 100 Entrada Dr, Los Alamos, NM 87544 USA. [Sayre, R. T.] Los Alamos Natl Lab, Div Biol, B-11,100 Entrada Dr, Los Alamos, NM 87544 USA. [Koenenberg, M.] Univ Stuttgart, Fachbereich Math, D-70174 Stuttgart, Germany. [Nesterov, A. I.] Univ Guadalajara, Dept Fis, CUCEI, Av Revoluc 1500, Guadalajara 44420, Jalisco, Mexico. [Song, H.] Tianjin Univ Technol, Tianjin, Peoples R China. RP Merkli, M (reprint author), Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada. EM merkli@mun.ca; gpb@lanl.gov; rsayre@newmexicoconsortium.org; gnana@lanl.gov; martin.koenenberg@mathematik.uni-stuttgart.de; nesterov@cencar.udg.mx; song_haifeng@126.com OI Sayre, Richard/0000-0002-3153-7084; Gnanakaran, S/0000-0002-9368-3044 NR 38 TC 3 Z9 3 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0259-9791 EI 1572-8897 J9 J MATH CHEM JI J. Math. Chem. PD APR PY 2016 VL 54 IS 4 BP 866 EP 917 DI 10.1007/s10910-016-0593-z PG 52 WC Chemistry, Multidisciplinary; Mathematics, Interdisciplinary Applications SC Chemistry; Mathematics GA DJ6MO UT WOS:000374327800004 ER PT J AU Runnels, B Beyerlein, IJ Conti, S Ortiz, M AF Runnels, Brandon Beyerlein, Irene J. Conti, Sergio Ortiz, Michael TI An analytical model of interfacial energy based on a lattice-matching interatomic energy SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article ID ANGLE GRAIN-BOUNDARIES; SYMMETRICAL TILT BOUNDARIES; FCC METALS; BCC METALS; MISMATCHED INTERFACES; STATISTICAL-MECHANICS; INFORMATION-THEORY; 100 PLANES; COPPER; ALUMINUM AB We develop an explicit model for the interfacial energy in crystals that emphasizes the geometric origin of the cusps in the energy profile. We start by formulating a general class of interatomic energies that are reference-configuration-free but explicitly incorporate the lattice geometry of the ground state. In particular, away from the interface the energy is minimized by a perfect lattice. We build these attributes into the energy by locally matching, as best as possible, a perfect lattice to the atomic positions and then quantifying the local energy in terms of the inevitable remaining mismatch, hence the term lattice matching used to describe the resulting interatomic energy. Based on this general energy, we formulate a simpler rigid-lattice model in which the atomic positions on both sides of the interface coincide with perfect, but misoriented, lattices. In addition, we restrict the lattice-matching operation to a binary choice between the perfect lattices on both sides of the interface. Finally, we prove an L-2 bound on the interatomic energy and use that bound as a basis for comparison with experiment. We specifically consider symmetric tilt grain boundaries (STGB), symmetric twist grain boundaries (STwGB) and asymmetric twist grain boundaries (ATwGB) in face-centered cubic (FCC) and body-centered cubic (BCC) crystals. Two or more materials are considered for each choice of crystal structure and boundary class, with the choice of materials conditioned by the availability of molecular dynamics data. Despite the approximations made, we find very good overall agreement between the predicted interfacial energy structure and that calculated by molecular dynamics. In particular, the positions of the cusps are predicted well, and therefore, although surface reconstruction and faceting are not included in the model, the dominant orientations of the facets are correctly predicted by our geometrical model. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Runnels, Brandon; Ortiz, Michael] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Conti, Sergio] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany. RP Ortiz, M (reprint author), CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. EM ortiz@aero.caltech.edu OI Runnels, Brandon/0000-0003-3043-5227 FU NNSA's High Energy Density Laboratory Plasmas program [DE-NA0001805]; Los Alamos National Laboratory Seaborg Institute; Laboratory Directed Research and Development program [20140348ER]; DFG [SFB 1060] FX Brandon Runnels and Michael Ortiz would like to thank the NNSA's High Energy Density Laboratory Plasmas program under Award #DE-NA0001805. Brandon Runnels additionally thanks the Los Alamos National Laboratory Seaborg Institute for support during Summer 2014. Irene Beyerlein would like to acknowledge support by a Laboratory Directed Research and Development program Award number 20140348ER. Sergio Conti would like to acknowledge support of the DFG under SFB 1060. NR 67 TC 3 Z9 3 U1 8 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD APR PY 2016 VL 89 BP 174 EP 193 DI 10.1016/j.jmps.2016.01.008 PG 20 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA DJ6XG UT WOS:000374355900010 ER PT J AU Rivnay, J Inal, S Collins, BA Sessolo, M Stavrinidou, E Strakosas, X Tassone, C Delongchamp, DM Malliaras, GG AF Rivnay, Jonathan Inal, Sahika Collins, Brian A. Sessolo, Michele Stavrinidou, Eleni Strakosas, Xenofon Tassone, Christopher Delongchamp, Dean M. Malliaras, George G. TI Structural control of mixed ionic and electronic transport in conducting polymers SO NATURE COMMUNICATIONS LA English DT Article ID ORGANIC ELECTROCHEMICAL TRANSISTORS; PEDOT-PSS FILMS; THIN-FILMS; CONJUGATED POLYMERS; SOLAR-CELLS; X-RAY; MORPHOLOGY; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); SPECTROSCOPY; EFFICIENCY AB Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT: PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT: PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT: PSS films. We quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. These findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction. C1 [Rivnay, Jonathan; Inal, Sahika; Stavrinidou, Eleni; Strakosas, Xenofon; Malliaras, George G.] MOC, EMSE, CMP, Dept Bioelect, F-13541 Gardanne, France. [Collins, Brian A.; Delongchamp, Dean M.] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA. [Collins, Brian A.] Washington State Univ, Dept Phys & Astron, Pullman, WA 99164 USA. [Sessolo, Michele] Univ Valencia, Inst Ciencia Mol, Paterna 46980, Spain. [Tassone, Christopher] SLAC Natl Accelerator Lab, SSRL, Menlo Pk, CA 94025 USA. [Rivnay, Jonathan] PARC, 3333 Coyote Hill Rd, Palo Alto, CA 94304 USA. RP Rivnay, J (reprint author), MOC, EMSE, CMP, Dept Bioelect, F-13541 Gardanne, France. EM rivnay@gmail.com RI Stavrinidou, Eleni/I-8526-2016; OI Stavrinidou, Eleni/0000-0002-9357-776X; Sessolo, Michele/0000-0002-9189-3005 FU Marie Curie post-doctoral fellowship (FP7); Fundacion BBVA, Spain FX J.R. acknowledges support from a Marie Curie post-doctoral fellowship (FP7). M.S. acknowledges the support by the Fundacion BBVA, Spain. We acknowledge Prof. B. Winther-Jensen (Monash) for providing vapour-phase polymerized PEDOT:Cl films, Dr E. Gann (Monash) for NEXAFS measurements, Dr M. Ramuz (EMSE) for 3D printing efforts and I. Uguz (EMSE) for film thickness measurements. We additionally thank Prof. C. Silva (Montreal) for fruitful discussions. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by the Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences. NR 54 TC 15 Z9 15 U1 35 U2 113 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11287 DI 10.1038/ncomms11287 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DJ6AC UT WOS:000374291300001 PM 27090156 ER PT J AU Shahrukh, H Oyedun, AO Kumar, A Ghiasi, B Kumar, L Sokhansanj, S AF Shahrukh, Hassan Oyedun, Adetoyese Olajire Kumar, Amit Ghiasi, Bahman Kumar, Linoj Sokhansanj, Shahab TI Techno-economic assessment of pellets produced from steam pretreated biomass feedstock SO BIOMASS & BIOENERGY LA English DT Article DE Biomass; Pellets; Techno-economic model; Production cost; Steam pretreatment; Economic optimum size ID NET ENERGY RATIO; WESTERN CANADA; INFESTED WOOD; GENERATION; COMBUSTION; LOGISTICS; PATHWAYS; HARVEST; SIZE; COST AB Minimum production cost and optimum plant size are determined for pellet plants for three types of biomass feedstock - forest residue, agricultural residue, and energy crops. The life cycle cost from harvesting to the delivery of the pellets to the co-firing facility is evaluated. The cost varies from 95 to 105 $ t(-1) for regular pellets and 146-156 $ t(-1) for steam pretreated pellets. The difference in the cost of producing regular and steam pretreated pellets per unit energy is in the range of 2-3 $ GJ(-1). The economic optimum plant size (i.e., the size at which pellet production cost is minimum) is found to be 190 kt for regular pellet production and 250 kt for steam pretreated pellet. Sensitivity and uncertainty analyses were carried out to identify sensitivity parameters and effects of model error. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit] Univ Alberta, Donadeo Innovat Ctr Engn 10 263, Dept Mech Engn, Edmonton, AB T6G 1H9, Canada. [Ghiasi, Bahman; Kumar, Linoj; Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. RP Kumar, A (reprint author), Univ Alberta, Donadeo Innovat Ctr Engn 10 263, Dept Mech Engn, Edmonton, AB T6G 1H9, Canada. EM Amit.Kumar@ualberta.ca FU BioFuelNet Canada Inc. [59_Kumar_West_SEES]; University of Alberta FX The authors would like to acknowledge BioFuelNet Canada Inc. (59_Kumar_West_SEES) and the University of Alberta for funding this project. Technical support during the experimental stage from the departments of Chemical and Biological Engineering and Wood Science, University of British Columbia, is highly appreciated. The authors would especially like to mention Dr. Jack Saddler from the University of British Columbia for his support and cooperation in carrying out steam pretreatment and pelletization experiments in his lab. Astrid Blodgett is acknowledged for editorial assistance. NR 28 TC 2 Z9 2 U1 5 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 EI 1873-2909 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD APR PY 2016 VL 87 BP 131 EP 143 DI 10.1016/j.biombioe.2016.03.001 PG 13 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA DJ5GT UT WOS:000374235500016 ER PT J AU Briceno, RA Cohen, TD Coito, S Dudek, JJ Eichten, E Fischer, CS Fritsch, M Gradl, W Jackura, A Kornicer, M Krein, G Lebed, RF Machado, FA Mitchell, RE Morningstar, CJ Peardon, M Pennington, MR Peters, K Richard, JM Shen, CP Shepherd, MR Skwarnicki, T Swanson, ES Szczepaniak, AP Yuan, CZ AF Briceno, R. A. Cohen, T. D. Coito, S. Dudek, J. J. Eichten, E. Fischer, C. S. Fritsch, M. Gradl, W. Jackura, A. Kornicer, M. Krein, G. Lebed, R. F. Machado, F. A. Mitchell, R. E. Morningstar, C. J. Peardon, M. Pennington, M. R. Peters, K. Richard, J. M. Shen, C. P. Shepherd, M. R. Skwarnicki, T. Swanson, E. S. Szczepaniak, A. P. Yuan, C. Z. TI Issues and Opportunities in Exotic Hadrons SO CHINESE PHYSICS C LA English DT Review DE hadronic physics; exotic hadrons; tetraquark; pentaquark ID NUCLEAR-BOUND QUARKONIUM; ZWEIG-IIZUKA RULE; BBBAR QUARKONIUM; HYBRID MESONS; STATES; MODEL; CHARMONIUM; UNITARITY; LOOPS; POTENTIALS AB The last few years have been witness to a proliferation of new results concerning heavy exotic hadrons. Experimentally, many new signals have been discovered that could be pointing towards the existence of tetraquarks, pentaquarks, and other exotic configurations of quarks and gluons. Theoretically, advances in lattice field theory techniques place us at the cusp of understanding complex coupled-channel phenomena, modelling grows more sophisticated, and effective field theories are being applied to an ever greater range of situations. It is thus an opportune time to evaluate the status of the field. In the following, a series of high priority experimental and theoretical issues concerning heavy exotic hadrons is presented. C1 [Briceno, R. A.; Dudek, J. J.; Pennington, M. R.] Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. [Briceno, R. A.; Dudek, J. J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Cohen, T. D.] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Coito, S.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China. [Eichten, E.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Fischer, C. S.] Univ Giessen, Inst Theoret Phys, Heinrich Buff Ring 16, D-35392 Giessen, Germany. [Fritsch, M.] Helmholtz Inst Mainz, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany. [Fritsch, M.; Gradl, W.] Johannes Gutenberg Univ Mainz, Johann Joachim Becher Weg 45, D-55099 Mainz, Germany. [Jackura, A.; Szczepaniak, A. P.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Kornicer, M.] Univ Hawaii, Honolulu, HI 96822 USA. [Krein, G.] Univ Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, SP, Brazil. [Lebed, R. F.] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Machado, F. A.; Swanson, E. S.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Mitchell, R. E.; Shepherd, M. R.] Indiana Univ, Bloomington, IN 47405 USA. [Morningstar, C. J.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Peardon, M.] Univ Dublin Trinity Coll, Sch Math, Dublin 2, Ireland. [Peters, K.] GSI Helmholtzctr Heavy Ion Res GmbH, D-64291 Darmstadt, Germany. [Richard, J. M.] Univ Lyon, Inst Phys Nucl Lyon, CNRS UCBL IN2P3, 4 Rue Enrico Fermi, Villeurbanne, France. [Shen, C. P.] Beihang Univ, Beijing 100191, Peoples R China. [Skwarnicki, T.] Syracuse Univ, Syracuse, NY USA. [Szczepaniak, A. P.] Thomas Jefferson Natl Accelerator Facil, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. [Szczepaniak, A. P.] Indiana Univ, Ctr Explorat Energy & Matter, Bloomington, IN 47403 USA. [Yuan, C. Z.] Inst High Energy Phys, Beijing 100049, Peoples R China. RP Dudek, JJ (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA.; Dudek, JJ (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA.; Swanson, ES (reprint author), Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA.; Mitchell, RE (reprint author), Indiana Univ, Bloomington, IN 47405 USA. EM dudek@jlab.org; remitche@indiana.edu; swansone@pitt.edu RI Morningstar, Colin/N-6925-2014 OI Morningstar, Colin/0000-0002-0607-9923 FU U.S. Department of Energy [DE-AC05-06OR23177, DE-SC0006765, DEAC02-07CH11359, DE-FG02-05ER41374, DE-FG0287ER40365]; Institute of Modern Physics and Chinese Academy of Sciences [Y104160YQ0, 2015-BH-02]; BMBF [06GI7121]; DAAD [56889822]; Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse; German Research Foundation DFG [CRC-1044]; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq [305894/2009-9]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP [2013/01907-0]; U.S. National Science Foundation [PHY-1068286, PHY-1403891, PHY-1306805, PHY-1507572]; Brazilian National Council for Scientific and Technological Development [CNPq/CAPES-208188/2014-2]; Jefferson Science Associates, LLC [DE-AC05-06OR23177]; National Natural Science Foundation of China (NSFC) [11575017, 11235011, 11475187]; Ministry of Science and Technology of China [2015CB856701] FX Supported by U.S. Department of Energy (Cohen); the Institute of Modern Physics and Chinese Academy of Sciences under contract Y104160YQ0 and agreement No. 2015-BH-02 (Coito); the U.S. Department of Energy, for grant DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Laboratory and DE-SC0006765, Early Career award (Dudek); Fermilab, operated by the Fermi Research Alliance under contract number DEAC02-07CH11359 with the U.S. Department of Energy (Eichten); BMBF, under contract No. 06GI7121, and the DAAD under contract No. 56889822 and by the Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse (Fischer); the German Research Foundation DFG under contract number Collaborative Research Centre CRC-1044 (Gradl); the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq, Grant No. 305894/2009-9 and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP, Grant No. 2013/01907-0 (Krein); U.S. National Science Foundation, under grants PHY-1068286 and PHY-1403891 (Lebed); the Brazilian National Council for Scientific and Technological Development under grant CNPq/CAPES-208188/2014-2 (Machado); U.S. Department of Energy under grant DE-FG02-05ER41374 (Mitchell); U.S. National Science Foundation under grant PHY-1306805 (Morningstar); U.S. Department of Energy, supported by Jefferson Science Associates, LLC under contract No. DE-AC05-06OR23177 (Pennington); the National Natural Science Foundation of China (NSFC) under contract No. 11575017, the Ministry of Science and Technology of China under Contract No. 2015CB856701 (Shen); U.S. Department of Energy, under grant DE-FG02-05ER41374 (Shepherd); U.S. National Science Foundation under grant PHY-1507572 (Skwarnicki); U.S. Department of Energy, under contract DE-AC05-06OR23177 and grant DE-FG0287ER40365 (Szczepaniak); the National Natural Science Foundation of China (NSFC) under contract numbers 11235011 and 11475187 (Yuan). NR 131 TC 13 Z9 13 U1 1 U2 5 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD APR PY 2016 VL 40 IS 4 AR 042001 DI 10.1088/1674-1137/40/4/042001 PG 14 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA DJ3QV UT WOS:000374121600002 ER PT J AU Zhang, L Kang, QJ Chen, L Yao, J AF Zhang, Lei Kang, Qinjun Chen, Li Yao, Jun TI Simulation of Flow in Multi-Scale Porous Media Using the Lattice Boltzmann Method on Quadtree Grids SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Quadtree grid; unified lattice Boltzmann method; permeability; fractured porous media ID FLUID-FLOWS; BGK MODELS; MESH; GEOMETRIES; EQUATION AB The unified lattice Boltzmann model is extended to the quadtree grids for simulation of fluid flow through porous media. The unified lattice Boltzmann model is capable of simulating flow in porous media at various scales or in systems where multiple length scales coexist. The quadtree grid is able to provide a high-resolution approximation to complex geometries, with great flexibility to control local grid density. The combination of the unified lattice Boltzmann model and the quadtree grids results in an efficient numerical model for calculating permeability of multi-scale porous media. The model is used for permeability calculation for three systems, including a fractured system used in a previous study, a Voronoi tessellation system, and a computationally-generated pore structure of fractured shale. The results are compared with those obtained using the conventional lattice Boltzmann model or the unified lattice Boltzmann model on rectangular or uniform square grid. It is shown that the proposed model is an accurate and efficient tool for flow simulation in multi-scale porous media. In addition, for the fractured shale, the contribution of flow in matrix and fractures to the overall permeability of the fractured shale is studied systematically. C1 [Zhang, Lei; Yao, Jun] China Univ Petr, Sch Petr Engn, Qingdao 266580, Shandong, Peoples R China. [Zhang, Lei; Kang, Qinjun; Chen, Li] Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. [Chen, Li] Xi An Jiao Tong Univ, Key Lab Thermofluid Sci & Engn MOE, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China. RP Yao, J (reprint author), China Univ Petr, Sch Petr Engn, Qingdao 266580, Shandong, Peoples R China.; Kang, QJ (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM zhlei84@163.com; qkang@lanl.gov; lichenmt@lanl.gov; yaojunhdpu@126.com RI Chen, Li/P-4886-2014 OI Chen, Li/0000-0001-7956-3532 FU National Natural Science Foundation of China [51234007, 51504276]; China Postdoctoral Science Foundation [2015M580621]; Introducing Talents of Discipline to Universities [B08028]; Los Alamos National Laboratory's LDRD Program and Institutional Computing Program; UC Lab Fees Research Program; Chinese Scholarship Council FX We would like to thank the support from the National Natural Science Foundation of China (No. 51234007, No. 51504276), China Postdoctoral Science Foundation (No. 2015M580621), Introducing Talents of Discipline to Universities (B08028), Los Alamos National Laboratory's LDRD Program and Institutional Computing Program, as well as UC Lab Fees Research Program. Lei Zhang would like to thank Chinese Scholarship Council for supporting the one-year visit in Los Alamos National Laboratory. We also thank Prof. X. Yin from Colorado School of Mines for providing the Voronoi tessellation used in the second simulation example. NR 42 TC 0 Z9 0 U1 6 U2 12 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 EI 1991-7120 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD APR PY 2016 VL 19 IS 4 BP 998 EP 1014 DI 10.4208/cicp.110315.190815a PG 17 WC Physics, Mathematical SC Physics GA DJ5IS UT WOS:000374241100007 ER PT J AU Lin, MG Hurley, JH AF Lin, Mary G. Hurley, James H. TI Structure and function of the ULK1 complex in autophagy SO CURRENT OPINION IN CELL BIOLOGY LA English DT Review ID INITIATING KINASE ULK1; HORMA DOMAIN; SELECTIVE AUTOPHAGY; REGULATE AUTOPHAGY; ATG9 VESICLES; EARLY STEPS; PROTEIN; PHOSPHORYLATION; BIOGENESIS; SCAFFOLD AB The ULK1 complex initiates autophagosome formation, linking cellular nutrient status to downstream events in autophagy. Recent work suggests that the ULK1 complex might also be activated in selective autophagy independent of nutrient or energy status. In this review we will discuss our current understanding of how the ULK1 complex is regulated by different signals, as well as how this complex then regulates other components of the autophagy machinery. Recently obtained structural data both on ULK1 and the orthologous yeast Atg1 complex are beginning to shed light on the higher-order organization of ULK1 complex. Ultimately, these insights might make it possible to understand how cargo organization and structure recruits and regulates ULK1 in selective autophagy initiation. C1 [Lin, Mary G.; Hurley, James H.] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. [Lin, Mary G.; Hurley, James H.] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Hurley, James H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. RP Hurley, JH (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA.; Hurley, JH (reprint author), Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA.; Hurley, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. EM jimhurley@berkeley.edu FU National Institutes of Health [GM111730] FX We thank members of the Hurley lab for helpful discussions and comments on the manuscript. This work was supported by the National Institutes of Health Grant GM111730 (JHH). NR 69 TC 8 Z9 8 U1 7 U2 18 PU CURRENT BIOLOGY LTD PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0955-0674 EI 1879-0410 J9 CURR OPIN CELL BIOL JI Curr. Opin. Cell Biol. PD APR PY 2016 VL 39 BP 61 EP 68 DI 10.1016/j.ceb.2016.02.010 PG 8 WC Cell Biology SC Cell Biology GA DJ5RU UT WOS:000374268600010 PM 26921696 ER PT J AU Cui, Y Kenworthy, AK Edidin, M Divan, R Rosenmann, D Wang, PS AF Cui, Yan Kenworthy, Anne K. Edidin, Michael Divan, Ralu Rosenmann, Daniel Wang, Pingshan TI Analyzing Single Giant Unilamellar Vesicles With a Slotline-Based RF Nanometer Sensor SO IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES LA English DT Article DE Complex dielectric permittivity; conformal mapping; giant unilamellar vesicles (GUVs); microfluidics; microwave sensor ID RED-BLOOD-CELLS; DIELECTRIC-SPECTROSCOPY; DYNAMICS; SEPARATION; MEMBRANES AB Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences, as well as point-of-care health service technologies. Highly sensitive and broadband RF sensors are promising candidates for such a technique. In this work, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100-nm slotline structure. The highly concentrated RF fields, up to similar to 1.76 x 10(7) V/m, enable strong interactions between giant unilamellar vesicles (GUVs) and fields for high-sensitivity operations. We also provide two modeling approaches to extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at similar to 2, similar to 2.5, and similar to 2.8 GHz with an initial vertical bar S-21 vertical bar(min) of similar to -100 dB. Corresponding GUV dielectric properties are obtained. A one-dimensional scanning of single GUV is also demonstrated. C1 [Cui, Yan; Wang, Pingshan] Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA. [Kenworthy, Anne K.] Vanderbilt Univ, Med Ctr, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA. [Edidin, Michael] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. [Divan, Ralu; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Wang, PS (reprint author), Clemson Univ, Dept Elect & Comp Engn, Clemson, SC 29634 USA. EM pwang@clemson.edu FU National Institutes of Health (NIH) [1K25GM100480-01A1]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the National Institutes of Health (NIH) under Grant 1K25GM100480-01A1. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract DE-AC02-06CH11357. NR 35 TC 0 Z9 0 U1 3 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9480 EI 1557-9670 J9 IEEE T MICROW THEORY JI IEEE Trans. Microw. Theory Tech. PD APR PY 2016 VL 64 IS 4 BP 1339 EP 1347 DI 10.1109/TMTT.2016.2536021 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA DJ4HT UT WOS:000374166700032 PM 27713585 ER PT J AU Shao, T Jones, B AF Shao, Tao Jones, Brent TI Special Issue on Plenary and Invited Papers From ICOPS-BEAMS 2015 SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Editorial Material C1 [Shao, Tao] Chinese Acad Sci, Inst Elect Engn, POB 2703, Beijing 100190, Peoples R China. [Jones, Brent] Sandia Natl Labs, POB 5800,MS 1193, Albuquerque, NM 87185 USA. RP Shao, T (reprint author), Chinese Acad Sci, Inst Elect Engn, POB 2703, Beijing 100190, Peoples R China.; Jones, B (reprint author), Sandia Natl Labs, POB 5800,MS 1193, Albuquerque, NM 87185 USA. EM st@mail.iee.ac.cn; bmjones@sandia.gov NR 0 TC 0 Z9 0 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD APR PY 2016 VL 44 IS 4 SI SI BP 345 EP 346 DI 10.1109/TPS.2016.2541198 PN 1 PG 2 WC Physics, Fluids & Plasmas SC Physics GA DJ4GC UT WOS:000374162400001 ER PT J AU Safronova, AS Kantsyrev, VL Weller, ME Shlyaptseva, VV Shrestha, IK Lorance, MY Schmidt-Petersen, MT Stafford, A Cooper, MC Steiner, AM Yager-Elorriaga, DA Patel, SG Jordan, NM Gilgenbach, RM Chuvatin, AS AF Safronova, Alla S. Kantsyrev, Victor L. Weller, Michael E. Shlyaptseva, Veronica V. Shrestha, Ishor K. Lorance, Mindy Y. Schmidt-Petersen, Maximillian T. Stafford, Austin Cooper, Matthew C. Steiner, Adam M. Yager-Elorriaga, David A. Patel, Sonal G. Jordan, Nicholas M. Gilgenbach, Ronald M. Chuvatin, Alexander S. TI Double and Single Planar Wire Arrays on University-Scale Low-Impedance LTD Generator SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article; Proceedings Paper CT 42nd IEEE International Conference on Plasma Science (ICOPS) CY MAY 24-28, 2015 CL Belek, TURKEY SP IEEE DE K-shell radiation; Linear Transformer Driver (LTD); planar wire array (PWA); plasma pinch; shadowgraphy images; X-ray spectra and images ID ZEBRA GENERATOR; RADIATION; PLASMAS; UNR AB Planar wire array (PWA) experiments were performed on Michigan Accelerator for Inductive Z-pinch Experiments, the University of Michigan's low-impedance linear transformer driver (LTD)-driven generator (0.1 Omega, 0.5-1 MA, and 100-200 ns), for the first time. It was demonstrated that Al wire arrays [both double PWA (DPWA) and single PWA (SPWA)] can be successfully imploded at LTD generator even at the relatively low current of 0.3-0.5 MA. In particular, implosion characteristics and radiative properties of PWAs of different load configurations [for DPWA from Al and stainless steel wires with different wire diameters, interwire gaps, and interplanar gaps (IPGs) and for Al SPWA of different array widths and number of wires] were studied. The major difference from the DPWA experiments on high-impedance Zebra accelerator was in the current rise time that was influenced by the load inductance and was increased up to about 150 ns during the first campaign (and was even longer in the second campaign). The implosion dynamics of DPWAs strongly depends on the critical load parameter, the aspect ratio (the ratio of the array width to IPG) as for Al DPWAs on high-impedance Zebra, but some differences were observed, for low-aspect ratio loads in particular. Analysis of X-ray images and spectroscopy indicates that K-shell Al plasmas from Al PWAs reached the electron temperatures up to more than 450 eV and densities up to 2 x 10(20) cm(-3). Despite the low mass of the loads, opacity effects were observed in the most prominent K-shell Al lines almost in every shot. C1 [Safronova, Alla S.; Kantsyrev, Victor L.; Weller, Michael E.; Shlyaptseva, Veronica V.; Shrestha, Ishor K.; Lorance, Mindy Y.; Schmidt-Petersen, Maximillian T.; Stafford, Austin; Cooper, Matthew C.] Univ Nevada, Reno, NV 89557 USA. [Weller, Michael E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Steiner, Adam M.; Yager-Elorriaga, David A.; Patel, Sonal G.; Jordan, Nicholas M.; Gilgenbach, Ronald M.] Univ Michigan, Ann Arbor, MI 48109 USA. [Chuvatin, Alexander S.] Ecole Polytech, Ctr Natl Rech Sci, Lab Phys Plasmas, F-91128 Palaiseau, France. RP Safronova, AS (reprint author), Univ Nevada, Reno, NV 89557 USA. EM safronovaalla@gmail.com; victor@physics.unr.edu; weller4@llnl.gov; veronica@unr.edu; shresthaishor@yahoo.com; minylora@gmail.com; max-imilliansp94@gmail.com; austins@unr.edu; mattcooper616@hotmail.com; amsteine@umich.edu; dyager@umich.edu; sonalpa@umich.edu; jordann@umich.edu; rongilg@umich.edu; chuvatin@yahoo.com NR 23 TC 1 Z9 1 U1 1 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 EI 1939-9375 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD APR PY 2016 VL 44 IS 4 SI SI BP 432 EP 440 DI 10.1109/TPS.2016.2538291 PN 1 PG 9 WC Physics, Fluids & Plasmas SC Physics GA DJ4GC UT WOS:000374162400011 ER PT J AU Haut, TS Babb, T Martinsson, PG Wingate, BA AF Haut, T. S. Babb, T. Martinsson, P. G. Wingate, B. A. TI A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator SO IMA JOURNAL OF NUMERICAL ANALYSIS LA English DT Article DE time-stepping methods; optimal rational approximations; parallel-in-time; direct solver ID OPTIMAL RATIONAL-APPROXIMATIONS; SPECTRAL COLLOCATION METHOD; EXPONENTIAL INTEGRATORS; GAUSSIAN KERNELS; DIRECT SOLVER; PDES AB The manuscript presents a technique for efficiently solving the classical wave equation, the shallow water equations, and, more generally, equations of the form partial derivative u/partial derivative t = u pound, where pound is a skew-Hermitian differential operator. The idea is to explicitly construct an approximation to the time-evolution operator exp(tau ) pound for a relatively large time-step tau. Recently developed techniques for approximating oscillatory scalar functions by rational functions, and accelerated algorithms for computing functions of discretized differential operators are exploited. Principal advantages of the proposed method include: stability even for large time-steps, the possibility to parallelize in time over many characteristic wavelengths and large speed-ups over existing methods in situations where simulation over long times are required. Numerical examples involving the 2D rotating shallow water equations and the 2D wave equation in an inhomogenous medium are presented, and the method is compared to the 4th order Runge-Kutta (RK4) method and to the use of Chebyshev polynomials. The new method achieved high accuracy over long-time intervals, and with speeds that are orders of magnitude faster than both RK4 and the use of Chebyshev polynomials. C1 [Haut, T. S.] Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Los Alamos, NM USA. [Babb, T.; Martinsson, P. G.] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Wingate, B. A.] Univ Exeter, Dept Math, N Pk Rd, Exeter EX4 4QE, Devon, England. RP Haut, TS (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies CNLS, Los Alamos, NM USA. EM terryhaut@lanl.gov NR 24 TC 1 Z9 1 U1 1 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0272-4979 EI 1464-3642 J9 IMA J NUMER ANAL JI IMA J. Numer. Anal. PD APR PY 2016 VL 36 IS 2 BP 688 EP 716 DI 10.1093/imanum/drv021 PG 29 WC Mathematics, Applied SC Mathematics GA DJ5GH UT WOS:000374234300009 ER PT J AU Schulze, ND Hamelin, EI Winkeljohn, WR Shaner, RL Basden, BJ decastro, BR Pantazides, BG Thomas, JD Johnson, RC AF Schulze, Nicholas D. Hamelin, Elizabeth I. Winkeljohn, W. Rucks Shaner, Rebecca L. Basden, Brian J. deCastro, B. Rey Pantazides, Brooke G. Thomas, Jerry D. Johnson, Rudolph C. TI Evaluation of Multiple Blood Matrices for Assessment of Human Exposure to Nerve Agents SO JOURNAL OF ANALYTICAL TOXICOLOGY LA English DT Article ID TANDEM MASS-SPECTROMETRY; INTERACTION LIQUID-CHROMATOGRAPHY; ISOPROPYL METHYLPHOSPHONIC ACID; BIOLOGICAL SAMPLES; HUMAN BUTYRYLCHOLINESTERASE; TOKYO SUBWAY; SARIN; METABOLITES; SERUM; COLLECTION AB Biomedical samples may be used to determine human exposure to nerve agents through the analysis of specific biomarkers. Samples received may include serum, plasma, whole blood, lysed blood and, due to the toxicity of these compounds, postmortem blood. To quantitate metabolites resulting from exposure to sarin (GB), soman (GD), cyclosarin (GF), VX and VR, these blood matrices were evaluated individually for precision, accuracy, sensitivity and specificity. Accuracies for these metabolites ranged from 100 to 113% with coefficients of variation ranging from 2.31 to 13.5% across a reportable range of 1-100 ng/mL meeting FDA recommended guidelines for bioanalytical methods in all five matrices. Limits of detection were calculated to be 0.09-0.043 ng/mL, and no interferences were detected in unexposed matrix samples. The use of serum calibrators was also determined to be a suitable alternative to matrix-matched calibrators. Finally, to provide a comparative value between whole blood and plasma, the ratio of the five nerve agent metabolites measured in whole blood versus plasma was determined. Analysis of individual whole blood samples (n = 40), fortified with nerve agent metabolites across the reportable range, resulted in average nerve agent metabolite blood to plasma ratios ranging from 0.53 to 0.56. This study demonstrates the accurate and precise quantitation of nerve agent metabolites in serum, plasma, whole blood, lysed blood and postmortem blood. It also provides a comparative value between whole blood and plasma samples, which can assist epidemiologists and physicians with interpretation of test results from blood specimens obtained under variable conditions. C1 [Schulze, Nicholas D.] Oak Ridge Inst Sci Educ, Oak Ridge, TN 37831 USA. [Hamelin, Elizabeth I.; Shaner, Rebecca L.; deCastro, B. Rey; Pantazides, Brooke G.; Thomas, Jerry D.; Johnson, Rudolph C.] Ctr Dis Control & Prevent, Div Lab Sci, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. [Winkeljohn, W. Rucks; Basden, Brian J.] Battelle Mem Inst, Atlanta, GA 30329 USA. RP Hamelin, EI (reprint author), Ctr Dis Control & Prevent, Div Lab Sci, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. EM eph3@cdc.gov NR 32 TC 2 Z9 2 U1 14 U2 17 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0146-4760 EI 1945-2403 J9 J ANAL TOXICOL JI J. Anal. Toxicol. PD APR PY 2016 VL 40 IS 3 BP 229 EP 235 DI 10.1093/jat/bkw003 PG 7 WC Chemistry, Analytical; Toxicology SC Chemistry; Toxicology GA DJ4MZ UT WOS:000374181200008 PM 26861671 ER PT J AU Pruitt, SR Nakata, H Nagata, T Mayes, M Alexeev, Y Fletcher, G Fedorov, DG Kitaura, K Gordon, MS AF Pruitt, Spencer R. Nakata, Hiroya Nagata, Takeshi Mayes, Maricris Alexeev, Yuri Fletcher, Graham Fedorov, Dmitri G. Kitaura, Kazuo Gordon, Mark S. TI Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID TRANSFERABLE INTERACTION MODELS; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; OPEN-SHELL SYSTEMS; FMO-MD; ACCURATE CALCULATIONS; ANALYTIC GRADIENT; 1ST PRINCIPLES; BASIS-SET; CLUSTERS AB The analytic first derivative with respect to nuclear coordinates is formulated and implemented in the framework of the three-body fragment molecular orbital (FMO) method. The gradient has been derived and implemented for restricted second-order Moller-Plesset perturbation theory, as well as for both restricted and unrestricted Hartree-Fock and density functional theory. The importance of the three-body fully analytic gradient is illustrated through the failure of the two-body FMO method during molecular dynamics simulations of a small water cluster. The parallel implementation of the fragment molecular orbital method, its parallel efficiency, and its scalability on the Blue Gene/Q architecture up to 262 144 CPU cores are also discussed. C1 [Pruitt, Spencer R.; Alexeev, Yuri; Fletcher, Graham] Argonne Natl Lab, Argonne Leadership Comp Facil, 9700 S Cass Ave, Lemont, IL 60439 USA. [Nakata, Hiroya] Kyocera Corp, R&D Ctr Kagoshima, Dept Fundamental Technol Res, 1-4 Kokubu Yamashita Cho, Kirishima, Kagoshima 8994312, Japan. [Nagata, Takeshi; Fedorov, Dmitri G.] Natl Inst Adv Ind Sci & Technol, Nanosyst Res Inst, 1-1-1 Umenzono, Tsukuba, Ibaraki 3058568, Japan. [Mayes, Maricris] Univ Massachusetts, Dept Chem & Biochem, 285 Old Westport Rd, Dartmouth, MA 02747 USA. [Kitaura, Kazuo] Kobe Univ, Grad Sch Syst Informat, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan. [Gordon, Mark S.] Iowa State Univ, Dept Chem, 201 Spedding Hall, Ames, IA 50011 USA. [Gordon, Mark S.] Iowa State Univ, Ames Lab, 201 Spedding Hall, Ames, IA 50011 USA. RP Fedorov, DG (reprint author), Natl Inst Adv Ind Sci & Technol, Nanosyst Res Inst, 1-1-1 Umenzono, Tsukuba, Ibaraki 3058568, Japan.; Gordon, MS (reprint author), Iowa State Univ, Dept Chem, 201 Spedding Hall, Ames, IA 50011 USA.; Gordon, MS (reprint author), Iowa State Univ, Ames Lab, 201 Spedding Hall, Ames, IA 50011 USA. EM d.g.fedorov@aist.go.jp; mark@si.msg.chem.iastate.edu FU Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; U.S. National Science Foundation Software Infrastructure (SI2) grant [ACI-1450217]; Next Generation Super Computing Project; Nanoscience Program (MEXT, Japan); Computational Materials Science Initiative (CMSI, Japan); DOE Office of Science User Facility [DE-ACO2-06CH11357]; National Science Foundation MRI grant FX This work was supported by the Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, and by a U.S. National Science Foundation Software Infrastructure (SI2) grant, ACI-1450217. D.G.F. was supported by the Next Generation Super Computing Project, Nanoscience Program (MEXT, Japan), and Computational Materials Science Initiative (CMSI, Japan). Some of the computations reported here were performed on the Iowa State University Cyence cluster, obtained via a National Science Foundation MRI grant, at Iowa State University. An award of computer time was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357. NR 82 TC 2 Z9 2 U1 4 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD APR PY 2016 VL 12 IS 4 BP 1423 EP 1435 DI 10.1021/acs.jctc.5b01208 PG 13 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DJ4RV UT WOS:000374196400003 PM 26913837 ER PT J AU Chen, YJ Kale, S Weare, J Dinner, AR Roux, B AF Chen, Yunjie Kale, Seyit Weare, Jonathan Dinner, Aaron R. Roux, Benoit TI Multiple Time-Step Dual-Hamiltonian Hybrid Molecular Dynamics - Monte Carlo Canonical Propagation Algorithm SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID PARTICLE-MESH-EWALD; DIFFERENTIAL-EQUATIONS; SIMULATIONS; LANGEVIN; SYSTEMS; INTEGRATORS; ENERGIES; PARAMETERS; ACCURACY AB A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method. C1 [Chen, Yunjie; Kale, Seyit; Dinner, Aaron R.; Roux, Benoit] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Weare, Jonathan] Univ Chicago, Dept Stat, Chicago, IL 60637 USA. [Weare, Jonathan] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Roux, Benoit] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA. [Roux, Benoit] Argonne Natl Lab, Ctr Nanomat, Argonne, IL 60439 USA. RP Roux, B (reprint author), Univ Chicago, Dept Chem, Chicago, IL 60637 USA.; Roux, B (reprint author), Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA.; Roux, B (reprint author), Argonne Natl Lab, Ctr Nanomat, Argonne, IL 60439 USA. EM roux@uchicago.edu FU National Institutes of Health [5 R01 GM109455-02]; National Science Foundation [CHE-1136709, MCB-1517221] FX This research was partially supported by the National Institutes of Health (grant 5 R01 GM109455-02) and by the National Science Foundation (grants CHE-1136709 and MCB-1517221). Computational resources were provided by the University of Chicago Research Computing Center (RCC). We thank Charles Matthews for useful discussions. NR 65 TC 0 Z9 0 U1 3 U2 8 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD APR PY 2016 VL 12 IS 4 BP 1449 EP 1458 DI 10.1021/acs.jctc.5b00706 PG 10 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DJ4RV UT WOS:000374196400005 PM 26918826 ER PT J AU Neale, C Pomes, R Garcia, AE AF Neale, Chris Pomes, Regis Garcia, Angel E. TI Peptide Bond Isomerization in High-Temperature Simulations SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CIS-TRANS ISOMERIZATION; TRP-CAGE MINIPROTEIN; PARTICLE MESH EWALD; PROTEIN FORCE-FIELD; REPLICA-EXCHANGE; CIS/TRANS ISOMERIZATION; PROLINE ISOMERIZATION; PROLYL ISOMERASE; BETA-HAIRPIN AB Force fields for molecular simulation are generally optimized to model macromolecules such as proteins at ambient temperature and pressure. Nevertheless, elevated temperatures are frequently used to enhance conformational sampling, either during system setup or as a component of an advanced sampling technique such as temperature replica exchange. Because macromolecular force fields are now put upon to simulate temperatures and time scales that greatly exceed their original design specifications, it is appropriate to re-evaluate whether these force fields are up to the task. Here, we quantify the rates of peptide bond isomerization in high-temperature simulations of three octameric peptides and a small fast folding protein. We show that peptide octamers with and without proline residues undergo cis/trans isomerization every 1-5 ns at 800 K with three classical atomistic force fields (AMBER99SB-ILDN, CHARMM22/CMAP, and OPLS-AA/L). On the low microsecond time scale, these force fields permit isomerization of nonprolyl peptide bonds at temperatures >= 500 K, and the CHARMM22/CMAP force field permits isomerization of prolyl peptide bonds >= 400 K. Moreover, the OPLS-AA/L force field allows chiral inversion about the C-alpha atom at 800 K. Finally, we show that temperature replica exchange permits cis peptide bonds developed at 540 K to subsequently migrate back to the 300 K ensemble, where cis peptide. bonds are present in 2 +/- 1% of the population of Trp-cage TC5b, including up to 4% of its folded state. Further work is required to assess the accuracy of cis/trans isomerization in the current generation of protein force fields. C1 [Neale, Chris; Garcia, Angel E.] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA. [Garcia, Angel E.] Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, 110 8th St, Troy, NY 12180 USA. [Pomes, Regis] Hosp Sick Children, Mol Struct & Funct, 686 Bay St, Toronto, ON M5G 0A4, Canada. [Pomes, Regis] Univ Toronto, Dept Biochem, 101 Coll St, Toronto, ON M5G 1L7, Canada. [Neale, Chris; Garcia, Angel E.] Los Alamos Natl Lab, Ctr NonLinear Studies CNLS, MS B258, Los Alamos, NM 87545 USA. RP Garcia, AE (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, 110 8th St, Troy, NY 12180 USA.; Garcia, AE (reprint author), Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, 110 8th St, Troy, NY 12180 USA.; Garcia, AE (reprint author), Los Alamos Natl Lab, Ctr NonLinear Studies CNLS, MS B258, Los Alamos, NM 87545 USA. EM agarcia@lanl.gov OI Alexandrov, Ludmil/0000-0003-3596-4515 FU Canada Foundation for Innovation (CFI); Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds de Recherche Nature et Technologies Quebec; CFI under the auspices of Compute Canada; Government of Ontario; Ontario Research Fund - Research Excellence; University of Toronto; National Science Foundation (NSF) [ACI-1053575]; Canadian Institutes of Health Research (CIHR); CIHR Operating [MOP-43998]; NSERC Discovery [418679]; NSF [MCB-1050966] FX Computations are performed at (i) Colosse at the CLUMEQ high performance computing (HPC) consortium of Calcul Quebec (www.calculquebec.ca), (ii) GPC at the SciNet HPC consortium,99 (iii) the Center for Computational Innovations at Rensselaer Polytechnic Institute, and (iv) Stampede at the Texas Advanced Computing Center at the University of Texas at Austin (www.tacc.utexas.edu), to which access is provided by the Extreme Science and Engineering Discovery Environment (XSEDE grant TG-MCB130178). CLUMEQis funded by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council of Canada (NSERC), and Fonds de Recherche Nature et Technologies Quebec. SciNet is a resource of Compute Canada (www.computecanada.ca) and is funded by the CFI under the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto. XSEDE is supported by National Science Foundation (NSF) grant number ACI-1053575. C.N. is funded by a postdoctoral fellowship from the Canadian Institutes of Health Research (CIHR). R.P. is funded by CIHR Operating Grant MOP-43998 and NSERC Discovery grant 418679. This work is funded in part by NSF grant MCB-1050966. NR 99 TC 3 Z9 3 U1 6 U2 21 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD APR PY 2016 VL 12 IS 4 BP 1989 EP 1999 DI 10.1021/acs.jctc.5b01022 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DJ4RV UT WOS:000374196400053 PM 26866899 ER PT J AU Manzanares, C Barth, S Thorogood, D Byrne, SL Yates, S Czaban, A Asp, T Yang, BC Studer, B AF Manzanares, Chloe Barth, Susanne Thorogood, Daniel Byrne, Stephen L. Yates, Steven Czaban, Adrian Asp, Torben Yang, Bicheng Studer, Bruno TI A Gene Encoding a DUF247 Domain Protein Cosegregates with the S Self-Incompatibility Locus in Perennial Ryegrass SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article DE domain of unknown function (DUF) 247; fine-mapping; perennial ryegrass (Lolium perenne L); self-incompatibility (SI); RNA sequencing (RNAseq); S-locus ID F-BOX GENE; LOLIUM-PERENNE; PHALARIS-COERULESCENS; BRASSICA-CAMPESTRIS; PAPAVER-RHOEAS; L.; EVOLUTION; GENOME; RNA; IDENTIFICATION AB The grass family (Poaceae), the fourth largest family of flowering plants, encompasses the most economically important cereal, forage, and energy crops, and exhibits a unique gametophytic self-incompatibility (SI) mechanism that is controlled by at least two multiallelic and independent loci, S and Z. Despite intense research efforts over the last six decades, the genes underlying S and Z remain uncharacterized. Here, we report a fine-mapping approach to identify the male component of the S-locus in perennial ryegrass (Lolium perenne L.) and provide multiple evidence that a domain of unknown function 247 (DUF247) gene is involved in its determination. Using a total of 10,177 individuals from seven different mapping populations segregating for S, we narrowed the S-locus to a genomic region containing eight genes, the closest recombinant marker mapping at a distance of 0.016 cM. Of the eight genes cosegregating with the S-locus, a highly polymorphic gene encoding for a protein containing a DUF247 was fully predictive of known S-locus genotypes at the amino acid level in the seven mapping populations. Strikingly, this gene showed a frameshift mutation in self-compatible darnel (Lolium temulentum L.), whereas all of the self-incompatible species of the Festuca-Lolium complex were predicted to encode functional proteins. Our results represent a major step forward toward understanding the gametophytic SI system in one of the most important plant families and will enable the identification of additional components interacting with the S-locus. C1 [Manzanares, Chloe; Yates, Steven; Studer, Bruno] ETH, Forage Crop Genet, Inst Agr Sci, Zurich, Switzerland. [Manzanares, Chloe; Barth, Susanne] Oak Pk Res Ctr, Environm & Land Use Programme, Teagasc Crops, Carlow, Ireland. [Manzanares, Chloe; Thorogood, Daniel] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3FG, Ceredigion, Wales. [Byrne, Stephen L.; Czaban, Adrian; Asp, Torben] Aarhus Univ, Res Ctr Flakkebjerg, Dept Mol Biol & Genet, Slagelse, Denmark. [Yang, Bicheng] BGI Shenzhen, Beishan Ind Zone, Bldg 1, Shenzhen, Peoples R China. RP Studer, B (reprint author), ETH, Forage Crop Genet, Inst Agr Sci, Zurich, Switzerland. EM bruno.studer@usys.ethz.ch OI thorogood, Daniel/0000-0003-0148-5719 FU Teagasc Walsh Fellow PhD stipend; Danish Council for Independent Research, Technology and Production Sciences (FTP) [09-065762]; Swiss National Science Foundation (SNSF) [PP00P2 138988]; BBSRC [BB/J004405/1]; European Union [GA-2010-267243] FX This work was supported by Teagasc Walsh Fellow PhD stipend, the Danish Council for Independent Research, Technology and Production Sciences (FTP, grant no: 09-065762), the Swiss National Science Foundation (SNSF Professorship grant no: PP00P2 138988), BBSRC Institute Strategic Programme Grant (ref. BB/J004405/1), and the European Union's Seventh Framework Programme for research, technological development, and demonstration under grant agreement no: GA-2010-267243 - Plant Fellows. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 74 TC 2 Z9 2 U1 4 U2 18 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 EI 1537-1719 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD APR PY 2016 VL 33 IS 4 BP 870 EP 884 DI 10.1093/molbev/msv335 PG 15 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA DJ5DJ UT WOS:000374226700002 PM 26659250 ER PT J AU Nagy, LG Riley, R Tritt, A Adam, C Daum, C Floudas, D Sun, H Yadav, JS Pangilinan, J Larsson, KH Matsuura, K Barry, K Labutti, K Kuo, R Ohm, RA Bhattacharya, SS Shirouzu, T Yoshinaga, Y Martin, FM Grigoriev, IV Hibbett, DS AF Nagy, Laszlo G. Riley, Robert Tritt, Andrew Adam, Catherine Daum, Chris Floudas, Dimitrios Sun, Hui Yadav, Jagjit S. Pangilinan, Jasmyn Larsson, Karl-Henrik Matsuura, Kenji Barry, Kerrie Labutti, Kurt Kuo, Rita Ohm, Robin A. Bhattacharya, Sukanta S. Shirouzu, Takashi Yoshinaga, Yuko Martin, Francis M. Grigoriev, Igor V. Hibbett, David S. TI Comparative Genomics of Early-Diverging Mushroom-Forming Fungi Provides Insights into the Origins of Lignocellulose Decay Capabilities SO MOLECULAR BIOLOGY AND EVOLUTION LA English DT Article ID MULTICOPPER OXIDASE GENES; WOOD-DECAY; PHYLOGENETIC RECONSTRUCTION; EVOLUTION; SEQUENCE; MECHANISMS; SYMBIOSIS; ENZYMES; LIGNIN; FAMILY AB Evolution of lignocellulose decomposition was one of the most ecologically important innovations in fungi. White-rot fungi in the Agaricomycetes (mushrooms and relatives) are the most effective microorganisms in degrading both cellulose and lignin components of woody plant cell walls (PCW). However, the precise evolutionary origins of lignocellulose decomposition are poorly understood, largely because certain early-diverging clades of Agaricomycetes and its sister group, the Dacrymycetes, have yet to be sampled, or have been undersampled, in comparative genomic studies. Here, we present new genome sequences of ten saprotrophic fungi, including members of the Dacrymycetes and early-diverging clades of Agaricomycetes (Cantharellales, Sebacinales, Auriculariales, and Trechisporales), which we use to refine the origins and evolutionary history of the enzymatic toolkit of lignocellulose decomposition. We reconstructed the origin of ligninolytic enzymes, focusing on class II peroxidases (AA2), as well as enzymes that attack crystalline cellulose. Despite previous reports of white rot appearing as early as the Dacrymycetes, our results suggest that white-rot fungi evolved later in the Agaricomycetes, with the first class II peroxidases reconstructed in the ancestor of the Auriculariales and residual Agaricomycetes. The exemplars of the most ancient clades of Agaricomycetes that we sampled all lack class II peroxidases, and are thus concluded to use a combination of plesiomorphic and derived PCW degrading enzymes that predate the evolution of white rot. C1 [Nagy, Laszlo G.] BRC HAS, Inst Biochem, Synthet & Syst Biol Unit, Szeged, Hungary. [Riley, Robert; Tritt, Andrew; Adam, Catherine; Daum, Chris; Sun, Hui; Pangilinan, Jasmyn; Barry, Kerrie; Labutti, Kurt; Kuo, Rita; Ohm, Robin A.; Yoshinaga, Yuko; Grigoriev, Igor V.] US Dept Energy DOE Joint Genome Inst, Walnut Creek, CA USA. [Floudas, Dimitrios] Lund Univ, Microbial Ecol Grp, Dept Biol, Lund, Sweden. [Yadav, Jagjit S.; Bhattacharya, Sukanta S.] Univ Cincinnati, Coll Med, Dept Environm Hlth, Cincinnati, OH 45221 USA. [Larsson, Karl-Henrik] Univ Oslo, Museum Nat Hist, Oslo, Norway. [Matsuura, Kenji] Kyoto Univ, Lab Insect Ecol, Grad Sch Agr, Kyoto, Japan. [Ohm, Robin A.] Univ Utrecht, Dept Microbiol, Utrecht, Netherlands. [Shirouzu, Takashi] Natl Museum Nat & Sci, Tsukuba, Ibaraki, Japan. [Martin, Francis M.] Univ Henri Poincare, INRA, Unite Mixte Rech 1136, Interact Arbres Microorganismes, Champenoux, France. [Hibbett, David S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. RP Nagy, LG (reprint author), BRC HAS, Inst Biochem, Synthet & Syst Biol Unit, Szeged, Hungary.; Hibbett, DS (reprint author), Clark Univ, Dept Biol, Worcester, MA 01610 USA. EM lnagy@brc.hu; dhibbett@clarku.edu RI Ohm, Robin/I-6689-2016 FU Lendulet Programme of the Hungarian Academy of Sciences [LP2014/12-2014]; US National Science Foundation [DEB-0933081, DEB-1208719]; Office of Science of the US. Department of Energy [DE-AC02-05CH11231] FX We are grateful to Liam Revell for his help with the PhyTools package. L.G.N. was supported by the Lendulet Programme of the Hungarian Academy of Sciences under contract no. LP2014/12-2014. This research was supported in part by US National Science Foundation awards DEB-0933081 and DEB-1208719 to D.S.H. The work conducted by the US. Department of Energy Joint Genome Institute is supported by the Office of Science of the US. Department of Energy under contract no. DE-AC02-05CH11231. NR 55 TC 9 Z9 9 U1 20 U2 43 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0737-4038 EI 1537-1719 J9 MOL BIOL EVOL JI Mol. Biol. Evol. PD APR PY 2016 VL 33 IS 4 BP 959 EP 970 DI 10.1093/molbev/msv337 PG 12 WC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity SC Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity GA DJ5DJ UT WOS:000374226700008 PM 26659563 ER PT J AU Cuesta, AJ Vargas-Magana, M Beutler, F Bolton, AS Brownstein, JR Eisenstein, DJ Gil-Marin, H Ho, S McBride, CK Maraston, C Padmanabhan, N Percival, WJ Reid, BA Ross, AJ Ross, NP Sanchez, AG Schlegel, DJ Schneider, DP Thomas, D Tinker, J Tojeiro, R Verde, L White, M AF Cuesta, Antonio J. Vargas-Magana, Mariana Beutler, Florian Bolton, Adam S. Brownstein, Joel R. Eisenstein, Daniel J. Gil-Marin, Hector Ho, Shirley McBride, Cameron K. Maraston, Claudia Padmanabhan, Nikhil Percival, Will J. Reid, Beth A. Ross, Ashley J. Ross, Nicholas P. Sanchez, Ariel G. Schlegel, David J. Schneider, Donald P. Thomas, Daniel Tinker, Jeremy Tojeiro, Rita Verde, Licia White, Martin TI The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12 SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmology: observations; distance scale; large-scale structure of Universe ID DIGITAL SKY SURVEY; POWER-SPECTRUM ANALYSIS; FINAL DATA; DISTANCE MEASUREMENTS; SAMPLE; TELESCOPE; SCALE; I.; RECONSTRUCTION; CONSTRAINTS AB We present distance scale measurements from the baryon acoustic oscillation signal in the constant stellar mass and low-redshift sample samples from the Data Release 12 of the Baryon Oscillation Spectroscopic Survey. The total volume probed is 14.5 Gpc(3), a 10 per cent increment from Data Release 11. From an analysis of the spherically averaged correlation function, we infer a distance to z = 0.57 of Mpc and a distance to z = 0.32 of Mpc assuming a cosmology in which Mpc. From the anisotropic analysis, we find an angular diameter distance to z = 0.57 of Mpc and a distance to z = 0.32 of 981 +/- 20 Mpc, a 1.5 and 2.0 per cent measurement, respectively. The Hubble parameter at z = 0.57 is km s(-1) Mpc(-1) and its value at z = 0.32 is 79.2 +/- 5.6 km s(-1) Mpc(-1), a 3.7 and 7.1 per cent measurement, respectively. These cosmic distance scale constraints are in excellent agreement with a I > cold dark matter model with cosmological parameters released by the recent Planck 2015 results. C1 [Cuesta, Antonio J.; Verde, Licia] Univ Barcelona IEEC UB, Inst Ciencies Cosmos ICCUB, Marti & Franques 1, E-02028 Barcelona, Spain. [Vargas-Magana, Mariana] Univ Nacl Autonoma Mexico, Inst Fis, POB 20-364, Mexico City 01000, DF, Mexico. [Vargas-Magana, Mariana; Ho, Shirley] Carnegie Mellon Univ, Dept Phys, Bruce & Astrid McWilliams Ctr, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Vargas-Magana, Mariana; Ho, Shirley] Carnegie Mellon Univ, Dept Phys, 5000 Forbes Ave, Pittsburgh, PA 15217 USA. [Beutler, Florian; Reid, Beth A.; Schlegel, David J.; White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Beutler, Florian; Reid, Beth A.; Schlegel, David J.; White, Martin] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Bolton, Adam S.; Brownstein, Joel R.] Univ Utah, Dept Phys & Astron, 115 S 1400 E, Salt Lake City, UT 84112 USA. [Eisenstein, Daniel J.; McBride, Cameron K.] Harvard Univ, Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. [Gil-Marin, Hector; Maraston, Claudia; Percival, Will J.; Thomas, Daniel] Univ Portsmouth, Inst Cosmol & Gravitat, Dennis Sciama Bldg, Portsmouth PO1 3FX, Hants, England. [Padmanabhan, Nikhil] Yale Univ, Dept Phys, 260 Whitney Ave, New Haven, CT 06520 USA. [Ross, Ashley J.] Ohio State Univ, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA. [Ross, Nicholas P.] Univ Edinburgh, Royal Observ, Inst Astron, Blackford Hill, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ross, Nicholas P.] Drexel Univ, Dept Phys, 3141 Chestnut St, Philadelphia, PA 19104 USA. [Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, Giessenbachstr 1, D-85748 Garching, Germany. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Tinker, Jeremy] CUNY, Dept Phys, Ctr Cosmol & Particle Phys, 4 Washington Pl, New York, NY 10003 USA. [Tojeiro, Rita] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Verde, Licia] Passeig Lluis Co, ICREA, E-2308010 Barcelona, Spain. [Verde, Licia] Harvard Univ, Radcliffe Inst Adv Study, Cambridge, MA 02138 USA. [Verde, Licia] Univ Oslo, Inst Theoret Astrophys, N-0315 Oslo, Norway. [White, Martin] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Cuesta, AJ (reprint author), Univ Barcelona IEEC UB, Inst Ciencies Cosmos ICCUB, Marti & Franques 1, E-02028 Barcelona, Spain. EM ajcuesta@icc.ub.edu RI White, Martin/I-3880-2015; Gil Marin, Hector/B-2013-2017; OI White, Martin/0000-0001-9912-5070; Gil Marin, Hector/0000-0003-0265-6217; Beutler, Florian/0000-0003-0467-5438; Cuesta Vazquez, Antonio Jose/0000-0002-4153-9470; Verde, Licia/0000-0003-2601-8770 FU European Research Council under the European Community [FP7-IDEAS-Phys.LSS 240117]; Spanish MINECO of ICCUB (Unidad de Excelencia 'Maria de Maeztu') [AYA2014-58747-P, MDM-2014-0369]; ESA; NASA; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Office of Science of the US Department of Energy [DEAC02-05CH11231]; Science, Technology and Facilities Council [ST/I001204/1] FX AJC and LV are supported by supported by the European Research Council under the European Community's Seventh Framework Programme FP7-IDEAS-Phys.LSS 240117. Funding for this work was partially provided by the Spanish MINECO under projects AYA2014-58747-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia 'Maria de Maeztu').; Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada.; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the US Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231. Power spectrum computations were supported by the facilities and staff of the UK Sciama High Performance Computing cluster supported by SEPNet and the University of Portsmouth. Power spectrum calculations, and fitting made use of the COSMOS/Universe supercomputer, a UK-CCC facility supported by HEFCE and STFC in cooperation with CGI/Intel.; The Science, Technology and Facilities Council is acknowledged for support through the Survey Cosmology and Astrophysics consolidated grant, ST/I001204/1. NR 59 TC 26 Z9 26 U1 4 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 1 PY 2016 VL 457 IS 2 BP 1770 EP 1785 DI 10.1093/mnras/stw066 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI6AB UT WOS:000373580500052 ER PT J AU Cohn, JD White, M Chang, TC Holder, G Padmanabhan, N Dore, O AF Cohn, J. D. White, Martin Chang, Tzu-Ching Holder, Gil Padmanabhan, Nikhil Dore, Olivier TI Combining galaxy and 21-cm surveys SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; galaxies: statistics; cosmological parameters; large-scale structure of Universe ID BARYON ACOUSTIC-OSCILLATIONS; ZELDOVICH APPROXIMATION; 2-POINT CORRELATION; REDSHIFT SPACE; SCALE; RECONSTRUCTION; INTERFEROMETRY; COSMOLOGY; DISTANCE; QUASARS AB Acoustic waves travelling through the early Universe imprint a characteristic scale in the clustering of galaxies, QSOs and intergalactic gas. This scale can be used as a standard ruler to map the expansion history of the Universe, a technique known as baryon acoustic oscillations (BAO). BAO offer a high-precision, low-systematics means of constraining our cosmological model. The statistical power of BAO measurements can be improved if the 'smearing' of the acoustic feature by non-linear structure formation is undone in a process known as reconstruction. In this paper, we use low-order Lagrangian perturbation theory to study the ability of 21-cm experiments to perform reconstruction and how augmenting these surveys with galaxy redshift surveys at relatively low number densities can improve performance. We find that the critical number density which must be achieved in order to benefit 21-cm surveys is set by the linear theory power spectrum near its peak, and corresponds to densities achievable by upcoming surveys of emission line galaxies such as eBOSS and DESI. As part of this work, we analyse reconstruction within the framework of Lagrangian perturbation theory with local Lagrangian bias, redshift-space distortions, k-dependent noise and anisotropic filtering schemes. C1 [Cohn, J. D.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Cohn, J. D.] Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Chang, Tzu-Ching] Acad Sinica, ASMAB 11F, AS NTU, Inst Astron & Astrophys, 1 Roosevelt Rd Sect 4, Taipei 10617, Taiwan. [Holder, Gil] McGill Univ, Dept Phys, 3600 Rue Univ, Montreal, PQ H3A 2T8, Canada. [Padmanabhan, Nikhil] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Dore, Olivier] CALTECH, MC 350-17, Pasadena, CA 91125 USA. [Dore, Olivier] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA USA. RP Cohn, JD (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA.; Cohn, JD (reprint author), Univ Calif Berkeley, Theoret Astrophys Ctr, Berkeley, CA 94720 USA. EM jcohn@berkeley.edu RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU National Science Foundation [PHY-1066293]; MoST [103-2112-M-001-002-MY3] FX We would like to thank Marcel Schmittfull for helpful conversations on acoustic oscillations and reconstruction, and Josh Dillon, Daniel Eisenstein, Marcel Schmittfull, Uros Seljak and Hee-Jong Seo for helpful feedback on the draft, and the anonymous referee for additional helpful suggestions. This work was begun at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1066293. We thank the Center for its hospitality. T-CC acknowledges support from MoST grant 103-2112-M-001-002-MY3. This work made extensive use of the NASA Astrophysics Data System and of the astro-ph preprint archive at arXiv.org. NR 53 TC 4 Z9 4 U1 1 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD APR 1 PY 2016 VL 457 IS 2 BP 2068 EP 2077 DI 10.1093/mnras/stw108 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI6AB UT WOS:000373580500073 ER PT J AU Bufford, DC Wang, YM Liu, Y Lu, L AF Bufford, Daniel C. Wang, Y. Morris Liu, Yue Lu, Lei TI Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals SO MRS BULLETIN LA English DT Article ID NANOSCALE GROWTH TWINS; STACKING-FAULT-ENERGY; STEEL THIN-FILMS; THERMAL-STABILITY; CU FILMS; NANOCRYSTALLINE MATERIALS; STRENGTHENING MECHANISMS; DEFORMATION MECHANISMS; TENSILE PROPERTIES; GRAIN-BOUNDARIES AB The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. Understanding the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, is key to understanding and utilizing these materials. This article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, while engineered approaches are necessary for fcc metals with higher stacking-fault energies. Growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted. C1 [Bufford, Daniel C.] Sandia Natl Labs, Radiat Solid Interact Dept, Livermore, CA 94550 USA. [Wang, Y. Morris] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Liu, Yue] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Lu, Lei] Chinese Acad Sci, Inst Met Res, Beijing 100864, Peoples R China. RP Bufford, DC (reprint author), Sandia Natl Labs, Radiat Solid Interact Dept, Livermore, CA 94550 USA.; Wang, YM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Liu, Y (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA.; Lu, L (reprint author), Chinese Acad Sci, Inst Met Res, Beijing 100864, Peoples R China. EM dcbuffo@sandia.gov; wang35@llnl.gov; yueliu@lanl.gov; llu@imr.ac.cn RI Wang, Yinmin (Morris)/F-2249-2010; Liu, Yue/H-4071-2014 OI Liu, Yue/0000-0001-8518-5734 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DoE-OBES [DE-SC0010482]; US Department of Energy [DE-AC52-07NA27344]; Office of Basic Energy Sciences, Project FWP [06SCPE401]; US DoE [W-7405-ENG-36]; National Basic Research Program of China (973 Program) [2012CB932202]; NSFC [51420105001, 51371171, 51471172]; "Hundreds of Talents Project" from CAS FX The authors thank N. Lu (Institute of Metals Research) and T. LaGrange (Lawrence Livermore National Laboratory) for image contributions, and B.L Boyce, T.A. Furnish, K.M. Hattar, and B.R. Muntifering (Sandia National Laboratories) for helpful discussions. D.C.B. was fully supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, US Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The work on NT Al was supported by DoE-OBES under Grant No. DE-SC0010482. The work (Y.M.W.) at Lawrence Livermore National Laboratory was supported by the US Department of Energy under Contract DE-AC52-07NA27344. Y.L. was fully supported by the Office of Basic Energy Sciences, Project FWP 06SCPE401, under US DoE Contract No. W-7405-ENG-36. L.L. acknowledges financial support from the National Basic Research Program of China (973 Program, 2012CB932202), the NSFC (Grant Nos. 51420105001, 51371171, and 51471172) and the "Hundreds of Talents Project" from CAS. NR 69 TC 2 Z9 2 U1 14 U2 30 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD APR PY 2016 VL 41 IS 4 BP 286 EP 291 DI 10.1557/mrs.2016.62 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DJ5JO UT WOS:000374243800008 ER PT J AU Li, N Wang, JW Mao, S Wang, HY AF Li, Nan Wang, Jiangwei Mao, Scott Wang, Haiyan TI In situ nanomechanical testing of twinned metals in a transmission electron microscope SO MRS BULLETIN LA English DT Article ID CENTERED-CUBIC METALS; STRAIN-RATE SENSITIVITY; GRAIN-BOUNDARY; NANOTWINNED METALS; DISLOCATION NUCLEATION; GROWTH TWINS; NANOCRYSTALLINE NICKEL; NANOSTRUCTURED METALS; LATTICE DISLOCATIONS; ULTRAHIGH STRENGTH AB This article focuses on in situ transmission electron microscope (TEM) characterization to explore twins in face-centered-cubic and body-centered-cubic monolithic metals, and their impact on the overall mechanical performance. Taking advantage of simultaneous nanomechanical deformation and nanoscale imaging using versatile in situ TEM tools, direct correlation of these unique microscopic defects with macroscopic mechanical performance becomes possible. This article summarizes recent evidence to support the mechanisms related to strengthening and plasticity in metals, including nanotwinned Cu, Ni, Al, Au, and others in bulk, thin film, and nanowire forms. C1 [Li, Nan] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wang, Jiangwei] Zhejiang Univ, Sch Mat Sci & Engn, Ctr Electron Microscopy, Hangzhou, Zhejiang, Peoples R China. [Mao, Scott] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA. [Wang, Haiyan] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. RP Li, N (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA.; Wang, JW (reprint author), Zhejiang Univ, Sch Mat Sci & Engn, Ctr Electron Microscopy, Hangzhou, Zhejiang, Peoples R China.; Mao, S (reprint author), Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA.; Wang, HY (reprint author), Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA. EM nanli@lanl.gov; jiangwei_wang@zju.edu.cn; sxm2@pitt.edu; wangh@ece.tamu.edu RI Li, Nan /F-8459-2010 OI Li, Nan /0000-0002-8248-9027 FU US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences; Office of Naval Research [N00014-13-1-0555]; National Science Foundation [DMR-0846504]; DoE-OBES [DE-SC0010482]; NSF [CMMI 1536811]; US DOE, Office of Science [DE-AC52-06NA25396, DE-AC04-94AL85000]; Chinese 1000-Youth-Talent Plan FX N.L. acknowledges support from the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. H.W. acknowledges support from the Office of Naval Research (Contract Number: N00014-13-1-0555) and National Science Foundation (DMR-0846504). The work on NT Al was supported by DoE-OBES under Grant No. DE-SC0010482. S.X.M. and J.W. acknowledge support from NSF CMMI 1536811. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the US DOE, Office of Science under Contract DE-AC52-06NA25396 and DE-AC04-94AL85000. J.W. acknowledges support from the Chinese 1000-Youth-Talent Plan. NR 96 TC 0 Z9 0 U1 11 U2 21 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 EI 1938-1425 J9 MRS BULL JI MRS Bull. PD APR PY 2016 VL 41 IS 4 BP 305 EP 313 DI 10.1557/mrs.2016.66 PG 9 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DJ5JO UT WOS:000374243800011 ER PT J AU Durand, C Zhang, XG Hus, SM Ma, CX McGuire, MA Xu, Y Cao, HL Miotkowski, I Chen, YP Li, AP AF Durand, Corentin Zhang, X. -G. Hus, Saban M. Ma, Chuanxu McGuire, Michael A. Xu, Yang Cao, Helin Miotkowski, Ireneusz Chen, Yong P. Li, An-Ping TI Differentiation of Surface and Bulk Conductivities in Topological Insulators via Four-Probe Spectroscopy SO NANO LETTERS LA English DT Article DE Four-probe transport spectroscopy; topological insulator; electrical transport; dimensionality crossover; topological surface states; scanning tunneling microscopy ID HGTE QUANTUM-WELLS; ELECTRON-GAS; THIN-FILMS; STATES; TRANSITION; TRANSPORT; BI2TE3; PHASE; BI2SE3; PROBES AB We show a new method to differentiate conductivities from the surface states and the coexisting bulk states in topological insulators using a four-probe transport spectroscopy in a multiprobe scanning tunneling microscopy system. We derive a scaling relation of measured resistance with respect to varying interprobe spacing for two interconnected conduction channels to allow quantitative determination of conductivities from both channels. Using this method, we demonstrate the separation of 2D and 3D conduction in topological insulators by comparing the conductance scaling of Bi2Se3, Bi2Te2Se, and Sb-doped Bi2Se3 against a pure 2D conductance of graphene on SiC substrate. We also quantitatively show the effect of surface doping carriers on the 2D conductance enhancement in topological insulators. The method offers a means to understanding not just the topological insulators but also the 2D to 3D crossover of conductance in other complex systems. C1 [Durand, Corentin; Zhang, X. -G.; Hus, Saban M.; Ma, Chuanxu; Li, An-Ping] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Zhang, X. -G.] Univ Florida, Dept Phys, Gainesville, FL 32611 USA. [Zhang, X. -G.] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA. [McGuire, Michael A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Xu, Yang; Cao, Helin; Miotkowski, Ireneusz; Chen, Yong P.] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA. [Chen, Yong P.] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA. [Chen, Yong P.] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. RP Li, AP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM apli@ornl.gov RI McGuire, Michael/B-5453-2009; Hus, Saban/J-3318-2016; Ma, Chuanxu/Q-2512-2015; Chen, Yong/K-7017-2012; Li, An-Ping/B-3191-2012 OI McGuire, Michael/0000-0003-1762-9406; Hus, Saban/0000-0002-3410-9878; Ma, Chuanxu/0000-0001-6478-5917; Chen, Yong/0000-0002-7356-4179; Li, An-Ping/0000-0003-4400-7493 FU DOE Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division; DARPA MESO program [N66001-11-1-4107] FX This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. MAM acknowledges support for Bi2Se3 crystal growth and bulk characterization from the DOE Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. The Bi2Te2Se crystal growth and characterization at Purdue was supported by DARPA MESO program (Grant N66001-11-1-4107). Authors acknowledge Randall Feenstra for providing the epitaxial graphene for the study. NR 40 TC 4 Z9 4 U1 14 U2 39 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2213 EP 2220 DI 10.1021/acs.nanolett.5b04425 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600013 PM 26954427 ER PT J AU Guzman, R Maurel, L Langenberg, E Lupini, AR Algarabel, PA Pardo, JA Magen, C AF Guzman, Roger Maurel, Laura Langenberg, Eric Lupini, Andrew R. Algarabel, Pedro A. Pardo, Jose A. Magen, Cesar TI Polar-Graded Multiferroic SrMnO3 Thin Films SO NANO LETTERS LA English DT Article DE Multiferroics; ferroelectricity; flexoelectricity; aberration-corrected STEM; domain walls ID DOMAIN-WALLS; FERROELECTRIC-FILMS; ATOMIC-SCALE; POLARIZATION; CRYSTALS; ROTATION; DEFECTS; PHASE; FIELD AB Engineering defects and strains in oxides provides a promising route for the quest of thin film materials with coexisting ferroic orders, multiferroics, with efficient magnetoelectric coupling at room temperature. Precise control of the strain gradient would enable custom tailoring of the multiferroic properties but presently remains challenging. Here we explore the existence of a polar-graded state in epitaxially strained antiferromagnetic SrMnO3 thin films, whose polar nature was predicted theoretically and recently demonstrated experimentally. By means of aberration corrected scanning transmission electron microscopy we map the polar rotation of the ferroelectric polarization with atomic resolution, both far from and near the domain walls, and find flexoelectricity resulting from vertical strain gradients. The origin of this particular strain state is a gradual distribution of oxygen vacancies across the film thickness, according to electron energy loss spectroscopy. Herein we present a chemistry-mediated route to induce polar rotations in oxygen-deficient multiferroic films, resulting in flexoelectric polar rotations and with potentially enhanced piezoelectricity. C1 [Guzman, Roger; Pardo, Jose A.; Magen, Cesar] Univ Zaragoza, Inst Nanociencia Aragon, Lab Microscopias Avanzadas, Zaragoza 50018, Spain. [Maurel, Laura; Pardo, Jose A.] Univ Zaragoza, Inst Nanociencia Aragon, Zaragoza 50018, Spain. [Maurel, Laura; Langenberg, Eric; Algarabel, Pedro A.; Magen, Cesar] Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain. [Lupini, Andrew R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Langenberg, Eric; Algarabel, Pedro A.] Univ Zaragoza, CSIC, Inst Ciencia Mat Aragon, E-50009 Zaragoza, Spain. [Pardo, Jose A.] Univ Zaragoza, Dept Ciencia & Tecnol Mat & Fluidos, Zaragoza 50018, Spain. [Magen, Cesar] Fdn ARAID, Zaragoza 50004, Spain. [Guzman, Roger] Inst Ciencia Mat Barcelona ICMAB CSIC, Bellaterra 08193, Spain. RP Guzman, R; Magen, C (reprint author), Univ Zaragoza, Inst Nanociencia Aragon, Lab Microscopias Avanzadas, Zaragoza 50018, Spain.; Magen, C (reprint author), Univ Zaragoza, Dept Fis Mat Condensada, E-50009 Zaragoza, Spain.; Guzman, R (reprint author), Inst Ciencia Mat Barcelona ICMAB CSIC, Bellaterra 08193, Spain. EM roger.guzman.aluja@gmail.com; cmagend@unizar.es RI PARDO, JOSE/B-9490-2011; Magen, Cesar/A-2825-2013; Maurel, Laura/G-2296-2015; Guzman, Roger/C-9651-2016; Algarabel, Pedro/K-8583-2014 OI PARDO, JOSE/0000-0002-0111-8284; Maurel, Laura/0000-0002-6487-1505; Guzman, Roger/0000-0002-5580-0043; Algarabel, Pedro/0000-0002-4698-3378 FU Spanish Ministerio de Economia y Competitividad [MAT2014-51982-C2]; regional Gobierno de Aragon [E26]; European Social Fund; European Union [312483-ESTEEM2]; ERC StG "STEMOX" [239739]; Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy (ARL) FX Financial support from Spanish Ministerio de Economia y Competitividad through the project MAT2014-51982-C2 and from regional Gobierno de Aragon through project E26 with European Social Fund funding is acknowledged. R.G. and C.M. were funded by the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative Reference 312483-ESTEEM2. R.G. was also supported by the ERC StG "STEMOX" 239739. A.R.L. acknowledges support by the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science, U.S. Department of Energy (ARL). NR 50 TC 2 Z9 2 U1 25 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2221 EP 2227 DI 10.1021/acs.nanolett.5b04455 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600014 PM 26999643 ER PT J AU Nie, AM Cheng, YC Ning, SC Foroozan, T Yasaei, P Li, W Song, BA Yuan, YF Chen, L Salehi-Khojin, A Mashayek, F Shahbazian-Yassar, R AF Nie, Anmin Cheng, Yingchun Ning, Shoucong Foroozan, Tara Yasaei, Poya Li, Wen Song, Boao Yuan, Yifei Chen, Lin Salehi-Khojin, Amin Mashayek, Farzad Shahbazian-Yassar, Reza TI Selective Ionic Transport Pathways in Phosphorene SO NANO LETTERS LA English DT Article DE Phosphorene; ionic transport; edge effect; rechargeable ion battery; in situ electron microscopy ID PROMISING ANODE MATERIALS; LAYER BLACK PHOSPHORUS; ELECTRODE MATERIALS; ENERGY-STORAGE; LI STORAGE; BATTERIES; LITHIUM; GRAPHENE; MONOLAYER; CHALLENGES AB Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications. C1 [Nie, Anmin; Cheng, Yingchun; Yasaei, Poya; Song, Boao; Yuan, Yifei; Salehi-Khojin, Amin; Mashayek, Farzad; Shahbazian-Yassar, Reza] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. [Cheng, Yingchun] Nanjing Tech Univ, Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Key Lab Flexible Elect, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China. [Cheng, Yingchun] Nanjing Tech Univ, Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, Inst Adv Mat, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China. [Foroozan, Tara] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA. [Li, Wen] IIT, Dept Biol & Chem Sci, Chicago, IL 60616 USA. [Ning, Shoucong] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China. [Chen, Lin] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA. RP Mashayek, F; Shahbazian-Yassar, R (reprint author), Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA. EM mashayek@uic.edu; rsyassar@uic.edu RI Nie, Anmin/N-7859-2014 OI Nie, Anmin/0000-0002-0180-1366 FU National Science Foundation [CMMI-1619743]; National Natural Science Foundation of China [11504169, 61575094]; MRI-R2 grant from the National Science Foundation [DMR-0959470] FX R. Shahbazian-Yassar acknowledges the financial support from the National Science Foundation (Award No. CMMI-1619743). Y. Cheng was supported by the National Natural Science Foundation of China (11504169 and 61575094). The acquisition of the UIC JEOL JEM-ARM200CF is supported by an MRI-R2 grant from the National Science Foundation (Award No. DMR-0959470). Helpful discussion from Dr. Robert F. Klie is acknowledged. We also thank UIC Research Resources Center for assisting the usage of their equipment and instrumentation. NR 52 TC 4 Z9 4 U1 40 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2240 EP 2247 DI 10.1021/acs.nanolett.5b04514 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600017 PM 26986876 ER PT J AU Ling, X Huang, SX Hasdeo, EH Liang, LB Parkin, WM Tatsumi, Y Nugraha, ART Puretzky, AA Das, PM Sumpter, BG Geohegan, DB Kong, J Saito, R Drndic, M Meunier, V Dresselhaus, MS AF Ling, Xi Huang, Shengxi Hasdeo, Eddwi H. Liang, Liangbo Parkin, William M. Tatsumi, Yuki Nugraha, Ahmad R. T. Puretzky, Alexander A. Das, Paul Masih Sumpter, Bobby G. Geohegan, David B. Kong, Jing Saito, Riichiro Drndic, Marija Meunier, Vincent Dresselhaus, Mildred S. TI Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus SO NANO LETTERS LA English DT Article DE In-plane anisotropy; Raman spectroscopy; optical absorption; crystalline orientation; optical selection rule ID RAMAN-SCATTERING; OPTOELECTRONICS; DEPENDENCE; GRAPHENE AB Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron photon and electron phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously. C1 [Ling, Xi; Huang, Shengxi; Kong, Jing; Dresselhaus, Mildred S.] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Hasdeo, Eddwi H.; Tatsumi, Yuki; Nugraha, Ahmad R. T.; Saito, Riichiro] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. [Liang, Liangbo; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Liang, Liangbo; Puretzky, Alexander A.; Sumpter, Bobby G.; Geohegan, David B.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. [Parkin, William M.; Das, Paul Masih; Drndic, Marija] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RP Ling, X; Dresselhaus, MS (reprint author), MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. EM xiling@mit.edu; millie@mgm.mit.edu RI Sumpter, Bobby/C-9459-2013; Liang, Liangbo/H-4486-2011; Saito, Riichiro/B-1132-2008; Nugraha, Ahmad Ridwan Tresna/A-5363-2011; Geohegan, David/D-3599-2013; OI Sumpter, Bobby/0000-0001-6341-0355; Liang, Liangbo/0000-0003-1199-0049; Nugraha, Ahmad Ridwan Tresna/0000-0002-5108-1467; Geohegan, David/0000-0003-0273-3139; Masih Das, Paul/0000-0003-2644-2280 FU National Science Foundation grant 2DARE [EFRI-1542815]; U.S. Department of Energy [DE-SC0001299]; Leading Graduate Schools Program from Tohoku University; MEXT [25107005]; NSF; Office of Naval Research; Eugene P. Wigner Fellow at the Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors acknowledge Professor Marcos A. Pimenta from Federal University of Minas Gerais in Brazil for helpful discussion. X.L., S.H., and M.S.D. at MIT acknowledge National Science Foundation grant 2DARE (EFRI-1542815) and U.S. Department of Energy Grant No. DE-SC0001299 for financial support. A.R.T.N. acknowledges the Leading Graduate Schools Program from Tohoku University for financial support. R.S. acknowledges MEXT Grant No. 25107005. V.M. acknowledges the support by NSF and the Office of Naval Research. L.L. was supported as a Eugene P. Wigner Fellow at the Oak Ridge National Laboratory. Microabsorption measurements were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. W.M.P., P.M.D., and M.D. acknowledge the NSF-MRSEC electron microscopy facility at the University of Pennsylvania and Dr. Robert Keyse for the use of the AC-TEM facility at Lehigh University. During the preparation of this manuscript, the authors became aware of a similar work published.17 NR 29 TC 29 Z9 29 U1 46 U2 115 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2260 EP 2267 DI 10.1021/acs.nanolett.5b04540 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600020 PM 26963685 ER PT J AU Gamalski, AD Tersoff, J Stach, EA AF Gamalski, A. D. Tersoff, J. Stach, E. A. TI Atomic Resolution in Situ Imaging of a Double-Bilayer Multistep Growth Mode in Gallium Nitride Nanowires SO NANO LETTERS LA English DT Article DE Gallium nitride; nanowire; environmental transmission electron microscopy; step flow ID TRANSMISSION ELECTRON-MICROSCOPY; CHEMICAL-VAPOR-DEPOSITION; LIGHT-EMITTING-DIODES; GAN NANOWIRES; NUCLEATION; HETEROSTRUCTURES; KINETICS; ARRAYS AB We study the growth of GaN nanowires from liquid Au-Ga catalysts using environmental transmission electron microscopy. GaN wires grow in either (1120) or (1100) directions, by the addition of {1100} double bilayers via step flow with multiple steps. Step-train growth is not typically seen with liquid catalysts, and we suggest that it results from low step mobility related to the unusual double height step structure. The results here illustrate the surprising dynamics of catalytic GaN wire growth at the nanoscale and highlight striking differences between the growth of GaN and other III-V semiconductor nanowires. C1 [Gamalski, A. D.; Stach, E. A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Tersoff, J.] IBM Corp, Div Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Gamalski, AD; Stach, EA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM agamalski@bnl.gov; estach@bnl.gov RI Stach, Eric/D-8545-2011 OI Stach, Eric/0000-0002-3366-2153 FU U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704] FX Research supported at the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. We acknowledge assistance from Karl Weiss at Arizona State University. We acknowledge Gwen Wright for providing assistance with sample preparation. Helpful discussions with Frances Ross and Federico Panciera are gratefully acknowledged. NR 42 TC 3 Z9 3 U1 4 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2283 EP 2288 DI 10.1021/acs.nanolett.5b04650 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600023 PM 26990711 ER PT J AU Huang, Z Han, K Zeng, SW Motapothula, M Borisevich, AY Ghosh, S Lu, WM Li, CJ Zhou, WX Liu, ZQ Coey, M Venkatesan, T Ariando AF Huang, Zhen Han, Kun Zeng, Shengwei Motapothula, Mallikarjuna Borisevich, Albina Y. Ghosh, Saurabh Lu, Weiming Li, Changjian Zhou, Wenxiong Liu, Zhiqi Coey, Michael Venkatesan, T. Ariando TI The Effect of Polar Fluctuation and Lattice Mismatch on Carrier Mobility at Oxide Interfaces SO NANO LETTERS LA English DT Article DE Oxide interface; two-dimensional electron gas; carrier mobility; lattice mismatch; polar fluctuation ID 2-DIMENSIONAL ELECTRON-GAS; LAALO3/SRTIO3 INTERFACES; HETEROSTRUCTURES; SUPERCONDUCTIVITY; CONDUCTIVITY; COEXISTENCE; LIQUID; LAALO3 AB Since the discovery of two-dimensional electron gas (2DEG) at the oxide interface of LaAlO3/SrTiO3 (LAO/STO), improving carrier mobility has become an important issue for device applications. In this paper, by using an alternate polar perovskite insulator (La0.3Sr0.7) (Al0.65Ta0.35)O-3 (LSAT) for reducing lattice mismatch from 3.0% to 1.0%, the low-temperature carrier mobility has been increased 30 fold to 35 000 cm(2) V-1 s(-1). Moreover, two critical thicknesses for the LSAT/STO (001) interface are found, one at unit cells for appearance of the 2DEG and the other at 12 unit cells for a peak in the carrier mobility. By contrast, the conducting (110) and (111) LSAT/STO interfaces only show a single critical thickness of 8 unit cells. This can be explained in terms of polar fluctuation arising from LSAT chemical composition. In addition to lattice mismatch and crystal symmetry at the interface, polar fluctuation arising from composition has been identified as an important variable to be tailored at the oxide interfaces to optimize the 2DEG transport. C1 [Huang, Zhen; Han, Kun; Zeng, Shengwei; Motapothula, Mallikarjuna; Li, Changjian; Zhou, Wenxiong; Coey, Michael; Venkatesan, T.; Ariando] Natl Univ Singapore, NUSNNI NanoCore, Singapore 117411, Singapore. [Huang, Zhen; Han, Kun; Zeng, Shengwei; Motapothula, Mallikarjuna; Zhou, Wenxiong; Venkatesan, T.; Ariando] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Borisevich, Albina Y.; Ghosh, Saurabh] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Borisevich, Albina Y.] Oak Ridge Natl Lab, Inst Funct Imaging Mat, Oak Ridge, TN 37831 USA. [Borisevich, Albina Y.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ghosh, Saurabh] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lu, Weiming] Harbin Inst Technol, Sch Sci, Condensed Matter Sci & Technol Inst, Harbin 150081, Peoples R China. [Liu, Zhiqi] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Coey, Michael] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland. [Coey, Michael] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland. [Venkatesan, T.] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore. [Venkatesan, T.] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore. [Venkatesan, T.; Ariando] Natl Univ Singapore, Grad Sch Integrat Sci & Engn NGS, 28 Med Dr, Singapore 117456, Singapore. RP Venkatesan, T; Ariando (reprint author), Natl Univ Singapore, NUSNNI NanoCore, Singapore 117411, Singapore.; Venkatesan, T; Ariando (reprint author), Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore.; Venkatesan, T (reprint author), Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore.; Venkatesan, T (reprint author), Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117575, Singapore.; Venkatesan, T; Ariando (reprint author), Natl Univ Singapore, Grad Sch Integrat Sci & Engn NGS, 28 Med Dr, Singapore 117456, Singapore. EM venky@nus.edu.sg; Ariando@nus.edu.sg RI Motapothula, Mallikarjuna Rao/E-4931-2016; Ariando, Ariando/F-8953-2012 OI Motapothula, Mallikarjuna Rao/0000-0002-9476-3572; Ariando, Ariando/0000-0002-0598-426X FU National University of Singapore (NUS) Academic Research Fund (AcRF) [R-144-000-346-112, R-144-000-364-112]; Singapore National Research Foundation (NRF) under the Competitive Research Programs (CRP) [NRF-CRP 8-2011-06, NRF-CRP10-2012-02] FX We thank H. Hilgenkamp, S. Saha, Q. He, and C. G. Li for the discussion. This work is supported by the National University of Singapore (NUS) Academic Research Fund (AcRF Tier 1 Grant No. R-144-000-346-112 and R-144-000-364-112) and the Singapore National Research Foundation (NRF) under the Competitive Research Programs (CRP Award No. NRF-CRP 8-2011-06 and CRP Award No. NRF-CRP10-2012-02). NR 41 TC 4 Z9 4 U1 17 U2 59 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2307 EP 2313 DI 10.1021/acs.nanolett.5b04814 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600027 PM 26959195 ER PT J AU Makarov, NS Guo, SJ Isaienko, O Liu, WY Robel, I Klimov, VI AF Makarov, Nikolay S. Guo, Shaojun Isaienko, Oleksandr Liu, Wenyong Robel, Istvan Klimov, Victor I. TI Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots SO NANO LETTERS LA English DT Article DE Cs-Pb-halide perovskites; nanocrystal; quantum dot; radiative recombination; Auger recombination; absorption cross-section; band-edge-state degeneracy; intraband cooling exciton-exciton interaction ID AMPLIFIED SPONTANEOUS EMISSION; CORE-SHELL INTERFACE; HOT-CARRIER TRANSFER; SEMICONDUCTOR NANOCRYSTALS; SOLAR-CELLS; AUGER RECOMBINATION; OPTICAL-PROPERTIES; BAND-STRUCTURE; ENERGY RELAXATION; ANION-EXCHANGE AB Organic inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger recombination in these nanomaterials, using perhaps insights gained from previous studies of II VI nanocrystals. C1 [Makarov, Nikolay S.; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, Istvan; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov RI Robel, Istvan/D-4124-2011; Guo, Shaojun/A-8449-2011; OI Robel, Istvan/0000-0002-9738-7728; Guo, Shaojun/0000-0002-5941-414X; Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; LANL FX These studies were supported by the Chemical Sciences, Biosciences and Geosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. S.G. was supported by a LANL Oppenheimer Distinguished Postdoctoral Fellowship. NR 75 TC 28 Z9 29 U1 106 U2 326 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2349 EP 2362 DI 10.1021/acs.nanolett.5b05077 PG 14 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600033 PM 26882294 ER PT J AU Ravnsbaek, DB Xiang, K Xing, WT Borkiewicz, OJ Wiaderek, KM Gionet, P Chapman, KW Chupas, PJ Tang, M Chiang, YM AF Ravnsbaek, Dorthe B. Xiang, Kai Xing, Wenting Borkiewicz, Olaf J. Wiaderek, Kamila M. Gionet, Paul Chapman, Karena W. Chupas, Peter J. Tang, Ming Chiang, Yet-Ming TI Engineering the Transformation Strain in LiMnyFe1-yPO4 Olivines for Ultrahigh Rate Battery Cathodes SO NANO LETTERS LA English DT Article DE Li-ion batteries; cathode; rate capability; misfit strain; lithium manganese iron phosphate; operando; X-ray diffraction; phase transformation ID LITHIUM IRON PHOSPHATE; PHASE-TRANSFORMATION; LIFEPO4 NANOPARTICLES; ELECTRODES; TRANSITION; DEINTERCALATION; SUBSTITUTION; PATHWAYS; LIXFEPO4; KINETICS AB Alkali ion intercalation compounds used as battery electrodes often exhibit first-order phase transitions during electro-chemical cycling, accompanied by significant transformation strains. Despite 30 years of research into the behavior of such compounds, the relationship between transformation strain and electrode performance, especially the rate at which working ions (e.g., Li) can be intercalated and deintercalated, is still absent. In this work, we use the LiMnyFe1-yPO4 system for a systematic study, and measure using operando synchrotron radiation powder X-ray diffraction (SR-PXD) the dynamic strain behavior as a function of the Mn content (y) in powders of similar to 50 nm average diameter. The dynamically produced strain deviates significantly from what is expected from the equilibrium phase diagrams and demonstrates metastability but nonetheless spans a wide range from 0 to 8 vol % with y. For the first time, we show that the discharge capacity at high C-rates (20-50C rate) varies in inverse proportion to the transformation strain, implying that engineering electrode materials for reduced strain can be used to maximize the power capability of batteries. C1 [Ravnsbaek, Dorthe B.; Xiang, Kai; Xing, Wenting; Chiang, Yet-Ming] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Ravnsbaek, Dorthe B.] Univ Southern Denmark, Dept Phys Chem & Pharm, DK-5230 Odense M, Denmark. [Borkiewicz, Olaf J.; Wiaderek, Kamila M.; Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gionet, Paul] A123 Syst, 200 West St, Waltham, MA 02451 USA. [Tang, Ming] Rice Univ, Dept Mat Sci & NanoEngn MSNE, 6100 Main MS-325, Houston, TX 77005 USA. RP Ravnsbaek, DB; Chiang, YM (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Ravnsbaek, DB (reprint author), Univ Southern Denmark, Dept Phys Chem & Pharm, DK-5230 Odense M, Denmark. EM dbra@sdu.dk; ychiang@mit.edu RI Xiang, Kai/A-7960-2012; Xing, Wenting/E-1596-2017; OI Xiang, Kai/0000-0001-5933-4644; Xing, Wenting/0000-0002-4140-690X; Ravnsbaek, Dorthe Bomholdt/0000-0002-8172-3985 FU DOE [DE-SC0002626, BE-SC0014435]; U.S. DOE [DE-AC02-06CH11357]; Carlsberg Foundation; Villum Foundation FX This work was supported by DOE Project Number DE-SC0002626. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. D.B.R. acknowledges the Carlsberg Foundation and the Villum Foundation for funding. M.T. acknowledges support from DOE project number BE-SC0014435. NR 35 TC 4 Z9 4 U1 25 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2375 EP 2380 DI 10.1021/acs.nanolett.5b05146 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600036 PM 26930492 ER PT J AU Lee, H Kim, TH Patzner, JJ Lu, HD Lee, JW Zhou, H Chang, WS Mahanthappa, MK Tsymbal, EY Gruverman, A Eom, CB AF Lee, Hyungwoo Kim, Tae Heon Patzner, Jacob J. Lu, Haidong Lee, Jung-Woo Zhou, Hua Chang, Wansoo Mahanthappa, Mahesh K. Tsymbal, Evgeny Y. Gruverman, Alexei Eom, Chang-Beom TI Imprint Control of BaTiO3 Thin Films via Chemically Induced Surface Polarization Pinning SO NANO LETTERS LA English DT Article DE Imprint control; ferroelectric thin films; BaTiO3; ferroelectric tunnel junctions; surface chemistry; water adsorption ID FERROELECTRIC POLARIZATION; PHASE-TRANSITION; INTERFACE; ADSORPTION; HYDROGEN; WATER; OXIDE; ELECTRORESISTANCE; CONDUCTIVITY; ENHANCEMENT AB Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectric phase in BTO tunnel junctions. We conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications. C1 [Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J.; Lee, Jung-Woo; Eom, Chang-Beom] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. [Lu, Haidong; Tsymbal, Evgeny Y.; Gruverman, Alexei] Univ Nebraska, Dept Phys & Astron, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. [Zhou, Hua] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Chang, Wansoo; Mahanthappa, Mahesh K.] Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA. [Mahanthappa, Mahesh K.] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. RP Eom, CB (reprint author), Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA. EM eom@engr.wisc.edu RI Tsymbal, Evgeny/G-3493-2013; OI Mahanthappa, Mahesh/0000-0002-9871-804X FU US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-06ER46327, DE-SC0004876]; National Science Foundation (NSF) through Materials Research Science and Engineering Center (MRSEC) [DMR-1420645] FX The work at University of Wisconsin-Madison was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award DE-FG02-06ER46327 (fabrication and structural and surface characterization of thin films). The research at University of Nebraska Lincoln was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering, under Award DE-SC0004876 (PFM measurements), and by the National Science Foundation (NSF) through Materials Research Science and Engineering Center (MRSEC) under Grant DMR-1420645 (theoretical modeling). NR 42 TC 2 Z9 2 U1 21 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2400 EP 2406 DI 10.1021/acs.nanolett.5b05188 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600040 PM 26901570 ER PT J AU Gautam, GS Canepa, P Richards, WD Malik, R Ceder, G AF Gautam, Gopalakrishnan Sai Canepa, Pieremanuele Richards, William Davidson Malik, Rahul Ceder, Gerbrand TI Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5 SO NANO LETTERS LA English DT Article DE Solvent cointercalation; magnesium batteries; crystal water; phase diagram; first-principles; charge screening ID RECHARGEABLE MAGNESIUM BATTERIES; VANADIUM-OXIDE ELECTRODES; SODIUM-ION BATTERIES; CENTER-DOT H2O; LITHIUM INTERCALATION; CRYSTAL WATER; MANGANESE-DIOXIDE; LAYERED CATHODE; 1ST PRINCIPLES; PHASE-DIAGRAM AB Cointercalation is a potential approach to influence the voltage and mobility with which cations insert in electrodes for energy storage devices. Combining a robust thermodynamic model with first-principles calculations, we present a detailed investigation revealing the important role of H2O during ion intercalation in nanomaterials. We examine the scenario of Mg2+ and H2O cointercalation in nanocrystalline Xerogel-V2O5, a potential cathode material to achieve energy density greater than Li-ion batteries. Water cointercalation in cathode materials could broadly impact an electrochemical system by influencing its voltages or causing passivation at the anode. The analysis of the stable phases of Mg-Xerogel V2O5 and voltages at different electrolytic conditions reveals a range of concentrations for Mg in the Xerogel and H2O in the electrolyte where there is no thermodynamic driving force for H2O to shuttle with Mg during electrochemical cycling. Also, we demonstrate that H2O shuttling with the Mg2+ ions in wet electrolytes yields higher voltages than in dry electrolytes. The thermodynamic framework used to study water and Mg2+ cointercalation in this work opens the door for studying the general phenomenon of solvent cointercalation observed in other complex solvent electrode pairs used in the Li- and Na-ion chemical spaces. C1 [Gautam, Gopalakrishnan Sai; Canepa, Pieremanuele; Richards, William Davidson; Malik, Rahul] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Gautam, Gopalakrishnan Sai; Canepa, Pieremanuele; Ceder, Gerbrand] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ceder, Gerbrand] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ceder, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA.; Ceder, G (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM gceder@berkeley.edu RI Canepa, Pieremanuele/O-2344-2013 OI Canepa, Pieremanuele/0000-0002-5168-9253 FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub - U.S. Department of Energy, Office of Science and Basic Energy Sciences; [3F-31144] FX The current work is fully supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science and Basic Energy Sciences. This study was supported by Subcontract No. 3F-31144. The authors thank the National Energy Research Scientific Computing Center (NERSC) for providing computing resources. NR 67 TC 15 Z9 15 U1 45 U2 117 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2426 EP 2431 DI 10.1021/acs.nanolett.5b05273 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600044 ER PT J AU Zhang, Y Ugeda, MM Jin, CH Shi, SF Bradley, AJ Martin-Recio, A Ryu, H Kim, J Tang, SJ Kim, Y Zhou, B Hwang, C Chen, YL Wang, F Crommie, MF Hussain, Z Shen, ZX Mo, SK AF Zhang, Yi Ugeda, Miguel M. Jin, Chenhao Shi, Su-Fei Bradley, Aaron J. Martin-Recio, Ana Ryu, Hyejin Kim, Jonghwan Tang, Shujie Kim, Yeongkwan Zhou, Bo Hwang, Choongyu Chen, Yulin Wang, Feng Crommie, Michael F. Hussain, Zahid Shen, Zhi-Xun Mo, Sung-Kwan TI Electronic Structure, Surface Doping, and Optical Response in Epitaxial WSe2 Thin Films SO NANO LETTERS LA English DT Article DE Transition metal dichalcogenides; WSe2; MBE; ARPES; STM/STS; exciton binding energy ID TRANSITION-METAL DICHALCOGENIDES; P-N-JUNCTIONS; 2-DIMENSIONAL MATERIALS; MONOLAYER MOS2; MOLYBDENUM-DISULFIDE; VALLEY POLARIZATION; DIRECT BANDGAP; SINGLE-LAYER; SPIN; STRAIN AB High quality WSe2 films have been grown on bilayer graphene (BLG) with layer-by-layer control of thickness using molecular beam epitaxy. The combination of angle-resolved photoemission, scanning tunneling microscopy/spectroscopy, and optical absorption measurements reveal the atomic and electronic structures evolution and optical response of WSe2/BLG. We observe that a bilayer of WSe2 is a direct bandgap semiconductor, when integrated in a BLG-based heterostructure, thus shifting the direct-indirect band gap crossover to trilayer WSe2. In the monolayer limit, WSe2 shows a spin-splitting of 475 meV in the valence band at the K point, the largest value observed among all the MX2 (M = Mo, W; X = S, Se) materials. The exciton binding energy of monolayer-WSe2/BLG is found to be 0.21 eV, a value that is orders of magnitude larger than that of conventional three-dimensional semiconductors, yet small as compared to other two-dimensional transition metal dichalcogennides (TMDCs) semiconductors. Finally, our finding regarding the overall modification of the electronic structure by an alkali metal surface electron doping opens a route to further control the electronic properties of TMDCs. C1 [Zhang, Yi] Nanjing Univ, Natl Lab Solid State Microstruct, Sch Phys, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Zhang, Yi; Shen, Zhi-Xun] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Zhang, Yi; Ryu, Hyejin; Kim, Yeongkwan; Zhou, Bo; Hussain, Zahid; Mo, Sung-Kwan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Ugeda, Miguel M.; Jin, Chenhao; Shi, Su-Fei; Bradley, Aaron J.; Martin-Recio, Ana; Kim, Jonghwan; Wang, Feng; Crommie, Michael F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ugeda, Miguel M.] CIC nanoGUNE, Donostia San Sebastian 20018, Spain. [Ugeda, Miguel M.] Ikerbasque, Basque Fdn Sci, E-48011 Bilbao, Spain. [Shi, Su-Fei] Rensselaer Polytech Inst, Dept Chem & Biol Engn, Troy, NY 12180 USA. [Martin-Recio, Ana] Univ Autonoma Madrid, Dept Fis Mat Condensada, Cantoblanco, E-28049 Madrid, Spain. [Ryu, Hyejin; Hwang, Choongyu] Pohang Univ Sci & Technol, Max Plank POSTECH Ctr Complex Phase Mat, Pohang 790784, South Korea. [Tang, Shujie; Zhou, Bo; Shen, Zhi-Xun] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Tang, Shujie; Zhou, Bo; Shen, Zhi-Xun] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Tang, Shujie] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China. [Zhou, Bo; Chen, Yulin] Univ Oxford, Dept Phys, Parks Rd, Oxford OX1 3PU, England. [Zhou, Bo; Chen, Yulin] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. [Hwang, Choongyu] Pusan Natl Univ, Dept Phys, Pusan 609735, South Korea. [Wang, Feng; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Wang, Feng; Crommie, Michael F.] Univ Calif Berkeley, Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. [Wang, Feng; Crommie, Michael F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), Nanjing Univ, Natl Lab Solid State Microstruct, Sch Phys, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China.; Zhang, Y (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA.; Zhang, Y; Mo, SK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM zhangyi@nju.edu.cn; skmo@lbl.gov RI Mo, Sung-Kwan/F-3489-2013; Moreno Ugeda, Miguel/N-3006-2016; wang, Feng/I-5727-2015; Zhang, Yi/J-9025-2013; Kim, Yeong Kwan/L-8207-2016; nanoGUNE, CIC/A-2623-2015; OI Mo, Sung-Kwan/0000-0003-0711-8514; Zhang, Yi/0000-0003-1204-8717; Martin-Recio, Ana/0000-0003-1884-3842 FU US DOE, Office of Basic Energy Science [DE-AC02-05CH11231]; sp2 program; US DOE [DE-SC0003949]; National Science Foundation [EFMA-1542741]; US DOE, Office of Basic Energy Sciences [DE-AC02-76SF00515]; DARPA MESO project [187 N66001-11-1-4105]; Max Planck Korea/POSTECH Research Initiative of the National Research Foundation (NRF) - Ministry of Science, ICT & Future Planning [NRF-2011-0031558] FX This work is supported by the US DOE, Office of Basic Energy Science, under contract no. DE-AC02-05CH11231 for ALS activities (growth and photoemission) and within the sp2 program (STM instrumentation development and operation), as well as by the US DOE Early Career Award No. DE-SC0003949 (optical measurements) and National Science Foundation Award No. EFMA-1542741 (image analysis). The work at the Stanford Institute for Materials and Energy Sciences and Stanford University is supported by the US DOE, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515. The work at Oxford University is supported from a DARPA MESO project (no. 187 N66001-11-1-4105). The work at Pusan National University is supported by Max Planck Korea/POSTECH Research Initiative of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning under Project No. NRF-2011-0031558. NR 60 TC 9 Z9 9 U1 46 U2 175 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2485 EP 2491 DI 10.1021/acs.nanolett.6b00059 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600053 PM 26974978 ER PT J AU Smerdon, JA Giebink, NC Guisinger, NP Darancet, P Guest, JR AF Smerdon, Joseph A. Giebink, Noel C. Guisinger, Nathan P. Darancet, Pierre Guest, Jeffrey R. TI Large Spatially Resolved Rectification in a Donor-Acceptor Molecular Heterojunction SO NANO LETTERS LA English DT Article DE Pentacene; fullerene; rectification; Schottky; STM; STS; DFT ID CHARGE-TRANSPORT; DIODES; RECTIFIERS; CONDUCTANCE; JUNCTIONS; SURFACE AB We demonstrate that rectification ratios (RR) of greater than or similar to 250 (greater than or similar to 1000) at biases of 0.5 V (1.2 V) are achievable at the two-molecule limit for donor-acceptor bilayers of pentacene on C-60 on Cu using scanning tunneling spectroscopy and microscopy. Using first-principles calculations, we show that the system behaves as a molecular Schottky diode with a tunneling transport mechanism from semiconducting pentacene to Cu-hybridized metallic C-60. Low-bias RRs vary by two orders-of-magnitude at the edge of these molecular heterojunctions due to increased Stark shifts and confinement effects. C1 [Smerdon, Joseph A.] Univ Cent Lancashire, Jeremiah Horrocks Inst Math Phys & Astron, Preston PR1 2HE, Lancs, England. [Giebink, Noel C.] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. [Guisinger, Nathan P.; Darancet, Pierre; Guest, Jeffrey R.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Darancet, P; Guest, JR (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM pdarancet@anl.gov; jrguest@anl.gov RI Guest, Jeffrey/B-2715-2009 OI Guest, Jeffrey/0000-0002-9756-8801 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy Office of Basic Energy Sciences (SISGR) [DE-FG02-09ER16109]; U.K. Science and Innovation Network; Department for Business, Innovation, and Skills FX Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Primary support for this work was provided by the Department of Energy Office of Basic Energy Sciences (SISGR Grant DE-FG02-09ER16109). J.A.S. acknowledges support through the U.K. Science and Innovation Network and Department for Business, Innovation, and Skills. The authors acknowledge the technical assistance of B. L. Fisher and discussions with M. Bode. NR 36 TC 3 Z9 3 U1 7 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2603 EP 2607 DI 10.1021/acs.nanolett.6b00171 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600070 PM 26964012 ER PT J AU Xu, GL Ma, TY Sun, CJ Luo, C Cheng, L Ren, Y Heald, SM Wang, CS Curtiss, L Wen, JG Miller, DJ Li, T Zuo, XB Petkov, V Chen, ZH Amine, K AF Xu, Gui-Liang Ma, Tianyuan Sun, Cheng-Jun Luo, Chao Cheng, Lei Ren, Yang Heald, Steve M. Wang, Chunsheng Curtiss, Larry Wen, Jianguo Miller, Dean J. Li, Tao Zuo, Xiaobing Petkov, Valeri Chen, Zonghai Amine, Khalil TI Insight into the Capacity Fading Mechanism of Amorphous Se2S5 Confined in Micro/Mesoporous Carbon Matrix in Ether-Based Electrolytes SO NANO LETTERS LA English DT Article DE Se2S5/MPC cathode; batteries; capacity fading; ether-based electrolytes; in situ XANES; ab initio calculations ID LITHIUM-SELENIUM BATTERIES; RAY-ABSORPTION SPECTROSCOPY; DOPED MICROPOROUS CARBON; SULFUR BATTERIES; CYCLING STABILITY; POROUS CARBON; ION BATTERIES; CATHODE; PERFORMANCE; COMPOSITES AB In contrast to the stable cycle performance of space confined Se-based cathodes for lithium batteries in carbonate-based electrolytes, their common capacity fading in ether-based electrolytes has been paid less attention and not yet well-addressed so far. In this work, the lithiation/delithiation of amorphous Se2S5 confined in micro/mesoporous carbon (Se2S5/MPC) cathode was investigated by in situ X-ray near edge absorption spectroscopy (XANES) and theoretical calculations. The Se2S5/MPC composite was synthesized by a modified vaporization-condensation method to ensure a good encapsulation of Se2S5 into the pores of MPC host. In situ XANES results illustrated that the lithiation/delithiation reversibility of Se component was gradually decreased in ether-based electrolytes, leading to an aggravated formation of long-chain polyselenides during cycling and further capacity decay. Moreover, ab initio calculations revealed that the binding energy of polyselenides (Li2Sen) with carbon host is in an order of Li2Se6 > Li2Se4 > Li2Se. The insights into the failure mechanism of Se-based cathode gain in this work are expected to serve as a guide for future design on high performance Se-based cathodes. C1 [Xu, Gui-Liang; Ma, Tianyuan; Chen, Zonghai; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Ma, Tianyuan] Univ Rochester, Mat Sci Program, 601 Elmwood Ave, Rochester, NY 14627 USA. [Sun, Cheng-Jun; Ren, Yang; Heald, Steve M.; Li, Tao; Zuo, Xiaobing] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA. [Luo, Chao; Wang, Chunsheng] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA. [Cheng, Lei; Curtiss, Larry] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Nanoscale Mat, Nanosci Technol, Lemont, IL 60439 USA. [Petkov, Valeri] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA. RP Chen, ZH; Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM zonghai.chen@anl.gov; amine@anl.gov RI XU, GUILIANG/F-3804-2017 FU U.S. Department of Energy, Vehicle Technologies Office; U.S. DOE [DE-AC02-06CH11357]; US Department of Energy Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; DOE-BES [DE-SC0006877] FX Research at the Argonne National Laboratory was funded by U.S. Department of Energy, Vehicle Technologies Office. Support from Tien Duong of the U.S. DOE's Office of Vehicle Technologies Program is gratefully acknowledged. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Sector 20 facilities at the Advanced Photon Source, and research at these facilities, are supported by the US Department of Energy Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. This work was partially supported by DOE-BES grant DE-SC0006877 (V.P.). NR 48 TC 6 Z9 6 U1 31 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2663 EP 2673 DI 10.1021/acs.nanolett.6b00318 PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600080 PM 27022761 ER PT J AU Lu, P Yuan, RL Ihlefeld, JF Spoerke, ED Pan, W Zuo, JM AF Lu, Ping Yuan, Ren Liang Ihlefeld, Jon F. Spoerke, Erik David Pan, Wei Zuo, Jian Min TI Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations SO NANO LETTERS LA English DT Article DE STEM-EDS; Time-resolved; atomic-scale; lattice-vector translation; dynamic; phase transformation ID LITHIUM-ION BATTERIES; LAYERED CATHODE MATERIALS; X-RAY SPECTROSCOPY; SURFACE RECONSTRUCTION; ELECTRODE MATERIALS; EVOLUTION; NICKEL; OXIDES; QUANTIFICATION; BEAM AB Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O-2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena. C1 [Lu, Ping; Ihlefeld, Jon F.; Spoerke, Erik David; Pan, Wei] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Yuan, Ren Liang; Zuo, Jian Min] Univ Illinois, Dept Mat Sci & Engn, 1304 W Green St, Urbana, IL 61801 USA. RP Lu, P (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM plu@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We thank Dr. Joseph Michael (Sandia National Laboratories) for critical review of the manuscript. Thanks also to Dr. Chong-Min Wang (Pacific Northwest National Laboratory) for providing the Li[Li0.2Ni0.2Mn0.6]O2 sample. NR 26 TC 2 Z9 2 U1 10 U2 41 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2728 EP 2733 DI 10.1021/acs.nanolett.6b00401 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600089 PM 26943670 ER PT J AU Amani, M Taheri, P Addou, R Ahn, GH Kiriya, D Lien, DH Ager, JW Wallace, RM Jayey, A AF Amani, Matin Taheri, Peyman Addou, Rafik Ahn, Geun Ho Kiriya, Daisuke Lien, Der-Hsien Ager, Joel W., III Wallace, Robert M. Jayey, Ali TI Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides SO NANO LETTERS LA English DT Article DE Transition metal dichalcogenide; quantum yield; radiative lifetime; biexcitonic recombination ID PHOTOLUMINESCENCE QUANTUM YIELD; MOLYBDENUM-DISULFIDE; VALLEY POLARIZATION; MONOLAYER MOS2; ATOMIC LAYERS; NATURAL MOS2; WS2; DEFECTS; HETEROSTRUCTURES; CHALCOGENIDES AB Optoelectronic devices based on two-dimensional (2D) materials have shown tremendous promise over the past few years; however, there are still numerous challenges that need to be overcome to enable their application in devices. These include improving their poor photoluminescence (PL) quantum yield (QY) as well as better understanding of exciton-based recombination kinetics. Recently, we developed a chemical treatment technique using an organic superacid, bis(trifluoromethane)sulfonimide (TFSI), which was shown to improve the quantum yield in MoS2 from less than 1% to over 95%. Here, we perform detailed steady-state and transient optical characterization on some of the most heavily studied direct bandgap 2D materials, specifically WS2, MoS2, WSe2, and MoSe2, over a large pump dynamic range to study the recombination mechanisms present in these materials. We then explore the effects of TFSI treatment on the PL QY and recombination kinetics for each case. Our results suggest that sulfur-based 2D materials are amenable to repair/passivation by TFSI, while the mechanism is thus far ineffective on selenium based systems. We also show that biexcitonic recombination is the dominant nonradiative pathway in these materials and that the kinetics for TFSI treated MoS2 and WS2 can be described using a simple two parameter model. C1 [Amani, Matin; Taheri, Peyman; Ahn, Geun Ho; Kiriya, Daisuke; Lien, Der-Hsien; Jayey, Ali] Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Amani, Matin; Ahn, Geun Ho; Kiriya, Daisuke; Lien, Der-Hsien; Ager, Joel W., III; Jayey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Addou, Rafik; Wallace, Robert M.] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. RP Jayey, A (reprint author), Univ Calif Berkeley, Elect Engn & Comp Sci, Berkeley, CA 94720 USA.; Jayey, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI Addou, Rafik/C-8992-2013; Wallace, Robert/A-5283-2008 OI Addou, Rafik/0000-0002-5454-0315; Wallace, Robert/0000-0001-5566-4806 FU Electronic Materials Program - Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05Ch11231]; NWO-Rubicon; Center for Low Energy Systems Technology (LEAST); STARnet phase of the Focus Center Research Program (FCRP); MARCO; DARPA; Nanoelectronic Research Initiative (NRI); NIST FX This work was supported by the Electronic Materials Program, funded by Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05Ch11231. P.T. was supported by a fellowship awarded by NWO-Rubicon. R.A. and R.M.W. were funded by the Center for Low Energy Systems Technology (LEAST), one of six centers supported by the STARnet phase of the Focus Center Research Program (FCRP), a Semiconductor Research Corporation program sponsored by MARCO and DARPA and by the Southwest Academy on Nanoelectronics (SWAN) sponsored by the Nanoelectronic Research Initiative (NRI) and NIST. NR 43 TC 12 Z9 12 U1 29 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2786 EP 2791 DI 10.1021/acs.nanolett.6b00536 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600099 PM 26978038 ER PT J AU Li, RP Zhang, J Tan, R Gerdes, F Luo, ZP Xu, HW Hollingsworth, JA Klinke, C Chen, O Wang, ZW AF Li, Ruipeng Zhang, Jun Tan, Rui Gerdes, Frauke Luo, Zhiping Xu, Hongwu Hollingsworth, Jennifer A. Klinke, Christian Chen, Ou Wang, Zhongwu TI Competing Interactions between Various Entropic Forces toward Assembly of Pt3Ni Octahedra into a Body-Centered Cubic Superlattice SO NANO LETTERS LA English DT Article DE Pt3Ni Octahedron; nanocrystal assembly; body-centered cubic; open superlattice; rotational and translational entropies; repulsive and attractive forces ID POLYHEDRAL GOLD NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; DENSEST PACKINGS; SHAPE; NANOPARTICLES; BINARY; STABILITY; NANOSCALE; BCC; METAMATERIALS AB Anisotropic nanocrystal assembled supercrystals with open superlattices (SLs) manifest novel and unique properties, but poor understanding of the nucleation/growth mechanisms limits their design and fabrication for practical applications. Using highly anisotropic Pt3Ni octahedral nanocrystals, we have grown large single supercrystals with an open body-centered cubic (bcc) superlattice that has a low filling factor of 26.8%. Synchrotron-based X-ray structural reconstruction fully revealed the coherence of translational and orientational orderings and determined that the constituent octahedra arrange themselves with the vertex-to vertex and face-to-face configurations along the SL[100] and SL[111] directions, respectively. The large face-to-face separation and flexible vertex-to-vertex elastic contact provided the rattle space and supporting axis for local rotations of Pt3Ni octahedra within the bcc superlattice. Development of orientational disordering along with robust preservation of translational ordering during the heating process of a supercrystal in the oleic acid wetting environment confirmed the dominance of rotational entropy of hard octahedra in the formation of the open bcc superlattice. Ultimate achievement of dynamic equilibrium between the vertex-oriented elastic repulsions and the face-oriented attractions of surface-coating ligands governs the structural and mechanical stability of the supercrystal. This discovery provides significant insights into the design and control of geometrical shapes for the fabrication of highly anisotropic nanocrystals into desired open superlattices with tailored optical and electronic properties. C1 [Li, Ruipeng; Wang, Zhongwu] Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14850 USA. [Zhang, Jun] China Univ Petr, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China. [Tan, Rui; Chen, Ou] Brown Univ, Dept Chem, Providence, RI 02912 USA. [Luo, Zhiping] Fayetteville State Univ, Dept Chem & Phys, Fayetteville, NC 28301 USA. [Xu, Hongwu] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. [Hollingsworth, Jennifer A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. [Gerdes, Frauke; Klinke, Christian] Univ Hamburg, Inst Phys Chem, Martinistr 52, D-20146 Hamburg, Germany. RP Wang, ZW (reprint author), Cornell Univ, Cornell High Energy Synchrotron Source, Ithaca, NY 14850 USA. EM zw42@cornell.edu RI Luo, Zhiping/C-4435-2014; Li, Ruipeng/A-3691-2014; OI Luo, Zhiping/0000-0002-8264-6424; Li, Ruipeng/0000-0001-8176-3138; Xu, Hongwu/0000-0002-0793-6923; Tan, Rui/0000-0001-8737-6593 FU Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory under DOE [DE-AC52-06NA25396]; NSF [DMR-1332208]; Brown University startup fund; German Research Foundation DFG [KL 1453/9-1]; European Research Council FX We appreciate technical support from CHESS staff and constructive discussions with our colleagues Sol Gruner, Bill Bassett, and Roald Hoffmann at Cornell. This work is partially supported by the Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC, under DOE Contract DE-AC52-06NA25396. CHESS is supported by the NSF award DMR-1332208. O.C. acknowledges the support from Brown University startup fund. C.K. thanks the German Research Foundation DFG for financial support in the frame of the Cluster of Excellence "Center of ultrafast imaging CUI" and for granting the project KL 1453/9-1. C.K. and F.G. also acknowledge the European Research Council for an ERC Starting Grant. NR 53 TC 7 Z9 7 U1 22 U2 50 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2792 EP 2799 DI 10.1021/acs.nanolett.6b00564 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600100 PM 26977777 ER PT J AU Ye, HH Wang, QX Catalano, M Lu, N Vermeylen, J Kim, MJ Liu, YZ Sun, YG Xia, XH AF Ye, Haihang Wang, Qingxiao Catalano, Massimo Lu, Ning Vermeylen, Joseph Kim, Moon J. Liu, Yuzi Sun, Yugang Xia, Xiaohu TI Ru Nanoframes with an fcc Structure and Enhanced Catalytic Properties SO NANO LETTERS LA English DT Article DE Ruthenium; nanoframe; crystal structure; kinetic control; catalysis ID SHAPE-CONTROLLED SYNTHESIS; SIZE-CONTROLLED SYNTHESIS; CUBIC GOLD NANOFRAMES; AMMONIA-BORANE; RUTHENIUM NANOPARTICLES; GALVANIC REPLACEMENT; METAL NANOSTRUCTURES; ROOM-TEMPERATURE; NANOCRYSTALS; PLATINUM AB Noble-metal nanoframes are of great interest to many applications due to their unique open structures. Among various noble metals, Ru has never been made into nanoframes. In this study, we report for the first time an effective method based on seeded growth and chemical etching for the facile synthesis of Ru nanoframes with high purity. The essence of this approach is to induce the preferential growth of Ru on the corners and edges of Pd truncated octahedra as the seeds by kinetic control. The resultant Pd-Ru-core frame octahedra could be easily converted to Ru octahedral nanoframes of similar to 2 nm in thickness by selectively removing the Pd cores through chemical etching. Most importantly, in this approach the face-centered cubic (fcc) crystal structure of Pd seeds was faithfully replicated by Ru that usually takes an hcp structure. The fcc Ru nanoframes showed higher catalytic activities toward the reduction of p-nitrophenol by NaBH4 and the dehydrogenation of ammonia borane compared with hcp Ru nanowires with roughly the same thickness. C1 [Ye, Haihang; Vermeylen, Joseph; Xia, Xiaohu] Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. [Wang, Qingxiao; Catalano, Massimo; Lu, Ning; Kim, Moon J.] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. [Liu, Yuzi] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. [Sun, Yugang] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA. RP Xia, XH (reprint author), Michigan Technol Univ, Dept Chem, Houghton, MI 49931 USA. EM xiaxh@mtu.edu RI Liu, Yuzi/C-6849-2011; Sun, Yugang /A-3683-2010; Kim, Moon/A-2297-2010 OI Sun, Yugang /0000-0001-6351-6977; FU Michigan Technological University (MTU); Louis Beecherl, Jr. endowment funds; Chinese Academy of Sciences President's International Fellowship Initiative [2015VTA031]; U.S. Department of Energy Office of Science User Facility [DE-AC02-06CH11357] FX This work was partially supported by the startup funds from Michigan Technological University (MTU), Louis Beecherl, Jr. endowment funds, and Chinese Academy of Sciences President's International Fellowship Initiative (2015VTA031). This work was performed in part (HRTEM imaging) at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility under Contract No. DE-AC02-06CH11357. NR 59 TC 17 Z9 17 U1 35 U2 92 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD APR PY 2016 VL 16 IS 4 BP 2812 EP 2817 DI 10.1021/acs.nanolett.6b00607 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA DJ5UC UT WOS:000374274600103 PM 26999499 ER PT J AU Husko, C Wulf, M Lefrancois, S Combrie, S Lehoucq, G De Rossi, A Eggleton, BJ Kuipers, L AF Husko, Chad Wulf, Matthias Lefrancois, Simon Combrie, Sylvain Lehoucq, Gaelle De Rossi, Alfredo Eggleton, Benjamin J. Kuipers, L. TI Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides SO NATURE COMMUNICATIONS LA English DT Article ID MIDINFRARED SUPERCONTINUUM GENERATION; NONLINEAR PULSE-PROPAGATION; OPTICAL-FIBERS; MU-M; SILICON; DISPERSION; WAVELENGTH; NM; IONIZATION; DYNAMICS AB Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrodinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides. C1 [Husko, Chad; Lefrancois, Simon; Eggleton, Benjamin J.] Univ Sydney, Sch Phys, IPOS, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Sydney, NSW 2006, Australia. [Wulf, Matthias; Kuipers, L.] FOM Inst AMOLF, Ctr Nanophoton, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands. [Combrie, Sylvain; Lehoucq, Gaelle; De Rossi, Alfredo] Thales Res & Technol, 1 Ave A Fresnel, F-91767 Palaiseau, France. [Wulf, Matthias] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Husko, C (reprint author), Univ Sydney, Sch Phys, IPOS, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Sydney, NSW 2006, Australia.; Wulf, M (reprint author), FOM Inst AMOLF, Ctr Nanophoton, Sci Pk 104, NL-1098 XG Amsterdam, Netherlands.; Wulf, M (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM chusko@anl.gov; matthias.wulf@ist.ac.at RI Kuipers, Laurens/A-9378-2014 FU Australian Research Council (ARC) Center of Excellence CUDOS [CE110001018]; ARC Laureate Fellowship [FL120100029]; ARC Discovery Early Career Researcher Award (DECRA) [DE120102069]; Netherlands Foundation for Fundamental Research on Matter (FOM); Netherlands Organization for Scientific Research (NWO); ERC Advanced Investigator Grant [240438-CONSTANS]; ERC-Pharos programme FX This research was supported by the Australian Research Council (ARC) Center of Excellence CUDOS (CE110001018), ARC Laureate Fellowship (FL120100029), ARC Discovery Early Career Researcher Award (DECRA DE120102069), the Netherlands Foundation for Fundamental Research on Matter (FOM) and the Netherlands Organization for Scientific Research (NWO). L.K. acknowledges funding from ERC Advanced Investigator Grant (no. 240438-CONSTANS). A.D.R, S.C., and G.L. acknowledge financial support from the ERC-Pharos programme lead by A. P. Mosk. C.H. graciously thanks AMOLF for hosting him to conduct the experiments with M.W. and L.K. NR 55 TC 2 Z9 2 U1 7 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11332 DI 10.1038/ncomms11332 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DJ3SY UT WOS:000374127800001 PM 27079683 ER PT J AU Bajaj, P Harris, JF Huang, JH Nath, P Iyer, R AF Bajaj, Piyush Harris, Jennifer F. Huang, Jen-Huang Nath, Pulak Iyer, Rashi TI Advances and Challenges in Recapitulating Human Pulmonary Systems: At the Cusp of Biology and Materials SO ACS BIOMATERIALS SCIENCE & ENGINEERING LA English DT Review DE drug screening; extracellular matrix; lung-on-a-chip; microengineered; toxicology ID ON-A-CHIP; AIRWAY EPITHELIAL-CELLS; EMBRYONIC STEM-CELLS; SERUM-FREE DIFFERENTIATION; HUMAN LUNG-CARCINOMA; PARYLENE-C STENCILS; EXTRACELLULAR-MATRIX; IN-VITRO; II CELLS; MICROFLUIDIC DEVICES AB The aim of this review is to provide an overview of physiologically relevant microengineered lung-on-a-chip (LoC) platforms for a variety of different biomedical applications with emphasis on drug screening. First, a brief outline of lung anatomy and physiology is presented followed by discussion of the lung parenchyma and its extracellular matrix. Next, we point out the technical challenges in recapitulating the complexity of lung in conventional static two-dimensional microenvironments and the need for alternate lung platforms. The importance of scaling laws is also emphasized in designing these in vitro microengineered lung platforms. The review then discusses current LoC platforms that have been used for testing the efficacy of drugs or as model systems for investigating disorders of the lung parenchyma. Finally, the design parameters in developing an ideal physiologically relevant LoC platform are presented. As this emerging field of organ-on-a-chip can serve an alternative platform for animal testing of drugs or modeling human diseases in vitro, it has significant potential to impact the future of pharmaceutical research. C1 [Bajaj, Piyush; Iyer, Rashi] Los Alamos Natl Lab, Informat Syst & Modeling, POB 1663, Los Alamos, NM 87545 USA. [Harris, Jennifer F.; Huang, Jen-Huang] Los Alamos Natl Lab, Biosci Div, POB 1663, Los Alamos, NM 87545 USA. [Nath, Pulak] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. [Bajaj, Piyush] Pfizer Inc, Primary Pharmacol Grp, PDM NCE, Groton, CT 06340 USA. RP Iyer, R (reprint author), Los Alamos Natl Lab, Informat Syst & Modeling, POB 1663, Los Alamos, NM 87545 USA. EM rashi@lanl.gov FU Defense Threat Reduction Agency (DTRA) program: Integration of Novel Technologies for Organ Development and Rapid Assessment of Medical Countermeasures (INTO-RAM) [DTRA100271A5196]; National Nuclear Security Administration of the U.S. Department of Energy [DEAC52- 06NA25396] FX This project was funded by the Defense Threat Reduction Agency (DTRA) program: Integration of Novel Technologies for Organ Development and Rapid Assessment of Medical Countermeasures (INTO-RAM), DTRA100271A5196. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DEAC52- 06NA25396. The authors also thank Dr. John P. Wikswo at Vanderbilt University. The LA-UR number for the work is 14-24197. NR 153 TC 1 Z9 1 U1 10 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2373-9878 J9 ACS BIOMATER SCI ENG JI ACS Biomater. Sci. Eng. PD APR PY 2016 VL 2 IS 4 BP 473 EP 488 DI 10.1021/acsbiomaterials.5b00480 PG 16 WC Materials Science, Biomaterials SC Materials Science GA DJ3CU UT WOS:000374083200002 ER PT J AU Ghatikar, G Mashayekh, S Stadler, M Yin, RX Liu, ZH AF Ghatikar, Girish Mashayekh, Salman Stadler, Michael Yin, Rongxin Liu, Zhenhua TI Distributed energy systems integration and demand optimization for autonomous operations and electric grid transactions SO APPLIED ENERGY LA English DT Article DE Electric grid transactions; Distributed energy resources; Smart grid integration; Microgrids; Dynamic optimization; Integrated energy systems optimization ID COMMERCIAL BUILDINGS; ECONOMIC-DISPATCH; MANAGEMENT-SYSTEM; POWER DISPATCH; RESOURCES; ALGORITHM; MICROGRIDS; CALIFORNIA; REDUCTION; FRAMEWORK AB Distributed power systems in the U.S. and globally are evolving to provide reliable and clean energy to consumers. In California, existing regulations require significant increases in renewable generation, as well as identification of customer-side Distributed Energy Resources (DER) controls, communication technologies, and standards for interconnection with the electric grid systems. As DER deployment expands, customer-side DER control and optimization will be critical for system flexibility and demand response (DR) participation, which improves the economic viability of DER systems. Current DER systems integration and communication challenges include leveraging the existing DER and DR technology and systems infrastructure, and enabling optimized cost, energy and carbon choices for customers to deploy interoperable grid transactions and renewable energy systems at scale. This paper presents a cost-effective solution to these challenges by exploring communication technologies and information models for DER system integration and interoperability. This system uses open standards and optimization models for resource planning based on dynamic-pricing notifications and autonomous operations within various domains of the smart grid energy system. It identifies architectures and customer engagement strategies in dynamic DR pricing transactions to generate feedback information models for load flexibility, load profiles, and participation schedules. The models are tested at a real site in California Fort Hunter Liggett (FHL). The results for FHL show that the model fits within the existing and new DR business models and networked systems for transactive energy concepts. Integrated energy systems, communication networks, and modeling tools that coordinate supply-side networks and DER will enable electric grid system operators to use DER for grid transactions in an integrated system. Published by Elsevier Ltd. C1 [Ghatikar, Girish; Mashayekh, Salman; Stadler, Michael; Yin, Rongxin; Liu, Zhenhua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ghatikar, Girish] Greenlots, San Francisco, CA USA. [Stadler, Michael] Ctr Energy & Innovat Technol, Seibersdorf, Austria. RP Mashayekh, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mstadler@lbl.gov NR 47 TC 4 Z9 5 U1 5 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD APR 1 PY 2016 VL 167 BP 432 EP 448 DI 10.1016/j.apenergy.2015.10.117 PG 17 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA DI8JX UT WOS:000373748400036 ER PT J AU Heitmann, K Bingham, D Lawrence, E Bergner, S Habib, S Higdon, D Pope, A Biswas, R Finkel, H Frontiere, N Bhattacharya, S AF Heitmann, Katrin Bingham, Derek Lawrence, Earl Bergner, Steven Habib, Salman Higdon, David Pope, Adrian Biswas, Rahul Finkel, Hal Frontiere, Nicholas Bhattacharya, Suman TI THE MIRA-TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS SO ASTROPHYSICAL JOURNAL LA English DT Article DE large-scale structure of universe; methods: statistical ID MATTER POWER SPECTRUM; HALO MASS FUNCTION; LARGE-SCALE BIAS; OCCUPATION DISTRIBUTION; COSMIC EMULATION; HIGH-REDSHIFT; GALAXY BIAS; MODELS; BARYONS; NEUTRINOS AB Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one Lambda CDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy. C1 [Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman] Argonne Natl Lab, HEP Div, Lemont, IL 60439 USA. [Heitmann, Katrin; Habib, Salman] Argonne Natl Lab, MCS Div, Lemont, IL 60439 USA. [Bingham, Derek; Bergner, Steven] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC V5A 1S6, Canada. [Lawrence, Earl] Los Alamos Natl Lab, CCS Div, CCS 6, Los Alamos, NM 87545 USA. [Higdon, David] Virginia Tech, Virginia Bioinformat Inst, Social & Decis Analyt Lab, Arlington, VA 22203 USA. [Pope, Adrian; Finkel, Hal] Argonne Natl Lab, ALCF Div, Lemont, IL 60439 USA. [Biswas, Rahul] Univ Washington, Dept Astron, Seattle, WA 98155 USA. [Biswas, Rahul] Univ Washington, eSci Inst, Seattle, WA 98155 USA. [Frontiere, Nicholas] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Heitmann, K (reprint author), Argonne Natl Lab, HEP Div, Lemont, IL 60439 USA.; Heitmann, K (reprint author), Argonne Natl Lab, MCS Div, Lemont, IL 60439 USA. FU DOE [W-7405-ENG-36]; U.S. Department of Energy [DE-AC02-06CH11357]; Scientific Discovery through Advanced Computing (SciDAC) program - the U.S. Department of Energy, Office of Science; Advanced Scientific Computing Research and High Energy Physics; NASA; Washington Research Foundation Fund for Innovation in Data-Intensive Discovery; Moore/Sloan Data Science Environments Project at the University of Washington; DOE/SC [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Part of this research was supported by the DOE under contract W-7405-ENG-36. Argonne National Laboratory's work was supported under the U.S. Department of Energy contract DE-AC02-06CH11357. Partial support for HACC development was provided by the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, jointly by Advanced Scientific Computing Research and High Energy Physics. K.H. was supported in part by NASA. R.B. acknowledges partial support from the Washington Research Foundation Fund for Innovation in Data-Intensive Discovery and the Moore/Sloan Data Science Environments Project at the University of Washington.; This research used resources of the ALCF, which is supported by DOE/SC under contract DE-AC02-06CH11357 and resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 72 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2016 VL 820 IS 2 AR 108 DI 10.3847/0004-637X/820/2/108 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI8HE UT WOS:000373741300027 ER PT J AU Jensen-Clem, R Millar-Blanchaer, M Mawet, D Graham, JR Wallace, JK Macintosh, B Hinkley, S Wiktorowicz, SJ Perrin, MD Marley, MS Fitzgerald, MP Oppenheimer, R Ammons, SM Rantakyr, FT Marchis, F AF Jensen-Clem, Rebecca Millar-Blanchaer, Max Mawet, Dimitri Graham, James R. Wallace, J. Kent Macintosh, Bruce Hinkley, Sasha Wiktorowicz, Sloane J. Perrin, Marshall D. Marley, Mark S. Fitzgerald, Michael P. Oppenheimer, Rebecca Ammons, S. Mark Rantakyr, Fredrik T. Marchis, Franck TI POINT SOURCE POLARIMETRY WITH THE GEMINI PLANET IMAGER: SENSITIVITY CHARACTERIZATION WITH T5.5 DWARF COMPANION HD 19467 B SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; stars: individual (HD 19467); techniques: high angular resolution; techniques: polarimetric ID BROWN DWARFS; HR 8799; LINEAR-POLARIZATION; T DWARFS; TRANSITION; SPECTROSCOPY; VARIABILITY; ATMOSPHERES; DISCOVERY; WEATHER AB Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of p(CL99.73%) <= 2.4%. We discuss our results in the context of T dwarf cloud models and photometric variability. C1 [Jensen-Clem, Rebecca; Mawet, Dimitri] CALTECH, Dept Astrophys, 1200 E Calif Blvd, Pasadena, CA 91101 USA. [Millar-Blanchaer, Max] Univ Toronto, Dept Astron & Astrophys, Toronto, ON, Canada. [Millar-Blanchaer, Max] Univ Toronto, Dunlap Inst Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Graham, James R.] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. [Wallace, J. Kent] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA. [Macintosh, Bruce] Stanford Univ, Dept Phys, Palo Alto, CA 94304 USA. [Macintosh, Bruce] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Palo Alto, CA 94304 USA. [Hinkley, Sasha] Univ Exeter, Dept Phys, Stocker Rd, Exeter EX4 4QL, Devon, England. [Wiktorowicz, Sloane J.] Univ Calif Santa Cruz, Dept Astron, 1156 High St, Santa Cruz, CA 95064 USA. [Perrin, Marshall D.] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA. [Marley, Mark S.] NASA, Ames Res Ctr, MS 245-3, Moffett Field, CA 94035 USA. [Fitzgerald, Michael P.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Oppenheimer, Rebecca] Amer Museum Nat Hist, New York, NY 10024 USA. [Ammons, S. Mark] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Rantakyr, Fredrik T.] Gemini Observ, Casilla 603, La Serena, Chile. [Marchis, Franck] Carl Sagan Ctr, SETI Inst, 189 Bernardo Ave, Mountain View, CA 94043 USA. RP Jensen-Clem, R (reprint author), CALTECH, Dept Astrophys, 1200 E Calif Blvd, Pasadena, CA 91101 USA. OI Marley, Mark/0000-0002-5251-2943; Perrin, Marshall/0000-0002-3191-8151; Fitzgerald, Michael/0000-0002-0176-8973 FU National Science Foundation Graduate Research Fellowship [DGE-1144469]; NASA through the Sagan Fellowship Program; U.S. Department of Energy [DE-AC52-07NA27344] FX This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. DGE-1144469. This work was performed in part under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute, and under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 49 TC 4 Z9 4 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2016 VL 820 IS 2 AR 111 DI 10.3847/0004-637X/820/2/111 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI8HE UT WOS:000373741300030 ER PT J AU Khakhaleva-Li, Z Gnedin, NY AF Khakhaleva-Li, Zimu Gnedin, Nickolay Y. TI COSMIC REIONIZATION ON COMPUTERS. ULTRAVIOLET CONTINUUM SLOPES AND DUST OPACITIES IN HIGH REDSHIFT GALAXIES SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: theory; intergalactic medium; large-scale structure of universe; methods: numerical ID ULTRA-DEEP FIELD; SIMILAR-TO 7; FULLY COUPLED SIMULATION; UV LUMINOSITY FUNCTIONS; RADIATIVE-TRANSFER CODE; STAR-FORMING GALAXIES; BRIGHT END; STELLAR POPULATIONS; FORMATION HISTORY; LOW METALLICITIES AB We compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting ultraviolet (UV) and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient. While the discrepancies with the exiting data are marginal, the future James Webb Space Telescope (JWST) data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required. C1 [Khakhaleva-Li, Zimu] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA. [Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. RP Khakhaleva-Li, Z (reprint author), Univ Chicago, Dept Phys, Chicago, IL 60637 USA.; Gnedin, NY (reprint author), Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, POB 500, Batavia, IL 60510 USA.; Gnedin, NY (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA.; Gnedin, NY (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM zimu@uchicago.edu; gnedin@fnal.gov FU Fermilab; Kavli Institute for Cosmological Physics; University of Chicago; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy; NSF [AST-1211190] FX Radiative transfer simulations used in this work have been performed on the Joint Fermilab-KICP Supercomputing Cluster, supported by grants from Fermilab, Kavli Institute for Cosmological Physics, and the University of Chicago. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. This work was also supported in part by the NSF grant AST-1211190. This work made extensive use of the NASA Astrophysics Data System and arXiv.org preprint server. NR 62 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2016 VL 820 IS 2 AR 133 DI 10.3847/0004-637X/820/2/133 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI8HE UT WOS:000373741300052 ER PT J AU Raskin, C Owen, JM AF Raskin, Cody Owen, J. Michael TI RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: numerical; planets and satellites: terrestrial planets ID GLOBULAR-CLUSTER CORES; COLLAPSE; HYDRODYNAMICS; ENCOUNTERS; SIMULATIONS; HYPOTHESIS; SUPERNOVAE; STARS AB Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core-mantle boundaries. C1 [Raskin, Cody; Owen, J. Michael] Lawrence Livermore Natl Lab, POB 808,L-038, Livermore, CA 94550 USA. RP Raskin, C (reprint author), Lawrence Livermore Natl Lab, POB 808,L-038, Livermore, CA 94550 USA. FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, and all tests and simulations were performed with computing resources provided by Lawrence Livermore National Labs, Livermore, CA. We are grateful for the geophysical consultation of Naor Movshovitz in the Department of Earth and Planetary Sciences at UC Santa Cruz. NR 22 TC 1 Z9 1 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD APR 1 PY 2016 VL 820 IS 2 AR 102 DI 10.3847/0004-637X/820/2/102 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA DI8HE UT WOS:000373741300021 ER PT J AU Doan, HQ Pollock, KL Cuk, T AF Doan, Hoang Q. Pollock, Kevin L. Cuk, Tanja TI Transient optical diffraction of GaN/aqueous interfaces: Interfacial carrier mobility dependence on surface reactivity SO CHEMICAL PHYSICS LETTERS LA English DT Article ID GALLIUM NITRIDE NANOWIRES; FERMI-LEVEL; SILICON NANOWIRES; WATER OXIDATION; CHARGE-TRANSFER; GRATING METHOD; N-GAN; PHOTOELECTROCHEMICAL PROPERTIES; SEMICONDUCTOR ELECTRODES; RECOMBINATION VELOCITY AB While charge transport and surface reactivity have thus far been treated as independent phenomena, the interfacial carrier mobility could be highly dependent on reaction intermediates that carry localized charge and can hop from site to site along the surface. Here, we demonstrate the use of surface sensitive transient optical grating spectroscopy to measure this lateral, interfacial carrier diffusivity at surfaces with different reactivity. We find that for n-GaN, for which substantial charge transfer occurs during equilibration with the water oxidation reaction, the interfacial hole diffusivity increases from air by a factor greater than two under 0.1 M HBr and 0.1 M Na2SO4 aqueous electrolytes. (C) 2016 Elsevier B.V. All rights reserved. C1 [Doan, Hoang Q.; Pollock, Kevin L.; Cuk, Tanja] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cuk, Tanja] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Cuk, T (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tanjacuk@berkeley.edu FU Air Force Office of Scientific Research under AFOSR Award [FA9550-12-1-0337]; Department of Energy Office of Basic Energy Sciences, under the CPIMS program [KC030102] FX Hoang Doan and Kevin Pollock were supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0337 during the completion of this work. Transient grating equipment was supplied by the Department of Energy Office of Basic Energy Sciences, under the CPIMS program KC030102 (FWP No. CH12CUK1). Finally, we thank Drs. Joseph Orenstein and James Hinton for helpful discussions. NR 76 TC 0 Z9 0 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0009-2614 EI 1873-4448 J9 CHEM PHYS LETT JI Chem. Phys. Lett. PD APR PY 2016 VL 649 BP 1 EP 7 DI 10.1016/j.cplett.2016.02.018 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA DI1RT UT WOS:000373274100001 ER PT J AU Guthormsen, AM Fisher, KJ Bassok, M Osterhout, L DeWolf, M Holyoak, KJ AF Guthormsen, Amy M. Fisher, Kristie J. Bassok, Miriam Osterhout, Lee DeWolf, Melissa Holyoak, Keith J. TI Conceptual Integration of Arithmetic Operations With Real-World Knowledge: Evidence From Event-Related Potentials SO COGNITIVE SCIENCE LA English DT Article DE Analogical mapping; Mathematical reasoning; Semantic alignment; ERP; N400 effect; P600 effect ID BRAIN POTENTIALS; PREFRONTAL CORTEX; SEMANTIC INTEGRATION; LANGUAGE COMPREHENSION; MENTAL CALCULATION; MECHANISMS; RETRIEVAL; NUMBER; MEMORY; ACTIVATION AB Research on language processing has shown that the disruption of conceptual integration gives rise to specific patterns of event-related brain potentials (ERPs)N400 and P600 effects. Here, we report similar ERP effects when adults performed cross-domain conceptual integration of analogous semantic and mathematical relations. In a problem-solving task, when participants generated labeled answers to semantically aligned and misaligned arithmetic problems (e.g., 6 roses+2=?), the second object label in misaligned problems yielded an N400 effect for addition (but not division) problems. In a verification task, when participants judged arithmetically correct but semantically misaligned problem sentences to be unacceptable, the second object label in misaligned sentences elicited a P600 effect. Thus, depending on task constraints, misaligned problems can show either of two ERP signatures of conceptual disruption. These results show that well-educated adults can integrate mathematical and semantic relations on the rapid timescale of within-domain ERP effects by a process akin to analogical mapping. C1 [Guthormsen, Amy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fisher, Kristie J.] Microsoft Studios, Redmond, WA USA. [Bassok, Miriam; Osterhout, Lee] Univ Washington, Seattle, WA 98195 USA. [DeWolf, Melissa; Holyoak, Keith J.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. RP Bassok, M (reprint author), Univ Washington, Dept Psychol, Box 35125, Seattle, WA 98195 USA. EM mbassok@u.washington.edu OI Guthormsen, Amy/0000-0002-4234-4456 FU University of Washington [65-3488]; NIDCD [R01DC01947] FX The experiments reported here encompass the PhD dissertation research of Amy M. Guthormsen (Experiment 1) and Kristie J. Fisher (Experiment 2), who are the joint first authors of the present paper. Both dissertations were completed at the University of Washington under the direction of Miriam Bassok and Lee Osterhout. Parts of the research were presented at the annual meetings of the Psychonomics Society (2008, 2009), Cognitive Neuroscience Society (2009, 2010), and Cognitive Science Society (2009, 2010). This work was partially funded by the University of Washington's Royalty Research Fund through a grant awarded to Miriam Bassok (65-3488), and by NIDCD Research Grant R01DC01947 awarded to Lee Osterhout. Portions of the paper were written while Keith Holyoak was a visiting professor at the Department of Psychology, National University of Singapore. Thanks to the members of the Cognitive Neuroscience of Language Lab for help with data collection and theoretical insights, and to Melody Sherry and Louis Wei for help with pilot data collection and analysis. NR 81 TC 1 Z9 1 U1 2 U2 10 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0364-0213 EI 1551-6709 J9 COGNITIVE SCI JI Cogn. Sci. PD APR PY 2016 VL 40 IS 3 BP 723 EP 757 DI 10.1111/cogs.12238 PG 35 WC Psychology, Experimental SC Psychology GA DJ1WM UT WOS:000373995700008 PM 25864403 ER PT J AU Woods, J Winkler, J AF Woods, Jason Winkler, Jon TI Field measurement of moisture-buffering model inputs for residential buildings SO ENERGY AND BUILDINGS LA English DT Article DE Moisture capacitance; Buildings; Modeling; Moisture buffering; Effective penetration depth ID PERFORMANCE AB Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the only unmeasured term the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. These results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model. (C) 2016 Elsevier B.V. All rights reserved. C1 [Woods, Jason; Winkler, Jon] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Woods, J (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM jason.woods@nrel.gov OI Woods, Jason/0000-0002-7661-2658 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; U.S. DOE Office of Energy Efficiency and Renewable Energy Buildings Technology Office FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. Funding provided by U.S. DOE Office of Energy Efficiency and Renewable Energy Buildings Technology Office. We would like to thank Bruce Wilcox and Rick Chitwood for helping with setup at the California house and Eric Martin and David Hoak for helping with the Florida house. We also want to thank Greg Barker for help with programming the data-acquisition system and Ed Hancock for his invaluable support with equipment setup. NR 29 TC 0 Z9 0 U1 4 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD APR 1 PY 2016 VL 117 BP 91 EP 98 DI 10.1016/j.enbuild.2016.02.008 PG 8 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DI8LA UT WOS:000373751300010 ER PT J AU Hong, TZ Sun, HS Chen, YX Taylor-Lange, SC Yan, D AF Hong, Tianzhen Sun, Hongsan Chen, Yixing Taylor-Lange, Sarah C. Yan, Da TI An occupant behavior modeling tool for co-simulation SO ENERGY AND BUILDINGS LA English DT Article DE Behavior modeling; Co-simulation; Energy modeling; Occupant behavior; Building simulation; EnergyPlus ID BUILDING ENERGY SIMULATION; RESIDENTIAL BUILDINGS; THERMAL COMFORT; DNAS FRAMEWORK; PERFORMANCE; OFFICES; DEMAND; PATTERNS; ONTOLOGY AB Traditionally, in building energy modeling (BEM) programs, occupant behavior (OB) inputs are deterministic and less indicative of real world scenarios, contributing to discrepancies between simulated and actual energy use in buildings. This paper presents a new OB modeling tool, with an occupant behavior functional mock-up unit (obFMU) that enables co-simulation with BEM programs implementing functional mock-up interface (FMI). The components detailed in the development of the obFMU include an overview of the DNAS (drivers-needs-actions-systems) ontology and the occupant behavior eXtensible Markup Language (obXML) schema, in addition to details on the creation of the obFMU that contains the co-simulation interface, the data model and solvers. To demonstrate functionality of the tool, three examples of occupant behaviors were simulated, including: (1) turning on and off lights, (2) opening and closing windows, and (3) turning on and off the air conditioners. The obFMU can be used via co-simulation with all building simulation programs that implement the FMI, thus users are not limited to a particular tool. Another advantage is the use of obXML schema to represent occupant behavior, standardize the description of occupant behavior enabling information exchange. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hong, Tianzhen; Chen, Yixing; Taylor-Lange, Sarah C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Sun, Hongsan; Yan, Da] Tsinghua Univ, Beijing 100084, Peoples R China. RP Hong, TZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM thong@lbl.gov FU United States Department of Energy under U.S.-China Clean energy Research Center for Building Energy Efficiency [DE-AC02-05CH11231]; International Energy Agency Energy in Buildings and Communities Program [Annex 66] FX This work was sponsored by the United States Department of Energy (Contract No. DE-AC02-05CH11231) under the U.S.-China Clean energy Research Center for Building Energy Efficiency. The work is also part of the research activities of the International Energy Agency Energy in Buildings and Communities Program Annex 66, Definition and Simulation of Occupant Behavior in Buildings. NR 53 TC 5 Z9 5 U1 1 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD APR 1 PY 2016 VL 117 BP 272 EP 281 DI 10.1016/j.enbuild.2015.10.033 PG 10 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DI8LA UT WOS:000373751300027 ER PT J AU Pang, XF Nouidui, TS Wetter, M Fuller, D Liao, A Haves, P AF Pang, Xiufeng Nouidui, Thierry S. Wetter, Michael Fuller, Daniel Liao, Anna Haves, Philip TI Building energy simulation in real time through an open standard interface SO ENERGY AND BUILDINGS LA English DT Article DE Building energy simulation; Real-time; Functional Mockup Interface; BCVTB; EnergyPlus AB Building energy models (BEMs) are typically used for design and code compliance for new buildings and in the renovation of existing buildings to predict energy use. The increasing adoption of BEM as standard practice in the building industry presents an opportunity to extend the use of BEMs into construction, commissioning and operation. In 2009, the authors developed a real-time simulation framework to execute an EnergyPlus model in real time to improve building operation. This paper reports an enhancement of that real-time energy simulation framework. The previous version only works with software tools that implement the custom co-simulation interface of the Building Controls Virtual Test Bed (BCVTB), such as EnergyPlus, Dymola and TRNSYS. The new version uses an open standard interface, the Functional Mockup Interface (FMI), to provide a generic interface to any application that supports the FMI protocol. In addition, the new version utilizes the Simple Measurement and Actuation Profile (sMAP) tool as the data acquisition system to acquire, store and present data. This paper introduces the updated architecture of the real-time simulation framework using FMI and presents proof-of-concept demonstration results which validate the new framework. Published by Elsevier B.V. C1 [Pang, Xiufeng; Nouidui, Thierry S.; Wetter, Michael; Fuller, Daniel; Liao, Anna; Haves, Philip] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Pang, XF (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM XPang@lbl.gov FU Office of Building Technology, State Program of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Building Technology, Community Program of the U.S. Department of Energy [DE-AC02-05CH11231]; Energy Efficiency and Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) from the Ministry of Trade, Industry and Energy, Republic of Korea [20132010101800]; Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense [EW09-29] FX This work was supported, in part, by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, by the Energy Efficiency and Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20132010101800) and by the Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense (project EW09-29). NR 13 TC 1 Z9 1 U1 1 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD APR 1 PY 2016 VL 117 BP 282 EP 289 DI 10.1016/j.enbuild.2015.10.025 PG 8 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DI8LA UT WOS:000373751300028 ER PT J AU Wetter, M Bonvini, M Nouidui, TS AF Wetter, Michael Bonvini, Marco Nouidui, Thierry S. TI Equation-based languages - A new paradigm for building energy modeling, simulation and optimization SO ENERGY AND BUILDINGS LA English DT Article DE Equation-based modeling; Modelica; Multi-physics simulation; Smart grid; Optimal control ID SYSTEMS AB Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller that adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. Exploiting the equation-based language led to 2200 times faster solution. Published by Elsevier B.V. C1 [Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Technol Area, Bldg Technol & Urban Syst Dept,Simulat Res Grp, Berkeley, CA 94720 USA. RP Wetter, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Technol Area, Bldg Technol & Urban Syst Dept,Simulat Res Grp, Berkeley, CA 94720 USA. EM MWetter@lbl.gov FU Office of Building Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; International Energy Agency (IEA) within the Energy in Buildings and Communities (EBC) Programme [Annex 60] FX This research was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technologies of the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231.; This work emerged from the Annex 60 project, an international project conducted under the umbrella of the International Energy Agency (IEA) within the Energy in Buildings and Communities (EBC) Programme. Annex 60 will develop and demonstrate new generation computational tools for building and community energy systems based on Modelica, Functional Mockup Interface and BIM standards. NR 49 TC 2 Z9 2 U1 7 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD APR 1 PY 2016 VL 117 BP 290 EP 300 DI 10.1016/j.enbuild.2015.10.017 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DI8LA UT WOS:000373751300029 ER PT J AU Zhao, F Lee, SH Augenbroe, G AF Zhao, Fei Lee, Sang Hoon Augenbroe, Godfried TI Reconstructing building stock to replicate energy consumption data SO ENERGY AND BUILDINGS LA English DT Article DE Building stock model; Normative energy model; Energy simulation; Inverse model ID VARIABLES AB The paper introduces an approach to replicate building stock energy data using energy survey data. For demonstration of the approach, the research uses energy consumption data for office buildings in Chicago from Commercial Building Energy Consumption Survey (CBECS) 2003. The replication starts from derivation of the energy use distribution for a building stock in a specific location from the survey data. Then probabilistic methods are used to map building stock model space to real-world data space reflecting a weather adjustment of the energy survey data. The approach leverages a linear surrogate model of the physics-based reduced order normative energy model. The normative building energy model can rapidly estimate the building energy performance with respect to its design and operational characteristics. The research investigates a statistical procedure to inversely estimate building parameters using regression and Bayesian inference model based on the Markov Chain Monte Carlo (MCMC) sampling techniques. The research serves a new paradigm of the building stock aggregation that can lead to an efficient energy model, which contributes the body of knowledge of energy modeling beyond the single building scale. (C) 2015 Elsevier B.V. All rights reserved. C1 [Zhao, Fei] Retroficiency Inc, Spokane, WA USA. [Lee, Sang Hoon] Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. [Augenbroe, Godfried] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Lee, SH (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94704 USA. EM zhaof03@gmail.com; sanghlee@lbl.gov; godfried.augenbroe@coa.gatech.edu NR 32 TC 0 Z9 0 U1 4 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD APR 1 PY 2016 VL 117 BP 301 EP 312 DI 10.1016/j.enbuild.2015.10.001 PG 12 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DI8LA UT WOS:000373751300030 ER PT J AU Roth, A Goldwasser, D Parker, A AF Roth, Amir Goldwasser, David Parker, Andrew TI There's a measure for that! SO ENERGY AND BUILDINGS LA English DT Article DE Whole-building energy simulation; Energy conservation measures; Parametric analysis; Uncertainty analysis; Calibration; Reporting; Quality-assurance; Visualization; Automation; Workflow AB The OpenStudio software development kit has played a significant role in the adoption of the EnergyPlus whole building energy modeling engine and in the development and launch of new applications that use EnergyPlus for a variety of purposes, from design to auditing to code compliance and management of large portfolios. One of the most powerful features of the OpenStudio platform is Measure, a scripting facility similar to Excel's Visual Basic macros. Measures can be used to apply energy conservation measures to models-hence the name-to create reports and visualizations, and even to sew together custom workflows. Measures automate tedious tasks increasing modeler productivity and reducing error. Measures have also become a currency in the OpenStudio tools ecosystem, a way to codify knowledge and protocol and transfer it from one modeler to another, either within an organization or within the global modeling community. This paper describes some of the many applications of Measures. (C) 2015 Published by Elsevier B.V. C1 [Roth, Amir] US DOE, Washington, DC 20585 USA. [Goldwasser, David; Parker, Andrew] Natl Renewable Energy Lab, Golden, CO 80406 USA. RP Roth, A (reprint author), US DOE, Washington, DC 20585 USA. EM amir.roth@ee.doe.gov; david.goldwasser@nrel.gov; andrew.parker@nrel.gov FU U.S. Department of Energy under an FFRDC (federally funded research and development center); California Energy Commission; Xcel Energy of Colorado via CRADA (collaborative research and development agreement); WFO (work for others) arrangements FX The authors thank the editors and reviewers who contributed to improving this manuscript, the OpenStudio development team, and the many developers of Measures. OpenStudio is funded by the U.S. Department of Energy under an FFRDC (federally funded research and development center) direct funding agreement with supplementary funding from outside organizations including the California Energy Commission and Xcel Energy of Colorado via CRADA (collaborative research and development agreement) and WFO (work for others) arrangements. NR 15 TC 0 Z9 0 U1 3 U2 3 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD APR 1 PY 2016 VL 117 BP 321 EP 331 DI 10.1016/j.enbuild.2015.09.056 PG 11 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DI8LA UT WOS:000373751300032 ER PT J AU Hong, TZ Sun, KY Zhang, RP Hinokuma, R Kasahara, S Yura, Y AF Hong, Tianzhen Sun, Kaiyu Zhang, Rongpeng Hinokuma, Ryohei Kasahara, Shinichi Yura, Yoshinori TI Development and validation of a new variable refrigerant flow system model in EnergyPlus SO ENERGY AND BUILDINGS LA English DT Article DE Variable refrigerant flow; Heat pump; EnergyPlus; Building simulation; Energy modeling; Model validation ID AIR-CONDITIONING SYSTEM; COOLING CONDITIONS; SIMULATION; CONSUMPTION; INFORMATION AB Variable refrigerant flow (VRF) systems vary the refrigerant flow to meet the dynamic zone thermal loads, leading to more efficient operations than other system types. This paper introduces a new model that simulates the energy performance of VRF systems in the heat pump (HP) operation mode. Compared with the current VRF-HP models implemented in EnergyPlus, the new VRF system model has more component models based on physics and thus has significant innovations in: (1) enabling advanced controls, including variable evaporating and condensing temperatures in the indoor and outdoor units, and variable fan speeds based on the temperature and zone load in the indoor units, (2) adding a detailed refrigerant pipe heat loss calculation using refrigerant flow rate, operational conditions, pipe length, and pipe insulation materials, (3) improving accuracy of simulation especially in partial load conditions, and (4) improving the usability of the model by significantly reducing the number of user input performance curves. The VRF-HP model is implemented in EnergyPlus and validated with measured data from field tests. Results show that the new VRF-HP model provides more accurate estimate of the VRF-HP system performance, which is key to determining code compliance credits as well as utilities incentive for VRF technologies. (C) 2015 Elsevier B.V. All rights reserved. C1 [Hong, Tianzhen; Sun, Kaiyu; Zhang, Rongpeng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Hinokuma, Ryohei] Daikin US Corp, 475 Fifth Ave,18th Floor, New York, NY 10017 USA. [Kasahara, Shinichi; Yura, Yoshinori] Daikin Ind LTD, Kita Ku, Umeda Ctr Bldg,2-4-12 Nakazaki Nishi, Osaka 5308323, Japan. RP Hong, TZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg Technol & Urban Syst Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM thong@lbl.gov OI Zhang, Rongpeng/0000-0002-8298-9128 FU U.S. Department of Energy [DE-AC02-05CH11231]; Daikin US Corporation; Daikin Industries LTD FX The LBNL team thanks Daikin US Corporation and Daikin Industries LTD for the opportunity and financial support of this work. This work was also supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 34 TC 2 Z9 2 U1 9 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD APR 1 PY 2016 VL 117 BP 399 EP 411 DI 10.1016/j.enbuild.2015.09.023 PG 13 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA DI8LA UT WOS:000373751300039 ER PT J AU Mochizuki, S Sugimoto, K Koeduka, T Matsui, K AF Mochizuki, Satoshi Sugimoto, Koichi Koeduka, Takao Matsui, Kenji TI Arabidopsis lipoxygenase 2 is essential for formation of green leaf volatiles and five-carbon volatiles SO FEBS LETTERS LA English DT Article DE Arabidopsis; green leaf volatiles; jasmonate; lipoxygenase ID CONTAINING GALACTOLIPIDS; NICOTIANA-ATTENUATA; DEFENSE RESPONSES; ACID; THALIANA; LEAVES; GENE; ACCUMULATION; REVEALS; PATHWAY AB Plants biosynthesize a variety of bioactive lipid derivatives, such as green leaf volatiles (GLVs) and jasmonates (JAs). Here we identify a lipoxygenase 2 (LOX2) involved in GLV biosynthesis in Arabidopsis using mutant lines for each of the six LOX isoforms present in Arabidopsis. We found that formation of five carbon volatiles was also dependent on LOX2. LOX2 is known to be involved in formation of JA; thus, LOX2 is apparently versatile in function. The results in this study suggested that LOX2 activity is suppressed in intact cells but activated upon tissue damage to support the rapid GLV-burst observed in wounded leaves. C1 [Mochizuki, Satoshi; Sugimoto, Koichi; Koeduka, Takao; Matsui, Kenji] Yamaguchi Univ, Grad Sch Med, Dept Appl Mol Biosci, Yamaguchi, Japan. [Mochizuki, Satoshi; Sugimoto, Koichi; Koeduka, Takao; Matsui, Kenji] Yamaguchi Univ, Fac Agr, Dept Biol Chem, Yamaguchi, Japan. [Sugimoto, Koichi] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. RP Matsui, K (reprint author), Yamaguchi Univ, Grad Sch Med Agr, Yoshida 1677-1, Yamaguchi, Yamaguchi 7538515, Japan. EM matsui@yamaguchi-u.ac.jp RI Sugimoto, Koichi/N-2302-2014; OI Sugimoto, Koichi/0000-0002-8335-1396; Matsui, Kenji/0000-0002-4875-5176 FU Japan Society for the Promotion of Sciences KAKENHI [26660095, 25282234] FX This research was partly supported by the Japan Society for the Promotion of Sciences KAKENHI (grant nos. 26660095 and 25282234). The authors thank Dr. Edward E. Farmer for providing Arabidopsis lox2-1 mutant. NR 35 TC 2 Z9 2 U1 16 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0014-5793 EI 1873-3468 J9 FEBS LETT JI FEBS Lett. PD APR PY 2016 VL 590 IS 7 BP 1017 EP 1027 DI 10.1002/1873-3468.12133 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA DJ0OW UT WOS:000373904800013 PM 26991128 ER PT J AU Ramstein, GP Evans, J Kaeppler, SM Mitchell, RB Vogel, KP Buell, CR Casler, MD AF Ramstein, Guillaume P. Evans, Joseph Kaeppler, Shawn M. Mitchell, Robert B. Vogel, Kenneth P. Buell, C. Robin Casler, Michael D. TI Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium SO G3-GENES GENOMES GENETICS LA English DT Article DE genomic selection; linkage disequilibrium; exome capture; bioenergy; Panicum virgatum L; GenPred; Shared data resource ID ESTIMATED BREEDING VALUE; DAIRY-CATTLE BREEDS; NUCLEOTIDE POLYMORPHISM; RELATIONSHIP MATRICES; POPULATION-STRUCTURE; QUANTITATIVE TRAITS; VARIABLE SELECTION; MOLECULAR MARKERS; RIDGE-REGRESSION; FAMILY SELECTION AB Switchgrass is a relatively high-yielding and environmentally sustainable biomass crop, but further genetic gains in biomass yield must be achieved to make it an economically viable bioenergy feedstock. Genomic selection (GS) is an attractive technology to generate rapid genetic gains in switchgrass, and meet the goals of a substantial displacement of petroleum use with biofuels in the near future. In this study, we empirically assessed prediction procedures for genomic selection in two different populations, consisting of 137 and 110 half-sib families of switchgrass, tested in two locations in the United States for three agronomic traits: dry matter yield, plant height, and heading date. Marker data were produced for the families' parents by exome capture sequencing, generating up to 141,030 polymorphic markers with available genomic-location and annotation information. We evaluated prediction procedures that varied not only by learning schemes and prediction models, but also by the way the data were preprocessed to account for redundancy in marker information. More complex genomic prediction procedures were generally not significantly more accurate than the simplest procedure, likely due to limited population sizes. Nevertheless, a highly significant gain in prediction accuracy was achieved by transforming the marker data through a marker correlation matrix. Our results suggest that marker-data transformations and, more generally, the account of linkage disequilibrium among markers, offer valuable opportunities for improving prediction procedures in GS. Some of the achieved prediction accuracies should motivate implementation of GS in switchgrass breeding programs. C1 [Ramstein, Guillaume P.; Kaeppler, Shawn M.; Casler, Michael D.] Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. [Kaeppler, Shawn M.] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Evans, Joseph; Buell, C. Robin] Michigan State Univ, Dept Energy, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Evans, Joseph; Buell, C. Robin] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Mitchell, Robert B.; Vogel, Kenneth P.] Univ Nebraska, Grain Forage & Bioenergy Res Unit, ARS, USDA, Lincoln, NE 68583 USA. [Casler, Michael D.] ARS, USDA, Madison, WI 53706 USA. RP Ramstein, GP (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. EM ramstein@wisc.edu FU US Department of Energy Great Lakes Bioenergy Research Center, Department of the Environment (DOE) Office of Science [BER DE-FC02- 07ER64494]; US Department of Energy Joint Genome Institute; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Agriculture and Food Research Initiative Competitive Grant from the Unites States Department of Agriculture (USDA) National Institute of Food and Agriculture (CenUSA) [2011-68005-30411]; USDA-ARS; University of Wisconsin Agricultural Research Stations; Gabelman-Shippo Wisconsin Distinguished Graduate Fellowship at the University of Wisconsin-Madison FX The authors thank two anonymous reviewers for remarks and suggestions that greatly helped with improving the manuscript. We are grateful to Jeremy Schmutz of the Department of Energy Joint Genome Institute and Hudson Alpha for his work on the switchgrass genome, and to Nick Baker and Joseph Halinar, USDA-ARS, Madison, WI, and Steve Masterson, USDA-ARS, Lincoln, NE, for assistance with field operations and data collection. This research was funded in part by the following agencies and organizations: the US Department of Energy Great Lakes Bioenergy Research Center, Department of the Environment (DOE) Office of Science BER DE-FC02- 07ER64494 (laboratory operations, genotyping, and bioinformatics), the US Department of Energy Joint Genome Institute, supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231 (sequencing), Agriculture and Food Research Initiative Competitive Grant No. 2011-68005-30411 from the Unites States Department of Agriculture (USDA) National Institute of Food and Agriculture (CenUSA; field operations and phenotypic measurements), USDA-ARS Congressionally allocated funds (field operations, technical support, and logistics), and the University of Wisconsin Agricultural Research Stations (field operations). Mention of commercial products and organizations in this manuscript is solely to provide specific information. The USDA is an equal opportunity provider and employer. G.P.R. was supported by the Gabelman-Shippo Wisconsin Distinguished Graduate Fellowship at the University of Wisconsin-Madison. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 0 Z9 0 U1 1 U2 8 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD APR 1 PY 2016 VL 6 IS 4 BP 1049 EP 1062 DI 10.1534/g3.115.024950 PG 14 WC Genetics & Heredity SC Genetics & Heredity GA DJ2VI UT WOS:000374062800024 PM 26869619 ER PT J AU Khachatoorian, R Riahi, R Ganapathy, E Shao, H Wheatley, NM Sundberg, C Jung, CL Ruchala, P Dasgupta, A Arumugaswami, V Gestwicki, JE French, SW AF Khachatoorian, Ronik Riahi, Rana Ganapathy, Ekambaram Shao, Hao Wheatley, Nicole M. Sundberg, Christopher Jung, Chun-Ling Ruchala, Piotr Dasgupta, Asim Arumugaswami, Vaithilingaraja Gestwicki, Jason E. French, Samuel W. TI Allosteric heat shock protein 70 inhibitors block hepatitis C virus assembly SO INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS LA English DT Article DE Hsp70; Hsc70; Allosteric heat shock protein inhibitors; Hepatitis C virus; Viral assembly; Viral translation ID HSP70 CHAPERONES; LIFE-CYCLE; CANCER; HSC70; REPLICATION; MECHANISM; MKT-077; GENOME; TAU AB The human molecular chaperones heat shock protein 70 (Hsp70) and heat shock cognate protein 70 (Hsc70) bind to the hepatitis C viral nonstructural protein 5A (NS5A) and regulate its activity. Specifically, Hsp70 is involved in NS5A-augmented internal ribosomal entry site (IRES)-mediated translation of the viral genome, whilst Hsc70 appears to be primarily important for intracellular infectious virion assembly. To better understand the importance of these two chaperones in the viral life cycle, infected human cells were treated with allosteric Hsp70/Hsc70 inhibitors (AHIs). Treatment with AHIs significantly reduced the production of intracellular virus at concentrations that were non-toxic to human hepatoma Huh7.5 cells. The supernatant of treated cultures was then used to infect naive cells, revealing that AHIs also lowered levels of secreted virus. In contrast to their effects on virion assembly, AHIs did not impact the stability of NS5A or viral protein translation in IRES assays. These results suggest that Hsc70 plays a particularly important and sensitive role in virion assembly. Indeed, it was found that combination of AHIs with a peptide-based viral translation inhibitor exhibited additive antiviral activity. Together these results suggest that the host Hsc70 is a new antiviral target and that its inhibitors utilise a new mechanism of action. (C) 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved. C1 [Khachatoorian, Ronik; Riahi, Rana; Ganapathy, Ekambaram; French, Samuel W.] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA. [Shao, Hao; Gestwicki, Jason E.] Univ Calif San Francisco, Dept Pharmaceut Chem, Inst Neurodegenerat Dis, San Francisco, CA USA. [Wheatley, Nicole M.] Univ Calif Los Angeles, Doe Inst Genom & Prote, Los Angeles, CA 90095 USA. [Sundberg, Christopher] Univ Calif Los Angeles, David Geffen Sch Med, Dept Human Genet, Los Angeles, CA 90095 USA. [Jung, Chun-Ling] Univ Calif Los Angeles, David Geffen Sch Med, Dept Med, Los Angeles, CA 90095 USA. [Ruchala, Piotr] Univ Calif Los Angeles, David Geffen Sch Med, Dept Psychiat & Biobehav Sci, Los Angeles, CA 90095 USA. [Dasgupta, Asim] Univ Calif Los Angeles, David Geffen Sch Med, Dept Microbiol Immunol & Mol Genet, Los Angeles, CA 90095 USA. [Dasgupta, Asim; French, Samuel W.] Univ Calif Los Angeles, David Geffen Sch Med, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA. [Dasgupta, Asim; French, Samuel W.] Univ Calif Los Angeles, David Geffen Sch Med, AIDS Inst, Los Angeles, CA 90095 USA. [Arumugaswami, Vaithilingaraja] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA. [Arumugaswami, Vaithilingaraja] Cedars Sinai Med Ctr, Dept Surg, Board Governors Regenerat Med Inst, Los Angeles, CA 90048 USA. [French, Samuel W.] Univ Calif Los Angeles, Ctr Hlth Sci, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA. RP French, SW (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA.; French, SW (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Jonsson Comprehens Canc Ctr, Los Angeles, CA 90095 USA.; French, SW (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, AIDS Inst, Los Angeles, CA 90095 USA.; French, SW (reprint author), Univ Calif Los Angeles, Ctr Hlth Sci, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA. EM SFrench@mednet.ucla.edu RI Shao, Hao/P-6783-2014 OI Shao, Hao/0000-0003-4437-5536 FU National Institutes of Health [NIH R01 DK090794, NIH N5059690, NIH R21AI084090]; California Center for Antiviral Drug Discovery, University of California Office of the President [143226]; Cedars-Sinai Programmatic Award FX This study was funded by the National Institutes of Health [grant NIH R01 DK090794 to SWF; grant NIH N5059690 to JEG; and grant NIH R21AI084090 to AD], the California Center for Antiviral Drug Discovery, University of California Office of the President [grant MRPI #143226 to AD] and the Cedars-Sinai Programmatic Award (to VA). NR 29 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-8579 EI 1872-7913 J9 INT J ANTIMICROB AG JI Int. J. Antimicrob. Agents PD APR PY 2016 VL 47 IS 4 BP 289 EP 296 DI 10.1016/j.ijantimicag.2016.01.012 PG 8 WC Infectious Diseases; Microbiology; Pharmacology & Pharmacy SC Infectious Diseases; Microbiology; Pharmacology & Pharmacy GA DI9WX UT WOS:000373854500006 PM 27013001 ER PT J AU Chan, YGY Frankel, MB Missiakas, D Schneewind, O AF Chan, Yvonne G. Y. Frankel, Matthew B. Missiakas, Dominique Schneewind, Olaf TI SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion SO JOURNAL OF BACTERIOLOGY LA English DT Article ID BETA-N-ACETYLGLUCOSAMINIDASE; L-ALANINE AMIDASE; GRAM-POSITIVE BACTERIA; CELL-WALL SYNTHESIS; METHICILLIN-RESISTANT; PEPTIDOGLYCAN GLYCOSYLTRANSFERASES; MOLECULAR CHARACTERIZATION; CYTOPLASMIC PROTEINS; STRAIN COPENHAGEN; ESCHERICHIA-COLI AB The envelope of Staphylococcus aureus is comprised of peptidoglycan and its attached secondary polymers, teichoic acid, capsular polysaccharide, and protein. Peptidoglycan synthesis involves polymerization of lipid II precursors into glycan strands that are cross-linked at wall peptides. It is not clear whether peptidoglycan structure is principally determined during polymerization or whether processive enzymes affect cell wall structure and function, for example, by generating conduits for protein secretion. We show here that S. aureus lacking SagB, a membrane-associated N-acetylglucosaminidase, displays growth and cell-morphological defects caused by the exaggerated length of peptidoglycan strands. SagB cleaves polymerized glycan strands to their physiological length and modulates antibiotic resistance in methicillin-resistant S. aureus (MRSA). Deletion of sagB perturbs protein trafficking into and across the envelope, conferring defects in cell wall anchoring and secretion, as well as aberrant excretion of cytoplasmic proteins. IMPORTANCE Staphylococcus aureus is thought to secrete proteins across the plasma membrane via the Sec pathway; however, protein transport across the cell wall envelope has heretofore not been studied. We report that S. aureus sagB mutants generate elongated peptidoglycan strands and display defects in protein secretion as well as aberrant excretion of cytoplasmic proteins. These results suggest that the thick peptidoglycan layer of staphylococci presents a barrier for protein secretion and that SagB appears to extend the Sec pathway across the cell wall envelope. C1 [Chan, Yvonne G. Y.; Frankel, Matthew B.; Missiakas, Dominique; Schneewind, Olaf] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Missiakas, Dominique; Schneewind, Olaf] Argonne Natl Lab, Howard Taylor Ricketts Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Schneewind, O (reprint author), Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA.; Schneewind, O (reprint author), Argonne Natl Lab, Howard Taylor Ricketts Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM oschnee@bsd.uchicago.edu FU HHS \ NIH \ National Institute of Allergy and Infectious Diseases (NIAID) [AI038897, AI052474, F32AI085709]; American Heart Association (AHA) [13POST16980091] FX This work was funded by HHS vertical bar NIH vertical bar National Institute of Allergy and Infectious Diseases (NIAID) under grants AI038897, AI052474, and F32AI085709. This work was funded by American Heart Association (AHA) under grant 13POST16980091. NR 76 TC 0 Z9 0 U1 4 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD APR PY 2016 VL 198 IS 7 BP 1123 EP 1136 DI 10.1128/JB.00983-15 PG 14 WC Microbiology SC Microbiology GA DJ3KL UT WOS:000374103800014 PM 26811319 ER PT J AU Spero, MA Brickner, JR Mollet, JT Pisithkul, T Amador-Noguez, D Donohue, TJ AF Spero, Melanie A. Brickner, Joshua R. Mollet, Jordan T. Pisithkul, Tippapha Amador-Noguez, Daniel Donohue, Timothy J. TI Different Functions of Phylogenetically Distinct Bacterial Complex I Isozymes SO JOURNAL OF BACTERIOLOGY LA English DT Article ID RHODOBACTER-SPHAEROIDES 2.4.1; AMMONIA-OXIDIZING BACTERIUM; COMPLETE GENOME SEQUENCE; ESCHERICHIA-COLI; RHODOPSEUDOMONAS-SPHAEROIDES; AEROBIC RESPIRATION; ELECTRON-TRANSPORT; NADH DEHYDROGENASE; GENE-EXPRESSION; H-2 PRODUCTION AB NADH:quinone oxidoreductase (complex I) is a bioenergetic enzyme that transfers electrons from NADH to quinone, conserving the energy of this reaction by contributing to the proton motive force. While the importance of NADH oxidation to mitochondrial aerobic respiration is well documented, the contribution of complex I to bacterial electron transport chains has been tested in only a few species. Here, we analyze the function of two phylogenetically distinct complex I isozymes in Rhodobacter sphaeroides, an alphaproteobacterium that contains well-characterized electron transport chains. We found that R. sphaeroides complex I activity is important for aerobic respiration and required for anaerobic dimethyl sulfoxide (DMSO) respiration (in the absence of light), photoautotrophic growth, and photoheterotrophic growth (in the absence of an external electron acceptor). Our data also provide insight into the functions of the phylogenetically distinct R. sphaeroides complex I enzymes (complex I-A and complex I-E) in maintaining a cellular redox state during photoheterotrophic growth. We propose that the function of each isozyme during photoheterotrophic growth is either NADH synthesis (complex I-A) or NADH oxidation (complex I-E). The canonical alphaproteobacterial complex I isozyme (complex I-A) was also shown to be important for routing electrons to nitrogenase-mediated H-2 production, while the horizontally acquired enzyme (complex I-E) was dispensable in this process. Unlike the singular role of complex I in mitochondria, we predict that the phylogenetically distinct complex I enzymes found across bacterial species have evolved to enhance the functions of their respective electron transport chains. IMPORTANCE Cells use a proton motive force (PMF), NADH, and ATP to support numerous processes. In mitochondria, complex I uses NADH oxidation to generate a PMF, which can drive ATP synthesis. This study analyzed the function of complex I in bacteria, which contain more-diverse and more-flexible electron transport chains than mitochondria. We tested complex I function in Rhodobacter sphaeroides, a bacterium predicted to encode two phylogenetically distinct complex I isozymes. R. sphaeroides cells lacking both isozymes had growth defects during all tested modes of growth, illustrating the important function of this enzyme under diverse conditions. We conclude that the two isozymes are not functionally redundant and predict that phylogenetically distinct complex I enzymes have evolved to support the diverse lifestyles of bacteria. C1 [Spero, Melanie A.; Brickner, Joshua R.; Mollet, Jordan T.; Pisithkul, Tippapha; Amador-Noguez, Daniel; Donohue, Timothy J.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Spero, Melanie A.] Univ Wisconsin, Microbiol Doctoral Training Program, Madison, WI USA. [Spero, Melanie A.; Mollet, Jordan T.; Pisithkul, Tippapha; Amador-Noguez, Daniel; Donohue, Timothy J.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Pisithkul, Tippapha] Univ Wisconsin, Grad Program Cellular & Mol Biol, Madison, WI USA. RP Donohue, TJ (reprint author), Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA.; Donohue, TJ (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. EM tdonohue@bact.wisc.edu OI Donohue, Timothy/0000-0001-8738-2467 FU HHS \ National Institutes of Health (NIH) [T32 GM08349]; U.S. Department of Energy (DOE) [DE-FC02-07ER64494] FX HHS vertical bar National Institutes of Health (NIH) provided funding to Melanie A. Spero under grant number T32 GM08349. U.S. Department of Energy (DOE) provided funding to Timothy J. Donohue under grant number DE-FC02-07ER64494. NR 68 TC 0 Z9 0 U1 2 U2 3 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD APR PY 2016 VL 198 IS 8 BP 1268 EP 1280 DI 10.1128/JB.01025-15 PG 13 WC Microbiology SC Microbiology GA DJ3KQ UT WOS:000374104400011 PM 26833419 ER PT J AU Herrou, J Czyz, DM Willett, JW Kim, HS Chhor, G Babnigg, G Kim, Y Crosson, S AF Herrou, Julien Czyz, Daniel M. Willett, Jonathan W. Kim, Hye-Sook Chhor, Gekleng Babnigg, Gyorgy Kim, Youngchang Crosson, Sean TI WrpA Is an Atypical Flavodoxin Family Protein under Regulatory Control of the Brucella abortus General Stress Response System SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ESCHERICHIA-COLI WRBA; CRYSTAL-STRUCTURE; FLAVIN MONONUCLEOTIDE; OXIDATIVE STRESS; BIOCHEMICAL-CHARACTERIZATION; QUINONE OXIDOREDUCTASE; DESULFOVIBRIO-GIGAS; HELICOBACTER-PYLORI; STATIONARY-PHASE; REACTIVE OXYGEN AB The general stress response (GSR) system of the intracellular pathogen Brucella abortus controls the transcription of approximately 100 genes in response to a range of stress cues. The core genetic regulatory components of the GSR are required for B. abortus survival under nonoptimal growth conditions in vitro and for maintenance of chronic infection in an in vivo mouse model. The functions of the majority of the genes in the GSR transcriptional regulon remain undefined. bab1_1070 is among the most highly regulated genes in this regulon: its transcription is activated 20- to 30-fold by the GSR system under oxidative conditions in vitro. We have solved crystal structures of Bab1_1070 and demonstrate that it forms a homotetrameric complex that resembles those of WrbA-type NADH: quinone oxidoreductases, which are members of the flavodoxin protein family. However, B. abortus WrbA-related protein (WrpA) does not bind flavin cofactors with a high affinity and does not function as an NADH: quinone oxidoreductase in vitro. Soaking crystals with flavin mononucleotide (FMN) revealed a likely low-affinity binding site adjacent to the canonical WrbA flavin binding site. Deletion of wrpA (Delta wrpA) does not compromise cell survival under acute oxidative stress in vitro or attenuate infection in cell-based or mouse models. However, a Delta wrpA strain does elicit increased splenomegaly in a mouse model, suggesting that WrpA modulates B. abortus interaction with its mammalian host. Despite high structural homology with canonical WrbA proteins, we propose that B. abortus WrpA represents a functionally distinct member of the diverse flavodoxin family. IMPORTANCE Brucella abortus is an etiological agent of brucellosis, which is among the most common zoonotic diseases worldwide. The general stress response (GSR) regulatory system of B. abortus controls the transcription of approximately 100 genes and is required for maintenance of chronic infection in a murine model; the majority of GSR-regulated genes remain uncharacterized. We present in vitro and in vivo functional and structural analyses of WrpA, whose expression is strongly induced by GSR under oxidative conditions. Though WrpA is structurally related to NADH: quinone oxidoreductases, it does not bind redox cofactors in solution, nor does it exhibit oxidoreductase activity in vitro. However, WrpA does affect spleen inflammation in a murine infection model. Our data provide evidence that WrpA forms a new functional class of WrbA/flavodoxin family proteins. C1 [Herrou, Julien; Czyz, Daniel M.; Willett, Jonathan W.; Kim, Hye-Sook; Crosson, Sean] Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA. [Herrou, Julien; Czyz, Daniel M.; Willett, Jonathan W.; Kim, Hye-Sook; Crosson, Sean] Univ Chicago, Howard Taylor Ricketts Lab, Chicago, IL 60637 USA. [Chhor, Gekleng; Babnigg, Gyorgy; Kim, Youngchang] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Crosson, Sean] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. RP Crosson, S (reprint author), Univ Chicago, Dept Biochem & Mol Biol, 920 E 58Th St, Chicago, IL 60637 USA.; Crosson, S (reprint author), Univ Chicago, Howard Taylor Ricketts Lab, Chicago, IL 60637 USA.; Crosson, S (reprint author), Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. EM scrosson@uchicago.edu OI Willett, Jonathan/0000-0002-5467-4145 FU HHS \ National Institutes of Health (NIH) [U19AI107792, R01AI107159, F32 GM109661] FX HHS vertical bar National Institutes of Health (NIH) provided funding to Sean Crosson under grant numbers U19AI107792 and R01AI107159. HHS vertical bar National Institutes of Health (NIH) provided funding to Jonathan W. Willett under grant number F32 GM109661. NR 92 TC 3 Z9 3 U1 3 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD APR PY 2016 VL 198 IS 8 BP 1281 EP 1293 DI 10.1128/JB.00982-15 PG 13 WC Microbiology SC Microbiology GA DJ3KQ UT WOS:000374104400012 PM 26858101 ER PT J AU Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Asilar, E Bergauer, T Brandstetter, J Brondolin, E Dragicevic, M Ero, J Flechl, M Friedl, M Fruhwirth, R Ghete, VM Hartl, C Hormann, N Hrubec, J Jeitler, M Knunz, V Konig, A Krammer, M Kratschmer, I Liko, D Matsushita, T Mikulec, I Rabady, D Rahbaran, B Rohringer, H Schieck, J Schofbeck, R Strauss, J Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Lauwers, J Luyckx, S Van De Klundert, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Abu Zeid, S Blekman, F D'Hondt, J Daci, N De Bruyn, I Deroover, K Heracleous, N Keaveney, J Lowette, S Moreels, L Olbrechts, A Python, Q Strom, D Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Van Parijs, I Barria, P Brun, H Caillol, C Clerbaux, B De Lentdecker, G Fasanella, G Favart, L Grebenyuk, A Karapostoli, G Lenzi, T Leonard, A Maerschalk, T Marinov, A Pernie, L Randle-Conde, A Seva, T Vander Velde, C Vanlaer, P Yonamine, R Zenoni, F Zhang, F Beernaert, K Benucci, L Cimmino, A Crucy, S Dobur, D Fagot, A Garcia, G Gul, M Mccartin, J Rios, AAO Poyraz, D Ryckbosch, D Salva, S Sigamani, M Tytgat, M Van Driessche, W Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bondu, O Brochet, S Bruno, G Caudron, A Ceard, L Da Silveira, GG Delaere, C Favart, D Forthomme, L Giammanco, A Hollar, J Jafari, A Jez, P Komm, M Lemaitre, V Mertens, A Musich, M Nuttens, C Perrini, L Pin, A Piotrzkowski, K Popov, A Quertenmont, L Selvaggi, M Marono, MV Beliy, N Hammad, GH Alda, WL Alves, FL Alves, GA Brito, L Martins, MC Hamer, M Hensel, C Herrera, CM Moraes, A Pol, ME Teles, PR Das Chagas, EBB Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Guativa, LMH Malbouisson, H Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Ahuja, S Bernardes, CA Santos, AD Dogra, S Tomei, TRFP Gregores, EM Mercadante, PG Moon, CS Novaes, SF Padula, SS Abad, DR Vargas, JCR Aleksandrov, A Hadjiiska, R Iaydjiev, P Rodozov, M Stoykova, S Sultanov, G Vutova, M Dimitrov, A Glushkov, I Litov, L Pavlov, B Petkov, P Ahmad, M Bian, JG Chen, GM Chen, HS Chen, M Cheng, T Du, R Jiang, CH Plestina, R Romeo, F Shaheen, SM Spiezia, A Tao, J Wang, C Wang, Z Zhang, H Asawatangtrakuldee, C Ban, Y Li, Q Liu, S Mao, Y Qian, SJ Wang, D Xu, Z Avila, C Cabrera, A Sierra, LFC Florez, C Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Puljak, I Cipriano, PMR Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Micanovic, S Sudic, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Rykaczewski, H Bodlak, M Finger, M Finger, M El-khateeb, E Elkafrawy, T Mohamed, A Salama, E Calpas, B Kadastik, M Murumaa, M Raidal, M Tiko, A Veelken, C Eerola, P Pekkanen, J Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Talvitie, J Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Favaro, C Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Machet, M Malcles, J Rander, J Rosowsky, A Titov, M Zghiche, A Antropov, I Baffioni, S Beaudette, F Busson, P Cadamuro, L Chapon, E Charlot, C Dahms, T Davignon, O Filipovic, N Florent, A de Cassagnac, RG Lisniak, S Mastrolorenzo, L Mine, P Naranjo, IN Nguyen, M Ochando, C Ortona, G Paganini, P Pigard, P Regnard, S Salerno, R Sauvan, JB Sirois, Y Strebler, T Yilmaz, Y Zabi, A Agram, JL Andrea, J Aubin, A Bloch, D Brom, JM Buttignol, M Chabert, EC Chanon, N Collard, C Conte, E Coubez, X Fontaine, JC Gele, D Goerlach, U Goetzmann, C Le Bihan, AC Merlin, JA Skovpen, K Van Hove, P Gadrat, S Beauceron, S Bernet, C Boudoul, G Bouvier, E Montoya, CAC Chierici, R Contardo, D Courbon, B Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Lagarde, F Laktineh, IB Lethuillier, M Mirabito, L Pequegnot, AL Perries, S Alvarez, JDR Sabes, D Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Toriashvili, T Tsamalaidze, Z Autermann, C Beranek, S Edelhoff, M Feld, L Heister, A Kiesel, MK Klein, K Lipinski, M Ostapchuk, A Preuten, M Raupach, F Schael, S Schulte, JF Verlage, T Weber, H Wittmer, B Zhukov, V Ata, M Brodski, M Dietz-Laursonn, E Duchardt, D Endres, M Erdmann, M Erdweg, S Esch, T Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Millet, P Olschewski, M Padeken, K Papacz, P Pook, T Radziej, M Reithler, H Rieger, M Scheuch, F Sonnenschein, L Teyssier, D Thuer, S Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Hoehle, F Kargoll, B Kress, T Kuessel, Y Kunsken, A Lingemann, J Nehrkorn, A Nowack, A Nugent, IM Pistone, C Pooth, O Stahl, A Martin, MA Asin, I Bartosik, N Behnke, O Behrens, U Bell, AJ Borras, K Burgmeier, A Campbell, A Choudhury, S Costanza, F Pardos, CD Dolinska, G Dooling, S Dorland, T Eckerlin, G Eckstein, D Eichhorn, T Flucke, G Gallo, E Garcia, JG Geiser, A Gizhko, A Gunnellini, P Hauk, J Hempel, M Jung, H Kalogeropoulos, A Karacheban, O Kasemann, M Katsas, P Kieseler, J Kleinwort, C Korol, I Lange, W Leonard, J Lipka, K Lobanov, A Lohmann, W Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mittag, G Mnich, J Mussgiller, A Naumann-Emme, S Nayak, A Ntomari, E Perrey, H Pitzl, D Placakyte, R Raspereza, A Roland, B Sahin, MO Saxena, P Schoerner-Sadenius, T Schroder, M Seitz, C Spannagel, S Trippkewitz, KD Walsh, R Wissing, C Blobel, V Vignali, MC Draeger, AR Erfle, J Garutti, E Goebel, K Gonzalez, D Gorner, M Haller, J Mann, MHF Hoing, RS Junkes, A Klanner, R Kogler, R Kovalchuk, N Lapsien, T Lenz, T Marchesini, I Marconi, D Meyer, M Nowatschin, D Ott, J Pantaleo, F Er, TPF Perieanu, A Pietsch, N Poehlsen, J Rathjens, D Sander, C Scharf, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schwandt, J Sola, V Stadie, H Steinbruck, G Tholen, H Troendle, D Usai, E Vanelderen, L Vanhoefer, A Vormwald, B Akbiyik, M Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T Colombo, F De Boer, W Descroix, A Dierlamm, A Fink, S Frensch, F Friese, R Giffels, M Gilbert, A Haitz, D Hartmann, F Heindl, SM Husemann, U Katkov, I Kornmayer, A Pardo, PL Maier, B Mildner, H Mozer, MU Muller, T Muller, T Plagge, M Quast, G Rabbertz, K Rocker, S Roscher, F Sieber, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weber, M Weiler, T Wohrmann, C Wolf, R Anagnostou, G Daskalakis, G Geralis, T Giakoumopoulou, VA Kyriakis, A Loukas, D Psallidas, A Topsis-Giotis, I Agapitos, A Kesisoglou, S Panagiotou, A Saoulidou, N Tziaferi, E Evangelou, I Flouris, G Foudas, C Kokkas, P Loukas, N Manthos, N Papadopoulos, I Paradas, E Strologas, J Bencze, G Hajdu, C Hazi, A Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Karancsi, J Molnar, J Szillasi, Z Bartok, M Makovec, A Raics, P Trocsanyi, ZL Ujvari, B Mal, P Mandal, K Sahoo, DK Sahoo, N Swain, SK Bansal, S Beri, SB Bhatnagar, V Chawla, R Gupta, R Bhawandeep, U Kalsi, AK Kaur, A Kaur, M Kumar, R Mehta, A Mittal, M Singh, JB Walia, G Kumar, A Bhardwaj, A Choudhary, BC Garg, RB Kumar, A Malhotra, S Naimuddin, M Nishu, N Ranjan, K Sharma, R Sharma, V Bhattacharya, S Chatterjee, K Dey, S Dutta, S Jain, S Majumdar, N Modak, A Mondal, K Mukherjee, S Mukhopadhyay, S Roy, A Roy, D Chowdhury, SR Sarkar, S Sharan, M Abdulsalam, A Chudasama, R Dutta, D Jha, V Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Banerjee, S Bhowmik, S Chatterjee, RM Dewanjee, RK Dugad, S Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Mahakud, B Maity, M Majumder, G Mazumdar, K Mitra, S Mohanty, GB Parida, B Sarkar, T Sur, N Sutar, B Wickramage, N Chauhan, S Dube, S Kothekar, K Sharma, S Bakhshiansohi, H Behnamian, H Etesami, SM Fahim, A Goldouzian, R Khakzad, M Najafabadi, MM Naseri, M Mehdiabadi, SP Hosseinabadi, FR Safarzadeh, B Zeinali, M Felcini, M Grunewald, M Abbrescia, M Calabria, C Caputo, C Colaleo, A Creanza, D Cristella, L De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Miniello, G My, S Nuzzo, S Pompili, A Pugliese, G Radogna, R Ranieri, A Selvaggi, G Silvestris, L Venditti, R Verwilligen, P Abbiendi, G Battilana, C Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, FR Chhibra, SS Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Montanari, A Navarria, FL Perrotta, A Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Cappello, G Chiorboli, M Costa, S Di Mattia, A Giordano, F Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Viliani, L Benussi, L Bianco, S Fabbri, F Piccolo, D Primavera, F Calvelli, V Ferro, F Lo Vetere, M Monge, MR Robutti, E Tosi, S Brianza, L Dinardo, ME Fiorendi, S Gennai, S Gerosa, R Ghezzi, A Govoni, P Malvezzi, S Manzoni, RA Marzocchi, B Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N Di Guida, S Esposito, M Fabozzi, F Iorio, AOM Lanza, G Lista, L Meola, S Merola, M Paolucci, P Sciacca, C Thyssen, F Azzi, P Bacchetta, N Benato, L Bisello, D Boletti, A Carlin, R Checchia, P Dall'Osso, M Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Margoni, M Meneguzzo, AT Montecassiano, F Passaseo, M Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Ventura, S Zanetti, M Zotto, P Zucchetta, A Zumerle, G Braghieri, A Magnani, A Montagna, P Ratti, SP Re, V Riccardi, C Salvini, P Vai, I Vitulo, P Solestizi, LA Biasini, M Bilei, GM Ciangottini, D Fano, L Lariccia, P Mantovani, G Menichelli, M Saha, A Santocchia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Castaldi, R Ciocci, MA Dell'Orso, R Donato, S Fedi, G Foa, L Giassi, A Grippo, MT Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F D'imperio, G Del Re, D Diemoz, M Gelli, S Jorda, C Longo, E Margaroli, F Meridiani, P Organtini, G Paramatti, R Preiato, F Rahatlou, S Rovelli, C Santanastasio, F Traczyk, P Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Costa, M Covarelli, R Degano, A Demaria, N Finco, L Kiani, B Mariotti, C Maselli, S Migliore, E Monaco, V Monteil, E Obertino, MM Pacher, L Pastrone, N Pelliccioni, M Angioni, GLP Ravera, F Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Schizzi, A Zanetti, A Kropivnitskaya, A Nam, SK Kim, DH Kim, GN Kim, MS Kong, DJ Lee, S Oh, YD Sakharov, A Son, DC Cifuentes, JAB Kim, H Kim, TJ Song, S Choi, S Go, Y Gyun, D Hong, B Jo, M Kim, H Kim, Y Lee, B Lee, K Lee, KS Lee, S Park, SK Roh, Y Yoo, HD Choi, M Kim, H Kim, JH Lee, JSH Park, IC Ryu, G Ryu, MS Choi, Y Goh, J Kim, D Kwon, E Lee, J Yu, I Dudenas, V Juodagalvis, A Vaitkus, J Ahmed, I Ibrahim, ZA Komaragiri, JR Ali, MABM Idris, FM Abdullah, WATW Yusli, MN Linares, EC Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Hernandez-Almada, A Lopez-Fernandez, R Sanchez-Hernandez, A Moreno, SC Valencia, FV Pedraza, I Ibarguen, HAS Pineda, AM Krofcheck, D Butler, PH Ahmad, A Ahmad, M Hassan, Q Hoorani, HR Khan, WA Khurshid, T Shoaib, M Bialkowska, H Bluj, M Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Zalewski, P Brona, G Bunkowski, K Byszuk, A Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Olszewski, M Pozniak, K Walczak, M Bargassa, P Silva, CBDE Di Francesco, A Faccioli, P Parracho, PGF Gallinaro, M Leonardo, N Iglesias, LL Nguyen, F Antunes, JR Seixas, J Toldaiev, O Vadruccio, D Varela, J Vischia, P Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Shulha, S Skatchkov, N Smirnov, V Zarubin, A Golovtsov, V Ivanov, Y Kim, V Kuznetsova, E Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Karneyeu, A Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Gavrilov, V Lychkovskaya, N Popov, V Pozdnyakov, I Safronov, G Spiridonov, A Vlasov, E Zhokin, A Bylinkin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Baskakov, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Myagkov, I Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Milosevic, J Rekovic, V Maestre, JA Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Del Valle, AE Bedoya, CF Ramos, JPF Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI De Martino, EN Yzquierdo, APC Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Albajar, C de Troconiz, JF Missiroli, M Moran, D Cuevas, J Menendez, JF Folgueras, S Caballero, IG Cortezon, EP Garcia, JMV Cabrillo, IJ Calderon, A De Saa, JRC Manzano, PD Fernandez, M Garcia-Ferrero, J Gomez, G Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Trevisani, N Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benaglia, A Bendavid, J Benhabib, L Benitez, JF Berruti, GM Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Castello, R Cerminara, G D'Alfonso, M d'Enterria, D Dabrowski, A Daponte, V David, A De Gruttola, M De Guio, F De Roeck, A De Visscher, S Di Marco, E Dobson, M Dordevic, M Dorney, B du Pree, T Duggan, D Dunser, M Dupont, N Elliott-Peisert, A Franzoni, G Fulcher, J Funk, W Gigi, D Gill, K Giordano, D Girone, M Glege, F Guida, R Gundacker, S Guthoff, M Hammer, J Harris, P Hegeman, J Innocente, V Janot, P Kirschenmann, H Kortelainen, MJ Kousouris, K Krajczar, K Lecoq, P Lourenco, C Lucchini, MT Magini, N Malgeri, L Mannelli, M Martelli, A Masetti, L Meijers, F Mersi, S Meschi, E Moortgat, F Morovic, S Mulders, M Nemallapudi, MV Neugebauer, H Orfanelli, S Orsini, L Pape, L Perez, E Peruzzi, M Petrilli, A Petrucciani, G Peiffer, T Piparo, D Racz, A Reis, T Rolandi, G Rovere, M Ruan, M Sakulin, H Schafer, C Schwick, C Seidel, M Sharma, A Silva, P Simon, M Sphicas, P Steggemann, J Stieger, B Stoye, M Takahashi, Y Treille, D Triossi, A Tsirou, A Veres, GI Wardle, N Wohri, HK Zagozdzinska, A Zeuner, WD Bertl, W Deiters, K Erdmann, W Horisberger, R Ingram, Q Kaestli, HC Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Casal, B Dissertori, G Dittmar, M Donega, M Eller, P Grab, C Heidegger, C Hits, D Hoss, J Kasieczka, G Lustermann, W Mangano, B Marionneau, M del Arbol, PMR Masciovecchio, M Meister, D Micheli, F Musella, P Nessi-Tedaldi, F Pandolfi, F Pata, J Pauss, F Perrozzi, L Quittnat, M Rossini, M Starodumov, A Takahashi, M Tavolaro, VR Theofilatos, K Wallny, R Aarrestad, TK Amsler, C Caminada, L Canelli, MF Chiochia, V De Cosa, A Galloni, C Hinzmann, A Hreus, T Kilminster, B Lange, C Ngadiuba, J Pinna, D Robmann, P Ronga, FJ Salerno, D Yang, Y Cardaci, M Chen, KH Doan, TH Jain, S Khurana, R Konyushikhin, M Kuo, CM Lin, W Lu, YJ Yu, SS Kumar, A Bartek, R Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Chen, PH Dietz, C Fiori, F Grundler, U Hou, WS Hsiung, Y Liu, YF Lu, RS Moya, MM Petrakou, E Tsai, JF Tzeng, YM Asavapibhop, B Kovitanggoon, K Singh, G Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Demiroglu, ZS Dozen, C Eskut, E Girgis, S Gokbulut, G Guler, Y Gurpinar, E Hos, I Kangal, EE Onengut, G Ozdemir, K Ozturk, S Cerci, DS Tali, B Topakli, H Vergili, M Zorbilmez, C Akin, IV Bilin, B Bilmis, S Isildak, B Karapinar, G Yalvac, M Zeyrek, M Gulmez, E Kaya, M Kaya, O Yetkin, EA Yetkin, T Cakir, A Cankocak, K Sen, S Vardarli, FI Grynyov, B Levchuk, L Sorokin, P Aggleton, R Ball, F Beck, L Brooke, JJ Clement, E Cussans, D Flacher, H Goldstein, J Grimes, M Heath, GP Heath, HF Jacob, J Kreczko, L Lucas, C Meng, Z Newbold, DM Paramesvaran, S Poll, A Sakuma, T El Nasr-Storey, SS Senkin, S Smith, D Smith, VJ Bell, KW Belyaev, A Brew, C Brown, RM Calligaris, L Cieri, D Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Shepherd-Themistocleous, CH Thea, A Tomalin, IR Williams, T Worm, SD Baber, M Bainbridge, R Buchmuller, O Bundock, A Burton, D Casasso, S Citron, M Colling, D Corpe, L Cripps, N Dauncey, P Davies, G De Wit, A Della Negra, M Dunne, P Elwood, A Ferguson, W Futyan, D Hall, G Iles, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Malik, S Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Raymond, DM Richards, A Rose, A Seez, C Tapper, A Uchida, K Acosta, MV Virdee, T Zenz, SC Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Reid, ID Symonds, P Teodorescu, L Turner, M Borzou, A Call, K Dittmann, J Hatakeyama, K Liu, H Pastika, N Charaf, O Cooper, SI Henderson, C Rumerio, P Arcaro, D Avetisyan, A Bose, T Fantasia, C Gastler, D Lawson, P Rankin, D Richardson, C Rohlf, J St John, J Sulak, L Zou, D Alimena, J Berry, E Bhattacharya, S Cutts, D Dhingra, N Ferapontov, A Garabedian, A Hakala, J Heintz, U Laird, E Landsberg, G Mao, Z Narain, M Piperov, S Sagir, S Syarif, R Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Ko, W Lander, R Mulhearn, M Pellett, D Pilot, J Ricci-Tam, F Shalhout, S Smith, J Squires, M Stolp, D Tripathi, M Wilbur, S Yohay, R Cousins, R Everaerts, P Farrell, C Hauser, J Ignatenko, M Saltzberg, D Takasugi, E Valuev, V Weber, M Burt, K Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Paneva, MI Jandir, P Kennedy, E Lacroix, F Long, OR Luthra, A Malberti, M Negrete, MO Shrinivas, A Wei, H Wimpenny, S Yates, BR Branson, JG Cerati, GB Cittolin, S D'Agnolo, RT Derdzinski, M Holzner, A Kelley, R Klein, D Letts, J Macneill, I Olivito, D Padhi, S Pieri, M Sani, M Sharma, V Simon, S Tadel, M Vartak, A Wasserbaech, S Welke, C Wurthwein, F Yagil, A Della Porta, GZ Bradmiller-Feld, J Campagnari, C Dishaw, A Dutta, V Flowers, K Sevilla, MF Geffert, P George, C Golf, F Gouskos, L Gran, J Incandela, J Mccoll, N Mullin, SD Richman, J Stuart, D Suarez, I West, C Yoo, J Anderson, D Apresyan, A Bornheim, A Bunn, J Chen, Y Duarte, J Mott, A Newman, HB Pena, C Pierini, M Spiropulu, M Vlimant, JR Xie, S Zhu, RY Andrews, MB Azzolini, V Calamba, A Carlson, B Ferguson, T Paulini, M Russ, J Sun, M Vogel, H Vorobiev, I Cumalat, JP Ford, WT Gaz, A Jensen, F Johnson, A Krohn, M Mulholland, T Nauenberg, U Stenson, K Wagner, SR Alexander, J Chatterjee, A Chaves, J Chu, J Dittmer, S Eggert, N Mirman, N Kaufman, GN Patterson, JR Rinkevicius, A Ryd, A Skinnari, L Soffi, L Sun, W Tan, SM Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Wittich, P Abdullin, S Albrow, M Apollinari, G Banerjee, S Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bolla, G Burkett, K Butler, JN Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gottschalk, E Gray, L Green, D Grunendahl, S Gutsche, O Hanlon, J Hare, D Harris, RM Hasegawa, S Hirschauer, J Hu, Z Jayatilaka, B Jindariani, S Johnson, M Joshi, U Jung, AW Klima, B Kreis, B Kwan, S Lammel, S Linacre, J Lincoln, D Lipton, R Liu, T De Sa, RL Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Merkel, P Mishra, K Mrenna, S Nahn, S Newman-Holmes, C O'Dell, V Pedro, K Prokofyev, O Rakness, G Sexton-Kennedy, E Soha, A Spalding, WJ Spiegel, L Strobbe, N Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vernieri, C Verzocchi, M Vidal, R Weber, HA Whitbeck, A Yang, F Acosta, D Avery, P Bortignon, P Bourilkov, D Carnes, A Carver, M Curry, D Das, S Field, RD Furic, IK Gleyzer, SV Hugon, J Konigsberg, J Korytov, A Low, JF Ma, P Matchev, K Mei, H Milenovic, P Mitselmakher, G Rank, D Rossin, R Shchutska, L Snowball, M Sperka, D Terentyev, N Thomas, L Wang, J Wang, S Yelton, J Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Ackert, A Adams, JR Adams, T Askew, A Bein, S Bochenek, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Khatiwada, A Prosper, H Weinberg, M Baarmand, MM Bhopatkar, V Colafranceschi, S Hohlmann, M Kalakhety, H Noonan, D Roy, T Yumiceva, F Adams, MR Apanasevich, L Berry, D Betts, RR Bucinskaite, I Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Kurt, P O'Brien, C Gonzalez, IDS Silkworth, C Turner, P Varelas, N Wu, Z Zakaria, M Bilki, B Clarida, W Dilsiz, K Durgut, S Gandrajula, RP Haytmyradov, M Khristenko, V Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Ogul, H Onel, Y Ozok, F Penzo, A Snyder, C Tiras, E Wetzel, J Yi, K Anderson, I Barnett, BA Blumenfeld, B Eminizer, N Fehling, D Feng, L Gritsan, AV Maksimovic, P Martin, C Osherson, M Roskes, J Sady, A Sarica, U Swartz, M Xiao, M Xin, Y You, C Baringer, P Bean, A Benelli, G Bruner, C Kenny, RP Majumder, D Malek, M Murray, M Sanders, S Stringer, R Wang, Q Ivanov, A Kaadze, K Khalil, S Makouski, M Maravin, Y Mohammadi, A Saini, LK Skhirtladze, N Toda, S Lange, D Rebassoo, F Wright, D Anelli, C Baden, A Baron, O Belloni, A Calvert, B Eno, SC Ferraioli, C Gomez, JA Hadley, NJ Jabeen, S Kellogg, RG Kolberg, T Kunkle, J Lu, Y Mignerey, AC Shin, YH Skuja, A Tonjes, MB Tonwar, SC Apyan, A Barbieri, R Baty, A Bierwagen, K Brandt, S Busza, W Cali, IA Demiragli, Z Di Matteo, L Ceballos, GG Goncharov, M Gulhan, D Iiyama, Y Innocenti, GM Klute, M Kovalskyi, D Lai, YS Lee, YJ Levin, A Luckey, PD Marini, AC Mcginn, C Mironov, C Narayanan, S Niu, X Paus, C Ralph, D Roland, C Roland, G Salfeld-Nebgen, J Stephans, GSF Sumorok, K Varma, M Velicanu, D Veverka, J Wang, J Wang, TW Wyslouch, B Yang, M Zhukova, V Dahmes, B Evans, A Finkel, A Gude, A Hansen, P Kalafut, S Kao, SC Klapoetke, K Kubota, Y Lesko, Z Mans, J Nourbakhsh, S Ruckstuhl, N Rusack, R Tambe, N Turkewitz, J Acosta, JG Oliveros, S Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Fangmeier, C Suarez, RG Kamalieddin, R Keller, J Knowlton, D Kravchenko, I Meier, F Monroy, J Ratnikov, F Siado, JE Snow, GR Alyari, M Dolen, J George, J Godshalk, A Harrington, C Iashvili, I Kaisen, J Kharchilava, A Kumar, A Rappoccio, S Roozbahani, B Alverson, G Barberis, E Baumgartel, D Chasco, M Hortiangtham, A Massironi, A Morse, DM Nash, D Orimoto, T De Lima, RT Trocino, D Wang, RJ Wood, D Zhang, J Hahn, KA Kubik, A Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Trovato, M Velasco, M Brinkerhoff, A Dev, N Hildreth, M Jessop, C Karmgard, DJ Kellams, N Lannon, K Marinelli, N Meng, F Mueller, C Musienko, Y Planer, M Reinsvold, A Ruchti, R Smith, G Taroni, S Valls, N Wayne, M Wolf, M Woodard, A Antonelli, L Brinson, J Bylsma, B Durkin, LS Flowers, S Hart, A Hill, C Hughes, R Ji, W Kotov, K Ling, TY Liu, B Luo, W Puigh, D Rodenburg, M Winer, BL Wulsin, HW Driga, O Elmer, P Hardenbrook, J Hebda, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Palmer, C Piroue, P Saka, H Stickland, D Tully, C Zuranski, A Malik, S Barnes, VE Benedetti, D Bortoletto, D Gutay, L Jha, MK Jones, M Jung, K Miller, DH Neumeister, N Radburn-Smith, BC Shi, X Shipsey, I Silvers, D Sun, J Svyatkovskiy, A Wang, F Xie, W Xu, L Parashar, N Stupak, J Adair, A Akgun, B Chen, Z Ecklund, KM Geurts, FJM Guilbaud, M Li, W Michlin, B Northup, M Padley, BP Redjimi, R Roberts, J Rorie, J Tu, Z Zabel, J Betchart, B Bodek, A de Barbaro, P Demina, R Eshaq, Y Ferbel, T Galanti, M Garcia-Bellido, A Han, J Harel, A Hindrichs, O Khukhunaishvili, A Petrillo, G Tan, P Verzetti, M Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hughes, E Kaplan, S Elayavalli, RK Lath, A Nash, K Panwalkar, S Park, M Salur, S Schnetzer, S Sheffield, D Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Foerster, M Riley, G Rose, K Spanier, S York, A Bouhali, O Hernandez, AC Celik, A Dalchenko, M De Mattia, M Delgado, A Dildick, S Eusebi, R Gilmore, J Huang, T Kamon, T Krutelyov, V Mueller, R Osipenkov, I Pakhotin, Y Patel, R Perloff, A Rose, A Safonov, A Tatarinov, A Ulmer, KA Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Faulkner, J Kunori, S Lamichhane, K Lee, SW Libeiro, T Undleeb, S Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Janjam, R Johns, W Maguire, C Mao, Y Melo, A Ni, H Sheldon, P Snook, B Tuo, S Velkovska, J Xu, Q Arenton, MW Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Li, H Lin, C Neu, C Sinthuprasith, T Sun, X Wang, Y Wolfe, E Wood, J Xia, F Clarke, C Harr, R Karchin, PE Don, CKK Lamichhane, P Sturdy, J Belknap, DA Carlsmith, D Cepeda, M Dasu, S Dodd, L Duric, S Gomber, B Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Lanaro, A Levine, A Long, K Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ruggles, T Sarangi, T Savin, A Sharma, A Smith, N Smith, WH Taylor, D Woods, N AF Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Asilar, E. Bergauer, T. Brandstetter, J. Brondolin, E. Dragicevic, M. Eroe, J. Flechl, M. Friedl, M. Fruehwirth, R. Ghete, V. M. Hartl, C. Hoermann, N. Hrubec, J. Jeitler, M. Knuenz, V. Koenig, A. Krammer, M. Kraetschmer, I. Liko, D. Matsushita, T. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, H. Schieck, J. Schoefbeck, R. Strauss, J. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Lauwers, J. Luyckx, S. Van De Klundert, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Abu Zeid, S. Blekman, F. D'Hondt, J. Daci, N. De Bruyn, I. Deroover, K. Heracleous, N. Keaveney, J. Lowette, S. Moreels, L. Olbrechts, A. Python, Q. Strom, D. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Van Parijs, I. Barria, P. Brun, H. Caillol, C. Clerbaux, B. De Lentdecker, G. Fasanella, G. Favart, L. Grebenyuk, A. Karapostoli, G. Lenzi, T. Leonard, A. Maerschalk, T. Marinov, A. Pernie, L. Randle-Conde, A. Seva, T. Vander Velde, C. Vanlaer, P. Yonamine, R. Zenoni, F. Zhang, F. Beernaert, K. Benucci, L. Cimmino, A. Crucy, S. Dobur, D. Fagot, A. Garcia, G. Gul, M. Mccartin, J. Rios, A. A. Ocampo Poyraz, D. Ryckbosch, D. Salva, S. Sigamani, M. Tytgat, M. Van Driessche, W. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bondu, O. Brochet, S. Bruno, G. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jafari, A. Jez, P. Komm, M. Lemaitre, V. Mertens, A. Musich, M. Nuttens, C. Perrini, L. Pin, A. Piotrzkowski, K. Popov, A. Quertenmont, L. Selvaggi, M. Marono, M. Vidal Beliy, N. Hammad, G. H. Alda Junior, W. L. Alves, F. L. Alves, G. A. Brito, L. Correa Martins Junior, M. Hamer, M. Hensel, C. Mora Herrera, C. Moraes, A. Pol, M. E. Rebello Teles, P. Belchior Batista Das Chagas, E. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Huertas Guativa, L. M. Malbouisson, H. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Ahuja, S. Bernardes, C. A. De Souza Santos, A. Dogra, S. Fernandez Perez Tomei, T. R. Gregores, E. M. Mercadante, P. G. Moon, C. S. Novaes, S. F. Padula, Sandra S. Romero Abad, D. Ruiz Vargas, J. C. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Glushkov, I. Litov, L. Pavlov, B. Petkov, P. Ahmad, M. Bian, J. G. Chen, G. M. Chen, H. S. Chen, M. Cheng, T. Du, R. Jiang, C. H. Plestina, R. Romeo, F. Shaheen, S. M. Spiezia, A. Tao, J. Wang, C. Wang, Z. Zhang, H. Asawatangtrakuldee, C. Ban, Y. Li, Q. Liu, S. Mao, Y. Qian, S. J. Wang, D. Xu, Z. Avila, C. Cabrera, A. Chaparro Sierra, L. F. Florez, C. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Puljak, I. Cipriano, P. M. Ribeiro Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Micanovic, S. Sudic, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Rykaczewski, H. Bodlak, M. Finger, M. Finger, M., Jr. El-khateeb, E. Elkafrawy, T. Mohamed, A. Salama, E. Calpas, B. Kadastik, M. Murumaa, M. Raidal, M. Tiko, A. Veelken, C. Eerola, P. Pekkanen, J. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Talvitie, J. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Favaro, C. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Machet, M. Malcles, J. Rander, J. Rosowsky, A. Titov, M. Zghiche, A. Antropov, I. Baffioni, S. Beaudette, F. Busson, P. Cadamuro, L. Chapon, E. Charlot, C. Dahms, T. Davignon, O. Filipovic, N. Florent, A. de Cassagnac, R. Granier Lisniak, S. Mastrolorenzo, L. Mine, P. Naranjo, I. N. Nguyen, M. Ochando, C. Ortona, G. Paganini, P. Pigard, P. Regnard, S. Salerno, R. Sauvan, J. B. Sirois, Y. Strebler, T. Yilmaz, Y. Zabi, A. Agram, J. -L. Andrea, J. Aubin, A. Bloch, D. Brom, J. -M. Buttignol, M. Chabert, E. C. Chanon, N. Collard, C. Conte, E. Coubez, X. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Le Bihan, A. -C. Merlin, J. A. Skovpen, K. Van Hove, P. Gadrat, S. Beauceron, S. Bernet, C. Boudoul, G. Bouvier, E. Montoya, C. A. Carrillo Chierici, R. Contardo, D. Courbon, B. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Lagarde, F. Laktineh, I. B. Lethuillier, M. Mirabito, L. Pequegnot, A. L. Perries, S. Alvarez, J. D. Ruiz Sabes, D. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Toriashvili, T. Tsamalaidze, Z. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heister, A. Kiesel, M. K. Klein, K. Lipinski, M. Ostapchuk, A. Preuten, M. Raupach, F. Schael, S. Schulte, J. F. Verlage, T. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Brodski, M. Dietz-Laursonn, E. Duchardt, D. Endres, M. Erdmann, M. Erdweg, S. Esch, T. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Millet, P. Olschewski, M. Padeken, K. Papacz, P. Pook, T. Radziej, M. Reithler, H. Rieger, M. Scheuch, F. Sonnenschein, L. Teyssier, D. Thueer, S. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Kuensken, A. Lingemann, J. Nehrkorn, A. Nowack, A. Nugent, I. M. Pistone, C. Pooth, O. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behnke, O. Behrens, U. Bell, A. J. Borras, K. Burgmeier, A. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dolinska, G. Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Eichhorn, T. Flucke, G. Gallo, E. Garcia, J. Garay Geiser, A. Gizhko, A. Gunnellini, P. Hauk, J. Hempel, M. Jung, H. Kalogeropoulos, A. Karacheban, O. Kasemann, M. Katsas, P. Kieseler, J. Kleinwort, C. Korol, I. Lange, W. Leonard, J. Lipka, K. Lobanov, A. Lohmann, W. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mittag, G. Mnich, J. Mussgiller, A. Naumann-Emme, S. Nayak, A. Ntomari, E. Perrey, H. Pitzl, D. Placakyte, R. Raspereza, A. Roland, B. Sahin, M. O. Saxena, P. Schoerner-Sadenius, T. Schroeder, M. Seitz, C. Spannagel, S. Trippkewitz, K. D. Walsh, R. Wissing, C. Blobel, V. Vignali, M. Centis Draeger, A. R. Erfle, J. Garutti, E. Goebel, K. Gonzalez, D. Goerner, M. Haller, J. Mann, M. Ho Ff Hoeing, R. S. Junkes, A. Klanner, R. Kogler, R. Kovalchuk, N. Lapsien, T. Lenz, T. Marchesini, I. Marconi, D. Meyer, M. Nowatschin, D. Ott, J. Pantaleo, F. Er, T. Pei Ff Perieanu, A. Pietsch, N. Poehlsen, J. Rathjens, D. Sander, C. Scharf, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schwandt, J. Sola, V. Stadie, H. Steinbrueck, G. Tholen, H. Troendle, D. Usai, E. Vanelderen, L. Vanhoefer, A. Vormwald, B. Akbiyik, M. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. Colombo, F. De Boer, W. Descroix, A. Dierlamm, A. Fink, S. Frensch, F. Friese, R. Giffels, M. Gilbert, A. Haitz, D. Hartmann, F. Heindl, S. M. Husemann, U. Katkov, I. Kornmayer, A. Pardo, P. Lobelle Maier, B. Mildner, H. Mozer, M. U. Mueller, T. Mueller, Th. Plagge, M. Quast, G. Rabbertz, K. Roecker, S. Roscher, F. Sieber, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weber, M. Weiler, T. Woehrmann, C. Wolf, R. Anagnostou, G. Daskalakis, G. Geralis, T. Giakoumopoulou, V. A. Kyriakis, A. Loukas, D. Psallidas, A. Topsis-Giotis, I. Agapitos, A. Kesisoglou, S. Panagiotou, A. Saoulidou, N. Tziaferi, E. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Loukas, N. Manthos, N. Papadopoulos, I. Paradas, E. Strologas, J. Bencze, G. Hajdu, C. Hazi, A. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Karancsi, J. Molnar, J. Szillasi, Z. Bartok, M. Makovec, A. Raics, P. Trocsanyi, Z. L. Ujvari, B. Mal, P. Mandal, K. Sahoo, D. K. Sahoo, N. Swain, S. K. Bansal, S. Beri, S. B. Bhatnagar, V. Chawla, R. Gupta, R. Bhawandeep, U. Kalsi, A. K. Kaur, A. Kaur, M. Kumar, R. Mehta, A. Mittal, M. Singh, J. B. Walia, G. Kumar, Ashok Bhardwaj, A. Choudhary, B. C. Garg, R. B. Kumar, A. Malhotra, S. Naimuddin, M. Nishu, N. Ranjan, K. Sharma, R. Sharma, V. Bhattacharya, S. Chatterjee, K. Dey, S. Dutta, S. Jain, Sa. Majumdar, N. Modak, A. Mondal, K. Mukherjee, S. Mukhopadhyay, S. Roy, A. Roy, D. Chowdhury, S. Roy Sarkar, S. Sharan, M. Abdulsalam, A. Chudasama, R. Dutta, D. Jha, V. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Banerjee, S. Bhowmik, S. Chatterjee, R. M. Dewanjee, R. K. Dugad, S. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Mahakud, B. Maity, M. Majumder, G. Mazumdar, K. Mitra, S. Mohanty, G. B. Parida, B. Sarkar, T. Sur, N. Sutar, B. Wickramage, N. Chauhan, S. Dube, S. Kothekar, K. Sharma, S. Bakhshiansohi, H. Behnamian, H. Etesami, S. M. Fahim, A. Goldouzian, R. Khakzad, M. Najafabadi, M. Mohammadi Naseri, M. Mehdiabadi, S. Paktinat Hosseinabadi, F. Rezaei Safarzadeh, B. Zeinali, M. Felcini, M. Grunewald, M. Abbrescia, M. Calabria, C. Caputo, C. Colaleo, A. Creanza, D. Cristella, L. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Miniello, G. My, S. Nuzzo, S. Pompili, A. Pugliese, G. Radogna, R. Ranieri, A. Selvaggi, G. Silvestris, L. Venditti, R. Verwilligen, P. Abbiendi, G. Battilana, C. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, F. R. Chhibra, S. S. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Montanari, A. Navarria, F. L. Perrotta, A. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Cappello, G. Chiorboli, M. Costa, S. Di Mattia, A. Giordano, F. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Viliani, L. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Primavera, F. Calvelli, V. Ferro, F. Lo Vetere, M. Monge, M. R. Robutti, E. Tosi, S. Brianza, L. Dinardo, M. E. Fiorendi, S. Gennai, S. Gerosa, R. Ghezzi, A. Govoni, P. Malvezzi, S. Manzoni, R. A. Marzocchi, B. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. Di Guida, S. Esposito, M. Fabozzi, F. Iorio, A. O. M. Lanza, G. Lista, L. Meola, S. Merola, M. Paolucci, P. Sciacca, C. Thyssen, F. Azzi, P. Bacchetta, N. Benato, L. Bisello, D. Boletti, A. Carlin, R. Checchia, P. Dall'Osso, M. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Margoni, M. Meneguzzo, A. T. Montecassiano, F. Passaseo, M. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Ventura, S. Zanetti, M. Zotto, P. Zucchetta, A. Zumerle, G. Braghieri, A. Magnani, A. Montagna, P. Ratti, S. P. Re, V. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Solestizi, L. Alunni Biasini, M. Bilei, G. M. Ciangottini, D. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Saha, A. Santocchia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Castaldi, R. Ciocci, M. A. Dell'Orso, R. Donato, S. Fedi, G. Foa, L. Giassi, A. Grippo, M. T. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. D'imperio, G. Del Re, D. Diemoz, M. Gelli, S. Jorda, C. Longo, E. Margaroli, F. Meridiani, P. Organtini, G. Paramatti, R. Preiato, F. Rahatlou, S. Rovelli, C. Santanastasio, F. Traczyk, P. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Costa, M. Covarelli, R. Degano, A. Demaria, N. Finco, L. Kiani, B. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Monteil, E. Obertino, M. M. Pacher, L. Pastrone, N. Pelliccioni, M. Angioni, G. L. Pinna Ravera, F. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Schizzi, A. Zanetti, A. Kropivnitskaya, A. Nam, S. K. Kim, D. H. Kim, G. N. Kim, M. S. Kong, D. J. Lee, S. Oh, Y. D. Sakharov, A. Son, D. C. Cifuentes, J. A. Brochero Kim, H. Kim, T. J. Song, S. Choi, S. Go, Y. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, Y. Lee, B. Lee, K. Lee, K. S. Lee, S. Park, S. K. Roh, Y. Yoo, H. D. Choi, M. Kim, H. Kim, J. H. Lee, J. S. H. Park, I. C. Ryu, G. Ryu, M. S. Choi, Y. Goh, J. Kim, D. Kwon, E. Lee, J. Yu, I. Dudenas, V. Juodagalvis, A. Vaitkus, J. Ahmed, I. Ibrahim, Z. A. Komaragiri, J. R. Ali, M. A. B. Md Idris, F. Mohamad Abdullah, W. A. T. Wan Yusli, M. N. Casimiro Linares, E. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-De La Cruz, I. Hernandez-Almada, A. Lopez-Fernandez, R. Sanchez-Hernandez, A. Carrillo Moreno, S. Vazquez Valencia, F. Pedraza, I. Salazar Ibarguen, H. A. Morelos Pineda, A. Krofcheck, D. Butler, P. H. Ahmad, A. Ahmad, M. Hassan, Q. Hoorani, H. R. Khan, W. A. Khurshid, T. Shoaib, M. Bialkowska, H. Bluj, M. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Zalewski, P. Brona, G. Bunkowski, K. Byszuk, A. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Olszewski, M. Pozniak, K. Walczak, M. Bargassa, P. Beirao Da Cruz E Silva, C. Di Francesco, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Leonardo, N. Lloret Iglesias, L. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Toldaiev, O. Vadruccio, D. Varela, J. Vischia, P. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Shulha, S. Skatchkov, N. Smirnov, V. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Kuznetsova, E. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Karneyeu, A. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Gavrilov, V. Lychkovskaya, N. Popov, V. Pozdnyakov, I. Safronov, G. Spiridonov, A. Vlasov, E. Zhokin, A. Bylinkin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Baskakov, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Myagkov, I. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Milosevic, J. Rekovic, V. Alcaraz Maestre, J. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Escalante Del Valle, A. Fernandez Bedoya, C. Fernandez Ramos, J. P. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Navarro De Martino, E. Perez-Calero Yzquierdo, A. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Albajar, C. de Troconiz, J. F. Missiroli, M. Moran, D. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Palencia Cortezon, E. Vizan Garcia, J. M. Cabrillo, I. J. Calderon, A. Castineiras De Saa, J. R. De Castro Manzano, P. Fernandez, M. Garcia-Ferrero, J. Gomez, G. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Trevisani, N. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benaglia, A. Bendavid, J. Benhabib, L. Benitez, J. F. Berruti, G. M. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Castello, R. Cerminara, G. D'Alfonso, M. d'Enterria, D. Dabrowski, A. Daponte, V. David, A. De Gruttola, M. De Guio, F. De Roeck, A. De Visscher, S. Di Marco, E. Dobson, M. Dordevic, M. Dorney, B. du Pree, T. Duggan, D. Duenser, M. Dupont, N. Elliott-Peisert, A. Franzoni, G. Fulcher, J. Funk, W. Gigi, D. Gill, K. Giordano, D. Girone, M. Glege, F. Guida, R. Gundacker, S. Guthoff, M. Hammer, J. Harris, P. Hegeman, J. Innocente, V. Janot, P. Kirschenmann, H. Kortelainen, M. J. Kousouris, K. Krajczar, K. Lecoq, P. Lourenco, C. Lucchini, M. T. Magini, N. Malgeri, L. Mannelli, M. Martelli, A. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moortgat, F. Morovic, S. Mulders, M. Nemallapudi, M. V. Neugebauer, H. Orfanelli, S. Orsini, L. Pape, L. Perez, E. Peruzzi, M. Petrilli, A. Petrucciani, G. Peiffer, T. Piparo, D. Racz, A. Reis, T. Rolandi, G. Rovere, M. Ruan, M. Sakulin, H. Schaefer, C. Schwick, C. Seidel, M. Sharma, A. Silva, P. Simon, M. Sphicas, P. Steggemann, J. Stieger, B. Stoye, M. Takahashi, Y. Treille, D. Triossi, A. Tsirou, A. Veres, G. I. Wardle, N. Woehri, H. K. Zagozdzinska, A. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Horisberger, R. Ingram, Q. Kaestli, H. C. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Casal, B. Dissertori, G. Dittmar, M. Donega, M. Eller, P. Grab, C. Heidegger, C. Hits, D. Hoss, J. Kasieczka, G. Lustermann, W. Mangano, B. Marionneau, M. del Arbol, P. Martinez Ruiz Masciovecchio, M. Meister, D. Micheli, F. Musella, P. Nessi-Tedaldi, F. Pandolfi, F. Pata, J. Pauss, F. Perrozzi, L. Quittnat, M. Rossini, M. Starodumov, A. Takahashi, M. Tavolaro, V. R. Theofilatos, K. Wallny, R. Aarrestad, T. K. Amsler, C. Caminada, L. Canelli, M. F. Chiochia, V. De Cosa, A. Galloni, C. Hinzmann, A. Hreus, T. Kilminster, B. Lange, C. Ngadiuba, J. Pinna, D. Robmann, P. Ronga, F. J. Salerno, D. Yang, Y. Cardaci, M. Chen, K. H. Doan, T. H. Jain, Sh. Khurana, R. Konyushikhin, M. Kuo, C. M. Lin, W. Lu, Y. J. Yu, S. S. Kumar, Arun Bartek, R. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Chen, P. H. Dietz, C. Fiori, F. Grundler, U. Hou, W. -S. Hsiung, Y. Liu, Y. F. Lu, R. -S. Moya, M. Minano Petrakou, E. Tsai, J. F. Tzeng, Y. M. Asavapibhop, B. Kovitanggoon, K. Singh, G. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Demiroglu, Z. S. Dozen, C. Eskut, E. Girgis, S. Gokbulut, G. Guler, Y. Gurpinar, E. Hos, I. Kangal, E. E. Onengut, G. Ozdemir, K. Ozturk, S. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Zorbilmez, C. Akin, I. V. Bilin, B. Bilmis, S. Isildak, B. Karapinar, G. Yalvac, M. Zeyrek, M. Gulmez, E. Kaya, M. Kaya, O. Yetkin, E. A. Yetkin, T. Cakir, A. Cankocak, K. Sen, S. Vardarli, F. I. Grynyov, B. Levchuk, L. Sorokin, P. Aggleton, R. Ball, F. Beck, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Jacob, J. Kreczko, L. Lucas, C. Meng, Z. Newbold, D. M. Paramesvaran, S. Poll, A. Sakuma, T. El Nasr-storey, S. Seif Senkin, S. Smith, D. Smith, V. J. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Calligaris, L. Cieri, D. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Shepherd-Themistocleous, C. H. Thea, A. Tomalin, I. R. Williams, T. Worm, S. D. Baber, M. Bainbridge, R. Buchmuller, O. Bundock, A. Burton, D. Casasso, S. Citron, M. Colling, D. Corpe, L. Cripps, N. Dauncey, P. Davies, G. De Wit, A. Della Negra, M. Dunne, P. Elwood, A. Ferguson, W. Futyan, D. Hall, G. Iles, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Malik, S. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Raymond, D. M. Richards, A. Rose, A. Seez, C. Tapper, A. Uchida, K. Acosta, M. Vazquez Virdee, T. Zenz, S. C. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Borzou, A. Call, K. Dittmann, J. Hatakeyama, K. Liu, H. Pastika, N. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Arcaro, D. Avetisyan, A. Bose, T. Fantasia, C. Gastler, D. Lawson, P. Rankin, D. Richardson, C. Rohlf, J. St John, J. Sulak, L. Zou, D. Alimena, J. Berry, E. Bhattacharya, S. Cutts, D. Dhingra, N. Ferapontov, A. Garabedian, A. Hakala, J. Heintz, U. Laird, E. Landsberg, G. Mao, Z. Narain, M. Piperov, S. Sagir, S. Syarif, R. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Ko, W. Lander, R. Mulhearn, M. Pellett, D. Pilot, J. Ricci-Tam, F. Shalhout, S. Smith, J. Squires, M. Stolp, D. Tripathi, M. Wilbur, S. Yohay, R. Cousins, R. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Saltzberg, D. Takasugi, E. Valuev, V. Weber, M. Burt, K. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Paneva, M. Ivova Jandir, P. Kennedy, E. Lacroix, F. Long, O. R. Luthra, A. Malberti, M. Negrete, M. Olmedo Shrinivas, A. Wei, H. Wimpenny, S. Yates, B. R. Branson, J. G. Cerati, G. B. Cittolin, S. D'Agnolo, R. T. Derdzinski, M. Holzner, A. Kelley, R. Klein, D. Letts, J. Macneill, I. Olivito, D. Padhi, S. Pieri, M. Sani, M. Sharma, V. Simon, S. Tadel, M. Vartak, A. Wasserbaech, S. Welke, C. Wuerthwein, F. Yagil, A. Della Porta, G. Zevi Bradmiller-Feld, J. Campagnari, C. Dishaw, A. Dutta, V. Flowers, K. Sevilla, M. Franco Geffert, P. George, C. Golf, F. Gouskos, L. Gran, J. Incandela, J. Mccoll, N. Mullin, S. D. Richman, J. Stuart, D. Suarez, I. West, C. Yoo, J. Anderson, D. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Duarte, J. Mott, A. Newman, H. B. Pena, C. Pierini, M. Spiropulu, M. Vlimant, J. R. Xie, S. Zhu, R. Y. Andrews, M. B. Azzolini, V. Calamba, A. Carlson, B. Ferguson, T. Paulini, M. Russ, J. Sun, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Ford, W. T. Gaz, A. Jensen, F. Johnson, A. Krohn, M. Mulholland, T. Nauenberg, U. Stenson, K. Wagner, S. R. Alexander, J. Chatterjee, A. Chaves, J. Chu, J. Dittmer, S. Eggert, N. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Rinkevicius, A. Ryd, A. Skinnari, L. Soffi, L. Sun, W. Tan, S. M. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Wittich, P. Abdullin, S. Albrow, M. Apollinari, G. Banerjee, S. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bolla, G. Burkett, K. Butler, J. N. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gottschalk, E. Gray, L. Green, D. Gruenendahl, S. Gutsche, O. Hanlon, J. Hare, D. Harris, R. M. Hasegawa, S. Hirschauer, J. Hu, Z. Jayatilaka, B. Jindariani, S. Johnson, M. Joshi, U. Jung, A. W. Klima, B. Kreis, B. Kwan, S. Lammel, S. Linacre, J. Lincoln, D. Lipton, R. Liu, T. De Sa, R. Lopes Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Merkel, P. Mishra, K. Mrenna, S. Nahn, S. Newman-Holmes, C. O'Dell, V. Pedro, K. Prokofyev, O. Rakness, G. Sexton-Kennedy, E. Soha, A. Spalding, W. J. Spiegel, L. Strobbe, N. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vernieri, C. Verzocchi, M. Vidal, R. Weber, H. A. Whitbeck, A. Yang, F. Acosta, D. Avery, P. Bortignon, P. Bourilkov, D. Carnes, A. Carver, M. Curry, D. Das, S. Field, R. D. Furic, I. K. Gleyzer, S. V. Hugon, J. Konigsberg, J. Korytov, A. Low, J. F. Ma, P. Matchev, K. Mei, H. Milenovic, P. Mitselmakher, G. Rank, D. Rossin, R. Shchutska, L. Snowball, M. Sperka, D. Terentyev, N. Thomas, L. Wang, J. Wang, S. Yelton, J. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Ackert, A. Adams, J. R. Adams, T. Askew, A. Bein, S. Bochenek, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Khatiwada, A. Prosper, H. Weinberg, M. Baarmand, M. M. Bhopatkar, V. Colafranceschi, S. Hohlmann, M. Kalakhety, H. Noonan, D. Roy, T. Yumiceva, F. Adams, M. R. Apanasevich, L. Berry, D. Betts, R. R. Bucinskaite, I. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Kurt, P. O'Brien, C. Gonzalez, I. D. Sandoval Silkworth, C. Turner, P. Varelas, N. Wu, Z. Zakaria, M. Bilki, B. Clarida, W. Dilsiz, K. Durgut, S. Gandrajula, R. P. Haytmyradov, M. Khristenko, V. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Ogul, H. Onel, Y. Ozok, F. Penzo, A. Snyder, C. Tiras, E. Wetzel, J. Yi, K. Anderson, I. Barnett, B. A. Blumenfeld, B. Eminizer, N. Fehling, D. Feng, L. Gritsan, A. V. Maksimovic, P. Martin, C. Osherson, M. Roskes, J. Sady, A. Sarica, U. Swartz, M. Xiao, M. Xin, Y. You, C. Baringer, P. Bean, A. Benelli, G. Bruner, C. Kenny, R. P., III Majumder, D. Malek, M. Murray, M. Sanders, S. Stringer, R. Wang, Q. Ivanov, A. Kaadze, K. Khalil, S. Makouski, M. Maravin, Y. Mohammadi, A. Saini, L. K. Skhirtladze, N. Toda, S. Lange, D. Rebassoo, F. Wright, D. Anelli, C. Baden, A. Baron, O. Belloni, A. Calvert, B. Eno, S. C. Ferraioli, C. Gomez, J. A. Hadley, N. J. Jabeen, S. Kellogg, R. G. Kolberg, T. Kunkle, J. Lu, Y. Mignerey, A. C. Shin, Y. H. Skuja, A. Tonjes, M. B. Tonwar, S. C. Apyan, A. Barbieri, R. Baty, A. Bierwagen, K. Brandt, S. Busza, W. Cali, I. A. Demiragli, Z. Di Matteo, L. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Iiyama, Y. Innocenti, G. M. Klute, M. Kovalskyi, D. Lai, Y. S. Lee, Y. -J. Levin, A. Luckey, P. D. Marini, A. C. Mcginn, C. Mironov, C. Narayanan, S. Niu, X. Paus, C. Ralph, D. Roland, C. Roland, G. Salfeld-Nebgen, J. Stephans, G. S. F. Sumorok, K. Varma, M. Velicanu, D. Veverka, J. Wang, J. Wang, T. W. Wyslouch, B. Yang, M. Zhukova, V. Dahmes, B. Evans, A. Finkel, A. Gude, A. Hansen, P. Kalafut, S. Kao, S. C. Klapoetke, K. Kubota, Y. Lesko, Z. Mans, J. Nourbakhsh, S. Ruckstuhl, N. Rusack, R. Tambe, N. Turkewitz, J. Acosta, J. G. Oliveros, S. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Fangmeier, C. Suarez, R. Gonzalez Kamalieddin, R. Keller, J. Knowlton, D. Kravchenko, I. Meier, F. Monroy, J. Ratnikov, F. Siado, J. E. Snow, G. R. Alyari, M. Dolen, J. George, J. Godshalk, A. Harrington, C. Iashvili, I. Kaisen, J. Kharchilava, A. Kumar, A. Rappoccio, S. Roozbahani, B. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Hortiangtham, A. Massironi, A. Morse, D. M. Nash, D. Orimoto, T. De Lima, R. Teixeira Trocino, D. Wang, R. -J. Wood, D. Zhang, J. Hahn, K. A. Kubik, A. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Trovato, M. Velasco, M. Brinkerhoff, A. Dev, N. Hildreth, M. Jessop, C. Karmgard, D. J. Kellams, N. Lannon, K. Marinelli, N. Meng, F. Mueller, C. Musienko, Y. Planer, M. Reinsvold, A. Ruchti, R. Smith, G. Taroni, S. Valls, N. Wayne, M. Wolf, M. Woodard, A. Antonelli, L. Brinson, J. Bylsma, B. Durkin, L. S. Flowers, S. Hart, A. Hill, C. Hughes, R. Ji, W. Kotov, K. Ling, T. Y. Liu, B. Luo, W. Puigh, D. Rodenburg, M. Winer, B. L. Wulsin, H. W. Driga, O. Elmer, P. Hardenbrook, J. Hebda, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Palmer, C. Piroue, P. Saka, H. Stickland, D. Tully, C. Zuranski, A. Malik, S. Barnes, V. E. Benedetti, D. Bortoletto, D. Gutay, L. Jha, M. K. Jones, M. Jung, K. Miller, D. H. Neumeister, N. Radburn-Smith, B. C. Shi, X. Shipsey, I. Silvers, D. Sun, J. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Parashar, N. Stupak, J. Adair, A. Akgun, B. Chen, Z. Ecklund, K. M. Geurts, F. J. M. Guilbaud, M. Li, W. Michlin, B. Northup, M. Padley, B. P. Redjimi, R. Roberts, J. Rorie, J. Tu, Z. Zabel, J. Betchart, B. Bodek, A. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Galanti, M. Garcia-Bellido, A. Han, J. Harel, A. Hindrichs, O. Khukhunaishvili, A. Petrillo, G. Tan, P. Verzetti, M. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hughes, E. Kaplan, S. Elayavalli, R. Kunnawalkam Lath, A. Nash, K. Panwalkar, S. Park, M. Salur, S. Schnetzer, S. Sheffield, D. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Foerster, M. Riley, G. Rose, K. Spanier, S. York, A. Bouhali, O. Hernandez, A. Castaneda Celik, A. Dalchenko, M. De Mattia, M. Delgado, A. Dildick, S. Eusebi, R. Gilmore, J. Huang, T. Kamon, T. Krutelyov, V. Mueller, R. Osipenkov, I. Pakhotin, Y. Patel, R. Perloff, A. Rose, A. Safonov, A. Tatarinov, A. Ulmer, K. A. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Faulkner, J. Kunori, S. Lamichhane, K. Lee, S. W. Libeiro, T. Undleeb, S. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Janjam, R. Johns, W. Maguire, C. Mao, Y. Melo, A. Ni, H. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Xu, Q. Arenton, M. W. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Li, H. Lin, C. Neu, C. Sinthuprasith, T. Sun, X. Wang, Y. Wolfe, E. Wood, J. Xia, F. Clarke, C. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sturdy, J. Belknap, D. A. Carlsmith, D. Cepeda, M. Dasu, S. Dodd, L. Duric, S. Gomber, B. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Lanaro, A. Levine, A. Long, K. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ruggles, T. Sarangi, T. Savin, A. Sharma, A. Smith, N. Smith, W. H. Taylor, D. Woods, N. CA CMS Collaboration TI Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at root s=7 and 8 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron scattering; Higgs physics ID ATLAS DETECTOR; MASSLESS PARTICLES; BROKEN SYMMETRIES; LHC AB Integrated fiducial cross sections for the production of four leptons via the H -> 4l decays (l = e, mu) are measured in pp collisions at root s = 7 and 8TeV. Measurements are performed with data corresponding to integrated luminosities of 5.1 fb(-1) at 7TeV, and 19.7 fb(-1) at 8 TeV, collected with the CMS experiment at the LHC. Differential cross sections are measured using the 8 TeV data, and are determined as functions of the transverse momentum and rapidity of the four-lepton system, accompanying jet multiplicity, transverse momentum of the leading jet, and difference in rapidity between the Higgs boson candidate and the leading jet. A measurement of the Z -> 4l cross section, and its ratio to the H -> 4l cross section is also performed. All cross sections are measured within a fiducial phase space defined by the requirements on lepton kinematics and event topology. The integrated H -> 4l fiducial cross section is measured to be 0.56-(+0.67)(0.44) (stat) (+0.21)(-0.06) (syst) fb at 7 TeV, and 1.11(-0.35)(+ 0.41) (stat) (+ 0.14)(-0.10) (syst) fb at 8 TeV. The measurements are found to be compatible with theoretical calculations based on the standard model. C1 [Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Eroe, J.; Flechl, M.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hartl, C.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Knuenz, V.; Koenig, A.; Kraetschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schoefbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.] Vrije Univ Brussel, Brussels, Belgium. [Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Leonard, A.; Maerschalk, T.; Marinov, A.; Pernie, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Fasanella, D.] Univ Libre Bruxelles, Brussels, Belgium. [Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Rios, A. A. Ocampo; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal] Catholic Univ Louvain, Louvain La Neuve, Belgium. [Beliy, N.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alda Junior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Ahuja, S.; Dogra, S.; Fernandez Perez Tomei, T. R.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; De Souza Santos, A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Ahmad, A.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Zhang, F.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez Moreno, B.; Sanabria, J. C.; Gomez, G.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Puljak, I.; Cipriano, P. M. Ribeiro] Univ Split, Fac Elect Engn Mech Engn & Naval Architecture, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Fac Sci, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.] Univ Cyprus, CY-1678 Nicosia, Cyprus. [Bodlak, M.; Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.] NICPB, Tallinn, Estonia. [Eerola, P.; Pekkanen, J.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Talvitie, J.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Antropov, I.; Baffioni, S.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Lisniak, S.; Mastrolorenzo, L.; Mine, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J. -M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A. -C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.] Univ Strasbourg, Univ Haute Alsace Mulhouse, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Carrillo Moreno, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Toriashvili, T.] Georgian Tech Univ, Tbilisi, Rep of Georgia. [Toriashvili, T.; Tsamalaidze, Z.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thueer, S.; Borras, K.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Kuensken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. O.; Saxena, P.; Schoerner-Sadenius, T.; Schroeder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.] DESY, Notkestr 85, Hamburg, Germany. [Gallo, E.; Blobel, V.; Vignali, M. Centis; Draeger, A. R.; Garutti, E.; Goebel, K.; Gonzalez, D.; Goerner, M.; Haller, J.; Hoeing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Er, T. Pei Ff; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Peiffer, T.] Univ Hamburg, Hamburg, Germany. [Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Pardo, P. Lobelle; Maier, B.; Mildner, H.; Mozer, M. U.; Mueller, T.; Mueller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Roecker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Woehrmann, C.; Wolf, R.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.] NCSR Demokritos, Inst Nucl & Particle Phys, Aghia Paraskevi, Greece. [Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Sphicas, P.] Univ Athens, Athens 11528, Greece. [Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] Wigner Res Ctr Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Bartok, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.] Univ Delhi, Delhi 110007, India. [Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Chowdhury, S. Roy; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.] Tata Inst Fundamental Res, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India. [Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.] Indian Inst Sci Educ & Res, Pune, Maharashtra, India. [Pekkanen, J.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Hosseinabadi, F. Rezaei; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Felcini, M.; Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Calabria, C.; Caputo, C.; Cristella, L.; De Palma, M.; Miniello, G.; Nuzzo, S.; Pompili, A.; Radogna, R.; Selvaggi, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Tosi, M.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.; Viliani, L.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Piccolo, D.; Primavera, F.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, Via Dodecaneso 33, I-16146 Genoa, Italy. [Calvelli, V.; Lo Vetere, M.; Monge, M. R.; Tosi, S.] Univ Genoa, Genoa, Italy. [Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, Via Celoria 16, I-20133 Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Dall'Osso, M.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. Univ Trento, Trento, Trento, Italy. [Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Montagna, P.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, Via Palestro 3, I-27100 Pavia, Italy. [Solestizi, L. Alunni; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Solestizi, L. Alunni; Biasini, M.; Ciangottini, D.; Fano, L.; Lariccia, P.; Mantovani, G.; Santocchia, A.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foa, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Donato, S.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Di Marco, E.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; D'imperio, G.; Del Re, D.; Gelli, S.; Longo, E.; Margaroli, F.; Organtini, G.; Preiato, F.; Rahatlou, S.; Santanastasio, F.; Traczyk, P.; Di Marco, E.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Costa, M.; Covarelli, R.; Degano, A.; Finco, L.; Kiani, B.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Angioni, G. L. Pinna; Ravera, F.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Ruspa, M.] Univ Piemonte Orientale, Novara, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kropivnitskaya, A.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kamon, T.] Kyungpook Natl Univ, Daegu, South Korea. [Cifuentes, J. A. Brochero; Kim, H.; Kim, T. J.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Lee, S.; Kim, H.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Yoo, H. D.] Seoul Natl Univ, Seoul, South Korea. [Kim, H.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Dudenas, V.; Juodagalvis, A.; Vaitkus, J.] Vilnius Univ, Vilnius, Lithuania. [Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Ali, M. A. B. Md; Idris, F. Mohamad; Abdullah, W. A. T. Wan; Yusli, M. N.] Univ Malaya, Natl Ctr Particle Phys, Kuala Lumpur, Malaysia. [Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Montoya, C. A. Carrillo; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Pedraza, I.; Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Morelos Pineda, A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmad, A.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pozniak, K.; Walczak, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bargassa, P.; Beirao Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Finger, M.; Finger, M., Jr.; Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Santoro, A.; Matveev, V.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Starodumov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Matveev, V.; Bylinkin, A.; Azarkin, M.; Dremin, I.; Leonidov, A.] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.] PN Lebedev Phys Inst, Leninsky Prospect 53, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Fac Phys, POB 550, Belgrade 11001, Serbia. [Adzic, P.; Milosevic, J.; Rekovic, V.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Perez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; de Troconiz, J. F.; Missiroli, M.; Moran, D.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Cabrillo, I. J.; Calderon, A.; Castineiras De Saa, J. R.; De Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Merlin, J. A.; Pantaleo, F.; Hartmann, F.; Kornmayer, A.; Szillasi, Z.; Mohanty, A. K.; Silvestris, L.; Battilana, C.; Viliani, L.; Primavera, F.; Manzoni, R. A.; Marzocchi, B.; Di Guida, S.; Meola, S.; Paolucci, P.; Azzi, P.; Dall'Osso, M.; Pazzini, J.; Zucchetta, A.; Ciangottini, D.; Azzurri, P.; Donato, S.; D'imperio, G.; Del Re, D.; Traczyk, P.; Arcidiacono, R.; Finco, L.; Candelise, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Duenser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenco, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Woehri, H. K.; Zagozdzinska, A.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donega, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; del Arbol, P. Martinez Ruiz; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Liu, Y. F.; Lu, R. -S.; Moya, M. Minano; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Fac Sci, Dept Phys, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.] Bogazici Univ, Istanbul, Turkey. [Cakir, A.; Cankocak, K.; Sen, S.; Vardarli, F. I.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Grynyov, B.] Natl Acad Sci Ukraine, Inst Scintillat Mat, Kharkov, Ukraine. [Levchenko, P.; Sorokin, P.] Ctr Nat Sci, Kharkov Phys & Technol Inst, Kharkov, Ukraine. [Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; El Nasr-storey, S. Seif; Senkin, S.; Smith, D.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Acosta, M. Vazquez; Virdee, T.; Zenz, S. C.] Univ London Imperial Coll Sci Technol & Med, London, England. [Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St John, J.; Sulak, L.; Zou, D.; Bose, S.] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Berry, E.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.] Brown Univ, Providence, RI 02912 USA. [Chauhan, S.; Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Paneva, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wuerthwein, F.; Yagil, A.; Della Porta, G. Zevi] Univ Calif San Diego, La Jolla, CA 92093 USA. [Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dubinin, M.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Banerjee, S.; Abdullin, S.; Albrow, M.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Gruenendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; De Sa, R. Lopes; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.] Univ Florida, Gainesville, FL USA. [Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Gonzalez, I. D. Sandoval; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.] Univ Illinois, Chicago, IL USA. [Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Cerminara, G.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.] Univ Kansas, Lawrence, KS 66045 USA. [Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.] Kansas State Univ, Manhattan, KS 66506 USA. [Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Wang, J.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y. -J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.] MIT, Cambridge, MA USA. [Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Oliveros, S.] Univ Mississippi, Oxford, England. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Suarez, R. Gonzalez; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Kumar, A.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Rappoccio, S.; Roozbahani, B.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; De Lima, R. Teixeira; Trocino, D.; Wang, R. -J.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.] Northwestern Univ, Evanston, IL USA. [Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.] Ohio State Univ, Columbus, OH 43210 USA. [Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroue, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Malik, S.] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.; Stupak, J.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.] Univ Rochester, Rochester, NY 14627 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.] Univ Tennessee, Knoxville, TN USA. [Rose, A.; Bouhali, O.; Hernandez, A. Castaneda; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.] Vanderbilt Univ, 221 Kirkland Hall, Nashville, TN 37235 USA. [Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.] Univ Virginia, Charlottesville, VA USA. [Clarke, C.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.] Wayne State Univ, Detroit, MI USA. [Sharma, A.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.] Univ Wisconsin, Madison, WI USA. [Fruehwirth, R.; Jeitler, M.; Krammer, M.; Schieck, J.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Moon, C. S.] CNRS, IN2P3, Paris, France. [El-khateeb, E.; Elkafrawy, T.; Salama, E.] Ain Shams Univ, Cairo, Egypt. [Mohamed, A.] Zewail City Sci & Technol, Zewail, Egypt. [Salama, E.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Choudhury, S.] Indian Inst Sci Educ & Res, Bhopal, India. [Hempel, M.; Karacheban, O.; Lohmann, W.; Marfin, I.; Abdulsalam, A.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Bartok, M.] Wigner Res Ctr Phys, Budapest, Hungary. [Bhowmik, S.; Maity, M.; Sarkar, T.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Univ Tehran, Dept Engn Sci, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Androsov, K.; Ciocci, M. A.; Grippo, M. T.] Univ Siena, Via Laterina 8, I-53100 Siena, Italy. [Ali, M. A. B. Md] Int Islamic Univ Malaysia, Kuala Lumpur, Malaysia. [Idris, F. Mohamad] Agensi Nuklear Malaysia, MOSTI, Kajang, Malaysia. [Heredia-De La Cruz, I.] Consejo Nacl Ciencia & Technol, Mexico City, DF, Mexico. [Byszuk, A.; Pozniak, K.; Zagozdzinska, A.] Warsaw Univ Technol, Inst Elect Syst, Warsaw, Poland. [Kim, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Orfanelli, S.] Natl Tech Univ Athens, Athens, Greece. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Kangal, E. E.] Mersin Univ, Mersin, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Ozdemir, K.] Piri Reis Univ, Istanbul, Turkey. [Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.] Marmara Univ, Istanbul, Turkey. [Kaya, O.] Kafkas Univ, Kars, Turkey. [Yetkin, E. A.] Mimar Sinan Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Sen, S.] Hacettepe Univ, Ankara, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Acosta, M. Vazquez] Inst Astrofis Canarias, E-38200 San Cristobal la Laguna, Spain. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Bilki, B.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Bouhali, O.; Hernandez, A. Castaneda] Texas A&M Univ Qatar, Doha, Qatar. RP Khachatryan, V (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Seixas, Joao/F-5441-2013; Verwilligen, Piet/M-2968-2014; Sznajder, Andre/L-1621-2016; Stahl, Achim/E-8846-2011; Da Silveira, Gustavo Gil/N-7279-2014; Mora Herrera, Maria Clemencia/L-3893-2016; Mundim, Luiz/A-1291-2012; Colafranceschi, Stefano/M-1807-2016; Konecki, Marcin/G-4164-2015; Vogel, Helmut/N-8882-2014; Benussi, Luigi/O-9684-2014; Andreev, Vladimir/M-8665-2015; Dubinin, Mikhail/I-3942-2016; Lokhtin, Igor/D-7004-2012; Tinoco Mendes, Andre David/D-4314-2011; Varela, Joao/K-4829-2016; Della Ricca, Giuseppe/B-6826-2013; Dudko, Lev/D-7127-2012; Manganote, Edmilson/K-8251-2013; Azarkin, Maxim/N-2578-2015; VARDARLI, Fuat Ilkehan/B-6360-2013; Chinellato, Jose Augusto/I-7972-2012; Tomei, Thiago/E-7091-2012; Novaes, Sergio/D-3532-2012; Paulini, Manfred/N-7794-2014; Smirnov, Vitaly/B-5001-2017; Moraes, Arthur/F-6478-2010; Ogul, Hasan/S-7951-2016; Dremin, Igor/K-8053-2015; ciocci, maria agnese /I-2153-2015; Kirakosyan, Martin/N-2701-2015; Puljak, Ivica/D-8917-2017; TUVE', Cristina/P-3933-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Calderon, Alicia/K-3658-2014; Goh, Junghwan/Q-3720-2016; Flix, Josep/G-5414-2012; Nguyen, Federico/Q-8994-2016; Ruiz, Alberto/E-4473-2011; Petrushanko, Sergey/D-6880-2012; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Leonidov, Andrey/M-4440-2013 OI Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Stahl, Achim/0000-0002-8369-7506; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Mundim, Luiz/0000-0001-9964-7805; Konecki, Marcin/0000-0001-9482-4841; Vogel, Helmut/0000-0002-6109-3023; Benussi, Luigi/0000-0002-2363-8889; Dubinin, Mikhail/0000-0002-7766-7175; Tinoco Mendes, Andre David/0000-0001-5854-7699; Varela, Joao/0000-0003-2613-3146; Della Ricca, Giuseppe/0000-0003-2831-6982; Dudko, Lev/0000-0002-4462-3192; Chinellato, Jose Augusto/0000-0002-3240-6270; Tomei, Thiago/0000-0002-1809-5226; Novaes, Sergio/0000-0003-0471-8549; Paulini, Manfred/0000-0002-6714-5787; Moraes, Arthur/0000-0002-5157-5686; Ogul, Hasan/0000-0002-5121-2893; ciocci, maria agnese /0000-0003-0002-5462; TUVE', Cristina/0000-0003-0739-3153; Androsov, Konstantin/0000-0003-2694-6542; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Flix, Josep/0000-0003-2688-8047; Nguyen, Federico/0000-0002-6713-1596; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; FU Austrian Federal Ministry of Science, Research and Economy; Austrian Science Fund; Belgian Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; Brazilian Funding Agency (CNPq); Brazilian Funding Agency (CAPES); Brazilian Funding Agency (FAPERJ); Brazilian Funding Agency (FAPESP); Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Croatian Science Foundation; Research Promotion Foundation, Cyprus; Ministry of Education and Research; Estonian Research Council [IUT23-4, IUT23-6]; European Regional Development Fund, Estonia; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS, France; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung, Germany; Deutsche Forschungsgemeinschaft, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation, Hungary; National Innovation Office, Hungary; Department of Atomic Energy, India; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Science, ICT and Future Planning, Republic of Korea; National Research Foundation (NRF), Republic of Korea; Lithuanian Academy of Sciences; Ministry of Education (Malaysia); University of Malaya (Malaysia); Mexican Funding Agency (CINVESTAV); Mexican Funding Agency (CONACYT); Mexican Funding Agency (SEP); Mexican Funding Agency (UASLP-FAI); Ministry of Business, Innovation and Employment, New Zealand; Pakistan Atomic Energy Commission; Ministry of Science and Higher Education, Poland; National Science Centre, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; Ministry of Education and Science of the Russian Federation; Federal Agency of Atomic Energy of the Russian Federation; Russian Academy of Sciences; Russian Foundation for Basic Research; Ministry of Education, Science and Technological Development of Serbia; Secretaria de Estado de Investigacion, Spain; Desarrollo e Innovacion, Spain; Programa Consolider-Ingenio, Spain; Swiss Funding Agency (ETH Board); Swiss Funding Agency (ETH Zurich); Swiss Funding Agency (PSI); Swiss Funding Agency (SNF); Swiss Funding Agency (UniZH); Swiss Funding Agency (Canton Zurich); Swiss Funding Agency (SER); Ministry of Science and Technology, Taipei; Thailand Center of Excellence in Physics; Institute for the Promotion of Teaching Science and Technology of Thailand; Special Task Force for Activating Research; National Science and Technology Development Agency of Thailand; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; National Academy of Sciences of Ukraine; State Fund for Fundamental Researches, Ukraine; Science and Technology Facilities Council, U.K.; US Department of Energy; US National Science Foundation; Marie-Curie programme (European Union); European Research Council (European Union); EPLANET (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; Council of Science and Industrial Research, India; HOMING PLUS programme of the Foundation for Polish Science; European Union, Regional Development Fund; OPUS programme of the National Science Center (Poland); Compagnia di San Paolo (Torino); Consorzio per la Fisica (Trieste); MIUR project (Italy) [20108T4XTM]; Thalis programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRF; National Priorities Research Program by Qatar National Research Fund; Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); Welch Foundation [C-1845] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses.; Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science, Research and Economy and the Austrian Science Fund; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport, and the Croatian Science Foundation; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Estonian Research Council via IUT23-4 and IUT23-6 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Innovation Office, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Ministry of Science, ICT and Future Planning, and National Research Foundation (NRF), Republic of Korea; the Lithuanian Academy of Sciences; the Ministry of Education, and University of Malaya (Malaysia); the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Business, Innovation and Employment, New Zealand; the Pakistan Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR, Dubna; the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Education, Science and Technological Development of Serbia; the Secretaria de Estado de Investigacion, Desarrollo e Innovacion and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the Ministry of Science and Technology, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology of Thailand, Special Task Force for Activating Research and the National Science and Technology Development Agency of Thailand; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the National Academy of Sciences of Ukraine, and State Fund for Fundamental Researches, Ukraine; the Science and Technology Facilities Council, U.K.; the US Department of Energy, and the US National Science Foundation.; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the OPUS programme of the National Science Center (Poland); the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand); and the Welch Foundation, contract C-1845. NR 64 TC 5 Z9 5 U1 16 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD APR 1 PY 2016 IS 4 AR 005 DI 10.1007/JHEP04(2016)005 PG 46 WC Physics, Particles & Fields SC Physics GA DI6VJ UT WOS:000373638000001 ER PT J AU Wood, ES Parker, SS Nelson, AT Maloy, SA AF Wood, Elizabeth Sooby Parker, Stephen S. Nelson, Andrew T. Maloy, Stuart A. TI MoSi2 Oxidation in 670-1498 K Water Vapor SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE OXIDATION; SILICON-CARBIDE OXIDATION; MOSI2-BASED COMPOSITE; MOLYBDENUM; STEAM; BEHAVIOR; PRESSURE; METALS; PEST AB Molybdenum disilicide (MoSi2) has well documented oxidation resistance at high temperature (T > 1273 K) in dry O-2 containing atmospheres due to the formation of a passive SiO2 surface layer. However, its behavior under atmospheres where water vapor is the dominant species has received far less attention. Oxidation testing of MoSi2 was performed at temperatures ranging from 670-1498 K in both 75% water vapor and synthetic air (Ar-O-2, 80%-20%) containing atmospheres. Here the thermogravimetric and microscopy data describing these phenomena are presented. Over the temperature range investigated, MoSi2 displays more mass gain in water vapor than in air. The oxidation kinetics observed in water vapor differ from that of the air samples. Two volatile oxides, MoO2(OH)(2) and Si(OH)(4), are thought to be the species responsible for the varied kinetics, at 670-877 K and at 1498 K, respectively. Increased oxidation (140-300 mg/cm(2)) was observed from 980-1084 K in water vapor, where passivation is observed in air. C1 [Wood, Elizabeth Sooby; Parker, Stephen S.; Nelson, Andrew T.; Maloy, Stuart A.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM USA. [Parker, Stephen S.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Wood, ES (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM USA. EM sooby@lanl.gov RI Maloy, Stuart/A-8672-2009 OI Maloy, Stuart/0000-0001-8037-1319 FU U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development program FX This work was supported by the U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development program. The authors thank Ming Tang for his help in imaging the 1498 K samples. NR 21 TC 0 Z9 0 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD APR PY 2016 VL 99 IS 4 BP 1412 EP 1419 DI 10.1111/jace.14120 PG 8 WC Materials Science, Ceramics SC Materials Science GA DJ0ZC UT WOS:000373931900046 ER PT J AU Willson, JD Winne, CT AF Willson, J. D. Winne, C. T. TI Evaluating the functional importance of secretive species: A case study of aquatic snake predators in isolated wetlands SO JOURNAL OF ZOOLOGY LA English DT Article DE Predation; prey consumption; biomass; food web; mark-recapture; wetlands; Nerodia fasciata; Seminatrix pygaea ID BROWN TREESNAKES; POPULATION ESTIMATION; ECOSYSTEM PROCESSES; ENERGY-FLOW; SALAMANDERS; DETECTABILITY; RECAPTURE; DIVERSITY; ABUNDANCE; DECLINES AB Although the need to prioritize limited conservation resources has prompted increased interest in understanding the functional importance of species within ecosystems, species that are infrequently observed are often written off as being unimportant. In this study, we use aquatic snakes as a case study for examining the importance of secretive predators. Most snakes are extremely cryptic and secretive, traits that not only lead to the perception that they are rare, and of minor importance, but also impede attempts to quantify densities. We used high sampling effort and robust-design capture-recapture analyses to estimate density of aquatic snakes inhabiting an isolated 5.4-ha wetland in South Carolina, USA. We assessed snake diets and coupled field measurements of growth rates with laboratory-derived data on mass conversion efficiency to estimate prey consumption by snakes over a 1-year period. We found a peak density 171 snakes ha(-1) of wetland habitat, corresponding to a standing biomass of 7.77kgha(-1). We calculated that snakes within the wetland consumed a total of over 200kg (>55000 individuals) of amphibian prey annually, translating into >150000kJha(-1) of energy flow from secondary to tertiary consumers within the wetland food web. Further, because many amphibians are primarily terrestrial as adults and are consumed by aquatic snakes only when they return to wetlands to breed, snakes can be responsible for substantial transfer of energy and biomass between terrestrial and aquatic habitats. Our study is one of the first comprehensive evaluations of the importance of snakes as predators and underscores the need to consider snakes in initiatives aimed at preserving overall ecosystem integrity. C1 [Willson, J. D.] Univ Arkansas, Dept Biol Sci, SCEN 630, Fayetteville, AR 72701 USA. [Willson, J. D.; Winne, C. T.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. RP Willson, JD (reprint author), Univ Arkansas, Dept Biol Sci, SCEN 630, Fayetteville, AR 72701 USA. EM jwillson@uark.edu FU NSF Graduate Research Fellowship; University of Arkansas; University of Georgia; U.S. Department of Energy [DE-FC09-07SR22506] FX We thank Sarah DuRant, J. Whitfield Gibbons, Brian Todd, Andrew Durso, Evan Eskew and especially Melissa Pilgrim for assistance in the laboratory and field. J. W. Gibbons and B. Todd provided helpful comments on the article. This research was supported by an NSF Graduate Research Fellowship to J.D.W., The University of Arkansas, and The University of Georgia. Article preparation was aided by the U.S. Department of Energy through Financial Assistance Award No. DE-FC09-07SR22506 to the University of Georgia Research Foundation. NR 44 TC 0 Z9 0 U1 9 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0952-8369 EI 1469-7998 J9 J ZOOL JI J. Zool. PD APR PY 2016 VL 298 IS 4 BP 266 EP 273 DI 10.1111/jzo.12311 PG 8 WC Zoology SC Zoology GA DJ4HY UT WOS:000374167200005 ER PT J AU Davis, P Doppner, T Rygg, JR Fortmann, C Divol, L Pak, A Fletcher, L Becker, A Holst, B Sperling, P Redmer, R Desjarlais, MP Celliers, P Collins, GW Landen, OL Falcone, RW Glenzer, SH AF Davis, P. Doppner, T. Rygg, J. R. Fortmann, C. Divol, L. Pak, A. Fletcher, L. Becker, A. Holst, B. Sperling, P. Redmer, R. Desjarlais, M. P. Celliers, P. Collins, G. W. Landen, O. L. Falcone, R. W. Glenzer, S. H. TI X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium SO NATURE COMMUNICATIONS LA English DT Article ID EQUATION-OF-STATE; AB-INITIO SIMULATIONS; DENSE SOLID HYDROGEN; GPA 1.4 MBAR; THOMSON SCATTERING; METAL TRANSITION; LIQUID DEUTERIUM; PLASMAS; FLUID; JUPITER AB Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen's structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us to extract ionization state as a function of compression. The onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase. C1 [Davis, P.; Falcone, R. W.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Davis, P.; Doppner, T.; Rygg, J. R.; Fortmann, C.; Divol, L.; Pak, A.; Celliers, P.; Collins, G. W.; Landen, O. L.] Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. [Fortmann, C.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Fletcher, L.; Glenzer, S. H.] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Becker, A.; Holst, B.; Sperling, P.; Redmer, R.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Desjarlais, M. P.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Davis, P (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA.; Davis, P (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA.; Glenzer, SH (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM pfdavis@berkeley.edu; glenzer@slac.stanford.edu FU (US) Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) [DE-AC52-07NA27344]; Laboratory Directed Research and Development (LDRD) [11-ER-050]; NNSA SSGF programme; Deutsche Forschungsgemeinschaft (DFG) [SFB 652]; BMBF [FSP-301]; DOE Office of Science, Fusion Energy Science [FWP 100182] FX The authors thank the Jupiter Laser Facility staff for facility support and W. Unites for target development and experimental support. This work performed under the auspices of the (US) Department of Energy (DOE) by Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 and supported by Laboratory Directed Research and Development (LDRD) Grant 11-ER-050. P.D. was supported by the NNSA SSGF programme. A.B., B.H., P.S. and R.R. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) within the SFB 652 and the BMBF via the FSP-301. A.B. performed calculations within the grant mvp00008 at the North-German Supercomputing Alliance (HLRN). This work was supported by DOE Office of Science, Fusion Energy Science under FWP 100182. NR 55 TC 1 Z9 1 U1 11 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11189 DI 10.1038/ncomms11189 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DJ3QL UT WOS:000374120600001 PM 27079420 ER PT J AU Kruk, SS Wong, ZJ Pshenay-Severin, E O'Brien, K Neshev, DN Kivshar, YS Zhang, X AF Kruk, Sergey S. Wong, Zi Jing Pshenay-Severin, Ekaterina O'Brien, Kevin Neshev, Dragomir N. Kivshar, Yuri S. Zhang, Xiang TI Magnetic hyperbolic optical metamaterials SO NATURE COMMUNICATIONS LA English DT Article ID 3-DIMENSIONAL PHOTONIC METAMATERIALS; NEGATIVE REFRACTION; EMISSION; MICROSCOPY; INDEFINITE; HYPERLENS AB Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolic dispersion in three-dimensional metamaterials. We measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. Our findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light. C1 [Kruk, Sergey S.; Pshenay-Severin, Ekaterina; Neshev, Dragomir N.; Kivshar, Yuri S.] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia. [Kruk, Sergey S.; Pshenay-Severin, Ekaterina; Neshev, Dragomir N.; Kivshar, Yuri S.] Australian Natl Univ, Res Sch Phys & Engn, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Canberra, ACT 2601, Australia. [Wong, Zi Jing; O'Brien, Kevin; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Pshenay-Severin, Ekaterina] Univ Jena, Inst Appl Phys, Abbe Ctr Photon, D-07743 Jena, Germany. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Zhang, Xiang] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia. RP Kruk, SS (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 2601, Australia.; Kruk, SS (reprint author), Australian Natl Univ, Res Sch Phys & Engn, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Canberra, ACT 2601, Australia. EM Sergey.Kruk@anu.edu.au RI Neshev, Dragomir/A-3759-2008 OI Neshev, Dragomir/0000-0002-4508-8646 FU Australian Research Council; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05-CH11231] FX We thank D. Smith and D. Basov for discussions and also acknowledge useful suggestions from S. Fan and C. Simovski. The work was partially supported by the Australian Research Council. Z.J.W., K.O. and X.Z. were funded by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231. NR 39 TC 8 Z9 8 U1 28 U2 71 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11329 DI 10.1038/ncomms11329 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DJ2VC UT WOS:000374062200001 PM 27072604 ER PT J AU Xue, DZ Balachandran, PV Hogden, J Theiler, J Xue, DQ Lookman, T AF Xue, Dezhen Balachandran, Prasanna V. Hogden, John Theiler, James Xue, Deqing Lookman, Turab TI Accelerated search for materials with targeted properties by adaptive design SO NATURE COMMUNICATIONS LA English DT Article ID SHAPE-MEMORY ALLOYS; HYSTERESIS; ATOMS; CLASSIFICATION; TRANSFORMATION; CHEMISTRY; ELECTRONS; ENERGY AB Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (Delta T) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest Delta T (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of similar to 800,000 compositions. Of these, 14 had smaller Delta T than any of the 22 in the original data set. C1 [Xue, Dezhen; Balachandran, Prasanna V.; Lookman, Turab] Los Alamos Natl Lab, Div Theoret, MS B262, Los Alamos, NM 87545 USA. [Xue, Dezhen; Xue, Deqing] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Hogden, John] Los Alamos Natl Lab, Comp & Computat Sci, POB 1663, Los Alamos, NM 87545 USA. [Theiler, James] Los Alamos Natl Lab, Intelligence & Space Res, POB 1663, Los Alamos, NM 87545 USA. RP Lookman, T (reprint author), Los Alamos Natl Lab, Div Theoret, MS B262, Los Alamos, NM 87545 USA. EM txl@lanl.gov RI XUE, Dezhen/A-6062-2010; OI XUE, Dezhen/0000-0001-6132-1236; Lookman, Turab/0000-0001-8122-5671 FU Laboratory Directed Research and Development (LDRD) programme [20140013DR]; National Basic Research Program of China [2012CB619401]; National Natural Science Foundation of China [51302209, 51431007, 51571156, 51320105014, 51321003] FX Dezhen Xue, P.V.B., J.H., J.T. and T.L. are grateful to the Laboratory Directed Research and Development (LDRD) programme at Los Alamos National Laboratory (project number 20140013DR) for support. Dezhen Xue and Deqing Xue gratefully acknowledge the support of National Basic Research Program of China (grant number 2012CB619401) and the National Natural Science Foundation of China (grant numbers 51302209, 51431007, 51571156, 51320105014 and 51321003). We are grateful to T. Shearman for stimulating discussions and J. Kress, Y. Zhou for their comments on the manuscript. NR 36 TC 9 Z9 9 U1 26 U2 45 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11241 DI 10.1038/ncomms11241 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DJ3RC UT WOS:000374122300001 PM 27079901 ER PT J AU Sarter, M Lustig, C Berry, AS Gritton, H Howe, WM Parikh, V AF Sarter, Martin Lustig, Cindy Berry, Anne S. Gritton, Howard Howe, William M. Parikh, Vinay TI What do phasic cholinergic signals do? SO NEUROBIOLOGY OF LEARNING AND MEMORY LA English DT Review DE Acetylcholine; Cortex; Attention; Cognition ID BASAL FOREBRAIN; IN-VIVO; AMPEROMETRIC MICROSENSORS; ACETYLCHOLINE-RELEASE; BEHAVIORAL VIGILANCE; EXTRACELLULAR FLUID; PERSISTENT ACTIVITY; NUCLEUS-ACCUMBENS; VISUAL-CORTEX; ATTENTION AB In addition to the neuromodulatory role of cholinergic systems, brief, temporally discrete cholinergic release events, or "transients", have been associated with the detection of cues in attention tasks. Here we review four main findings about cholinergic transients during cognitive processing. Cholinergic transients are: (1) associated with the detection of a cue and influenced by cognitive state; (2) not dependent on reward outcome, although the timing of the transient peak co-varies with the temporal relationship between detection and reward delivery; (3) correlated with the mobilization of the cue-evoked response; (4) causal mediators of shifts from monitoring to cue detection. We next discuss some of the key questions concerning the timing and occurrence of transients within the framework of available evidence including: (1) Why does the shift from monitoring to cue detection require a transient? (2) What determines whether a cholinergic transient will be generated? (3) How can cognitive state influence transient occurrence? (4) Why do cholinergic transients peak at around the time of reward delivery? (5) Is there evidence of cholinergic transients in humans? We conclude by outlining future research studies necessary to more fully understand the role of cholinergic transients in mediating cue detection. (C) 2016 Elsevier Inc. All rights reserved. C1 [Sarter, Martin; Lustig, Cindy] Univ Michigan, Dept Psychol, Ann Arbor, MI USA. [Sarter, Martin; Lustig, Cindy] Univ Michigan, Neurosci Program, Ann Arbor, MI USA. [Berry, Anne S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Gritton, Howard; Howe, William M.] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. [Howe, William M.] Pfizer Neurosci, Cambridge, MA USA. [Parikh, Vinay] Temple Univ, Dept Psychol, Philadelphia, PA 19122 USA. [Parikh, Vinay] Temple Univ, Neurosci Program, Philadelphia, PA 19122 USA. RP Sarter, M; Lustig, C (reprint author), Univ Michigan, Dept Psychol, Ann Arbor, MI USA.; Sarter, M; Lustig, C (reprint author), Univ Michigan, Neurosci Program, Ann Arbor, MI USA. EM msarter@umich.edu; clustig@umich.edu RI Parikh, Vinay/M-1439-2016; OI Berry, Anne/0000-0002-5086-3643 FU PHS grants [MH086530, DA031656, NS091856] FX The authors' research was supported by PHS grants MH086530, DA031656, and NS091856. NR 56 TC 4 Z9 4 U1 4 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1074-7427 EI 1095-9564 J9 NEUROBIOL LEARN MEM JI Neurobiol. Learn. Mem. PD APR PY 2016 VL 130 BP 135 EP 141 DI 10.1016/j.nlm.2016.02.008 PG 7 WC Behavioral Sciences; Neurosciences; Psychology; Psychology, Multidisciplinary SC Behavioral Sciences; Neurosciences & Neurology; Psychology GA DI8KY UT WOS:000373751100016 PM 26911787 ER PT J AU Cherepy, NJ Payne, SA Harvey, NM Aberg, D Seeley, ZM Holliday, KS Tran, IC Zhou, F Martinez, HP Demeyer, JM Drobshoff, AD Srivastava, AM Camardello, SJ Comanzo, HA Schlagel, DL Lograsso, TA AF Cherepy, Nerine J. Payne, Stephen A. Harvey, Nicholas M. Aberg, Daniel Seeley, Zachary M. Holliday, Kiel S. Tran, Ich C. Zhou, Fei Martinez, H. Paul Demeyer, Jessica M. Drobshoff, Alexander D. Srivastava, Alok M. Camardello, Samuel J. Comanzo, Holly A. Schlagel, Deborah L. Lograsso, Thomas A. TI Red-emitting manganese-doped aluminum nitride phosphor SO OPTICAL MATERIALS LA English DT Article DE Red phosphor; Aluminum nitride; Manganese emission; Lighting phosphor; Nitride phosphor ID AB-INITIO; POINT-DEFECTS; LUMINESCENCE; ALN; EMISSION; EXCHANGE; EFFICIENCY; SPECTRA; ALNMN2+; METALS AB We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 degrees C, 10 atm N-2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 degrees C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From OFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 +/- 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn. (C) 2016 Elsevier B.V. All rights reserved. C1 [Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Aberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.] GE Global Res, One Res Circle, Niskayuna, NY 12309 USA. [Schlagel, Deborah L.; Lograsso, Thomas A.] Ames Lab, Ames, IA 50011 USA. [Tran, Ich C.] Univ Calif Irvine, Irvine Mat Res Inst, Irvine, CA 92697 USA. RP Cherepy, NJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cherepy1@llnl.gov RI Zhou, Fei/D-1938-2010; Cherepy, Nerine/F-6176-2013 OI Zhou, Fei/0000-0001-9659-4648; Cherepy, Nerine/0000-0001-8561-923X FU Materion Advanced Chemicals, Milwaukee, WI; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]; DOE EERE Critical Materials Institute; U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. DOE [DE-AC02-07CH11358] FX We are grateful to Materion Advanced Chemicals, Milwaukee, WI for the support they provided to our nitride synthesis work. We acknowledge helpful discussions with Lynn Boatner and Michael Chance, of Oak Ridge National Laboratory and Karl Gschneider Jr. at Ames Laboratory. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-AC02-76SF00515. Funding was provided by the DOE EERE Critical Materials Institute, and work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The work performed at Ames Laboratory, which is operated for the U.S. DOE by Iowa State University, was under contract DE-AC02-07CH11358. Release number is LLNL-JRNL-681485. NR 42 TC 2 Z9 2 U1 20 U2 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 EI 1873-1252 J9 OPT MATER JI Opt. Mater. PD APR PY 2016 VL 54 BP 14 EP 21 DI 10.1016/j.optmat.2016.02.008 PG 8 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA DJ0BM UT WOS:000373866400003 ER PT J AU Lee, Y Nam, SH Ham, KS Gonzalez, J Oropeza, D Quarles, D Yoo, J Russo, RE AF Lee, Yonghoon Nam, Sang-Ho Ham, Kyung-Sik Gonzalez, Jhanis Oropeza, Dayana Quarles, Derrick, Jr. Yoo, Jonghyun Russo, Richard E. TI Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser-Induced Breakdown Spectroscopy; Laser-Ablation Inductively Coupled Plasma; Mass Spectrometry; Edible salts; Classification; Discrimination power ID LA-ICP-MS; BLOOD-PRESSURE; MINERAL SALT; SEA SALTS; POTASSIUM; SODIUM; LIBS; HYPERTENSION; FEASIBILITY; INTENSITY AB Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lee, Yonghoon; Nam, Sang-Ho] Mokpo Natl Univ, Dept Chem, Jeonnam 534729, South Korea. [Ham, Kyung-Sik] Mokpo Natl Univ, Dept Food Engn, Jeonnam 534729, South Korea. [Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick, Jr.; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick, Jr.; Yoo, Jonghyun; Russo, Richard E.] Appl Spectra Inc, 46665 Fremont Blvd, Fremont, CA 94538 USA. RP Lee, Y (reprint author), Mokpo Natl Univ, Dept Chem, Jeonnam 534729, South Korea. EM yhlee@mokpo.ac.kr FU Ministry of Oceans and Fisheries of Korea [20130290]; Office of Basic Energy Sciences, Chemical Science Division of the U.S. Department of Energy [DE-AC02-05CH11231]; Research Funds of Mokpo National University FX This paper was supported by Research Funds of Mokpo National University in 2015, and a Grant 20130290 to the Solar Salt Research Center, Mokpo National University (MNU), from Ministry of Oceans and Fisheries of Korea. The research at the Lawrence Berkeley National Laboratory was supported by the Office of Basic Energy Sciences, Chemical Science Division of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 39 TC 2 Z9 2 U1 6 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD APR 1 PY 2016 VL 118 BP 102 EP 111 DI 10.1016/j.sab.2016.02.019 PG 10 WC Spectroscopy SC Spectroscopy GA DJ2ZE UT WOS:000374073300015 ER PT J AU Wise, AM Weker, JN Kalirai, S Farmand, M Shapiro, DA Meirer, F Weckhuysen, BM AF Wise, Anna M. Weker, Johanna Nelson Kalirai, Sam Farmand, Maryam Shapiro, David A. Meirer, Florian Weckhuysen, Bert M. TI Nanoscale Chemical Imaging of an Individual Catalyst Particle with Soft X-ray Ptychography SO ACS CATALYSIS LA English DT Article DE fluid catalytic cracking; chemical imaging; catalyst deactivation; iron and soft X-ray ptychography ID ION MASS-SPECTROMETRY; FCC CATALYST; CRACKING CATALYSTS; DEACTIVATION; NICKEL; VANADIUM; METALS; SINGLE; IRON; NANOTOMOGRAPHY AB Understanding Fe deposition in fluid catalytic cracking (FCC) catalysis is critical for the mitigation of catalyst degradation. Here we employ soft X-ray ptychography to determine at the nanoscale the distribution and chemical state of Fe in an aged FCC catalyst particle. We show that both particle swelling due to colloidal Fe deposition and Fe penetration into the matrix as a result of precracking of large organic molecules occur. The application of ptychography allowed us to provide direct visual evidence for these two distinct Fe-based deactivation mechanisms, which have so far been proposed only on the basis of indirect evidence. C1 [Wise, Anna M.; Weker, Johanna Nelson] Stanford Univ, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Kalirai, Sam; Meirer, Florian; Weckhuysen, Bert M.] Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis Grp, NL-3584 CG Utrecht, Netherlands. [Farmand, Maryam; Shapiro, David A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Meirer, F; Weckhuysen, BM (reprint author), Univ Utrecht, Debye Inst Nanomat Sci, Inorgan Chem & Catalysis Grp, NL-3584 CG Utrecht, Netherlands. EM f.meirer@uu.nl; b.m.weckhuysen@uu.nl RI Meirer, Florian/H-7642-2016; Weckhuysen, Bert/D-3742-2009; Institute (DINS), Debye/G-7730-2014 OI Meirer, Florian/0000-0001-5581-5790; Weckhuysen, Bert/0000-0001-5245-1426; FU European Research Council (ERC) [321140]; Department of Energy, Laboratory Directed Research and Development [DE-AC02-76SF00515]; U.S. Department of Energy [DE-AC02-05CH11231]; Center for Applied Mathematics for Energy Research Applications (CAMERA); Basic Energy Sciences (BES) at the U.S. Department of Energy; Advanced Scientific Computing Research (ASRC) at the U.S. Department of Energy FX This work was supported by the European Research Council (ERC) Advanced Grant (no. 321140) and by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC02-76SF00515. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work is partially supported by the Center for Applied Mathematics for Energy Research Applications (CAMERA), which is a partnership between Basic Energy Sciences (BES) and Advanced Scientific Computing Research (ASRC) at the U.S. Department of Energy. NR 31 TC 3 Z9 3 U1 7 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD APR PY 2016 VL 6 IS 4 BP 2178 EP 2181 DI 10.1021/acscatal.6b00221 PG 4 WC Chemistry, Physical SC Chemistry GA DI5FN UT WOS:000373524400005 ER PT J AU Brown, KA Wilker, MB Boehm, M Hamby, H Dukovic, G King, PW AF Brown, Katherine A. Wilker, Molly B. Boehm, Marko Hamby, Hayden Dukovic, Gordana King, Paul W. TI Photocatalytic Regeneration of Nicotinamide Cofactors by Quantum Dot-Enzyme Biohybrid Complexes SO ACS CATALYSIS LA English DT Article DE biohybrid; NADPH regeneration; photocatalysis; biocatalysis; quantum dots ID BIOCATALYTIC REDOX REACTIONS; ELECTROCHEMICAL REGENERATION; VISIBLE-LIGHT; ELECTRON-TRANSFER; HYDROGENASE COMPLEXES; NADH; CDS; SEMICONDUCTOR; FERREDOXIN; REDUCTION AB We report the characterization of biohybrid complexes of CdSe quantum dots and ferredoxin NADP(-)(+)reductase for photocatalytic regeneration of NADPH. Illumination with visible light led to reduction of NADP+ to NADPH, with an apparent k(cat) of 1400 h(-1). Regeneration of NADPH was coupled to reduction of aldehydes to alcohols catalyzed by a NADPH-dependent alcohol dehydrogenase, Aldehyde with each NADPH molecule recycled an average of 7.5 times. The quantum yield both of NADPH and alcohol production were 5-6% for both products. Light-driven NADPH regeneration was also demonstrated in a multienzyme system, showing the capacity of QD-FNR complexes to drive continuous NADPH-dependent transformations. C1 [Brown, Katherine A.; Boehm, Marko; King, Paul W.] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. [Wilker, Molly B.; Hamby, Hayden; Dukovic, Gordana] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA. RP Brown, KA (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. EM kate.brown@nrel.gov RI King, Paul/D-9979-2011 OI King, Paul/0000-0001-5039-654X FU Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory; U.S. Department of Energy, Office of Biological and Environmental Research (BER); U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0010334] FX This work was supported by the Laboratory Directed Research and Development (LDRD) Program at the National Renewable Energy Laboratory (to K.A.B. and P.W.K.). FNR expression was supported by the U.S. Department of Energy, Office of Biological and Environmental Research (BER) (to M.B.). NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC. Nanocrystal synthesis and ligand exchange were supported by U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010334 (to M.B.W., H.H, and G.D.). NR 30 TC 3 Z9 3 U1 11 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD APR PY 2016 VL 6 IS 4 BP 2201 EP 2204 DI 10.1021/acscatal.5b02850 PG 4 WC Chemistry, Physical SC Chemistry GA DI5FN UT WOS:000373524400009 ER PT J AU Soorholtz, M Jones, LC Samuelis, D Weidenthaler, C White, RJ Titirici, MM Cullen, DA Zimmermann, T Antonietti, M Maier, J Palkovits, R Chmelka, BF Schuth, F AF Soorholtz, Mario Jones, Louis C. Samuelis, Dominik Weidenthaler, Claudia White, Robin J. Titirici, Maria-Magdalena Cullen, David A. Zimmermann, Tobias Antonietti, Markus Maier, Joachim Palkovits, Regina Chmelka, Bradley F. Schueth, Ferdi TI Local Platinum Environments in a Solid Analogue of the Molecular Periana Catalyst SO ACS CATALYSIS LA English DT Article DE methane oxidation; Periana catalyst; solid analogue vs molecular catalyst; solid-state Pt-195 NMR; atomic dispersion ID HETEROGENEOUS CATALYSIS; MESOPOROUS SILICA; OXIDATION; METHANE; STABILITY; NMR; COMPLEXES; SYSTEMS; CARBONS; GAP AB Combining advantages of homogeneous and heterogeneous catalysis by incorporating active species on a solid support is often an effective strategy for improving overall catalyst performance, although the influences of the support are generally challenging to establish, especially at a molecular level. Here, we report the local compositions, and structures of platinum species incorporated into covalent triazine framework (Pt-CTF) materials, a solid analogue of the molecular Periana catalyst, Pt(bpym)Cl-2, both of which are active for the selective oxidation of methane in the presence of concentrated sulfuric acid. By using a combination of solid-state Pt-195 nuclear magnetic resonance (NMR) spectroscopy, aberration-corrected scanning transmission electron microscopy (AC-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS), important similarities and differences are observed between the Pt-CTF and Periana catalysts, which are likely related to their respective macroscopic reaction properties. In particular, wide-line solid-state Pt-195 NMR spectra enable direct measurement, identification, and quantification of distinct platinum species in as-synthesized and used Pt-CTF catalysts. The results indicate that locally ordered and disordered Pt sites are present in as-synthesized Pt-CTF, with the former being similar to one of the two crystallographically distinct Pt sites in crystalline Pt(bpym)Cl-2. A distribution of relatively disordered Pt moieties is also present in the used catalyst, among which are the principal active sites. Similarly XAS shows good agreement between the measured data of Pt-CTF and a theoretical model based on Pt(bpym)Cl-2. Analyses of the absorption spectra of Pt-CTF used for methane oxidation suggests ligand exchange, as predicted for the molecular catalyst. XPS analyses of Pt(bpym)Cl-2, Pt-CTF, as well as the unmodified ligands, further corroborate platinum coordination by pyridinic N atoms. Aberration-corrected high-angle annular dark-field STEM proves that Pt atoms are distributed within Pt-CTF before and after catalysis. The overall results establish the close similarities of Pt-CTF and the molecular Periana catalyst Pt(bpym)Cl-2, along with differences that account for their respective properties. C1 [Soorholtz, Mario; Weidenthaler, Claudia; Zimmermann, Tobias; Palkovits, Regina; Schueth, Ferdi] Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany. [Jones, Louis C.; Chmelka, Bradley F.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. [Samuelis, Dominik; Maier, Joachim] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [White, Robin J.; Titirici, Maria-Magdalena; Antonietti, Markus] Max Planck Inst Colloids & Interfaces, D-14476 Potsdam, Germany. [Cullen, David A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Palkovits, Regina] Rhein Westfal TH Aachen, D-52074 Aachen, Germany. [Soorholtz, Mario] Hte GmbH, D-69123 Heidelberg, Germany. [White, Robin J.] Fraunhofer Inst Solar Energy Syst, Heidenhofstr 2, D-79110 Freiburg, Germany. [Titirici, Maria-Magdalena] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London, England. RP Schuth, F (reprint author), Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany.; Chmelka, BF (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM bradc@engineering.ucsb.edu; schueth@mpi-muelheim.mpg.de RI Cullen, David/A-2918-2015; Titirici, Magdalena/E-3694-2013; Schueth, Ferdi/B-1184-2017 OI Cullen, David/0000-0002-2593-7866; Titirici, Magdalena/0000-0003-0773-2100; FU U.S. National Science Foundation [MSN-CHE-1059108]; MRSEC Program of the National Science Foundation [DMR-1121053]; NSF-IOSE-PIRE Program [0968399]; NSF ConvEne IGERT Program [NSF-DGE 0801627]; ORNL's Center for Nanophase Materials Sciences (CNMS); "ENERCHEM" project house of the Max Planck Society; DFG [PA1689/1-1]; Aachen-California Network of Academic Exchange (ACalNet) - DAAD; German Federal Ministry of Education and Research; Fonds der Chemischen Industrie FX The solid-state 195Pt NMR measurements were supported by the U.S. National Science Foundation, under Grant No. MSN-CHE-1059108, and were conducted using the Central Facilities of the UCSB Materials Research Laboratory, which was supported by the MRSEC Program of the National Science Foundation (under Award No. DMR-1121053). L.C.J. thanks the NSF-IOSE-PIRE Program (No. 0968399) and the NSF ConvEne IGERT Program (No. NSF-DGE 0801627) for fellowship support. XAS characterization was carried out at beamline C, HASYLAB at DESY, Hamburg. The authors are grateful for Dr. E. Welter for support. TEM work was performed through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. Financial support by the "ENERCHEM" project house of the Max Planck Society is gratefully acknowledged. Part of this cooperation was initiated within the framework of a Max Planck Society UCSB research partnership. RP. acknowledges financial support from the DFG (PA1689/1-1) and Aachen-California Network of Academic Exchange (ACalNet) supported by the DAAD and financed by the German Federal Ministry of Education and Research. T.Z. is grateful for a Kekule scholarship of the Fonds der Chemischen Industrie. NR 31 TC 4 Z9 4 U1 15 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD APR PY 2016 VL 6 IS 4 BP 2332 EP 2340 PG 9 WC Chemistry, Physical SC Chemistry GA DI5FN UT WOS:000373524400022 ER PT J AU Lopes, PP Strmcnik, D Tripkovic, D Connell, JG Stamenkovic, V Markovic, NM AF Lopes, Pietro P. Strmcnik, Dusan Tripkovic, Dusan Connell, Justin G. Stamenkovic, Vojislav Markovic, Nenad M. TI Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments SO ACS CATALYSIS LA English DT Article DE electrocatalysis; structure-stability relationships; corrosion; oxide formation; double-layer effects; oxygen reduction reaction; oxygen evolution reaction; CO oxidation ID OXYGEN EVOLUTION REACTION; SINGLE-CRYSTAL ELECTRODES; SCANNING-TUNNELING-MICROSCOPY; X-RAY REFLECTIVITY; CARBON-MONOXIDE; ACIDIC MEDIA; CO ELECTROOXIDATION; CHLORIDE ADSORPTION; ENERGY-CONVERSION; PERCHLORIC-ACID AB The development of alternative energy systems for the clean production, storage, and conversion of energy is strongly dependent on our ability to understand, at atomic molecular levels, the functional links between the activity and stability of electrochemical interfaces. Whereas structure activity relationships are rapidly evolving, the corresponding structure stability relationships are still missing. This is primarily because there is no adequate experimental approach capable of monitoring the stability of well-defined single crystals in situ. Here, by utilizing the power of inductively coupled plasma mass spectrometry (ICP-MS) connected to a stationary probe and coupling this technique to the rotating disk electrode method, it was possible to simultaneously measure the dissolution rates of surface atoms (as low as 0.4 pg cm(-2) s(-1)) and correlate them with the kinetic rates of electrochemical reactions in real time. Making use of this unique probe, it was possible to establish almost "atom by atom" structure-stability-activity relationships for platinum single crystals in both acidic and alkaline environments. We found that the degree of stability is strongly dependent on the coordination of surface atoms (less coordinated yields less stable), the nature of covalent and noncovalent interactions (i.e., adsorption of hydroxyl groups, oxygen atoms, and halide species vs interactions between hydrated Li cations and surface oxide), the thermodynamic driving force for Pt complexation (Pt ion speciation in solution), and the nature of the electrochemical reaction (the oxygen reduction/evolution and CO oxidation reactions). These findings open new opportunities for elucidating key fundamental descriptors that govern both activity and stability trends and will ultimately assist in the development of real energy conversion and storage systems. C1 [Lopes, Pietro P.; Strmcnik, Dusan; Tripkovic, Dusan; Connell, Justin G.; Stamenkovic, Vojislav; Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nmmarkovic@anl.gov RI Lopes, Pietro/E-2724-2013 OI Lopes, Pietro/0000-0003-3211-470X FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences; Office of Basic Energy Sciences; Argonne, U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program; Joint Center of Energy Storage Research, an Energy Innovation Hub - U.S. Department of Energy, Office of Science, Basic Energy Sciences FX This work was supported by the Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract no. DE-AC02-06CH11357. The portion of work related to the Stationary Probe design and single crystal experiments was supported by the Office of Basic Energy Sciences (80%). High-surface area Pt electrocatalysts experiments were conducted with support from the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program (10%). ICP-MS facility and SPRDE-ICP-MS system installation was supported by the Joint Center of Energy Storage Research (10%), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. We also thank Paul A. Paulikas and Bostjan Genorio for experiment support and fruitful discussions. NR 66 TC 9 Z9 9 U1 28 U2 81 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD APR PY 2016 VL 6 IS 4 BP 2536 EP 2544 DI 10.1021/acscatal.5b02920 PG 9 WC Chemistry, Physical SC Chemistry GA DI5FN UT WOS:000373524400048 ER PT J AU Bligaard, T Bullock, RM Campbell, CT Chen, JGG Gates, BC Gorte, RJ Jones, CW Jones, WD Kitchin, JR Scott, SL AF Bligaard, Thomas Bullock, R. Morris Campbell, Charles T. Chen, Jingguang G. Gates, Bruce C. Gorte, Raymond J. Jones, Christopher W. Jones, William D. Kitchin, John R. Scott, Susannah L. TI Toward Benchmarking in Catalysis Science: Best Practices, Challenges, and Opportunities SO ACS CATALYSIS LA English DT Article DE benchmarking; catalytic performance; computational catalysis; heterogeneous catalysis; molecular catalysis; electrocatalysis ID DENSITY-FUNCTIONAL THEORY; METALLOCENE CATALYSTS; SOLID CATALYSTS; ELECTROCATALYSTS; HYDROGEN; METHYLTRIOXORHENIUM; POLYMERIZATION; DEFINITIONS; ACTIVATION; MOLECULES AB Benchmarking is a community-based and (preferably) community-driven activity involving consensus based decisions on how to make reproducible, fair, and relevant assessments. In catalysis science, important catalyst performance metrics include activity, selectivity, and the deactivation profile, which enable comparisons between new and standard catalysts. Benchmarking also requires careful documentation, archiving, and sharing of methods and measurements, to ensure that the full value of research data can be realized. Beyond these goals, benchmarking presents unique opportunities to advance and accelerate understanding of complex reaction systems by combining and comparing experimental information from multiple, in situ and operando techniques with theoretical insights derived from calculations characterizing model systems. This Perspective describes the origins and uses of benchmarking and its applications in computational catalysis, heterogeneous catalysis, molecular catalysis, and electrocatalysis. It also discusses opportunities and challenges for future developments in these fields. C1 [Bligaard, Thomas] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, Menlo Pk, CA 94025 USA. [Bullock, R. Morris] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. [Campbell, Charles T.] Univ Washington, Dept Chem, Box 351700, Seattle, WA 98195 USA. [Chen, Jingguang G.] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA. [Chen, Jingguang G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Gorte, Raymond J.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. [Jones, Christopher W.] Georgia Inst Technol, Sch Chem & Biomol Engn, 311 Ferst Dr NW, Atlanta, GA 30332 USA. [Jones, William D.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. [Kitchin, John R.] Carnegie Mellon Univ, Dept Chem Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. [Scott, Susannah L.] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. RP Chen, JGG (reprint author), Columbia Univ, Dept Chem Engn, New York, NY 10027 USA.; Chen, JGG (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA.; Scott, SL (reprint author), Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA. EM jgchen@columbia.edu; sscott@engineering.ucsb.edu RI Bullock, R. Morris/L-6802-2016; Kitchin, John/A-2363-2010 OI Bullock, R. Morris/0000-0001-6306-4851; Kitchin, John/0000-0003-2625-9232 FU Catalysis Science Program, Office of Science, Basic Energy Sciences, of the U.S. Department of Energy FX The authors are grateful to the Catalysis Science Program, Office of Science, Basic Energy Sciences, of the U.S. Department of Energy, for support of their research programs, and to Catalysis Program Managers Raul Miranda, Viviane Schwartz, and Charles Peden for helpful advice and discussions. NR 92 TC 15 Z9 15 U1 41 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD APR PY 2016 VL 6 IS 4 BP 2590 EP 2602 DI 10.1021/acscatal.6b00183 PG 13 WC Chemistry, Physical SC Chemistry GA DI5FN UT WOS:000373524400052 ER PT J AU Xing, L Yang, F Rasouli, S Qiu, Y Li, ZF Uzunoglu, A Sun, CJ Liu, YZ Ferreira, P Li, WZ Ren, Y Stanciu, LA Xie, J AF Xing, Le Yang, Fan Rasouli, Somaye Qiu, Yang Li, Zhe-Fei Uzunoglu, Aytekin Sun, Cheng-Jun Liu, Yuzi Ferreira, Paulo Li, Wenzhen Ren, Yang Stanciu, Lia A. Xie, Jian TI Understanding Pt Nanoparticle Anchoring on Graphene Supports through Surface Functionalization SO ACS CATALYSIS LA English DT Article DE surface functionalization; graphene; metal-support interaction; catalyst durability; oxygen reduction reaction; PEMFC ID FUEL-CELL ELECTROCATALYST; OXYGEN REDUCTION ACTIVITY; HIGH HUMIDITY CONDITIONS; PLATINUM NANOPARTICLES; PARTICLE-SIZE; DEGRADATION MECHANISMS; ELECTRONIC-PROPERTIES; CARBON NANOTUBES; CATALYSTS; DURABILITY AB The enhancement of Pt nanoparticle anchoring strength and dispersion on carbon supports is highly desirable in polymer electrolyte membrane fuel cells (PEMFCs) as well as in other catalysis processes. Presented here is a comprehensive study of the interaction between catalyst nanoparticles and carbon supports in terms of the electronic structure change and its effects on the electrocatalytic performance of supported catalysts. Graphene was chosen as an ideal model support because the unique 2-D structure allows the direct investigation of the interaction with supported metal nanoparticles at their interface. We developed a facile strategy to covalently graft p-phenyl SO3H or p-phenyl NH2-groups onto the graphene surface. The functional groups were found to not only facilitate the homogeneous distribution of Pt nanoparticles on the surface of graphene supports and reduce the Pt average particle size but also strengthen the interaction of the Pt atoms with the functional groups and, consequently, minimize the migration/coalescence of the Pt nanoparticles in the course of accelerated durability tests. The experimental results from both X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) demonstrate the electron density shift from Pt to graphene supports with the strength of the Pt graphene interaction following the trend of Pt/p-phenyl NH2-graphene > Pt/p-phenyl SO3H-graphene > Pt/graphene. This study will shed light on strategies to improve not only the durability but also the activity of the metal nanoparticles via the functionalization of the catalyst supports in the catalysis field. C1 [Xing, Le; Yang, Fan; Li, Zhe-Fei; Xie, Jian] Indiana Univ Purdue Univ, Purdue Sch Engn & Technol, Dept Mech Engn, Indianapolis, IN 46202 USA. [Rasouli, Somaye; Ferreira, Paulo] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. [Qiu, Yang; Li, Wenzhen] Iowa State Univ, Biorenewables Res Lab, Dept Chem & Biol Engn, Ames, IA 50011 USA. [Uzunoglu, Aytekin; Stanciu, Lia A.] Purdue Univ, Sch Mat Engn, W Lafayette, PA 47907 USA. [Stanciu, Lia A.] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, PA 47907 USA. [Sun, Cheng-Jun; Ren, Yang] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Liu, Yuzi] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Xie, J (reprint author), Indiana Univ Purdue Univ, Purdue Sch Engn & Technol, Dept Mech Engn, Indianapolis, IN 46202 USA. EM jianxie@iupui.edu RI Liu, Yuzi/C-6849-2011; Yang, Fan/D-8277-2017 FU U.S. Department of Energy-Basic Energy Sciences; Canadian Light Source; University of Washington; Advanced Photon Source; U.S. DOE [DE-AC02-06CH11357] FX XAS was performed on Sector 20 facilities at the Advanced Photon Source, and research at these facilities is supported by the U.S. Department of Energy-Basic Energy Sciences, the Canadian Light Source and its funding partners, the University of Washington, and the Advanced Photon Source. Use of the Advanced Photon Source and the Center for Nanoscale Materials, Office of Science User Facility, operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 73 TC 1 Z9 1 U1 42 U2 87 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD APR PY 2016 VL 6 IS 4 BP 2642 EP 2653 DI 10.1021/acscatal.5b02722 PG 12 WC Chemistry, Physical SC Chemistry GA DI5FN UT WOS:000373524400059 ER PT J AU Griffin, MB Ferguson, GA Ruddy, DA Biddy, MJ Beckham, GT Schaidle, JA AF Griffin, Michael B. Ferguson, Glen A. Ruddy, Daniel A. Biddy, Mary J. Beckham, Gregg T. Schaidle, Joshua A. TI Role of the Support and Reaction Conditions on the Vapor-Phase Deoxygenation of m-Cresol over Pt/C and Pt/TiO2 Catalysts SO ACS CATALYSIS LA English DT Article DE hydrodeoxygenation; catalytic fast pyrolysis; TiO2; m-cresol; bio-oil; DFT; hydrogen coverage; platinum ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; REACTION NETWORK; PYROLYSIS OIL; BIO-OILS; HYDRODEOXYGENATION MECHANISM; PT/AL2O3 CATALYSTS; OXOPHILIC SUPPORTS; PT/HBETA CATALYST AB The catalytic deoxygenation of biomass fast pyrolysis vapors offers a promising route for the sustainable production of liquid transportation fuels. However, a clear understanding of the mechanistic details involved in this process has yet to be achieved, and questions remain regarding the role of the catalyst support and the influence of reaction conditions. In order to gain insight into these questions, the deoxygenation of m-cresol was investigated over Pt/C and Pt/TiO2 catalysts using experimental and computational techniques. The performance of each catalyst was evaluated in a packed-bed reactor under two conditions (523 K, 2.0 MPa and 623 K, 0.5 MPa), and the energetics of the ring hydrogenation, direct deoxygenation, and tautomerization mechanisms were calculated over hydrogen-covered Pt(111) and oxygen vacancies on the surface of TiO2(101). Over Pt(111), ring hydrogenation to 3-methylcyclohexanone and 3-methylcyclohexanol was found to be the most energetically favorable pathway. Over TiO2(101), tautomerization and direct deoxygenation to toluene were identified as additional energetically favorable routes. These calculations are consistent with the experimental data, in which Pt/TiO2 was more active on a metal site basis and exhibited higher selectivity to toluene at 623 K relative to Pt/C. On the basis of these results, it is likely that the reactivity of Pt/TiO2 and Pt/C is driven by the metallic phase at 523 K, while contributions from the TiO2 support enhance deoxygenation at 623 K. These results highlight the synergistic effects between hydrogenation catalysts and reducible metal oxide supports and provide insight into the reaction pathways responsible for their enhanced deoxygenation performance. C1 [Griffin, Michael B.; Ferguson, Glen A.; Ruddy, Daniel A.; Biddy, Mary J.; Beckham, Gregg T.; Schaidle, Joshua A.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Beckham, GT; Schaidle, JA (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM gregg.beckham@nrel.gov; joshua.schaidle@nrel.gov FU U.S. Department of Energy's Bioenergy Technologies Office, at the National Renewable Energy Laboratory [DE-AC36-08GO28308]; Texas Advanced Computing Center under the National Science Foundation Extreme Science and Engineering Discovery Environment [MCB-090159] FX This work was supported by the U.S. Department of Energy's Bioenergy Technologies Office, Contract No. DE-AC36-08GO28308, at the National Renewable Energy Laboratory. Computer time was provided by the Texas Advanced Computing Center under the National Science Foundation Extreme Science and Engineering Discovery Environment Grant MCB-090159 and by the National Renewable Energy Laboratory Computational Sciences Center. The authors thank NREL researchers Mayank Behl (chemisorption measurements), Matt Yung (chemisorption measurements), Susan Habas (TEM imaging), Jeffery Aguiar (TEM imaging), and Erick White (reactor operation). Helpful discussions with Samuel Dull, Connor Nash, and Vassili Vorotnikov are also gratefully acknowledged. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. NR 83 TC 13 Z9 13 U1 20 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD APR PY 2016 VL 6 IS 4 BP 2715 EP 2727 DI 10.1021/acscatal.5b02868 PG 13 WC Chemistry, Physical SC Chemistry GA DI5FN UT WOS:000373524400068 ER PT J AU Waterman, DG Winter, G Gildea, RJ Parkhurst, JM Brewster, AS Sauter, NK Evans, G AF Waterman, David G. Winter, Graeme Gildea, Richard J. Parkhurst, James M. Brewster, Aaron S. Sauter, Nicholas K. Evans, Gwyndaf TI Diffraction-geometry refinement in the DIALS framework SO ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY LA English DT Article DE global refinement; DIALS framework; centroid refinement ID X-RAY; MACROMOLECULAR CRYSTALLOGRAPHY; POST-REFINEMENT; DIFFRACTOMETER; ORIENTATION; INTEGRATION; ESTIMATOR; ALGORITHM; CRYSTALS; DETECTOR AB Rapid data collection and modern computing resources provide the opportunity to revisit the task of optimizing the model of diffraction geometry prior to integration. A comprehensive description is given of new software that builds upon established methods by performing a single global refinement procedure, utilizing a smoothly varying model of the crystal lattice where appropriate. This global refinement technique extends to multiple data sets, providing useful constraints to handle the problem of correlated parameters, particularly for small wedges of data. Examples of advanced uses of the software are given and the design is explained in detail, with particular emphasis on the flexibility and extensibility it entails. C1 [Waterman, David G.] Rutherford Appleton Lab, STFC, Didcot OX11 0QX, Oxon, England. [Waterman, David G.] Rutherford Appleton Lab, CCP4, Res Complex Harwell, Didcot OX11 0FA, Oxon, England. [Winter, Graeme; Gildea, Richard J.; Parkhurst, James M.; Evans, Gwyndaf] Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. [Parkhurst, James M.] MRC, Mol Biol Lab, Francis Crick Ave, Cambridge CB2 0QH, England. [Brewster, Aaron S.; Sauter, Nicholas K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Waterman, DG (reprint author), Rutherford Appleton Lab, STFC, Didcot OX11 0QX, Oxon, England.; Waterman, DG (reprint author), Rutherford Appleton Lab, CCP4, Res Complex Harwell, Didcot OX11 0FA, Oxon, England.; Evans, G (reprint author), Diamond Light Source Ltd, Harwell Sci & Innovat Campus, Didcot OX11 0DE, Oxon, England. EM david.waterman@stfc.ac.uk; gwyndaf.evans@diamond.ac.uk RI Sauter, Nicholas/K-3430-2012; OI Evans, Gwyndaf/0000-0002-6079-2201 FU European Community's Seventh Framework Programme (FP7) under BioStruct-X [283570]; US National Institutes of Health [GM095887, GM102520] FX At the heart of the DIALS framework sit ideas about generalized diffraction geometry, reflection prediction and positional refinement formed and collated at the LURE workshops nearly 30 years ago. We are very grateful to all attendees of these workshops for the solid theoretical foundation upon which we are building our software. We would like to thank Andrew Leslie for many useful discussions, particularly relating to the parameterization of the generalized geometry and the implementation of Reeke's algorithm within MOSFLM. We would also like to thank Phil Evans for advice that influenced the modular design of dials. refine and describing the Gaussian smoother model used in AIMLESS. Garib Murshudov provided useful advice, particularly in relation to minimization problems and error propagation. The authors would like to thank the reviewers for their helpful comments on the manuscript. This research was supported in part by the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement No. 283570) and by the US National Institutes of Health grants GM095887 and GM102520. NR 46 TC 9 Z9 9 U1 4 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2059-7983 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Struct. Biol. PD APR PY 2016 VL 72 BP 558 EP 575 DI 10.1107/S2059798316002187 PN 4 PG 18 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DI7YS UT WOS:000373718500011 PM 27050135 ER PT J AU O'Neil, P Lovell, S Mehzabeen, N Battaile, K Biswas, I AF O'Neil, Pierce Lovell, Scott Mehzabeen, Nurjahan Battaile, Kevin Biswas, Indranil TI Crystal structure of histone-like protein from Streptococcus mutans refined to 1.9 angstrom resolution SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS LA English DT Article DE Streptococcus mutans; HLP; nucleoid-associated protein; histone-like protein ID DNA-BINDING PROTEIN; NUCLEOID-ASSOCIATED PROTEINS; ESCHERICHIA-COLI; DATA QUALITY; HU PROTEIN; MACROMOLECULAR CRYSTALLOGRAPHY; BACTERIAL CHROMATIN; PYOGENES; GROWTH; MODEL AB Nucleoid-associated proteins (NAPs) in prokaryotes play an important architectural role in DNA bending, supercoiling and DNA compaction. In addition to architectural roles, some NAPs also play regulatory roles in DNA replication and repair, and act as global transcriptional regulators in many bacteria. Bacteria encode multiple NAPs and some of them are even essential for survival. Streptococcus mutans, a dental pathogen, encodes one such essential NAP called histone-like protein (HLP). Here, the three-dimensional structure of S. mutans HLP has been determined to 1.9 angstrom resolution. The HLP structure is a dimer and shares a high degree of similarity with other bacterial NAPs, including HU. Since HLPs are essential for the survival of pathogenic streptococci, this structure determination is potentially beneficial for future drug development against these pathogens. C1 [O'Neil, Pierce; Biswas, Indranil] Univ Kansas, Med Ctr, Dept Microbiol Mol Genet & Immunol, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. [Lovell, Scott; Mehzabeen, Nurjahan] Univ Kansas, Del Shankel Struct Biol Ctr, Prot Struct Lab, Kansas City, KS 66047 USA. [Battaile, Kevin] Argonne Natl Lab, APS, Hauptman Woodward Med Res Inst, IMCA CAT, Argonne, IL 60439 USA. RP Biswas, I (reprint author), Univ Kansas, Med Ctr, Dept Microbiol Mol Genet & Immunol, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. EM ibiswas@kumc.edu FU National Institute of Dental and Craniofacial Research [DE021664]; National Center for Research Resources [5P20RR017708]; National Institute of General Medical Sciences of the National Institutes of Health [8P20GM103420]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported in part by a grant from the National Institute of Dental and Craniofacial Research (DE021664) awarded to IB. Use of the University of Kansas Protein Structure Laboratory was supported by grants from the National Center for Research Resources (5P20RR017708) and the National Institute of General Medical Sciences (8P20GM103420) of the National Institutes of Health. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by the companies of the Industrial Macromolecular Crystallography Association through a contract with Hauptman-Woodward Medical Research Institute. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. NR 51 TC 1 Z9 1 U1 0 U2 0 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 2053-230X J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Commun. PD APR PY 2016 VL 72 BP 257 EP 262 DI 10.1107/S2053230X1600217X PN 4 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA DI7ZK UT WOS:000373720300001 PM 27050257 ER PT J AU Capdevila, C Aranda, MM Rementeria, R Chao, J Urones-Garrote, E Aldazabal, J Miller, MK AF Capdevila, C. Aranda, M. M. Rementeria, R. Chao, J. Urones-Garrote, E. Aldazabal, J. Miller, M. K. TI Strengthening by intermetallic nanoprecipitation in Fe-Cr-Al-Ti alloy SO ACTA MATERIALIA LA English DT Article DE Phase separation; Ferrous alloy; Mechanical alloying; Atom probe tomography; Thermoelectric power; Spinodal decomposition ID PHASE-SEPARATION; SPINODAL DECOMPOSITION; FERRITIC STEEL; ATOM-PROBE; GRAIN-GROWTH; ODS ALLOY; PM2000; RECRYSTALLIZATION; DEFORMATION; TECHNOLOGY AB The strengthening mechanism observed during ageing at temperatures of 435 and 475 degrees C in the oxide dispersion strengthened (ODS) Fe-Cr-Al-Ti system has been investigated. Atom probe tomography (APT) and high-resolution transmission electron microscopy (HRTEM) analyses determined that the alloy undergoes simultaneous precipitation of Cr-rich (alpha' phase) and nanoscale precipitation of TiAl-rich intermetallic particles (beta' phase). APT indicated that the composition of the intermetallic beta' phase is Fe2AlTi0.6Cr0.4, and the evolving composition of alpha' phase with ageing time was also determined. The results obtained from HRTEM analyses allow us to confirm that the beta' precipitates exhibit a cubic structure and hence their crystallography is related to the Heusler-type Fe2AlTi (L2(1)) structure. The strengthening could be explained on the basis of two hardening effects that occur simultaneously: the first is due to the alpha-alpha' phase separation through the modulus effect, and the second mechanism is due to the interaction of nanoscale beta' particles with dislocations. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Capdevila, C.; Aranda, M. M.; Rementeria, R.; Chao, J.] CSIC, Ctr Nacl Invest Met CENIM, MATERALIA Grp, Avda Gregorio Amo 8, Madrid 28040, Spain. [Urones-Garrote, E.] Univ Complutense Madrid, CNME, Av Complutense S-N, E-28040 Madrid, Spain. [Aldazabal, J.] Univ Navarra, CEIT, Paseo Manuel Lardizabal 15, San Sebastian 20018, Spain. [Aldazabal, J.] Univ Navarra, Tecnun, Paseo Manuel Lardizabal 15, San Sebastian 20018, Spain. [Miller, M. K.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. RP Capdevila, C (reprint author), CSIC, Ctr Nacl Invest Met CENIM, MATERALIA Grp, Avda Gregorio Amo 8, Madrid 28040, Spain. EM ccm@cenim.csic.es OI Capdevila, Carlos/0000-0002-1869-4085; Rementeria, Rosalia/0000-0003-2364-7344 FU Spanish Ministerio de Economia y Competitividad (MINECO) [MAT2013-47460-C5-1-P]; ORNL's Center for Nanophase Materials Sciences (CNMS) - Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX PM 2000 (TM) is a trademark of Plansee GmbH. LEAP (R) is a registered trademark of CAMECA Instruments Inc. CC and JC acknowledge financial support to Spanish Ministerio de Economia y Competitividad (MINECO) through in the form of a Coordinate Project (MAT2013-47460-C5-1-P). Atom probe tomography (MKM) was supported through a user project supported by ORNL's Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 38 TC 0 Z9 0 U1 20 U2 63 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD APR 1 PY 2016 VL 107 BP 27 EP 37 DI 10.1016/j.actamat.2016.01.039 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DI3SU UT WOS:000373419600004 ER PT J AU Fu, ZQ Chen, WP Wen, HM Zhang, DL Chen, Z Zheng, BL Zhou, YZ Lavernia, EJ AF Fu, Zhiqiang Chen, Weiping Wen, Haiming Zhang, Dalong Chen, Zhen Zheng, Baolong Zhou, Yizhang Lavernia, Enrique J. TI Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy SO ACTA MATERIALIA LA English DT Article DE Nanocrystalline; High-entropy alloys; Microstructure; Single-phase; Strengthening mechanism ID HIGH-PRESSURE TORSION; ULTRAFINE-GRAINED CU; SOLID-SOLUTION; TENSILE PROPERTIES; DISLOCATION NUCLEATION; THERMAL-STABILITY; AL ADDITION; BEHAVIOR; GROWTH; DEFORMATION AB We report on a study of the design, phase formation, microstructure, mechanical behavior and strengthening mechanisms of a novel single-phase Co25Ni25Fe25Al7.5Cu17.5 (at.%) high-entropy alloy (HEA). In this investigation, a bulk nanocrystalline (nc) Co25Ni25Fe25Al7.5Cu17.5 HEA with the face-centered cubic (FCC) crystal structure was fabricated by mechanical alloying (MA) followed by consolidation via spark plasma sintering (SPS). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that a single FCC solid-solution phase with an average grain diameter of 24 nm was produced following MA. Following SPS, bulk samples exhibiting a bimodal microstructure with both nanoscale grains and ultra-fine grains (UFGs) and with an average grain diameter of 95 nm were obtained, possessing a single FCC solid-solution phase identical to that in the milled powders. The single-phase feature of the Co25Ni25Fe25Al7.5Cu17.5 HEA principally resulted from remarkably high mutual solubility in most binary atom-pairs of the constituent elements, which appears to correspond to a high entropy of mixing. Approximately 5 vol.% of nanoscale twins were observed in the bulk nc samples. The bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA exhibits a compressive yield strength of 1795 MPa with a hardness of 454 Hv, which is dramatically higher than the yield strength of most previously reported FCC structured HEAs (-130-700 MPa). Compared to those of the bulk coarse-grained (CG) Co25Ni25Fe25Al7.5Cu17.5 HEA fabricated by arc-melting, the yield strength and Vickers hardness values of the bulk nc samples increased by 834.9% and 251.9%, respectively. Quantitative calculations of the respective contributions from each strengthening mechanism demonstrate that grain boundary strengthening and dislocation strengthening are principally responsible for the measured ultra-high strength of the bulk nc Co25Ni25Fe25Al7.5Cu17.5 HEA. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Fu, Zhiqiang; Chen, Weiping; Chen, Zhen] S China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China. [Fu, Zhiqiang; Zhang, Dalong; Zheng, Baolong; Zhou, Yizhang; Lavernia, Enrique J.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Wen, Haiming] Idaho State Univ, Dept Nucl Engn & Hlth Phys, Idaho Falls, ID 83402 USA. [Wen, Haiming] Idaho Natl Lab, Characterizat & Adv PIE Div, Idaho Falls, ID 83415 USA. [Lavernia, Enrique J.] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. RP Fu, ZQ (reprint author), S China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Guangdong, Peoples R China.; Wen, HM (reprint author), Idaho State Univ, Dept Nucl Engn & Hlth Phys, Idaho Falls, ID 83402 USA.; Lavernia, EJ (reprint author), Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. EM fzqfu@ucdavis.edu; wenhaim@isu.edu; lavemia@uci.edu RI Wen, Haiming/B-3250-2013 OI Wen, Haiming/0000-0003-2918-3966 FU National Natural Science Foundation of China [51271080]; China Scholarship Council (CSC); US Army Research Office [W911NF-14-1-0627] FX The authors acknowledge the financial support from National Natural Science Foundation of China (51271080), from the financial support from the China Scholarship Council (CSC), and from the US Army Research Office (W911NF-14-1-0627). H.M. Wen utilized his private time to perform related work. NR 73 TC 12 Z9 12 U1 44 U2 116 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD APR 1 PY 2016 VL 107 BP 59 EP 71 DI 10.1016/j.actamat.2016.01.050 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DI3SU UT WOS:000373419600007 ER PT J AU Wang, H Lee, SY Gharghouri, MA Wu, PD Yoon, SG AF Wang, H. Lee, S. Y. Gharghouri, M. A. Wu, P. D. Yoon, S. G. TI Deformation behavior of Mg-8.5wt.%Al alloy under reverse loading investigated by in-situ neutron diffraction and elastic viscoplastic self-consistent modeling SO ACTA MATERIALIA LA English DT Article DE Magnesium alloy; Twinning; De-twinning; Internal elastic strain; Polycrystal plasticity model ID WROUGHT MAGNESIUM ALLOY; POLYCRYSTAL PLASTICITY MODELS; TWINNING-DETWINNING BEHAVIOR; PLANE-STRAIN COMPRESSION; TEXTURE DEVELOPMENT; STRESS-RELAXATION; ZIRCONIUM ALLOYS; AZ31B SHEET; MECHANICAL-BEHAVIOR; HARDENING EVOLUTION AB The EVPSC-TDT model for polycrystal plasticity and in-situ neutron diffraction have been used to investigate the behavior of a Mg-8.5wt.%Al alloy with two starting textures: 1) a typical extrusion texture in which a majority of the grains are oriented favorably for extension twinning via compression perpendicular to the basal pole, and 2) a modified texture in which extension twinning can be activated via tension parallel to the basal pole in a majority of the grains. Using a small number of adjustable parameters, and only two macroscopic tensile stress strain curves for calibration, the model is able to capture, quantitatively, the trends in multiple data sets, including grain-level elastic lattice strains, and diffraction peak intensity changes due to lattice re-orientation associated with twinning. For twinning, the model assumes a polar critical resolved shear stress activation criterion and assigns the stress and hardening of the parent crystal to a newly formed twin. The model allows twinning to be driven either by the stress in the parent crystal (matrix reduction), in which case all of the twin transformation strain is assigned to the matrix, or by the stress in the twin (twin propagation), in which case all of the twin transformation strain is assigned to the twin. A detailed comparison between the model predictions and the neutron diffraction data reveals that assigning all of the twin transformation strain either to the matrix or to the twin is too one-sided, leading to excessive relaxation and hardening effects. A more equitable partitioning of the twin transformation strain is necessary. It is suggested that the stress and hardening assigned to a newly formed twin is of less importance to the performance of the model than the partitioning of the twin transformation strain. Published by Elsevier Ltd on behalf of Acta Materialia Inc. C1 [Wang, H.] Los Alamos Natl Lab, Mat Sci & Technol, POB 1663, Los Alamos, NM 87544 USA. [Lee, S. Y.; Yoon, S. G.] Chungnam Natl Univ, Dept Mat Sci & Engn, Daejon 305764, South Korea. [Gharghouri, M. A.] Canadian Nucl Labs, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. [Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. RP Wang, H (reprint author), Los Alamos Natl Lab, Mat Sci & Technol, POB 1663, Los Alamos, NM 87544 USA.; Lee, SY (reprint author), Chungnam Natl Univ, Dept Mat Sci & Engn, Daejon 305764, South Korea. EM huamiaow@hotmail.com; sylee2012@cnu.ac.kr RI Wang, Huamiao/F-7693-2010; Wu, Peidong/A-7009-2008 OI Wang, Huamiao/0000-0002-7167-2483; FU Natural Sciences and Engineering Research Council of Canada (NSERC); Ontario Ministry of Research and Innovation (OMRI); National Research Foundation of Korea (NRF) - Korean government (MSIP) [2013R1A4A1069528, 2013R1A1A1076023] FX HW and PDW were supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Ontario Ministry of Research and Innovation (OMRI). SYL would like to thank the support from the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (Nos. 2013R1A4A1069528 and 2013R1A1A1076023). NR 57 TC 3 Z9 3 U1 8 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD APR 1 PY 2016 VL 107 BP 404 EP 414 DI 10.1016/j.actamat.2016.01.066 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA DI3SU UT WOS:000373419600037 ER PT J AU Shamloo, A Mohammadaliha, N Heilshorn, SC Bauer, AL AF Shamloo, Amir Mohammadaliha, Negar Heilshorn, Sarah C. Bauer, Amy L. TI A Comparative Study of Collagen Matrix Density Effect on Endothelial Sprout Formation Using Experimental and Computational Approaches SO ANNALS OF BIOMEDICAL ENGINEERING LA English DT Article DE Endothelial sprout; Matrix density; Microfluidic device; Cellular Potts Model; Multi-scale model ID TUMOR-INDUCED ANGIOGENESIS; MORPHOGENESIS IN-VITRO; CELL-BASED MODEL; CAPILLARY MORPHOGENESIS; EXTRACELLULAR MATRICES; MICROFLUIDIC PLATFORM; NETWORK FORMATION; RANDOM MOTILITY; MOLECULAR-BASIS; VEGF AB A thorough understanding of determining factors in angiogenesis is a necessary step to control the development of new blood vessels. Extracellular matrix density is known to have a significant influence on cellular behaviors and consequently can regulate vessel formation. The utilization of experimental platforms in combination with numerical models can be a powerful method to explore the mechanisms of new capillary sprout formation. In this study, using an integrative method, the interplay between the matrix density and angiogenesis was investigated. Owing the fact that the extracellular matrix density is a global parameter that can affect other parameters such as pore size, stiffness, cell-matrix adhesion and cross-linking, deeper understanding of the most important biomechanical or biochemical properties of the ECM causing changes in sprout morphogenesis is crucial. Here, we implemented both computational and experimental methods to analyze the mechanisms responsible for the influence of ECM density on the sprout formation that is difficult to be investigated comprehensively using each of these single methods. For this purpose, we first utilized an innovative approach to quantify the correspondence of the simulated collagen fibril density to the collagen density in the experimental part. Comparing the results of the experimental study and computational model led to some considerable achievements. First, we verified the results of the computational model using the experimental results. Then, we reported parameters such as the ratio of proliferating cells to migrating cells that was difficult to obtain from experimental study. Finally, this integrative system led to gain an understanding of the possible mechanisms responsible for the effect of ECM density on angiogenesis. The results showed that stable and long sprouts were observed at an intermediate collagen matrix density of 1.2 and 1.9 mg/ml due to a balance between the number of migrating and proliferating cells. As a result of weaker connections between the cells and matrix, a lower collagen matrix density (0.7 mg/ml) led to unstable and broken sprouts. However, higher matrix density (2.7 mg/ml) suppressed sprout formation due to the high level of matrix entanglement, which inhibited cell migration. This study also showed that extracellular matrix density can influence sprout branching. Our experimental results support this finding. C1 [Shamloo, Amir; Mohammadaliha, Negar] Sharif Univ Technol, Sch Mech Engn, CEEC, POB 11155-9567, Tehran, Iran. [Heilshorn, Sarah C.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Bauer, Amy L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Shamloo, A (reprint author), Sharif Univ Technol, Sch Mech Engn, CEEC, POB 11155-9567, Tehran, Iran. EM shamloo@sharif.edu OI Seperhi Shamloo, Alireza/0000-0002-4894-8664 NR 65 TC 1 Z9 1 U1 3 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-6964 EI 1573-9686 J9 ANN BIOMED ENG JI Ann. Biomed. Eng. PD APR PY 2016 VL 44 IS 4 BP 929 EP 941 DI 10.1007/s10439-015-1416-2 PG 13 WC Engineering, Biomedical SC Engineering GA DI8HJ UT WOS:000373741800009 PM 26271521 ER PT J AU Toma, M Jensen, MO Einstein, DR Yoganathan, AP Cochran, RP Kunzelman, KS AF Toma, Milan Jensen, Morten O. Einstein, Daniel R. Yoganathan, Ajit P. Cochran, Richard P. Kunzelman, Karyn S. TI Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure SO ANNALS OF BIOMEDICAL ENGINEERING LA English DT Article DE Fluid-structure interaction; Mitral valve; Forces; Comprehensive computational model; Papillary muscle; Chordal structure ID FINITE-ELEMENT MODEL; ANNULAR DILATATION; CONSTITUTIVE MODEL; IN-VITRO; REGURGITATION; REPLACEMENT; HEART; ORIENTATION; ULTRASOUND; MECHANICS AB Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices. C1 [Toma, Milan; Jensen, Morten O.; Yoganathan, Ajit P.] Georgia Inst Technol, Dept Biomed Engn, Technol Enterprise Pk,Suite 200,387 Technol Circl, Atlanta, GA 30313 USA. [Einstein, Daniel R.] Pacific NW Natl Lab, Computat Biol & Bioinformat, Richland, WA 99352 USA. [Cochran, Richard P.; Kunzelman, Karyn S.] Univ Maine, Dept Mech Engn, 219 Boardman Hall, Orono, ME 04469 USA. RP Kunzelman, KS (reprint author), Univ Maine, Dept Mech Engn, 219 Boardman Hall, Orono, ME 04469 USA. EM toma@gatech.edu; morten.jensen@bme.gatech.edu; daniel.einstein@pnnl.gov; ajit.yoganathan@bme.gatech.edu; richard.cochran@maine.edu; karyn.cochran@maine.edu FU National Heart Lung and Blood Institute [R01-HL092926] FX This study was supported by a grant from the National Heart Lung and Blood Institute (R01-HL092926). NR 43 TC 6 Z9 6 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0090-6964 EI 1573-9686 J9 ANN BIOMED ENG JI Ann. Biomed. Eng. PD APR PY 2016 VL 44 IS 4 BP 942 EP 953 DI 10.1007/s10439-015-1385-5 PG 12 WC Engineering, Biomedical SC Engineering GA DI8HJ UT WOS:000373741800010 PM 26183963 ER PT J AU Ryberg, E Forssen, C Hammer, HW Platter, L AF Ryberg, Emil Forssen, Christian Hammer, H. -W. Platter, Lucas TI Range corrections in proton halo nuclei SO ANNALS OF PHYSICS LA English DT Article DE Halo nuclei; Charge radius; Radiative capture; Effective field theory ID EFFECTIVE-FIELD THEORY; DRIP-LINE; SCATTERING; STATES; EFT AB We analyze the effects of finite-range corrections in halo effective field theory for S-wave proton halo nuclei. We calculate the charge radius to next-to-leading order and the astrophysical S-factor for low-energy proton capture to fifth order in the low energy expansion. As an application, we confront our results with experimental data for the S-factor for proton capture on Oxygen-16 into the excited 1/2(+) state of Fluorine-17. Our low-enegrgy theory is characterized by a systematic low-energy expansion, which can be used to quantify an energy-dependent model error to be utilized in data fitting. Finally, we show that the existence of proton halos is suppressed by the need for two fine tunings in the underlying theory. (C) 2016 Elsevier Inc. All rights reserved. C1 [Ryberg, Emil; Forssen, Christian; Platter, Lucas] Chalmers, Dept Fundamental Phys, SE-41296 Gothenburg, Sweden. [Hammer, H. -W.] Tech Univ Darmstadt, Inst Kernphys, Petersenstr 30, D-64289 Darmstadt, Germany. [Hammer, H. -W.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Forssen, Christian; Platter, Lucas] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Forssen, Christian; Platter, Lucas] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Platter, Lucas] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Platter, L (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM lplatter@utk.edu RI Platter, Lucas/N-3887-2013; Forssen, Christian/C-6093-2008 OI Platter, Lucas/0000-0001-6632-8250; Forssen, Christian/0000-0003-3458-0480 FU Swedish Research Council [2010-4078]; European Research Council under the European Community's Seventh Framework Programme (FP7) / ERC grant [240603]; Swedish Foundation for International Cooperation in Research and Higher Education (STINT) [IG2012-5158]; Office of Nuclear Physics, U.S. Department of Energy [DE-AC02-06CH11357, DE-AC05-00OR22725]; BMBF [05P12PDFTE, 05P15RDFN1]; Helmholtz Association [HA216/EMMI] FX We thank H. Esbensen and S. Konig for helpful discussions, and P. Mohr for supplying relevant data. This work was supported by the Swedish Research Council (dnr. 2010-4078), the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no. 240603, the Swedish Foundation for International Cooperation in Research and Higher Education (STINT, Grant No. IG2012-5158), the Office of Nuclear Physics, U.S. Department of Energy under Contract nos. DE-AC02-06CH11357 and DE-AC05-00OR22725, by the BMBF under contracts 05P12PDFTE and 05P15RDFN1, and by the Helmholtz Association under contract HA216/EMMI. NR 39 TC 1 Z9 1 U1 1 U2 1 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 EI 1096-035X J9 ANN PHYS-NEW YORK JI Ann. Phys. PD APR PY 2016 VL 367 BP 13 EP 32 DI 10.1016/j.aop.2016.01.008 PG 20 WC Physics, Multidisciplinary SC Physics GA DI7EV UT WOS:000373663000003 ER PT J AU Bennett, K Sadler, NC Wright, AT Yeager, C Hyman, MR AF Bennett, Kristen Sadler, Natalie C. Wright, Aaron T. Yeager, Chris Hyman, Michael R. TI Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MEMBRANE-PROTEINS; AZIDE-ALKYNE; WHOLE CELLS; IN-VITRO; OXIDATION; ACETYLENE; INACTIVATION; COPPER; INHIBITION; BACTERIA AB Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2-) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O-2 uptake by N. europaea by 17OD was time-and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, and de novo protein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with beta-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. C1 [Bennett, Kristen; Hyman, Michael R.] N Carolina State Univ, Dept Plant & Microbial Biol, Raleigh, NC 27695 USA. [Sadler, Natalie C.; Wright, Aaron T.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Yeager, Chris] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Hyman, MR (reprint author), N Carolina State Univ, Dept Plant & Microbial Biol, Raleigh, NC 27695 USA. EM mrhyman@ncsu.edu OI Wright, Aaron/0000-0002-3172-5253 FU Strategic Environmental Research and Development Program [ER2302] FX Strategic Environmental Research and Development Program provided funding to Michael R. Hyman under grant number ER2302. NR 48 TC 0 Z9 0 U1 13 U2 28 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2016 VL 82 IS 8 BP 2270 EP 2279 DI 10.1128/AEM.03556-15 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DI2RB UT WOS:000373343300005 PM 26826234 ER PT J AU Leekitcharoenphon, P Hendriksen, RS Le Hello, S Weill, FX Baggesen, DL Jun, SR Ussery, DW Lund, O Crook, DW Wilson, DJ Aarestrup, FM AF Leekitcharoenphon, Pimlapas Hendriksen, Rene S. Le Hello, Simon Weill, Francois-Xavier Baggesen, Dorte Lau Jun, Se-Ran Ussery, David W. Lund, Ole Crook, Derrick W. Wilson, Daniel J. Aarestrup, Frank M. TI Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104 SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MULTIPLE-DRUG RESISTANCE; MULTIDRUG-RESISTANCE; ANTIMICROBIAL RESISTANCE; ANTIBIOTIC-RESISTANCE; UNITED-STATES; SEQUENCE DATA; DT 104; INFECTIONS; ISLAND-1; SPREAD AB It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in similar to 1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in similar to 1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in similar to 1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections. C1 [Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Aarestrup, Frank M.] Tech Univ Denmark, Natl Food Inst, Res Grp Genom Epidemiol, DK-2800 Lyngby, Denmark. [Leekitcharoenphon, Pimlapas; Ussery, David W.; Lund, Ole] Tech Univ Denmark, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. [Le Hello, Simon; Weill, Francois-Xavier] Inst Pasteur, Ctr Natl Reference Salmonella, Unite Bacteries Pathogenes Enter, Paris, France. [Baggesen, Dorte Lau] Tech Univ Denmark, Natl Food Inst, Soborg, Denmark. [Jun, Se-Ran; Ussery, David W.] Oak Ridge Natl Lab, Biosci Div, Comparat Genom Grp, Oak Ridge, TN USA. [Crook, Derrick W.; Wilson, Daniel J.] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Med, Oxford OX3 9DU, England. [Wilson, Daniel J.] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England. RP Leekitcharoenphon, P (reprint author), Tech Univ Denmark, Natl Food Inst, Res Grp Genom Epidemiol, DK-2800 Lyngby, Denmark.; Leekitcharoenphon, P (reprint author), Tech Univ Denmark, Dept Syst Biol, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark. EM pile@food.dtu.dk RI Lund, Ole/F-4437-2014; OI Lund, Ole/0000-0003-1108-0491; Ussery, David/0000-0003-3632-5512; Wilson, Daniel/0000-0002-0940-3311 FU Wellcome Trust; Royal Society [101237/Z/13/Z]; Center for Genomic Epidemiology (CGE) [09-067103/DSF] FX The Wellcome Trust and the Royal Society provided funding to Daniel J. Wilson under grant number 101237/Z/13/Z. Center for Genomic Epidemiology (CGE) provided funding to Pimlapas Leekitcharoenphon under grant number 09-067103/DSF. NR 63 TC 1 Z9 2 U1 4 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2016 VL 82 IS 8 BP 2516 EP 2526 DI 10.1128/AEM.03821-15 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DI2RB UT WOS:000373343300028 PM 26944846 ER PT J AU Vigneron, A Alsop, EB Chambers, B Lomans, BP Head, IM Tsesmetzis, N AF Vigneron, Adrien Alsop, Eric B. Chambers, Brian Lomans, Bartholomeus P. Head, Ian M. Tsesmetzis, Nicolas TI Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SULFATE-REDUCING BACTERIA; 16S RIBOSOMAL-RNA; NOV SP-NOV; PELOBACTER-CARBINOLICUS; MILD-STEEL; METHANOSARCINA-BARKERI; DESULFOVIBRIO-VULGARIS; METHANOGENIC BACTERIA; MICROBIAL CORROSION; METHANE FORMATION AB Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. C1 [Vigneron, Adrien; Head, Ian M.] Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Vigneron, Adrien; Alsop, Eric B.; Tsesmetzis, Nicolas] Shell Int Exploration & Prod Inc, Houston, TX USA. [Alsop, Eric B.] DOE Joint Genome Inst, Walnut Creek, CA USA. [Chambers, Brian] Shell Global Solutions US Inc, Houston, TX USA. [Lomans, Bartholomeus P.] Shell Global Solut Int BV, Rijswijk, Netherlands. RP Vigneron, A (reprint author), Newcastle Univ, Sch Civil Engn & Geosci, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.; Vigneron, A (reprint author), Shell Int Exploration & Prod Inc, Houston, TX USA. EM avignero@gmail.com OI Vigneron, Adrien/0000-0003-3552-8369; Head, Ian/0000-0002-5373-162X FU Shell Global Solutions FX Shell Global Solutions provided funding to Adrien Vigneron. NR 79 TC 2 Z9 2 U1 9 U2 30 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2016 VL 82 IS 8 BP 2545 EP 2554 DI 10.1128/AEM.03842-15 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DI2RB UT WOS:000373343300031 PM 26896143 ER PT J AU Ryu, S Hipp, J Trinh, CT AF Ryu, Seunghyun Hipp, Julie Trinh, Cong T. TI Activating and Elucidating Metabolism of Complex Sugars in Yarrowia lipolytica (vol 82, pg 1334, 2016) SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Correction C1 [Ryu, Seunghyun; Hipp, Julie; Trinh, Cong T.] Univ Tennessee, Dept Biomol & Chem Engn, Knoxville, TN USA. [Trinh, Cong T.] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN USA. [Trinh, Cong T.] Oak Ridge Natl Lab, Bioenergy Sci Ctr BESC, Oak Ridge, TN USA. RP Ryu, S (reprint author), Univ Tennessee, Dept Biomol & Chem Engn, Knoxville, TN USA. NR 1 TC 0 Z9 0 U1 3 U2 6 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD APR PY 2016 VL 82 IS 8 BP 2572 EP 2572 DI 10.1128/AEM.00457-16 PG 1 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DI2RB UT WOS:000373343300034 PM 27044980 ER PT J AU Dodge, DA Harris, DB AF Dodge, D. A. Harris, D. B. TI Large-Scale Test of Dynamic Correlation Processors: Implications for Correlation-Based Seismic Pipelines SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID FORM CROSS-CORRELATION; EMPIRICAL SIGNAL DETECTORS; AFTERSHOCK SEQUENCE; CALIFORNIA; EVENTS; SYSTEM; FAULT AB Correlation detectors are of considerable interest to seismic monitoring communities because they offer reduced detection thresholds and combine detection, location, and identification functions into a single operation. They appear to be ideal for applications requiring screening of frequent repeating events. But questions remain about how broadly empirical correlation methods are applicable. We describe the effectiveness of banks of correlation detectors in a system that combines traditional power detectors with correlation detectors in terms of efficiency, which we define to be the fraction of events detected by the correlators. This article elaborates and extends the concept of a dynamic correlation detection framework-a system that autonomously creates correlation detectors from event waveforms detected by power detectors and reports observed performance on a network of arrays in terms of efficiency. We performed a large-scale test of dynamic correlation processors on an 11 TB global dataset using 25 arrays in the 1-3 Hz frequency band. The system found over 3.2 million unique signals and produced 459,747 screened detections. A very satisfying result is that, on average, efficiency grows with time and, after nearly 16 years of operation, exceeds 47% for events observed over all distance ranges and approaches 70% for near-regional and 90% for local events. This suggests that future pipeline architectures should make extensive use of correlation detectors, principally for decluttering observations of local and near-regional events. Our results also suggest that future operations based on correlation detection will require commodity large-scale computing infrastructure, because the numbers of correlators in an autonomous system can grow into the hundreds of thousands. C1 [Dodge, D. A.] Lawrence Livermore Natl Lab, 7000 East Ave,Mail Stop 046, Livermore, CA 94550 USA. [Harris, D. B.] Deschutes Signal Proc, 81211 East Wapinitia Rd, Maupin, OR 97037 USA. RP Dodge, DA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,Mail Stop 046, Livermore, CA 94550 USA.; Harris, DB (reprint author), Deschutes Signal Proc, 81211 East Wapinitia Rd, Maupin, OR 97037 USA. EM dodge1@llnl.gov; oregondsp@gmail.com FU U.S. Department of Energy by LLNL under Lawrence Livermore National Security, LLC [DE-AC52-07NA27344] FX We thank Stan Ruppert and Terri Hauk for their long-term work to build and maintain the Lawrence Livermore National Laboratory (LLNL) waveform ingestion systems. We thank Bill Walter and Mike Pasyanos for comments that improved the article. We also thank Eric Chael and an anonymous reviewer for suggestions that significantly helped improve the article. This work was performed in part under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC. This is LLNL Contribution Number LLNL-JRNL-676989. NR 31 TC 1 Z9 1 U1 1 U2 2 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD APR PY 2016 VL 106 IS 2 BP 435 EP 452 DI 10.1785/0120150254 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DI6CB UT WOS:000373585700011 ER PT J AU Carmichael, JD Hartse, H AF Carmichael, Joshua D. Hartse, Hans TI Threshold Magnitudes for a Multichannel Correlation Detector in Background Seismicity SO BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA LA English DT Article ID WAVE-FORM CORRELATION; INTERNATIONAL MONITORING-SYSTEM; NUCLEAR TEST-SITE; DETECTION CAPABILITY; CROSS-CORRELATION; NORTH-KOREA; PUNGGYE-RI; TEST-BAN; IMPROVEMENTS; STATISTICS AB Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against target data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because nontarget signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening nontarget background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over 6 months of 2010, by processing International Monitoring System (IMS) array data with a multichannel waveform correlation detector. Our method (1) accounts for low-amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels, and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. We find that underground explosions with body-wave magnitudes m(b) similar to 1:66are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the 12 February 2013 announced nuclear test. C1 [Carmichael, Joshua D.; Hartse, Hans] Los Alamos Natl Lab, Bikini Atoll Rd,Stop Mail 30, Los Alamos, NM 87544 USA. RP Carmichael, JD; Hartse, H (reprint author), Los Alamos Natl Lab, Bikini Atoll Rd,Stop Mail 30, Los Alamos, NM 87544 USA. EM josh.carmichael@gmail.com; joshuac@lanl.gov FU Department of Energy [DE-AC52-06NA25396] FX We thank Jessie Bonner for referring us to the 2008 work by Ringdal and others during his helpful review, Mike K. Cleveland for his careful edits and suggestions, and Amanda Ziemann for input on writing clarity. David Harris and Steve Gibbons provided useful input and productive questions on correlation detection. Los Alamos National Laboratory is operated for the Department of Energy by Los Alamos National Security, LLC, under Contract DE-AC52-06NA25396. NR 43 TC 2 Z9 2 U1 2 U2 5 PU SEISMOLOGICAL SOC AMER PI ALBANY PA 400 EVELYN AVE, SUITE 201, ALBANY, CA 94706-1375 USA SN 0037-1106 EI 1943-3573 J9 B SEISMOL SOC AM JI Bull. Seismol. Soc. Amer. PD APR PY 2016 VL 106 IS 2 BP 478 EP 498 DI 10.1785/0120150191 PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA DI6CB UT WOS:000373585700014 ER PT J AU Labotka, DM Grissino-Mayer, HD Mora, CI Johnson, EJ AF Labotka, D. M. Grissino-Mayer, H. D. Mora, C. I. Johnson, E. J. TI Patterns of moisture source and climate variability in the southeastern United States: a four-century seasonally resolved tree-ring oxygen-isotope record SO CLIMATE DYNAMICS LA English DT Article DE Tree rings; Oxygen isotopes; Climate oscillations; Paleoclimate ID ATLANTIC MULTIDECADAL OSCILLATION; NORTH-ATLANTIC; TROPICAL CYCLONES; BASIN HURRICANES; PRECIPITATION; RATIOS; RAINFALL; DROUGHT; CELLULOSE; ENSO AB This study presents a climate reconstruction utilizing a seasonally resolved 417-year oxygen-isotope record of tree rings from southern Georgia, United States (1580-1997 CE). Oxygen isotopes within the cellulose predominately reflect moisture source observed on a seasonal scale between earlywood and latewood growth. Signatures of large climate oscillations were captured in modern and subfossil wood. Spectral and wavelet transform analyses of seasonally resolved oxygen isotopes showed distinct periodicities coinciding with the Atlantic multidecadal oscillation and other major climate oscillation phenomena. Oxygen-isotope values in latewood growth revealed a significant correlation with North Atlantic sea surface temperature anomalies. This correlation suggests that the precipitation source was strongly influenced by fluctuations in the Atlantic multidecadal oscillation and teleconnections with other major climate phenomena such as the North Atlantic subtropical high-pressure system, El Nio Southern Oscillation, and Pacific Decadal Oscillation. These results emphasize the utility of oxygen isotopes in tree rings for revealing seasonal influences associated with major climate drivers over centuries and enhance our understanding of long-term climate behavior on a detailed scale. C1 [Labotka, D. M.] Univ Illinois, Illinois State Geol Survey, Prairie Res Inst, 615 E Peabody Dr, Champaign, IL 61820 USA. [Grissino-Mayer, H. D.] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA. [Mora, C. I.] Los Alamos Natl Lab, Div Earth & Environm Sci, POB 1663, Los Alamos, NM 87545 USA. [Johnson, E. J.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. RP Labotka, DM (reprint author), Univ Illinois, Illinois State Geol Survey, Prairie Res Inst, 615 E Peabody Dr, Champaign, IL 61820 USA. EM dlabotka@illinois.edu RI Mora, Claudia/B-5511-2017; OI Mora, Claudia/0000-0003-2042-0208; Labotka, Dana/0000-0001-6640-3505; Grissino-Mayer, Henri/0000-0003-1088-2927 FU National Science Foundation [BCS-0327280, EAR-0004104]; University of Tennessee President's Initiatives in Teaching and Research and Service; Geological Society of America FX This work was supported in part by National Science Foundation Grants BCS-0327280 and EAR-0004104 (to C.I. Mora and H.D. Grissino-Mayer), the University of Tennessee President's Initiatives in Teaching and Research and Service, and the Geological Society of America (to D.M. Labotka). The authors would like to acknowledge the efforts of the anonymous reviewers. NR 74 TC 2 Z9 2 U1 10 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD APR PY 2016 VL 46 IS 7-8 BP 2145 EP 2154 DI 10.1007/s00382-015-2694-y PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DI4AR UT WOS:000373442900008 ER PT J AU Aimone, JB AF Aimone, James B. TI Computational Modeling of Adult Neurogenesis SO COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY LA English DT Article ID HIPPOCAMPAL GRANULE CELLS; DENTATE GYRUS; PATTERN SEPARATION; OLFACTORY-BULB; NEURONS; MEMORY; INFORMATION; NETWORK; INTERFERENCE; ENHANCEMENT AB The restriction of adult neurogenesis to only a handful of regions of the brain is suggestive of some shared requirement for this dramatic form of structural plasticity. However, a common driver across neurogenic regions has not yet been identified. Computational studies have been invaluable in providing insight into the functional role of new neurons; however, researchers have typically focused on specific scales ranging from abstract neural networks to specific neural systems, most commonly the dentate gyrus area of the hippocampus. These studies have yielded a number of diverse potential functions for new neurons, ranging from an impact on pattern separation to the incorporation of time into episodic memories to enabling the forgetting of old information. This review will summarize these past computational efforts and discuss whether these proposed theoretical functions can be unified into a common rationale for why neurogenesis is required in these unique neural circuits. C1 [Aimone, James B.] Sandia Natl Labs, Data Driven & Neural Comp Grp, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA. RP Aimone, JB (reprint author), Sandia Natl Labs, Data Driven & Neural Comp Grp, Ctr Res Comp, POB 5800, Albuquerque, NM 87185 USA. EM jbaimon@sandia.gov RI Aimone, James/H-4694-2016 OI Aimone, James/0000-0002-7361-253X FU Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX J.B.A. is supported by Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 66 TC 1 Z9 1 U1 0 U2 2 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1943-0264 J9 CSH PERSPECT BIOL JI Cold Spring Harbor Perspect. Biol. PD APR PY 2016 VL 8 IS 4 AR a018960 DI 10.1101/cshperspect.a018960 PG 13 WC Cell Biology SC Cell Biology GA DI4RL UT WOS:000373486900001 PM 26933191 ER PT J AU Zhang, X Zhao, HH Palatinus, L Gagnon, KJ Bacsa, J Dunbar, KR AF Zhang, Xuan Zhao, Hanhua Palatinus, Lukas Gagnon, Kevin J. Bacsa, John Dunbar, Kim R. TI Self-Assembly of Organocyanide Dianions and Metal-Organic Macrocycles into Polymeric Architectures Including an Unprecedented Quadruple Helical Aperiodic Structure SO CRYSTAL GROWTH & DESIGN LA English DT Article ID MAGNETIC-PROPERTIES; SUPRAMOLECULAR INTERACTIONS; COORDINATION POLYMERS; RUTHENIUM COMPLEXES; CRYSTAL-STRUCTURES; BRIDGING LIGAND; BUILDING-BLOCK; DINUCLEAR; BEHAVIOR; TEMPERATURE AB A facile building block approach was employed for the self-assembly of metal-organic macrocyclic complexes and organocyanide dianions into one-dimensional coordination polymers. The conformation of the organocyanide dianions as well as pi-pi stacking and hydrogen bonding interactions were found to be critical factors that determine the formation of a particular structure. In the case of 1,3-dicyanamidobenzene dianion (DCNB2-) bridging ligands, the absence of water resulted in an unprecedented aperiodic quadruple helical structure in which the pi-pi stacking interaction dominates, whereas, in the presence of water, a zigzag chain compound in which hydrogen bonding interactions prevail is formed. C1 [Zhang, Xuan; Zhao, Hanhua; Dunbar, Kim R.] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. [Palatinus, Lukas] Inst Phys AS CR, Vvi, Slovance 2, Prague 18221 8, Czech Republic. [Gagnon, Kevin J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Bacsa, John] Emory Univ, Dept Chem, 1515 Pierce Dr, Atlanta, GA 30322 USA. RP Dunbar, KR (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA. EM dunbar@chem.tamu.edu RI Zhang, Xuan/G-2387-2015; BACSA, JOHN/L-8501-2016; Palatinus, Lukas/E-8358-2012 OI Zhang, Xuan/0000-0001-8214-7265; Palatinus, Lukas/0000-0002-8987-8164 FU U.S. Department of Energy, Basic Energy Sciences Materials Sciences Division [DE-SC0012582]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based on work supported by the U.S. Department of Energy, Basic Energy Sciences Materials Sciences Division, under Grant No. DE-SC0012582. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 2 Z9 2 U1 8 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD APR PY 2016 VL 16 IS 4 BP 1805 EP 1811 DI 10.1021/acs.cgd.6b00112 PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DI8JQ UT WOS:000373747700005 ER PT J AU Li, M Verena-Mudring, A AF Li, Min Verena-Mudring, Anja TI New Developments in the Synthesis, Structure, and Applications of Borophosphates and Metalloborophosphates SO CRYSTAL GROWTH & DESIGN LA English DT Review ID MONOPHOSPHATE-HYDROGENMONOBORATE-MONOPHOSPHATE; ANIONIC PARTIAL STRUCTURE; CENTER-DOT H2O; FRAMEWORK COPPER BOROPHOSPHATE; PHOSPHATE MOLECULAR-SIEVES; HYDRATED FLUX SYNTHESIS; BROMIDE IONIC LIQUIDS; 16-RING PORE OPENINGS; CRYSTAL-STRUCTURE; IONOTHERMAL SYNTHESIS AB An overview about the recent key developments of borophosphate chemistry since 2007 is given. The structural chemistry (B:P ratio, fundamental building units (FBUs), dimensionality and metal coordination), possible physical, and optical and chemical properties are discussed in detail in terms of materials obtained by traditional solid-state reactions, flux methods, and hydrothermal and ionothermal reactions. Borophosphates (BPOs) exhibit a tremendous structural variety. Which structure is formed depends critically on the chosen starting materials and synthetic conditions. For example, for metalloborophosphates (MBPOs) changing the metal-precursor can result in the formation of a new BPO. MBPOs containing chains or extended networks of interconnected transition metal-oxide polyhedra exhibit remarkable magnetic coupling schemes and electronic behavior aside from interesting optical behavior and catalytic properties. The exploration of novel fundamental building units (FBUs), such as FBUs with P-O-P bonds and two-dimensional mixed-coordinated anionic partial structures, that have not been observed previously advocates the great potential in designing novel functional BPOs for advanced applications. While many BPOs initially obtained from conventional synthetic methods can be prepared by hydrothermal synthesis, it has recently been realized that BPOs obtained by ionothermal methods often could not be synthesized by conventional synthetic methods. Thus, novel synthetic approaches offer access to new materials. C1 [Li, Min; Verena-Mudring, Anja] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Verena-Mudring, Anja] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Verena-Mudring, Anja] Iowa State Univ Sci & Technol, Ames Lab, Crit Mat Inst, Ames, IA 50011 USA. RP Verena-Mudring, A (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA.; Verena-Mudring, A (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA.; Verena-Mudring, A (reprint author), Iowa State Univ Sci & Technol, Ames Lab, Crit Mat Inst, Ames, IA 50011 USA. EM mudring@iastate.edu FU Iowa State University FX This work was supported by Iowa State University. NR 178 TC 1 Z9 1 U1 10 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD APR PY 2016 VL 16 IS 4 BP 2441 EP 2458 DI 10.1021/acs.cgd.5b01035 PG 18 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA DI8JQ UT WOS:000373747700079 ER PT J AU Lin, CJ Wade, TJ Sams, EA Dufour, AP Chapman, AD Hilborn, ED AF Lin, Cynthia J. Wade, Timothy J. Sams, Elizabeth A. Dufour, Alfred P. Chapman, Andrew D. Hilborn, Elizabeth D. TI A Prospective Study of Marine Phytoplankton and Reported Illness Among Recreational Beachgoers in Puerto Rico, 2009 SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article ID HARMFUL ALGAL BLOOMS; BLUE-GREEN-ALGAE; RED TIDE EVENTS; CLIMATE-CHANGE; LYNGBYA-MAJUSCULA; UNITED-STATES; HUMAN HEALTH; AEROSOLIZED BREVETOXINS; WATERBORNE DISEASE; PROSPECTIVE COHORT AB BACKGROUND: Blooms of marine phytoplankton may adversely affect human health. The potential public health impact of low-level exposures is not well established, and few prospective cohort studies of recreational exposures to marine phytoplankton have been conducted. OBJECTIVE: We evaluated the association between phytoplankton cell counts and subsequent illness among recreational beachgoers. METHODS: We recruited beachgoers at Boqueron Beach, Puerto Rico, during the summer of 2009. We conducted interviews at three time points to assess baseline health, water activities, and subsequent illness. Daily water samples were quantitatively assayed for phytoplankton cell count. Logistic regression models, adjusted for age and sex, were used to assess the association between exposure to three categories of phytoplankton concentration and subsequent illness. RESULTS: During 26 study days, 15,726 individuals successfully completed all three interviews. Daily total phytoplankton cell counts ranged from 346 to 2,012cells/mL (median, 712cells/mL). The category with the highest (= >= 75th percentile) total phytoplankton cell count was associated with eye irritation [adjusted odds ratio (OR) = 1.30; 95% confidence interval (CI): 1.01, 1.66], rash (OR = 1.27; 95% CI: 1.02, 1.57), and earache (OR = 1.25; 95% CI: 0.88, 1.77). In phytoplankton group-specific analyses, the category with the highest Cyanobacteria counts was associated with respiratory illness (OR = 1.37; 95% CI: 1.12, 1.67), rash (OR = 1.32; 95% CI: 1.05, 1.66), eye irritation (OR = 1.25; 95% CI: 0.97, 1.62), and earache (OR = 1.35; 95% CI: 0.95, 1.93). CONCLUSIONS: We found associations between recreational exposure to marine phytoplankton and reports of eye irritation, respiratory illness, and rash. We also found that associations varied by phytoplankton group, with Cyanobacteria having the strongest and most consistent associations. C1 [Lin, Cynthia J.] US EPA, Res Participat Program, ORISE, Chapel Hill, NC USA. [Lin, Cynthia J.] UNC Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC USA. [Wade, Timothy J.; Sams, Elizabeth A.; Hilborn, Elizabeth D.] US EPA, Environm Publ Hlth Div, Natl Hlth & Environm Effects Res Lab, Off Res & Dev, 109 TW Alexander Dr,Mail Code 58A, Res Triangle Pk, NC 27709 USA. [Dufour, Alfred P.] US EPA, Microbial Chem Environm Assessment Res Div, Natl Exposure Res Lab, Off Res & Dev, Cincinnati, OH 45268 USA. [Chapman, Andrew D.] GreenWater Labs, Palatka, FL USA. RP Hilborn, ED (reprint author), US EPA, Environm Publ Hlth Div, Natl Hlth & Environm Effects Res Lab, Off Res & Dev, 109 TW Alexander Dr,Mail Code 58A, Res Triangle Pk, NC 27709 USA. EM Hilborn.E@epa.gov FU U.S. EPA FX Funding was provided by the U.S. EPA. NR 52 TC 0 Z9 0 U1 4 U2 18 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD APR PY 2016 VL 124 IS 4 BP 477 EP 483 DI 10.1289/ehp.1409558 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA DI9OU UT WOS:000373833100022 PM 26383636 ER PT J AU Kapoor, V Li, X Chandran, K Impellitteri, CA Domingo, JWS AF Kapoor, Vikram Li, Xuan Chandran, Kartik Impellitteri, Christopher A. Domingo, Jorge W. Santo TI Use of functional gene expression and respirometry to study wastewater nitrification activity after exposure to low doses of copper SO ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH LA English DT Article DE Nitrification activity; Copper exposure; RT-qPCR; sOUR; Wastewater ID AMMONIA-OXIDIZING BACTERIA; NITROSOMONAS-EUROPAEA 19718; REAL-TIME PCR; ACTIVATED-SLUDGE; HEAVY-METALS; NITRIFYING BACTERIA; TREATMENT REACTORS; NITRITE OXIDATION; MICROBIAL ECOLOGY; NITROGEN REMOVAL AB Autotrophic nitrification in biological nitrogen removal systems has been shown to be sensitive to the presence of heavy metals in wastewater treatment plants. Using transcriptase-quantitative polymerase chain reaction (RT-qPCR) data, we examined the effect of copper on the relative expression of functional genes (i.e., amoA, hao, nirK, and norB) involved in redox nitrogen transformation in batch enrichment cultures obtained from a nitrifying bioreactor operated as a continuous reactor (24-h hydraulic retention time). 16S ribosomal RNA (rRNA) gene next-generation sequencing showed that Nitrosomonas-like populations represented 60-70 % of the bacterial community, while other nitrifiers represented < 5 %. We observed a strong correspondence between the relative expression of amoA and hao and ammonia removal in the bioreactor. There were no considerable changes in the transcript levels of amoA, hao, nirK, and norB for nitrifying samples exposed to copper dosages ranging from 0.01 to 10 mg/L for a period of 12 h. Similar results were obtained when ammonia oxidation activity was measured via specific oxygen uptake rate (sOUR). The lack of nitrification inhibition by copper at doses lower than 10 mg/L may be attributed to the role of copper as cofactor for ammonia monooxygenase or to the sub-inhibitory concentrations of copper used in this study. Overall, these results demonstrate the use of molecular methods combined with conventional respirometry assays to better understand the response of wastewater nitrifying systems to the presence of copper. C1 [Kapoor, Vikram; Li, Xuan] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Kapoor, Vikram; Li, Xuan; Impellitteri, Christopher A.; Domingo, Jorge W. Santo] US EPA, Off Res & Dev, Cincinnati, OH 45268 USA. [Chandran, Kartik] Columbia Univ, Dept Earth & Environm Engn, 500 West 120th St, New York, NY 10027 USA. RP Domingo, JWS (reprint author), US EPA, Off Res & Dev, Cincinnati, OH 45268 USA. EM santodomingo.jorge@epa.gov FU ORISE-EPA Research Fellowship; Water Environment Research Foundation; US Environmental Protection Agency, through its Office of Research and Development FX We thank Kit Daniels for building the nitrifying bioreactor and for technical assistance. VK and XL were supported by ORISE-EPA Research Fellowship. KC was supported by the Water Environment Research Foundation. The US Environmental Protection Agency, through its Office of Research and Development, funded and managed, or partially funded and collaborated in, the research described herein. This work has been subjected to the agency's administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the authors and do not necessarily reflect the views of the agency; therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. NR 47 TC 3 Z9 3 U1 9 U2 34 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0944-1344 EI 1614-7499 J9 ENVIRON SCI POLLUT R JI Environ. Sci. Pollut. Res. PD APR PY 2016 VL 23 IS 7 BP 6443 EP 6450 DI 10.1007/s11356-015-5843-2 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA DI6TF UT WOS:000373632400042 PM 26627696 ER PT J AU Langenberg, A Svensson, J Thomsen, H Marchuk, O Pablant, NA Burhenn, R Wolf, RC AF Langenberg, A. Svensson, J. Thomsen, H. Marchuk, O. Pablant, N. A. Burhenn, R. Wolf, R. C. TI Forward Modeling of X-Ray Imaging Crystal Spectrometers Within the Minerva Bayesian Analysis Framework SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article DE Bayesian analysis; X-ray imaging spectrometer; synthetic diagnostic ID COMPUTATION; TOKAMAK AB Two X-ray imaging crystal spectrometer systems are currently being prepared for commissioning at the stellarator Wendelstein 7-X (W7-X). Both are expected to be ready for the first plasma operation in 2015. The spectrometers will provide line-integrated measurements of basic plasma parameters like ion and electron temperatures (T-e, T-i), plasma rotation (nu(rot)), and argon impurity densities. A forward model based on the designed installation geometries of both spectrometers has been performed using the Minerva Bayesian analysis framework. This model allows us to create synthesized data given radial profiles of plasma parameters for a wide range of different scenarios. To simulate line-integrated spectra as measured by the (virtual) detector, the geometry and Gaussian detection noise are assumed. The line-integrated plasma parameters are inferred within the framework from noisy spectral data using the maximum posterior method. The capabilities and limitations of the model and method are discussed through examples of several synthesized data sets of different plasma parameter profiles. C1 [Langenberg, A.; Svensson, J.; Thomsen, H.; Burhenn, R.; Wolf, R. C.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Marchuk, O.] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany. [Pablant, N. A.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. RP Langenberg, A (reprint author), Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. EM andreas.langenberg@ipp.mpg.de FU Euratom research and training program [633053] FX This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training program 2014-2018 under grant agreement 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 27 TC 1 Z9 1 U1 3 U2 10 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 EI 1943-7641 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD APR PY 2016 VL 69 IS 2 BP 560 EP 567 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DI6HL UT WOS:000373599700010 ER PT J AU Li, ZG Wu, WC Wang, JH Zhang, BM Zheng, TY AF Li, Zhigang Wu, Wenchuan Wang, Jianhui Zhang, Boming Zheng, Taiyi TI Transmission-Constrained Unit Commitment Considering Combined Electricity and District Heating Networks SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Combined heat and power generation; district heating network; transmission-constrained unit commitment; wind power integration ID WIND POWER INTEGRATION; ROBUST OPTIMIZATION; ENERGY MARKETS; SYSTEM; PUMPS; GENERATION; BOILERS AB Wind power integration could be restricted by inflexible operation of combined heat and power (CHP) units due to the strong linkage between power generation and heating supply in winter. Utilization of the heat storage capacity of existing district heating network (DHN) is a cost-effective measure to enhance power system operational flexibility to accommodate large amounts of variable wind power. In this paper, transmission-constrained unit commitment (UC) with combined electricity and district heating networks (UC-CEHN) is formulated with a linear DHN model to coordinate short-term operation of electric power and district heating systems. The heat storage capacity of the DHN is modeled by capturing the quasi-dynamics of pipeline temperature. Both deterministic and robust models are developed to incorporate UC with the linear DHN model. Case studies are carried out for two test systems to show the potential benefits of the proposed method in terms of wind power integration and efficient operation. C1 [Li, Zhigang; Wu, Wenchuan; Zhang, Boming] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Zheng, Taiyi] Jilin Elect Power Supply Co, Elect Power Control Ctr, Changchun, Peoples R China. RP Wu, WC (reprint author), Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China.; Wang, JH (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM wuwench@tsinghua.edu.cn; jianhui.wang@anl.gov FU China Scholarship Council; Key Technologies Research and Development Program of China [2015BAA01B01]; National Science Foundation of China [51177080, 51321005]; U.S. Department of Energy Office of Electricity Delivery and Energy Reliability FX This work was supported in part by the China Scholarship Council, in part by the Key Technologies Research and Development Program of China under Grant 2015BAA01B01, in part by the National Science Foundation of China under Grant 51177080 and Grant 51321005, and in part by the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability. NR 38 TC 2 Z9 2 U1 5 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD APR PY 2016 VL 7 IS 2 BP 480 EP 492 DI 10.1109/TSTE.2015.2500571 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DH9XE UT WOS:000373148500004 ER PT J AU Catalao, JPS Contreras, J Bakirtzis, A Wang, JH Zareipour, H Wu, L AF Catalao, Joao P. S. Contreras, Javier Bakirtzis, Anastasios Wang, Jianhui Zareipour, Hamidreza Wu, Lei TI Guest Editorial Special Section on Reserve and Flexibility for Handling Variability and Uncertainty of Renewable Generation SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Editorial Material C1 [Catalao, Joao P. S.] Univ Porto, Fac Engn, P-4200465 Oporto, Portugal. [Contreras, Javier] Univ Castilla La Mancha, E-13071 Ciudad Real, Spain. [Bakirtzis, Anastasios] Aristotle Univ Thessaloniki, Thessaloniki 54124, Greece. [Wang, Jianhui] Argonne Natl Lab, Lemont, IL 60439 USA. [Zareipour, Hamidreza] Univ Calgary, Calgary, AB T2N 1N4, Canada. [Wu, Lei] Clarkson Univ, Potsdam, NY 13699 USA. RP Catalao, JPS (reprint author), Univ Porto, Fac Engn, P-4200465 Oporto, Portugal. EM catalao@fe.up.pt RI Catalao, Joao/I-3927-2012 OI Catalao, Joao/0000-0002-2105-3051 NR 0 TC 0 Z9 0 U1 1 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD APR PY 2016 VL 7 IS 2 BP 613 EP 613 DI 10.1109/TSTE.2016.2532019 PG 1 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DH9XE UT WOS:000373148500017 ER PT J AU Palmintier, BS Webster, MD AF Palmintier, Bryan S. Webster, Mort D. TI Impact of Operational Flexibility on Electricity Generation Planning With Renewable and Carbon Targets SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Flexibility; capacity expansion; renewables; unit commitment; integer programming; carbon policy ID SYSTEMS AB Recent work on operational flexibility-a power system's ability to respond to variations in demand and supply-has focused on the impact of large penetration of renewable generation on existing power systems. Operational flexibility is equally important for long-term capacity expansion planning. Future systems with larger shares of renewable generation, and/or carbon emission limits, will require flexible generation mixes; yet, flexibility is rarely fully considered in capacity planning models because of the computational demands of including mixed integer unit commitment within capacity expansion. We present a computationally efficient unit commitment/maintenance/capacity planning formulation that includes the critical operating constraints. An example of capacity planning for a Texas-like system in 2035 with hypothetical RPS and carbon policies shows how considering flexibility results in different capacity and energy mixes and emissions, and that the omission of flexibility can lead to a system that is unable to simultaneously meet demand, carbon, and RPS requirements. C1 [Palmintier, Bryan S.] MIT, Engn Syst Div, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Palmintier, Bryan S.] Natl Renewable Energy Lab, Golden, CO USA. [Webster, Mort D.] Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. RP Palmintier, BS (reprint author), MIT, Engn Syst Div, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Palmintier, BS (reprint author), Natl Renewable Energy Lab, Golden, CO USA.; Webster, MD (reprint author), Penn State Univ, Dept Energy & Mineral Engn, University Pk, PA 16802 USA. EM bryanp@ieee.org; mort@psu.edu FU U.S. National Science Foundation [1128147, 835414] FX This work was supported by the U.S. National Science Foundation under Grants 1128147 and 835414. NR 44 TC 2 Z9 2 U1 0 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD APR PY 2016 VL 7 IS 2 BP 672 EP 684 DI 10.1109/TSTE.2015.2498640 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DH9XE UT WOS:000373148500023 ER PT J AU Li, N Uckun, C Constantinescu, EM Birge, JR Hedman, KW Botterud, A AF Li, Nan Uckun, Canan Constantinescu, Emil M. Birge, John R. Hedman, Kory W. Botterud, Audun TI Flexible Operation of Batteries in Power System Scheduling With Renewable Energy SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Battery; economic dispatch; energy storage; flexible resources; integer programming; power system economics; power system reliability; real-time operation; renewable resources; stochastic unit commitment ID UNIT COMMITMENT; STORAGE; UNCERTAINTY; GENERATION AB The fast growing expansion of renewable energy increases the complexities in balancing generation and demand in the power system. The energy-shifting and fast-ramping capability of energy storage has led to increasing interests in batteries to facilitate the integration of renewable resources. In this paper, we present a two-step framework to evaluate the potential value of energy storage in power systems with renewable generation. First, we formulate a stochastic unit commitment approach with wind power forecast uncertainty and energy storage. Second, the solution from the stochastic unit commitment is used to derive a flexible schedule for energy storage in economic dispatch where the look-ahead horizon is limited. Analysis is conducted on the IEEE 24-bus system to demonstrate the benefits of battery storage in systems with renewable resources and the effectiveness of the proposed battery operation strategy. C1 [Li, Nan; Hedman, Kory W.] Arizona State Univ, Tempe, AZ 85287 USA. [Uckun, Canan; Constantinescu, Emil M.; Botterud, Audun] Argonne Natl Lab, Lemont, IL 60439 USA. [Birge, John R.] Univ Chicago, Chicago, IL 60637 USA. RP Li, N; Hedman, KW (reprint author), Arizona State Univ, Tempe, AZ 85287 USA.; Uckun, C; Constantinescu, EM; Botterud, A (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA.; Birge, JR (reprint author), Univ Chicago, Chicago, IL 60637 USA. EM nanli4@asu.edu; cuckun@anl.gov; emconsta@anl.gov; jbirge@chichagobooth.edu; khedman@asu.edu; abotterud@anl.gov FU Department of Energy under DOE [DE-AC02-06CH11357]; Power Systems Engineering Research Center (PSERC); University of Chicago Booth School of Business FX This work was supported by the Department of Energy under DOE Contract No. DE-AC02-06CH11357 awarded to UChicago Argonne, LLC, operator of Argonne National Laboratory, the Power Systems Engineering Research Center (PSERC), and the University of Chicago Booth School of Business. NR 35 TC 4 Z9 4 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD APR PY 2016 VL 7 IS 2 BP 685 EP 696 DI 10.1109/TSTE.2015.2497470 PG 12 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA DH9XE UT WOS:000373148500024 ER PT J AU Wu, CC Aubry, S Arsenlis, A Chung, PW AF Wu, Chi-Chin Aubry, Sylvie Arsenlis, Athanasios Chung, Peter W. TI Binary dislocation junction formation and strength in hexagonal close-packed crystals SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Dislocations; Dynamics; Elastic material; Analytic functions ID FCC METALS; FOREST INTERACTIONS; SINGLE-CRYSTALS; PRISMATIC SLIP; MECHANISMS; DYNAMICS; PLASTICITY; SIMULATIONS; MODEL; STRESS AB This work examines binary dislocation interactions, junction formation and junction strengths in hexagonal close-packed (hcp) crystals. Through a line-tension model and dislocation dynamics (DD) simulations, the interaction and dissociation of different sets of binary junctions are investigated involving one dislocation on the (01 (1) over bar0) prismatic plane and a second dislocation on one of the following planes: (0001) basal, (1 (1) over bar 00) prismatic, (1 (1) over bar 01) primary pyramidal, or ((2) over bar 112) secondary pyramidal. Varying pairs of Burgers vectors are chosen from among the common types: the basal type : 1/3 <11<(2)over bar>0 >, prismatic type :<0001>, and pyramidal type : 1/3 <11<(23)over bar> >. For binary interaction due to dislocation intersection, both the analytical results and DD-simulations indicate a relationship between symmetry of interaction maps and the relative magnitude of the Burgers vectors that constitute the junction. Using analytical formulae, a simple regressive model is also developed to represent the junction yield surface. The equation is treated as a degenerated super elliptical equation to quantify the aspect ratio and tilting angle. The results provide analytical insights on binary dislocation interactions that may occur in general hcp metals. (c) 2015 Elsevier Ltd. All rights reserved. C1 [Wu, Chi-Chin] US Army Res Lab, Energet Mat Sci Branch, Lethal Div, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA. [Aubry, Sylvie; Arsenlis, Athanasios] Lawrence Livermore Natl Lab, Div Mat Sci, POB 808,L-367, Livermore, CA 94551 USA. [Chung, Peter W.] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA. [Chung, Peter W.] US Army Res Lab, Computat Sci Div, Computat & Informat Sci Directorate, Adelphi, MD 20783 USA. RP Wu, CC (reprint author), US Army Res Lab, Energet Mat Sci Branch, Lethal Div, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA. EM chi-chin.wu.ctr@mail.mil OI Wu, Chi-Chin/0000-0002-6036-3271 FU Secure Mission Solutions, Inc. [N65235-06-D8847]; Oak Ridge Institute for Science and Education Program in Maryland [ORISE-1120-1120-99]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Computational Sciences Division of ARL; Army Research Office [W911NF1410330]; Department of Mechanical Engineering, University of Maryland at College Park FX The corresponding author Chi-Chin Wu would like to acknowledge the support from the Secure Mission Solutions, Inc. (N65235-06-D8847) and Oak Ridge Institute for Science and Education Program in Maryland (ORISE-1120-1120-99). The simulations in this article by authors Wu and Chung were performed at the Computational and Information Sciences Directorate (CISD) of US Army Research Laboratory (ARL) using the computing resources provided by ARL High Performance Supercomputing Resource Center (DSRC). The efforts of binary interaction maps by authors Aubry and Arsenlis were performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344. Author Chung would also like to acknowledge partial support from the Computational Sciences Division of ARL, the Army Research Office (W911NF1410330) and the Department of Mechanical Engineering, University of Maryland at College Park. NR 48 TC 1 Z9 1 U1 2 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD APR PY 2016 VL 79 BP 176 EP 195 DI 10.1016/j.ijplas.2015.12.003 PG 20 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA DI5PK UT WOS:000373550900007 ER PT J AU Wang, H Clausen, B Capolungo, L Beyerlein, IJ Wang, J Tome, CN AF Wang, H. Clausen, B. Capolungo, L. Beyerlein, I. J. Wang, J. Tome, C. N. TI Stress and strain relaxation in magnesium AZ31 rolled plate: In-situ neutron measurement and elastic viscoplastic polycrystal modeling SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Strain relaxation; Stress relaxation; Magnesium alloy; Neutron diffraction; Stress distribution ID CLOSE-PACKED METALS; LATTICE STRAINS; ALLOY AZ31B; DISLOCATION DENSITIES; MECHANICAL-BEHAVIOR; TEXTURE DEVELOPMENT; PLASTICITY MODELS; SINGLE-CRYSTALS; DEFORMATION; DIFFRACTION AB Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that the magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. The internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds. Published by Elsevier Ltd. C1 [Wang, H.; Clausen, B.; Wang, J.; Tome, C. N.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Capolungo, L.] Georgia Inst Technol, George Woodruff Sch Mech Engn, F-57070 Metz, France. [Capolungo, L.] UMI 2958 Georgia Tech CNRS, F-57070 Metz, France. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wang, H (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM wanghm@lanl.gov RI Wang, Huamiao/F-7693-2010; Clausen, Bjorn/B-3618-2015; Wang, Jian/F-2669-2012 OI Wang, Huamiao/0000-0002-7167-2483; Clausen, Bjorn/0000-0003-3906-846X; Wang, Jian/0000-0001-5130-300X FU U.S. Dept. of Energy, Office of Basic Energy Sciences [FWP 06SCPE401]; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396] FX This work is fully funded by the U.S. Dept. of Energy, Office of Basic Energy Sciences Project FWP 06SCPE401. This work has benefited from the use of SMARTS and HIPPO at the Lujan Center at Los Alamos Science Center. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. NR 51 TC 5 Z9 5 U1 9 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD APR PY 2016 VL 79 BP 275 EP 292 DI 10.1016/j.ijplas.2015.07.004 PG 18 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA DI5PK UT WOS:000373550900012 ER PT J AU Zeng, Y Hunter, A Beyerlein, IJ Koslowski, M AF Zeng, Y. Hunter, A. Beyerlein, I. J. Koslowski, M. TI A phase field dislocation dynamics model for a bicrystal interface system: An investigation into dislocation slip transmission across cube-on-cube interfaces SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Dislocations; Crystal plasticity; Metallic material ID DEFORMATION MECHANISMS; CRYSTAL PLASTICITY; GRAIN-BOUNDARY; NANOCRYSTALLINE METALS; SCREW DISLOCATION; COMPOSITES; NI; SIMULATIONS; STRENGTH; NICKEL AB In this work, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress tau(crit) required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of tau(crit) accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results show that the value of tau(crit) associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in tau(crit) generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for tau(crit) based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated tau(crit) values. Significantly, the analysis reveals that tau(crit) scales with a((2))G((2))/a((1))+a((2)) (a((1))/a((2)) - G((1)/)G((2)))(2), where G is the shear modulus, a isthe lattice parameter, and the superscripts (1) and (2) indicate quantities for material 1 and material 2, respectively. Published by Elsevier Ltd. C1 [Zeng, Y.; Koslowski, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Hunter, A.; Beyerlein, I. J.] Los Alamos Natl Lab, POB 1663 MS T086, Los Alamos, NM 87545 USA. RP Hunter, A (reprint author), Los Alamos Natl Lab, POB 1663 MS T086, Los Alamos, NM 87545 USA. EM ahunter@lanl.gov FU United States Department of Energy Office of Basic Energy Science (US DOE-BES) [DE-FG02-07ER46398]; Laboratory Directed Research and Development (LDRD) Program [20130745ECR, 20140348ER] FX YZ and MK would like to acknowledge support from the United States Department of Energy Office of Basic Energy Science (US DOE-BES) under contract No. DE-FG02-07ER46398. AH and IJB would like to acknowledge the support of the Laboratory Directed Research and Development (LDRD) Program through projects 20130745ECR and 20140348ER. NR 67 TC 4 Z9 4 U1 8 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD APR PY 2016 VL 79 BP 293 EP 313 DI 10.1016/j.ijplas.2015.09.001 PG 21 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA DI5PK UT WOS:000373550900013 ER PT J AU Alkire, RW Rotella, FJ Duke, NEC Otwinowski, Z Borek, D AF Alkire, R. W. Rotella, F. J. Duke, N. E. C. Otwinowski, Zbyszek Borek, Dominika TI Taking a look at the calibration of a CCD detector with a fiber-optic taper SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE CCD detectors; fiber-optic tapers; flat-field calibration; data scaling; anomalous signal ID CHARGE-COUPLED-DEVICE; X-RAY-DETECTOR; PROTEIN CRYSTALLOGRAPHY; DIFFRACTION INTENSITIES; RADIATION-DAMAGE; AREA DETECTORS; SYNCHROTRON; RESOLUTION; INTEGRATION; REFINEMENT AB At the Structural Biology Center beamline 19BM, located at the Advanced Photon Source, the operational characteristics of the equipment are routinely checked to ensure they are in proper working order. After performing a partial flat-field calibration for the ADSC Quantum 210r CCD detector, it was confirmed that the detector operates within specifications. However, as a secondary check it was decided to scan a single reflection across one-half of a detector module to validate the accuracy of the calibration. The intensities from this single reflection varied by more than 30% from the module center to the corner of the module. Redistribution of light within bent fibers of the fiber-optic taper was identified to be a source of this variation. The degree to which the diffraction intensities are corrected to account for characteristics of the fiber-optic tapers depends primarily upon the experimental strategy of data collection, approximations made by the data processing software during scaling, and crystal symmetry. C1 [Alkire, R. W.; Rotella, F. J.; Duke, N. E. C.] Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. [Otwinowski, Zbyszek; Borek, Dominika] Univ Texas SW Med Ctr Dallas, Dept Biophys, 5323 Harry Hines Blvd, Dallas, TX 75390 USA. RP Alkire, RW (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alkire@anl.gov RI Borek, Dominika/D-2943-2011 OI Borek, Dominika/0000-0002-4321-6253 FU US Department of Energy, Office of Biological and Environmental Research [DE-AC02-06CH11357]; NIH [R01GM053163, R01GM117080] FX The authors would like to thank Kay Diederichs for very helpful discussions in the preparation of this paper. Argonne National Laboratory's work was supported by the US Department of Energy, Office of Biological and Environmental Research under contract DE-AC02-06CH11357. The work of ZO and DB was supported by NIH grant Nos. R01GM053163 and R01GM117080. NR 30 TC 0 Z9 0 U1 5 U2 8 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD APR PY 2016 VL 49 BP 415 EP 425 DI 10.1107/S1600576716000431 PN 2 PG 11 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DI7SJ UT WOS:000373702000007 PM 27047303 ER PT J AU Michels-Clark, TM Savici, AT Lynch, VE Wang, XP Hoffmann, CM AF Michels-Clark, Tara M. Savici, Andrei T. Lynch, Vickie E. Wang, Xiaoping Hoffmann, Christina M. TI Expanding Lorentz and spectrum corrections to large volumes of reciprocal space for single-crystal time-of-flight neutron diffraction SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE modulated diffuse scattering; local structure modeling; Lorentz and spectrum corrections; single-crystal time-of-flight neutron diffraction ID DIFFUSE-SCATTERING; MONTE-CARLO; UP-CONVERSION; FLUORIDE AB Evidence is mounting that potentially exploitable properties of technologically and chemically interesting crystalline materials are often attributable to local structure effects, which can be observed as modulated diffuse scattering (mDS) next to Bragg diffraction (BD). BD forms a regular sparse grid of intense discrete points in reciprocal space. Traditionally, the intensity of each Bragg peak is extracted by integration of each individual reflection first, followed by application of the required corrections. In contrast, mDS is weak and covers expansive volumes of reciprocal space close to, or between, Bragg reflections. For a representative measurement of the diffuse scattering, multiple sample orientations are generally required, where many points in reciprocal space are measured multiple times and the resulting data are combined. The common post-integration data reduction method is not optimal with regard to counting statistics. A general and inclusive data processing method is needed. In this contribution, a comprehensive data analysis approach is introduced to correct and merge the full volume of scattering data in a single step, while correctly accounting for the statistical weight of the individual measurements. Development of this new approach required the exploration of a data treatment and correction protocol that includes the entire collected reciprocal space volume, using neutron time-of-flight or wavelength-resolved data collected at TOPAZ at the Spallation Neutron Source at Oak Ridge National Laboratory. C1 [Michels-Clark, Tara M.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Michels-Clark, Tara M.; Savici, Andrei T.; Lynch, Vickie E.; Wang, Xiaoping; Hoffmann, Christina M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hoffmann, CM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM choffmann@ornl.gov RI Wang, Xiaoping/E-8050-2012; hoffmann, christina/D-2292-2016 OI Wang, Xiaoping/0000-0001-7143-8112; hoffmann, christina/0000-0002-7222-5845 FU Sinergia grant from the Swiss National Science Foundation (SNF) [CRSIKO_122706]; University of Tennessee; Oak Ridge National Laboratory; Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy; US Department of Energy [DE-AC05-00OR22725]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX We acknowledge Dr Nicholas Sauter for providing support for TMC as a postdoctoral fellow at Lawrence Berkeley National Laboratory. Professor Hans-Beat Burgi, University of Bern/University of Zurich, has been mentoring structure modeling of NaLaF4 with ZODS as part of TMC's PhD thesis. Dr Michal Chodkiewicz has been the force behind the ZODS program development. The single crystals for the experiment were generously provided by Dr Karl Kramer at the University of Bern, Switzerland, through Hans-Beat Burgi. A special thank you is extended to Arthur Schultz for thoughtful discussions. X-ray data were collected by Dr R. Custelcean at Chemical Sciences Division, Oak Ridge National Laboratory. TMC was supported through a Sinergia grant (CRSIKO_122706) from the Swiss National Science Foundation (SNF) for part of the PhD research, as well as by the University of Tennessee and Oak Ridge National Laboratory. Research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Oak Ridge National Laboratory is managed by UT-Battelle LLC under contract No. DE-AC05-00OR22725 with the US Department of Energy. Computing time to simulate the diffuse scattering model used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract No. DE-AC02-05CH11231. NR 34 TC 0 Z9 0 U1 1 U2 7 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD APR PY 2016 VL 49 BP 497 EP 506 DI 10.1107/S1600576716001369 PN 2 PG 10 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DI7SJ UT WOS:000373702000017 ER PT J AU Shade, PA Menasche, DB Bernier, JV Kenesei, P Park, JS Suter, RM Schuren, JC Turner, TJ AF Shade, Paul A. Menasche, David B. Bernier, Joel V. Kenesei, Peter Park, Jun-Sang Suter, Robert M. Schuren, Jay C. Turner, Todd J. TI Fiducial marker application method for position alignment of in situ multimodal X-ray experiments and reconstructions SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article DE high-energy diffraction microscopy; HEDM; X-ray diffraction; three-dimensional characterization; microstructure; fiducial markers ID DIFFRACTION CONTRAST TOMOGRAPHY; POLYCRYSTALLINE MATERIALS; GRAIN; MICROSCOPY; MICROTOMOGRAPHY; OPPORTUNITIES; ORIENTATION; TOOL AB An evolving suite of X-ray characterization methods are presently available to the materials community, providing a great opportunity to gain new insight into material behavior and provide critical validation data for materials models. Two critical and related issues are sample repositioning during an in situ experiment and registration of multiple data sets after the experiment. To address these issues, a method is described which utilizes a focused ion-beam scanning electron microscope equipped with a micromanipulator to apply gold fiducial markers to samples for X-ray measurements. The method is demonstrated with a synchrotron X-ray experiment involving in situ loading of a titanium alloy tensile specimen. C1 [Shade, Paul A.; Schuren, Jay C.; Turner, Todd J.] US Air Force, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. [Menasche, David B.; Suter, Robert M.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Bernier, Joel V.] Lawrence Livermore Natl Lab, Engn Directorate, Livermore, CA 94550 USA. [Kenesei, Peter; Park, Jun-Sang] Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. [Schuren, Jay C.] Nutonian Inc, Somerville, MA 02144 USA. RP Shade, PA (reprint author), US Air Force, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA. EM paul.shade.1@us.af.mil RI Shade, Paul/H-6459-2011; Suter, Robert/P-2541-2014 OI Suter, Robert/0000-0002-0651-0437 FU Materials and Manufacturing Directorate of the US Air Force Research Laboratory; US DOE [DEAC02-06CH11357] FX The authors thank Dr Michael Uchic (Air Force Research Laboratory) for useful discussions regarding the fiducial marker fabrication methodology, Dr Adam Pilchak (Air Force Research Laboratory) for providing the Ti-7Al material, and Basil Blank (PulseRay), Ali Mashayekhi (Advanced Photon Source) and Jon Almer (Advanced Photon Source) for help with the experiment. The authors acknowledge support from the Materials and Manufacturing Directorate of the US Air Force Research Laboratory. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract No. DEAC02-06CH11357. NR 26 TC 4 Z9 4 U1 2 U2 10 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD APR PY 2016 VL 49 BP 700 EP 704 DI 10.1107/S1600576716001989 PN 2 PG 5 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DI7SJ UT WOS:000373702000045 ER PT J AU Michels-Clark, TM Lynch, VE Hoffmann, CM Hauser, J Weber, T Harrison, R Burgi, HB AF Michels-Clark, T. M. Lynch, V. E. Hoffmann, C. M. Hauser, J. Weber, T. Harrison, R. Buergi, H. B. TI Analyzing diffuse scattering with supercomputers (vol 46, pg 1616, 2013) SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Correction DE diffuse scattering; quantitative analysis; supercomputers C1 [Michels-Clark, T. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Michels-Clark, T. M.; Lynch, V. E.; Hoffmann, C. M.] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. [Hauser, J.; Buergi, H. B.] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland. [Weber, T.] ETH, Lab Kristallog, Wolfgang Pauli Str 10, CH-8093 Zurich, Switzerland. [Harrison, R.] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Buergi, H. B.] Univ Zurich, Dept Chem, Winterthurerstr 190, CH-8057 Zurich, Switzerland. RP Michels-Clark, TM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Michels-Clark, TM (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM tmichels-clark@ion.chem.utk.edu RI hoffmann, christina/D-2292-2016 OI hoffmann, christina/0000-0002-7222-5845 NR 2 TC 0 Z9 0 U1 1 U2 6 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD APR PY 2016 VL 49 BP 713 EP 714 PN 2 PG 2 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA DI7SJ UT WOS:000373702000048 ER PT J AU Paradis, CJ Jagadamma, S Watson, DB McKay, LD Hazen, TC Park, M Istok, JD AF Paradis, Charles J. Jagadamma, Sindhu Watson, David B. McKay, Larry D. Hazen, Terry C. Park, Melora Istok, Jonathan D. TI In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Uranium; Reduction; Oxidation; Mobility; Nitrate; Sulfate ID OXIDATIVE DISSOLUTION; CONTAMINATED AQUIFER; MARINE-SEDIMENTS; DISSOLVED-OXYGEN; BIOLOGICAL REDUCTION; CHEMICAL-REDUCTION; ELEMENTAL SULFUR; IRON SULFIDE; REOXIDATION; BIOREMEDIATION AB Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 mu M) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. The results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species. (C) 2016 The Authors. Published by Elsevier B.V. C1 [Paradis, Charles J.; McKay, Larry D.; Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetary Sci, Room 306,1412 Circle Dr, Knoxville, TN 37996 USA. [Jagadamma, Sindhu; Watson, David B.; Hazen, Terry C.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37830 USA. [Hazen, Terry C.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Hazen, Terry C.] Univ Tennessee, Inst Secure & Sustainable Environm, Knoxville, TN 37996 USA. [Park, Melora; Istok, Jonathan D.] Oregon State Univ, Sch Civil & Construct Engn, Corvallis, OR 97331 USA. RP Paradis, CJ (reprint author), Univ Tennessee, Dept Earth & Planetary Sci, Room 306,1412 Circle Dr, Knoxville, TN 37996 USA. EM charlesjparadis@gmail.com RI Hazen, Terry/C-1076-2012; OI Hazen, Terry/0000-0002-2536-9993; Paradis, Charles/0000-0002-1072-3988 FU Office of Biological and Environmental Research (OBER) of the Office of Science, U.S. Department of Energy (DOE), Natural and Accelerated Bioremediation Research (NABIR) Program [FG03-02ER63443, DE-FC02-96ER62278]; ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies, a Scientific Focus Area Program at Lawrence Berkeley National Laboratory; OBER of the Office of Science, U.S. DOE [DE-AC02-05CH11231] FX This research was funded by grants FG03-02ER63443 and DE-FC02-96ER62278, from the Office of Biological and Environmental Research (OBER) of the Office of Science, U.S. Department of Energy (DOE), Natural and Accelerated Bioremediation Research (NABIR) Program. This research was also funded by ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory and is based upon work supported by the OBER of the Office of Science, U.S. DOE, under contract number DE-AC02-05CH11231. The authors would like to thank Katie Fitzgerald, Steve Techtmann, Dominque Joyner, and Julian Fortney from UT Knoxville for their technical assistance and helpful suggestions during the data analysis and writing portions of this research. The authors would also like thank Melora Park, Jesse Jones, and Robert Laughman for their assistance during the field and laboratory portions of this research. NR 56 TC 2 Z9 2 U1 12 U2 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 EI 1873-6009 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD APR PY 2016 VL 187 BP 55 EP 64 DI 10.1016/j.jconhyd.2016.02.002 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA DI5LT UT WOS:000373541300005 PM 26897652 ER PT J AU Sadegh, M Vrugt, JA Gupta, HV Xu, C AF Sadegh, M. Vrugt, J. A. Gupta, H. V. Xu, C. TI The soil water characteristic as new class of closed-form parametric expressions for the flow duration curve SO JOURNAL OF HYDROLOGY LA English DT Article DE Closed-form expression for FDC; Soil water characteristic; Regionalization of FDC ID MONTE-CARLO-SIMULATION; LOGNORMAL-DISTRIBUTION MODEL; UNGAUGED BASINS; REGIONAL PATTERNS; PHYSICAL CONTROLS; CATCHMENT CLASSIFICATION; HYDROLOGICAL MODELS; HYDRAULIC CONDUCTIVITY; PERFORMANCE EVALUATION; EMPIRICAL-ANALYSIS AB The flow duration curve is a signature catchment characteristic that depicts graphically the relationship between the exceedance probability of streamflow and its magnitude. This curve is relatively easy to create and interpret, and is used widely for hydrologic analysis, water quality management, and the design of hydroelectric power plants (among others). Several mathematical expressions have been proposed to mimic the FDC. Yet, these efforts have not been particularly successful, in large part because available functions are not flexible enough to portray accurately the functional shape of the FDC for a large range of catchments and contrasting hydrologic behaviors. Here, we extend the work of Vrugt and Sadegh (2013) and introduce several commonly used models of the soil water characteristic as new class of closed-form parametric expressions for the flow duration curve. These soil water retention functions are relatively simple to use, contain between two to three parameters, and mimic closely the empirical FDCs of 430 catchments of the MOPEX data set. We then relate the calibrated parameter values of these models to physical and climatological characteristics of the watershed using multivariate linear regression analysis, and evaluate the regionalization potential of our proposed models against those of the literature. If quality of fit is of main importance then the 3-parameter van Genuchten model is preferred, whereas the 2-parameter lognormal, 3-parameter GEV and generalized Pareto models show greater promise for regionalization. (C) 2016 Elsevier B.V. All rights reserved. C1 [Sadegh, M.; Vrugt, J. A.] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. [Vrugt, J. A.] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA. [Gupta, H. V.] Univ Arizona, Dept Hydrol & Water Resources, Tucson, CA USA. [Xu, C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Vrugt, JA (reprint author), Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA USA. EM msadegh@uci.edu; jasper@uci.edu; hoshin.gupta@hwr.arizona.edu; xcu@lanl.gov RI Gupta, Hoshin/D-1642-2010; OI Gupta, Hoshin/0000-0001-9855-2839; Xu, Chonggang/0000-0002-0937-5744 FU UC-Lab Fees Research Program [237825] FX The first and second author appreciate the support and funding from the UC-Lab Fees Research Program Award 237825. The MATLAB code of FDCFIT can be obtained from the second author upon request, (jasper@uci.edu). The MOPEX data set is freely available and can be downloaded from the following website: http://ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/. NR 96 TC 0 Z9 0 U1 4 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 EI 1879-2707 J9 J HYDROL JI J. Hydrol. PD APR PY 2016 VL 535 BP 438 EP 456 DI 10.1016/j.jhydrol.2016.01.027 PG 19 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA DI3TN UT WOS:000373421500038 ER PT J AU Xiao, XY Miller, LL Bernstein, R Hochrein, JM AF Xiao, Xiaoyin Miller, Lance L. Bernstein, Robert Hochrein, James M. TI Thermal degradation of -carotene studied by ion mobility atmospheric solid analysis probe mass spectrometry: full product pattern and selective ionization enhancement SO JOURNAL OF MASS SPECTROMETRY LA English DT Article DE low volatility compounds; degradation mechanisms; conformation distribution; ionization enhancement; selectivity ID TRANS-BETA-CAROTENE; ISOMERIZATION; PRESSURE; KINETICS; POLYENES AB Atmospheric solid analysis probe mass spectrometry has the capability of capturing full product patterns simultaneously including both volatile and semi-volatile compounds produced at elevated temperatures. Real-time low-energy collision-induced fragmentation combined with ion mobility separations enables rapid identification of the chemical structures of products. We present here for the first time the recognition of full product patterns resulting from the thermal degradation of -carotene at temperatures up to 600 degrees C. Solvent vapor-induced ionization enhancement is observed, which reveals parallel thermal dissociation processes that lead to even- and odd-numbered mass products. The drift-time distributions of high mass products, along with -carotene, were monitored with temperature, showing multiple conformations that are associated with the presence of two -rings. Products of masses 346/347, however, show a single conformation distribution, which indicates the separation of two -rings resulting from the direct bond scission at the polyene hydrocarbon chain. The thermal degradation pathways are evaluated and discussed. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. C1 [Xiao, Xiaoyin; Miller, Lance L.; Bernstein, Robert; Hochrein, James M.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Hochrein, JM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jmhochr@sandia.gov FU Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories (SNL); US Department of Energy [DE-AC04-94AL85000] FX This work was supported by Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories (SNL). SNL is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. We had valuable discussions with Drs. Leah Appelhans and Curtis D. Mowry (both Sandians). NR 31 TC 2 Z9 2 U1 5 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1076-5174 EI 1096-9888 J9 J MASS SPECTROM JI J. Mass Spectrom. PD APR PY 2016 VL 51 IS 4 BP 309 EP 314 DI 10.1002/jms.3755 PG 6 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA DI9JL UT WOS:000373818800007 PM 27041662 ER PT J AU Stulberg, MJ Huang, Q AF Stulberg, Michael J. Huang, Qi TI A computer program for fast and easy typing of a partial endoglucanase gene sequence into genospecies and sequevars 1&2 of the Ralstonia solanacearum species complex SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Ralstonia solanacearum species complex; Genospecies; Phylotype; Sequevar; Endoglucanase; Sequence typing; Quarantine pathogen; Select agent; Computer program ID REAL-TIME; BIOVAR 2; STRAINS; DIVERSITY; ASSAY; PCR; MULTIPLEX AB The phytopathogen Ralstonia solanacearum is a species complex that contains race 3 biovar 2 strains belonging to phylotype IIB sequevars 1 and 2 that are quarantined or select agent pathogens. Recently, the R. solanacearum species complex strains have been reclassified into three genospecies: R. solanacearum, Ralstonia pseudosolanacearum and Ralstonia syzygii. An unidentified R. solanacearum strain is considered a select agent in the US until proven to be a non-race 3 biovar 2 (non-phylotype IIB sequevars 1&2). Currently, sequevars of R. solanacearum species complex strains can only be determined by phylogenetic analysis of a partial endoglucanase (egl) sequence of approximately 700-bp in length. Such analysis, however, requires expert knowledge to properly trim the sequence, to include the correct reference strains, and to interpret the results. By com-. paring GenBank egl sequences of representative R. solanacearum species-complex strains, we identified genospecies- and sequevar 1 and 2-specific single nucleotide polymorphisms (SNPs). We also designed primers to amplify a shorter, 526-bp, egl fragment from R. solanacearum species complex strains for easy sequencing of the amplicon, and to facilitate direct and specific amplification of egl from R. solanacearum-infected plant samples without the need of bacterial isolation. We wrote a computer program (Ralstonia solanacearum typing program) that analyzes a minimum 400-bp user-input egl sequence from a R. solanacearum strain for egl homology and SNP content to determine 1) whether it belongs to the R. solanacearum species complex, 2) if so, to which genospecies, and 3) whether it is of the sequevar type (sequevars 1 and 2) associated with the select agent/quarantined R. solanacearum strain. The program correctly typed all 371 tested egl sequences with known sequevars, obtained either from GenBank or through personal communication. Additionally, the program successfully typed 25 R. solanacearum strains in our collection with no prior sequevar information, as well as 4 strains in infected plant samples, using their partial egl sequences amplified and sequenced with primers designed in this study. The Ralstonia solanacearum typing program does not require expertise or specific knowledge to use, gives results in seconds, and provides data interpretation for the user. The program and primers can help expert or non-expert users to quickly type an unknown R. solanacearum species-complex strain and determine whether it is a highly regulated R. solanacearum strain. The program can also serve as a confirmation method, since it is the only method that can easily and directly determine whether the strain in question is a sequevar 1 or 2 strain of R. solanacearum. Published by Elsevier B.V. C1 [Stulberg, Michael J.; Huang, Qi] ARS, Floral & Nursery Plants Res Unit, USDA, Beltsville, MD USA. [Stulberg, Michael J.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Huang, Q (reprint author), ARS, Floral & Nursery Plants Res Unit, USDA, Beltsville, MD USA. EM qi.huang@ars.usda.gov FU U.S. Department of Agriculture (USDA); Agricultural Research Service (ARS); Animal and Plant Health Inspection Service; DOE [DE-AC05-06OR23100] FX This research was financially supported by the U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS) and Animal and Plant Health Inspection Service. It was supported in part by an appointment to the ARS Research Participation Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the USDA. ORISE is managed by ORAU under DOE contract number DE-AC05-06OR23100. We thank Daniel Winograd-Cort for his help in learning computer science. We thank Jason Hong for providing egl sequences and Philippe Prior for giving us insight into R. solanacearum egl phylogenetic analysis. We also thank John Hartung for critical review of our manuscript. NR 23 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 EI 1872-8359 J9 J MICROBIOL METH JI J. Microbiol. Methods PD APR PY 2016 VL 123 BP 101 EP 107 DI 10.1016/j.mimet.2016.02.010 PG 7 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA DI7BY UT WOS:000373655300015 PM 26876453 ER PT J AU Samuel, J Park, JS Almer, J Wang, XD AF Samuel, Jitin Park, Jun-Sang Almer, Jonathan Wang, Xiaodu TI Effect of water on nanomechanics of bone is different between tension and compression SO JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS LA English DT Article DE Bone; Synchrotron X-ray scattering; Toughness; Mineral; Collagen ID MECHANICAL-BEHAVIOR; CORTICAL BONE; TOUGHNESS; STRENGTH; COLLAGEN; ENERGY; MICROCRACKING; DEFORMATION; MICRODAMAGE; STRAINS AB Water, an important constituent in bone, resides in different compartments in bone matrix and may impose significant effects on its bulk mechanical properties. However, a clear understanding of the mechanistic role of water in toughening bone is yet to emerge. To address this issue, this study used a progressive loading protocol, coupled with measurements of in situ mineral and collagen fibril deformations using synchrotron X-ray diffraction techniques. Using this unique approach, the contribution of water to the ultrastructural behavior of bone was examined by testing bone specimens in different loading modes (tension and compression) and hydration states (wet and dehydrated). The results indicated that the effect of water on the mechanical behavior of mineral and collagen phases at the ultrastructural level was loading mode dependent and correlated with the bulk behavior of bone. Tensile loading elicited a transitional drop followed by an increase in load bearing by the mineral phase at the ultrastructural level, which was correlated with a strain hardening behavior of bone at the bulk level. Compression loading caused a continuous loss of load bearing by the mineral phase, which was reflected at the bulk level as a strain softening behavior. In addition, viscous strain relaxation and pre-strain reduction were observed in the mineral phase in the presence of water. Taken together, the results of this study suggest that water dictates the bulk behavior of bone by altering the interaction between mineral crystals and their surrounding matrix. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Samuel, Jitin; Wang, Xiaodu] Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX USA. [Park, Jun-Sang; Almer, Jonathan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Wang, XD (reprint author), Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX USA. EM xiaodu.wang@utsa.edu FU National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIAMS/NIH) [AR055955]; NSF [CMMI-1266390]; U.S. Department of Energy, Office of Science, under the U.S. Department of Energy [DE-AC02-06CH11357] FX Research reported in this publication was partially supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIAMS/NIH) under Award number AR055955 and a NSF Grant (CMMI-1266390). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH and NSF. Use of the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, under the U.S. Department of Energy contract DE-AC02-06CH11357. NR 36 TC 1 Z9 1 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1751-6161 EI 1878-0180 J9 J MECH BEHAV BIOMED JI J. Mech. Behav. Biomed. Mater. PD APR PY 2016 VL 57 BP 128 EP 138 DI 10.1016/j.jmbbm.2015.12.001 PG 11 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA DI7CA UT WOS:000373655500011 PM 26710258 ER PT J AU MacGahan, CJ Kupinski, MA Hilton, NR Brubaker, EM Johnson, WC AF MacGahan, Christopher J. Kupinski, Matthew A. Hilton, Nathan R. Brubaker, Erik M. Johnson, William C. TI Development of an ideal observer that incorporates nuisance parameters and processes list-mode data SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID METHODOLOGY AB Observer models were developed to process data in list-mode format in order to perform binary discrimination tasks for use in an arms-control-treaty context. Data used in this study was generated using GEANT4 Monte Carlo simulations for photons using custom models of plutonium inspection objects and a radiation imaging system. Observer model performance was evaluated and presented using the area under the receiver operating characteristic curve. The ideal observer was studied under both signal-known-exactly conditions and in the presence of unknowns such as object orientation and absolute count-rate variability; when these additional sources of randomness were present, their incorporation into the observer yielded superior performance. (C) 2016 Optical Society of America C1 [MacGahan, Christopher J.; Kupinski, Matthew A.] Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA. [MacGahan, Christopher J.; Hilton, Nathan R.; Brubaker, Erik M.; Johnson, William C.] Sandia Natl Labs, Livermore, CA 94551 USA. RP MacGahan, CJ (reprint author), Univ Arizona, Coll Opt Sci, 1630 E Univ Blvd, Tucson, AZ 85721 USA.; MacGahan, CJ (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM cmacgahan@optics.arizona.edu FU Technology Research Initiative Fund; Office of Defense Nuclear Nonproliferation (DNN) [DE-AC04-94AL85000]; Sandia National Laboratories [SAND2016-0849J] FX Technology Research Initiative Fund; Office of Defense Nuclear Nonproliferation (DNN) (DE-AC04-94AL85000); Sandia National Laboratories (SAND2016-0849J). NR 27 TC 1 Z9 1 U1 0 U2 1 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 EI 1520-8532 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD APR 1 PY 2016 VL 33 IS 4 BP 689 EP 697 DI 10.1364/JOSAA.33.000689 PG 9 WC Optics SC Optics GA DI3KU UT WOS:000373398300034 PM 27140781 ER PT J AU Chabaud, B Calderer, MC AF Chabaud, Brandon Calderer, M. Carme TI Effects of permeability and viscosity in linear polymeric gels SO MATHEMATICAL METHODS IN THE APPLIED SCIENCES LA English DT Article DE gel; elasticity; viscosity; permeability; diffusion; stability ID HYBRID MIXTURE THEORY; SWELLING SYSTEMS; MODEL; DEFORMATION; EQUILIBRIUM; MULTISCALE; DYNAMICS; LAWS AB We propose and analyze a mathematical model of the mechanics of gels, consisting of the laws of balance of mass and linear momentum of the polymer and liquid components of the gel. We consider a gel to be an immiscible and incompressible mixture of a nonlinearly elastic polymer and a fluid. The problems that we study are motivated by predictions of the life cycle of body-implantable medical devices. Scaling arguments suggest neglecting inertia terms, and therefore, we consider the quasi-static approximation to the dynamics. We focus on the linearized system about stress-free states, uniform expansions, and compressions and derive sufficient conditions for the solvability of the time-dependent problems. These turn out to be conditions that guarantee local stability of the equilibrium solutions. We also consider non-stress free equilibria and states with residual stress and derive an energy law for the corresponding time-dependent system. The conditions that guarantee stability of solutions provide a selection criteria of the material parameters of devices. The boundary conditions that we consider are of two types, displacement-traction and permeability of the gel surface to the fluid. We address the cases of viscous and inviscid solvent, assume Newtonian dissipation for the polymer component, and establish existence of weak solutions for the different boundary permeability conditions and viscosity assumptions. We present two-dimensional, finite element numerical simulations to study stress concentration on edges, this being the precursor to debonding of the gel from its substrate. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Chabaud, Brandon] Los Alamos Natl Lab, Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. [Calderer, M. Carme] Univ Minnesota, Sch Math, 206 Church St SE,507 Vincent Hall, Minneapolis, MN 55455 USA. RP Calderer, MC (reprint author), Univ Minnesota, Sch Math, 206 Church St SE,507 Vincent Hall, Minneapolis, MN 55455 USA. EM mcc@math.umn.edu FU National Science Foundation [DMS 0909165]; Medtronic, Inc., Twin Cities FX This work was partially supported by the National Science Foundation, grant number DMS 0909165. The authors also wish to extend their appreciation to Medtronic, Inc., Twin Cities, for the financial support and technical advice, especially by Dr Suping Lyu, throughout the development of the project. The authors also wish to thank Professors Satish Kumar and Francisco Javier Sayas for the many useful discussions. NR 29 TC 0 Z9 0 U1 5 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0170-4214 EI 1099-1476 J9 MATH METHOD APPL SCI JI Math. Meth. Appl. Sci. PD APR PY 2016 VL 39 IS 6 BP 1395 EP 1409 DI 10.1002/mma.3577 PG 15 WC Mathematics, Applied SC Mathematics GA DI4PP UT WOS:000373482100010 ER PT J AU Ilgu, M Ray, J Bendickson, L Wang, TJ Geraskin, IM Kraus, GA Nilsen-Hamilton, M AF Ilgu, Muslum Ray, Judhajeet Bendickson, Lee Wang, Tianjiao Geraskin, Ivan M. Kraus, George A. Nilsen-Hamilton, Marit TI Light-up and FRET aptamer reporters; evaluating their applications for imaging transcription in eukaryotic cells SO METHODS LA English DT Article DE RNA imaging; Aptamer; DFHBI; Malachite green; Fluorescence; FRET ID GENE-EXPRESSION; CONTAINING RNA; FLUOROPHORE; BACTERIA; BINDING; FLUORESCENCE; MAGNESIUM; PROTEIN; SODIUM; GREEN AB The regulation of RNA transcription is central to cellular function. Changes in gene expression drive differentiation and cellular responses to events such as injury. RNA trafficking can also have a large impact on protein expression and its localization. Thus, the ability to image RNA transcription and trafficking in real time and in living cells is a worthwhile goal that has been difficult to achieve. The availability of "light-up" aptamers that cause an increase in fluorescence of their ligands when bound by the aptamer have shown promise for reporting on RNA production and localization in vivo. Here we have investigated two light-up aptamers (the malachite green aptamer and the Spinach aptamers) for their suitabilities as reporters of RNA expression in vivo using two eukaryotic cell types, yeast and mammalian. Our analysis focused on the aptamer ligands, their contributions to background noise, and the impact of tandem aptamer strings on signal strength and ligand affinity. Whereas the background fluorescence is very low in vitro, this is not always true for cell imaging. Our results suggest the need for caution in using light up aptamers as reporters for imaging RNA. In particular, images should be collected and analyzed by operators blinded to the sample identities. The appropriate control condition of ligand with the cells in the absence of aptamer expression must be included in each experiment. This control condition establishes that the specific interaction of ligand with aptamer, rather than nonspecific interactions with unknown cell elements, is responsible for the observed fluorescent signals. High background signals due to nonspecific interactions of aptamer ligands with cell components can be minimized by using IMAGEtags (Intracellular Multiaptamer GEnetic tags), which signal by FRET and are promising RNA reporters for imaging transcription. (C) 2015 Elsevier Inc. All rights reserved. C1 [Ilgu, Muslum; Ray, Judhajeet; Bendickson, Lee; Nilsen-Hamilton, Marit] Roy J Carver Dept Biochem Biophys & Mol Biol, Ames, IA USA. [Geraskin, Ivan M.; Kraus, George A.] Iowa State Univ Sci & Technol, Dept Chem, Ames, IA 50011 USA. [Bendickson, Lee; Wang, Tianjiao; Kraus, George A.; Nilsen-Hamilton, Marit] US DOE, Ames Lab, Washington, DC 20585 USA. [Ilgu, Muslum] Aptalogic, Ames, IA 50014 USA. [Ray, Judhajeet] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA. [Wang, Tianjiao] Univ Michigan, Sch Med, Internal Med, Ann Arbor, MI 48109 USA. RP Nilsen-Hamilton, M (reprint author), Iowa State Univ, Roy J Carver Dept Biochem Biophys & Mol Biol, 3206 Mol Biol Bldg, Ames, IA 50011 USA. EM marit@iastate.edu FU National Institutes of Health (chemistry and imaging) [R01EB005075, R21AI114283]; U.S. Department of Energy, Office of Biological and Environmental Research through the Ames Laboratory; U.S. Department of Energy [DE-AC02-07CH11358] FX Financial support was provided by grants R01EB005075 and R21AI114283 to MN-H from the National Institutes of Health (chemistry and imaging) and funds from the U.S. Department of Energy, Office of Biological and Environmental Research through the Ames Laboratory (fluorescence measurements). The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. We thank Jayeeta Banerjee and Lisa Cannistraci Patrin for preliminary work with the MGA and preparing some of the plasmids used in this study. NR 28 TC 6 Z9 6 U1 12 U2 29 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-2023 EI 1095-9130 J9 METHODS JI Methods PD APR 1 PY 2016 VL 98 BP 26 EP 33 DI 10.1016/j.ymeth.2015.12.009 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI7DU UT WOS:000373660100005 PM 26707205 ER PT J AU Devaraj, A Joshi, VV Srivastava, A Manandhar, S Moxson, V Duz, VA Lavender, C AF Devaraj, Arun Joshi, Vineet V. Srivastava, Ankit Manandhar, Sandeep Moxson, Vladimir Duz, Volodymyr A. Lavender, Curt TI A low-cost hierarchical nanostructured beta-titanium alloy with high strength SO NATURE COMMUNICATIONS LA English DT Article ID PROCESSING PROPERTIES RELATIONSHIPS; FRACTURE-TOUGHNESS; CRACK-GROWTH; TI-10V-2FE-3AL; TENSILE; PRECIPITATION; NUCLEATION AB Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost beta-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale alpha-phase precipitates within the beta-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale alpha-phase precipitates in the beta-phase matrix is due to omega assisted nucleation of a resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications. C1 [Devaraj, Arun] Pacific NW Natl Lab, Phys & Computat Sci Directorate, 902 Battelle Blvd, Richland, WA 99354 USA. [Joshi, Vineet V.; Lavender, Curt] Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA. [Srivastava, Ankit] Texas A&M Univ, Dept Mat Sci & Engn, 3003, College Stn, TX 77843 USA. [Manandhar, Sandeep] Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battelle Blvd, Richland, WA 99354 USA. [Moxson, Vladimir; Duz, Volodymyr A.] Adv Mat Prod Inc ADMA, 1890 Georgetown Rd, Hudson, OH 44236 USA. RP Devaraj, A (reprint author), Pacific NW Natl Lab, Phys & Computat Sci Directorate, 902 Battelle Blvd, Richland, WA 99354 USA.; Joshi, VV (reprint author), Pacific NW Natl Lab, Energy & Environm Directorate, 902 Battelle Blvd, Richland, WA 99354 USA. EM Arun.Devaraj@pnnl.gov; Vineet.Joshi@pnnl.gov OI Manandhar, Sandeep/0000-0001-8613-5317 FU US Department of Energy Vehicle Technologies Office (DOE/VTO) Propulsion materials program; Laboratory Directed Research and Development (LDRD) program of Pacific Northwest National Laboratory (PNNL), Chemical Imaging Initiative; US Department of Energy [DE-AC05-76RLO1830]; Department of Energy's Office of Biological and Environmental Research; PNNL FX The authors would like to thank the US Department of Energy Vehicle Technologies Office (DOE/VTO) Propulsion materials program for the financial support provided for this work. This work was also partially supported by the Laboratory Directed Research and Development (LDRD) program of Pacific Northwest National Laboratory (PNNL) as a part of the Chemical Imaging Initiative. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the US Department of Energy under contract DE-AC05-76RLO1830. The research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. Authors would also like to thank Stuart Dyer for providing the graph from CES Selector software, Granta Design, Cambridge, UK, www.grantadesign.com. NR 38 TC 4 Z9 4 U1 9 U2 27 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11176 DI 10.1038/ncomms11176 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DI4OD UT WOS:000373478300001 PM 27034109 ER PT J AU Fields, JD Ahmad, MI Pool, VL Yu, JF Van Campen, DG Parilla, PA Toney, MF van Hest, MFAM AF Fields, Jeremy D. Ahmad, Md. Imteyaz Pool, Vanessa L. Yu, Jiafan Van Campen, Douglas G. Parilla, Philip A. Toney, Michael F. van Hest, Maikel F. A. M. TI The formation mechanism for printed silver-contacts for silicon solar cells SO NATURE COMMUNICATIONS LA English DT Article ID THICK-FILM CONTACTS; 1273 K; GLASS AB Screen-printing provides an economically attractive means for making Ag electrical contacts to Si solar cells, but the use of Ag substantiates a significant manufacturing cost, and the glass frit used in the paste to enable contact formation contains Pb. To achieve optimal electrical performance and to develop pastes with alternative, abundant and non-toxic materials, a better understanding the contact formation process during firing is required. Here, we use in situ X-ray diffraction during firing to reveal the reaction sequence. The findings suggest that between 500 and 650 degrees C PbO in the frit etches the SiNx antireflective-coating on the solar cell, exposing the Si surface. Then, above 650 degrees C, Ag+ dissolves into the molten glass frit - key for enabling deposition of metallic Ag on the emitter surface and precipitation of Ag nanocrystals within the glass. Ultimately, this work clarifies contact formation mechanisms and suggests approaches for development of inexpensive, nontoxic solar cell contacting pastes. C1 [Fields, Jeremy D.; Parilla, Philip A.; van Hest, Maikel F. A. M.] Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. [Ahmad, Md. Imteyaz; Pool, Vanessa L.; Van Campen, Douglas G.; Toney, Michael F.] SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. [Yu, Jiafan] Stanford Univ, Dept Elect Engn, 350 Serra Mall, Stanford, CA 94305 USA. [Fields, Jeremy D.; Ahmad, Md. Imteyaz] SolarWorld Amer, 25300 NW Evergreen Rd, Hillsboro, OR 97124 USA. [Fields, Jeremy D.; Ahmad, Md. Imteyaz] Indian Inst Technol BHU, Dept Ceram Engn, Varanasi 221005, Uttar Pradesh, India. RP van Hest, MFAM (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA.; Ahmad, MI (reprint author), SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA. EM mftoney@slac.stanford.edu; Maikel.van.Hest@nrel.gov RI Ahmad, Mohammad Imteyaz/E-6559-2012 FU Bridging Research Interactions through collaborating the Development Grants in Energy (BRIDGE) program under the SunShot initiative of the Department of Energy [DE-EE0005951]; National Renewable Energy Laboratory [DE-AC36-08GO28308]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-76SF00515] FX This project is funded through the Bridging Research Interactions through collaborating the Development Grants in Energy (BRIDGE) program under the SunShot initiative of the Department of Energy (DE-EE0005951). Sample preparation and SEM analysis were performed at the National Renewable Energy Laboratory, which is operated under the prime contract no. DE-AC36-08GO28308. In situ characterization was performed at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515. We thank Bobby To at NREL for performing the SEM analysis, and Ron Marks and Bart Johnson at SSRL for assistance with beam line 7-2. NR 18 TC 2 Z9 2 U1 12 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11143 DI 10.1038/ncomms11143 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DI4NX UT WOS:000373477700001 PM 27033774 ER PT J AU Lentz, M Risse, M Schaefer, N Reimers, W Beyerlein, IJ AF Lentz, M. Risse, M. Schaefer, N. Reimers, W. Beyerlein, I. J. TI Strength and ductility with {10(1)over-bar1} - {10(1)over-bar2} double twinning in a magnesium alloy SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-DIFFRACTION; STRAIN-PATH CHANGES; GRAIN-SIZE; DEFORMATION-BEHAVIOR; HCP METALS; IN-SITU; POLYCRYSTALLINE MAGNESIUM; MECHANICAL-PROPERTIES; TEXTURE EVOLUTION; CONTRACTION TWINS AB Based on their high specific strength and stiffness, magnesium alloys are attractive for lightweight applications in aerospace and transportation, where weight saving is crucial for the reduction of carbon dioxide emissions. Unfortunately, the ductility of magnesium alloys is usually limited. It is thought that one reason for the lack of ductility is that the development of {10 (1) over bar1}-{10 (1) over bar2} double twins (DTW) cause premature failure of magnesium alloys. Here we show with a magnesium alloy containing 4 wt% lithium, that the same impressively large compression failure strains can be achieved with DTWs as without. The DTWs form stably across the microstructure and continuously throughout straining, forming three-dimensional intra-granular networks, a potential strengthening mechanism. We rationalize that relatively easier slip characteristic of this alloy plastically relaxed the localized stress concentrations that DTWs can generate. This result may provide key insight and an alternative perspective towards designing formable and strong magnesium alloys. C1 [Lentz, M.; Risse, M.; Reimers, W.] Tech Univ Berlin, Inst Werkstoffwissensch & Technol, Met Werkstoffe, Ernst Reuter Pl 1, D-10587 Berlin, Germany. [Schaefer, N.] Helmholtz Zentrum Berlin Mat & Energien GmbH, Inst Nanoarchitectures Energy Convers EE IN, Hahn Meitner Pl 1, D-14109 Berlin, Germany. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Lentz, M (reprint author), Tech Univ Berlin, Inst Werkstoffwissensch & Technol, Met Werkstoffe, Ernst Reuter Pl 1, D-10587 Berlin, Germany. EM martin.lentz@tu-berlin.de OI Lentz, Martin/0000-0001-8310-0063 FU Deutsche Forschungsgemeinschaft (DFG) [RE 688/67-1]; Laboratory Directed Research and Development program [20140348ER] FX We are grateful for the financial support of the Deutsche Forschungsgemeinschaft (DFG) under the contract number RE 688/67-1. I.J.B. acknowledges the support by a Laboratory Directed Research and Development program award number 20140348ER. NR 52 TC 8 Z9 8 U1 13 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11068 DI 10.1038/ncomms11068 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DI5HT UT WOS:000373530200001 PM 27040648 ER PT J AU Seo, JJ Kim, BY Kim, BS Jeong, JK Ok, JM Kim, JS Denlinger, JD Mo, SK Kim, C Kim, YK AF Seo, J. J. Kim, B. Y. Kim, B. S. Jeong, J. K. Ok, J. M. Kim, Jun Sung Denlinger, J. D. Mo, S. -K. Kim, C. Kim, Y. K. TI Superconductivity below 20 K in heavily electron-doped surface layer of FeSe bulk crystal SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; SINGLE-LAYER; FESE/SRTIO3 FILMS; IRON PNICTIDES; THIN-FILMS; INTERFACE; ORIGIN; INSULATOR; OXIDES; SRTIO3 AB A superconducting transition temperature (T-c) as high as 100 K was recently discovered in one monolayer FeSe grown on SrTiO3. The discovery ignited efforts to identify the mechanism for the markedly enhanced T-c from its bulk value of 8 K. There are two main views about the origin of the T-c enhancement: interfacial effects and/or excess electrons with strong electron correlation. Here, we report the observation of superconductivity below 20 K in surface electron-doped bulk FeSe. The doped surface layer possesses all the key spectroscopic aspects of the monolayer FeSe on SrTiO3. Without interfacial effects, the surface layer state has a moderate T-c of 20 K with a smaller gap opening of 4.2 meV. Our results show that excess electrons with strong correlation cannot induce the maximum T-c, which in turn reveals the need for interfacial effects to achieve the highest T-c in one monolayer FeSe on SrTiO3. C1 [Seo, J. J.; Jeong, J. K.] Yonsei Univ, Inst Phys & Appl Phys, Seoul 120749, South Korea. [Seo, J. J.; Kim, B. S.; Kim, C.; Kim, Y. K.] Inst for Basic Sci Korea, Ctr Correlated Elect Syst, Seoul 151742, South Korea. [Kim, B. Y.; Ok, J. M.; Kim, Jun Sung] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea. [Kim, B. Y.; Denlinger, J. D.; Mo, S. -K.; Kim, Y. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kim, B. S.; Kim, C.; Kim, Y. K.] Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. RP Kim, C; Kim, YK (reprint author), Inst for Basic Sci Korea, Ctr Correlated Elect Syst, Seoul 151742, South Korea.; Kim, YK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA.; Kim, C; Kim, YK (reprint author), Seoul Natl Univ, Dept Phys & Astron, Seoul 151747, South Korea. EM changyoung@snu.ac.kr; YKim@lbl.gov RI Mo, Sung-Kwan/F-3489-2013; Kim, Yeong Kwan/L-8207-2016 OI Mo, Sung-Kwan/0000-0003-0711-8514; FU Institute for basic science (IBS) Center for Correlated Electron Systems [IBS-R009-G2]; Office of Basic Energy Sciences of the US DOE [DE-AC02-05CH11231]; National research foundation of Korea (NRF) through Science research center program (SRC) [2011-0030785]; Max Plank POSTECH/KOREA Research Initiative programs [2011-0031558]; IBS through the Center for Artificial Low Dimensional Electronic Systems [IBSR014-D1-2014-a02] FX This work is supported by IBS-R009-G2 through the Institute for basic science (IBS) Center for Correlated Electron Systems. The Advanced Light Source is supported by the Office of Basic Energy Sciences of the US DOE under contract no. DE-AC02-05CH11231. The work at Pohang University of science and technology (POSTECH) was supported by the National research foundation of Korea (NRF) through Science research center program (SRC) (grant no. 2011-0030785) and Max Plank POSTECH/KOREA Research Initiative (grant no. 2011-0031558) programs, and also by IBS (no. IBSR014-D1-2014-a02) through the Center for Artificial Low Dimensional Electronic Systems. NR 33 TC 6 Z9 6 U1 14 U2 50 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11116 DI 10.1038/ncomms11116 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DI9JZ UT WOS:000373820200001 PM 27050161 ER PT J AU Stegen, JC Fredrickson, JK Wilkins, MJ Konopka, AE Nelson, WC Arntzen, EV Chrisler, WB Chu, RK Danczak, RE Fansler, SJ Kennedy, DW Resch, CT Tfaily, M AF Stegen, James C. Fredrickson, James K. Wilkins, Michael J. Konopka, Allan E. Nelson, William C. Arntzen, Evan V. Chrisler, William B. Chu, Rosalie K. Danczak, Robert E. Fansler, Sarah J. Kennedy, David W. Resch, Charles T. Tfaily, Malak TI Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover SO NATURE COMMUNICATIONS LA English DT Article ID HYPORHEIC MICROBIAL COMMUNITIES; METAL CONTAMINATION GRADIENT; GRAVEL-BED RIVER; SEASONAL DYNAMICS; CURRENT KNOWLEDGE; MASS-BALANCE; DRY SOIL; ZONE; STREAM; MATTER AB Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hotspots and moments. Riverine systems, where groundwater mixes with surface water (the hyporheic zone), are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. Here, to investigate the coupling among groundwater-surface water mixing, microbial communities and biogeochemistry, we apply ecological theory, aqueous biogeochemistry, DNA sequencing and ultra-high-resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone stimulates heterotrophic respiration, alters organic carbon composition, causes ecological processes to shift from stochastic to deterministic and is associated with elevated abundances of microbial taxa that may degrade a broad suite of organic compounds. C1 [Stegen, James C.; Fredrickson, James K.; Konopka, Allan E.; Nelson, William C.; Arntzen, Evan V.; Chrisler, William B.; Chu, Rosalie K.; Fansler, Sarah J.; Kennedy, David W.; Resch, Charles T.; Tfaily, Malak] Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. [Wilkins, Michael J.; Danczak, Robert E.] Ohio State Univ, Dept Microbiol, Columbus, OH 43210 USA. [Wilkins, Michael J.] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. RP Stegen, JC (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM James.Stegen@pnnl.gov RI Stegen, James/Q-3078-2016; OI Stegen, James/0000-0001-9135-7424; Nelson, William/0000-0002-1873-3929; TFAILY, MALAK/0000-0002-3036-2833 FU US Department of Energy (DOE), Office of Biological and Environmental Research (BER), Subsurface Biogeochemical Research Program's Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL); DOE by Battelle [DE-AC06-76RLO 1830]; Department of Energy's Office of Biological and Environmental Research at PNNL FX This research was supported by the US Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemical Research Program's Scientific Focus Area (SFA) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830. A portion of the research was performed using Institutional Computing at PNNL. Part of the research was performed using the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. NR 86 TC 4 Z9 4 U1 23 U2 53 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11237 DI 10.1038/ncomms11237 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DI9MS UT WOS:000373827600001 PM 27052662 ER PT J AU Sutter, E Sutter, P Tkachenko, AV Krahne, R de Graaf, J Arciniegas, M Manna, L AF Sutter, Eli Sutter, Peter Tkachenko, Alexei V. Krahne, Roman de Graaf, Joost Arciniegas, Milena Manna, Liberato TI In situ microscopy of the self-assembly of branched nanocrystals in solution SO NATURE COMMUNICATIONS LA English DT Article ID NANOPARTICLE SUPERLATTICES; ELECTRON-MICROSCOPY; CRYSTAL-NUCLEATION; COMPLEX STRUCTURES; PHASE-TRANSITIONS; HARD-SPHERE; CRYSTALLIZATION; GROWTH; INTERFACE; COLLOIDS AB Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution. C1 [Sutter, Eli] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA. [Sutter, Peter] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA. [Tkachenko, Alexei V.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Krahne, Roman; Arciniegas, Milena; Manna, Liberato] IIT, Dept Nanochem, Via Morego 30, IT-16163 Genoa, Italy. [de Graaf, Joost] Univ Stuttgart, ICP, Fac Math & Phys 8, Allmandring 3, D-70569 Stuttgart, Germany. RP Sutter, E (reprint author), Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA.; Manna, L (reprint author), IIT, Dept Nanochem, Via Morego 30, IT-16163 Genoa, Italy. EM esutter@unl.edu; liberato.manna@iit.it RI Tkachenko, Alexei/I-9040-2012; Manna, Liberato/G-2339-2010; OI Tkachenko, Alexei/0000-0003-1291-243X; Manna, Liberato/0000-0003-4386-7985; Krahne, Roman/0000-0003-0066-7019 FU US Department of Energy, Office of Basic Energy Sciences [DE-SC0012704]; European Union through FP7 starting ERC grant NANO-ARCH [240111]; NWO [680501210] FX This research has been carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. L.M. and M.A. acknowledge financial support from the European Union through the FP7 starting ERC grant NANO-ARCH (contract number 240111). We thank K. Jungjohann for participating in some of the experiments and measuring EELS spectra, and E. Krings for analysing the chain-length distributions. J.d.G. acknowledges financial support from the NWO Rubicon grant (#680501210) and Prof. A. Arnold and Dr O. Hickey for useful discussions. NR 36 TC 9 Z9 9 U1 25 U2 66 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD APR PY 2016 VL 7 AR 11213 DI 10.1038/ncomms11213 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA DI5IX UT WOS:000373533200001 PM 27040366 ER PT J AU Liljedahl, AK Boike, J Daanen, RP Fedorov, AN Frost, GV Grosse, G Hinzman, LD Iijma, Y Jorgenson, JC Matveyeva, N Necsoiu, M Raynolds, MK Romanovsky, VE Schulla, J Tape, KD Walker, DA Wilson, CJ Yabuki, H Zona, D AF Liljedahl, Anna K. Boike, Julia Daanen, Ronald P. Fedorov, Alexander N. Frost, Gerald V. Grosse, Guido Hinzman, Larry D. Iijma, Yoshihiro Jorgenson, Janet C. Matveyeva, Nadya Necsoiu, Marius Raynolds, Martha K. Romanovsky, Vladimir E. Schulla, Joerg Tape, Ken D. Walker, Donald A. Wilson, Cathy J. Yabuki, Hironori Zona, Donatella TI Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology SO NATURE GEOSCIENCE LA English DT Article ID GROUND-ICE; COASTAL-PLAIN; ALASKA; EVAPOTRANSPIRATION; SEASONS; CARBON; ISLAND; FLUX; CO2 AB Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions. C1 [Liljedahl, Anna K.; Tape, Ken D.] Univ Alaska Fairbanks, Water & Environm Res Ctr, 306 Tanana Loop, Fairbanks, AK 99775 USA. [Boike, Julia] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Telegrafenberg A6, D-14473 Potsdam, Germany. [Daanen, Ronald P.] Div Geol & Geophys Surveys, Dept Nat Resources, 3354 Coll Rd, Fairbanks, AK 99709 USA. [Fedorov, Alexander N.] Melnikov Permafrost Inst, 36 Merzlotnaya St, Yakutsk 677010, Russia. [Frost, Gerald V.] ABR Inc, Environm Res & Serv, POB 80410, Fairbanks, AK 99709 USA. [Grosse, Guido] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Telegrafenberg A45, D-14473 Potsdam, Germany. [Hinzman, Larry D.] Univ Alaska Fairbanks, Int Arctic Res Ctr, 930 Koyukuk Dr, Fairbanks, AK 99775 USA. [Iijma, Yoshihiro] Japan Agcy Marine Earth Sci & Technol, Inst Arctic Climate & Environm Res, 2-15 Natsushima Machi, Yokosuka, Kanagawa 2370061, Japan. [Jorgenson, Janet C.] Arctic Natl Wildlife Refuge, 101 12th Ave, Fairbanks, AK 99701 USA. [Matveyeva, Nadya] Russian Acad Sci, VL Komarov Bot Inst, Popova St 2, St Petersburg 197376, Russia. [Necsoiu, Marius] Southwest Res Inst, Geosci & Engn Div, 6220 Culebra Rd, San Antonio, TX 78238 USA. [Raynolds, Martha K.; Walker, Donald A.] Univ Alaska Fairbanks, Inst Arctic Biol, 902 North Koyukuk Dr,POB 757000, Fairbanks, AK 99775 USA. [Romanovsky, Vladimir E.] Univ Alaska Fairbanks, Geophys Inst, 903 Koyukuk Dr, Fairbanks, AK 99775 USA. [Romanovsky, Vladimir E.] Earth Cryospherc Inst, 86 Malygina St, Tyumen 625000, Russia. [Schulla, Joerg] Hydrol Software Consulting, Regensdorferstr 162, CH-8049 Zurich, Switzerland. [Wilson, Cathy J.] Los Alamos Natl Lab, MS J495, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. [Yabuki, Hironori] Japan Agcy Marine Earth Sci & Technol, Dept Environm Geochem Cycle Res, Kanazawa Ku, 3173-25 Showa Machi, Yokohama, Kanagawa 2360001, Japan. [Zona, Donatella] San Diego State Univ, Dept Biol, San Diego, CA 92182 USA. [Zona, Donatella] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. RP Liljedahl, AK (reprint author), Univ Alaska Fairbanks, Water & Environm Res Ctr, 306 Tanana Loop, Fairbanks, AK 99775 USA. EM akliljedahl@alaska.edu RI Iijima, Yoshihiro/N-3237-2015; Grosse, Guido/F-5018-2011; Fedorov, Alexander/K-2478-2016; Zona, Donatella/G-4039-2010; Necsoiu, Marius/A-3881-2013; Boike, Julia/R-4766-2016 OI Frost, Gerald/0000-0002-5134-0334; Grosse, Guido/0000-0001-5895-2141; Fedorov, Alexander/0000-0002-4016-2149; Necsoiu, Marius/0000-0002-7974-6758; Boike, Julia/0000-0002-5875-2112 FU Next-Generation Ecosystem Experiments (NGEE Arctic) project; Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231]; National Science Foundation [OIA-1208927, DPP-1304271, PLR-1204263, ACI-1053575]; Arctic Landscape Conservation Cooperative [ALCC2014-02]; Japan Society for the Promotion of Science [26242026]; European Research Council [ERC-338335]; Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) of the National Aeronautics and Space Administration; PAGE21 project - European Commission [282700] FX Financial assistance was provided by the Next-Generation Ecosystem Experiments (NGEE Arctic) project, which is supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science (DE-AC02-05CH11231), National Science Foundation (OIA-1208927, DPP-1304271, PLR-1204263), Arctic Landscape Conservation Cooperative (ALCC2014-02), the Japan Society for the Promotion of Science (26242026), European Research Council (ERC-338335), Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) of the National Aeronautics and Space Administration and via the PAGE21 project sponsored by the European Commission (FP7-ENV-2011, no. 282700). Recent high-resolution satellite imagery was provided by the Polar Geospatial Center, University of Minnesota. A. Chamberlain, A. Kholodov and R. Busey provided field and/or data processing support. M. Rohr assisted in designing the schematic figure. C. Tweedie, University of Texas El Paso provided the LiDAR DEM. R. Thoman at the National Ocean and Atmospheric Administration, Fairbanks, provided historical weather observations near Prudhoe Bay. The Arctic Region Supercomputing Center, University of Alaska Fairbanks, offered computational support. This work also used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation (ACI-1053575). NR 42 TC 21 Z9 21 U1 25 U2 59 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD APR PY 2016 VL 9 IS 4 BP 312 EP + DI 10.1038/NGEO2674 PG 8 WC Geosciences, Multidisciplinary SC Geology GA DI3BV UT WOS:000373374100018 ER PT J AU Bandrowski, A Brush, M Grethe, JS Haendel, MA Kennedy, DN Hill, S Hof, PR Martone, ME Pols, M Tan, SS Washington, N Zudilova-Seinstra, E Vasilevsky, N AF Bandrowski, Anita Brush, Matthew Grethe, Jeffery S. Haendel, Melissa A. Kennedy, David N. Hill, Sean Hof, Patrick R. Martone, Maryann E. Pols, Maaike Tan, Serena S. Washington, Nicole Zudilova-Seinstra, Elena Vasilevsky, Nicole CA RINL Resource Identification Initi TI The Resource Identification Initiative: A Cultural Shift in Publishing SO NEUROINFORMATICS LA English DT Article DE RRID:nif-0000-25673; RRID:nlx_153866; Informatics; Reproducibility ID NEUROSCIENCE; ANTIBODIES; FRAMEWORK; P65 AB A central tenet in support of research reproducibility is the ability to uniquely identify research resources, i.e., reagents, tools, and materials that are used to perform experiments. However, current reporting practices for research resources are insufficient to identify the exact resources that are reported or to answer basic questions such as "How did other studies use resource X?" To address this issue, the Resource Identification Initiative was launched as a pilot project to improve the reporting standards for research resources in the methods sections of papers and thereby improve identifiability and scientific reproducibility. The pilot engaged over 25 biomedical journal editors from most major publishers, as well as scientists and funding officials. Authors were asked to include Research Resource Identifiers (RRIDs) in their manuscripts prior to publication for three resource types: antibodies, model organisms, and tools (i.e., software and databases). RRIDs are assigned by an authoritative database, for example a model organism database, for each type of resource. To make it easier for authors to obtain RRIDs, resources were aggregated from the appropriate databases and their RRIDs made available in a central web portal (http://scicrunch.org/resources). RRIDs meet three key criteria: they are machine readable, free to generate and access, and are consistent across publishers and journals. The pilot was launched in February of 2014 and over 300 papers have appeared that report RRIDs. The number of journals participating has expanded from the original 25 to more than 40 with RRIDs appearing in 62 different journals to date. Here, we present an overview of the pilot project and its outcomes to date. We show that authors are able to identify resources and are supportive of the goals of the project. Identifiability of the resources post-pilot showed a dramatic improvement for all three resource types, suggesting that the project has had a significant impact on identifiability of research resources. C1 [Bandrowski, Anita; Grethe, Jeffery S.; Martone, Maryann E.] Univ Calif San Diego, Ctr Res Biol Syst, 9500 Gillman Dr 0446, La Jolla, CA 92093 USA. [Brush, Matthew; Haendel, Melissa A.; Vasilevsky, Nicole] Dept Med Informat & Clin Epidemiol, OHSU Lib, 9500 Gillman Dr 0446, La Jolla, CA 92093 USA. [Kennedy, David N.] Univ Massachusetts, Sch Med, Dept Psychiat, 365 Plantat St,Biotech One, Worcester, MA 01605 USA. [Hill, Sean] Karolinska Inst, Nobels Vag 15A, S-17177 Stockholm, Sweden. [Hof, Patrick R.] Icahn Sch Med Mt Sinai, Fishberg Dept Neurosci, New York, NY 10029 USA. [Hof, Patrick R.] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA. [Pols, Maaike] Fac 1000 Ltd, Sci Outreach Execut, Middlesex House 34-42 Cleveland St, London W1T 4LB, England. [Tan, Serena S.] John Wiley & Sons, 11 River St, Hoboken, NJ 07030 USA. [Washington, Nicole] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Zudilova-Seinstra, Elena] Radarweg 29, NL-1043 NX Amsterdam, Netherlands. RP Bandrowski, A (reprint author), Univ Calif San Diego, Ctr Res Biol Syst, 9500 Gillman Dr 0446, La Jolla, CA 92093 USA. EM abandrowski@ncmir.ucsd.edu; brushm@ohsu.edu; jgrethe@ncmir.ucsd.edu; haendel@ohsu.edu; David.Kennedy@umassmed.edu; sean.hill@incf.org; patrick.Hof@mssm.edu; maryann@ncmir.ucsd.edu; maaike.Pols@f1000.com; setan@wiley.com; NLWashington@lbl.gov; E.Zudilova-Seinstra@elsevier.com; vasilevs@ohsu.edu OI Bandrowski, Anita/0000-0002-5497-0243; Grethe, Jeffrey/0000-0001-5212-7052; Pols, Maaike/0000-0001-5489-4562; Vasilevsky, Nicole/0000-0001-5208-3432 FU NIDA NIH HHS [U24 DA039832, HHSN271200577531C]; NIDDK NIH HHS [U24 DK097771] NR 14 TC 2 Z9 2 U1 0 U2 1 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 1539-2791 EI 1559-0089 J9 NEUROINFORMATICS JI Neuroinformatics PD APR PY 2016 VL 14 IS 2 BP 169 EP 182 DI 10.1007/s12021-015-9284-3 PG 14 WC Computer Science, Interdisciplinary Applications; Neurosciences SC Computer Science; Neurosciences & Neurology GA DI6WV UT WOS:000373641800004 PM 26589523 ER PT J AU Backman, M Hammond, KD Sefta, F Wirth, BD AF Backman, Marie Hammond, Karl D. Sefta, Faiza Wirth, Brian D. TI Atomistic simulations of tungsten surface evolution under low-energy neon implantation SO NUCLEAR FUSION LA English DT Article DE surface structure and morphology; molecular dynamics simulations; plasma surface interaction; tungsten ID MOLECULAR-DYNAMICS; TRANSITION-METALS; PLASMAS AB Tungsten is a candidate material for the divertor of fusion reactors, where it will be subject to a high flux of particles coming from the fusion plasma as well as a significant heat load. Under helium plasma exposure in fusion-reactor-like conditions, a nanostructured morphology is known to form on the tungsten surface in certain temperature and incident energy ranges, although the formation mechanism is not fully established. A recent experimental study (Yajima et al 2013 Plasma Sci. Technol. 15 282-6) using neon or argon exposure did not produce similar nanostructure. This article presents molecular dynamics simulations of neon implantation in tungsten aimed at investigating the surface evolution and elucidating the role of noble gas mass in fuzz formation. In contrast to helium, neon impacts can sputter both tungsten and previously implanted neon atoms. The shorter range of neon ions, along with sputtering, limit the formation of large bubbles and likely prevents nanostructure formation. C1 [Backman, Marie; Hammond, Karl D.; Wirth, Brian D.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Sefta, Faiza] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Wirth, Brian D.] Oak Ridge Natl Lab, POB 2008,MS 6003, Oak Ridge, TN 37831 USA. [Hammond, Karl D.] Univ Missouri, Dept Chem Engn, Columbia, MO 65211 USA. [Sefta, Faiza] EDF R&D, Dept MMC, Grp Met, Ave Renardieres Ecuelles, F-77818 Moret Sur Loing, France. RP Backman, M (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM marie.backman@gmail.com RI Hammond, Karl/I-3604-2012 OI Hammond, Karl/0000-0002-5424-8752 FU U.S. Department of Energy, Offices of Science, Advanced Scientific Computing Research, and Fusion Energy Sciences; U.S. Department of Energy, Office of Fusion Energy Sciences [DE-SC0006661, DE-SC0002060] FX Partial financial support for this work was provided through the Scientific Discovery through Advanced Computing (SciDAC) project on Plasma-Surface Interactions, funded by the U.S. Department of Energy, Offices of Science, Advanced Scientific Computing Research, and Fusion Energy Sciences. Additional funding was provided through the Plasma-Surface Interactions Science Center, funded by the U.S. Department of Energy, Office of Fusion Energy Sciences under award DE-SC0002060 and by the U.S. Department of Energy, Office of Fusion Energy Sciences under award DE-SC0006661. NR 24 TC 1 Z9 1 U1 5 U2 20 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2016 VL 56 IS 4 AR 046008 DI 10.1088/0029-5515/56/4/046008 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DI3NS UT WOS:000373406000010 ER PT J AU Commaux, N Shiraki, D Baylor, LR Hollmann, EM Eidietis, NW Lasnier, CJ Moyer, RA Jernigan, TC Meitner, SJ Combs, SK Foust, CR AF Commaux, N. Shiraki, D. Baylor, L. R. Hollmann, E. M. Eidietis, N. W. Lasnier, C. J. Moyer, R. A. Jernigan, T. C. Meitner, S. J. Combs, S. K. Foust, C. R. TI First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D SO NUCLEAR FUSION LA English DT Article DE tokamak; disruption; DIII-D; mitigation ID RUNAWAY ELECTRONS; DISRUPTIONS; TOKAMAK AB Shattered pellet injection (SPI) is one of the prime candidates for the ITER disruption mitigation system because of its deeper penetration and larger particle flux than massive gas injection (MGI) (Taylor et al 1999 Phys. Plasmas 6 1872) using deuterium (Commaux et al 2010 Nucl. Fusion 50 112001, Combs et al 2010 IEEE Trans. Plasma Sci. 38 400, Baylor et al 2009 Nucl. Fusion 49 085013). The ITER disruption mitigation system will likely use mostly high Z species such as neon because of more effective thermal mitigation and pumping constraints on the maximum amount of deuterium or helium that could be injected. An upgrade of the SPI on DIII-D enables ITER relevant injection characteristics in terms of quantities and gas species. This upgraded SPI system was used on DIII-D for the first time in 2014 for a direct comparison with MGI using identical quantities of neon. This comparison enabled the measurements of density perturbations during the thermal quench (TQ) and radiated power and heat loads to the divertor. It showed that SPI using similar quantities of neon provided a faster and stronger density perturbation and neon assimilation, which resulted in a lower conducted energy to the divertor and a faster TQ onset. Radiated power data analysis shows that this was probably due to the much deeper penetration of the neon in the plasma inducing a higher core radiation than in the MGI case. This experiment shows also that the MHD activity during an SPI shutdown (especially during the TQ) is quite different compared to MGI. This favorable TQ energy dissipation was obtained while keeping the current quench (CQ) duration within acceptable limits when scaled to ITER. C1 [Commaux, N.; Shiraki, D.; Baylor, L. R.; Jernigan, T. C.; Meitner, S. J.; Combs, S. K.; Foust, C. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hollmann, E. M.; Moyer, R. A.] Univ Calif San Diego, San Diego, CA 92093 USA. [Eidietis, N. W.] Gen Atom Co, San Diego, CA USA. [Lasnier, C. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Commaux, N (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM commaux@fusion.gat.com NR 22 TC 3 Z9 3 U1 3 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2016 VL 56 IS 4 AR 046007 DI 10.1088/0029-5515/56/4/046007 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DI3NS UT WOS:000373406000009 ER PT J AU Ebrahimi, F Raman, R AF Ebrahimi, F. Raman, R. TI Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection SO NUCLEAR FUSION LA English DT Article DE 52.55.Wq; 52.55.Fa; 52.35.Vd; 52.30.Cv ID SUSTAINMENT AB A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet-Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium. C1 [Ebrahimi, F.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ebrahimi, F.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. [Raman, R.] Univ Washington, Seattle, WA 98195 USA. RP Ebrahimi, F (reprint author), Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA.; Ebrahimi, F (reprint author), Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08544 USA. EM ebrahimi@princeton.edu FU [DE-SC0010565]; [DE-AC02-09CH11466]; [DE-FG02-99ER54519] FX This work was supported by DE-SC0010565, DE-AC02-09CH11466 and DE-FG02-99ER54519. The digital data for this paper can be found in http://arks.princeton.edu/ark:/88435/dsp011v53k0334. NR 14 TC 2 Z9 2 U1 3 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2016 VL 56 IS 4 AR 044002 DI 10.1088/0029-5515/56/4/044002 PG 6 WC Physics, Fluids & Plasmas SC Physics GA DI3NS UT WOS:000373406000002 ER PT J AU Hu, JS Zuo, GZ Ren, J Yang, QX Chen, ZX Xu, H Zakharov, LE Maingi, R Gentile, C Meng, XC Sun, Z Xu, W Chen, Y Fan, D Yan, N Duan, YM Yang, ZD Zhao, HL Song, YT Zhang, XD Wan, BN Li, JG AF Hu, J. S. Zuo, G. Z. Ren, J. Yang, Q. X. Chen, Z. X. Xu, H. Zakharov, L. E. Maingi, R. Gentile, C. Meng, X. C. Sun, Z. Xu, W. Chen, Y. Fan, D. Yan, N. Duan, Y. M. Yang, Z. D. Zhao, H. L. Song, Y. T. Zhang, X. D. Wan, B. N. Li, J. G. CA EAST Team TI First results of the use of a continuously flowing lithium limiter in high performance discharges in the EAST device SO NUCLEAR FUSION LA English DT Article DE lithium; flowing liquid limiter; plasma facing material; EAST ID TOKAMAK; REGIME; HT-7 AB As an alternative choice of solid plasma facing components (PFCs), flowing liquid lithium can serve as a limiter or divertor PFC and offers a self-healing surface with acceptable heat removal and good impurity control. Such a system could improve plasma performance, and therefore be attractive for future fusion devices. Recently, a continuously flowing liquid lithium (FLiLi) limiter has been successfully designed and tested in the EAST superconducting tokamak. A circulating lithium layer with a thickness of < 0.1 mm and a flow rate similar to 2 cm(3) s(-1) was achieved. A novel in-vessel electro-magnetic pump, working with the toroidal magnetic field of the EAST device, was reliable to control the lithium flow speed. The flowing liquid limiter was found to be fully compatible with various plasma scenarios, including high confinement mode plasmas heated by lower hybrid waves or by neutral beam injection. It was also found that the controllable lithium emission from the limiter was beneficial for the reduction of recycling and impurities, for the reduction of divertor heat flux, and in certain cases, for the improvement of plasma stored energy, which bodes well application for the use of flowing liquid lithium PFCs in future fusion devices. C1 [Hu, J. S.; Zuo, G. Z.; Ren, J.; Yang, Q. X.; Chen, Z. X.; Xu, H.; Meng, X. C.; Sun, Z.; Xu, W.; Chen, Y.; Fan, D.; Yan, N.; Duan, Y. M.; Yang, Z. D.; Zhao, H. L.; Song, Y. T.; Zhang, X. D.; Wan, B. N.; Li, J. G.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [Zakharov, L. E.] LiWallFusion, PO 2391, Princeton, NJ 08543 USA. [Maingi, R.; Gentile, C.] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Meng, X. C.] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. RP Hu, JS (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. EM hujs@ipp.ac.cn FU National Magnetic confinement Fusion Science Program of China [2013GB114004]; National Nature Science Foundation of China [11321092, 11405210]; JSPS-NRF-NSFC A3 Foresight Program (NSFC) [11261140328]; U.S. Dept. of Energy [DE-AC02-09CH11466] FX This research was funded by National Magnetic confinement Fusion Science Program of China under Contract No. 2013GB114004, National Nature Science Foundation of China under Contract No. 11321092 and No. 11405210, and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC No. 11261140328). The PPPL and LiWallFusion co-authors were supported by U.S. Dept. of Energy contract DE-AC02-09CH11466. NR 35 TC 4 Z9 4 U1 6 U2 19 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2016 VL 56 IS 4 AR 046011 DI 10.1088/0029-5515/56/4/046011 PG 14 WC Physics, Fluids & Plasmas SC Physics GA DI3NS UT WOS:000373406000013 ER PT J AU Jacquet, P Goniche, M Bobkov, V Lerche, E Pinsker, RI Pitts, A Zhang, W Colas, L Hosea, J Moriyama, S Wang, SJ Wukitch, S Zhang, X Bilato, R Bufferand, H Guimarais, L Faugel, H Hanson, GR Kocan, M Monakhov, I Noterdaeme, JM Petrzilka, V Shaw, A Stepanov, I Sips, ACC Van Eester, D Wauters, T AF Jacquet, P. Goniche, M. Bobkov, V. Lerche, E. Pinsker, R. I. Pitts, A. Zhang, W. Colas, L. Hosea, J. Moriyama, S. Wang, S-J. Wukitch, S. Zhang, X. Bilato, R. Bufferand, H. Guimarais, L. Faugel, H. Hanson, G. R. Kocan, M. Monakhov, I. Noterdaeme, J-M. Petrzilka, V. Shaw, A. Stepanov, I. Sips, A. C. C. Van Eester, D. Wauters, T. CA JET Contr ASDEX Upgrade Team DIII-D Team ITPA 'Integrated Operation Scen' TI Maximization of ICRF power by SOL density tailoring with local gas injection SO NUCLEAR FUSION LA English DT Article DE ICRF power; antenna loading; gas injection; SOL density ID WALL CONDITIONING TECHNIQUE; ASDEX UPGRADE; TORE-SUPRA; ANTENNA PERFORMANCE; MAGNETIC-FIELD; EDGE DENSITY; PLASMA; JET; WAVES AB Experiments have been performed under the coordination of the International Tokamak Physics Activity (ITPA) on several tokamaks, including ASDEX Upgrade (AUG), JET and DIII-D, to characterize the increased Ion cyclotron range of frequency (ICRF) antenna loading achieved by optimizing the position of gas injection relative to the RF antennas. On DIII-D, AUG and JET (with the ITER-Like Wall) a 50% increase in the antenna loading was observed when injecting deuterium in ELMy H-mode plasmas using mid-plane inlets close to the powered antennas instead of divertor injection and, with smaller improvement when using gas inlets located at the top of the machine. The gas injection rate required for such improvements (similar to 0.7 x 10(22) el s(-1) in AUG, similar to 1.0 x 10(22) el s(-1) in JET) is compatible with the use of this technique to optimize ICRF heating during the development of plasma scenarios and no degradation of confinement was observed when using the mid-plane or top inlets compared with divertor valves. An increase in the scrape-off layer (SOL) density was measured when switching gas injection from divertor to outer mid-plane or top. On JET and DIII-D, the measured SOL density increase when using main chamber puffing is consistent with the antenna coupling resistance increase provided that the distance between the measurement lines of sight and the injection location is taken into account. Optimized gas injection was also found to be beneficial for reducing tungsten (W) sputtering at the AUG antenna limiters, and also to reduce slightly the W and nickel (Ni) content in JET plasmas. Modeling the specific effects of divertor/top/mid-plane injection on the outer mid-plane density was carried out using both the EDGE2D-EIRENE and EMC3-EIRENE plasma boundary code packages; simulations indeed indicate that outer mid-plane gas injection maximizes the density in the mid-plane close to the injection point with qualitative agreement with the AUG SOL density measurements for EMC3-EIRENE. Field line tracing for ITER in the 15 MA Q(DT) = 10 reference scenario indicates that the planned gas injection system could be used to tailor the density in front the antennas. Benchmarking of EMC3-EIRENE against AUG and JET data is planned as a first step towards the ITER SOL modelling required to quantify the effect of gas injection on the SOL density in front of the antennas. C1 [Jacquet, P.; Lerche, E.; Monakhov, I.; Shaw, A.] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Goniche, M.; Colas, L.; Bufferand, H.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Bobkov, V.; Zhang, W.; Bilato, R.; Faugel, H.; Noterdaeme, J-M.; Stepanov, I.] EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany. [Lerche, E.; Van Eester, D.; Wauters, T.] EUROfus Consortium Member Trilateral Euregio Clus, LPP ERM KMS, Brussels, Belgium. [Pinsker, R. I.] Gen Atom Co, POB 85608, San Diego, CA 92186 USA. [Pitts, A.; Kocan, M.] ITER Org, Route Vinon Sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France. [Zhang, W.; Noterdaeme, J-M.; Stepanov, I.] UGent, Dept Appl Phys, Ghent, Belgium. [Hosea, J.] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. [Moriyama, S.] Japan Atom Energy Agcy, 801-1 Mukouyama, Naka, Ibaraki 3110193, Japan. [Wang, S-J.] Natl Fus Res Inst, Yuseong 305806, Daejeon, South Korea. [Wukitch, S.] MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Zhang, X.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Guimarais, L.] Univ Lisbon, IST, Inst Plasmas & Fusao Nucl, P-1699 Lisbon, Portugal. [Hanson, G. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Petrzilka, V.] IPP CR, Na Slovankou 3, Prague 18221 8, Czech Republic. [Sips, A. C. C.] Commiss European Communities, B-1049 Brussels, Belgium. EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Jacquet, P (reprint author), CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. EM philippe.jacquet@ukaea.uk FU Euratom research and training programme [633053]; RCUK Energy Programme [EP/I501045] FX Careful review and suggestions from the referees is acknowledged. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization or of the European Commission. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. This work was also part-funded by the RCUK Energy Programme under grant EP/I501045. NR 51 TC 0 Z9 0 U1 5 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2016 VL 56 IS 4 AR 046001 DI 10.1088/0029-5515/56/4/046001 PG 14 WC Physics, Fluids & Plasmas SC Physics GA DI3NS UT WOS:000373406000003 ER PT J AU Varje, J Asunta, O Cavinato, M Gagliardi, M Hirvijoki, E Koskela, T Kurki-Suonio, T Liu, YQ Parail, V Saibene, G Sipila, S Snicker, A Sarkimaki, K Akaslompolo, S AF Varje, Jari Asunta, Otto Cavinato, Mario Gagliardi, Mario Hirvijoki, Eero Koskela, Tuomas Kurki-Suonio, Taina Liu, Yueqiang Parail, Vassili Saibene, Gabriella Sipila, Seppo Snicker, Antti Sarkimaki, Konsta Akaslompolo, Simppa TI Effect of plasma response on the fast ion losses due to ELM control coils in ITER SO NUCLEAR FUSION LA English DT Article DE ITER; edge localized modes; fast ions; plasma response AB Mitigating edge localized modes (ELMs) with resonant magnetic perturbations (RMPs) can increase energetic particle losses and resulting wall loads, which have previously been studied in the vacuum approximation. This paper presents recent results of fusion alpha and NBI ion losses in the ITER baseline scenario modelled with the Monte Carlo orbit following code ASCOT in a realistic magnetic field including the effect of the plasma response. The response was found to reduce alpha particle losses but increase NBI losses, with up to 4.2% of the injected power being lost. Additionally, some of the load in the divertor was found to be shifted away from the target plates toward the divertor dome. C1 [Varje, Jari; Asunta, Otto; Hirvijoki, Eero; Koskela, Tuomas; Kurki-Suonio, Taina; Sipila, Seppo; Snicker, Antti; Sarkimaki, Konsta; Akaslompolo, Simppa] Aalto Univ, Dept Appl Phys, FI-00076 Aalto, Finland. [Asunta, Otto] Tokamak Energy Ltd, 120A Olymp Ave, Milton Pk OX14 45A, Oxon, England. [Cavinato, Mario; Gagliardi, Mario; Saibene, Gabriella] Torres Diagonal Litoral, Fus Energy, Edificio B3, Barcelona 08019, Spain. [Hirvijoki, Eero] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden. [Liu, Yueqiang; Parail, Vassili] Culham Sci Ctr, Culham Ctr Fus Energy, Abingdon OX14 3DB, Oxon, England. [Snicker, Antti] EURATOM, Max Planck Inst Plasmaphys, D-14476 Garching, Germany. [Hirvijoki, Eero] Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RP Varje, J (reprint author), Aalto Univ, Dept Appl Phys, FI-00076 Aalto, Finland. EM jari.varje@aalto.fi OI Akaslompolo, Simppa/0000-0002-9554-5147 FU Fusion For Energy Grant [379]; Academy of Finland [259675]; Tekes-the Finnish Funding Agency for Innovation under the FinnFusion Consortium; U.S. Department of Energy, Office of Sciences; Princeton University [DE-AC02-09CH11466]; U.S. Department of Energy FX This work was partially funded by Fusion For Energy Grant 379 and the Academy of Finland project No. 259675, and has also received funding from Tekes-the Finnish Funding Agency for Innovation under the FinnFusion Consortium. The work was carried out using the HELIOS supercomputer system at International Fusion Energy Research Centre, Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA. The supercomputing resources of CSC-IT center for science were utilised in the studies. Some of the calculations were performed using computer resources within the Aalto University School of Science 'Science-IT' project. The work by Eero Hirvijoki was partially supported by the U.S. Department of Energy, Office of Sciences, and has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the U.S. Department of Energy. NR 20 TC 4 Z9 4 U1 2 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD APR PY 2016 VL 56 IS 4 AR 046014 DI 10.1088/0029-5515/56/4/046014 PG 7 WC Physics, Fluids & Plasmas SC Physics GA DI3NS UT WOS:000373406000016 ER PT J AU Incerti, S Suerfu, B Xu, J Ivantchenko, V Mantero, A Brown, JMC Bernal, MA Francis, Z Karamitros, M Tran, HN AF Incerti, S. Suerfu, B. Xu, J. Ivantchenko, V. Mantero, A. Brown, J. M. C. Bernal, M. A. Francis, Z. Karamitros, M. Tran, H. N. TI Simulation of Auger electron emission from nanometer-size gold targets using the Geant4 Monte Carlo simulation toolkit SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Geant4; Auger electrons; Monte Carlo; Electromagnetic interactions ID IONIZATION CROSS-SECTIONS; POLYNOMIAL-APPROXIMATION AB A revised atomic deexcitation framework for the Geant4 general purpose Monte Carlo toolkit capable of simulating full Auger deexcitation cascades was implemented in June 2015 release (version 10.2 Beta). An overview of this refined framework and testing of its capabilities is presented for the irradiation of gold nanoparticles (NP) with keV photon and MeV proton beams. The resultant energy spectra of secondary particles created within and that escape the NP are analyzed and discussed. It is anticipated that this new functionality will improve and increase the use of Geant4 in the medical physics, radiobiology, nanomedicine research and other low energy physics fields. (C) 2016 Elsevier B.V. All rights reserved. C1 [Incerti, S.; Tran, H. N.] Ton Duc Thang Univ, Div Nucl Phys, Tan Phong Ward, Dist 7, Ho Chi Minh City, Vietnam. [Incerti, S.; Tran, H. N.] Ton Duc Thang Univ, Fac Sci Appl, Tan Phong Ward, Dist 7, Ho Chi Minh City, Vietnam. [Incerti, S.] Univ Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France. [Incerti, S.] CNRS, UMR 5797, CENBG, IN2P3, F-33170 Gradignan, France. [Suerfu, B.; Xu, J.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Ivantchenko, V.] Ecoanalytica, Moscow, Russia. [Ivantchenko, V.] Geant4 Associates Int Ltd, Hebden Bridge, England. [Mantero, A.] SWHARD Srl, Via Greto Cornigliano 6r, I-16152 Genoa, Italy. [Brown, J. M. C.] Queens Univ Belfast, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland. [Bernal, M. A.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13081970 Campinas, SP, Brazil. [Francis, Z.] Univ St Joseph, Fac Sci, Dept Phys, Beirut, Lebanon. [Karamitros, M.] Univ Notre Dame, Notre Dame Radiat Lab, Notre Dame, IN 46556 USA. [Xu, J.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Incerti, S (reprint author), Univ Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France. EM sebastien.incerti@tdt.edu.vn OI Incerti, Sebastien/0000-0002-0619-2053 FU FAPESP foundation in Brazil [FAPESP 2011/51594-2] FX M. Bernal wishes to thank the FAPESP foundation in Brazil for financing his research activities through the FAPESP 2011/51594-2 project. NR 14 TC 7 Z9 7 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD APR 1 PY 2016 VL 372 BP 91 EP 101 DI 10.1016/j.nimb.2016.02.005 PG 11 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DI5LW UT WOS:000373541600013 ER PT J AU Vittone, E Pastuovic, Z Breese, MBH Lopez, JG Jaksic, M Raisanen, J Siegele, R Simon, A Vizkelethy, G AF Vittone, E. Pastuovic, Z. Breese, M. B. H. Garcia Lopez, J. Jaksic, M. Raisanen, J. Siegele, R. Simon, A. Vizkelethy, G. TI Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Charge collection efficiency; Radiation damage; Ion Beam Induced Charge (IBIC); Semiconductors; MeV ion beams ID LEVEL TRANSIENT SPECTROSCOPY; NONIONIZING ENERGY-LOSS; RADIATION DETECTORS; DISPLACEMENT DAMAGE; GUNNS THEOREM; SILICON; SIMULATION; MICROSCOPY; PROTONS; SOLIDS AB This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials. (C) 2016 Elsevier B.V. All rights reserved. C1 [Vittone, E.] Univ Turin, NIS Res Ctr, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy. [Vittone, E.] Univ Turin, CNISM, Via P Giuria 1, I-10125 Turin, Italy. [Pastuovic, Z.; Siegele, R.] Ctr Accelerator Sci ANSTO, Locked Bag 2001, Kirrawee Dc, NSW 2234, Australia. [Breese, M. B. H.] Natl Univ Singapore, Dept Phys, CIBA, Singapore 117542, Singapore. [Garcia Lopez, J.] Univ Seville, CNA, CSIC, Av Thomas A Edison 7, Seville 41092, Spain. [Jaksic, M.] RBI, Dept Expt Phys, POB 180, Zagreb 10002, Croatia. [Raisanen, J.] Univ Helsinki, Dept Phys, Helsinki 00014, Finland. [Simon, A.] IAEA, Vienna Int Ctr, POB 100, A-1400 Vienna, Austria. [Simon, A.] Hungarian Acad Sci ATOMKI, Inst Nucl Res, Debrecen, Hungary. [Vizkelethy, G.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Vittone, E (reprint author), Univ Turin, NIS Res Ctr, Dept Phys, Via P Giuria 1, I-10125 Turin, Italy. EM ettore.vittone@unito.it OI vittone, ettore/0000-0003-3133-3687 FU IAEA [F11016]; Croatian Science Foundation [8127] FX This work has been carried out within the IAEA Coordinated Research Project No. F11016 "Utilization of Ion Accelerators for Studying and Modelling Ion Induced Radiation Defects in Semiconductors and Insulators" and has been supported in part by Croatian Science Foundation under the project MIOBICC (8127). NR 54 TC 0 Z9 0 U1 5 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD APR 1 PY 2016 VL 372 BP 128 EP 142 DI 10.1016/j.nimb.2016.01.030 PG 15 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA DI5LW UT WOS:000373541600019 ER PT J AU Verbeke, JM AF Verbeke, Jerome M. TI Neutron Multiplicity Counting: Credible Regions for Reconstruction Parameters SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Neutron correlation; fissile materials; Bayes ID DISTRIBUTIONS; ASSAY AB From nuclear materials accountability to homeland security, the need for improved nuclear material detection, assay, and authentication has grown over the past decades. Starting in the 1940s, neutron multiplicity counting techniques have enabled quantitative evaluation of masses and multiplications of fissile materials. In this paper, we propose a new method to compute uncertainties on these parameters using a model-based sequential Bayesian processor, resulting in credible regions in the fissile material mass and multiplication space. These uncertainties will enable us to evaluate quantitatively proposed improvements to the theoretical fission chain model. In addition, because the processor can calculate uncertainties in real time, it is a useful tool in applications such as portal monitoring: monitoring can stop as soon as a preset confidence of nonthreat is reached. C1 [Verbeke, Jerome M.] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. RP Verbeke, JM (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM verbeke2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory (LNLL) [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LNLL) under contract DE-AC52-07NA27344. JMV wishes to thank the stochastic team (LTSD) of the Service d'Etudes de Reacteurs et de Mathematiques Appliquees (SERMA) in the Commissariat a l'Energie Atomique et aux Energies Alternatives at Saclay, France, for hosting him while this paper was being written. Among all his coworkers at the SERMA, he owes particular thanks to J.-C. Trama, who was instrumental in bringing and welcoming him to the department, to F.-X. Hugot for numerous conversations on computer science, mathematics, statistics, and the Monte-Carlo code TRIPOLI-4.9 (Ref. 34), and to O. Petit for triggering his interest in performing uncertainty analysis35 for coincidence counting/NMC. He would also like to thank both N. J. Snyderman and M. K. Prasad from LLNL for discussions. NR 35 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD APR PY 2016 VL 182 IS 4 BP 481 EP 501 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DI7SV UT WOS:000373703200005 ER PT J AU Galloway, J Unal, C AF Galloway, Jack Unal, Cetin TI Accident-Tolerant-Fuel Performance Analysis of APMT Steel Clad/UO2 Fuel and APMT Steel Clad/UN-U3Si5 Fuel Concepts SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article DE Accident-tolerant fuel; APMT steel clad; uranium nitride ID BEHAVIOR AB While Zircaloy-based claddings have been the workhorse for the nuclear power industry for decades, they have also demonstrated problems, particularly regarding accident scenarios. Work has been performed to assess the viability of stainless steel-based cladding in traditional light water reactors. This paper assesses the reactivity penalty of moving to stainless steel cladding using Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify gains or losses in structural integrity when moving to thinner, stainless steel claddings. Thermal and irradiation creep, along with fission gas swelling, thermal swelling, and fuel relocation, are accounted for in the models for both Zircaloy and stainless steel claddings. Additional models for the lower-oxidation stainless steel APMT are also invoked where available, with irradiation data for HT9 used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied toward cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. C1 [Galloway, Jack; Unal, Cetin] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RP Galloway, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jackg@lanl.gov NR 12 TC 0 Z9 0 U1 6 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD APR PY 2016 VL 182 IS 4 BP 523 EP 537 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DI7SV UT WOS:000373703200007 ER PT J AU Mirshafieyan, SS Luk, TS Guo, JP AF Mirshafieyan, Seyed Sadreddin Luk, Ting S. Guo, Junpeng TI Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms SO OPTICAL MATERIALS EXPRESS LA English DT Article ID LARGE-AREA; ABSORPTION; FILMS; METAL; ANTIREFLECTION; ENHANCEMENT; COATINGS; FILTERS AB We demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where the round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results. (C) 2016 Optical Society of America C1 [Mirshafieyan, Seyed Sadreddin; Guo, Junpeng] Univ Alabama, Dept Elect & Comp Engn, 301 Sparkman Dr, Huntsville, AL 35899 USA. [Luk, Ting S.] Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. RP Guo, JP (reprint author), Univ Alabama, Dept Elect & Comp Engn, 301 Sparkman Dr, Huntsville, AL 35899 USA. EM guoj@uah.edu FU USDA National Institute of Food and Agriculture [2014-67022-21618]; Department of Energy-Office of Science Center of Integrated Nanotechnologies (CINT); Alabama Graduate Research Scholars Program FX This work was partially supported by the USDA National Institute of Food and Agriculture through award no. 2014-67022-21618. The measurements of optical constants of Al and Si thin films were supported by Department of Energy-Office of Science Center of Integrated Nanotechnologies (CINT) user program. Seyed Sadreddin Mirshafieyan acknowledges the support from Alabama Graduate Research Scholars Program. NR 31 TC 1 Z9 1 U1 23 U2 24 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD APR 1 PY 2016 VL 6 IS 4 BP 1032 EP 1042 DI 10.1364/OME.6.001032 PG 11 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA DI6HG UT WOS:000373599200008 ER PT J AU Dong, YY Lipschutz, MI Tilley, TD AF Dong, Yuyang Lipschutz, Michael I. Tilley, T. Don TI Regioselective, Transition Metal-Free C-O Coupling Reactions Involving Aryne Intermediates SO ORGANIC LETTERS LA English DT Article ID NUCLEOPHILIC AROMATIC-SUBSTITUTION; DIARYL ETHERS; ALKYL-ARYL; CATALYZED SYNTHESIS; NATURAL-PRODUCTS; PALLADIUM; HALIDES; DERIVATIVES; ALCOHOLS; MECHANISM AB A new transition-metal-free synthetic method for C-O coupling between various aryl halides and alkoxides is described. This type of transformation is typically accomplished using palladium catalysts containing a specialized phosphine ligand. The reactions reported here can be performed under mild, ambient conditions using certain potassium alkoxides and a range of aryl halides; with iodide and bromide derivatives giving the best results. A likely mechanistic pathway involves the in situ generation of an aryne intermediate, and directing groups on the aryl ring inductively control regioselectivity. C1 [Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Tilley, TD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM tdtilley@berkeley.edu FU Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; College of Chemistry FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. The College of Chemistry is thanked for an Undergraduate Summer Research Stipend (to Y.D.). The authors would like to thank Prof. Robert G. Bergman and Prof. Andrew Streitwieser (both at Univerisity of California, Berkeley) for useful suggestions and discussions. NR 54 TC 7 Z9 7 U1 9 U2 24 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 EI 1523-7052 J9 ORG LETT JI Org. Lett. PD APR 1 PY 2016 VL 18 IS 7 BP 1530 EP 1533 DI 10.1021/acs.orglett.6b00183 PG 4 WC Chemistry, Organic SC Chemistry GA DI5DR UT WOS:000373519600009 PM 27010921 ER PT J AU Adam, J Adamova, D Aggarwal, MM Rinella, GA Agnello, M Agrawal, N Ahammed, Z Ahmad, S Ahn, SU Aiola, S Akindinov, A Alam, SN Albuquerque, DSD Aleksandrov, D Alessandro, B Alexandre, D Molina, RA Alici, A Alkin, A Almaraz, JRM Alme, J Alt, T Altinpinar, S Altsybeev, I Prado, CAG Andrei, C Andronic, A Anguelov, V Anticic, T Antinori, F Antonioli, P Aphecetche, L Appelshauser, H Arcelli, S Arnaldi, R Arnold, OW Arsene, IC Arslandok, M Audurier, B Augustinus, A Averbeck, R Azmi, MD Badala, A Baek, YW Bagnasco, S Bailhache, R Bala, R Balasubramanian, S Baldisseri, A Baral, RC Barbano, AM Barbera, R Barile, F Barnafoldi, GG Barnby, LS Barret, V Bartalini, P Barth, K Bartke, J Bartsch, E Basile, M Bastid, N Basu, S Bathen, B Batigne, G Camejo, AB Batyunya, B Batzing, PC Bearden, IG Beck, H Bedda, C Behera, NK Belikov, I Bellini, F Martinez, HB Bellwied, R Belmont, R Belmont-Moreno, E Belyaev, V Benacek, P Bencedi, G Beole, S Berceanu, I Bercuci, A Berdnikov, Y Berenyi, D Bertens, RA Berzano, D Betev, L Bhasin, A Bhat, IR Bhati, AK Bhattacharjee, B Bhom, J Bianchi, L Bianchi, N Bianchin, C Bielcik, J Bielcikova, J Bilandzic, A Biro, G Biswas, R Biswas, S Bjelogrlic, S Blair, JT Blau, D Blume, C Bock, F Bogdanov, A Boggild, H Boldizsar, L Bombara, M Book, J Borel, H Borissov, A Borri, M Bossu, F Botta, E Bourjau, C Braun-Munzinger, P Bregant, M Breitner, T Broker, TA Browning, TA Broz, M Brucken, EJ Bruna, E Bruno, GE Budnikov, D Buesching, H Bufalino, S Buncic, P Busch, O Buthelezi, Z Butt, JB Buxton, JT Cabala, J Caffarri, D Cai, X Caines, H Diaz, LC Caliva, A Villar, EC Camerini, P Carena, F Carena, W Carnesecchi, F Castellanos, JC Castro, AJ Casula, EAR Sanchez, CC Cepila, J Cerello, P Cerkala, J Chang, B Chapeland, S Chartier, M Charvet, JL Chattopadhyay, S Chattopadhyay, S Chauvin, A Chelnokov, V Cherney, M Cheshkov, C Cheynis, B Barroso, VC Chinellato, DD Cho, S Chochula, P Choi, K Chojnacki, M Choudhury, S Christakoglou, P Christensen, CH Christiansen, P Chujo, T Chung, SU Cicalo, C CifarelliI, L Cindolo, F Cleymans, J Colamaria, F Colella, D Collu, A Colocci, M Balbastre, GC del Valle, ZC Connors, ME Contreras, JG Cormier, TM Morales, YC Maldonado, IC Cortese, P Cosentino, MR Costa, F Crochet, P Albino, RC Cuautle, E Cunqueiro, L Dahms, T Dainese, A Danisch, MC Danu, A Das, D Das, I Das, S Dash, A Dash, S De, S De Caro, A de Cataldo, G de Conti, C de Cuveland, J De Falco, A De Gruttola, D De Marco, N De Pasquale, S Deisting, A Deloff, A Denes, E Deplano, C Dhankher, P Di Bari, D Di Mauro, A Di Nezza, P Corchero, MAD Dietel, T Dillenseger, P Divia, R Djuvsland, O Dobrin, A Gimenez, DD Donigus, B Dordic, O Drozhzhova, T Dubey, AK Dubla, A Ducroux, L Dupieux, P Ehlers, RJ Elia, D Endress, E Engel, H Epple, E Erazmus, B Erdemir, I Erhardt, F Espagnon, B Estienne, M Esumi, S Eum, J Evans, D Evdokimov, S Eyyubova, G Fabbietti, L Fabris, D Faivre, J Fantoni, A Fasel, M Feldkamp, L Feliciello, A Feofilov, G Ferencei, J Tellez, AF Ferreiro, EG Ferretti, A Festanti, A Feuillard, VJG Figiel, J Figueredo, MAS Filchagin, S Finogeev, D Fionda, FM Fiore, EM Fleck, MG Floris, M Foertsch, S Foka, P Fokin, S Fragiacomo, E Francescon, A Frankenfeld, U Fronze, GG Fuchs, U Furget, C Furs, A Girard, MF Gaardhoje, JJ Gagliardi, M Gago, AM Gallio, M Gangadharan, DR Ganoti, P Gao, C Garabatos, C Garcia-Solis, E Gargiulo, C Gasik, P Gauger, EF Germain, M Gheata, A Gheata, M Ghosh, P Ghosh, SK Gianotti, P Giubellino, P Giubilato, P Gladysz-Dziadus, E Glaessel, P Coral, DMG Ramirez, AG Gonzalez, AS Gonzalez, V Gonzalez-Zamora, P Gorbunov, S Goerlich, L Gotovac, S Grabski, V Grachov, OA Graczykowski, LK Graham, KL Grelli, A Grigoras, A Grigoras, C Grigoriev, V Grigoryan, A Grigoryan, S Grinyov, B Grion, N Gronefeld, JM Grosse-Oetringhaus, JF Grosso, R Guber, F Guemane, R Guerzoni, B Gulbrandsen, K Gunji, T Gupta, A Gupta, R Haake, R Haaland, O Hadjidakis, C Haiduc, M Hamagaki, H Hamar, G Hamon, JC Harris, JW Harton, A Hatzifotiadou, D Hayashi, S Heckel, ST Hellbaer, E Helstrup, H Herghelegiu, A Corral, GH Hess, BA Hetland, KF Hillemanns, H Hippolyte, B Horak, D Hosokawa, R Hristov, P Humanic, TJ Hussain, N Hussain, T Hutter, D Hwang, DS Ilkaev, R Inaba, M Incani, E Ippolitov, M Irfan, M Ivanov, M Ivanov, V Izucheev, V Jacazio, N Jacobs, PM Jadhav, MB Jadlovska, S Jadlovsky, J Jahnke, C Jakubowska, MJ Jang, HJ Janik, MA Jayarathna, PHSY Jena, C Jena, S Bustamante, RTJ Jones, PG Jusko, A Kalinak, P Kalweit, A Kamin, J Kang, JH Kaplin, V Kar, S Uysal, AK Karavichev, O Karavicheva, T Karayan, L Karpechev, E Kebschull, U Keidel, R Keijdener, DLD Keil, M Khan, MM Khan, P Khan, SA Khanzadeev, A Kharlov, Y Kileng, B Kim, DW Kim, DJ Kim, D Kim, H Kim, JS Kim, M Kim, S Kim, T Kirsch, S Kisel, I Kiselev, S Kisiel, A Kiss, G Klay, JL Klein, C Klein, J Klein-Bosing, C Klewin, S Kluge, A Knichel, ML Knospe, AG Kobdaj, C Kofarago, M Kollegger, T Kolojvari, A Kondratiev, V Kondratyeva, N Kondratyuk, E Konevskikh, A Kopcik, M Kostarakis, P Kour, M Kouzinopoulos, C Kovalenko, O Kovalenko, V Kowalski, M Meethaleveedu, GK Kralik, I Kravcakova, A Krivda, M Krizek, F Kryshen, E Krzewicki, M Kubera, AM Kucera, V Kuhn, C Kuijer, PG Kumar, A Kumar, J Kumar, L Kumar, S Kurashvili, P Kurepin, A Kurepin, AB Kuryakin, A Kweon, MJ Kwon, Y La Pointe, SL La Rocca, P de Guevara, PL Fernandes, CL Lakomov, I Langoy, R Lara, C Lardeux, A Lattuca, A Laudi, E Lea, R Leardini, L Lee, GR Lee, S Lehas, F Lemmon, RC Lenti, V Leogrande, E Monzon, IL Vargas, HL Leoncino, M Levai, P Li, S Li, X Lien, J Lietava, R Linda, S Lindenstruth, V Lippmann, C Lisa, MA Ljunggren, HM Lodato, DF Loenne, PI Loginov, V Loizides, C Lopez, X Torres, EL Lowe, A Luettig, P Lunardon, M Luparello, C Lutz, TH Maevskaya, A Mager, M Mahajan, S Mahmood, SM Maire, A Majka, RD Malaev, M Cervantes, IM Malinina, L Mal'Kevich, D Malzacher, P Mamonov, A Manko, V Manso, F Manzari, V Marchisone, M Mares, J Margagliotti, GV Margotti, A Margutti, J Marin, A Markert, C Marquard, M Martin, NA Blanco, JM Martinengo, P Martinez, MI Garcia, GM Pedreira, MM Mas, A Masciocchi, S Masera, M Masoni, A Mastroserio, A Matyja, A Mayer, C Mazer, J Mazzoni, MA Mcdonald, D Meddi, F Melikyan, Y Menchaca-Rocha, A Meninno, E Perez, JM Meres, M Miake, Y Mieskolainen, MM Mikhaylov, K Milano, L Milosevic, J Mischke, A Mishra, AN Miskowiec, D Mitra, J Mitu, CM Mohammadi, N Mohanty, B Molnar, L Zetina, LM Montes, E De Godoy, DAM Moreno, LAP Moretto, S Morreale, A Morsch, A Muccifora, V Mudnic, E Muehlheim, D Muhuri, S Mukherjee, M Mulligan, JD Munhoz, MG Munzer, RH Murakami, H Murray, S Musa, L Musinsky, J Naik, B Nair, R Nandi, BK Nania, R Nappi, E Naru, MU da Luz, HN Nattrass, C Navarro, SR Nayak, K Nayak, R Nayak, TK Nazarenko, S Nedosekin, A Nellen, L Ng, F Nicassio, M Niculescu, M Niedziela, J Nielsen, BS Nikolaev, S Nikulin, S Nikulin, V Noferini, F Nomokonov, P Nooren, G Noris, JCC Norman, J Nyanin, A Nystrand, J Oeschler, H Oh, S Oh, SK Ohlson, A Okatan, A Okubo, T Olah, L Oleniacz, J Da Silva, ACO Oliver, MH Onderwaater, J Oppedisano, C Orava, R Oravec, M Velasquez, AO Oskarsson, A Otwinowski, J Oyama, K Ozdemir, M Pachmayer, Y Pagano, D Pagano, P Paic, G Pal, SK Pan, J Pandey, AK Papikyan, V Pappalardo, GS Pareek, P Park, WJ Parmar, S Passfeld, A Paticchio, V Patra, RN Paul, B Pei, H Peitzmann, T Da Costa, HP Peresunko, D Lara, CEP Lezama, EP Peskov, V Pestov, Y Petracek, V Petrov, V Petrovici, M Petta, C Piano, S Pikna, M Pillot, P Pimentel, LODL Pinazza, O Pinsky, L Piyarathna, DB Ploskon, M Planinic, M Pluta, J Pochybova, S Podesta-Lerma, PLM Poghosyan, MG Polichtchouk, B Poljak, N Poonsawat, W Pop, A Porteboeuf-Houssais, S Porter, J Pospisil, J Prasad, SK Preghenella, R Prino, F Pruneau, CA Pshenichnov, I Puccio, M Puddu, G Pujahari, P Punin, V Putschke, J Qvigstad, H Rachevski, A Raha, S Rajput, S Rak, J Rakotozafindrabe, A Ramello, L Rami, F Raniwala, R Raniwala, S Rasanen, SS Rascanu, BT Rathee, D Read, KF Redlich, K Reed, RJ Rehman, A Reichelt, P Reidt, F Ren, X Renfordt, R Reolon, AR Reshetin, A Reygers, K Riabov, V Ricci, RA Richert, T Richter, M Riedler, P Riegler, W Riggi, F Ristea, C Rocco, E Cahuantzi, MR Manso, AR Roed, K Rogochaya, E Rohr, D Rohrich, D Ronchetti, F Ronflette, L Rosnet, P Rossi, A Roukoutakis, F Roy, A Roy, C Roy, P Montero, AJR Rui, R Russo, R Ryabinkin, E Ryabov, Y Ryhicki, A Saarinen, S Sadhu, S Sadovsky, S Safarik, K Sahlmuller, B Sahoo, P Sahoo, R Sahoo, S Sahu, PK Saini, J Sakai, S Saleh, MA Salzwedel, J Sambyal, S Samsonov, V Sandor, L Sandoval, A Sano, M Sarkar, D Sarkar, N Sarrna, P Scapparone, E Scarlassara, F Schiaua, C Schicker, R Schmidt, C Schmidt, HR Schuchmann, S Schukraft, J Schulc, M Schutz, Y Schwarz, K Schweda, K Scioli, G Scomparin, E Scott, R Sefcik, M Seger, JE Sekiguchi, Y Sekihata, D Selyuzhenkov, I Senosi, K Senyukov, S Serradilla, E Sevcenco, A Shabanov, A Shabetai, A Shadura, O Shahoyan, R Shahzad, MI Shangaraev, A Sharma, A Sharma, M Sharma, M Sharma, N Sheikh, AI Shigaki, K Shou, Q Shtejer, K Sibiriak, Y Siddhanta, S Sielewicz, KM Siemiarczuk, T Silvemyr, D Silvestre, C Simatovic, G Simonetti, G Singaraju, R Singh, R Singha, S Singhal, V Sinha, BC Sinha, T Sitar, B Sitta, M Skaali, TB Slupecki, M Smirnov, N Snellings, RJM Snellman, TW Song, J Song, M Song, Z Soramel, F Sorensen, S de Souza, RD Sozzi, F Spacek, M Spiriti, E Sputowska, I Spyropoulou-Stassinaki, M Stachel, J Stan, I Stankus, P Stenlund, E Steyn, G Stiller, JH Stocco, D Strmen, P Suaide, AAP Sugitate, T Suire, C Suleymanov, M Suljic, M Sultanov, R Sumbera, M Sumowidagdo, S Szabo, A de Toledo, AS Szarka, I Szczepankiewicz, A Szymanski, M Tabassam, U Takahashi, J Tambave, GJ Tanaka, N Tarhini, M Tariq, M Tarzila, MG Tauro, A Munoz, GT Telesca, A Terasaki, K Terrevoli, C Teyssier, B Thaeder, J Thakur, D Thomas, D Tieulent, R Timmins, AR Toia, A Trogolo, S Trombetta, G Trubnikov, V Trzaska, WH Tsuji, T Tumkin, A Turrisi, R Tveter, TS Ullaland, K Uras, A Usai, GL Utrobicic, A Vala, M Palomo, LV Vallero, S Van der Maarel, J Van Hoorne, JW van Leeuwen, M Vanat, T Vande Vyyre, P Varga, D Vargas, A Vargyas, M Varma, R Vasileiou, M Vasiliev, A Vauthier, A Vechernin, V Veen, AM Veldhoen, M Velure, A Vercellin, E Limon, SV Vernet, R Verweij, M Vickovic, L Viesti, G Viinikainen, J Vilakazi, Z Baillie, OV Tello, AV Vinogradov, A Vinogradov, L Vinogradov, Y Virgili, T Vislavicius, V Viyogi, YP Vodopyanov, A Voelkl, MA Voloshin, K Voloshin, SA Volpe, G von Haller, B Vorobyev, I Vranic, D Vrlakova, J Vulpescu, B Wagner, B Wagner, J Wang, H Wang, M Watanabe, D Watanabe, Y Weber, M Weber, SG Weiser, DF Wessels, JP Westerhoff, U Whitehead, AM Wiechula, J Wikne, J Wilk, G Wilkinson, J Williams, MCS Windelband, B Winn, M Yang, H Yang, P Yano, S Yasin, Z Yin, Z Yokoyama, H Yoo, IK Yoon, JH Yurchenko, V Yushmanov, I Zaborowska, A Zaccolo, V Zaman, A Zampolli, C Zanoli, HJC Zaporozhets, S Zardoshti, N Zarochentsev Zavada, P Zaviyalov, N Zbroszczyk, H Zgura, IS Zhalov, M Zhang, H Zhang, X Zhang, Y Zhang, C Zhang, Z Zhao, C Zhigareva, N Zhou, D Zhou, Y Zhou, Z Zhu, H Zhu, J Zichichi, A Zimmemiann, A Zimmemiann, MB Zinovjev, G Zyzak, M AF Adam, J. Adamova, D. Aggarwal, M. M. Rinella, G. Aglieri Agnello, M. Agrawal, N. Ahammed, Z. Ahmad, S. Ahn, S. U. Aiola, S. Akindinov, A. Alam, S. N. Albuquerque, D. S. D. Aleksandrov, D. Alessandro, B. Alexandre, D. Alfaro Molina, R. Alici, A. Alkin, A. Almaraz, J. R. M. Alme, J. Alt, T. Altinpinar, S. Altsybeev, I. Alves Garcia Prado, C. Andrei, C. Andronic, A. Anguelov, V. Anticic, T. Antinori, F. Antonioli, P. Aphecetche, L. Appelshaeuser, H. Arcelli, S. Arnaldi, R. Arnold, O. W. Arsene, I. C. Arslandok, M. Audurier, B. Augustinus, A. Averbeck, R. Azmi, M. D. Badala, A. Baek, Y. W. Bagnasco, S. Bailhache, R. Bala, R. Balasubramanian, S. Baldisseri, A. Baral, R. C. Barbano, A. M. Barbera, R. Barile, F. Barnafoeldi, G. G. Barnby, L. S. Barret, V. Bartalini, P. Barth, K. Bartke, J. Bartsch, E. Basile, M. Bastid, N. Basu, S. Bathen, B. Batigne, G. Camejo, A. Batista Batyunya, B. Batzing, P. C. Bearden, I. G. Beck, H. Bedda, C. Behera, N. K. Belikov, I. Bellini, F. Bello Martinez, H. Bellwied, R. Belmont, R. Belmont-Moreno, E. Belyaev, V. Benacek, P. Bencedi, G. Beole, S. Berceanu, I. Bercuci, A. Berdnikov, Y. Berenyi, D. Bertens, R. A. Berzano, D. Betev, L. Bhasin, A. Bhat, I. R. Bhati, A. K. Bhattacharjee, B. Bhom, J. Bianchi, L. Bianchi, N. Bianchin, C. Bielcik, J. Bielcikova, J. Bilandzic, A. Biro, G. Biswas, R. Biswas, S. Bjelogrlic, S. Blair, J. T. Blau, D. Blume, C. Bock, F. Bogdanov, A. Boggild, H. Boldizsar, L. Bombara, M. Book, J. Borel, H. Borissov, A. Borri, M. Bossu, F. Botta, E. Bourjau, C. Braun-Munzinger, P. Bregant, M. Breitner, T. Broker, T. A. Browning, T. A. Broz, M. Brucken, E. J. Bruna, E. Bruno, G. E. Budnikov, D. Buesching, H. Bufalino, S. Buncic, P. Busch, O. Buthelezi, Z. Butt, J. B. Buxton, J. T. Cabala, J. Caffarri, D. Cai, X. Caines, H. Diaz, L. Calero Caliva, A. Calvo Villar, E. Camerini, P. Carena, F. Carena, W. Carnesecchi, F. Castellanos, J. Castillo Castro, A. J. Casula, E. A. R. Ceballos Sanchez, C. Cepila, J. Cerello, P. Cerkala, J. Chang, B. Chapeland, S. Chartier, M. Charvet, J. L. Chattopadhyay, S. Chattopadhyay, S. Chauvin, A. Chelnokov, V. Cherney, M. Cheshkov, C. Cheynis, B. Barroso, V. Chibante Chinellato, D. D. Cho, S. Chochula, P. Choi, K. Chojnacki, M. Choudhury, S. Christakoglou, P. Christensen, C. H. Christiansen, P. Chujo, T. Chung, S. U. Cicalo, C. Cifarelli, L., I Cindolo, F. Cleymans, J. Colamaria, F. Colella, D. Collu, A. Colocci, M. Balbastre, G. Conesa del Valle, Z. Conesa Connors, M. E. Contreras, J. G. Cormier, T. M. Morales, Y. Corrales Cortes Maldonado, I. Cortese, P. Cosentino, M. R. Costa, F. Crochet, P. Cruz Albino, R. Cuautle, E. Cunqueiro, L. Dahms, T. Dainese, A. Danisch, M. C. Danu, A. Das, D. Das, I. Das, S. Dash, A. Dash, S. De, S. De Caro, A. de Cataldo, G. de Conti, C. de Cuveland, J. De Falco, A. De Gruttola, D. De Marco, N. De Pasquale, S. Deisting, A. Deloff, A. Denes, E. Deplano, C. Dhankher, P. Di Bari, D. Di Mauro, A. Di Nezza, P. Diaz Corchero, M. A. Dietel, T. Dillenseger, P. Divia, R. Djuvsland, O. Dobrin, A. Domenicis Gimenez, D. Doenigus, B. Dordic, O. Drozhzhova, T. Dubey, A. K. Dubla, A. Ducroux, L. Dupieux, P. Ehlers, R. J. Elia, D. Endress, E. Engel, H. Epple, E. Erazmus, B. Erdemir, I. Erhardt, F. Espagnon, B. Estienne, M. Esumi, S. Eum, J. Evans, D. Evdokimov, S. Eyyubova, G. Fabbietti, L. Fabris, D. Faivre, J. Fantoni, A. Fasel, M. Feldkamp, L. Feliciello, A. Feofilov, G. Ferencei, J. Fernandez Tellez, A. Ferreiro, E. G. Ferretti, A. Festanti, A. Feuillard, V. J. G. Figiel, J. Figueredo, M. A. S. Filchagin, S. Finogeev, D. Fionda, F. M. Fiore, E. M. Fleck, M. G. Floris, M. Foertsch, S. Foka, P. Fokin, S. Fragiacomo, E. Francescon, A. Frankenfeld, U. Fronze, G. G. Fuchs, U. Furget, C. Furs, A. Girard, M. Fusco Gaardhoje, J. J. Gagliardi, M. Gago, A. M. Gallio, M. Gangadharan, D. R. Ganoti, P. Gao, C. Garabatos, C. Garcia-Solis, E. Gargiulo, C. Gasik, P. Gauger, E. F. Germain, M. Gheata, A. Gheata, M. Ghosh, P. Ghosh, S. K. Gianotti, P. Giubellino, P. Giubilato, P. Gladysz-Dziadus, E. Glaessel, P. Gomez Coral, D. M. Ramirez, A. Gomez Gonzalez, A. S. Gonzalez, V. Gonzalez-Zamora, P. Gorbunov, S. Goerlich, L. Gotovac, S. Grabski, V. Grachov, O. A. Graczykowski, L. K. Graham, K. L. Grelli, A. Grigoras, A. Grigoras, C. Grigoriev, V. Grigoryan, A. Grigoryan, S. Grinyov, B. Grion, N. Gronefeld, J. M. Grosse-Oetringhaus, J. F. Grosso, R. Guber, F. Guemane, R. Guerzoni, B. Gulbrandsen, K. Gunji, T. Gupta, A. Gupta, R. Haake, R. Haaland, O. Hadjidakis, C. Haiduc, M. Hamagaki, H. Hamar, G. Hamon, J. C. Harris, J. W. Harton, A. Hatzifotiadou, D. Hayashi, S. Heckel, S. T. Hellbaer, E. Helstrup, H. Herghelegiu, A. Herrera Corral, G. Hess, B. A. Hetland, K. F. Hillemanns, H. Hippolyte, B. Horak, D. Hosokawa, R. Hristov, P. Humanic, T. J. Hussain, N. Hussain, T. Hutter, D. Hwang, D. S. Ilkaev, R. Inaba, M. Incani, E. Ippolitov, M. Irfan, M. Ivanov, M. Ivanov, V. Izucheev, V. Jacazio, N. Jacobs, P. M. Jadhav, M. B. Jadlovska, S. Jadlovsky, J. Jahnke, C. Jakubowska, M. J. Jang, H. J. Janik, M. A. Jayarathna, P. H. S. Y. Jena, C. Jena, S. Bustamante, R. T. Jimenez Jones, P. G. Jusko, A. Kalinak, P. Kalweit, A. Kamin, J. Kang, J. H. Kaplin, V. Kar, S. Uysal, A. Karasu Karavichev, O. Karavicheva, T. Karayan, L. Karpechev, E. Kebschull, U. Keidel, R. Keijdener, D. L. D. Keil, M. Khan, M. Mohisin Khan, P. Khan, S. A. Khanzadeev, A. Kharlov, Y. Kileng, B. Kim, D. W. Kim, D. J. Kim, D. Kim, H. Kim, J. S. Kim, M. Kim, S. Kim, T. Kirsch, S. Kisel, I. Kiselev, S. Kisiel, A. Kiss, G. Klay, J. L. Klein, C. Klein, J. Klein-Boesing, C. Klewin, S. Kluge, A. Knichel, M. L. Knospe, A. G. Kobdaj, C. Kofarago, M. Kollegger, T. Kolojvari, A. Kondratiev, V. Kondratyeva, N. Kondratyuk, E. Konevskikh, A. Kopcik, M. Kostarakis, P. Kour, M. Kouzinopoulos, C. Kovalenko, O. Kovalenko, V. Kowalski, M. Meethaleveedu, G. Koyithatta Kralik, I. Kravcakova, A. Krivda, M. Krizek, F. Kryshen, E. Krzewicki, M. Kubera, A. M. Kucera, V. Kuhn, C. Kuijer, P. G. Kumar, A. Kumar, J. Kumar, L. Kumar, S. Kurashvili, P. Kurepin, A. Kurepin, A. B. Kuryakin, A. Kweon, M. J. Kwon, Y. La Pointe, S. L. La Rocca, P. Ladron de Guevara, P. Lagana Fernandes, C. Lakomov, I. Langoy, R. Lara, C. Lardeux, A. Lattuca, A. Laudi, E. Lea, R. Leardini, L. Lee, G. R. Lee, S. Lehas, F. Lemmon, R. C. Lenti, V. Leogrande, E. Leon Monzon, I. Leon Vargas, H. Leoncino, M. Levai, P. Li, S. Li, X. Lien, J. Lietava, R. Linda, S. Lindenstruth, V. Lippmann, C. Lisa, M. A. Ljunggren, H. M. Lodato, D. F. Loenne, P. I. Loginov, V. Loizides, C. Lopez, X. Lopez Torres, E. Lowe, A. Luettig, P. Lunardon, M. Luparello, C. Lutz, T. H. Maevskaya, A. Mager, M. Mahajan, S. Mahmood, S. M. Maire, A. Majka, R. D. Malaev, M. Maldonado Cervantes, I. Malinina, L. Mal'Kevich, D. Malzacher, P. Mamonov, A. Manko, V. Manso, F. Manzari, V. Marchisone, M. Mares, J. Margagliotti, G. V. Margotti, A. Margutti, J. Marin, A. Markert, C. Marquard, M. Martin, N. A. Blanco, J. Martin Martinengo, P. Martinez, M. I. Garcia, G. Martinez Pedreira, M. Martinez Mas, A. Masciocchi, S. Masera, M. Masoni, A. Mastroserio, A. Matyja, A. Mayer, C. Mazer, J. Mazzoni, M. A. Mcdonald, D. Meddi, F. Melikyan, Y. Menchaca-Rocha, A. Meninno, E. Perez, J. Mercado Meres, M. Miake, Y. Mieskolainen, M. M. Mikhaylov, K. Milano, L. Milosevic, J. Mischke, A. Mishra, A. N. Miskowiec, D. Mitra, J. Mitu, C. M. Mohammadi, N. Mohanty, B. Molnar, L. Montano Zetina, L. Montes, E. De Godoy, D. A. Moreira Moreno, L. A. P. Moretto, S. Morreale, A. Morsch, A. Muccifora, V. Mudnic, E. Muehlheim, D. Muhuri, S. Mukherjee, M. Mulligan, J. D. Munhoz, M. G. Munzer, R. H. Murakami, H. Murray, S. Musa, L. Musinsky, J. Naik, B. Nair, R. Nandi, B. K. Nania, R. Nappi, E. Naru, M. U. Natal da Luz, H. Nattrass, C. Navarro, S. R. Nayak, K. Nayak, R. Nayak, T. K. Nazarenko, S. Nedosekin, A. Nellen, L. Ng, F. Nicassio, M. Niculescu, M. Niedziela, J. Nielsen, B. S. Nikolaev, S. Nikulin, S. Nikulin, V. Noferini, F. Nomokonov, P. Nooren, G. Noris, J. C. C. Norman, J. Nyanin, A. Nystrand, J. Oeschler, H. Oh, S. Oh, S. K. Ohlson, A. Okatan, A. Okubo, T. Olah, L. Oleniacz, J. Oliveira Da Silva, A. C. Oliver, M. H. Onderwaater, J. Oppedisano, C. Orava, R. Oravec, M. Ortiz Velasquez, A. Oskarsson, A. Otwinowski, J. Oyama, K. Ozdemir, M. Pachmayer, Y. Pagano, D. Pagano, P. Paic, G. Pal, S. K. Pan, J. Pandey, A. K. Papikyan, V. Pappalardo, G. S. Pareek, P. Park, W. J. Parmar, S. Passfeld, A. Paticchio, V. Patra, R. N. Paul, B. Pei, H. Peitzmann, T. Da Costa, H. Pereira Peresunko, D. Lara, C. E. Perez Lezama, E. Perez Peskov, V. Pestov, Y. Petracek, V. Petrov, V. Petrovici, M. Petta, C. Piano, S. Pikna, M. Pillot, P. Pimentel, L. O. D. L. Pinazza, O. Pinsky, L. Piyarathna, D. B. Ploskon, M. Planinic, M. Pluta, J. Pochybova, S. Podesta-Lerma, P. L. M. Poghosyan, M. G. Polichtchouk, B. Poljak, N. Poonsawat, W. Pop, A. Porteboeuf-Houssais, S. Porter, J. Pospisil, J. Prasad, S. K. Preghenella, R. Prino, F. Pruneau, C. A. Pshenichnov, I. Puccio, M. Puddu, G. Pujahari, P. Punin, V. Putschke, J. Qvigstad, H. Rachevski, A. Raha, S. Rajput, S. Rak, J. Rakotozafindrabe, A. Ramello, L. Rami, F. Raniwala, R. Raniwala, S. Rasanen, S. S. Rascanu, B. T. Rathee, D. Read, K. F. Redlich, K. Reed, R. J. Rehman, A. Reichelt, P. Reidt, F. Ren, X. Renfordt, R. Reolon, A. R. Reshetin, A. Reygers, K. Riabov, V. Ricci, R. A. Richert, T. Richter, M. Riedler, P. Riegler, W. Riggi, F. Ristea, C. Rocco, E. Rodriguez Cahuantzi, M. Manso, A. Rodriguez Roed, K. Rogochaya, E. Rohr, D. Rohrich, D. Ronchetti, F. Ronflette, L. Rosnet, P. Rossi, A. Roukoutakis, F. Roy, A. Roy, C. Roy, P. Rubio Montero, A. J. Rui, R. Russo, R. Ryabinkin, E. Ryabov, Y. Ryhicki, A. Saarinen, S. Sadhu, S. Sadovsky, S. Safarik, K. Sahlmuller, B. Sahoo, P. Sahoo, R. Sahoo, S. Sahu, P. K. Saini, J. Sakai, S. Saleh, M. A. Salzwedel, J. Sambyal, S. Samsonov, V. Sandor, L. Sandoval, A. Sano, M. Sarkar, D. Sarkar, N. Sarrna, P. Scapparone, E. Scarlassara, F. Schiaua, C. Schicker, R. Schmidt, C. Schmidt, H. R. Schuchmann, S. Schukraft, J. Schulc, M. Schutz, Y. Schwarz, K. Schweda, K. Scioli, G. Scomparin, E. Scott, R. Sefcik, M. Seger, J. E. Sekiguchi, Y. Sekihata, D. Selyuzhenkov, I. Senosi, K. Senyukov, S. Serradilla, E. Sevcenco, A. Shabanov, A. Shabetai, A. Shadura, O. Shahoyan, R. Shahzad, M. I. Shangaraev, A. Sharma, A. Sharma, M. Sharma, M. Sharma, N. Sheikh, A. I. Shigaki, K. Shou, Q. Shtejer, K. Sibiriak, Y. Siddhanta, S. Sielewicz, K. M. Siemiarczuk, T. Silvemyr, D. Silvestre, C. Simatovic, G. Simonetti, G. Singaraju, R. Singh, R. Singha, S. Singhal, V. Sinha, B. C. Sinha, T. Sitar, B. Sitta, M. Skaali, T. B. Slupecki, M. Smirnov, N. Snellings, R. J. M. Snellman, T. W. Song, J. Song, M. Song, Z. Soramel, F. Sorensen, S. de Souza, R. D. Sozzi, F. Spacek, M. Spiriti, E. Sputowska, I. Spyropoulou-Stassinaki, M. Stachel, J. Stan, I. Stankus, P. Stenlund, E. Steyn, G. Stiller, J. H. Stocco, D. Strmen, P. Suaide, A. A. P. Sugitate, T. Suire, C. Suleymanov, M. Suljic, M. Sultanov, R. Sumbera, M. Sumowidagdo, S. Szabo, A. Szanto de Toledo, A. Szarka, I. Szczepankiewicz, A. Szymanski, M. Tabassam, U. Takahashi, J. Tambave, G. J. Tanaka, N. Tarhini, M. Tariq, M. Tarzila, M. G. Tauro, A. Tejeda Munoz, G. Telesca, A. Terasaki, K. Terrevoli, C. Teyssier, B. Thaeder, J. Thakur, D. Thomas, D. Tieulent, R. Timmins, A. R. Toia, A. Trogolo, S. Trombetta, G. Trubnikov, V. Trzaska, W. H. Tsuji, T. Tumkin, A. Turrisi, R. Tveter, T. S. Ullaland, K. Uras, A. Usai, G. L. Utrobicic, A. Vala, M. Palomo, L. Valencia Vallero, S. Van der Maarel, J. Van Hoorne, J. W. van Leeuwen, M. Vanat, T. Vande Vyyre, P. Varga, D. Vargas, A. Vargyas, M. Varma, R. Vasileiou, M. Vasiliev, A. Vauthier, A. Vechernin, V. Veen, A. M. Veldhoen, M. Velure, A. Vercellin, E. Vergara Limon, S. Vernet, R. Verweij, M. Vickovic, L. Viesti, G. Viinikainen, J. Vilakazi, Z. Baillie, O. Villalobos Tello, A. Villatoro Vinogradov, A. Vinogradov, L. Vinogradov, Y. Virgili, T. Vislavicius, V. Viyogi, Y. P. Vodopyanov, A. Voelkl, M. A. Voloshin, K. Voloshin, S. A. Volpe, G. von Haller, B. Vorobyev, I. Vranic, D. Vrlakova, J. Vulpescu, B. Wagner, B. Wagner, J. Wang, H. Wang, M. Watanabe, D. Watanabe, Y. Weber, M. Weber, S. G. Weiser, D. F. Wessels, J. P. Westerhoff, U. Whitehead, A. M. Wiechula, J. Wikne, J. Wilk, G. Wilkinson, J. Williams, M. C. S. Windelband, B. Winn, M. Yang, H. Yang, P. Yano, S. Yasin, Z. Yin, Z. Yokoyama, H. Yoo, I-K Yoon, J. H. Yurchenko, V. Yushmanov, I. Zaborowska, A. Zaccolo, V. Zaman, A. Zampolli, C. Zanoli, H. J. C. Zaporozhets, S. Zardoshti, N. Zarochentsev Zavada, P. Zaviyalov, N. Zbroszczyk, H. Zgura, I. S. Zhalov, M. Zhang, H. Zhang, X. Zhang, Y. Zhang, C. Zhang, Z. Zhao, C. Zhigareva, N. Zhou, D. Zhou, Y. Zhou, Z. Zhu, H. Zhu, J. Zichichi, A. Zimmemiann, A. Zimmemiann, M. B. Zinovjev, G. Zyzak, M. CA ALICE Collaboration TI Anisotropic Flow of Charged Particles in Pb-Pb Collisions at root S-NN=5.02 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID ELLIPTIC FLOW AB We report the first results of elliptic (v2), triangular (v3), and quadrangular (v4) flow of charged particles in Pb-Pb collisions at a center-of-mass energy per nucleon pair of root s(NN) = 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurements are performed in the central pseudorapidity region vertical bar n vertical bar < 0.8 and for the transverse momentum range 0.2 < p(T) < 5 GeV/c. The anisotropic flow is measured using two-particle correlations with a pseudorapidity gap greater than one unit and with the multiparticle cumulant method. Compared to results from Pb-Pb collisions at root s(NN) = 2.76 TeV, the anisotropic flow coefficients v2, v3, and v4 are found to increase by (3.0 +/- 0.6)%, (4.3 +/- 1.4)%, and (10.2 +/- 3.8)%, respectively, in the centrality range 0%-50%. This increase can be attributed mostly to an increase of the average transverse momentum between the two energies. The measurements are found to be compatible with hydrodynamic model calculations. This comparison provides a unique opportunity to test the validity of the hydrodynamic picture and the power to further discriminate between various possibilities for the temperature dependence of shear viscosity to entropy density ratio of the produced matter in heavy-ion collisions at the highest energies. C1 [Grigoryan, A.; Papikyan, V.] Yerevan Phys Inst Fdn, AI Alikhanyan Natl Sci Lab, Yerevan, Armenia. [Bello Martinez, H.; Cortes Maldonado, I.; Fernandez Tellez, A.; Martinez, M. I.; Moreno, L. A. P.; Navarro, S. R.; Noris, J. C. C.; Rodriguez Cahuantzi, M.; Tejeda Munoz, G.; Vargas, A.; Vergara Limon, S.; Tello, A. Villatoro] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Alkin, A.; Chelnokov, V.; Grinyov, B.; Senyukov, S.; Shadura, O.; Trubnikov, V.; Yurchenko, V.; Zinovjev, G.] Bogolyubov Inst Theoret Phys, Kiev, Ukraine. [Biswas, R.; Biswas, S.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Bose Inst, Dept Phys, Kolkata, India. [Biswas, R.; Biswas, S.; Das, S.; Ghosh, S. K.; Prasad, S. K.; Raha, S.] Ctr Astroparticle Phys & Space Sci CAPSS, Kolkata, India. [Pestov, Y.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Klay, J. L.] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. [Bartalini, P.; Cai, X.; Gao, C.; Li, S.; Pei, H.; Ren, X.; Shou, Q.; Song, Z.; Wang, M.; Yang, P.; Yin, Z.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhou, D.; Zhu, J.] Cent China Normal Univ, Wuhan, Peoples R China. [Vernet, R.] IN2P3, Ctr Calcul, Villeurbanne, France. [Ceballos Sanchez, C.; Lopez Torres, E.; Shtejer, K.] Ctr Aplicac Tecnol & Desarrollo Nucl CEADEN, Havana, Cuba. [Diaz Corchero, M. A.; Gonzalez, V.; Gonzalez-Zamora, P.; Montes, E.; Rubio Montero, A. J.; Serradilla, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Cruz Albino, R.; Herrera Corral, G.; Ladron de Guevara, P.; Montano Zetina, L.; Rodriguez Cahuantzi, M.] Ctr Invest & Estudios Avanzados CINVESTAV, Mexico City, DF, Mexico. [Cruz Albino, R.; Herrera Corral, G.; Ladron de Guevara, P.; Montano Zetina, L.; Rodriguez Cahuantzi, M.] Ctr Invest & Estudios Avanzados CINVESTAV, Merida, Mexico. [Alici, A.; Cifarelli, L., I; De Caro, A.; De Gruttola, D.; Noferini, F.; Zichichi, A.] Ctr Fermi Museo Stor Fis, Rome, Italy. [Alici, A.; Cifarelli, L., I; De Caro, A.; De Gruttola, D.; Noferini, F.; Zichichi, A.] Ctr Studi & Ric Enrico Fermi, Rome, Italy. [Garcia-Solis, E.; Harton, A.] Chicago State Univ, Chicago, IL USA. [Li, X.] China Inst Atom Energy, Beijing, Peoples R China. [Baldisseri, A.; Borel, H.; Castellanos, J. Castillo; Charvet, J. L.; Feuillard, V. J. G.; Lardeux, A.; Da Costa, H. Pereira; Rakotozafindrabe, A.] IRFU, Commissariat Energie Atom, Saclay, France. [Butt, J. B.; Naru, M. U.; Shahzad, M. I.; Suleymanov, M.; Tabassam, U.; Yasin, Z.; Zaman, A.] COMSATS Inst Informat Technol CIIT, Islamabad, Pakistan. [Ferreiro, E. G.] Univ Santiago de Compostela, Dept Fis Particulas, Santiago De Compostela, Spain. [Ferreiro, E. G.] Univ Santiago de Compostela, IGFAE, Santiago De Compostela, Spain. [Altinpinar, S.; Djuvsland, O.; Haaland, O.; Loenne, P. I.; Nystrand, J.; Rehman, A.; Rohrich, D.; Tambave, G. J.; Ullaland, K.; Velure, A.; Wagner, B.; Zhang, H.; Zhou, Z.; Zhu, H.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Ahmad, S.; Azmi, M. D.; Hussain, T.; Irfan, M.; Khan, M. Mohisin; Tariq, M.] Aligarh Muslim Univ, Dept Phys, Aligarh 202002, Uttar Pradesh, India. [Buxton, J. T.; Humanic, T. J.; Kubera, A. M.; Lisa, M. A.; Salzwedel, J.] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA. [Hwang, D. S.; Kim, S.] Sejong Univ, Dept Phys, Seoul, South Korea. [Arsene, I. C.; Batzing, P. C.; Dordic, O.; Linda, S.; Mahmood, S. M.; Milosevic, J.; Qvigstad, H.; Richter, M.; Roed, K.; Skaali, T. B.; Tveter, T. S.; Wikne, J.; Zhao, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Meddi, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Meddi, F.] Sez INFN Rome, Rome, Italy. [Casula, E. A. R.; Collu, A.; De Falco, A.; Incani, E.; Puddu, G.; Usai, G. L.] Univ Cagliari, Dipartimento Fis, Cagliari, Italy. [Casula, E. A. R.; Cicalo, C.; Collu, A.; De Falco, A.; Incani, E.; Masoni, A.; Puddu, G.; Siddhanta, S.; Usai, G. L.] Sezione Ist Nazl Fis Nucl, Cagliari, Italy. [Camerini, P.; Lea, R.; Luparello, C.; Margagliotti, G. V.; Rui, R.; Suljic, M.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Camerini, P.; Fragiacomo, E.; Grion, N.; Lea, R.; Luparello, C.; Margagliotti, G. V.; Piano, S.; Rachevski, A.; Rui, R.; Suljic, M.] Sezione Ist Nazl Fis Nucl, Trieste, Italy. [Barbano, A. M.; Beole, S.; Botta, E.; Bufalino, S.; Ferretti, A.; Fronze, G. G.; Gagliardi, M.; Gallio, M.; Lattuca, A.; Marchisone, M.; Masera, M.; Pagano, D.; Puccio, M.; Russo, R.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Univ Turin, Dipartimento Fis, Turin, Italy. [Agnello, M.; Alessandro, B.; Arnaldi, R.; Bagnasco, S.; Barbano, A. M.; Bedda, C.; Beole, S.; Botta, E.; Bruna, E.; Bufalino, S.; Cerello, P.; Morales, Y. Corrales; De Marco, N.; Feliciello, A.; Ferretti, A.; Fronze, G. G.; Gagliardi, M.; Gallio, M.; Giubellino, P.; La Pointe, S. L.; Lattuca, A.; Marchisone, M.; Masera, M.; Oppedisano, C.; Pagano, D.; Prino, F.; Puccio, M.; Russo, R.; Scomparin, E.; Shtejer, K.; Trogolo, S.; Vallero, S.; Vercellin, E.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Arcelli, S.; Bellini, F.; Carnesecchi, F.; Cifarelli, L., I; Colocci, M.; Guerzoni, B.; Jacazio, N.; Scioli, G.; Zichichi, A.] Univ Bologna, Dipartimento Fis & Astron, Bologna, Italy. [Alici, A.; Antonioli, P.; Arcelli, S.; Bellini, F.; Carnesecchi, F.; Cifarelli, L., I; Cindolo, F.; Colocci, M.; Guerzoni, B.; Hatzifotiadou, D.; Jacazio, N.; Margotti, A.; Nania, R.; Noferini, F.; Pinazza, O.; Preghenella, R.; Scapparone, E.; Scioli, G.; Williams, M. C. S.; Zampolli, C.; Zichichi, A.] Sezione Ist Nazl Fis Nucl, Bologna, Italy. [Barbera, R.; La Rocca, P.; Petta, C.; Riggi, F.] Univ Catania, Dipartimento Fis & Astron, Catania, Italy. [Badala, A.; Barbera, R.; La Rocca, P.; Pappalardo, G. S.; Petta, C.; Riggi, F.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Leoncino, M.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Viesti, G.] Univ Padua, Dipartimento Fis & Astron, Padua, Italy. [Antinori, F.; Dainese, A.; Fabris, D.; Festanti, A.; Francescon, A.; Giubilato, P.; Jena, C.; Leoncino, M.; Lunardon, M.; Moretto, S.; Rossi, A.; Scarlassara, F.; Soramel, F.; Terrevoli, C.; Turrisi, R.; Viesti, G.] Sezione Ist Nazl Fis Nucl, Padua, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Univ Salerno, Dipartimento Fis ER Caianiello, I-84100 Salerno, Italy. [De Caro, A.; De Gruttola, D.; De Pasquale, S.; Girard, M. Fusco; Meninno, E.; Pagano, P.; Virgili, T.] Grp Collegato INFN, Salerno, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Univ Piemonte Orientate, Dipartimento Sci & Innovaz Tecnol, Alessandria, Italy. [Cortese, P.; Ramello, L.; Sitta, M.] Grp Collegaio INFN, Alessandria, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; Di Bari, D.; Fiore, E. M.; Mastroserio, A.; Trombetta, G.; Volpe, G.] Dipartimento Interateneo Fis M Merlin, Bari, Italy. [Barile, F.; Bruno, G. E.; Colamaria, F.; de Cataldo, G.; Di Bari, D.; Elia, D.; Fiore, E. M.; Lenti, V.; Manzari, V.; Mastroserio, A.; Nappi, E.; Paticchio, V.; Trombetta, G.; Volpe, G.] Sezione Ist Nazl Fis Nucl, Bari, Italy. [Christiansen, P.; Ljunggren, H. M.; Oskarsson, A.; Richert, T.; Silvemyr, D.; Stenlund, E.; Vislavicius, V.] Lund Univ, Div Expt High Energy Phys, Lund, Sweden. [Hess, B. A.; Schmidt, H. R.; Wiechula, J.] Univ Tubingen, Tubingen, Germany. [Rinella, G. Aglieri; Augustinus, A.; Barth, K.; Berzano, D.; Betev, L.; Bufalino, S.; Buncic, P.; Caffarri, D.; Carena, F.; Carena, W.; Chapeland, S.; Barroso, V. Chibante; Chochula, P.; Colella, D.; Costa, F.; Cunqueiro, L.; Di Mauro, A.; Divia, R.; Floris, M.; Francescon, A.; Fuchs, U.; Gargiulo, C.; Gheata, A.; Gheata, M.; Giubellino, P.; Gonzalez, A. S.; Grigoras, A.; Grigoras, C.; Grosse-Oetringhaus, J. F.; Hillemanns, H.; Hristov, P.; Kalweit, A.; Keil, M.; Klein, J.; Kluge, A.; Kofarago, M.; Kouzinopoulos, C.; Kryshen, E.; Lakomov, I.; Laudi, E.; Mager, M.; Manzari, V.; Martinengo, P.; Pedreira, M. Martinez; Milano, L.; Morsch, A.; Musa, L.; Niedziela, J.; Ohlson, A.; Pinazza, O.; Preghenella, R.; Reidt, F.; Riedler, P.; Riegler, W.; Ronchetti, F.; Rossi, A.; Safarik, K.; Schukraft, J.; Schutz, Y.; Senyukov, S.; Shahoyan, R.; Sielewicz, K. M.; Simonetti, G.; Szczepankiewicz, A.; Tauro, A.; Telesca, A.; Van Hoorne, J. W.; Vande Vyyre, P.; von Haller, B.; Vranic, D.; Weber, M.; Zampolli, C.; Zimmemiann, M. B.] European Org Nucl Res CERN, Geneva, Switzerland. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Excellence Cluster Universe, D-80290 Munich, Germany. [Alme, J.; Helstrup, H.; Hetland, K. F.; Kileng, B.] Bergen Univ Coll, Fac Engn, Bergen, Norway. [Meres, M.; Pikna, M.; Sitar, B.; Strmen, P.; Szabo, A.; Szarka, I.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Adam, J.; Bielcik, J.; Broz, M.; Cepila, J.; Contreras, J. G.; Eyyubova, G.; Horak, D.; Petracek, V.; Schulc, M.; Spacek, M.] Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. [Bombara, M.; Kravcakova, A.; Sefcik, M.; Vrlakova, J.] Safarik Univ, Fac Sci, Kosice, Slovakia. [Langoy, R.; Lien, J.] Buskerud & Vestfold Univ Coll, Fac Technol, Vestfold, Norway. [Alt, T.; de Cuveland, J.; Gorbunov, S.; Hutter, D.; Kirsch, S.; Kisel, I.; Krzewicki, M.; Lindenstruth, V.; Rohr, D.; Zyzak, M.] Goethe Univ Frankfurt, Frankfurt Inst Adv Studies, D-60054 Frankfurt, Germany. [Kim, D. W.; Kim, J. S.] Gangneung Wonju Natl Univ, Kangnung, South Korea. [Bhattacharjee, B.; Hussain, N.; Sarrna, P.] Gauhati Univ, Dept Phys, Gauhati, India. [Brucken, E. J.; Mieskolainen, M. M.; Orava, R.; Rasanen, S. S.; Saarinen, S.] Helsinki Inst Phys HIP, Helsinki, Finland. [Okubo, T.; Sekihata, D.; Shigaki, K.; Sugitate, T.; Yano, S.] Hiroshima Univ, Hiroshima, Japan. [Agrawal, N.; Dash, S.; Dhankher, P.; Jadhav, M. B.; Meethaleveedu, G. Koyithatta; Kumar, J.; Kumar, S.; Naik, B.; Nandi, B. K.; Nayak, R.; Pandey, A. K.; Varma, R.] Indian Inst Technol Bombay IIT, Bombay, Maharashtra, India. [Behera, N. K.; Mishra, A. N.; Pareek, P.; Roy, A.; Sahoo, P.; Sahoo, R.; Thakur, D.] Indian Inst Technol Indore, Indore, Madhya Pradesh, India. [Sumowidagdo, S.] Indonesian Inst Sci, Jakarta, Indonesia. [Behera, N. K.; Cho, S.; Kweon, M. J.; Yoon, J. H.] Inha Univ, Inchon, South Korea. [del Valle, Z. Conesa; Espagnon, B.; Hadjidakis, C.; Suire, C.; Tarhini, M.] Univ Paris 11, CNRS, IN2P3, Inst Phys Nucl Orsay IPNO, F-91405 Orsay, France. [Breitner, T.; Engel, H.; Ramirez, A. Gomez; Kebschull, U.; Lara, C.] Goethe Univ Frankfurt, Inst Informat, D-60054 Frankfurt, Germany. [Appelshaeuser, H.; Arslandok, M.; Bailhache, R.; Bartsch, E.; Beck, H.; Blume, C.; Book, J.; Broker, T. A.; Buesching, H.; Dillenseger, P.; Doenigus, B.; Drozhzhova, T.; Erdemir, I.; Heckel, S. T.; Hellbaer, E.; Kamin, J.; Klein, C.; Luettig, P.; Marquard, M.; Munzer, R. H.; Ozdemir, M.; Lezama, E. Perez; Peskov, V.; Rascanu, B. T.; Reichelt, P.; Renfordt, R.; Sahlmuller, B.; Schuchmann, S.; Toia, A.] Goethe Univ Frankfurt, Inst Kernphys, Frankfurt, Germany. [Bathen, B.; Cunqueiro, L.; Feldkamp, L.; Haake, R.; Klein-Boesing, C.; De Godoy, D. A. Moreira; Muehlheim, D.; Passfeld, A.; Wessels, J. P.; Westerhoff, U.; Zimmemiann, M. B.] Univ Munster, Inst Kernphys, Wilhelm Klemm Str 9, D-48149 Munster, Germany. [Belikov, I.; Hamon, J. C.; Hippolyte, B.; Kuhn, C.; Maire, A.; Molnar, L.; Rami, F.; Roy, C.] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien IPHC, Strasbourg, France. [Finogeev, D.; Furs, A.; Guber, F.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Konevskikh, A.; Kurepin, A.; Kurepin, A. B.; Maevskaya, A.; Pshenichnov, I.; Reshetin, A.; Shabanov, A.] Acad Sci, Inst Nucl Res, Moscow, Russia. [Bertens, R. A.; Bjelogrlic, S.; Caliva, A.; Dubla, A.; Grelli, A.; Keijdener, D. L. D.; Leogrande, E.; Lodato, D. F.; Margutti, J.; Mischke, A.; Mohammadi, N.; Nooren, G.; Peitzmann, T.; Rocco, E.; Snellings, R. J. M.; Van der Maarel, J.; van Leeuwen, M.; Veen, A. M.; Veldhoen, M.; Wang, H.; Yang, H.; Zhang, C.] Univ Utrecht, Inst Subatom Phys, Utrecht, Netherlands. [Akindinov, A.; Kiselev, S.; Mal'Kevich, D.; Mikhaylov, K.; Nedosekin, A.; Sultanov, R.; Voloshin, K.; Zhigareva, N.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Colella, D.; Jadlovsky, J.; Kalinak, P.; Kralik, I.; Krivda, M.; Musinsky, J.; Sandor, L.; Vala, M.] Slovak Acad Sci, Inst Expt Phys, Kosice 04353, Slovakia. [Mares, J.; Zavada, P.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Baral, R. C.; Sahoo, S.; Sahu, P. K.] Inst Phys, Bhubaneswar 751007, Orissa, India. [Danu, A.; Dobrin, A.; Gheata, M.; Haiduc, M.; Mitu, C. M.; Niculescu, M.; Ristea, C.; Sevcenco, A.; Stan, I.; Zgura, I. S.] Inst Space Sci ISS, Bucharest, Romania. [Cuautle, E.; Maldonado Cervantes, I.; Nellen, L.; Ortiz Velasquez, A.; Paic, G.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [Alfaro Molina, R.; Belmont-Moreno, E.; Gomez Coral, D. M.; Grabski, V.; Leon Vargas, H.; Menchaca-Rocha, A.; Sandoval, A.; Serradilla, E.] Univ Nacl Autonoma Mexico, Inst Fis, Mexico City, DF, Mexico. [Bossu, F.; Buthelezi, Z.; Foertsch, S.; Marchisone, M.; Murray, S.; Senosi, K.; Steyn, G.] Natl Res Fdn, IThemba LABS, Somerset West, South Africa. [Batyunya, B.; Grigoryan, S.; Malinina, L.; Mikhaylov, K.; Nomokonov, P.; Rogochaya, E.; Vodopyanov, A.; Zaporozhets, S.] Joint Inst Nucl Res JINR, Dubna, Russia. [Baek, Y. W.; Oh, S. K.] Konkuk Univ, Seoul, South Korea. [Ahn, S. U.; Jang, H. J.] Korea Inst Sci & Technol Informat, Daejeon, South Korea. [Uysal, A. Karasu; Okatan, A.] KTO Karatay Univ, Konya, Turkey. [Barret, V.; Bastid, N.; Camejo, A. Batista; Crochet, P.; Dupieux, P.; Feuillard, V. J. G.; Li, S.; Lopez, X.; Manso, F.; Porteboeuf-Houssais, S.; Rosnet, P.; Palomo, L. Valencia; Vulpescu, B.] Univ Clermont Ferrand, IN2P3, CNRS, Clermont Univ,Lab Phys Corpusculaire LPC, Clermont Ferrand, France. [Balbastre, G. Conesa; Faivre, J.; Furget, C.; Guemane, R.; Silvestre, C.; Vauthier, A.] Univ Grenoble Alpes, IN2P3, CNRS, Lab Phys Subatom & Cosmol, Grenoble, France. [Bianchi, N.; Diaz, L. Calero; Di Nezza, P.; Fantoni, A.; Gianotti, P.; Muccifora, V.; Reolon, A. R.; Ronchetti, F.; Spiriti, E.] Ist Nazl Fis Nucl, Lab Nazl Frascati, POB 13, I-00044 Frascati, Italy. [Ricci, R. A.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Bock, F.; Collu, A.; Fasel, M.; Gangadharan, D. R.; Jacobs, P. M.; Loizides, C.; Milano, L.; Ploskon, M.; Porter, J.; Sakai, S.; Thaeder, J.; Zhang, X.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Belyaev, V.; Bogdanov, A.; Grigoriev, V.; Ippolitov, M.; Kaplin, V.; Kondratyeva, N.; Loginov, V.; Melikyan, Y.; Peresunko, D.] Moscow Engn Phys Inst, Moscow 115409, Russia. [Oyama, K.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Deloff, A.; Kovalenko, O.; Kurashvili, P.; Nair, R.; Redlich, K.; Siemiarczuk, T.; Wilk, G.] Natl Ctr Nucl Studies, Warsaw, Poland. [Andrei, C.; Berceanu, I.; Bercuci, A.; Herghelegiu, A.; Petrovici, M.; Pop, A.; Schiaua, C.; Tarzila, M. G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Biswas, S.; Dash, A.; Mohanty, B.; Nayak, K.; Singh, R.; Singha, S.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Aleksandrov, D.; Blau, D.; Fokin, S.; Ippolitov, M.; Manko, V.; Nikolaev, S.; Nikulin, S.; Nyanin, A.; Peresunko, D.; Ryabinkin, E.; Sibiriak, Y.; Vasiliev, A.; Vinogradov, A.; Yushmanov, I.] Natl Res Ctr Kurchatov Inst, Moscow, Russia. [Bearden, I. G.; Bilandzic, A.; Boggild, H.; Bourjau, C.; Chojnacki, M.; Christensen, C. H.; Gaardhoje, J. J.; Gulbrandsen, K.; Nielsen, B. S.; Pimentel, L. O. D. L.; Zaccolo, V.; Zhou, Y.] Univ Copenhagen, Niels Bohr Inst, Blegdamsvej 17, DK-2100 Copenhagen, Denmark. [Christakoglou, P.; Deplano, C.; Dobrin, A.; Kuijer, P. G.; Lehas, F.; Lara, C. E. Perez; Manso, A. Rodriguez] Nikhef, Natl Inst Subatomaire Fys, Amsterdam, Netherlands. [Borri, M.; Lemmon, R. C.] STFC Daresbuty Lab, Nucl Phys Grp, Daresbury, England. [Adamova, D.; Benacek, P.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Pospisil, J.; Sumbera, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, CZ-25068 Rez, Czech Republic. [Adamova, D.; Benacek, P.; Bielcikova, J.; Ferencei, J.; Krizek, F.; Kucera, V.; Pospisil, J.; Sumbera, M.; Vanat, T.] Acad Sci Czech Republic, Inst Nucl Phys, Prague, Czech Republic. [Cormier, T. M.; Poghosyan, M. G.; Read, K. F.; Stankus, P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Berdnikov, Y.; Ivanov, V.; Khanzadeev, A.; Kryshen, E.; Malaev, M.; Nikulin, V.; Riabov, V.; Ryabov, Y.; Samsonov, V.; Zhalov, M.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Cherney, M.; Poghosyan, M. G.; Seger, J. E.] Creighton Univ, Dept Phys, Omaha, NE 68178 USA. [Aggarwal, M. M.; Bhati, A. K.; Kumar, L.; Parmar, S.; Rathee, D.] Panjab Univ, Dept Phys, Chandigarh 160014, India. [Ganoti, P.; Kostarakis, P.; Roukoutakis, F.; Spyropoulou-Stassinaki, M.; Vasileiou, M.] Univ Athens, Dept Phys, Athens, Greece. [Cleymans, J.; Dietel, T.; Whitehead, A. M.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Bala, R.; Bhasin, A.; Bhat, I. R.; Gupta, A.; Gupta, R.; Kour, M.; Kumar, A.; Mahajan, S.; Rajput, S.; Sambyal, S.; Sharma, A.; Sharma, M.] Univ Jammu, Dept Phys, Jammu 180004, India. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Dept Phys, Jaipur 302004, Rajasthan, India. [Arnold, O. W.; Bilandzic, A.; Chauvin, A.; Dahms, T.; Fabbietti, L.; Gasik, P.; Munzer, R. H.; Vorobyev, I.] Tech Univ Munich, Dept Phys, D-80290 Munich, Germany. [Anguelov, V.; Bock, F.; Busch, O.; Danisch, M. C.; Deisting, A.; Fleck, M. G.; Glaessel, P.; Karayan, L.; Klewin, S.; Knichel, M. L.; Leardini, L.; Perez, J. Mercado; Oeschler, H.; Oyama, K.; Pachmayer, Y.; Reidt, F.; Reygers, K.; Schicker, R.; Stachel, J.; Stiller, J. H.; Voelkl, M. A.; Weiser, D. F.; Wilkinson, J.; Windelband, B.; Winn, M.; Zimmemiann, A.] Heidelberg Univ, Inst Phys, Philosophenweg 12, Heidelberg, Germany. [Browning, T. A.] Purdue Univ, W Lafayette, IN 47907 USA. [Borissov, A.; Choi, K.; Chung, S. U.; Eum, J.; Song, J.; Yoo, I-K] Pusan Natl Univ, Pusan 609735, South Korea. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, Div Res, D-64291 Darmstadt, Germany. [Andronic, A.; Averbeck, R.; Braun-Munzinger, P.; Deisting, A.; Foka, P.; Frankenfeld, U.; Garabatos, C.; Gronefeld, J. M.; Grosso, R.; Ivanov, M.; Bustamante, R. T. Jimenez; Karayan, L.; Kollegger, T.; Lippmann, C.; Malzacher, P.; Marin, A.; Martin, N. A.; Masciocchi, S.; Miskowiec, D.; Nicassio, M.; Onderwaater, J.; Park, W. J.; Schmidt, C.; Schwarz, K.; Schweda, K.; Selyuzhenkov, I.; Sozzi, F.; Vranic, D.; Wagner, J.; Weber, S. G.] GSI Helmholtzzentrum Schwerionenforsch, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Anticic, T.] Rudjer Boskovic Inst, Zagreb, Croatia. [Budnikov, D.; Filchagin, S.; Ilkaev, R.; Kuryakin, A.; Mamonov, A.; Nazarenko, S.; Punin, V.; Tumkin, A.; Vinogradov, Y.; Zaviyalov, N.] Russian Fed Nucl Ctr VNIIEF, Sarov, Russia. [Chattopadhyay, S.; Das, D.; Das, I.; Khan, P.; Paul, B.; Roy, P.; Sinha, T.] Saha Inst Nucl Phys, Kolkata, India. [Alexandre, D.; Barnby, L. S.; Evans, D.; Graham, K. L.; Jones, P. G.; Jusko, A.; Krivda, M.; Lee, G. R.; Lietava, R.; Baillie, O. Villalobos; Zardoshti, N.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Calvo Villar, E.; Endress, E.; Gago, A. M.] Pontificia Univ Catolica Peru, Dept Ciencias, Secc Fis, Lima, Peru. [Mazzoni, M. A.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Evdokimov, S.; Izucheev, V.; Kharlov, Y.; Kondratyuk, E.; Petrov, V.; Polichtchouk, B.; Sadovsky, S.; Shangaraev, A.] NRC Kurchatov Inst, SSC IHEP, Protvino, Russia. [Weber, M.] Stefan Meyer Inst Subatomare Phys SMI, Vienna, Austria. [Aphecetche, L.; Audurier, B.; Batigne, G.; Erazmus, B.; Estienne, M.; Germain, M.; Blanco, J. Martin; Garcia, G. Martinez; Molnar, L.; Morreale, A.; Pillot, P.; Ronflette, L.; Schutz, Y.; Shabetai, A.; Stocco, D.; Wang, M.; Zhu, J.] Univ Nantes, CNRS, IN2P3, SUBATECH,Ecole Mines Nantes, Nantes, France. [Kobdaj, C.; Poonsawat, W.] Suranaree Univ Technol, Nakhon Ratchasima, Thailand. [Cabala, J.; Cerkala, J.; Jadlovska, S.; Jadlovsky, J.; Kopcik, M.; Oravec, M.] Tech Univ Kosice, Kosice, Slovakia. [Gotovac, S.; Mudnic, E.; Vickovic, L.] Tech Univ Split FESB, Split, Croatia. [Bartke, J.; Bhom, J.; Figiel, J.; Gladysz-Dziadus, E.; Goerlich, L.; Kowalski, M.; Matyja, A.; Mayer, C.; Otwinowski, J.; Ryhicki, A.; Sputowska, I.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Blair, J. T.; Gauger, E. F.; Knospe, A. G.; Markert, C.; Thomas, D.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Almaraz, J. R. M.; Leon Monzon, I.; Podesta-Lerma, P. L. M.] Univ Autonoma Sinaloa, Culiacan, Mexico. [Alves Garcia Prado, C.; Bregant, M.; Cosentino, M. R.; De, S.; de Conti, C.; Domenicis Gimenez, D.; Figueredo, M. A. S.; Jahnke, C.; Lagana Fernandes, C.; Mas, A.; Munhoz, M. G.; Natal da Luz, H.; Oliveira Da Silva, A. C.; Suaide, A. A. P.; Szanto de Toledo, A.; Zanoli, H. J. C.] Univ Sao Paulo, Sao Paulo, Brazil. [Albuquerque, D. S. D.; Chinellato, D. D.; de Souza, R. D.; Takahashi, J.] Univ Estadual Campinas UNICAMP, Campinas, SP, Brazil. [Bellwied, R.; Bianchi, L.; Jayarathna, P. H. S. Y.; Jena, S.; Knospe, A. G.; Mcdonald, D.; Ng, F.; Pinsky, L.; Piyarathna, D. B.; Timmins, A. R.] Univ Houston, Houston, TX USA. [Chang, B.; Kim, D. J.; Rak, J.; Slupecki, M.; Snellman, T. W.; Trzaska, W. H.; Vargyas, M.; Viinikainen, J.] Univ Jyvaskyla, Jyvaskyla, Finland. [Borri, M.; Chartier, M.; Figueredo, M. A. S.; Norman, J.] Univ Liverpool, Liverpool L69 3BX, Merseyside, England. [Castro, A. J.; Mazer, J.; Nattrass, C.; Read, K. F.; Sharma, N.; Sorensen, S.] Univ Tennessee, Knoxville, TN USA. [Marchisone, M.; Vilakazi, Z.] Univ Witwatersrand, Johannesburg, South Africa. [Gunji, T.; Hamagaki, H.; Hayashi, S.; Murakami, H.; Sekiguchi, Y.; Terasaki, K.; Tsuji, T.; Watanabe, Y.] Univ Tokyo, Tokyo, Japan. [Bhom, J.; Busch, O.; Chujo, T.; Esumi, S.; Hosokawa, R.; Inaba, M.; Miake, Y.; Sano, M.; Scott, R.; Tanaka, N.; Watanabe, D.; Yokoyama, H.] Univ Tsukuba, Tsukuba, Ibaraki, Japan. [Erhardt, F.; Planinic, M.; Poljak, N.; Simatovic, G.; Utrobicic, A.] Univ Zagreb, Zagreb 41000, Croatia. [Cheshkov, C.; Cheynis, B.; Ducroux, L.; Teyssier, B.; Tieulent, R.; Uras, A.] Univ Lyon 1, CNRS, IN2P3, IPN Lyon, F-69622 Villeurbanne, France. [Altsybeev, I.; Feofilov, G.; Kolojvari, A.; Kondratiev, V.; Kovalenko, V.; Vechernin, V.; Vinogradov, L.; Zarochentsev] St Petersburg State Univ, V Fock Inst Phys, St Petersburg 199034, Russia. [Ahammed, Z.; Alam, S. N.; Basu, S.; Chattopadhyay, S.; Choudhury, S.; Dubey, A. K.; Ghosh, P.; Kar, S.; Khan, S. A.; Mitra, J.; Mohanty, B.; Muhuri, S.; Mukherjee, M.; Nayak, T. K.; Pal, S. K.; Patra, R. N.; Sadhu, S.; Saini, J.; Sarkar, D.; Sarkar, N.; Sheikh, A. I.; Singaraju, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Viyogi, Y. P.] Ctr Variable Energy Cyclotron, Kolkata, India. [Graczykowski, L. K.; Jakubowska, M. J.; Janik, M. A.; Kisiel, A.; Oleniacz, J.; Pluta, J.; Szymanski, M.; Zaborowska, A.; Zbroszczyk, H.] Warsaw Univ Technol, Warsaw, Poland. [Belmont, R.; Bianchin, C.; Pan, J.; Pruneau, C. A.; Pujahari, P.; Putschke, J.; Reed, R. J.; Saleh, M. A.; Verweij, M.; Voloshin, S. A.] Wayne State Univ, Detroit, MI USA. [Barnafoeldi, G. G.; Bencedi, G.; Berenyi, D.; Biro, G.; Boldizsar, L.; Denes, E.; Hamar, G.; Kiss, G.; Levai, P.; Lowe, A.; Olah, L.; Pochybova, S.; Varga, D.; Volpe, G.] Hungarian Acad Sci, Wigner Res Ctr Phys, Budapest, Hungary. [Aiola, S.; Balasubramanian, S.; Caines, H.; Connors, M. E.; Ehlers, R. J.; Epple, E.; Grachov, O. A.; Harris, J. W.; Lutz, T. H.; Majka, R. D.; Mulligan, J. D.; Oh, S.; Oliver, M. H.; Smirnov, N.] Yale Univ, New Haven, CT USA. [Kang, J. H.; Kim, D.; Kim, H.; Kim, M.; Kim, T.; Kwon, Y.; Lee, S.; Song, M.] Yonsei Univ, Seoul 120749, South Korea. [Keidel, R.] Fachhsch Worms, ZTT, Worms, Germany. [Connors, M. E.] Georgia State Univ, Atlanta, GA 30303 USA. [Khan, M. Mohisin] Aligarh Muslim Univ, Dept Appl Phys, Aligarh, Uttar Pradesh, India. [Malinina, L.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Phys, Moscow, Russia. RP Adam, J (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, CR-11519 Prague, Czech Republic. RI Natal da Luz, Hugo/F-6460-2013; Martinez Hernandez, Mario Ivan/F-4083-2010; Ferretti, Alessandro/F-4856-2013; Derradi de Souza, Rafael/M-4791-2013; Kovalenko, Vladimir/C-5709-2013; Altsybeev, Igor/K-6687-2013; Vickovic, Linda/F-3517-2017; Fernandez Tellez, Arturo/E-9700-2017; Takahashi, Jun/B-2946-2012; Nattrass, Christine/J-6752-2016; Usai, Gianluca/E-9604-2015; Cosentino, Mauro/L-2418-2014; Suaide, Alexandre/L-6239-2016; Barnby, Lee/G-2135-2010; Peitzmann, Thomas/K-2206-2012; Kondratiev, Valery/J-8574-2013; Vinogradov, Leonid/K-3047-2013; Castillo Castellanos, Javier/G-8915-2013; Ferreiro, Elena/C-3797-2017; Kurepin, Alexey/H-4852-2013; Jena, Deepika/P-2873-2015; Jena, Satyajit/P-2409-2015; Vechernin, Vladimir/J-5832-2013; Akindinov, Alexander/J-2674-2016; Chinellato, David/D-3092-2012; Pshenichnov, Igor/A-4063-2008; Bregant, Marco/I-7663-2012; Sevcenco, Adrian/C-1832-2012; de Albuquerque, Danilo/C-2003-2016; De Pasquale, Salvatore/B-9165-2008; de Cuveland, Jan/H-6454-2016 OI Fernandez Tellez, Arturo/0000-0001-5092-9748; Natal da Luz, Hugo/0000-0003-1177-870X; Martinez Hernandez, Mario Ivan/0000-0002-8503-3009; Ferretti, Alessandro/0000-0001-9084-5784; Derradi de Souza, Rafael/0000-0002-2084-7001; Kovalenko, Vladimir/0000-0001-6012-6615; Altsybeev, Igor/0000-0002-8079-7026; Vickovic, Linda/0000-0002-9820-7960; Fernandez Tellez, Arturo/0000-0003-0152-4220; Riggi, Francesco/0000-0002-0030-8377; Scarlassara, Fernando/0000-0002-4663-8216; Melikyan, Yury/0000-0002-4165-505X; Giubilato, Piero/0000-0003-4358-5355; Takahashi, Jun/0000-0002-4091-1779; Nattrass, Christine/0000-0002-8768-6468; Usai, Gianluca/0000-0002-8659-8378; Cosentino, Mauro/0000-0002-7880-8611; Suaide, Alexandre/0000-0003-2847-6556; Barnby, Lee/0000-0001-7357-9904; Peitzmann, Thomas/0000-0002-7116-899X; Kondratiev, Valery/0000-0002-0031-0741; Vinogradov, Leonid/0000-0001-9247-6230; Castillo Castellanos, Javier/0000-0002-5187-2779; Ferreiro, Elena/0000-0002-4449-2356; Kurepin, Alexey/0000-0002-1851-4136; Jena, Deepika/0000-0003-2112-0311; Jena, Satyajit/0000-0002-6220-6982; Vechernin, Vladimir/0000-0003-1458-8055; Akindinov, Alexander/0000-0002-7388-3022; Chinellato, David/0000-0002-9982-9577; Pshenichnov, Igor/0000-0003-1752-4524; Sevcenco, Adrian/0000-0002-4151-1056; De Pasquale, Salvatore/0000-0001-9236-0748; de Cuveland, Jan/0000-0003-0455-1398 FU ALICE detector; State Committee of Science; World Federation of Scientists (WFS); Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); National Natural Science Foundation of China (NSFC); Chinese Ministry of Education (CMOE); Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council; Carlsberg Foundation; Danish National Research Foundation; European Research Council under the European Community's Seventh Framework Programme; Helsinki Institute of Physics; Academy of Finland; Region Pays de Loire; Region Alsace; Region Auvergne; CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF); Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; National Research, Development and Innovation Office (NKFIH), Hungary; Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN); Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Italy; Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT); Direccion General de Asuntos del Personal Academico(DGAPA), Mexico; Amerique Latine Formation academique-European Commission (ALFA-EC); EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM); Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education and Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; Ministry of Education and Science of Russian Federation; Russian Academy of Sciences; Russian Federal Agency of Atomic Energy; Russian Federal Agency for Science and Innovations; Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT); E-Infrastructure shared between Europe and Latin America (EELA); Ministerio de Economia y Competitividad (MINECO) of Spain; Xunta de Galicia (Conselleria de Educacion); Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN); Cubaenergia, Cuba; IAEA (International Atomic Energy Agency); Swedish Research Council (VR); Knut and Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); United States Department of Energy; United States National Science Foundation; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; Pontificia Universidad Catolica del Peru; [CNRS-IN2P3] FX The ALICE Collaboration would like to thank all of its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration.; The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: the State Committee of Science, the World Federation of Scientists (WFS), and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); the National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE), and the Ministry of Science and Technology of China (MSTC); the Ministry of Education and Youth of the Czech Republic; the Danish Natural Science Research Council, the Carlsberg Foundation, and the Danish National Research Foundation; the European Research Council under the European Community's Seventh Framework Programme; the Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the "Region Pays de Loire," the "Region Alsace," the "Region Auvergne," and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF), and the Helmholtz Association; the General Secretariat for Research and Technology, Ministry of Development, Greece; the National Research, Development and Innovation Office (NKFIH), Hungary; the Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Italy; the Japan Society for the Promotion of Science (JSPS) KAKENHI and MEXT, Japan; the Joint Institute for Nuclear Research, Dubna; the National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico(DGAPA), Mexico, Amerique Latine Formation academique-European Commission (ALFA-EC), and the EPLANET Program (European Particle Physics Latin American Network); Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education and Institute for Atomic Physics and National Council of Scientific Research in Higher Education (CNCSI-UEFISCDI), Romania; the Ministry of Education and Science of Russian Federation, the Russian Academy of Sciences, the Russian Federal Agency of Atomic Energy, the Russian Federal Agency for Science and Innovations, and the Russian Foundation for Basic Research; the Ministry of Education of Slovakia; the Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economia y Competitividad (MINECO) of Spain, Xunta de Galicia (Conselleria de Educacion), Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear (CEADEN), Cubaenergia, Cuba, and IAEA (International Atomic Energy Agency); the Swedish Research Council (VR) and the Knut and Alice Wallenberg Foundation (KAW); the Ukraine Ministry of Education and Science; the United Kingdom Science and Technology Facilities Council (STFC); the United States Department of Energy, the United States National Science Foundation; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India; and Pontificia Universidad Catolica del Peru. NR 38 TC 4 Z9 4 U1 6 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 1 PY 2016 VL 116 IS 13 AR 132302 DI 10.1103/PhysRevLett.116.132302 PG 12 WC Physics, Multidisciplinary SC Physics GA DI0QM UT WOS:000373202000005 ER PT J AU Adamczyk, L Adkins, JK Agakishiev, G Aggarwal, MM Ahammed, Z Alekseev, I Aparin, A Arkhipkin, D Aschenauer, EC Attri, A Averichev, GS Bai, X Bairathi, V Banerjee, A Bellwied, R Bhasin, A Bhati, AK Bhattarai, P Bielcik, J Bielcikova, J Bland, LC Bordyuzhin, IG Bouchet, J Brandenburg, JD Brandin, AV Bunzarov, I Butterworth, J Caines, H Sanchez, MCD Campbell, JM Cebra, D Chakaberia, I Chaloupka, P Chang, Z Chattopadhyay, S Chen, X Chen, JH Cheng, J Cherney, M Christie, W Contin, G Crawford, HJ Das, S De Silva, LC Debbe, RR Dedovich, TG Deng, J Derevschikov, AA di Ruzza, B Didenko, L Dilks, C Dong, X Drachenberg, JL Draper, JE Du, CM Dunkelberger, LE Dunlop, JC Efimov, LG Engelage, J Eppley, G Esha, R Evdokimov, O Eyser, O Fatemi, R Fazio, S Federic, P Fedorisin, J Feng, Z Filip, P Fisyak, Y Flores, CE Fulek, L Gagliardi, CA Garamd, D Geurts, F Gibson, A Girard, M Greiner, L Grosnick, D Gunarathne, DS Guo, Y Gupta, A Gupta, S Guryn, W Hamad, A Hamed, A Haque, R Harris, JW He, L Heppelmann, S Heppelmann, S Hirsch, A Hoffmann, GW Hofman, DJ Horvat, S Huang, X Huang, HZ Huang, B Huang, T Huck, P Humanic, TJ Igo, G Jacobs, WW Jang, H Jentsch, A Jia, J Jiang, K Judd, EG Kabana, S Kalinkin, D Kang, K Kauder, K Ke, HW Keane, D Kechechyan, A Khan, ZH Kikola, DP Kisel, I Kisiel, A Kochenda, L Koetke, DD Kosarzewski, LK Kraishan, AF Kravtsov, P Krueger, K Kumar, L Lamont, MAC Landgraf, JM Landry, KD Lauret, J Lebedev, A Lednicky, R Lee, JH Li, C Li, Y Li, W Li, X Li, X Lin, T Lisa, MA Liu, F Ljubicic, T Llope, WJ Lomnitz, M Longacre, RS Luo, X Ma, R Ma, L Ma, GL Ma, YG Magdy, N Majka, R Manion, A Margetis, S Markert, C McDonald, D Meehan, K Mei, JC Minaev, NG Mioduszewski, S Mishra, D Mohanty, B Mondal, MM Morozov, DA Mustafa, MK Nandi, BK Nasim, M Nayak, TK Nigmatkulov, G Niida, T Nogach, LV Noh, SY Novak, J Nurushev, SB Odyniec, G Ogawa, A Oh, K Okorokov, VA Olvitt, D Page, BS Pak, R Pan, YX Pandit, Y Panebratsev, Y Pawlik, B Pei, H Perkins, C Pile, P Pluta, J Poniatowska, K Porter, J Posik, M Poskanzer, AM Pruthi, NK Putschke, J Qiu, H Quintero, A Ramachandran, S Raniwala, R Raniwala, S Ray, RL Ritter, HG Roberts, JB Rogachevskiy, OV Romero, JL Roy, A Ruan, L Rusnak, J Rusnakova, O Sahoo, NR Sahu, PK Sakrejda, I Salur, S Sandweiss, J Sarkar, A Schambach, J Scharenberg, RP Schmah, AM Schmidke, WB Schmitz, N Seger, J Seyboth, P Shah, N Shahaliev, E Shanmuganathan, PV Shao, M Sharma, MK Sharma, B Shen, WQ Shi, Z Shi, SS Shou, QY Sichtennann, EP Sikora, R Simko, M Singha, S Skoby, MJ Smirnov, D Smirnov, N Solyst, W Song, L Sorensen, P Spinka, HM Srivastava, B Stanislaus, TDS Stepanov, M Stock, R Strikhanov, M Stringfellow, B Sumbera, M Summa, B Sun, Y Sun, Z Sun, XM Surrow, B Svirida, DN Tang, AH Tang, Z Tarnowsky, T Tawfik, A Thaeder, J Thomas, JH Timmins, AR Tlusty, D Todoroki, T Tokarev, M Trenuilange, S Tribble, RE Tribedy, P Tripathy, SK Tsai, OD Ullrich, T Underwood, DG Upsal, I Van Buren, G van Nieuwenhuizen, G Vandenbroucke, M Varma, R Vasiliev, AN Vertesi, R Videbaek, F Vokal, S Voloshin, SA Vossen, A Wang, JS Wang, Y Wang, F Wang, Y Wang, H Wang, G Webb, JC Webb, G Wen, L Westfall, GD Wieman, H Wissink, SW Witt, R Wu, Y Xiao, ZG Xie, X Xie, W Xin, K Xu, N Xu, YF Xu, Z Xu, QH Xu, J Xu, H Yang, Q Yang, Y Yang, S Yang, Y Yang, C Yang, Y Ye, Z Ye, Z Yepes, P Yi, L Yip, K Yoo, IK Yu, N Zbroszczyk, H Zha, W Zhang, S Zhang, Z Zhang, S Zhang, JB Zhang, Y Zhang, J Zhang, J Zhan, XP Zhao, J Zhong, C Zhou, L Zhu, X Zoulkarneeva, Y Zyzak, M AF Adamczyk, L. Adkins, J. K. Agakishiev, G. Aggarwal, M. M. Ahammed, Z. Alekseev, I. Aparin, A. Arkhipkin, D. Aschenauer, E. C. Attri, A. Averichev, G. S. Bai, X. Bairathi, V. Banerjee, A. Bellwied, R. Bhasin, A. Bhati, A. K. Bhattarai, P. Bielcik, J. Bielcikova, J. Bland, L. C. Bordyuzhin, I. G. Bouchet, J. Brandenburg, J. D. Brandin, A. V. Bunzarov, I. Butterworth, J. Caines, H. Sanchez, M. Calderon de la Barca Campbell, J. M. Cebra, D. Chakaberia, I. Chaloupka, P. Chang, Z. Chattopadhyay, S. Chen, X. Chen, J. H. Cheng, J. Cherney, M. Christie, W. Contin, G. Crawford, H. J. Das, S. De Silva, L. C. Debbe, R. R. Dedovich, T. G. Deng, J. Derevschikov, A. A. di Ruzza, B. Didenko, L. Dilks, C. Dong, X. Drachenberg, J. L. Draper, J. E. Du, C. M. Dunkelberger, L. E. Dunlop, J. C. Efimov, L. G. Engelage, J. Eppley, G. Esha, R. Evdokimov, O. Eyser, O. Fatemi, R. Fazio, S. Federic, P. Fedorisin, J. Feng, Z. Filip, P. Fisyak, Y. Flores, C. E. Fulek, L. Gagliardi, C. A. Garand, D. Geurts, F. Gibson, A. Girard, M. Greiner, L. Grosnick, D. Gunarathne, D. S. Guo, Y. Gupta, A. Gupta, S. Guryn, W. Hamad, A. Hamed, A. Haque, R. Harris, J. W. He, L. Heppelmann, S. Heppelmann, S. Hirsch, A. Hoffmann, G. W. Hofman, D. J. Horvat, S. Huang, X. Huang, H. Z. Huang, B. Huang, T. Huck, P. Humanic, T. J. Igo, G. Jacobs, W. W. Jang, H. Jentsch, A. Jia, J. Jiang, K. Judd, E. G. Kabana, S. Kalinkin, D. Kang, K. Kauder, K. Ke, H. W. Keane, D. Kechechyan, A. Khan, Z. H. Kikola, D. P. Kisel, I. Kisiel, A. Kochenda, L. Koetke, D. D. Kosarzewski, L. K. Kraishan, A. F. Kravtsov, P. Krueger, K. Kumar, L. Lamont, M. A. C. Landgraf, J. M. Landry, K. D. Lauret, J. Lebedev, A. Lednicky, R. Lee, J. H. Li, C. Li, Y. Li, W. Li, X. Li, X. Lin, T. Lisa, M. A. Liu, F. Ljubicic, T. Llope, W. J. Lomnitz, M. Longacre, R. S. Luo, X. Ma, R. Ma, L. Ma, G. L. Ma, Y. G. Magdy, N. Majka, R. Manion, A. Margetis, S. Markert, C. McDonald, D. Meehan, K. Mei, J. C. Minaev, N. G. Mioduszewski, S. Mishra, D. Mohanty, B. Mondal, M. M. Morozov, D. A. Mustafa, M. K. Nandi, B. K. Nasim, Md. Nayak, T. K. Nigmatkulov, G. Niida, T. Nogach, L. V. Noh, S. Y. Novak, J. Nurushev, S. B. Odyniec, G. Ogawa, A. Oh, K. Okorokov, V. A. Olvitt, D., Jr. Page, B. S. Pak, R. Pan, Y. X. Pandit, Y. Panebratsev, Y. Pawlik, B. Pei, H. Perkins, C. Pile, P. Pluta, J. Poniatowska, K. Porter, J. Posik, M. Poskanzer, A. M. Pruthi, N. K. Putschke, J. Qiu, H. Quintero, A. Ramachandran, S. Raniwala, R. Raniwala, S. Ray, R. L. Ritter, H. G. Roberts, J. B. Rogachevskiy, O. V. Romero, J. L. Roy, A. Ruan, L. Rusnak, J. Rusnakova, O. Sahoo, N. R. Sahu, P. K. Sakrejda, I. Salur, S. Sandweiss, J. Sarkar, A. Schambach, J. Scharenberg, R. P. Schmah, A. M. Schmidke, W. B. Schmitz, N. Seger, J. Seyboth, P. Shah, N. Shahaliev, E. Shanmuganathan, P. V. Shao, M. Sharma, M. K. Sharma, B. Shen, W. Q. Shi, Z. Shi, S. S. Shou, Q. Y. Sichtennann, E. P. Sikora, R. Simko, M. Singha, S. Skoby, M. J. Smirnov, D. Smirnov, N. Solyst, W. Song, L. Sorensen, P. Spinka, H. M. Srivastava, B. Stanislaus, T. D. S. Stepanov, M. Stock, R. Strikhanov, M. Stringfellow, B. Sumbera, M. Summa, B. Sun, Y. Sun, Z. Sun, X. M. Surrow, B. Svirida, D. N. Tang, A. H. Tang, Z. Tarnowsky, T. Tawfik, A. Thaeder, J. Thomas, J. H. Timmins, A. R. Tlusty, D. Todoroki, T. Tokarev, M. Trenuilange, S. Tribble, R. E. Tribedy, P. Tripathy, S. K. Tsai, O. D. Ullrich, T. Underwood, D. G. Upsal, I. Van Buren, G. van Nieuwenhuizen, G. Vandenbroucke, M. Varma, R. Vasiliev, A. N. Vertesi, R. Videbaek, F. Vokal, S. Voloshin, S. A. Vossen, A. Wang, J. S. Wang, Y. Wang, F. Wang, Y. Wang, H. Wang, G. Webb, J. C. Webb, G. Wen, L. Westfall, G. D. Wieman, H. Wissink, S. W. Witt, R. Wu, Y. Xiao, Z. G. Xie, X. Xie, W. Xin, K. Xu, N. Xu, Y. F. Xu, Z. Xu, Q. H. Xu, J. Xu, H. Yang, Q. Yang, Y. Yang, S. Yang, Y. Yang, C. Yang, Y. Ye, Z. Ye, Z. Yepes, P. Yi, L. Yip, K. Yoo, I-K Yu, N. Zbroszczyk, H. Zha, W. Zhang, S. Zhang, Z. Zhang, S. Zhang, J. B. Zhang, Y. Zhang, J. Zhang, J. Zhan, X. P. Zhao, J. Zhong, C. Zhou, L. Zhu, X. Zoulkarneeva, Y. Zyzak, M. CA STAR Collaboration TI Measurement of the Transverse Single-Spin Asymmetry in p up arrow plus p -> W-+/-/Z(0) at RHIC SO PHYSICAL REVIEW LETTERS LA English DT Article ID DEEP-INELASTIC SCATTERING; PROTON ELASTIC-SCATTERING; FINAL-STATE INTERACTIONS; ROOT-S=200 GEV; DRELL-YAN AB We present the measurement of the transverse single-spin asymmetry of weak boson production in transversely polarized proton-proton collisions at root s = 500 GeV by the STAR experiment at RHIC. The measured observable is sensitive to the Sivers function, one of the transverse-momentum-dependent parton distribution functions, which is predicted to have the opposite sign in proton-proton collisions from that observed in deep inelastic lepton-proton scattering. These data provide the first experimental investigation of the nonuniversality of the Sivers function, fundamental to our understanding of QCD. C1 [Adamczyk, L.; Fulek, L.; Sikora, R.] AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. [Krueger, K.; Spinka, H. M.; Underwood, D. G.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Arkhipkin, D.; Aschenauer, E. C.; Bland, L. C.; Chakaberia, I.; Christie, W.; Debbe, R. R.; di Ruzza, B.; Didenko, L.; Dunlop, J. C.; Eyser, O.; Fazio, S.; Fisyak, Y.; Guryn, W.; Jia, J.; Ke, H. W.; Lamont, M. A. C.; Landgraf, J. M.; Lauret, J.; Lebedev, A.; Lee, J. H.; Ljubicic, T.; Longacre, R. S.; Ma, R.; Ogawa, A.; Page, B. S.; Pak, R.; Pawlik, B.; Pile, P.; Ruan, L.; Schmidke, W. B.; Smirnov, D.; Sorensen, P.; Tang, A. H.; Todoroki, T.; Tribedy, P.; Ullrich, T.; Van Buren, G.; van Nieuwenhuizen, G.; Videbaek, F.; Wang, H.; Webb, J. C.; Webb, G.; Xu, Z.; Yip, K.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Crawford, H. J.; Engelage, J.; Judd, E. G.; Perkins, C.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Sanchez, M. Calderon de la Barca; Cebra, D.; Draper, J. E.; Flores, C. E.; Heppelmann, S.; Meehan, K.; Romero, J. L.] Univ Calif Davis, Davis, CA 95616 USA. [Dunkelberger, L. E.; Esha, R.; Huang, H. Z.; Igo, G.; Landry, K. D.; Nasim, Md.; Pan, Y. X.; Trenuilange, S.; Tsai, O. D.; Wang, G.; Wen, L.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Bai, X.; Feng, Z.; Huck, P.; Liu, F.; Luo, X.; Pei, H.; Shi, S. S.; Sun, X. M.; Wang, Y.; Xu, J.; Yang, Y.; Yu, N.; Zhang, J. B.] Cent China Normal Univ, Wuhan 430079, Hubei, Peoples R China. [Evdokimov, O.; Hofman, D. J.; Huang, B.; Khan, Z. H.; Pandit, Y.; Ye, Z.] Univ Illinois, Chicago, IL 60607 USA. [Cherney, M.; De Silva, L. C.; Seger, J.] Creighton Univ, Omaha, NE 68178 USA. [Bielcik, J.; Chaloupka, P.; Rusnakova, O.] Czech Tech Univ, FNSPE, Prague 11519, Czech Republic. [Bielcikova, J.; Federic, P.; Rusnak, J.; Simko, M.; Sumbera, M.; Vertesi, R.] Nucl Phys Inst AS CR, Prague 25068, Czech Republic. [Kisel, I.; Stock, R.; Zyzak, M.] Frankfiut Inst Adv Studies FIAS, D-60438 Frankfurt, Germany. [Das, S.; Sahu, P. K.; Tripathy, S. K.] Inst Phys, Bhubaneswar 751005, Orissa, India. [Nandi, B. K.; Sarkar, A.; Varma, R.] Indian Inst Technol, Bombay 400076, Maharashtra, India. [Jacobs, W. W.; Kalinkin, D.; Lin, T.; Skoby, M. J.; Solyst, W.; Vossen, A.; Wissink, S. W.] Indiana Univ, Bloomington, IN 47408 USA. [Alekseev, I.; Bordyuzhin, I. G.; Svirida, D. N.] Alikhaov Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bhasin, A.; Gupta, A.; Gupta, S.; Sharma, M. K.] Univ Jammu, Jammu 180001, India. [Agakishiev, G.; Aparin, A.; Averichev, G. S.; Bunzarov, I.; Dedovich, T. G.; Efimov, L. G.; Fedorisin, J.; Filip, P.; Kechechyan, A.; Lednicky, R.; Panebratsev, Y.; Rogachevskiy, O. V.; Shahaliev, E.; Tokarev, M.; Vokal, S.; Zoulkarneeva, Y.] Joint Inst Nucl Res, Dubna 141980, Russia. [Bouchet, J.; Hamad, A.; Kabana, S.; Keane, D.; Lomnitz, M.; Margetis, S.; Quintero, A.; Shanmuganathan, P. V.; Singha, S.; Wu, Y.] Kent State Univ, Kent, OH 44242 USA. [Adkins, J. K.; Fatemi, R.; Ramachandran, S.] Univ Kentucky, Lexington, KY 40506 USA. [Jang, H.; Noh, S. Y.] Korea Inst Sci & Technol Informat, Taejon 305701, South Korea. [Chen, X.; Du, C. M.; Sun, Z.; Wang, J. S.; Xu, H.; Yang, Y.; Zhang, J.] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Gansu, Peoples R China. [Contin, G.; Dong, X.; Greiner, L.; Manion, A.; Mustafa, M. K.; Odyniec, G.; Porter, J.; Poskanzer, A. M.; Qiu, H.; Ritter, H. G.; Sakrejda, I.; Salur, S.; Schmah, A. M.; Shi, Z.; Sichtennann, E. P.; Thaeder, J.; Thomas, J. H.; Wieman, H.; Xu, N.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Schmitz, N.; Seyboth, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Novak, J.; Tarnowsky, T.; Westfall, G. D.] Michigan State Univ, E Lansing, MI 48824 USA. [Brandin, A. V.; Kochenda, L.; Kravtsov, P.; Nigmatkulov, G.; Okorokov, V. A.; Strikhanov, M.] Natl Res Nucl Univ MEPhl, Moscow 115409, Russia. [Bairathi, V.; Haque, R.; Mishra, D.; Mohanty, B.] Natl Inst Sci Educ & Res, Bhubaneswar 751005, Orissa, India. [Huang, T.; Yang, Y.] Natl Cheng Kung Univ, Tainan 70101, Taiwan. [Campbell, J. M.; Humanic, T. J.; Lisa, M. A.; Upsal, I.] Ohio State Univ, Columbus, OH 43210 USA. [Pawlik, B.] Inst Nucl Phys PAN, PL-31342 Krakow, Poland. [Aggarwal, M. M.; Attri, A.; Bhati, A. K.; Kumar, L.; Pruthi, N. K.; Sharma, B.] Panjab Univ, Chandigarh 160014, India. [Dilks, C.; Heppelmann, S.; Summa, B.] Penn State Univ, University Pk, PA 16802 USA. [Derevschikov, A. A.; Minaev, N. G.; Morozov, D. A.; Nogach, L. V.; Nurushev, S. B.; Vasiliev, A. N.] Inst High Energy Phys, Protvino 142281, Russia. [Garand, D.; He, L.; Hirsch, A.; Scharenberg, R. P.; Srivastava, B.; Stepanov, M.; Stringfellow, B.; Wang, F.; Xie, W.; Zhao, J.] Purdue Univ, W Lafayette, IN 47907 USA. [Oh, K.; Yoo, I-K] Pusan Natl Univ, Pusan 46241, South Korea. [Raniwala, R.; Raniwala, S.] Univ Rajasthan, Jaipur 302004, Rajasthan, India. [Brandenburg, J. D.; Butterworth, J.; Eppley, G.; Geurts, F.; Roberts, J. B.; Tlusty, D.; Xin, K.; Yepes, P.] Rice Univ, Houston, TX 77251 USA. [Guo, Y.; Jiang, K.; Li, C.; Li, X.; Shao, M.; Sun, Y.; Tang, Z.; Xie, X.; Yang, Q.; Yang, S.; Yang, C.; Zha, W.; Zhang, S.; Zhang, Y.; Zhou, L.] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China. [Deng, J.; Mei, J. C.; Xu, Q. H.; Zhang, J.] Shandong Univ, Jinan 250100, Shandong, Peoples R China. [Chen, J. H.; Li, W.; Ma, L.; Ma, G. L.; Ma, Y. G.; Shah, N.; Shen, W. Q.; Shou, Q. Y.; Xu, Y. F.; Zhang, S.; Zhang, Z.; Zhong, C.] Chinese Acad Sci, Inst Appl Phys, Shanghai 201800, Peoples R China. [Magdy, N.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Gunarathne, D. S.; Kraishan, A. F.; Li, X.; Olvitt, D., Jr.; Posik, M.; Surrow, B.; Vandenbroucke, M.] Temple Univ, Philadelphia, PA 19122 USA. [Chang, Z.; Gagliardi, C. A.; Hamed, A.; Mioduszewski, S.; Mondal, M. M.; Sahoo, N. R.; Tribble, R. E.] Texas A&M Univ, College Stn, TX 77843 USA. [Bhattarai, P.; Hoffmann, G. W.; Jentsch, A.; Markert, C.; Ray, R. L.; Schambach, J.] Univ Texas Austin, Austin, TX 78712 USA. [Bellwied, R.; McDonald, D.; Song, L.; Timmins, A. R.] Univ Houston, Houston, TX 77204 USA. [Cheng, J.; Huang, X.; Kang, K.; Li, Y.; Wang, Y.; Xiao, Z. G.; Zhan, X. P.; Zhu, X.] Tsinghua Univ, Beijing 100084, Peoples R China. [Witt, R.] US Naval Acad, Annapolis, MD 21402 USA. [Drachenberg, J. L.; Gibson, A.; Grosnick, D.; Koetke, D. D.; Stanislaus, T. D. S.] Valparaiso Univ, Valparaiso, IN 46383 USA. [Ahammed, Z.; Banerjee, A.; Chattopadhyay, S.; Nayak, T. K.; Roy, A.] Ctr Variable Energy Cyclotron, Kolkata 700064, India. [Girard, M.; Kikola, D. P.; Kisiel, A.; Kosarzewski, L. K.; Pluta, J.; Poniatowska, K.; Zbroszczyk, H.] Warsaw Univ Technol, PL-00661 Warsaw, Poland. [Kauder, K.; Llope, W. J.; Niida, T.; Putschke, J.; Voloshin, S. A.] Wayne State Univ, Detroit, MI 48201 USA. [Tawfik, A.] World Lab Cosmol & Particle Phys WLCAPP, Cairo 11571, Egypt. [Caines, H.; Harris, J. W.; Horvat, S.; Majka, R.; Sandweiss, J.; Smirnov, N.; Yi, L.] Yale Univ, New Haven, CT 06520 USA. RP Adamczyk, L (reprint author), AGH Univ Sci & Technol, FPACS, PL-30059 Krakow, Poland. RI Tawfik, Abdel Nasser/M-6220-2013; Okorokov, Vitaly/C-4800-2017; Ma, Yu-Gang/M-8122-2013; Gunarathne, Devika/C-4903-2017; Chaloupka, Petr/E-5965-2012; Huang, Bingchu/H-6343-2015; Fazio, Salvatore /G-5156-2010; Xin, Kefeng/O-9195-2016; Yi, Li/Q-1705-2016; Alekseev, Igor/J-8070-2014; Svirida, Dmitry/R-4909-2016 OI Tawfik, Abdel Nasser/0000-0002-1679-0225; Okorokov, Vitaly/0000-0002-7162-5345; Ma, Yu-Gang/0000-0002-0233-9900; Gunarathne, Devika/0000-0002-7155-7418; Huang, Bingchu/0000-0002-3253-3210; Xin, Kefeng/0000-0003-4853-9219; Yi, Li/0000-0002-7512-2657; Alekseev, Igor/0000-0003-3358-9635; FU Office of Nuclear Physics within the U.S. DOE Office of Science; U.S. NSF; Ministry of Education; NNSFC; CAS; MoST; MoE of China; National Research Foundation of Korea; GA and MSMT of the Czech Republic; FIAS of Germany; DAE; DST; UGC of India; National Science Centre of Poland; National Research Foundation [NRF-2012004024]; Ministry of Science, Education and Sports of the Republic of Croatia; RosAtom of Russia; Science of the Russian Federation FX We are grateful to Z.-B. Kang for the useful discussions. We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, the KISTI Center in Korea, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. NSF, the Ministry of Education and Science of the Russian Federation, NNSFC, CAS, MoST and MoE of China, the National Research Foundation of Korea, GA and MSMT of the Czech Republic, FIAS of Germany, DAE, DST, and UGC of India, the National Science Centre of Poland, National Research Foundation (NRF-2012004024), the Ministry of Science, Education and Sports of the Republic of Croatia, and RosAtom of Russia. NR 38 TC 2 Z9 2 U1 6 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 1 PY 2016 VL 116 IS 13 AR 132301 DI 10.1103/PhysRevLett.116.132301 PG 7 WC Physics, Multidisciplinary SC Physics GA DI0QM UT WOS:000373202000004 ER PT J AU Granberg, F Nordlund, K Ullah, MW Jin, K Lu, C Bei, H Wang, LM Djurabekova, F Weber, WJ Zhang, Y AF Granberg, F. Nordlund, K. Ullah, Mohammad W. Jin, K. Lu, C. Bei, H. Wang, L. M. Djurabekova, F. Weber, W. J. Zhang, Y. TI Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys SO PHYSICAL REVIEW LETTERS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; ION-IRRADIATION; STRUCTURAL-MATERIALS; COLLISION CASCADES; DISLOCATION LOOPS; FUSION ENERGY; METALS; REACTORS; SEMICONDUCTORS; DISPLACEMENT AB Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations ("equiatomic"), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantial reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys. C1 [Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; Djurabekova, F.] Univ Helsinki, Dept Phys, POB 43, FIN-00014 Helsinki, Finland. [Ullah, Mohammad W.; Jin, K.; Bei, H.; Weber, W. J.; Zhang, Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Lu, C.; Wang, L. M.] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Djurabekova, F.] Univ Helsinki, Helsinki Inst Phys, POB 43, FIN-00014 Helsinki, Finland. [Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Nordlund, K (reprint author), Univ Helsinki, Dept Phys, POB 43, FIN-00014 Helsinki, Finland.; Zhang, Y (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM kai.nordlund@helsinki.fi; Zhangy1@ornl.gov RI Weber, William/A-4177-2008; Granberg, Fredric/S-5292-2016; Ullah, Mohammad/E-1526-2017 OI Weber, William/0000-0002-9017-7365; Granberg, Fredric/0000-0001-9058-5652; Djurabekova, Flyura/0000-0002-5828-200X; Nordlund, Kai/0000-0001-6244-1942; Bei, Hongbin/0000-0003-0283-7990; Ullah, Mohammad/0000-0001-6190-591X FU Academy of Finland SIRDAME project; Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center - the U.S. Department of Energy, Office of Science, Basic Energy Sciences; Euratom research and training programme [633053]; Office of Science, U.S. Department of Energy [DEAC02-05CH11231]; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was partially funded by the Academy of Finland SIRDAME project, and partially supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. This work in part has been carried out by F.G., K.N., and F.D. within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme under Grant Agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Grants of computer time from the Center for Scientific Computing in Espoo, Finland, are gratefully acknowledged. Ion beam work was performed at the University of Tennessee-Oak Ridge National Laboratory Ion Beam Materials Laboratory (IBML) located at the campus of the University of Tennessee, Knoxville. Part of the simulation used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, U.S. Department of Energy, under Contract No. DEAC02-05CH11231. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 57 TC 12 Z9 12 U1 29 U2 49 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 1 PY 2016 VL 116 IS 13 AR 135504 DI 10.1103/PhysRevLett.116.135504 PG 8 WC Physics, Multidisciplinary SC Physics GA DI0QM UT WOS:000373202000015 PM 27081990 ER PT J AU Sonzogni, AA McCutchan, EA Johnson, TD Dimitriou, P AF Sonzogni, A. A. McCutchan, E. A. Johnson, T. D. Dimitriou, P. TI Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for U-235(n,fission) at Thermal and Fast Neutron Energies SO PHYSICAL REVIEW LETTERS LA English DT Article ID PRODUCT YIELDS; PROJECTILE-FISSION; CROSS-SECTION; BETA-SPECTRA; U-238; PU-239; DECAY; SCIENCE AB Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII. 1 U-235 fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of Ge-86 generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel. C1 [Sonzogni, A. A.; McCutchan, E. A.; Johnson, T. D.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Bldg 817, Upton, NY 11973 USA. [Dimitriou, P.] IAEA, NAPC Nucl Data Sect, POB 100, A-1400 Vienna, Austria. RP Sonzogni, AA (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Bldg 817, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office of Science of the U.S. Department of Energy [DE-AC02-98CH10886] FX Work at Brookhaven National Laboratory was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. We are grateful to D. Brown and T. Kawano for useful comments, and to H-K. Schmidt for guidance with the GEF code. NR 44 TC 5 Z9 5 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD APR 1 PY 2016 VL 116 IS 13 AR 132502 DI 10.1103/PhysRevLett.116.132502 PG 5 WC Physics, Multidisciplinary SC Physics GA DI0QM UT WOS:000373202000006 PM 27081973 ER PT J AU Frei, CS Wang, ZQ Qian, S Deutsch, S Sutter, M Cirino, PC AF Frei, Christopher S. Wang, Zhiqing Qian, Shuai Deutsch, Samuel Sutter, Markus Cirino, Patrick C. TI Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone SO PROTEIN SCIENCE LA English DT Article DE molecular reporter; biosensor; directed evolution; regulatory protein; FACS; high-throughput screening; AraC; crystal structure; cooperative residues ID DIMERIZATION DOMAIN; REGULATORY PROTEIN; RESIDUE ROLES; BIOSENSORS; MUTATIONS AB The Escherichia coli regulatory protein AraC regulates expression of ara genes in response to l-arabinose. In efforts to develop genetically encoded molecular reporters, we previously engineered an AraC variant that responds to the compound triacetic acid lactone (TAL). This variant (named AraC-TAL1) was isolated by screening a library of AraC variants, in which five amino acid positions in the ligand-binding pocket were simultaneously randomized. Screening was carried out through multiple rounds of alternating positive and negative fluorescence-activated cell sorting. Here we show that changing the screening protocol results in the identification of different TAL-responsive variants (nine new variants). Individual substituted residues within these variants were found to primarily act cooperatively toward the gene expression response. Finally, X-ray diffraction was used to solve the crystal structure of the apo AraC-TAL1 ligand-binding domain. The resolved crystal structure confirms that this variant takes on a structure nearly identical to the apo wild-type AraC ligand-binding domain (root-mean-square deviation 0.93 angstrom), suggesting that AraC-TAL1 behaves similar to wild-type with regard to ligand recognition and gene regulation. Our results provide amino acid sequence-function data sets for training and validating AraC modeling studies, and contribute to our understanding of how to design new biosensors based on AraC. C1 [Frei, Christopher S.; Wang, Zhiqing; Qian, Shuai; Cirino, Patrick C.] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77204 USA. [Deutsch, Samuel; Sutter, Markus] Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. RP Cirino, PC (reprint author), Biocatalysis Lab, Dept Chem & Biomol Engn, S337 Engn Bldg 1, Houston, TX 77204 USA. EM pccirino@central.uh.edu FU National Science Foundation (NSF) [CBET1135710] FX Grant sponsor: National Science Foundation (NSF); Grant number: CBET1135710. NR 27 TC 1 Z9 2 U1 4 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 EI 1469-896X J9 PROTEIN SCI JI Protein Sci. PD APR PY 2016 VL 25 IS 4 BP 804 EP 814 DI 10.1002/pro.2873 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA DI8DT UT WOS:000373732100004 PM 26749125 ER PT J AU Kugblenu, RK Paulin, PS Tastad, KJ Okulicz, JF AF Kugblenu, R. K. Paulin, P. S. Tastad, K. J. Okulicz, J. F. TI HIV testing patterns for United States Air Force personnel, 2008-2012 SO PUBLIC HEALTH LA English DT Article DE HIV infection; HIV incidence; ELISA; Indeterminate western blot ID HUMAN-IMMUNODEFICIENCY-VIRUS; WESTERN-BLOT; IMMUNOBLOT REACTIVITY; RISK-FACTORS; INFECTION; DONORS; POPULATION; ANTIBODY; TYPE-1; SEROCONVERSION AB Objective: This study evaluated 3rd generation human immunodeficiency virus (HIV) test patterns and HIV infection rates in the United States Air Force (USAF). Study design: Retrospective database study. Methods: HIV enzyme-linked immunoassay (ELISA) and Western blot tests were analysed for all USAF personnel from 2008 to 2012. For new HIV cases, unadjusted and adjusted annual rates were calculated per 100,000 persons. Results: In total, 1,608,665 tests were performed in 626,298 individuals, with a reactive ELISA observed in 809 (0.001%) persons. Western blot (n = 1949) results included 378 (19.4%) positive, 1283 (65.8%) negative, and 288 (15.0%) indeterminate (WBi). Unadjusted annual HIV rates were between 16.7 and 20.6 per 100,000 persons during the study period. The overall age-adjusted rate was 14.8 cases per 100,000 persons tested. Blacks/African Americans had the highest risk of HIV (risk ratio 7.9 [95% confidence interval 5.78, 9.95] compared to Whites). Conclusions: WBi results, which can cause delays in determining HIV status, were relatively common with the 3rd generation assay. However, this will be mitigated by a planned transition to a 4th generation assay. Although the overall rate of HIV in the USAF is lower than US civilian adults, HIV prevention efforts targeting young Blacks/African Americans may help to reduce HIV incidence in the USAF. Published by Elsevier Ltd on behalf of The Royal Society for Public Health. C1 [Kugblenu, R. K.; Paulin, P. S.; Tastad, K. J.] US Air Force Sch Aerosp Med, Publ Hlth & Prevent Med Dept, Epidemiol Consult Serv, Wright Patterson AFB, OH USA. [Kugblenu, R. K.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Okulicz, J. F.] San Antonio Mil Med Ctr, Infect Dis Serv, Ft Sam Houston, TX USA. RP Okulicz, JF (reprint author), San Antonio Mil Med Ctr, 3551 Roger Brooke Dr, Ft Sam Houston, TX 78234 USA. EM jason.f.okulicz.mil@mail.mil NR 31 TC 1 Z9 1 U1 0 U2 0 PU W B SAUNDERS CO LTD PI LONDON PA 32 JAMESTOWN RD, LONDON NW1 7BY, ENGLAND SN 0033-3506 EI 1476-5616 J9 PUBLIC HEALTH JI Public Health PD APR PY 2016 VL 133 BP 91 EP 98 DI 10.1016/j.puhe.2015.11.019 PG 8 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA DI8EQ UT WOS:000373734600012 PM 26795677 ER PT J AU Thiele, EA Cama, VA Lakwo, T Mekasha, S Abanyie, F Sleshi, M Kebede, A Cantey, PT AF Thiele, Elizabeth A. Cama, Vitaliano A. Lakwo, Thomson Mekasha, Sindeaw Abanyie, Francisca Sleshi, Markos Kebede, Amha Cantey, Paul T. TI Detection of Onchocerca volvulus in Skin Snips by Microscopy and Real -Time Polymerase Chain Reaction: Implications for Monitoring and Evaluation Activities SO AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE LA English DT Article ID PARASITOLOGICAL DIAGNOSIS; WUCHERERIA-BANCROFTI; MANSONELLA-PERSTANS; NESTED-PCR; ELIMINATION; DNA; IVERMECTIN; INFECTION; DISCRIMINATION; MICROFILARIAE AB Microscopic evaluation of skin biopsies is the monitoring and evaluation (M and E) method currently used by multiple onchocerciasis elimination programs in Africa. However, as repeated mass drug administration suppresses microfilarial loads, the sensitivity and programmatic utility of skin snip microscopy is expected to decrease. Using a pan -filarial real-time polymerase chain reaction with melt curve analysis (qPCR-MCA), we evaluated 1) the use of a single-step molecular assay for detecting and identifying Onchocerca volvulus microfilariae in residual skin snips and 2) the sensitivity of skin snip microscopy relative to qPCR-MCA. Skin snips were collected and examined with routine microscopy in hyperendemic regions of Uganda and Ethiopia (N = 500 each) and "residual" skin snips (tissue remaining after induced microfilarial emergence) were tested with qPCR-MCA. qPCR-MCA detected _Onchocerca DNA in 223 residual snips: 139 of 147 microscopy(+) and 84 among microscopy() snips, suggesting overall sensitivity of microscopy was 62.3% (139/223) relative to qPCR-MCA (75.6% in Uganda and 28.6% in Ethiopia). These findings demonstrate the insufficient sensitivity of skin snip microscopy for reliable programmatic monitoring. Molecular tools such as qPCR-MCA can augment sensitivity and provide diagnostic confirmation of skin biopsies and will be useful for evaluation or validation of new onchocerciasis M and E tools. C1 [Cama, Vitaliano A.; Abanyie, Francisca; Cantey, Paul T.] Ctr Dis Control & Prevent, Parasit Dis Branch, Div Parasit Dis & Malaria, 1600 Clifton Rd, Atlanta, GA 30333 USA. Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Lakwo, Thomson] Minist Hlth, Vector Control Div, Kampala, Uganda. [Mekasha, Sindeaw; Sleshi, Markos; Kebede, Amha] Ethiopian Publ Hlth Inst, Addis Ababa, Ethiopia. [Thiele, Elizabeth A.] Vassar Coll, Dept Biol, Poughkeepsie, NY 12601 USA. RP Cama, VA (reprint author), Ctr Dis Control & Prevent, Parasit Dis Branch, Div Parasit Dis & Malaria, 1600 Clifton Rd, Atlanta, GA 30333 USA. EM elthiele@vassar.edu; vcama@cdc.gov; tlakwo@gmail.com; mekashasindeaw@yahoo.com; why6@cdc.gov; markossleshi@yahoo.com; amha.kebede@gmail.com; pcantey@cdc.gov FU Bill & Melinda Gates Foundation; Oak Ridge Institute for Science and Education (ORISE) FX This work was supported by a grant from the Bill & Melinda Gates Foundation. Elizabeth A. Thiele was supported by a Postdoctoral Fellowship through the Oak Ridge Institute for Science and Education (ORISE). NR 25 TC 3 Z9 3 U1 0 U2 0 PU AMER SOC TROP MED & HYGIENE PI MCLEAN PA 8000 WESTPARK DR, STE 130, MCLEAN, VA 22101 USA SN 0002-9637 EI 1476-1645 J9 AM J TROP MED HYG JI Am. J. Trop. Med. Hyg. PD APR PY 2016 VL 94 IS 4 BP 906 EP 911 DI 10.4269/ajtmh.15-0695 PG 6 WC Public, Environmental & Occupational Health; Tropical Medicine SC Public, Environmental & Occupational Health; Tropical Medicine GA DI1FQ UT WOS:000373242400034 PM 26880774 ER PT J AU Cervini-Silva, J Ramirez-Apan, MT Kaufhold, S Ufer, K Palacios, E Montoya, A AF Cervini-Silva, Javiera Teresa Ramirez-Apan, Maria Kaufhold, Stephan Ufer, Kristian Palacios, Eduardo Montoya, Ascencion TI Role of bentonite clays on cell growth SO CHEMOSPHERE LA English DT Article DE Cell proliferation response; Swelling ID IN-VITRO BIOCOMPATIBILITY; EGF RECEPTOR; WATER; QUANTIFICATION; ANTIBACTERIAL; SUSPENSIONS; SMECTITES; ALLOPHANE; CAPACITY; ECUADOR AB Bentonites, naturally occurring clays, are produced industrially because of their adsorbent capacity but little is known about their effects on human health. This manuscript reports on the effect of bentonites on cell growth behaviour. Bentonites collected from India (Bent-India), Hungary (Bent-Hungary), Argentina (Bent-Argentina), and Indonesia (Bent-Indonesia) were studied. All four bentonites were screened in-vitro against two human cancer cell lines [U251 (central nervous system, glioblastoma) and SKLU-1 (lung adenocarcinoma)] supplied by the National Cancer Institute (USA). Bentonites induced growth inhibition in the presence of U251 cells, and growth increment in the presence of SKLU-1 cells, showing that interactions between bentonite and cell surfaces were highly specific. The proliferation response for U251 cells was explained because clay surfaces controlled the levels of metabolic growth components, thereby inhibiting the development of high-grade gliomas, particularly primary glioblastomas. On the other hand, the proliferation response for SKLU-1 was explained by an exacerbated growth favoured by swelling, and concomitant accumulation of solutes, and their hydration and transformation via clay-surface mediated reactions. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Cervini-Silva, Javiera] Univ Autemoma Metropolitana, Dept Proc & Tecnol, Mexico City, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cervini-Silva, Javiera] NASA Astrobiol Inst, Mountain View, CA USA. [Teresa Ramirez-Apan, Maria] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Ciudad Univ, Mexico City 04510, DF, Mexico. [Kaufhold, Stephan; Ufer, Kristian] BGR Bundesansaltfur Geowissensch & Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany. [Palacios, Eduardo; Montoya, Ascencion] Inst Mexicano Petr, Direcc Invest & Posgrad, Mexico City 07730, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Ave Vasco de Quiroga 4871, Mexico City 05348, DF, Mexico. EM jcervini@correo.cua.uam.mx FU Universidad Autonoma Metropolitana Unidad Cuajimalpa [33678] FX The authors thank Jaime Ortega (UAM-Cuajimalpa) and Daniela Rodriguez Montano (Unidad de Histologia, Institute de Fisiologia Celular, UNAM) for technical assistance. This project was supported in part by Universidad Autonoma Metropolitana Unidad Cuajimalpa (Grant No. 33678). NR 33 TC 4 Z9 4 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 EI 1879-1298 J9 CHEMOSPHERE JI Chemosphere PD APR PY 2016 VL 149 BP 57 EP 61 DI 10.1016/j.chemosphere.2016.01.077 PG 5 WC Environmental Sciences SC Environmental Sciences & Ecology GA DH4MM UT WOS:000372760100008 PM 26849195 ER PT J AU Kamal, MM Barlow, RS Hochgreb, S AF Kamal, M. Mustafa Barlow, Robert S. Hochgreb, Simone TI Scalar structure of turbulent stratified swirl flames conditioned on local equivalence ratio SO COMBUSTION AND FLAME LA English DT Article DE Turbulent stratified combustion; Swirling flames; Co-annular jet burner; Bluff-body stabilized flame; Highly swirling flows ID FLOWS AB In a recent paper (Kamal, et al., 2015), we reanalyzed single shot species and temperature measurements from non-swirling flames stabilized on the Cambridge/Sandia stratified burner by conditioning measurements on the local equivalence ratio, and found that the state space structure of the flames was closely approximated by that of a laminar flame at the given equivalence ratio. In the present communication, we show that the same state space relationships remain robust for species CH4, O-2, H2O, and CO2 in premixed and stratified flames under high swirl. Conditioned mass fractions of CO and H-2 in the stratified swirl flame show a greater effect of stratification than was observed in the non-swirling cases, and this is attributed to larger gradients in equivalence ratio that occur with the addition of swirl. Aside from this modest effect of stratification, major species mass fractions in the swirling flame are also closely approximated by laminar flame results at the local equivalence ratio. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Kamal, M. Mustafa; Hochgreb, Simone] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. [Barlow, Robert S.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Kamal, MM (reprint author), Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England. EM mmk44@cam.ac.uk OI Kamal, M. Mustafa/0000-0002-4423-6790 FU University of Engineering and Technology Peshawar (Pakistan); United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; United States Department of Energy [DE-AC04-94-AL85000]; Leverhulme Trust FX M. Mustafa Kamal acknowledges funding from University of Engineering and Technology Peshawar (Pakistan). The measurements at Sandia National Labs were sponsored by the United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000. The exchange of researchers was made possible by an international networking grant of The Leverhulme Trust. NR 5 TC 0 Z9 0 U1 5 U2 7 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD APR PY 2016 VL 166 BP 76 EP 79 DI 10.1016/j.combustflame.2016.01.001 PG 4 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DH4PQ UT WOS:000372768300007 ER PT J AU Aspden, AJ Day, MS Bell, JB AF Aspden, A. J. Day, M. S. Bell, J. B. TI Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics SO COMBUSTION AND FLAME LA English DT Article DE Turbulent premixed flames; Direct numerical simulation; Detailed chemistry; Low Mach number flow; Adaptive mesh refinement ID HIGH KARLOVITZ NUMBERS; FLAME INTERACTIONS; H-2/AIR FLAMES; CHEMISTRY; CH4/AIR; MODEL AB The interaction of maintained homogeneous isotropic turbulence with lean premixed methane flames is investigated using direct numerical simulation with detailed chemistry. The conditions are chosen to be close to those found in atmospheric laboratory experiments. As the Karlovitz number is increased from 1 to 36, the preheat zone becomes thickened, while the reaction zone remains largely unaffected. A negative correlation of fuel consumption with mean flame surface curvature is observed. With increasing turbulence intensity, the chemical composition in the preheat zone tends towards that of an idealised unity Lewis number flame, which we argue is the onset of the transition to distributed burning, and the response of the various chemical species is shown to fall into broad classes. Smaller-scale simulations are used to isolate the specific role of species diffusion at high turbulent intensities. Diffusion of atomic hydrogen is shown to be related to the observed curvature correlations, but does not have significant consequential impact on the thickening of the preheat zone. It is also shown that susceptibility of the preheat zone to thickening by turbulence is related to the 'global' Lewis number (the Lewis number of the deficient reactant); higher global Lewis number flames tend to be more prone to thickening. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Aspden, A. J.] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England. [Aspden, A. J.; Day, M. S.; Bell, J. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, 1 Cyclotron Rd,MS50A-1148, Berkeley, CA 94720 USA. RP Aspden, AJ (reprint author), Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England. EM a.j.aspden@soton.ac.uk; msday@lbl.gov; jbbell@lbl.gov RI Aspden, Andy/A-7391-2017 OI Aspden, Andy/0000-0002-2970-4824 FU DOE Applied Mathematics Research Program of the DOE Office of Advanced Scientific Computing Research under the U.S. Department of Energy [DE-AC02-05CH11231] FX AJA would like to thank Ed Richardson for many useful discussions. JBB and MSD were supported by the DOE Applied Mathematics Research Program of the DOE Office of Advanced Scientific Computing Research under the U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 27 TC 2 Z9 2 U1 5 U2 15 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD APR PY 2016 VL 166 BP 266 EP 283 DI 10.1016/j.combustflame.2016.01.027 PG 18 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA DH4PQ UT WOS:000372768300024 ER PT J AU Phatak, C Petford-Long, AK De Graef, M AF Phatak, C. Petford-Long, A. K. De Graef, M. TI Recent advances in Lorentz microscopy SO CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE LA English DT Review DE Lorentz transmission electron microscopy; Magnetic phase shift; Phase reconstruction ID TRANSMISSION ELECTRON-MICROSCOPY; OF-INTENSITY EQUATION; ATOMIC-RESOLUTION; PHASE RETRIEVAL; TRANSPORT; MAGNETIZATION; VISUALIZATION; COMPUTATION; TOMOGRAPHY; HOLOGRAPHY AB Lorentz transmission electron microscopy (LTEM) has evolved from a qualitative magnetic domain observation technique to a quantitative technique for the determination of the magnetization state of a sample. In this review article, we describe recent developments in techniques and imaging modes, including the use of spherical aberration correction to improve the spatial resolution of LTEM into the single nanometer range, and novel in situ observation modes. We review recent advances in the modeling of the wave optical magnetic phase shift as well as in the area of phase reconstruction by means of the Transport of Intensity Equation (TIE) approach, and discuss vector field electron tomography, which has emerged as a powerful tool for the 3D reconstruction of magnetization configurations. We conclude this review with a brief overview of recent LTEM applications. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Phatak, C.; Petford-Long, A. K.] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Petford-Long, A. K.] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. [De Graef, M.] Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. RP De Graef, M (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, 5000 Forbes Ave, Pittsburgh, PA 15213 USA. EM cd@anl.gov; petford.long@anl.gov; degraef@cmu.edu FU DOE Basic Energy Sciences program [DE-FG02-01ER45893]; U.S. Department of Energy, Office of Science, Basic Energy Sciences Division of Materials Sciences and Engineering; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX MDG would like to acknowledge the DOE Basic Energy Sciences program DE-FG02-01ER45893 for financial support. AKPL and CP was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences Division of Materials Sciences and Engineering. Use of the Center for Nanoscale Materials, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract DE-AC02-06CH11357 is acknowledged. NR 61 TC 1 Z9 1 U1 17 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-0286 EI 1879-0348 J9 CURR OPIN SOLID ST M JI Curr. Opin. Solid State Mat. Sci. PD APR PY 2016 VL 20 IS 2 BP 107 EP 114 DI 10.1016/j.cossms.2016.01.002 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA DH4MR UT WOS:000372760600004 ER PT J AU Mills, N Mills, E AF Mills, Nathaniel Mills, Evan TI Taming the energy use of gaming computers SO ENERGY EFFICIENCY LA English DT Article DE Information technologies; Computing energy use; Gaming computers AB One billion people around the world engage in some form of digital gaming. Gaming is the most energy-intensive use of personal computers, and the high-performance "racecar" systems built expressly for gaming are the fastest growing type of gaming platform. Large performance-normalized variations in nameplate power ratings for gaming computer components available on today's market indicate significant potential for energy savings: central processing units vary by 4.3-fold, graphics processing units 5.8-fold, power supply units 1.3-fold, motherboards 5.0-fold, and random access memory (RAM) 139.2-fold. Measured performance of displays varies by 11.5-fold. However, underlying the importance of empirical data, we find that measured peak power requirements are considerably lower than nameplate for most components tested, and by about 50 % for complete systems. Based on actual measurements of five gaming PCs with progressively more efficient component configurations, we estimate the typical gaming computer (including display) to use approximately 1400 kWh/year, which is equivalent to the energy use of ten game consoles, six standard PCs, or three refrigerators. The more intensive user segments could easily consume double this central estimate. While gaming PCs represent only 2.5 % of the global installed PC equipment base, our initial scoping estimate suggests that gaming PCs consumed 75 TWh/year ($10 billion) of electricity globally in 2012 or approximately 20 % of total PC, notebook, and console energy usage. Based on projected changes in the installed base, we estimate that consumption will more than double by the year 2020 if the current rate of equipment sales is unabated and efficiencies are not improved. Although they will represent only 10 % of the installed base of gaming platforms in 2020, relatively high unit energy consumption and high hours of use will result in gaming computers being responsible for 40 % of gaming energy use. Savings of more than 75 % can be achieved via premium efficiency components applied at the time of manufacture or via retrofit, while improving reliability and performance (nearly a doubling of performance per unit of energy). This corresponds to a potential savings of approximately 120 TWh/year or $18 billion/year globally by 2020. A consumer decision-making environment largely devoid of energy information and incentives suggests a need for targeted energy efficiency programs and policies in capturing these benefits. C1 [Mills, Evan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM emills@lbl.gov NR 26 TC 0 Z9 0 U1 1 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X EI 1570-6478 J9 ENERG EFFIC JI Energy Effic. PD APR PY 2016 VL 9 IS 2 BP 321 EP 338 DI 10.1007/s12053-015-9371-1 PG 18 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA DH9XC UT WOS:000373148300004 ER PT J AU Levin, T Thomas, VM AF Levin, Todd Thomas, Valerie M. TI Can developing countries leapfrog the centralized electrification paradigm? SO ENERGY FOR SUSTAINABLE DEVELOPMENT LA English DT Article DE Solar home system; Grid extension; Global energy access; Decentralized electrification; International energy development ID OFF-GRID ELECTRIFICATION; RURAL ELECTRIFICATION; ELECTRICITY; SYSTEMS; SOLAR; MODEL; COST; OPTIONS; DIESEL; AMAZON AB Due to the rapidly decreasing costs of small renewable electricity generation 'systems, centralized power systems are no longer a necessary condition of universal access to modern energy services. Developing countries, where centralized electricity infrastructures are less developed, may be able to adopt these new technologies more quickly. We first review the costs of grid extension and distributed solar home systems (SHSs) as reported by a number of different studies. We then present a general analytic framework for analyzing the choice between extending the grid and implementing distributed solar home systems. Drawing upon reported grid expansion cost data for three specific regions, we demonstrate this framework by determining the electricity consumption levels at which the costs of provision through centralized and decentralized approaches are equivalent in these regions. We then calculate SHS capital costs that are necessary for these technologies provide each of five tiers of energy access, as defined by the United Nations Sustainable Energy for All initiative. Our results suggest that solar home systems can play an important role in achieving universal access to basic energy services. The extent of this role depends on three primary factors: SHS costs, grid expansion costs, and centralized generation costs. Given current technology costs, centralized systems will still be required to enable higher levels of consumption; however, cost reduction trends have the potential to disrupt this paradigm. By looking ahead rather than replicating older infrastructure styles, developing countries can leapfrog to a more distributed electricity service model. (C) 2016 International Energy Initiative. Published by Elsevier Inc. All rights reserved. C1 [Levin, Todd] Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. [Thomas, Valerie M.] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA. [Thomas, Valerie M.] Georgia Inst Technol, Sch Publ Policy, Atlanta, GA 30332 USA. RP Levin, T (reprint author), 9700 S Cass Ave,Bldg 202, Argonne, IL 60439 USA. EM tlevin@anl.gov FU National Science Foundation [DGE-1148903] FX This work was supported in part by the National Science Foundation (DGE-1148903) through a Graduate Research Fellowship to Todd Levin. NR 61 TC 0 Z9 0 U1 7 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0973-0826 J9 ENERGY SUSTAIN DEV JI Energy Sustain Dev. PD APR PY 2016 VL 31 BP 97 EP 107 DI 10.1016/j.esd.2015.12.005 PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA DH8GY UT WOS:000373032700008 ER PT J AU Beresh, SJ Wagner, JL Smith, BL AF Beresh, Steven J. Wagner, Justin L. Smith, Barton L. TI Self-calibration performance in stereoscopic PIV acquired in a transonic wind tunnel SO EXPERIMENTS IN FLUIDS LA English DT Article ID PARTICLE IMAGE VELOCIMETRY; CAVITY; FLOWS AB Three stereoscopic PIV experiments have been examined to test the effectiveness of self-calibration under varied circumstances. Measurements taken in a streamwise plane yielded a robust self-calibration that returned common results regardless of the specific calibration procedure, but measurements in the crossplane exhibited substantial velocity bias errors whose nature was sensitive to the particulars of the self-calibration approach. Self-calibration is complicated by thick laser sheets and large stereoscopic camera angles and further exacerbated by small particle image diameters and high particle seeding density. Despite the different answers obtained by varied self-calibrations, each implementation locked onto an apparently valid solution with small residual disparity and converged adjustment of the calibration plane. Therefore, the convergence of self-calibration on a solution with small disparity is not sufficient to indicate negligible velocity error due to the stereo calibration. C1 [Beresh, Steven J.; Wagner, Justin L.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Smith, Barton L.] Utah State Univ, Logan, UT 84322 USA. RP Beresh, SJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjberes@sandia.gov RI Smith, Barton/H-3585-2011 FU Sandia National Laboratories; US Department of Energy; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Scott Warner of Utah State University for his assistance in estimating particle size and density. This work is supported by Sandia National Laboratories and the US Department of Energy. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 20 TC 1 Z9 1 U1 2 U2 9 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0723-4864 EI 1432-1114 J9 EXP FLUIDS JI Exp. Fluids PD APR PY 2016 VL 57 IS 4 AR 48 DI 10.1007/s00348-016-2131-y PG 17 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA DH5XQ UT WOS:000372866000004 ER PT J AU Alexander, WG Peris, D Pfannenstiel, BT Opulente, DA Kuang, MH Hittinger, CT AF Alexander, William G. Peris, David Pfannenstiel, Brandon T. Opulente, Dana A. Kuang, Meihua Hittinger, Chris Todd TI Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces SO FUNGAL GENETICS AND BIOLOGY LA English DT Article DE Saccharomyces; Hybrids; Biofuels; Brewing; Synthetic zymurgy; Prototrophic ID LAGER-BREWING YEAST; MATING-TYPE REGION; GENOME SEQUENCE; MOLECULAR CHARACTERIZATION; NEUROSPORA-CRASSA; NATURAL HYBRIDS; GENE-EXPRESSION; CEREVISIAE; EVOLUTION; STRAINS AB Saccharomyces interspecies hybrids are critical biocatalysts in the fermented beverage industry, including in the production of lager beers, Belgian ales, ciders, and cold-fermented wines. Current methods for making synthetic interspecies hybrids are cumbersome and/or require genome modifications. We have developed a simple, robust, and efficient method for generating allotetraploid strains of prototrophic Saccharomyces without sporulation or nuclear genome manipulation. S. cerevisiae x S. eubayanus, S. cerevisiae x S. kudriavzevii, and S. cerevisiae x S. uvarum designer hybrid strains were created as synthetic lager, Belgian, and cider strains, respectively. The ploidy and hybrid nature of the strains were confirmed using flow cytometry and PCR-RFLP analysis, respectively. This method provides an efficient means for producing novel synthetic hybrids for beverage and biofuel production, as well as for constructing tetraploids to be used for basic research in evolutionary genetics and genome stability. (C) 2015 Elsevier Inc. All rights reserved. C1 [Alexander, William G.; Peris, David; Pfannenstiel, Brandon T.; Opulente, Dana A.; Kuang, Meihua; Hittinger, Chris Todd] Univ Wisconsin, Genome Ctr Wisconsin, JF Crow Inst Study Evolut, Wisconsin Energy Inst,Lab Genet, Madison, WI 53706 USA. [Alexander, William G.; Peris, David; Hittinger, Chris Todd] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Kuang, Meihua; Hittinger, Chris Todd] Univ Wisconsin, Grad Program Cellular & Mol Biol, Madison, WI 53706 USA. RP Hittinger, CT (reprint author), 425-G Henry Mall,4102 Genet Biotechnol Ctr, Madison, WI 53706 USA. EM cthittinger@wisc.edu OI Kuang, Meihua/0000-0003-3206-6525 FU National Science Foundation [DEB-1253634, DEB-1442148]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; Alexander von Humboldt Foundation; Pew Charitable Trusts; Predoctoral Training Program in Genetics - National Institutes of Health [5 T32 GM007133-40] FX We would like to thank James Hose and Audrey Gasch for the training with and use of their Guava easyCyte flow cytometer; Carol Newlon and Lucia Fabiani for the KARS101 plasmid; and Trey K. Sato for the NRRL YB-210 strain. This material is based upon work supported by the National Science Foundation under Grant Nos. DEB-1253634 and DEB-1442148 to CTH and funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). CTH is an Alfred Toepfer Faculty Fellow, supported by the Alexander von Humboldt Foundation. CTH is a Pew Scholar in the Biomedical Sciences, supported by the Pew Charitable Trusts. BP was supported by the Predoctoral Training Program in Genetics, funded by the National Institutes of Health (5 T32 GM007133-40). NR 75 TC 5 Z9 5 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1087-1845 EI 1096-0937 J9 FUNGAL GENET BIOL JI Fungal Genet. Biol. PD APR PY 2016 VL 89 SI SI BP 10 EP 17 DI 10.1016/j.fgb.2015.11.002 PG 8 WC Genetics & Heredity; Mycology SC Genetics & Heredity; Mycology GA DH3CZ UT WOS:000372666400003 PM 26555931 ER PT J AU Lovell, JT Schwartz, S Lowry, DB Shakirov, EV Bonnette, JE Weng, XY Wang, M Johnson, J Sreedasyam, A Plott, C Jenkins, J Schmutz, J Juenger, TE AF Lovell, John T. Schwartz, Scott Lowry, David B. Shakirov, Eugene V. Bonnette, Jason E. Weng, Xiaoyu Wang, Mei Johnson, Jenifer Sreedasyam, Avinash Plott, Christopher Jenkins, Jerry Schmutz, Jeremy Juenger, Thomas E. TI Drought responsive gene expression regulatory divergence between upland and lowland ecotypes of a perennial C-4 grass SO GENOME RESEARCH LA English DT Article ID PANICUM-HALLII POACEAE; FALSE DISCOVERY RATES; ARABIDOPSIS-THALIANA; ABSCISIC-ACID; TRANSCRIPTION FACTORS; LOCAL ADAPTATION; RECIPROCAL TRANSPLANTS; NATURAL VARIATION; STRESS RESPONSES; WATER-STRESS AB Climatic adaptation is an example of a genotype-by-environment interaction (GxE) of fitness. Selection upon gene expression regulatory variation can contribute to adaptive phenotypic diversity; however, surprisingly few studies have examined how genome-wide patterns of gene expression GxE are manifested in response to environmental stress and other selective agents that cause climatic adaptation. Here, we characterize drought-responsive expression divergence between upland (drought-adapted) and lowland (mesic) ecotypes of the perennial C-4 grass, Panicum hallii, in natural field conditions. Overall, we find that cis-regulatory elements contributed to gene expression divergence across 47% of genes, 7.2% of which exhibit drought-responsive GxE. While less well-represented, we observe 1294 genes (7.8%) with trans effects. Trans-by-environment interactions are weaker and much less common than cis GxE, occurring in only 0.7% of trans-regulated genes. Finally, gene expression heterosis is highly enriched in expression phenotypes with significant GxE. As such, modes of inheritance that drive heterosis, such as dominance or overdominance, may be common among GxE genes. Interestingly, motifs specific to drought-responsive transcription factors are highly enriched in the promoters of genes exhibiting GxE and trans regulation, indicating that expression GxE and heterosis may result from the evolution of transcription factors or their binding sites. P. hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (Panicum virgatum). Accordingly, the results here not only aid in the discovery of the genetic mechanisms that underlie local adaptation but also provide a foundation to improve switchgrass yield under water-limited conditions. C1 [Lovell, John T.; Schwartz, Scott; Shakirov, Eugene V.; Bonnette, Jason E.; Weng, Xiaoyu; Juenger, Thomas E.] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA. [Lowry, David B.] Michigan State Univ, Dept Plant Sci, E Lansing, MI 48824 USA. [Shakirov, Eugene V.] Kazan Fed Univ, Inst Fundamental Med & Biol, Kazan 42008, Republic Of Tat, Russia. [Wang, Mei; Johnson, Jenifer; Schmutz, Jeremy] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Sreedasyam, Avinash; Plott, Christopher; Jenkins, Jerry; Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. RP Lovell, JT (reprint author), Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA. EM johntlovell@gmail.com RI Schmutz, Jeremy/N-3173-2013 OI Schmutz, Jeremy/0000-0001-8062-9172 FU National Science Foundation IOS fellowship [IOS-1402393]; Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) fellowship [2011-67012-309969]; Russian Government Program of Competitive Growth of Kazan Federal University; National Science Foundation [IOS-0922457]; Department of Energy (DOE) [DE-SC0008451]; Office of Science of the DOE [DE-AC02-05CH11231] FX J. Heiling and B. Whitaker assisted in propagating plants and planting the experiment. Many members of the Juenger laboratory assisted in harvesting leaf tissue and measuring leaf water potentials. We thank M. Simmons, M. Bertelsen, and the Ladybird Johnson Wildflower Center for facilitating our field experiment. Computational analyses were completed on the Stampede system with allocations from the Texas Advance Computing Center. Earlier versions of this manuscript were greatly improved following comments from J.R. Lasky, D. Bolnick, and three anonymous reviewers. J.T.L. was supported by a National Science Foundation IOS fellowship (IOS-1402393). D.B.L. was supported by a Department of Agriculture National Institute of Food and Agriculture (USDA NIFA) fellowship (2011-67012-309969). E.V.S. was supported in part by the Russian Government Program of Competitive Growth of Kazan Federal University. Funding for this project came from grants to T.E.J. from the National Science Foundation (IOS-0922457) and the Department of Energy (DOE) (DE-SC0008451). The work conducted by the DOE Joint Genome Institute was supported by the Office of Science of the DOE under contract DE-AC02-05CH11231. NR 83 TC 3 Z9 3 U1 10 U2 22 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 EI 1549-5469 J9 GENOME RES JI Genome Res. PD APR PY 2016 VL 26 IS 4 BP 510 EP 518 DI 10.1101/gr.198135.115 PG 9 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA DI2HB UT WOS:000373315200009 PM 26953271 ER PT J AU Gangodagamage, C Foufoula-Georgiou, E Brumby, SP Chartrand, R Koltunov, A Liu, DS Cai, M Ustin, SL AF Gangodagamage, Chandana Foufoula-Georgiou, Efi Brumby, Steven P. Chartrand, Rick Koltunov, Alexander Liu, Desheng Cai, Michael Ustin, Susan L. TI Wavelet-Compressed Representation of Landscapes for Hydrologic and Geomorphologic Applications SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Biorthogonal modulation; biorthogonal wavelets; channel networks; data compression; Digital Elevation models (DEMs); high spatial resolution data; hydrology; image resolution; LiDAR; lossy compression; wavelets; wavelet transforms ID ORGANIZATION AB The availability of high-resolution digital elevation data (submeter resolution) from LiDAR has increased dramatically over the past few years. As a result, the efficient storage and transmission of those large data sets and their use for geomorphic feature extraction and hydrologic/environmental modeling are becoming a scientific challenge. This letter explores the use of multiresolution wavelet analysis for compression of LiDAR digital elevation data sets. The compression takes advantage of the fact that, in most landscapes, neighboring pixels are correlated and thus contain some redundant information. The space-frequency localization of the wavelet filters allows one to preserve detailed high-resolution features where needed while representing the rest of the landscape at lower resolution. We explore a lossy compression methodology based on biorthogonal wavelets and demonstrate that, by keeping only approximately 10% of the original information (data compression ratio similar to 94%), the reconstructed landscapes retain most of the information of relevance to geomorphologic applications, such as the ability to accurately extract channel networks for environmental flux routing, as well as to identify geomorphic process transition from the curvature-slope and slope-distance relationships. C1 [Gangodagamage, Chandana; Koltunov, Alexander; Ustin, Susan L.] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA. [Gangodagamage, Chandana] Los Alamos Natl Lab, Earth & Environm Sci & Space Sci & Remote Sensing, POB 1663, Los Alamos, NM 87544 USA. [Gangodagamage, Chandana] NOAA, Natl Water Ctr, Tuscaloosa, AL 35406 USA. [Foufoula-Georgiou, Efi] Univ Minnesota, Dept Civil Engn, St Anthony Falls Lab, Minneapolis, MN 55414 USA. [Foufoula-Georgiou, Efi] Univ Minnesota, Natl Ctr Earth Surface Dynam, Minneapolis, MN 55414 USA. [Brumby, Steven P.; Chartrand, Rick] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Brumby, Steven P.; Chartrand, Rick] Descartes Labs, Los Alamos, NM 87544 USA. [Liu, Desheng] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA. [Cai, Michael] Los Alamos Natl Lab, Space Data Syst, POB 1663, Los Alamos, NM 87545 USA. RP Gangodagamage, C (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA.; Gangodagamage, C (reprint author), Los Alamos Natl Lab, Earth & Environm Sci & Space Sci & Remote Sensing, POB 1663, Los Alamos, NM 87544 USA.; Gangodagamage, C (reprint author), NOAA, Natl Water Ctr, Tuscaloosa, AL 35406 USA. EM chhandana@gmail.com RI Liu, Desheng/A-9356-2011; OI Gangodagamage, Chandana/0000-0001-6511-1711 NR 22 TC 1 Z9 1 U1 5 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD APR PY 2016 VL 13 IS 4 BP 480 EP 484 DI 10.1109/LGRS.2015.2513011 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DH7YJ UT WOS:000373009800002 ER PT J AU Theiler, J Grosklos, G AF Theiler, James Grosklos, Guen TI Problematic Projection to the In-Sample Subspace for a Kernelized Anomaly Detector SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Adaptive signal detection; algorithms; covariance matrices; data models; detectors; multidimensional signal processing; pattern recognition; remote sensing; singular value decomposition; spectral analysis ID HYPERSPECTRAL IMAGERY AB We examine the properties and performance of kernelized anomaly detectors, with an emphasis on the Mahalanobis-distance-based kernel RX (KRX) algorithm. Although the detector generally performs well for high-bandwidth Gaussian kernels, it exhibits problematic (in some cases, catastrophic) performance for distances that are large compared to the bandwidth. By comparing KRX to two other anomaly detectors, we can trace the problem to a projection in feature space, which arises when a pseudoinverse is used on the covariance matrix in that feature space. We show that a regularized variant of KRX overcomes this difficulty and achieves superior performance over a wide range of bandwidths. C1 [Theiler, James; Grosklos, Guen] Los Alamos Natl Lab, Intelligence & Space Res Div, POB 1663, Los Alamos, NM 87545 USA. RP Theiler, J (reprint author), Los Alamos Natl Lab, Intelligence & Space Res Div, POB 1663, Los Alamos, NM 87545 USA. EM jt@lanl.gov FU U.S. Department of Energy NA-22 Hyperspectral Advanced Research and Development Solids project; Los Alamos Laboratory Directed Research and Development program FX The work of J. Theiler was supported by the U.S. Department of Energy NA-22 Hyperspectral Advanced Research and Development Solids project. The work of G. Grosklos was supported by the Los Alamos Laboratory Directed Research and Development program. NR 18 TC 1 Z9 1 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD APR PY 2016 VL 13 IS 4 BP 485 EP 489 DI 10.1109/LGRS.2016.2516985 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DH7YJ UT WOS:000373009800003 ER PT J AU Wahl, DE Yocky, DA Jakowatz, CV Simonson, KM AF Wahl, Daniel E. Yocky, David A. Jakowatz, Charles V., Jr. Simonson, Katherine M. TI A New Maximum-Likelihood Change Estimator for Two-Pass SAR Coherent Change Detection SO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING LA English DT Article DE Coherent change detection; maximum likelihood estimator; radar interferometry; synthetic aperture radar ID SYNTHETIC-APERTURE RADAR; INTERFEROMETRY AB In past research, two-pass repeat-geometry synthetic aperture radar (SAR) coherent change detection (CCD) predominantly utilized the sample degree of coherence as a measure of the temporal change occurring between two complex-valued image collects. Previous coherence-based CCD approaches tend to show temporal change when there is none in areas of the image that have a low clutter-to-noise power ratio. Instead of employing the sample coherence magnitude as a change metric, in this paper, we derive a new maximum-likelihood (ML) temporal change estimate-the complex reflectance change detection (CRCD) metric to be used for SAR coherent temporal change detection. The new CRCD estimator is a surprisingly simple expression, easy to implement, and optimal in the ML sense. This new estimate produces improved results in the coherent pair collects that we have tested. C1 [Wahl, Daniel E.; Yocky, David A.; Jakowatz, Charles V., Jr.; Simonson, Katherine M.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Wahl, DE (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM dewahl@sandia.gov FU Defense Nuclear Nonproliferation Research and Development, Office of Proliferation Detection/Enabling Capabilities [DOE NA-22]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Defense Nuclear Nonproliferation Research and Development, Office of Proliferation Detection/Enabling Capabilities under Grant DOE NA-22 under the direction of Dr. V. Franques. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 26 TC 0 Z9 0 U1 3 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0196-2892 EI 1558-0644 J9 IEEE T GEOSCI REMOTE JI IEEE Trans. Geosci. Remote Sensing PD APR PY 2016 VL 54 IS 4 BP 2460 EP 2469 DI 10.1109/TGRS.2015.2502219 PG 10 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA DH7WF UT WOS:000373004000043 ER PT J AU Mullen, NA Li, J Russell, ML Spears, M Less, BD Singer, BC AF Mullen, N. A. Li, J. Russell, M. L. Spears, M. Less, B. D. Singer, B. C. TI Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations SO INDOOR AIR LA English DT Article DE Carbon monoxide; Cooking; Formaldehyde; Natural gas appliances; Nitrogen dioxide; Kitchen ventilation ID NITROGEN-DIOXIDE EXPOSURE; EXHALED NITRIC-OXIDE; RESPIRATORY SYMPTOMS; ULTRAFINE PARTICLES; FORMALDEHYDE LEVELS; EXCHANGE-RATES; SPACE HEATERS; CHILDREN; ASSOCIATION; NO2 AB This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over similar to 6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2, and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2, and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde. C1 [Mullen, N. A.] Gap Inc, Global Supply Chain, Prod Regulat, San Francisco, CA USA. [Mullen, N. A.; Li, J.; Russell, M. L.; Spears, M.; Singer, B. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Technol Area, Indoor Environm Grp, Berkeley, CA 94720 USA. [Less, B. D.; Singer, B. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Technol Area, Residential Bldg Syst Grp, Berkeley, CA 94720 USA. RP Singer, BC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,M-S 90R2121, Berkeley, CA 94720 USA. EM bcsinger@lbl.gov FU California Energy Commission [500-09-042]; U.S. Dept. of Energy Building America Program [DE-AC02-05CH11231] FX Funding was provided by the California Energy Commission Contract 500-09-042 and by the U.S. Dept. of Energy Building America Program under Contract DE-AC02-05CH11231. The authors thank the study participants who were so careful in their execution of the sample deployment protocols, and so generous with their time. We thank Tosh Hotchi for his help in designing and testing the sampling materials, and Colette Tse for her contributions to sampling package preparation and sample analysis. NR 49 TC 2 Z9 2 U1 5 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0905-6947 EI 1600-0668 J9 INDOOR AIR JI Indoor Air PD APR PY 2016 VL 26 IS 2 BP 231 EP 245 DI 10.1111/ina.12190 PG 15 WC Construction & Building Technology; Engineering, Environmental; Public, Environmental & Occupational Health SC Construction & Building Technology; Engineering; Public, Environmental & Occupational Health GA DI0TD UT WOS:000373209200008 PM 25647016 ER PT J AU Chan, WR Parthasarathy, S Fisk, WJ McKone, TE AF Chan, W. R. Parthasarathy, S. Fisk, W. J. McKone, T. E. TI Estimated effect of ventilation and filtration on chronic health risks in US offices, schools, and retail stores SO INDOOR AIR LA English DT Article DE Ventilation; Volatile organic compounds; Particulate matter; Commercial buildings; Disability-adjusted life years; Health risks ID INDOOR AIR-QUALITY; VOLATILE ORGANIC-COMPOUNDS; SYNDROME SBS SYMPTOMS; REMOVAL MECHANISMS; LOS-ANGELES; SUPPLY RATE; BUILDINGS; POLLUTANTS; PERFORMANCE; RATES AB We assessed the chronic health risks from inhalation exposure to volatile organic compounds (VOCs) and particulate matter (PM2.5) in U.S. offices, schools, grocery, and other retail stores and evaluated how chronic health risks were affected by changes in ventilation rates and air filtration efficiency. Representative concentrations of VOCs and PM2.5 were obtained from available data. Using a mass balance model, changes in exposure to VOCs and PM2.5 were predicted if ventilation rate were to increase or decrease by a factor of two, and if higher efficiency air filters were used. Indoor concentrations were compared to health guidelines to estimate percentage exceedances. The estimated chronic health risks associated with VOC and PM2.5 exposures in these buildings were low relative to the risks from exposures in homes. Chronic health risks were driven primarily by exposures to PM2.5 that were evaluated using disease incidence of mortality, chronic bronchitis, and non-fatal stroke. The leading cancer risk factor was exposure to formaldehyde. Using disability-adjusted life years (DALYs) to account for both cancer and non-cancer effects, results suggest that increasing ventilation alone is ineffective at reducing chronic health burdens. Other strategies, such as pollutant source control and the use of particle filtration, should also be considered. C1 [Chan, W. R.; Parthasarathy, S.; Fisk, W. J.; McKone, T. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Chan, WR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wrchan@lbl.gov FU California Energy Commission Public Interest Energy Research Program; Energy-Related Environmental Research Program [500-09-049, DE-AC03-05CH11231] FX The research reported here was supported by the California Energy Commission Public Interest Energy Research Program, Energy-Related Environmental Research Program, award number 500-09-049 under contract DE-AC03-05CH11231 between the U.S. Department of Energy and the University of California. The authors would like to thank Marla Mueller for program management and members of the project advisory committee and Jennifer Logue for their reviews of a draft of this document. NR 52 TC 2 Z9 2 U1 13 U2 37 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0905-6947 EI 1600-0668 J9 INDOOR AIR JI Indoor Air PD APR PY 2016 VL 26 IS 2 BP 331 EP 343 DI 10.1111/ina.12189 PG 13 WC Construction & Building Technology; Engineering, Environmental; Public, Environmental & Occupational Health SC Construction & Building Technology; Engineering; Public, Environmental & Occupational Health GA DI0TD UT WOS:000373209200015 PM 25639183 ER PT J AU Burke, MP AF Burke, Michael P. TI Harnessing the Combined Power of Theoretical and Experimental Data through Multiscale Informatics SO INTERNATIONAL JOURNAL OF CHEMICAL KINETICS LA English DT Article ID PHENOMENOLOGICAL RATE COEFFICIENTS; COLLISIONAL ENERGY-TRANSFER; LOW-TEMPERATURE OXIDATION; DETAILED KINETIC-MODEL; REVERSIBLE-ARROW CH3; GAS-PHASE REACTIONS; MASTER-EQUATION; SHOCK-TUBE; UNCERTAINTY QUANTIFICATION; SENSITIVITY-ANALYSIS AB Monumental, recent and rapidly continuing, improvements in the capabilities of ab initio theoretical kinetics calculations provides reason to believe that progress in the field of chemical kinetics can be accelerated through a corresponding evolution of the role of theory in kinetic modeling and its relationship with experiment. The present article reviews and provides additional demonstrations of the unique advantages that arise when theoretical and experimental data across multiple scales are considered on equal footing, including the relevant uncertainties of both, within a single mathematical framework. Namely, the multiscale informatics framework simultaneously integrates information from a wide variety of sources and scales: ab initio electronic structure calculations of molecular properties, rate constant determinations for individual reactions, and measured global observables of multireaction systems. The resulting model representation consists of a set of theoretical kinetics parameters (with constrained uncertainties) that are related through elementary kinetics models to rate constants (with propagated uncertainties) that in turn are related through physical models to global observables (with propagated uncertainties). An overview of the approach and typical implementation is provided along with a brief discussion of the major uncertainties (parametric and structural) in theoretical kinetics calculations, kinetic models for complex chemical mechanisms, and physical models for experiments. Higher levels of automation in all aspects, including closed-loop autonomous mixed-experimental-and-computational model improvement, are advocated for facilitating scalability of the approach to larger systems with reasonable human effort and computational cost. The unique advantages of combining theoretical and experimental data across multiple scales are illustrated through a series of examples. Previous results demonstrating the utility of simultaneous interpretation of theoretical and experimental data for assessing consistency in complex systems and for reliable, physics-based extrapolation of limited data are briefly summarized. New results are presented to demonstrate the high predictive accuracy of multiscale informed models for both small (molecular properties) and large (global observables) scales. These new results provide examples where the optimization yields physically realistic parameter adjustments and where physical model uncertainties in experiments are larger than kinetic model uncertainties. New results are also presented to demonstrate the utility of the multiscale informatics approach for design of experiments and theoretical calculations, accounting for both theoretical and experimental existing knowledge as well as relevant parametric and structural uncertainties in interpreting potential new data. These new results provide examples where neglecting structural uncertainties in design of experiments results in failure to identify the most worthwhile experiment. Further progress in the chemical kinetics field (particularly at the intersection of theory, kinetic modeling, and experiment) would benefit from increased attention to understanding parametric and structural uncertainties for all threethe uncertainty magnitude and cross-correlations among model parameters as well as limitations of the model structures themselves. C1 [Burke, Michael P.] Columbia Univ, Dept Chem Engn, Dept Mech Engn, New York, NY 10027 USA. [Burke, Michael P.] Columbia Univ, Data Sci Inst, New York, NY 10027 USA. [Burke, Michael P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Burke, MP (reprint author), Columbia Univ, Dept Chem Engn, Dept Mech Engn, New York, NY 10027 USA.; Burke, MP (reprint author), Columbia Univ, Data Sci Inst, New York, NY 10027 USA.; Burke, MP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. EM mpburke@columbia.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-06CH11357]; Argonne-Sandia Consortium on High-Pressure Combustion Chemistry (ANL FWP) [59044] FX The portion of the work at Argonne was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract Nos. DE-AC02-06CH11357 and in part under the Argonne-Sandia Consortium on High-Pressure Combustion Chemistry (ANL FWP # 59044). NR 142 TC 3 Z9 3 U1 8 U2 16 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0538-8066 EI 1097-4601 J9 INT J CHEM KINET JI Int. J. Chem. Kinet. PD APR PY 2016 VL 48 IS 4 BP 212 EP 235 DI 10.1002/kin.20984 PG 24 WC Chemistry, Physical SC Chemistry GA DH7PU UT WOS:000372987100004 ER PT J AU McKeown, JT Zweiacker, K Liu, C Coughlin, DR Clarke, AJ Baldwin, JK Gibbs, JW Roehling, JD Imhoff, SD Gibbs, PJ Tourret, D Wiezorek, JMK Campbell, GH AF McKeown, Joseph T. Zweiacker, Kai Liu, Can Coughlin, Daniel R. Clarke, Amy J. Baldwin, J. Kevin Gibbs, John W. Roehling, John D. Imhoff, Seth D. Gibbs, Paul J. Tourret, Damien Wiezorek, Joerg M. K. Campbell, Geoffrey H. TI Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing (vol 68, pg 985, 2016) SO JOM LA English DT Correction C1 [McKeown, Joseph T.; Roehling, John D.; Campbell, Geoffrey H.] Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. [Zweiacker, Kai; Liu, Can; Wiezorek, Joerg M. K.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Coughlin, Daniel R.; Clarke, Amy J.; Gibbs, John W.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien] Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. [Baldwin, J. Kevin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. RP McKeown, JT (reprint author), Lawrence Livermore Natl Lab, Div Mat Sci, Livermore, CA 94550 USA. EM mckeown3@llnl.gov NR 1 TC 0 Z9 0 U1 5 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD APR PY 2016 VL 68 IS 4 BP 1264 EP 1264 DI 10.1007/s11837-016-1842-0 PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA DH9QQ UT WOS:000373131200030 ER PT J AU Buhr, TL Young, AA Bensman, M Minter, ZA Kennihan, NL Johnson, CA Bohmke, MD Borgers-Klonkowski, E Osborn, EB Avila, SD Theys, AMG Jackson, PJ AF Buhr, T. L. Young, A. A. Bensman, M. Minter, Z. A. Kennihan, N. L. Johnson, C. A. Bohmke, M. D. Borgers-Klonkowski, E. Osborn, E. B. Avila, S. D. Theys, A. M. G. Jackson, P. J. TI Hot, humid air decontamination of a C-130 aircraft contaminated with spores of two acrystalliferous Bacillus thuringiensis strains, surrogates for Bacillus anthracis SO JOURNAL OF APPLIED MICROBIOLOGY LA English DT Article DE aircraft; Bacillus; decontamination; hot humid air; spore; surrogate ID AL HAKAM SPORES; LENGTH POLYMORPHISM ANALYSIS; BACTERIAL-SPORES; DELTA-STERNE; SURFACE HYDROPHOBICITY; HEAT RESISTANCE; CEREUS; SUBTILIS; HISTORY; WATER AB AimTo develop test methods and evaluate survival of Bacillus thuringiensis kurstaki cry(-) HD-1 and B.thuringiensis Al Hakam spores after exposure to hot, humid air inside of a C-130 aircraft. Methods and ResultsBacillus thuringiensis spores were either pre-inoculated on 1x2 or 2x2cm substrates or aerosolized inside the cargo hold of a C-130 and allowed to dry. Dirty, complex surfaces (10x10cm) swabbed after spore dispersal showed a deposition of 8-10 log(10)m(-2) through the entire cargo hold. After hot, humid air decontamination at 75-80 degrees C, 70-90% relative humidity for 7days, 87 of 98 test swabs covering 098m(2), showed complete spore inactivation. There was a total of 167log(10) live CFU detected in 11 of the test swabs. Spore inactivation in the 98 test swabs was measured at 706log(10)m(-2). ConclusionsLaboratory test methods for hot, humid air decontamination were scaled for a large-scale aircraft field test. The C-130 field test demonstrated that hot, humid air can be successfully used to decontaminate an aircraft. Significance and Impact of the StudyTransition of a new technology from research and development to acquisition at a Technology Readiness Level 7 is unprecedented. C1 [Buhr, T. L.; Young, A. A.; Bensman, M.; Minter, Z. A.; Kennihan, N. L.; Johnson, C. A.; Bohmke, M. D.; Borgers-Klonkowski, E.; Osborn, E. B.; Avila, S. D.] Naval Surface Warfare Ctr, CBR Concepts & Experimentat Branch Z21, Dahlgren Div, 4045 Higley Rd,Suite 345, Dahlgren, VA 22448 USA. [Theys, A. M. G.] METSS Corp, Westerville, OH USA. [Jackson, P. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Buhr, TL (reprint author), Naval Surface Warfare Ctr, CBR Concepts & Experimentat Branch Z21, Dahlgren Div, 4045 Higley Rd,Suite 345, Dahlgren, VA 22448 USA. EM tony.buhr@navy.mil FU Defense Threat Reduction Agency Joint Science and Technology Office, Protection and Hazard Mitigation Capability Area [PHM-BA08PHM113]; Joint Science and Technology Office for Chemical and Biological Defense (JSTO-CBD) through the CBD SBIR [W911NF-12-C-0048] FX This work was supported through funding provided by the Defense Threat Reduction Agency Joint Science and Technology Office, Protection and Hazard Mitigation Capability Area (Project Number PHM-BA08PHM113). Participants that were either directly or indirectly involved in the test included Brian Rainer, Ronald Edwards, Ray Zeigler, Michelle Briggs (NSWC-Dahlgren); Glenn Lawson, Markham Smith, Mark Morgan, Chuck Bass and Kelly Crigger (DTRA); Brian Collett (METSS); Lt. Michael Barnhardt and Bill Greer (AFRL); Larry Magnuson (Air Mobility Command), Master Sergeant Wayne Johansen (McGill AFB), Ron Brown and Paul Gray (Aeroclave), Yoojeong Kim, Arjan Giaya and John Lovaasen (Triton), Little Rock AFB maintenance crew; and many others. Triton was funded by the Joint Science and Technology Office for Chemical and Biological Defense (JSTO-CBD) through the CBD SBIR Phase II Contract No. W911NF-12-C-0048. NR 42 TC 2 Z9 2 U1 1 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1364-5072 EI 1365-2672 J9 J APPL MICROBIOL JI J. Appl. Microbiol. PD APR PY 2016 VL 120 IS 4 BP 1074 EP 1084 DI 10.1111/jam.13055 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA DH9IW UT WOS:000373110800023 PM 26786717 ER PT J AU Parsons, BA Pinkerton, DK Wright, BW Synovec, RE AF Parsons, Brendon A. Pinkerton, David K. Wright, Bob W. Synovec, Robert E. TI Chemical characterization of the acid alteration of diesel fuel: Non-targeted analysis by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry with tile-based Fisher ratio and combinatorial threshold determination SO JOURNAL OF CHROMATOGRAPHY A LA English DT Article DE Tile-based F-ratio; GC x GC-TOFMS; Null distribution analysis; Diesel fuel; Acid alteration; False discovery rate ID GC X GC; FALSE DISCOVERY RATE; MULTIVARIATE-ANALYSIS; CHEMOMETRIC ANALYSIS; FEATURE-SELECTION; SULFURIC-ACID; TOFMS DATA; QUANTIFICATION; SOFTWARE; SAMPLES AB The illicit chemical alteration of petroleum fuels is of keen interest, particularly to regulatory agencies that set fuel specifications, or taxes credits based on those specifications. One type of alteration is the reaction of diesel fuel with concentrated sulfuric acid. Such reactions are known to subtly alter the chemical composition of the fuel, particularly the aromatic species native to the fuel. Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC x GC-TOFMS) is well suited for the analysis of diesel fuel, but may provide the analyst with an overwhelming amount of data, particularly in sample-class comparison experiments comprised of many samples. Tile-based Fisher-ratio (F-ratio) analysis reduces the abundance of data in a GC x GC-TOFMS experiment to only the peaks which significantly distinguish the unaltered and acid altered sample classes. Three samples of diesel fuel from differently branded filling stations were each altered to discover chemical features, i.e., analyte peaks, which were consistently changed by the acid reaction. Using different fuels prioritizes the discovery of features likely to be robust to the variation present between fuel samples and may consequently be useful in determining whether an unknown sample has been acid altered. The subsequent analysis confirmed that aromatic species are removed by the acid alteration, with the degree of removal consistent with predicted reactivity toward electrophilic aromatic sulfonation. Additionally, we observed that alkenes and alkynes were also removed from the fuel, and that sulfur dioxide or compounds that degrade to sulfur dioxide are generated by the acid alteration. In addition to applying the previously reported tile-based F-ratio method, this report also expands null distribution analysis to algorithmically determine an F-ratio threshold to confidently select only the features which are sufficiently class-distinguishing. When applied to the acid alteration of diesel fuel, the suggested per-hit F-ratio threshold was 12.4, which is predicted to maintain the false discovery rate (FDR) below 0.1%. Using this F-ratio threshold, 107 of the 3362 preliminary hits were deemed significantly changing due to the acid alteration, with the number of false positives estimated to be about 3. Validation of the F-ratio analysis was performed using an additional three fuels. (C) 2016 Elsevier B.V. All rights reserved. C1 [Parsons, Brendon A.; Pinkerton, David K.; Synovec, Robert E.] Univ Washington, Dept Chem, Box 351700, Seattle, WA 98198 USA. [Wright, Bob W.] Pacific NW Natl Lab, Battelle Blvd,POB 999, Richland, WA 99352 USA. RP Synovec, RE (reprint author), Univ Washington, Dept Chem, Box 351700, Seattle, WA 98198 USA. EM synovec@chem.washington.edu OI Parsons, Brendon/0000-0002-4411-0063 FU Internal Revenue Service (IRS); US Department of Energy (DOE) [DE-AC05-76RLO 1830]; Pacific North-west National Laboratory FX This work was supported by the Internal Revenue Service (IRS) under an Interagency Agreement with the US Department of Energy (DOE) under Contract DE-AC05-76RLO 1830 with the Pacific North-west National Laboratory. We thank Dr. Luke Marney and Dr. Jamin Hoggard for their contributions to the initial development of the tile-based Fisher ratio software. NR 42 TC 4 Z9 4 U1 6 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0021-9673 EI 1873-3778 J9 J CHROMATOGR A JI J. Chromatogr. A PD APR 1 PY 2016 VL 1440 BP 179 EP 190 DI 10.1016/j.chroma.2016.02.067 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA DH7AN UT WOS:000372943400020 PM 26947161 ER PT J AU Meehan, BT Niederhaus, JHJ AF Meehan, B. T. Niederhaus, J. H. J. TI Fully three-dimensional simulation and modeling of a dense plasma focus SO JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS LA English DT Article DE Dense plasma focus; magnetohydrodynamics; simulation and modeling; controlled fusion AB A dense plasma focus (DPF) is a pulsed-power machine that electromagnetically accelerates and cylindrically compresses a shocked plasma in a Z-pinch. The pinch results in a brief (similar to 100ns) pulse of X-rays, and, for some working gases, also a pulse of neutrons. A great deal of experimental research has been done into the physics of DPF reactions, and there exist mathematical models describing its behavior during the different time phases of the reaction. Two of the phases, known as the inverse pinch and the rundown, are approximately governed by magnetohydrodynamics, and there are a number of well-established codes for simulating these phases in two dimensions or in three dimensions under the assumption of axial symmetry. There has been little success, however, in developing fully three-dimensional simulations. In this work we present three-dimensional simulations of DPF reactions and demonstrate that three-dimensional simulations predict qualitatively and quantitatively different behavior than their two-dimensional counterparts. One of the most important quantities to predict is the time duration between the formation of the gas shock and Z-pinch, and the three-dimensional simulations more faithfully represent experimental results for this time duration and are essential for accurate prediction of future experiments. C1 [Meehan, B. T.] Natl Secur Technol LLC, North Las Vegas, NV 89193 USA. [Niederhaus, J. H. J.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Meehan, BT (reprint author), Natl Secur Technol LLC, Dept Energy Contractor, POB 98521 MS NLV078, North Las Vegas, NV 89193 USA. EM meehanbt@nv.doe.gov NR 23 TC 0 Z9 0 U1 1 U2 1 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 1548-5129 EI 1557-380X J9 J DEF MODEL SIMUL-AP JI J. Def. Model. Simul.-Appl. Methodol. Technol.-JDMS PD APR PY 2016 VL 13 IS 2 BP 153 EP 160 DI 10.1177/1548512914553144 PG 8 WC Engineering, Multidisciplinary SC Engineering GA DI3GP UT WOS:000373387200002 ER PT J AU Mao, WF Ai, G Dai, YL Fu, YB Ma, Y Shi, SW Soe, R Zhang, XH Qu, DY Tang, ZY Battaglia, VS AF Mao, Wenfeng Ai, Guo Dai, Yiling Fu, Yanbao Ma, Ye Shi, Shouwen Soe, Ryan Zhang, Xinhe Qu, Deyang Tang, Zhiyuan Battaglia, Vincent S. TI In-situ synthesis of MnO2@CNT microsphere composites with enhanced electrochemical performances for lithium-ion batteries SO JOURNAL OF POWER SOURCES LA English DT Article DE Manganese dioxide; Coating; Carbon nanotube (CNT); Lithium-ion battery; High capacity ID ENERGY-STORAGE; CARBON; ELECTRODES; CATHODE; DESIGN; ANODE; NANOSTRUCTURES; NANOCOMPOSITES; NANOWIRES; NANOTUBES AB An inner coating method is developed to synthesize electrode materials for lithium ion batteries. Different from other conventional coating methods, the inner coating method employs one-dimensional (1D) conductive materials to form a three-dimensional (3D) electronic conductive and mechanical network, which can not only improve electronic and ionic conductivity, increase the reactive area, but it also accommodates volume changes associated with active materials. The concept of our inner coating method is demonstrated via the synthesis of MnO2@CNT microspheres, which uses CNT as the inner coating material. The reversible capacity increases significantly from 528.0 mAh g(-1) for the MnO2 (without inner coating) to 1097.3 mAh g(-1) for the MnO2@CNT (with inner coating). Cycling stability is also greatly improved via inner coating technique. This method can be extended to the synthesis of other high capacity electrode materials, which will promote the development of next-generation lithium-ion batteries. (C) 2016 Elsevier B.V. All rights reserved. C1 [Mao, Wenfeng; Dai, Yiling; Fu, Yanbao; Shi, Shouwen; Battaglia, Vincent S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. [Mao, Wenfeng; Ma, Ye; Shi, Shouwen; Tang, Zhiyuan] Tianjin Univ, Sch Chem & Engn, Tianjin 300072, Peoples R China. [Ai, Guo] Minist Ind & Informat Technol, Elect Res Inst 5, Sci & Technol Reliabil Phys & Applicat Elect Comp, Guangzhou 510610, Guangdong, Peoples R China. [Zhang, Xinhe; Qu, Deyang] McNair Technol Co Ltd, Dongguan 523700, Guangdong, Peoples R China. [Soe, Ryan] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA. RP Mao, WF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Technol Area, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA. EM wenfengmao123@gmail.com RI DAI, YILING/L-2430-2016 FU project of Innovative group for high-performance lithium-ion power batteries R&D and industrialization of Guangdong Province [2013N079]; China Scholarship Council FX This work is funded by the project of Innovative group for high-performance lithium-ion power batteries R&D and industrialization of Guangdong Province (Grant No. 2013N079). Also, Wenfeng Mao and Shouwen Shi are supported by the China Scholarship Council. NR 36 TC 7 Z9 7 U1 43 U2 132 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-7753 EI 1873-2755 J9 J POWER SOURCES JI J. Power Sources PD APR 1 PY 2016 VL 310 BP 54 EP 60 DI 10.1016/j.jpowsour.2016.02.002 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels; Materials Science, Multidisciplinary SC Chemistry; Electrochemistry; Energy & Fuels; Materials Science GA DH3MU UT WOS:000372691900008 ER PT J AU Rodriguez, EE Cao, HB Haiges, R Melot, BC AF Rodriguez, Efrain E. Cao, Huibo Haiges, Ralf Melot, Brent C. TI Single crystal magnetic structure and susceptibility of CoSe2O5 SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Metamagnetism; Single crystal; Magnetic structure ID DIFFRACTION; CURVES AB The structure of CoSe2O5 consists of one-dimensional ribbons of edge-sharing CoO6 octahedra bound together by polyanionic subunits of Se2O5. Previous work on polycrystalline samples reported a canted antiferromagnetic arrangement of the magnetic moments below the ordering temperature of 8.5 K. Here, we report a single crystal investigation using variable temperature and field magnetic susceptibility and low-temperature neutron diffraction to more precisely characterize the nature of the magnetic ground state of CoSe2O5. Contrary to previous reports, we find that the single crystal magnetic structure shows no canting of the antiferromagnetic ground state, and in the process have identified several field-induced changes to the magnetization. We discuss these results in the context of the revised magnetic structure and highlight the importance of crystal growth for the accurate characterization of these properties. (C) 2015 Elsevier Inc. All rights reserved. C1 [Haiges, Ralf; Melot, Brent C.] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. [Rodriguez, Efrain E.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Cao, Huibo] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. RP Melot, BC (reprint author), Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA. EM efrain@umd.edu; melot@usc.edu RI Haiges, Ralf/C-7314-2008; Cao, Huibo/A-6835-2016 OI Haiges, Ralf/0000-0003-4151-3593; Cao, Huibo/0000-0002-5970-4980 FU Dana and David Dornsife College of Letters and Sciences at the University of Southern California; University of Maryland; National Science Foundation [CAREER DMR-1455118]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX B.C.M. gratefully acknowledge financial support through start-up funding provided by the Dana and David Dornsife College of Letters and Sciences at the University of Southern California and Gavin Lawes for useful discussions. E.E.R. acknowledges financial support from start-up funds provided by the University of Maryland and the National Science Foundation (CAREER DMR-1455118). The research at Oak Ridge National Laboratory's High-Flux Isotope Reactor is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 20 TC 1 Z9 1 U1 2 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD APR PY 2016 VL 236 SI SI BP 39 EP 44 DI 10.1016/j.jssc.2015.09.006 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DH3FM UT WOS:000372672900007 ER PT J AU Calta, NP Kanatzidis, MG AF Calta, Nicholas P. Kanatzidis, Mercouri G. TI Hf3Fe4Sn4 and Hf9Fe4-xSn10+x: Two stannide intermetallics with low-dimensional iron sublattices SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Flux synthesis; Intermetallic compounds; X-ray crystallography; Magnetism ID SN-FE SYSTEM; MAGNETIC-PROPERTIES; NEUTRON-DIFFRACTION; RFE6SN6 COMPOUNDS; CRYSTAL-STRUCTURE; MOSSBAUER; ZR; INCOMMENSURABILITY; CO; RE6FE13X AB This article reports two new Hf-rich intermetallics synthesized using Sn flux: Hf3Fe4Sn4 and Hf9Fe4-xSn10+x. Hf3Fe4Sn4 adopts an ordered variant the Hf3Cu8 structure type in orthorhombic space group Pnma with unit cell edges of a=8.1143(5) angstrom, b=8.8466(5) angstrom, and c=10.6069(6) angstrom. Hf9Fe4-xSn10+x, on the other hand, adopts a new structure type in Cmc2(1) with unit cell edges of a=5.6458(3) angstrom, 6=35.796(2) angstrom, and c=8.88725(9) angstrom for x=0. It exhibits a small amount of phase width in which Sn substitutes on one of the Fe sites. Both structures are fully three-dimensional and are characterized by pseudo one- and two-dimensional networks of Fe-Fe homoatomic bonding. Hf9Fe4-xSn10+x exhibits antiferromagnetic order at T-N=46(2) K and its electrical transport behavior indicates that it is a normal metal with phonon-dictated resistivity. Hf3Fe4Sn4 is also an antiferromagnet with a rather high ordering temperature of T-N=373(5) K. Single crystal resistivity measurements indicate that Hf3Fe4Sn4 behaves as a Fermi liquid at low temperatures, indicating strong electron correlation. (C) 2015 Elsevier Inc. All rights reserved. C1 [Calta, Nicholas P.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Kanatzidis, Mercouri G.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kanatzidis, MG (reprint author), Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. EM m-kanatzidis@northwestern.edu FU MRSEC program at the Materials Research Center [NSF DMR-1121262]; International Institute for Nanotechnology (IIN); State of Illinois, through the IIN; U.S. Department of Energy, Office of Science, Materials Sciences and Engineering; Northwestern University's International Institute for Nanotechnology; State of Illinois Department of Commerce and Economic Opportunity (DCEO) Award [10-203031] FX This work made use of the EPIC facility (NUANCE Center Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. The work at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering. We acknowledge Prof. Danna Freedman and Samantha Clarke for assistance with magnetic measurements, which were supported by Northwestern University's International Institute for Nanotechnology and the State of Illinois Department of Commerce and Economic Opportunity (DCEO) Award (10-203031). NR 33 TC 1 Z9 1 U1 3 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD APR PY 2016 VL 236 SI SI BP 130 EP 137 DI 10.1016/j.jssc.2015.12.017 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DH3FM UT WOS:000372672900018 ER PT J AU Tan, XY Garlea, VO Chai, P Geondzhian, AY Yaroslavtsev, AA Xin, Y Menushenkov, AP Chernikov, RV Shatruk, M AF Tan, Xiaoyan Garlea, V. Ovidiu Chai, Ping Geondzhian, Andrey Y. Yaroslavtsev, Alexander A. Xin, Yan Menushenkov, Alexey P. Chernikov, Roman V. Shatruk, Michael TI Synthesis, crystal structure, and magnetism of A(2)Co(12)As(7) (A=Ca, Y, Ce-Yb) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Flux synthesis; Crystal growth; Arsenides; Itinerant magnetism; Mixed valence ID RARE-EARTH; INTERMETALLIC COMPOUNDS; NEUTRON-DIFFRACTION; COBALT PHOSPHIDES; TRANSITION-METALS; MAGNETIZATION; ORDER; MOSSBAUER; ARSENIDES; ZR2FE12P7 AB Ternary intermetallics, A(2)Co(12)As(7) (A=Ca, Y, Ce-Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223 K. The materials obtained crystallize in the P6(3)/m variant of the Zr2Fe12P7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior of A(2)Co(12)As(7) is generally characterized by ferromagnetic ordering of Co 3d moments at 100-140 K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr-Sm to ferromagnetic for A=Ce and Eu-Yb. Polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce2Co12As7 and Nd2Co12As7, respectively. (C) 2015 Elsevier Inc. All rights reserved. C1 [Tan, Xiaoyan; Chai, Ping; Shatruk, Michael] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. [Garlea, V. Ovidiu] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Geondzhian, Andrey Y.; Yaroslavtsev, Alexander A.; Menushenkov, Alexey P.] Natl Res Nucl Univ, Moscow Engn Phys Inst, Moscow 115409, Russia. [Yaroslavtsev, Alexander A.] European XFEL GmbH, D-22761 Hamburg, Germany. [Xin, Yan] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Chernikov, Roman V.] DESY Photon Sci, D-22603 Hamburg, Germany. RP Shatruk, M (reprint author), Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA. EM shatruk@chem.fsu.edu RI Yaroslavtsev, Andrey/C-2070-2013 FU National Science Foundation [DMR-1507233]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); FSU Research Foundation; National High Magnetic Field Laboratory [NSF-DMR-0654118]; State of Florida; Russian Science Foundation [14-22-00098] FX This work was supported by the National Science Foundation award DMR-1507233 to M.S. The work at the Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). V.O.G. thanks the help provided by the HYSPEC instrument team, B. Winn and M. Graves-Brook, during the polarized neutron scattering study. The TEM work was carried out at the electron microscopy facility at FSU which is funded and supported by the FSU Research Foundation, National High Magnetic Field Laboratory (NSF-DMR-0654118), and the State of Florida. The authors acknowledge Helmholtz-Zentrum Berlin and MAX IV Laboratory for providing the time at mySpot and I811 beamlines and Dr. Ivo Zizak (HZB), Dr. S. Carlson and Dr. K. Sigfridsson (MAX IV) for support during the experiment. A.P.M. and A.A.Y. thank the Russian Science Foundation (Project 14-22-00098) for support. NR 48 TC 0 Z9 0 U1 7 U2 14 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD APR PY 2016 VL 236 SI SI BP 147 EP 158 DI 10.1016/j.jssc.2015.08.038 PG 12 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DH3FM UT WOS:000372672900020 ER PT J AU Greenfield, JT Garlea, VO Kamali, S Chen, M Kovnir, K AF Greenfield, Joshua T. Garlea, V. Ovidiu Kamali, Saeed Chen, Michael Kovnir, Kirill TI Synthesis, crystal growth, structural and magnetic characterization of NH4MCl2(HCOO), M=(Fe, Co, Ni) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Solvothermal synthesis; Crystal growth; Low-dimensional magnetism; Neutron diffraction; Mossbauer spectroscopy; Magnetic structure ID FORMATE; FRAMEWORKS; BRIDGES; FE AB An ambient-pressure solution route and an improved solvothermal synthetic method have been developed to produce polycrystalline powders and large single crystals of NH4MCl2(HCOO) (M=Fe, Co, Ni). The magnetic structure of the 1D linear chain compound NH4FeCl2(HCOO) has been determined by low-temperature neutron powder diffraction, revealing ferromagnetic intra-chain interactions and anti ferromagnetic inter-chain interactions. The newly-reported Co and Ni analogs are isostructural with NH4FeCl2(HCOO), but there are significant differences in the magnetic properties of each compound; the Ni analog behaves similarly to the Fe compound but with stronger magnetic coupling, exhibiting anti ferromagnetic ordering (T-N=8.5 K) and a broad metamagnetic transition between 2 and 5 T, while the Co analog does not order magnetically above 2 K, despite strong antiferromagnetic nearest-neighbor interactions. (C) 2015 Elsevier Inc. All rights reserved. C1 [Greenfield, Joshua T.; Chen, Michael; Kovnir, Kirill] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. [Garlea, V. Ovidiu] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Oak Ridge, TN 37831 USA. [Kamali, Saeed] Univ Tennessee, Inst Space, Mech Aerosp & Biomed Engn Dept, Tullahoma, TN 37388 USA. RP Kovnir, K (reprint author), Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA. EM kkovnir@ucdavis.edu RI Garlea, Ovidiu/A-4994-2016 OI Garlea, Ovidiu/0000-0002-5322-7271 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE); University of California, Davis FX The University of California, Davis is gratefully acknowledged for financial support. The work at the Oak Ridge National Laboratory was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). NR 24 TC 0 Z9 0 U1 1 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD APR PY 2016 VL 236 SI SI BP 222 EP 229 DI 10.1016/j.jssc.2015.09.016 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA DH3FM UT WOS:000372672900029 ER PT J AU Kaminsky, F Matzel, J Jacobsen, B Hutcheon, I Wirth, R AF Kaminsky, Felix Matzel, Jennifer Jacobsen, Ben Hutcheon, Ian Wirth, Richard TI Isotopic fractionation of oxygen and carbon in decomposed lower-mantle inclusions in diamond SO MINERALOGY AND PETROLOGY LA English DT Article ID STABLE-ISOTOPES; NORTHWEST-TERRITORIES; HYPABYSSAL KIMBERLITE; MINERAL INCLUSIONS; SOUTH-AFRICA; DEEP MANTLE; ORIGIN; ECLOGITES; XENOLITHS; GARNET AB Two carbonatitic mineral assemblages, calcite + wollastonite and calcite + monticellite, which are encapsulated in two diamond grains from the Rio Soriso basin in the Juina area, Mato Grosso State, Brazil, were studied utilizing the NanoSIMS technique. The assemblages were formed as the result of the decomposition of the lower-mantle assemblage calcite + CaSi-perovskite + volatile during the course of the diamond ascent under pressure conditions from 15 to less than 0.8 GPa. The oxygen and carbon isotopic compositions of the studied minerals are inhomogeneous. They fractionated during the process of the decomposition of primary minerals to very varying values: delta O-18 from -3.3 to +15.4 aEuro degrees SMOW and delta C-13 from -2.8 to +9.3 aEuro degrees VPDB. These values significantly extend the mantle values for these elements in both isotopically-light and isotopically-heavy areas. C1 [Kaminsky, Felix] KM Diamond Explorat Ltd, 2446 Shadbolt Lane, W Vancouver, BC V7S 3J1, Canada. [Matzel, Jennifer; Jacobsen, Ben; Hutcheon, Ian] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94518 USA. [Wirth, Richard] Geoforschungszentrum Potsdam, Dept Chem & Phys Earth Mat, D-14473 Potsdam, Germany. RP Kaminsky, F (reprint author), KM Diamond Explorat Ltd, 2446 Shadbolt Lane, W Vancouver, BC V7S 3J1, Canada. EM felixvkaminsky@aol.com NR 45 TC 0 Z9 0 U1 3 U2 10 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0930-0708 EI 1438-1168 J9 MINER PETROL JI Mineral. Petrol. PD APR PY 2016 VL 110 IS 2-3 BP 379 EP 385 DI 10.1007/s00710-015-0401-7 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA DH9WS UT WOS:000373147300012 ER PT J AU Ullrich, PA Devendran, D Johansen, H AF Ullrich, Paul A. Devendran, Dharshi Johansen, Hans TI Arbitrary-Order Conservative and Consistent Remapping and a Theory of Linear Maps: Part II SO MONTHLY WEATHER REVIEW LA English DT Article DE Interpolation schemes; Interpolation schemes; Numerical analysis/modeling; Models and modeling; Mathematical and statistical techniques; Data processing; Algorithms; Observational techniques and algorithms ID CUBED-SPHERE GRIDS; REGULAR LATITUDE-LONGITUDE; SHALLOW-WATER MODEL; POLYHEDRAL MESHES; GEODESIC GRIDS; INTERPOLATION; SIMULATIONS; SCHEMES; TIME AB This paper extends on the first part of this series by describing four examples of 2D linear maps that can be constructed in accordance with the theory of the earlier work. The focus is again on spherical geometry, although these techniques can be readily extended to arbitrary manifolds. The four maps include conservative, consistent, and (optionally) monotone linear maps (i) between two finite-volume meshes, (ii) from finite-volume to finite-element meshes using a projection-type approach, (iii) from finite-volume to finite-element meshes using volumetric integration, and (iv) between two finite-element meshes. Arbitrary order of accuracy is supported for each of the described nonmonotone maps. C1 [Ullrich, Paul A.] Univ Calif Davis, Dept Land Air & Water Resources, 1 Shields Ave, Davis, CA 95616 USA. [Devendran, Dharshi; Johansen, Hans] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Ullrich, PA (reprint author), Univ Calif Davis, Dept Land Air & Water Resources, 1 Shields Ave, Davis, CA 95616 USA. EM paullrich@ucdavis.edu RI Ullrich, Paul/E-9350-2015 OI Ullrich, Paul/0000-0003-4118-4590 FU Department of Energy, Office of Science, Division for Advanced Scientific Computing Research; "Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System'' program FX The authors thank Mark Taylor for spurring on this work and Miranda Mundt for her quality assurance efforts, particularly with the volumetric formulation. The authors would also like to thank Iulian Grindeanu for helpful discussions on the development of these algorithms. This project is funded through the Department of Energy, Office of Science, Division for Advanced Scientific Computing Research and the "Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System'' program. The software described in this manuscript has been released as part of the Tempest software package, and is available for use under the Lesser GNU Public License (LGPL). All software can be obtained from GitHub via the following clone URL: https://github.com/ClimateGlobalChange/tempestremap.git.) NR 25 TC 2 Z9 2 U1 1 U2 2 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD APR PY 2016 VL 144 IS 4 BP 1529 EP 1549 DI 10.1175/MWR-D-15-0301.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA DI2GF UT WOS:000373313000001 ER PT J AU Clark, PU Shakun, JD Marcott, SA Mix, AC Eby, M Kulp, S Levermann, A Milne, GA Pfister, PL Santer, BD Schrag, DP Solomon, S Stocker, TF Strauss, BH Weaver, AJ Winkelmann, R Archer, D Bard, E Goldner, A Lambeck, K Pierrehumbert, RT Plattner, GK AF Clark, Peter U. Shakun, Jeremy D. Marcott, Shaun A. Mix, Alan C. Eby, Michael Kulp, Scott Levermann, Anders Milne, Glenn A. Pfister, Patrik L. Santer, Benjamin D. Schrag, Daniel P. Solomon, Susan Stocker, Thomas F. Strauss, Benjamin H. Weaver, Andrew J. Winkelmann, Ricarda Archer, David Bard, Edouard Goldner, Aaron Lambeck, Kurt Pierrehumbert, Raymond T. Plattner, Gian-Kasper TI Consequences of twenty-first-century policy for multi-millennial climate and sea-level change SO NATURE CLIMATE CHANGE LA English DT Article ID ATMOSPHERIC CARBON-DIOXIDE; ICE-SHEET; LAST DEGLACIATION; CUMULATIVE CARBON; WEST ANTARCTICA; MASS-BALANCE; PINE ISLAND; CO2; TEMPERATURE; EMISSIONS AB Most of the policy debate surrounding the actions needed to mitigate and adapt to anthropogenic climate change has been framed by observations of the past 150 years as well as climate and sea-level projections for the twenty-first century. The focus on this 250-year window, however, obscures some of the most profound problems associated with climate change. Here, we argue that the twentieth and twenty-first centuries, a period during which the overwhelming majority of human-caused carbon emissions are likely to occur, need to be placed into a long-term context that includes the past 20 millennia, when the last Ice Age ended and human civilization developed, and the next ten millennia, over which time the projected impacts of anthropogenic climate change will grow and persist. This long-term perspective illustrates that policy decisions made in the next few years to decades will have profound impacts on global climate, ecosystems and human societies - not just for this century, but for the next ten millennia and beyond. C1 [Clark, Peter U.; Mix, Alan C.] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Shakun, Jeremy D.] Boston Coll, Dept Earth & Environm Sci, Chestnut Hill, MA 02467 USA. [Marcott, Shaun A.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Eby, Michael] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC V8W 3P6, Canada. [Eby, Michael] Simon Fraser Univ, Dept Geog, Burnaby, BC V5A 1S6, Canada. [Kulp, Scott; Strauss, Benjamin H.] Climate Cent, Princeton, NJ 08542 USA. [Levermann, Anders; Winkelmann, Ricarda] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany. [Levermann, Anders] Columbia Univ, Lamont Doherty Earth Observ, New York, NY 10964 USA. [Levermann, Anders] Univ Potsdam, Inst Phys, D-14476 Potsdam, Germany. [Milne, Glenn A.] Univ Ottawa, Dept Earth & Environm Sci, Ottawa, ON K1N 6N5, Canada. [Pfister, Patrik L.; Stocker, Thomas F.; Plattner, Gian-Kasper] Univ Bern, Climate & Environm Phys, Sidlerstr 5, CH-3012 Bern, Switzerland. [Santer, Benjamin D.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94550 USA. [Schrag, Daniel P.] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. [Solomon, Susan] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Stocker, Thomas F.; Archer, David] Oeschger Ctr Climate Change Res, Zahringerstr 25, CH-3012 Bern, Switzerland. [Bard, Edouard] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. [Goldner, Aaron] Aix Marseille Univ, CEREGE, Coll France, CNRS IRD, Technopole Arbois,BP 80, F-13545 Aix En Provence 4, France. [Lambeck, Kurt] AAAS Sci & Technol, Washington, DC 20001 USA. [Lambeck, Kurt] Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia. [Lambeck, Kurt] Ecole Normale Super, CNRS, UMR 8538, Geol Lab, F-75231 Paris, France. [Pierrehumbert, Raymond T.] Univ Oxford, Dept Phys, Oxford OX1 3PU, England. RP Clark, PU (reprint author), Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvallis, OR 97331 USA. EM clarkp@onid.orst.edu RI Eby, Michael/H-5278-2013; Santer, Benjamin/F-9781-2011; Plattner, Gian-Kasper/A-5245-2016; Levermann, Anders/G-4666-2011; OI Plattner, Gian-Kasper/0000-0002-3765-0045; Levermann, Anders/0000-0003-4432-4704; Pierrehumbert, Raymond/0000-0002-5887-1197 FU US National Science Foundation (PALEOVAR) [AGS-0602395]; Natural Sciences and Engineering Research Council of Cananda (NSERC); Natural Sciences and Engineering Research Council of Canada; Canada Research Chairs Program; German Science Foundation (DFG) [GZ: LE 1448/6-1]; University of Wisconsin-Madison Graduate School; Kung Carl XVI Gustaf 50-Arsfond; US Department of Energy [DE-AC52-07NA27344]; Swiss National Science Foundation FX P.U.C. and A.C.M. acknowledge support from the US National Science Foundation (Project PALEOVAR; AGS-0602395). M.E. and A.J.W. are grateful for ongoing support from the Natural Sciences and Engineering Research Council of Cananda (NSERC) through its Discovery Grant programme. G.A.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada and the Canada Research Chairs Program. A.L. acknowledges support from the German Science Foundation (DFG) project GZ: LE 1448/6-1. S.A.M. acknowledges support from the University of Wisconsin-Madison Graduate School. R.T.P. acknowledges support from the Kung Carl XVI Gustaf 50-Arsfond. B.D.S. was supported by the US Department of Energy under contract DE-AC52-07NA27344. T.F.S. and P.L.P. acknowledge support from the Swiss National Science Foundation. NR 86 TC 17 Z9 17 U1 42 U2 77 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD APR PY 2016 VL 6 IS 4 BP 360 EP 369 DI 10.1038/NCLIMATE2923 PG 10 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DH8QI UT WOS:000373060000011 ER PT J AU Gleckler, PJ Durack, PJ Stouffer, RJ Johnson, GC Forest, CE AF Gleckler, Peter J. Durack, Paul J. Stouffer, Ronald J. Johnson, Gregory C. Forest, Chris E. TI Industrial-era global ocean heat uptake doubles in recent decades SO NATURE CLIMATE CHANGE LA English DT Article ID SEA-LEVEL RISE; TEMPERATURE; ABYSSAL AB Formal detection and attribution studies have used observations and climate models to identify an anthropogenic warming signature in the upper (0-700 m) ocean(1-4). Recently, as a result of the so-called surface warming hiatus, there has been considerable interest in global ocean heat content (OHC) changes in the deeper ocean, including natural and anthropogenically forced changes identified in observational(5-7), modelling(8,9) and data re-analysis(10,11) studies. Here, we examine OHC changes in the context of the Earth's global energy budget since early in the industrial era (circa 1865-2015) for a range of depths. We rely on OHC change estimates from a diverse collection of measurement systems including data from the nineteenth-century Challenger expedition(12), a multi-decadal record of ship-based in situ mostly upper-ocean measurements, the more recent near-global Argo floats profiling to intermediate (2,000 m) depths(13), and full-depth repeated transoceanic sections(5). We show that the multi-model mean constructed from the current generation of historically forced climate models is consistent with the OHC changes from this diverse collection of observational systems. Our model-based analysis suggests that nearly half of the industrial-era increases in global OHC have occurred in recent decades, with over a third of the accumulated heat occurring below 700m and steadily rising. C1 [Gleckler, Peter J.; Durack, Paul J.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA. [Stouffer, Ronald J.] Princeton Univ, Geophys Fluid Dynam Lab, Forrestal Campus,201 Forrestal Rd, Princeton, NJ 08540 USA. [Johnson, Gregory C.] NOAA, Pacific Marine Environm Lab, 7600 Sand Point Way NE, Seattle, WA 98115 USA. [Forest, Chris E.] Penn State Univ, Dept Meteorol, State Coll, PA 16802 USA. [Forest, Chris E.] Penn State Univ, Dept Geosci, State Coll, PA 16802 USA. [Forest, Chris E.] Penn State Univ, Earth & Environm Syst Inst, State Coll, PA 16802 USA. RP Gleckler, PJ (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, 7000 East Ave, Livermore, CA 94550 USA. EM gleckler1@llnl.gov RI Johnson, Gregory/I-6559-2012; Forest, Chris/M-1993-2014; Durack, Paul/A-8758-2010 OI Johnson, Gregory/0000-0002-8023-4020; Forest, Chris/0000-0002-2643-0186; Durack, Paul/0000-0003-2835-1438 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-SC0004956, DEFG02-94ER61937]; National Science Foundation through the Network for Sustainable Climate Risk Management (SCRiM) under NSF [GEO-1240507]; NOAA; NOAA Ocean Climate Observations Program; [DE-AC52-07NA27344] FX The work of P.J.G. and P.J.D., from Lawrence Livermore National Laboratory, is a contribution to the US Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under contract DE-AC52-07NA27344. C.E.F. was partially supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, grants DE-SC0004956 (as a member of the International Detection and Attribution Working Group (IDAG)) and DEFG02-94ER61937 and by the National Science Foundation through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507. G.C.J. is supported by NOAA Research and the NOAA Ocean Climate Observations Program. We thank K. Taylor, B. Santer and J. Gregory for their helpful suggestions concerning our analysis. We acknowledge the sources of observed data used in this study: C. M. Domingues, M. Ishii and M. Kimoto, S. Levitus and T. Boyer, S. Purkey and G. Johnson, D. Roemmich and J. Gilson, S. Hosoda, T. Ohira and T. Nakamura and the International Pacific Research Center. We thank the climate modelling groups (listed in Supplementary Table 1) for producing and making available their model output. NR 37 TC 8 Z9 9 U1 11 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X EI 1758-6798 J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD APR PY 2016 VL 6 IS 4 BP 394 EP + DI 10.1038/NCLIMATE2915 PG 6 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DH8QI UT WOS:000373060000017 ER PT J AU Bonilla, X Parmentier, L King, B Bezrukov, F Kaya, G Zoete, V Seplyarskiy, VB Sharpe, HJ McKee, T Letourneau, A Ribaux, PG Popadin, K Basset-Seguin, N Ben Chaabene, R Santoni, FA Andrianova, MA Guipponi, M Garieri, M Verdan, C Grosdemange, K Sumara, O Eilers, M Aifantis, I Michielin, O de Sauvage, FJ Antonarakis, SE Nikolaev, SI AF Bonilla, Ximena Parmentier, Laurent King, Bryan Bezrukov, Fedor Kaya, Gurkan Zoete, Vincent Seplyarskiy, Vladimir B. Sharpe, Hayley J. McKee, Thomas Letourneau, Audrey Ribaux, Pascale G. Popadin, Konstantin Basset-Seguin, Nicole Ben Chaabene, Rouaa Santoni, Federico A. Andrianova, Maria A. Guipponi, Michel Garieri, Marco Verdan, Carole Grosdemange, Kerstin Sumara, Olga Eilers, Martin Aifantis, Iannis Michielin, Olivier de Sauvage, Frederic J. Antonarakis, Stylianos E. Nikolaev, Sergey I. TI Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma SO NATURE GENETICS LA English DT Article ID HEDGEHOG SIGNALING PATHWAY; KINETOCHORE GENE KNSTRN; C-MYC; TUMOR-SUPPRESSOR; MUTATIONAL LANDSCAPE; UBIQUITIN LIGASE; POINT MUTATIONS; LIVER-CANCER; WILMS-TUMOR; GROWTH AB Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 x 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis. C1 [Bonilla, Ximena; Letourneau, Audrey; Ribaux, Pascale G.; Popadin, Konstantin; Ben Chaabene, Rouaa; Santoni, Federico A.; Garieri, Marco; Antonarakis, Stylianos E.; Nikolaev, Sergey I.] Univ Geneva, Sch Med, Dept Genet Med & Dev, CH-1211 Geneva, Switzerland. [Parmentier, Laurent] Hosp Valais, Dept Dermatol, Sierre, Switzerland. [King, Bryan; Aifantis, Iannis] NYU, Sch Med, Dept Pathol, New York, NY USA. [Bezrukov, Fedor] Univ Connecticut, Dept Phys, Storrs, CT USA. [Bezrukov, Fedor] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kaya, Gurkan; Grosdemange, Kerstin] Univ Hosp Geneva, Dept Dermatol, Geneva, Switzerland. [Zoete, Vincent; Michielin, Olivier] Swiss Inst Bioinformat, Lausanne, Switzerland. [Seplyarskiy, Vladimir B.; Andrianova, Maria A.] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia. [Seplyarskiy, Vladimir B.; Andrianova, Maria A.] Pirogov Russian Natl Res Med Univ, Moscow, Russia. [Seplyarskiy, Vladimir B.; Andrianova, Maria A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Sharpe, Hayley J.; de Sauvage, Frederic J.] Genentech Inc, Dept Mol Oncol, San Francisco, CA 94080 USA. [McKee, Thomas; Verdan, Carole] Univ Hosp Geneva, Serv Clin Pathol, Geneva, Switzerland. [Basset-Seguin, Nicole] Univ Paris 07, St Louis Hosp, Dept Dermatol, Paris, France. [Santoni, Federico A.; Guipponi, Michel; Antonarakis, Stylianos E.; Nikolaev, Sergey I.] Univ Hosp Geneva, Serv Genet Med, Geneva, Switzerland. [Sumara, Olga; Eilers, Martin] Univ Wurzburg, Dept Biochem & Mol Biol, D-97070 Wurzburg, Germany. [Eilers, Martin] Univ Wurzburg, Comprehens Canc Ctr Mainfranken, D-97070 Wurzburg, Germany. [Michielin, Olivier] Univ Lausanne, Dept Oncol, Lausanne, Switzerland. [Michielin, Olivier] CHU Vaudois, CH-1011 Lausanne, Switzerland. [Antonarakis, Stylianos E.] Inst Genet & Genom Geneva iGE3, Geneva, Switzerland. RP Antonarakis, SE; Nikolaev, SI (reprint author), Univ Geneva, Sch Med, Dept Genet Med & Dev, CH-1211 Geneva, Switzerland.; Antonarakis, SE; Nikolaev, SI (reprint author), Univ Hosp Geneva, Serv Genet Med, Geneva, Switzerland.; Antonarakis, SE (reprint author), Inst Genet & Genom Geneva iGE3, Geneva, Switzerland. EM stylianos.antonarakis@unige.ch; sergey.nikolaev@unige.ch OI Bezrukov, Fedor/0000-0003-3601-1003; Eilers, Martin/0000-0002-0376-6533 FU Swiss Cancer League [LSCC 2939-02-2012]; Dinu Lipatti; Novartis [14B065] FX We thank Z. Modrusan (next-generation sequencing), R. Piskol (computational biology), G. Pau (computational biology), F. Peale (pathology) and S. Jillo (collaboration management) from Genentech, Inc. This work was supported by Swiss Cancer League (LSCC 2939-02-2012), Dinu Lipatti 2014 and Novartis (14B065) research grants to S.I.N. NR 87 TC 18 Z9 18 U1 3 U2 5 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1061-4036 EI 1546-1718 J9 NAT GENET JI Nature Genet. PD APR PY 2016 VL 48 IS 4 BP 398 EP + DI 10.1038/ng.3525 PG 11 WC Genetics & Heredity SC Genetics & Heredity GA DH6NZ UT WOS:000372908800011 PM 26950094 ER PT J AU Guo, PJ Schaller, RD Ketterson, JB Chang, RPH AF Guo, Peijun Schaller, Richard D. Ketterson, John B. Chang, Robert P. H. TI Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude SO NATURE PHOTONICS LA English DT Article ID MIDINFRARED PLASMONICS; BAND-STRUCTURE; DYNAMICS; NANOSTRUCTURES; METAMATERIALS; NANOCRYSTALS; RESONANCES; ELECTRONS; FREQUENCY; LASERS AB All-optical control of plasmons can enable optical switches with high speeds, small footprints and high on/off ratios. Here we demonstrate ultrafast plasmon modulation in the near-infrared (NIR) to mid-infrared (MIR) range by intraband pumping of indium tin oxide nanorod arrays (ITO-NRAs). We observe redshifts of localized surface plasmon resonances arising from a change of the plasma frequency of ITO, which is governed by the conduction band non-parabolicity. We generalize the plasma frequency for non-parabolic bands, quantitatively model the fluence-dependent plasma frequency shifts, and show that different from noble metals, the lower electron density in ITO enables a remarkable change of electron distributions, yielding a significant plasma frequency modulation and concomitant large transient bleaches and induced absorptions, which can be tuned spectrally by tailoring the ITO-NRA geometry. The low electron heat capacity explains the sub-picosecond kinetics that is much faster than noble metals. Our work demonstrates a new scheme to control infrared plasmons for optical switching, telecommunications and sensing. C1 [Guo, Peijun; Chang, Robert P. H.] Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. [Schaller, Richard D.] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA. [Schaller, Richard D.] Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. [Ketterson, John B.] Northwestern Univ, Dept Phys & Astron, 2145 Sheridan Rd, Evanston, IL 60208 USA. RP Chang, RPH (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM r-chang@northwestern.edu RI Chang, R.P.H/B-7505-2009; Guo, Peijun/I-1964-2013 OI Guo, Peijun/0000-0001-5732-7061 FU MRSEC program (NSF) at Northwestern University [DMR-1121262]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; MRSEC program (NSF) at the Materials Research Center [DMR-1121262]; International Institute for Nanotechnology (IIN); State of Illinois, through the IIN; State of Illinois; Northwestern University FX The work was funded by the MRSEC program (NSF DMR-1121262) at Northwestern University. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work made use of the EPIC facility (NUANCE Center-Northwestern University), which has received support from the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); and the State of Illinois, through the IIN. The work also used the Northwestern University Micro/Nano Fabrication Facility (NUFAB), which is supported by the State of Illinois and Northwestern University. NR 53 TC 15 Z9 15 U1 39 U2 89 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD APR PY 2016 VL 10 IS 4 BP 267 EP + DI 10.1038/NPHOTON.2016.14 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA DH7MU UT WOS:000372978900018 ER PT J AU Jones, AM Yu, HY Schaibley, JR Yan, JQ Mandrus, DG Taniguchi, T Watanabe, K Dery, H Yao, W Xu, XD AF Jones, Aaron M. Yu, Hongyi Schaibley, John R. Yan, Jiaqiang Mandrus, David G. Taniguchi, Takashi Watanabe, Kenji Dery, Hanan Yao, Wang Xu, Xiaodong TI Excitonic luminescence upconversion in a two-dimensional semiconductor SO NATURE PHYSICS LA English DT Article ID RESONANT RAMAN-SCATTERING; TRANSITION-METAL DICHALCOGENIDES; VALLEY POLARIZATION; MONOLAYER WSE2; MOS2; GENERATION; HELICITY; WS2 AB Photon upconversion is an elementary light-matter interaction process in which an absorbed photon is re-emitted at higher frequency after extracting energy from the medium. This phenomenon lies at the heart of optical refrigeration in solids(1), where upconversion relies on anti-Stokes processes enabled either by rare-earth impurities(2) or exciton-phonon coupling(3). Here, we demonstrate a luminescence upconversion process from a negatively charged exciton to a neutral exciton resonance in monolayer WSe2, producing spontaneous anti-Stokes emission with an energy gain of 30 meV. Polarization-resolved measurements find this process to be valley selective, unique to monolayer semiconductors(4). Since the charged exciton binding energy(5) closely matches the 31 meV A(1)' optical phonon(6-9), we ascribe the spontaneous excitonic anti-Stokes to doubly resonant Raman scattering, where the incident and outgoing photons are in resonance with the charged and neutral excitons, respectively. In addition, we resolve a charged exciton doublet with a 7 meV splitting, probably induced by exchange interactions, and show that anti-Stokes scattering is efficient only when exciting the doublet peak resonant with the phonon, further confirming the excitonic doubly resonant picture. C1 [Jones, Aaron M.; Schaibley, John R.; Xu, Xiaodong] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Yan, Jiaqiang; Mandrus, David G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yan, Jiaqiang; Mandrus, David G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Mandrus, David G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Taniguchi, Takashi; Watanabe, Kenji] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan. [Dery, Hanan] Univ Rochester, Dept Phys & Astron, Dept Elect & Comp Engn, Rochester, NY 14627 USA. [Xu, Xiaodong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Xu, XD (reprint author), Univ Washington, Dept Phys, Seattle, WA 98195 USA.; Yao, W (reprint author), Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China.; Yao, W (reprint author), Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China.; Xu, XD (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM wangyao@hku.hk; xuxd@uw.edu RI Yao, Wang/C-1353-2008; TANIGUCHI, Takashi/H-2718-2011; OI Yao, Wang/0000-0003-2883-4528; Jones, Aaron/0000-0002-8326-1294; Watanabe, Kenji/0000-0003-3701-8119 FU Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-SC0008145, SC0012509]; Croucher Foundation; RGC; UGC of Hong Kong [HKU17305914P, HKU9/CRF/13G, AoE/P-04/08]; US DoE, BES, Materials Sciences and Engineering Division; Department of Energy [DE-SC0014349]; National Science Foundation [DMR-1503601]; State of Washington; Boeing Distinguished Professorship in Physics; NSF FX We thank R. Merlin and D. Cobden for helpful discussions. This work is mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0008145 and SC0012509). H.Y. and W.Y. are supported by the Croucher Foundation (Croucher Innovation Award), and the RGC and UGC of Hong Kong (HKU17305914P, HKU9/CRF/13G, AoE/P-04/08). J.Y. and D.G.M. are supported by US DoE, BES, Materials Sciences and Engineering Division. H.D. is supported by Department of Energy under Contract No. DE-SC0014349 and National Science Foundation under Contract No. DMR-1503601. X.X. acknowledges a Cottrell Scholar Award, support from the State of Washington-funded Clean Energy Institute, and support from the Boeing Distinguished Professorship in Physics. Device fabrication was performed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility. NR 33 TC 16 Z9 16 U1 34 U2 122 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD APR PY 2016 VL 12 IS 4 BP 323 EP U157 DI 10.1038/NPHYS3604 PG 6 WC Physics, Multidisciplinary SC Physics GA DI1AB UT WOS:000373227300015 ER PT J AU Hassan, U Watkins, NN Reddy, B Damhorst, G Bashir, R AF Hassan, Umer Watkins, Nicholas N. Reddy, Bobby, Jr. Damhorst, Gregory Bashir, Rashid TI Microfluidic differential immunocapture biochip for specific leukocyte counting SO NATURE PROTOCOLS LA English DT Article ID RESOURCE-LIMITED SETTINGS; IMPEDANCE SPECTROSCOPY; HIV/AIDS DIAGNOSTICS; CELL; NANOTECHNOLOGY; CYTOMETER; CD4; INFECTION AB Enumerating specific cell types from whole blood can be very useful for research and diagnostic purposes-e.g., for counting of CD4 and CD8 T cells in HIV/AIDS diagnostics. We have developed a biosensor based on a differential immunocapture technology to enumerate specific cells in 30 min using 10 mu l of blood. This paper provides a comprehensive stepwise protocol to replicate our biosensor for CD4 and CD8 cell counts. The biochip can also be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. Capture of other specific cells requires immobilization of their corresponding antibodies within the capture chamber. Therefore, this protocol is useful for research into areas surrounding immunocapture-based biosensor development. The biosensor production requires 24 h, a one-time cell capture optimization takes 6-9 h, and the final cell counting experiment in a laboratory environment requires 30 min to complete. C1 [Hassan, Umer; Watkins, Nicholas N.; Bashir, Rashid] Univ Illinois, William L Everitt Lab, Dept Elect & Comp Engn, Urbana, IL USA. [Hassan, Umer; Reddy, Bobby, Jr.; Damhorst, Gregory; Bashir, Rashid] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL USA. [Hassan, Umer; Reddy, Bobby, Jr.; Damhorst, Gregory; Bashir, Rashid] Univ Illinois, Dept Bioengn, Urbana, IL USA. [Hassan, Umer; Reddy, Bobby, Jr.; Damhorst, Gregory; Bashir, Rashid] Carle Fdn Hosp, Biomed Res Ctr, Urbana, IL USA. [Watkins, Nicholas N.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Bashir, R (reprint author), Univ Illinois, William L Everitt Lab, Dept Elect & Comp Engn, Urbana, IL USA.; Bashir, R (reprint author), Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL USA.; Bashir, R (reprint author), Univ Illinois, Dept Bioengn, Urbana, IL USA.; Bashir, R (reprint author), Carle Fdn Hosp, Biomed Res Ctr, Urbana, IL USA. EM rbashir@illinois.edu FU Center for Integration of Medicine and Innovative Technology (CIMIT)'s Point-of-Care Technology Center in Primary Care (POCTRN) Grant; University of Illinois at Urbana-Champaign FX The authors thank A. Vaid at Champaign-Urbana Public Health District (CUPHD) for providing the HIV-infected blood samples; and C. Edwards, L. Orlandic and C. Yang for PDMS device fabrication. The authors acknowledge the support of Center for Integration of Medicine and Innovative Technology (CIMIT)'s Point-of-Care Technology Center in Primary Care (POCTRN) Grant and funding from University of Illinois at Urbana-Champaign. NR 32 TC 2 Z9 2 U1 8 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1754-2189 EI 1750-2799 J9 NAT PROTOC JI Nat. Protoc. PD APR PY 2016 VL 11 IS 4 BP 714 EP 726 DI 10.1038/nprot.2016.038 PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA DH8QK UT WOS:000373060200006 PM 26963632 ER PT J AU Moyes, AB Kueppers, LM Pett-Ridge, J Carper, DL Vandehey, N O'Neil, J Frank, AC AF Moyes, Andrew B. Kueppers, Lara M. Pett-Ridge, Jennifer Carper, Dana L. Vandehey, Nick O'Neil, James Frank, A. Carolin TI Evidence for foliar endophytic nitrogen fixation in a widely distributed subalpine conifer SO NEW PHYTOLOGIST LA English DT Article DE acetic acid bacteria; acetylene reduction; conifer; limber pine; nitrogen fixation; N-13 radioisotope; Pinus flexilis; subalpine ID ZEA-MAYS L; PAENIBACILLUS-POLYMYXA; GROWTH PROMOTION; LODGEPOLE PINE; N-2 FIXATION; BACTERIAL ENDOPHYTES; DOUGLAS FIR; N2 FIXATION; SP-NOV; PLANTS AB Coniferous forest nitrogen (N) budgets indicate unknown sources of N. A consistent association between limber pine (Pinus flexilis) and potential N-2-fixing acetic acid bacteria (AAB) indicates that native foliar endophytes may supply subalpine forests with N. To assess whether the P.flexilis-AAB association is consistent across years, we re-sampled P.flexilis twigs at Niwot Ridge, CO and characterized needle endophyte communities via 16S rRNA Illumina sequencing. To investigate whether endophytes have access to foliar N-2, we incubated twigs with N-13(2)-enriched air and imaged radioisotope distribution in needles, the first experiment of its kind using N-13. We used the acetylene reduction assay to test for nitrogenase activity within P.flexilis twigs four times from June to September. We found evidence for N-2 fixation in P.flexilis foliage. N-2 diffused readily into needles and nitrogenase activity was positive across sampling dates. We estimate that this association could provide 6.8-13.6gNm(-2)d(-1) to P.flexilis stands. AAB dominated the P.flexilis needle endophyte community. We propose that foliar endophytes represent a low-cost, evolutionarily stableN(2)-fixing strategy for long-lived conifers. This novel source of biological N-2 fixation has fundamental implications for understanding forest N budgets. See also the Commentary on this article by Wurzburger, 210: 374-376. C1 [Moyes, Andrew B.; Kueppers, Lara M.; Frank, A. Carolin] Univ Calif Merced, Sierra Nevada Res Inst, 5200 N Lake Rd, Merced, CA 95343 USA. [Moyes, Andrew B.; Kueppers, Lara M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. [Pett-Ridge, Jennifer] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. [Carper, Dana L.; Frank, A. Carolin] Univ Calif Merced, Sch Nat Sci, Life & Environm Sci, 5200 N Lake Rd, Merced, CA 95343 USA. [Vandehey, Nick; O'Neil, James] Mol Biophys & Integrated Bioimaging Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. RP Frank, AC (reprint author), Univ Calif Merced, Sierra Nevada Res Inst, 5200 N Lake Rd, Merced, CA 95343 USA.; Frank, AC (reprint author), Univ Calif Merced, Sch Nat Sci, Life & Environm Sci, 5200 N Lake Rd, Merced, CA 95343 USA. EM cfrank3@ucmerced.edu RI Kueppers, Lara/M-8323-2013; Moyes, Andrew/J-3339-2016 OI Kueppers, Lara/0000-0002-8134-3579; Moyes, Andrew/0000-0002-9137-8118 FU NSF [IOS-1321807, DEB-1442348]; Laboratory Directed Research and Development program at Lawrence Berkeley National Laboratory; Radiochemistry and Instrumentation Scientific focus Area - US Department of Energy, Office of Science, Office of Biological and Environmental Research; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; US Department of Energy by LLNL [DE-AC52-07NA27344] FX The University of Colorado Mountain Research Station provided logistical support. Funding was provided by NSF awards IOS-1321807 and DEB-1442348 to A.C.F., L.M.K. and J.P.R. This material is based in part on work supported by the Laboratory Directed Research and Development program at Lawrence Berkeley National Laboratory and the Radiochemistry and Instrumentation Scientific focus Area as funded by the US Department of Energy, Office of Science, Office of Biological and Environmental Research and performed by employees of Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231 with the US Department of Energy. J.P-R. contributed under the auspices of the US Department of Energy by LLNL under Contract DE-AC52-07NA27344. Field and lab assistance was provided by Andrea Campanella, Cristina Castanha, Tyner Pesch, Rick Thomas, Mustafa Janabi, and Alyssa Bruno. We thank four anonymous reviewers for helpful comments. NR 103 TC 4 Z9 4 U1 15 U2 32 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X EI 1469-8137 J9 NEW PHYTOL JI New Phytol. PD APR PY 2016 VL 210 IS 2 BP 657 EP 668 DI 10.1111/nph.13850 PG 12 WC Plant Sciences SC Plant Sciences GA DI3EH UT WOS:000373380700027 PM 27000956 ER PT J AU Petrov, V Kendrick, BK Walter, D Manera, A Secker, J AF Petrov, Victor Kendrick, Brian K. Walter, Daniel Manera, Annalisa Secker, Jeffrey TI Prediction of CRUD deposition on PWR fuel using a state-of-the-art CFD-based multi-physics computational tool SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article; Proceedings Paper CT 5th Workshop on the Computational Fluid Dynamics for Nuclear Reactor Safety (CFD4NR) CY SEP 09-11, 2014 CL Swiss Fed Inst Technol Zurich, Zurich, SWITZERLAND HO Swiss Fed Inst Technol Zurich AB In the present paper we report about the first attempt to demonstrate and assess the ability of state-ofthe-art high-fidelity computational tools to reproduce the complex patterns of CRUD deposits found on the surface of operating Pressurized Water Reactors (PWRs) fuel rods. A fuel assembly of the Seabrook Unit 1 PWR was selected as the test problem. During Seabrook Cycle 5, CRUD induced power shift (CIPS) and CRUD induced localized corrosion (CILC) failures were observed. Measurements of the clad oxide thickness on both failed and non-failed rods are available, together with visual observations and the results from CRUD scrapes of peripheral rods. Blind simulations were performed using the Computational Fluid Dynamics (CFD) code STAR-CCM+ coupled to an advanced chemistry code, MAMBA, developed at Los Alamos National Laboratory. The blind simulations were then compared to plant data, which were released after completion of the simulations. Published by Elsevier B.V. C1 [Petrov, Victor; Walter, Daniel; Manera, Annalisa] Univ Michigan, Dept Nucl Engn & Radiol Sci, 2355 Bonisteel Boulv, Ann Arbor, MI 48109 USA. [Kendrick, Brian K.] Los Alamos Natl Lab, Div Theoret, T-1,MS B221, Los Alamos, NM 87545 USA. [Secker, Jeffrey] Westinghouse Elect Co, Nucl Fuel Div, 1000 Westinghouse Dr, Cranberry Township, PA 16066 USA. RP Manera, A (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, 2355 Bonisteel Boulv, Ann Arbor, MI 48109 USA. EM manera@umich.edu NR 9 TC 0 Z9 0 U1 6 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 EI 1872-759X J9 NUCL ENG DES JI Nucl. Eng. Des. PD APR 1 PY 2016 VL 299 BP 95 EP 104 DI 10.1016/j.nucengdes.2015.10.010 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DH5OG UT WOS:000372838800010 ER PT J AU Lutz, MFM Lange, JS Pennington, M Bettoni, D Brambilla, N Crede, V Eidelman, S Gillitzer, A Gradl, W Lang, CB Metag, V Nakano, T Nieves, J Neubert, S Oka, M Olsen, SL Pappagallo, M Paul, S Pelizaus, M Pilloni, A Prencipe, E Ritman, J Ryan, S Thoma, U Uwer, U Weise, W AF Lutz, Matthias F. M. Lange, Jens Soeren Pennington, Michael Bettoni, Diego Brambilla, Nora Crede, Volker Eidelman, Simon Gillitzer, Albrecht Gradl, Wolfgang Lang, Christian B. Metag, Volker Nakano, Takashi Nieves, Juan Neubert, Sebastian Oka, Makoto Olsen, Stephen L. Pappagallo, Marco Paul, Stephan Pelizaeus, Marc Pilloni, Alessandro Prencipe, Elisabetta Ritman, Jim Ryan, Sinead Thoma, Ulrike Uwer, Ulrich Weise, Wolfram TI Resonances in QCD SO NUCLEAR PHYSICS A LA English DT Review DE Mini review; Resonances; Hadrons; QCD ID BARYON RESONANCES; CHIRAL-SYMMETRY; HEAVY QUARKONIUM; MESON RESONANCES; DECAYS AB We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14,2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: What is needed to understand the physics of resonances in QCD? Where does QCD lead us to expect resonances with exotic quantum numbers? What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here. (C) 2016 Elsevier B.V. All rights reserved. C1 [Lutz, Matthias F. M.] GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany. [Lutz, Matthias F. M.] Tech Univ Darmstadt, Petersenstr 30, D-64289 Darmstadt, Germany. [Lange, Jens Soeren; Pennington, Michael; Metag, Volker] Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany. [Pennington, Michael; Pilloni, Alessandro] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Bettoni, Diego] Ist Nazl Fis Nucl, Sez Ferrara, I-44122 Ferrara, Italy. [Brambilla, Nora; Paul, Stephan; Weise, Wolfram] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany. [Crede, Volker] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA. [Eidelman, Simon] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Eidelman, Simon] RAS, SB, Budker Istitute Nucl Phys, Novosibirsk 630090, Russia. [Gradl, Wolfgang] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55128 Mainz, Germany. [Lang, Christian B.] Graz Univ, Inst Phys, A-8010 Graz, Austria. [Nakano, Takashi] Osaka Univ, Nucl Phys Res Ctr, Osaka 5670047, Japan. [Nieves, Juan] Univ Valencia, CSIC, Ctr Mixto, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain. [Neubert, Sebastian; Uwer, Ulrich] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Oka, Makoto] Tokyo Inst Technol, Dept Phys, Tokyo 1528551, Japan. [Olsen, Stephen L.] Inst for Basic Sci Korea, Ctr Underground Phys, Daejeon 305811, South Korea. [Pappagallo, Marco] Univ Glasgow, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. [Pelizaeus, Marc] Ruhr Univ Bochum, Inst Expt Phys 1, D-44801 Bochum, Germany. [Pilloni, Alessandro] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Gillitzer, Albrecht; Prencipe, Elisabetta; Ritman, Jim] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Ryan, Sinead] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland. [Thoma, Ulrike] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany. [Weise, Wolfram] ECT, Villa Tambosi, I-38123 Villazzano, Trento, Italy. RP Lutz, MFM (reprint author), GSI Helmholtzzentrum Schwerionenforsch GmbH, D-64291 Darmstadt, Germany.; Lutz, MFM (reprint author), Tech Univ Darmstadt, Petersenstr 30, D-64289 Darmstadt, Germany.; Lange, JS (reprint author), Univ Giessen, Inst Phys 2, D-35392 Giessen, Germany.; Pennington, M (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM m.lutz@gsi.de; Soeren.Lange@exp2.physik.uni-giessen.de; michaelp@jlab.org RI Nieves, Juan/K-2115-2014; Paul, Stephan/F-7596-2015; Paul, Stephan/K-9237-2016; Pappagallo, Marco/R-3305-2016; OI Nieves, Juan/0000-0002-2518-4606; Paul, Stephan/0000-0002-8813-0437; Paul, Stephan/0000-0002-8813-0437; Pappagallo, Marco/0000-0001-7601-5602; Pilloni, Alessandro/0000-0003-4257-0928 FU ExtreMe Matter Institute EMMI FX We thank the ExtreMe Matter Institute EMMI for significant financial support that made this event possible. NR 58 TC 2 Z9 2 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD APR PY 2016 VL 948 BP 93 EP 105 DI 10.1016/j.nuclphysa.2016.01.070 PG 13 WC Physics, Nuclear SC Physics GA DH7AK UT WOS:000372943100007 ER PT J AU Boehm, M Alahuhta, M Mulder, DW Peden, EA Long, H Brunecky, R Lunin, VV King, PW Ghirardi, ML Dubini, A AF Boehm, Marko Alahuhta, Markus Mulder, David W. Peden, Erin A. Long, Hai Brunecky, Roman Lunin, Vladimir V. King, Paul W. Ghirardi, Maria L. Dubini, Alexandra TI Crystal structure and biochemical characterization of Chlamydomonas FDX2 reveal two residues that, when mutated, partially confer FDX2 the redox potential and catalytic properties of FDX1 SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Ferredoxin; Chlamydomonas; Structure; Interaction; NADPH; Hydrogen photo-production ID FERREDOXIN NADP+ REDUCTASE; SITE-DIRECTED MUTAGENESIS; PLANT-TYPE FERREDOXINS; AMINO-ACID SEQUENCE; ELECTRON-TRANSFER; ANABAENA FERREDOXIN; PHOTOSYSTEM-I; REINHARDTII FERREDOXIN; GREEN-ALGA; COMPLEX AB The green alga Chlamydomonas reinhardtii contains six plastidic [2Fe2S]-cluster ferredoxins (FDXs), with FDX1 as the predominant isoform under photoautotrophic growth. FDX2 is highly similar to FDX1 and has been shown to interact with specific enzymes (such as nitrite reductase), as well as to share interactors with FDX1, such as the hydrogenases (HYDA), ferredoxin:NAD(P) reductase I (FNR1), and pyruvate:ferredoxin oxidoreductase (PFR1), albeit performing at low catalytic rates. Here we report the FDX2 crystal structure solved at 1.18 resolution. Based on differences between the Chlorella fusca FDX1 and C. reinhardtii FDX2 structures, we generated and purified point-mutated versions of the FDX2 protein and assayed them in vitro for their ability to catalyze hydrogen and NADPH photo-production. The data show that structural differences at two amino acid positions contribute to functional differences between FDX1 and FDX2, suggesting that FDX2 might have evolved from FDX1 toward a different physiological role in the cell. Moreover, we demonstrate that the mutations affect both the midpoint potentials of the FDX and kinetics of the FNR reaction, possibly due to altered binding between FDX and FNR. An effect on H-2 photo-production rates was also observed, although the kinetics of the reaction were not further characterized. C1 [Boehm, Marko; Alahuhta, Markus; Mulder, David W.; Peden, Erin A.; Brunecky, Roman; Lunin, Vladimir V.; King, Paul W.; Ghirardi, Maria L.; Dubini, Alexandra] Natl Renewable Energy Lab, Biosci Ctr, Mail Stop 3313,15013 Denver West Pkwy, Golden, CO 80401 USA. [Long, Hai] Natl Renewable Energy Lab, Computat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. RP Dubini, A (reprint author), Natl Renewable Energy Lab, Biosci Ctr, Mail Stop 3313,15013 Denver West Pkwy, Golden, CO 80401 USA. EM alexdubini@yahoo.com RI Long, Hai/C-5838-2015; King, Paul/D-9979-2011 OI King, Paul/0000-0001-5039-654X FU U. S. Department of Energy, Office of Biological and Environmental Research (BER); U. S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for EPR spectroscopy; Office of Energy Efficiency and Renewable Energy; Bioenergy Technology Office (BETO) FX We acknowledge Benton Wachter for his contributions during his SULI internship at the National Renewable Energy Laboratory and ReAnna Davis for handling media preparation and protein over-expression. We also recognize Shihui Yang for help with database searches and protein annotation, as well as Prof. Sabeeha Merchant (alpha CrFDX1 and alpha FCrDX2) and Prof. Peter Nixon (alpha CrHYDA) for generously providing us with antibodies. This research was supported by the U. S. Department of Energy, Office of Biological and Environmental Research (BER) (MLG, AD, MB, EAP); and by the U. S. Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences for EPR spectroscopy, CrHYDA1 expression and purification, and CrFDX: CrHYDA1 computational modeling (DWM, HL, and PK). The CD spectroscopy and crystallization studies were funded by the Office of Energy Efficiency and Renewable Energy, Bioenergy Technology Office (BETO; MA RB and VVL). NR 53 TC 0 Z9 0 U1 2 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD APR PY 2016 VL 128 IS 1 BP 45 EP 57 DI 10.1007/s11120-015-0198-6 PG 13 WC Plant Sciences SC Plant Sciences GA DG8GW UT WOS:000372322000005 PM 26526668 ER PT J AU Braun, JL Baker, CH Giri, A Elahi, M Artyushkova, K Beechem, TE Norris, PM Leseman, ZC Gaskins, JT Hopkins, PE AF Braun, Jeffrey L. Baker, Christopher H. Giri, Ashutosh Elahi, Mirza Artyushkova, Kateryna Beechem, Thomas E. Norris, Pamela M. Leseman, Zayd C. Gaskins, John T. Hopkins, Patrick E. TI Size effects on the thermal conductivity of amorphous silicon thin films SO PHYSICAL REVIEW B LA English DT Article ID TIME-DOMAIN THERMOREFLECTANCE; PICOSECOND LIGHT-PULSES; LOW-TEMPERATURES; HEAT; GENERATION; VIBRATIONS; SOLIDS AB We investigate thickness-limited size effects on the thermal conductivity of amorphous silicon thin films ranging from 3 to 1636 nm grown via sputter deposition. While exhibiting a constant value up to similar to 100 nm, the thermal conductivity increases with film thickness thereafter. The thickness dependence we demonstrate is ascribed to boundary scattering of long wavelength vibrations and an interplay between the energy transfer associated with propagating modes (propagons) and nonpropagating modes (diffusons). A crossover from propagon to diffuson modes is deduced to occur at a frequency of similar to 1.8 THz via simple analytical arguments. These results provide empirical evidence of size effects on the thermal conductivity of amorphous silicon and systematic experimental insight into the nature of vibrational thermal transport in amorphous solids. C1 [Braun, Jeffrey L.; Baker, Christopher H.; Giri, Ashutosh; Norris, Pamela M.; Gaskins, John T.; Hopkins, Patrick E.] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. [Elahi, Mirza] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Artyushkova, Kateryna] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Beechem, Thomas E.] Sandia Natl Labs, Albuquerque, NM 87123 USA. [Leseman, Zayd C.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Leseman, Zayd C.] Univ New Mexico, Mfg Training & Technol Ctr, Albuquerque, NM 87131 USA. RP Hopkins, PE (reprint author), Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA. EM phopkins@virginia.edu FU Office of Naval Research [149934-101-GG11900-31345]; National Science Foundation, Division of CMMI Award [1056077]; LDRD program at Sandia National Laboratories (SNL); U.S. DOE National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported, in part, by the Office of Naval Research (149934-101-GG11900-31345). M.E. and Z.C.L. were supported under an award from the National Science Foundation, Division of CMMI Award No.1056077. Finally, this work was supported by the LDRD program at Sandia National Laboratories (SNL). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 45 TC 7 Z9 7 U1 7 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 1 PY 2016 VL 93 IS 14 AR 140201 DI 10.1103/PhysRevB.93.140201 PG 5 WC Physics, Condensed Matter SC Physics GA DI0SS UT WOS:000373208000001 ER PT J AU Hassinger, E Gredat, G Valade, F de Cotret, SR Cyr-Choiniere, O Juneau-Fecteau, A Reid, JP Kim, H Tanatar, MA Prozorov, R Shen, B Wen, HH Doiron-Leyraud, N Taillefer, L AF Hassinger, E. Gredat, G. Valade, F. de Cotret, S. Rene Cyr-Choiniere, O. Juneau-Fecteau, A. Reid, J. -Ph. Kim, H. Tanatar, M. A. Prozorov, R. Shen, B. Wen, H. -H. Doiron-Leyraud, N. Taillefer, Louis TI Expansion of the tetragonal magnetic phase with pressure in the iron arsenide superconductor Ba1-xKxFe2As2 SO PHYSICAL REVIEW B LA English DT Article AB In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba1-xKxFe2As2 and Ba1-xNaxFe2As2, it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x = 0.24 to x = 0.28 for Ba1-xKxFe2As2. In a prior study, an unidentified phasewas discovered for x < 0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba1-xKxFe2As2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x = 0.24, thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba1-xKxFe2As2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. This reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material. C1 [Hassinger, E.; Gredat, G.; Valade, F.; de Cotret, S. Rene; Cyr-Choiniere, O.; Juneau-Fecteau, A.; Reid, J. -Ph.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada. [Hassinger, E.; Gredat, G.; Valade, F.; de Cotret, S. Rene; Cyr-Choiniere, O.; Juneau-Fecteau, A.; Reid, J. -Ph.; Doiron-Leyraud, N.; Taillefer, Louis] Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada. [Kim, H.; Tanatar, M. A.; Prozorov, R.] Ames Lab, Ames, IA 50011 USA. [Prozorov, R.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Shen, B.; Wen, H. -H.] Nanjing Univ, Ctr Superconducting Phys & Mat, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Shen, B.; Wen, H. -H.] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China. [Wen, H. -H.; Taillefer, Louis] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Hassinger, E; Taillefer, L (reprint author), Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada.; Hassinger, E; Taillefer, L (reprint author), Univ Sherbrooke, RQMP, Sherbrooke, PQ J1K 2R1, Canada.; Taillefer, L (reprint author), Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. EM elena.hassinger@usherbrooke.ca; louis.taillefer@usherbrooke.ca RI Shen, Bing/G-6514-2016; Hassinger, Elena/K-5306-2015 OI Hassinger, Elena/0000-0003-2911-5277 FU Canada Research Chair; Canadian Institute for Advanced Research; National Science and Engineering Research Council of Canada; Fonds de Recherche du Quebec-Nature et Technologies; Canada Foundation for Innovation; U.S. DOE [DE-AC02-07CH11358]; U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division; National Science Foundation of China; Ministry of Science and Technology of China [2011CBA00100] FX We thank A. V. Chubukov, R. M. Fernandes, S. A. Kivelson, C. Meingast, and J. Schmalian for fruitful discussions and J. Corbin for his assistance with the experiments. The work at Sherbrooke was supported by a Canada Research Chair, the Canadian Institute for Advanced Research, the National Science and Engineering Research Council of Canada, the Fonds de Recherche du Quebec-Nature et Technologies, and the Canada Foundation for Innovation. Work in Ames was supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358. The work in China was supported by the National Science Foundation of China and the Ministry of Science and Technology of China (No. 2011CBA00100). NR 28 TC 4 Z9 4 U1 4 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 1 PY 2016 VL 93 IS 14 AR 144401 DI 10.1103/PhysRevB.93.144401 PG 5 WC Physics, Condensed Matter SC Physics GA DI0SS UT WOS:000373208000004 ER PT J AU Varley, JB Janotti, A Van de Walle, CG AF Varley, J. B. Janotti, A. Van de Walle, C. G. TI Defects in AlN as candidates for solid-state qubits SO PHYSICAL REVIEW B LA English DT Article ID SPIN; GAN AB We investigate point defects and defect complexes in AlN for potential applicability as single-spin centers and solid-state qubits analogous to those observed in diamond and SiC. We find that isolated anion vacancies (VN) meet many of the criteria for an individually addressable quantum system, but their states are too close to the conduction-band edge. We therefore investigate how the properties can be tuned by complexing of the vacancy with substitutional impurities on neighboring lattice sites. Based on our comprehensive investigation, the transition-metal dopants Ti and Zr emerge as the best candidates: They favorably substitute on the Al site and form complexes with VN that possess the desired array of electronic and optical properties. Favorable charge and spin states, binding energies, and optical excitation energies are reported. Our results indicate that implantation of Ti or Zr into single-crystal AlN substrates can lead to the formation of individually addressable solid-state qubits in this material. C1 [Varley, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Varley, J. B.; Janotti, A.; Van de Walle, C. G.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Janotti, A.] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA. RP Varley, JB (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.; Varley, JB (reprint author), Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. FU U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF [DMR-143485, ACI-1053575] FX The authors thank A. Alkauskas, J. R. Weber, L. Gordon, J. Lyons, W. F. Koehl, and D. Awschwalom for useful discussions. This work was performed in part under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. Additional support was provided by NSF under Grant No. DMR-143485. Computational resources were provided by the Center for Scientific Computing at the CNSI and MRL (an NSF MRSEC, DMR-1121053) (NSF CNS-0960316), and by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF under Grant No. ACI-1053575. NR 30 TC 3 Z9 3 U1 8 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD APR 1 PY 2016 VL 93 IS 16 AR 161201 DI 10.1103/PhysRevB.93.161201 PG 5 WC Physics, Condensed Matter SC Physics GA DI0TC UT WOS:000373209000001 ER PT J AU Detmold, W Meinel, S AF Detmold, William Meinel, Stefan TI Lambda(b) -> Delta l(+)l(-) form factors, differential branching fraction, and angular observables from lattice QCD with relativistic b quarks SO PHYSICAL REVIEW D LA English DT Article ID CHIRAL FERMIONS; 2 LOOPS; HEAVY; DECAYS; POLARIZATION; TRANSITIONS; BARYONS; MATRIX; GAMMA; LHC AB Using (2 +/- 1 )-flavor lattice QCD, we compute the 10 form factors describing the A(b) -> A matrix elements of the b -> s vector, axial vector, and tensor currents. The calculation is based on gauge field ensembles generated by the RBC and UKQCD Collaborations with a domain-wall action for the u, d, and s quarks and the Iwasaki gauge action. The b quark is implemented using an anisotropic clover action, tuned nonperturbatively to the physical point, and the currents are renormalized with a mostly nonperturbative method. We perform simultaneous chiral, continuum, and kinematic extrapolations of the form factors through modified z expansions. Using our form factor results, we obtain precise predictions for the Lambda b -> Lambda ( -> p+ pi-)mu(+) mu(-) differential branching fraction and angular observables in the Standard Model. C1 [Detmold, William] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA. [Meinel, Stefan] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Meinel, Stefan] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Meinel, S (reprint author), Univ Arizona, Dept Phys, Tucson, AZ 85721 USA.; Meinel, S (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. EM smeinel@email.arizona.edu FU National Science Foundation [OCI-1053575, PHY-1520996]; U.S. Department of Energy [DE-AC02-05CH11231]; RHIC Physics Fellow Program of the RIKEN BNL Research Center; U.S. Department of Energy Early Career Research [DE-SC0010495, DE-SC0011090] FX S. M. would like to thank Danny van Dyk for discussions. We are grateful to the RBC and UKQCD Collaborations for making their gauge field configurations available. The lattice calculations were carried out using the Chroma software [1031 on high-performance computing resources provided by XSEDE (supported by National Science Foundation Grant No. OCI-1053575) and NERSC (supported by U.S. Department of Energy Grant No. DE-AC02-05CH11231). S. M. is supported by National Science Foundation Grant No. PHY-1520996, and by the RHIC Physics Fellow Program of the RIKEN BNL Research Center. W. D. was partially supported by the U.S. Department of Energy Early Career Research Award DE-SC0010495 and under Grant No. DE-SC0011090. NR 99 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD APR 1 PY 2016 VL 93 IS 7 AR 074501 DI 10.1013/PhysRevD.93.074501 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA DI0TH UT WOS:000373209600005 ER PT J AU Savage, JA Clearwater, MJ Haines, DF Klein, T Mencuccini, M Sevanto, S Turgeon, R Zhang, C AF Savage, Jessica A. Clearwater, Michael J. Haines, Dustin F. Klein, Tamir Mencuccini, Maurizio Sevanto, Sanna Turgeon, Robert Zhang, Cankui TI Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? SO PLANT CELL AND ENVIRONMENT LA English DT Review DE carbon cycle; defense; drought; growth; phloem transport; reproduction; rhizosphere; xylem transport ID TEMPERATE FOREST TREES; DISTANCE WATER TRANSPORT; SIEVE-ELEMENT-OCCLUSION; MINOR VEIN PHLOEM; HEAT-PULSE METHOD; HYDRAULIC ARCHITECTURE; LOADING STRATEGIES; SOIL RESPIRATION; SAP FLOW; AMINO-ACIDS AB Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. This review highlights the important but understudied role of phloem physiology in mediating how plants interact with their biotic and abiotic environment and shaping larger ecological patterns. We focus on three critical areas of current research: interactions between the xylem and phloem, carbon fluxes both in plants and at the ecosystem scale and interactions between plants and their biotic environment. The goal of this review is to draw attention to the critical role of carbon transport in plant physiological ecology and outline many of the questions that remain to be answered about this critical part of the plant vascular system. C1 [Savage, Jessica A.] Arnold Arboretum Harvard Univ, 1300 Ctr St, Boston, MA 02131 USA. [Clearwater, Michael J.] Univ Waikato, Sch Sci, Hamilton 3240, New Zealand. [Haines, Dustin F.] Univ Massachusetts, Dept Environm Conservat, 160 Holdsworth Way, Amherst, MA 01003 USA. [Klein, Tamir] Univ Basel, Inst Bot, Schoenbeinstr 6, CH-4056 Basel, Switzerland. [Mencuccini, Maurizio] Univ Edinburgh, Sch GeoSci, Crew Bldg,West Mains Rd, Edinburgh EH9 3JN, Midlothian, Scotland. [Mencuccini, Maurizio] ICREA CREAF, Campus UAB, Barcelona 08023, Spain. [Sevanto, Sanna] Los Alamos Natl Lab, Earth & Environm Sci, Los Alamos, NM 87545 USA. [Turgeon, Robert] Cornell Univ, Plant Biol Sect, Sch Integrat Plant Sci, Ithaca, NY 14853 USA. [Zhang, Cankui] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA. RP Savage, JA (reprint author), Arnold Arboretum Harvard Univ, 1300 Ctr St, Boston, MA 02131 USA. EM jsavage@fas.harvard.edu RI Mencuccini, Maurizio/B-9052-2011; Savage, Jessica/A-6340-2013; OI Mencuccini, Maurizio/0000-0003-0840-1477; Savage, Jessica/0000-0002-7756-7166; Clearwater, Michael/0000-0002-8563-0671 FU Katharine H. Putnam Fellowship in Plant Science at the Arnold Arboretum; MBIE, University of Waikato and Plant and Food Research [C06X0706]; Plant Fellows - an international postdoctoral fellowship program in plant sciences of the Zurich - Basel Plant Science Center; NERC [NE/I017749/1]; Los Alamos National Laboratory LDRD-ER Program; National Science Foundation - Integrative Organismal Systems [1354718, 1021779]; EU; Swiss National Fund Project FORCARB [31003A_14753/1] FX We acknowledge two anonymous reviewers, G. Hoch (University of Basel) and N.M. Holbrook (Harvard University) for providing thoughtful comments and feedback on the manuscript and T. Arnold (Dickinson College) for his involvement in the symposium that led to this review. Funding was provided by the Katharine H. Putnam Fellowship in Plant Science at the Arnold Arboretum (Savage); MBIE C06X0706, University of Waikato and Plant and Food Research (Clearwater); Plant Fellows (Klein) - an international postdoctoral fellowship program in plant sciences of the Zurich - Basel Plant Science Center; NERC NE/I017749/1 (Mencuccini); Los Alamos National Laboratory LDRD-ER Program (Sevanto) and the National Science Foundation - Integrative Organismal Systems grant no. 1354718 (Turgeon). Research was cofunded by the National Science Foundation - Integrative Organismal Systems grant no. 1021779 (Holbrook) and the EU FP7 Marie Curie Actions and the Swiss National Fund Project FORCARB (31003A_14753/1) allocated to the Basel Plant Ecology (Korner). NR 254 TC 12 Z9 12 U1 38 U2 97 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD APR PY 2016 VL 39 IS 4 BP 709 EP 725 DI 10.1111/pce.12602 PG 17 WC Plant Sciences SC Plant Sciences GA DI4GQ UT WOS:000373458800002 PM 26147312 ER PT J AU Glowacka, K Kromdijk, J Leonelli, L Niyogi, KK Clemente, TE Long, SP AF Glowacka, Katarzyna Kromdijk, Johannes Leonelli, Lauriebeth Niyogi, Krishna K. Clemente, Tom E. Long, Stephen P. TI An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants. SO PLANT CELL AND ENVIRONMENT LA English DT Article DE ddPCR; digital droplet PCR; qPCR; segregation analysis; selectable marker; Southern blot; TAIL-PCR; transformation ID REAL-TIME PCR; DROPLET DIGITAL PCR; PARTICLE BOMBARDMENT; TRANSFORMATION; GENES; ASSAY; RICE; ZYGOSITY; LINES; PHOTOSYNTHESIS AB Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T-DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL-PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T-1 progeny from 26 T-0 plants showed that at least 19% of the lines carried multiple T-DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T-DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided. Genetic transformation is being used increasingly in the public domain to test a range of hypotheses concerning gene action, not only in Arabidopsis, but now in a broad range of plants. A major challenge though, particularly with species with relatively long life cycles, is in identifying individuals that are homozygous for the insert or DNA modification at T2, which is necessary to provide homozygous lines. Southern blotting has been the traditional approach, but it is slow and requires considerable skill. Various PCR methods have been used to accelerate testing, but have not been as reliable. However, we show here that the recently developed digital droplet PCR is as effective as Southern blotting, yet faster and capable of high-throughput. A protocol for application of ddPCR is provided together with evidence of its efficacy. C1 [Glowacka, Katarzyna; Kromdijk, Johannes; Long, Stephen P.] Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA. [Glowacka, Katarzyna] Polish Acad Sci, Inst Plant Genet, Ul Strzeszynska 34, PL-60479 Poznan, Poland. [Leonelli, Lauriebeth; Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA. [Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA. [Clemente, Tom E.] Ctr Plant Sci Innovat, E324 Beadle Ctr,1901 Vine St, Lincoln, NE 68588 USA. RP Long, SP (reprint author), Univ Illinois, Carl R Woese Inst Genom Biol, 1206 W Gregory Dr, Urbana, IL 61801 USA. EM slong@illinois.edu OI Long, Stephen/0000-0002-8501-7164 FU Bill and Melinda Gates Foundation [OPP1060461]; Gordon and Betty Moore Foundation [GBMF3070] FX This research was supported by the Bill and Melinda Gates Foundation (OPP1060461) titled 'RIPE - Realizing Increased Photosynthetic Efficiency for Sustainable Increases in Crop Yield'. K.K.N. is an investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through Grant GBMF3070). We thank Prof S. Whitney for seeds of N. tabacum cv 'Petite Havana'. Finally, we also thank David Drag, Ben Harbaugh, Steven Huber Jr, Brittanii' Batts and Lynnicia Massenburg for help with collecting seeds and tissue samples. NR 41 TC 3 Z9 3 U1 7 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD APR PY 2016 VL 39 IS 4 BP 908 EP 917 DI 10.1111/pce.12693 PG 10 WC Plant Sciences SC Plant Sciences GA DI4GQ UT WOS:000373458800015 PM 26670088 ER PT J AU Schenk, HJ Espino, S Visser, A Esser, BK AF Schenk, H. Jochen Espino, Susana Visser, Ate Esser, Bradley K. TI Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry SO PLANT CELL AND ENVIRONMENT LA English DT Article DE argon; dissolved gas; membrane inlet mass spectrometry; N-2; xylem embolism repair; xylem sap ID CRYOSCANNING ELECTRON-MICROSCOPY; HYDRAULIC CONDUCTIVITY; SULFUR-HEXAFLUORIDE; EMBOLISM REPAIR; WATER SAMPLES; IN-SITU; OXYGEN; VESSELS; STEMS; NITROGEN AB A new method is described for measuring dissolved gas concentrations in small volumes of xylem sap using membrane inlet mass spectrometry. The technique can be used to determine concentrations of atmospheric gases, such as argon, as reported here, or for any dissolved gases and their isotopes for a variety of applications, such as rapid detection of trace gases from groundwater only hours after they were taken up by trees and rooting depth estimation. Atmospheric gas content in xylem sap directly affects the conditions and mechanisms that allow for gas removal from xylem embolisms, because gas can dissolve into saturated or supersaturated sap only under gas pressure that is above atmospheric pressure. The method was tested for red trumpet vine, Distictis buccinatoria (Bignoniaceae), by measuring atmospheric gas concentrations in sap collected at times of minimum and maximum daily temperature and during temperature increase and decline. Mean argon concentration in xylem sap did not differ significantly from saturation levels for the temperature and pressure conditions at any time of collection, but more than 40% of all samples were supersaturated, especially during the warm parts of day. There was no significant diurnal pattern, due to high variability between samples. C1 [Schenk, H. Jochen; Espino, Susana] Calif State Univ Fullerton, Dept Biol Sci, 800 N State Coll Blvd, Fullerton, CA 92831 USA. [Visser, Ate; Esser, Bradley K.] Lawrence Livermore Natl Lab, 7000 East Ave, Lawrence, KS 94550 USA. RP Schenk, HJ (reprint author), Calif State Univ Fullerton, Dept Biol Sci, 800 N State Coll Blvd, Fullerton, CA 92831 USA. EM jschenk@fullerton.edu RI Visser, Ate/G-8826-2012; Schenk, H./B-9651-2009 OI Schenk, H./0000-0001-6261-2780 FU National Science Foundation [IOS-1146993]; Department of Biological Science at California State University Fullerton; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This research was funded by the National Science Foundation (IOS-1146993). We thank two anonymous reviewers for helpful comments, Mellanda Orn, Aissa Do and Joseph Michaud for assistance with the research, and the Department of Biological Science at California State University Fullerton for travel funding. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-676618. NR 54 TC 2 Z9 2 U1 3 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD APR PY 2016 VL 39 IS 4 BP 944 EP 950 DI 10.1111/pce.12678 PG 7 WC Plant Sciences SC Plant Sciences GA DI4GQ UT WOS:000373458800018 PM 26868162 ER PT J AU Mills, E AF Mills, Evan TI Action-Oriented Energy Benchmarking for Nonresidential Buildings SO PROCEEDINGS OF THE IEEE LA English DT Article DE Energy benchmarking; energy efficiency; nonresidential buildings ID PERFORMANCE AB The complex process of improving the energy efficiency of a building begins with understanding baseline conditions and assessing the potential for specific improvements. Traditional benchmarking typically addresses the status quo, e.g., by comparing the building to its peers at one point in time or longitudinally. Action-oriented benchmarking extends this process by also inferring potential energy-efficiency opportunities. Doing so, however, requires more in-depth benchmarking than offered by traditional "whole-building" assessment methods. The process begins by carefully identifying a peer group for comparison that has true relevance to the subject building, and then disaggregating energy use by fuels and end uses to better pinpoint inefficiencies. Toward this end, the benchmarking process can be extended from energy to emissions and costs. Building characteristics and energy utilization parameters, as distinct from resource utilization data, can also be benchmarked in order to ascertain potential relevance and applicability of energy-efficient technologies or practices. To ensure savings attainment and persistence, benchmarking must continue throughout a building's lifecycle. A publicly funded web-based benchmarking system called EnergyIQ is introduced, which implements the aforementioned principals. C1 [Mills, Evan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, US DOE, Berkeley, CA 94720 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, US DOE, Berkeley, CA 94720 USA. EM emills@lbl.gov FU California Energy Commission through the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the California Energy Commission through the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 29 TC 1 Z9 1 U1 5 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD APR PY 2016 VL 104 IS 4 BP 697 EP 712 DI 10.1109/JPROC.2016.2520638 PG 16 WC Engineering, Electrical & Electronic SC Engineering GA DH9GI UT WOS:000373104000003 ER PT J AU Beil, I Hiskens, I Backhaus, S AF Beil, Ian Hiskens, Ian Backhaus, Scott TI Frequency Regulation From Commercial Building HVAC Demand Response SO PROCEEDINGS OF THE IEEE LA English DT Article DE Ancillary services; demand response (DR); frequency regulation; heating; ventilation; and air conditioning (HVAC) ID SYSTEMS; MODEL; PERFORMANCE; EFFICIENCY AB The expanding penetration of nondispatchable renewable resources within power system generation portfolios is motivating the development of demand-side strategies for balancing generation and load. Commercial heating, ventilation, and air conditioning (HVAC) loads are potential candidates for providing such demand-response (DR) services as they consume significant energy and because of the temporal flexibility offered by their inherent thermal inertia. Several ancillary services markets have recently opened up to participation by DR resources, provided they can satisfy certain performance metrics. We discuss different control strategies for providing frequency regulation DR from commercial HVAC systems and components, and compare performance results from experiments and simulation. We also present experimental results from a single similar to 30 000-m(2) office building and quantify the DR control performance using standardized performance criteria. Additionally, we evaluate the cost of delivering this service by comparing the energy consumed while providing DR against a counterfactual baseline. C1 [Beil, Ian; Hiskens, Ian] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. [Beil, Ian] Sargent & Lundy LLC, Chicago, IL 60603 USA. [Backhaus, Scott] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA. RP Beil, I (reprint author), Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA.; Beil, I (reprint author), Sargent & Lundy LLC, Chicago, IL 60603 USA. EM ianbeil@umich.edu OI Backhaus, Scott/0000-0002-0344-6791 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; U.S. Department of Energy Office of Electricity; National Science Foundation [CNS-1238962] FX The work at Los Alamos National Laboratory (LANL) was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. This work was supported by the Microgrid Program in the U.S. Department of Energy Office of Electricity. The work at the University of Michigan was supported in part by the National Science Foundation under Award CNS-1238962. NR 45 TC 2 Z9 2 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD APR PY 2016 VL 104 IS 4 BP 745 EP 757 DI 10.1109/JPROC.2016.2520640 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA DH9GI UT WOS:000373104000006 ER PT J AU Kim, YJ Blum, DH Xu, N Su, L Norford, LK AF Kim, Young-Jin Blum, David H. Xu, Nora Su, Leo Norford, Leslie K. TI Technologies and Magnitude of Ancillary Services Provided by Commercial Buildings SO PROCEEDINGS OF THE IEEE LA English DT Article DE Ancillary services; commercial buildings; electricity market; heating; ventilating; and air-conditioning (HVAC) systems; physically-based scaling metrics; plug-in electric vehicles (PEVs); scaling metrics; thermal and electrical energy storage; voltage and power balance regulation ID LOCATIONAL MARGINAL PRICES; MODEL-PREDICTIVE CONTROL; REACTIVE POWER-CONTROL; DEMAND RESPONSE; DISTRIBUTED GENERATION; FREQUENCY REGULATION; ELECTRIC VEHICLES; HVAC SYSTEMS; HEAT-PUMP; MARKET AB Commercial buildings increasingly include technologies capable of providing ancillary services to electric power grids. Features include thermal energy storage inherent in building structures that can be coupled to electric grids through heating, ventilating, and air-conditioning (HVAC) systems controlled by variable-speed drives (VSDs). In parking garages, plug-in electric vehicles (PEVs) are connected to the building power lines through charging stations and can be utilized as grid storage. System power electronics can control equipment power demand at frequencies associated with ancillary services procured in electricity markets, where services dispatch over time scales ranging from hours to seconds. Limitations in provision of services by buildings include building-scale thermal and electrical energy storage capacities: thermal comfort of occupants, state of charge of PEV batteries, and the power rating of VSDs and PEV chargers. This paper reviews available technologies and necessary control strategies for HVAC systems in commercial buildings to provide ancillary services. We then develop physically-based scaling metrics for building thermal storage technologies accessible through HVAC systems. In addition, the effect of ancillary services provided by HVAC systems on grid network and electricity market operations is analyzed using simulation case studies, incorporating magnitude scaling of services. We finally evaluate a possibility that the HVAC systems and PEVs provide three-phase voltage and power balance regulation services, respectively. C1 [Kim, Young-Jin] Argonne Natl Lab, Ctr Energy Environm & Econ Syst Anal, 9700 S Cass Ave, Argonne, IL 60439 USA. [Blum, David H.; Su, Leo; Norford, Leslie K.] MIT, Bldg Technol Program, Dept Architecture, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Xu, Nora] MIT, Engn Syst Div, Inst Data Syst & Soc, 77 Massachusetts Ave, Cambridge, MA 02139 USA. RP Kim, YJ (reprint author), Argonne Natl Lab, Ctr Energy Environm & Econ Syst Anal, 9700 S Cass Ave, Argonne, IL 60439 USA.; Blum, DH; Su, L; Norford, LK (reprint author), MIT, Bldg Technol Program, Dept Architecture, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Xu, N (reprint author), MIT, Engn Syst Div, Inst Data Syst & Soc, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM kimy@anl.gov; dhb5014@mit.edu; noraxu@mit.edu; psu@alum.mit.edu; lnorford@mit.edu FU National Science Foundation under the EFRI-SEEE [1038230] FX This work was supported in part by the National Science Foundation under the EFRI-SEEE Grant, Award 1038230. NR 81 TC 2 Z9 2 U1 6 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD APR PY 2016 VL 104 IS 4 BP 758 EP 779 DI 10.1109/JPROC.2016.2520678 PG 22 WC Engineering, Electrical & Electronic SC Engineering GA DH9GI UT WOS:000373104000007 ER PT J AU Chatzivasileiadis, S Bonvini, M Matanza, J Yin, RX Nouidui, TS Kara, EC Parmar, R Lorenzetti, D Wetter, M Kiliccote, S AF Chatzivasileiadis, Spyros Bonvini, Marco Matanza, Javier Yin, Rongxin Nouidui, Thierry S. Kara, Emre C. Parmar, Rajiv Lorenzetti, David Wetter, Michael Kiliccote, Sila TI Cyber-Physical Modeling of Distributed Resources for Distribution System Operations SO PROCEEDINGS OF THE IEEE LA English DT Article DE Cosimulation; demand response (DR); DigSILENT PowerFactory; functional mockup interface (FMI); load flow; modelica; OMNeT plus ID INFINITY-ERROR-BOUNDS; SIMULATION; BUILDINGS; POWER AB Cosimulation platforms are necessary to study the interactions of complex systems integrated in future smart grids. The Virtual Grid Integration Laboratory (VirGIL) is a modular cosimulation platform designed to study interactions between demand-response (DR) strategies, building comfort, communication networks, and power system operation. This paper presents the coupling of power systems, buildings, communications, and control under a master algorithm. There are two objectives: first, to use a modular architecture for VirGIL, based on the functional mockup interface (FMI), where several different modules can be added, exchanged, and tested; and second, to use a commercial power system simulation platform, familiar to power system operators, such as DIgSILENT PowerFactory. This will help reduce the barriers to the industry for adopting such platforms, investigate and subsequently deploy DR strategies in their daily operation. VirGIL further introduces the integration of the quantized state system (QSS) methods for simulation in this cosimulation platform. Results on how these systems interact using a real network and consumption data are also presented. C1 [Chatzivasileiadis, Spyros] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. [Bonvini, Marco] Whiskerlabs, Oakland, CA 94612 USA. [Matanza, Javier] Comillas Pontifical Univ, Madrid 28015, Spain. [Yin, Rongxin; Nouidui, Thierry S.; Kara, Emre C.; Parmar, Rajiv; Lorenzetti, David; Wetter, Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Parmar, Rajiv] Univ Calgary, Calgary, AB T1Y 4Z9, Canada. [Kiliccote, Sila] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Chatzivasileiadis, S (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA.; Bonvini, M (reprint author), Whiskerlabs, Oakland, CA 94612 USA.; Matanza, J (reprint author), Comillas Pontifical Univ, Madrid 28015, Spain.; Yin, RX; Nouidui, TS; Kara, EC; Parmar, R; Lorenzetti, D; Wetter, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA.; Parmar, R (reprint author), Univ Calgary, Calgary, AB T1Y 4Z9, Canada.; Kiliccote, S (reprint author), SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. EM chatziva@mit.edu; marco@whiskerlabs.com; jmatanza@comillas.edu; ryin@lbl.gov; tsnouidui@lbl.gov; eckara@lbl.gov; rajiv1parmar@gmail.com; dmlorenzetti@lbl.gov; mwetter@lbl.gov; SilaK@SLAC.Stanford.edu FU Laboratory Directed Research and Development (LDRD) from Berkeley Laboratory by Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Laboratory Directed Research and Development (LDRD) funding from Berkeley Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy DE-AC02-05CH11231. NR 28 TC 2 Z9 2 U1 4 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD APR PY 2016 VL 104 IS 4 BP 789 EP 806 DI 10.1109/JPROC.2016.2520738 PG 18 WC Engineering, Electrical & Electronic SC Engineering GA DH9GI UT WOS:000373104000009 ER PT J AU Hou, J Qvist, S Kellogg, R Greenspan, E AF Hou, Jason (Jia) Qvist, Staffan Kellogg, Roger Greenspan, Ehud TI 3D in-core fuel management optimization for breed-and-burn reactors SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Breed-and-burn reactor; Peak radiation damage; 3D fuel shuffling optimization; Simulated annealing; Optimal core design ID GENETIC ALGORITHMS; PROVIDING LMFBR; PERFORMANCE; DESIGN; SUSTAINABILITY AB Breed-and-burn (B&B) reactors are a special class of fast reactors that are designed to utilize low grade fuel such as depleted uranium without fuel reprocessing. One of the most challenging practical design feasibility issues faced by B&B reactors is the high level of radiation damage their fuel cladding has to withstand in order to sustain the B&B mode of operation more than twice the maximum radiation damage cladding materials were exposed to so far in fast reactors. This study explores the possibility of reducing the minimum required peak radiation damage by employment of 3-dimensional (3D) fuel shuffling that enables a significant reduction in the peak-to-average axial burnup, that is, more uniform fuel utilization. A new conceptual design of a B&B core made of axially segmented fuel assemblies was adopted to facilitate the 3D shuffling. Also developed is a Simulated Annealing (SA) algorithm to automate the search for the optimal 3D shuffling pattern (SP). The primary objective of the SA optimization is to minimize the peak radiation damage while its secondary objective is to minimize the burnup reactivity swing, radial power peaking factor and maximum change of fuel assembly power over the cycle. Also studied is the sensitivity of the 3D shuffled core performance to the number of axially stacked subassemblies, core height and power level. It was found that compared with the optimal 2-dimensional (2D) shuffled core, the optimal 3D shuffled B&B core made of four 70 cm long axially stacked sub-assemblies and 12 radial shuffling batches offers a 1/3 reduction of the peak radiation damage level from 534 down to 351 displacements per atom (dpa), along with a 45% increase in the average fuel discharge burnup, and hence, the depleted uranium utilization, while satisfying all major neutronics and thermal-hydraulics design constraints. For the same peak dpa level, the 3D shuffling offers more than double the uranium utilization and the cycle length relative to 2D shuffling. The minimum peak radiation damage is increased to 360 or to 403 dpa if the core is made of, respectively, three - 70 cm or two - 140 cm long axially stacked subassemblies. Reducing the length of the subassemblies of B&B cores made of three-segment assemblies from 70 cm to 60 or 50 cm results in an increase in the peak radiation damage from 360 dpa to, respectively, 368 and 397 dpa. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Hou, Jason (Jia); Greenspan, Ehud] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Qvist, Staffan] Uppsala Univ, Dept Phys & Astron, Lagerhyddsvagen 1, S-75237 Uppsala, Sweden. [Kellogg, Roger] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Hou, J (reprint author), Univ Calif Berkeley, 3115 B&AA Etcheverry Hall, Berkeley, CA 74720 USA. EM jasonhou@berkeley.edu OI Qvist, Staffan/0000-0001-7838-6482; Hou, Jason/0000-0002-1144-1632 FU DOE Office of Nuclear Energy's Nuclear Energy University Programs [NEUP 13-5144] FX This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs (NEUP 13-5144). The technical assistance and feedback of experts at the Argonne National Laboratory (ANL) is highly appreciated. In particular, the authors would like to thank Dr. Florent Heidet for his assistance. NR 45 TC 1 Z9 1 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD APR PY 2016 VL 88 BP 58 EP 74 DI 10.1016/j.pnucene.2015.12.002 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DH1SE UT WOS:000372564400008 ER PT J AU Zou, L Zhao, HH Zhang, HB AF Zou, Ling Zhao, Haihua Zhang, Hongbin TI Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Two-phase flow; Jacobian-free Newton-Krylov method; Phase appearance and disappearance; Implicit method ID NEWTON-KRYLOV METHOD; 2-PHASE FLOW; SCHEME; IMPLEMENTATION AB Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effective to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. Volume fraction of the absent phase can be calculated effectively as zero. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Zou, Ling; Zhao, Haihua; Zhang, Hongbin] Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. RP Zou, L (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM ling.zou@inl.gov OI Zou, Ling/0000-0003-0664-0474 FU U.S. Department of Energy, under Department of Energy Idaho Operations Office [DE-AC07-05ID14517] FX This work is supported by the U.S. Department of Energy, under Department of Energy Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 18 TC 3 Z9 3 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD APR PY 2016 VL 88 BP 198 EP 210 DI 10.1016/j.pnucene.2015.12.006 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DH1SE UT WOS:000372564400021 ER PT J AU Di Maio, F Bandini, A Zio, E Alfonsi, A Rabiti, C AF Di Maio, Francesco Bandini, Alessandro Zio, Enrico Alfonsi, Andrea Rabiti, Cristian TI An approach based on Support Vector Machines and a K-D Tree search algorithm for identification of the failure domain and safest operating conditions in nuclear systems SO PROGRESS IN NUCLEAR ENERGY LA English DT Article DE Risk-informed safety margins characterization; Failure boundary; Reduced-order models; Support Vector Machines; K-D Tree; Station black out accident ID UNCERTAINTIES; OPTIMIZATION; PROBABILITY AB The safety of a Nuclear Power Plant (NPP) is verified by analyzing the system responses under normal and accidental conditions. This is done by resorting to a Best-Estimate (BE) Thermal-Hydraulic (TH) code, whose outcomes are compared to given safety thresholds enforced by regulation. This allows identifying the limit-state function that separates the failure domain from the safe domain. In practice, the TH model response is affected by uncertainties (both epistemic and aleatory), which make the limit-state function and the failure domain probabilistic. The present paper sets forth an innovative approach to identify the failure domain together with the safest plant operating conditions. The approach relies on the use of Reduced Order Models (ROMs) and K-D Tree. The model failure boundary is approximated by Support Vector Machines (SVMs) and, then, projected onto the space of the controllable variables (i.e., the model inputs that can be manipulated by the plant operator, such as reactor control-rods position, feed-water flow-rate through the plant primary loops, accumulator water temperature and pressure, repair times, etc.). The farthest point from the failure boundary is, then, computed by means of a K-D Tree-based nearest neighbor algorithm; this point represents the combination of input values corresponding to the safest operating conditions. The approach is shown to give satisfactory results with reference to one analytical example and one real case study regarding the Peak Cladding Temperature (PCT) reached in a Boiling Water Reactor (BWR) during a Station-Black-Out (SBO), simulated using RELAP5-3D. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Di Maio, Francesco; Bandini, Alessandro; Zio, Enrico] Politecn Milan, Dept Energy, I-20133 Milan, Italy. [Zio, Enrico] Univ Paris Saclay, Cent Supelec, Fdn Elect France EDF, Chair Syst Sci & Energy Challenge, Chatenay Malabry, France. [Alfonsi, Andrea; Rabiti, Cristian] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Di Maio, F (reprint author), Politecn Milan, Dept Energy, I-20133 Milan, Italy. EM francesco.dimaio@polimi.it RI Di Maio, Francesco/B-7139-2014; OI Di Maio, Francesco/0000-0001-6659-0953; Alfonsi, Andrea/0000-0003-2866-4346 NR 30 TC 1 Z9 1 U1 5 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0149-1970 J9 PROG NUCL ENERG JI Prog. Nucl. Energy PD APR PY 2016 VL 88 BP 297 EP 309 DI 10.1016/j.pnucene.2016.01.017 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA DH1SE UT WOS:000372564400031 ER PT J AU Miao, YL Baudry, J Smith, JC McCammon, JA AF Miao, Yinglong Baudry, Jerome Smith, Jeremy C. McCammon, J. Andrew TI General trends of dihedral conformational transitions in a globular protein SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE dihedral conformational transitions; molecular dynamics; enhanced sampling; free energy; globular protein ID ACCELERATED MOLECULAR-DYNAMICS; FREE-ENERGY LANDSCAPE; CYTOCHROME P450CAM; NEUTRON-SCATTERING; QM/MM CALCULATIONS; CRYSTAL-STRUCTURE; AVERAGE FORCE; SIMULATIONS; FLEXIBILITY; ACTIVATION AB Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and approximate to 3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed by the bridge and sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly N=2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. Proteins 2016; 84:501-514. (c) 2016 Wiley Periodicals, Inc. C1 [Miao, Yinglong; McCammon, J. Andrew] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA. [Miao, Yinglong; McCammon, J. Andrew] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA. [Baudry, Jerome; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. [Baudry, Jerome; Smith, Jeremy C.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [McCammon, J. Andrew] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. RP Miao, YL (reprint author), Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA. EM yimiao@ucsd.edu OI Miao, Yinglong/0000-0003-3714-1395 FU NSF [MCB10 20765]; NIH [GM31749]; Howard Hughes Medical Institute; National Biomedical Computation Resource (NBCR); Extreme Science and Engineering Discovery Environment (XSEDE) Awards [TG-MCB13 0048, TG-MCB14 0011, TG-MCA93S013]; National Energy Research Scientific Computing Center (NERSC) [m1395] FX Grant sponsor: NSF; Grant number: MCB10 20765; Grant sponsor: NIH; Grant number: GM31749; Grant sponsors: Howard Hughes Medical Institute, National Biomedical Computation Resource (NBCR), Extreme Science and Engineering Discovery Environment (XSEDE) Awards; Grant numbers: TG-MCB13 0048, TG-MCB14 0011, and TG-MCA93S013; Grant sponsor: National Energy Research Scientific Computing Center (NERSC); Grant number: m1395. NR 69 TC 1 Z9 1 U1 9 U2 18 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD APR PY 2016 VL 84 IS 4 BP 501 EP 514 DI 10.1002/prot.24996 PG 14 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DI2TV UT WOS:000373352700009 PM 26799251 ER PT J AU Hamada, MS Burkhardt, JH AF Hamada, M. S. Burkhardt, J. H. TI Impact on Quality Activities of Measurement Systems Meeting an L:1 Rule SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE acceptance sampling; attribute; control chart; inspection; proportion; variables measurement ID MEASUREMENT ERROR; CHARTS; PLANS AB This article considers the impact of a measurement system that meets an L:1 rule on various quality activities. These activities include inspection, acceptance sampling, and control charting. A measurement system that meets a 10:1 rule performs much better than one that meets a 4:1 rule. R code is provided so that the practitioner can evaluate these activities to his or her particular situation. Copyright (c) 2015John Wiley & Sons, Ltd. C1 [Hamada, M. S.] Los Alamos Natl Lab, Stat Sci, POB 1663, Los Alamos, NM 87545 USA. [Burkhardt, J. H.] Los Alamos Natl Lab, Qual Program Off, Los Alamos, NM 87545 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci, POB 1663, Los Alamos, NM 87545 USA. EM hamada@lanl.gov NR 13 TC 0 Z9 0 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD APR PY 2016 VL 32 IS 3 BP 1021 EP 1028 DI 10.1002/qre.1811 PG 8 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DH6GS UT WOS:000372889600023 ER PT J AU Graves, TL Hamada, MS AF Graves, Todd L. Hamada, Michael S. TI A Note on Incorporating Simultaneous Multi-level Failure Time Data in System Reliability Assessments SO QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL LA English DT Article DE censoring; complex parallel; series system; cumulative distribution function; event tree; likelihood; probability density function; reliability block diagram AB In this article, we present a method how to evaluate the likelihood for simultaneous failure time data when monitoring is stopped when the system fails. Our method is based on the reliability structure of the system, listing all possible events consistent with the simultaneous data and calculating their contributions to the likelihood. The method is simple to understand and is based on standard probabilistic calculations. We also consider the Jackson and Mosleh method, and some results suggest that the two methods are equivalent. Copyright (c) 2015 John Wiley & Sons, Ltd. C1 [Graves, Todd L.] Berry Consultants, Austin, TX USA. [Hamada, Michael S.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Hamada, MS (reprint author), Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. EM hamada@lanl.gov NR 6 TC 1 Z9 1 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0748-8017 EI 1099-1638 J9 QUAL RELIAB ENG INT JI Qual. Reliab. Eng. Int. PD APR PY 2016 VL 32 IS 3 BP 1127 EP 1135 DI 10.1002/qre.1820 PG 9 WC Engineering, Multidisciplinary; Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA DH6GS UT WOS:000372889600031 ER PT J AU Wang, Y Lava, P Reu, P Debruyne, D AF Wang, Y. Lava, P. Reu, P. Debruyne, D. TI Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part I Temporal and Spatial Uncertainty Quantification of Displacement Measurements SO STRAIN LA English DT Article DE random displacement error; theoretical analysis; 2D-DIC ID DIGITAL IMAGE CORRELATION; INTENSITY PATTERN NOISE; SYSTEMATIC-ERRORS; SPECKLE PATTERNS; DEFORMATION MEASUREMENTS; STRAIN-MEASUREMENT; MOTION; INTERPOLATION; GRADIENT AB This paper presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalised solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests. C1 [Wang, Y.; Lava, P.; Debruyne, D.] KU Leuven Campus Gent, Dept Mat Engn, Gebroeders Desmetstr 1, B-9000 Ghent, Belgium. [Reu, P.] Sandia Natl Labs, Albuquerque, NM USA. RP Wang, Y (reprint author), KU Leuven Campus Gent, Dept Mat Engn, Gebroeders Desmetstr 1, B-9000 Ghent, Belgium. FU research project 'AMPLIFY' - Agency for Innovation by Science and Technology in Flanders [IWT130211]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is partly supported by the research project 'AMPLIFY (IWT130211)', which is sponsored by the Agency for Innovation by Science and Technology in Flanders.; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract no. DE-AC04-94AL85000. NR 53 TC 6 Z9 6 U1 2 U2 14 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1475-1305 J9 STRAIN JI Strain PD APR PY 2016 VL 52 IS 2 BP 110 EP 128 DI 10.1111/str.12173 PG 19 WC Materials Science, Characterization & Testing SC Materials Science GA DH6FC UT WOS:000372885400002 ER PT J AU Wang, Y Lava, P Reu, P Debruyne, D AF Wang, Y. Lava, P. Reu, P. Debruyne, D. TI Theoretical Analysis on the Measurement Errors of Local 2D DIC: Part II Assessment of Strain Errors of the Local Smoothing Method-Approaching an Answer to the Overlap Question SO STRAIN LA English DT Article DE 2D DIC; strain error; theoretical analysis ID DIGITAL IMAGE CORRELATION; INTENSITY PATTERN NOISE; SYSTEMATIC-ERRORS; DISPLACEMENT; INTERPOLATION AB In this paper, the strain error of subset-based two-dimensional digital image correlation (DIC) is theoretically derived. Analytical solutions are provided to estimate the strain error. A dimensionless factor is proposed, namely the overlap magnifier, which reveals the dependency of the strain error on the DIC regularisation parameters, that is, subset size, step size and strain window size. The derived equations are validated numerically and experimentally. The estimated random strain error is in good accordance with the experimental data. The proposed derivation can be readily extended to stereo DIC. C1 [Wang, Y.; Lava, P.; Debruyne, D.] KU Leuven Campus Gent, Dept Mat Engn, Gebroeders Desmetstr 1, B-9000 Ghent, Belgium. [Reu, P.] Sandia Natl Labs, Albuquerque, NM USA. RP Wang, Y (reprint author), KU Leuven Campus Gent, Dept Mat Engn, Gebroeders Desmetstr 1, B-9000 Ghent, Belgium. FU research project 'AMPLIFY' - Agency for Innovation by Science and Technology in Flanders [IWT130211]; United States Department of EnergyaL(TM)s National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is partly supported by the research project 'AMPLIFY (IWT130211)', which is sponsored by the Agency for Innovation by Science and Technology in Flanders.; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of EnergyaL(TM)s National Nuclear Security Administration under contract No. DE-AC04-94AL85000. NR 21 TC 4 Z9 4 U1 3 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1475-1305 J9 STRAIN JI Strain PD APR PY 2016 VL 52 IS 2 BP 129 EP 147 DI 10.1111/str.12174 PG 19 WC Materials Science, Characterization & Testing SC Materials Science GA DH6FC UT WOS:000372885400003 ER PT J AU Eisazadeh, H Bunn, J Coules, HE Achuthan, A Goldak, J Aidun, DK AF Eisazadeh, H. Bunn, J. Coules, H. E. Achuthan, A. Goldak, J. Aidun, D. K. TI A Residual Stress Study in Similar and Dissimilar Welds SO WELDING JOURNAL LA English DT Article DE Neutron Diffraction; Dissimilar Weld; Residual Strain and Stress ID CARBON-STEEL; DIFFRACTION; REFINEMENT; DISTORTION; JOINTS; PIPE AB Residual strain distributions in similar and dissimilar welds were measured using the neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution, It was observed that smaller longitudinal RS was induced in the low-carbon steel side of the dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in the dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength of the base metal (BM). In order to characterize the WZ in the dissimilar weld, optical microscopy, hardness tests, and energy dispersive x-ray spectroscopy (EDAX) were employed. This study not only provides further insight into the RS state in similar and dissimilar welds, it also delivers important consequences of phase transformation in the latter case. C1 [Eisazadeh, H.; Achuthan, A.; Aidun, D. K.] Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY USA. [Bunn, J.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN USA. [Coules, H. E.] Univ Bristol, Solid Mech Res Grp, Bristol, Avon, England. [Goldak, J.] Carleton Univ, Ottawa, ON, Canada. RP Aidun, DK (reprint author), Clarkson Univ, Dept Mech & Aeronaut Engn, Potsdam, NY USA. EM daidun@clarkson.edu RI Bunn, Jeffrey/J-4286-2014 OI Bunn, Jeffrey/0000-0001-7738-0011 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX A portion of this research at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 26 TC 1 Z9 1 U1 2 U2 5 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD APR PY 2016 VL 95 IS 4 BP 111S EP 119S PG 9 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA DH5VJ UT WOS:000372860100016 ER PT J AU Nandanwar, SU Dantas, J Coldsnow, K Green, M Utgikar, V Sabharwall, P Aston, DE AF Nandanwar, Sachin U. Dantas, Julia Coldsnow, Kai Green, Michael Utgikar, Vivek Sabharwall, Piyush Aston, D. Eric TI Porous microsphere of magnesium oxide as an effective sorbent for removal of volatile iodine from off-gas stream SO ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY LA English DT Article DE Adsorption; Microsphere; Magnesium oxide; Volatile iodine; Off-gas stream ID RADIOACTIVE IODINE; SILVER-NITRATE; ADSORPTION; PRESSURE; CAPTURE; CARBON; MGO; CHEMISTRY; MGO(100); PROFILE AB Porous microspheres of magnesium oxide were synthesized by calcination of precursor obtained via hydrothermal method. A sample of microsphere was characterized by transmission electron microscopy, scanning electron microscopy-energy dispersion spectroscopy, X-ray diffraction, thermogravimetric analysis, N-2 adsorption-desorption isotherms, and BET surface area. The average pore size and surface area of the microsphere were found to be 9.0 nm and 83.1 m(2) g(-1), respectively. The performance of sorbent was investigated in a continuous adsorption system. Iodine adsorption on sorbent was studied by varying temperature of adsorption column, sorbent calcination temperature and initial concentration of iodine. The capacity of sorbent increased by similar to 25 % when calcination temperature was raised from 350 to 500 A degrees C. The maximum iodine adsorption capacity of sorbent was found to be 196 mg g(-1) using Langmuir isotherm. These results indicate the microspherical form of MgO to be effective sorbent to capture iodine vapor from off-gas stream. C1 [Nandanwar, Sachin U.; Dantas, Julia; Coldsnow, Kai; Green, Michael; Utgikar, Vivek; Aston, D. Eric] Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. [Sabharwall, Piyush] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Nandanwar, SU (reprint author), Univ Idaho, Dept Chem & Mat Engn, 875 Perimeter Dr, Moscow, ID 83844 USA. EM snandanwar@uidaho.edu FU DOE [DE-NE0000660]; US Department of Energy-Nuclear Energy University Program FX This work is completed under the DOE Project (DE-NE0000660). The authors thank to US Department of Energy-Nuclear Energy University Program for financial support. NR 41 TC 1 Z9 1 U1 9 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0929-5607 EI 1572-8757 J9 ADSORPTION JI Adsorpt.-J. Int. Adsorpt. Soc. PD APR PY 2016 VL 22 IS 3 BP 335 EP 345 DI 10.1007/s10450-016-9781-1 PG 11 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA DH2FA UT WOS:000372598400006 ER PT J AU Neofotis, P Huang, A Sury, K Chang, W Joseph, F Gabr, A Twary, S Qiu, WG Holguin, O Polle, JEW AF Neofotis, Peter Huang, Andy Sury, Kiran Chang, William Joseph, Florenal Gabr, Arwa Twary, Scott Qiu, Weigang Holguin, Omar Polle, Juergen E. W. TI Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Biofuel; Bioprospecting; Green algae; Scenedesmus; Coelastrella; Chlorella ID INTERNAL TRANSCRIBED SPACER-2; SEQUENCE-STRUCTURE ANALYSIS; RNA SECONDARY STRUCTURE; FATTY-ACID-COMPOSITION; COCCOID GREEN-ALGAE; HYDROTHERMAL LIQUEFACTION; INDUSTRIAL BIOTECHNOLOGY; MOLECULAR SYSTEMATICS; CHLORELLA-SOROKINIANA; SCENEDESMUS-OBLIQUUS AB This paper describes the characteristics of microalgal strains that originated out of an isolation and screening project included within the National Alliance for Advanced Biofuels and Bioproducts (NAABB). The project's goal was to identify new potential platform strains with high growth rates and/or lipid productivities. To classify the best performing strains, we conducted a combined microscopic and phylogenetic analysis. Among the best performing strains were many coccoid green algae. Several strains belong to the species Acutodesmus (Scenedesmus) obliquus and to the species Chlorella sorokiniana, thus expanding on existing germplasm. Identified at the genus level were some Desmodesmus strains and one Ankistrodesmus strain. Several strains were classified as belonging to the genus Coelastrella, a taxon reported for the first time for North America. Multiple additional strains had ambiguous identities, with some strains possibly representing novel species. Reporting on the above strains, some of which have been tested successfully in outdoor ponds and most of which are deposited at the University of Texas Culture Collection of Algae, is a step forward in expanding the biological resources available for algae biofuel production. (C) 2016 Published by Elsevier B.V. C1 [Neofotis, Peter; Polle, Juergen E. W.] CUNY, Grad Ctr, New York, NY 10016 USA. [Neofotis, Peter; Huang, Andy; Sury, Kiran; Chang, William; Joseph, Florenal; Gabr, Arwa; Polle, Juergen E. W.] CUNY Brooklyn Coll, Dept Biol, Brooklyn, NY 11210 USA. [Twary, Scott] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. [Qiu, Weigang] CUNY Hunter Coll, Dept Biol, New York, NY 10065 USA. [Holguin, Omar] New Mexico State Univ, Dept Plant & Environm Sci, Las Cruces, NM 88003 USA. [Joseph, Florenal] SUNY Downstate, Sch Grad Studies, Mol & Cellular Biol, 450 Clarkson Ave,MSC 41, Brooklyn, NY 11203 USA. RP Polle, JEW (reprint author), CUNY, Grad Ctr, New York, NY 10016 USA. EM jpolle@brooklyn.cuny.edu OI Twary, Scott/0000-0002-5074-6658 FU US Department of Energy [DE-EE0003129, DE-EE0003046-28302B]; Airforce Office of Scientific Research [FA9550-08-1-0170, FA9550-08-1-0403]; National Alliance for Advanced Biofuels and Bioproducts FX The authors thank the US Department of Energy for funding under grant #DE-EE0003129 and #DE-EE0003046-28302B. The authors also gratefully acknowledge support from Airforce Office of Scientific Research under grant#FA9550-08-1-0170 and #FA9550-08-1-0403. The authors greatly appreciate support by their collaborators within the National Alliance for Advanced Biofuels and Bioproducts, specifically Dr. J. Olivares and Dr. R. Sayre. The authors would also like to thank Dr. J. Nishiura for his aid in florescent microscopy and for his discussions as well as Dr. R. Ovalle for use of a plate reader for screening. Dr. T. Friedl is thanked for his advice on the use of primers for the rDNA amplification and Dr. S. Starkenburg on providing genomic sequences for strain DOE0101. Further, the authors appreciate helpful suggestions from Dr. A. Litt on parts of this manuscript and from Dr. M. Wolf regarding the use of 4SALE and ProfDist. The authors would also like to thank the members of the boyscout troop 1949 in Katy, TX. The authors thank Dr. Mahendra-Perumal and Ms. S. Registe for their technical support on strain isolation and screening. We thank Ms. K. Laje for technical assistance with sample preparation for the SEM analysis. NR 105 TC 2 Z9 2 U1 19 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD APR PY 2016 VL 15 BP 164 EP 178 DI 10.1016/j.algal.2016.01.007 PG 15 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DH0DK UT WOS:000372452500020 ER PT J AU De-Bashan, LE Mayali, X Bebout, BM Weber, PK Detweiler, AM Hernandez, JP Prufert-Bebout, L Bashan, Y AF de-Bashan, Luz E. Mayali, Xavier Bebout, Brad M. Weber, Peter K. Detweiler, Angela M. Hernandez, Juan-Pablo Prufert-Bebout, Leslie Bashan, Yoav TI Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization) SO ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS LA English DT Article DE Microalgae; NanoSIMS; Plant growth-promoting bacteria; Synthetic mutualism ID GROWTH-PROMOTING BACTERIUM; TARGETED OLIGONUCLEOTIDE PROBES; MICROBIAL CELL-FACTORIES; CHLORELLA-VULGARIS; AZOSPIRILLUM-BRASILENSE; PLANT-GROWTH; ALGINATE BEADS; WASTE-WATER; HETEROTROPHIC CONDITIONS; ENHANCED ACCUMULATION AB The demonstration of a mutualistic interaction requires evidence of benefits for both partners as well as stability of the association over multiple generations. A synthetic mutualism between the freshwater microalga Chlorella sorokiniana and the soil-derived plant growth-promoting bacterium (PGPB) Azospirillum brasilense was created when both microorganisms were co-immobilized in alginate beads. Using stable isotope enrichment experiments followed by high-resolution secondary ion mass spectrometry (SIMS) imaging of single cells, we demonstrated transfer of carbon and nitrogen compounds between the two partners. Further, using fluorescent in situ hybridization (FISH), mechanical disruption and scanning electron microscopy, we demonstrated the stability of their physical association for a period of 10 days after the aggregated cells were released from the beads. The bacteria significantly enhanced the growth of the microalgae while the microalgae supported growth of the bacteria in a medium where it could not otherwise grow. We propose that this microalga-bacterium association is a true synthetic mutualism independent of co-evolution. (C) 2016 Elsevier B.V. All rights reserved. C1 [de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav] Bashan Inst Sci, 1730 Post Oak Court, Auburn, AL 36830 USA. [de-Bashan, Luz E.; Bashan, Yoav] Auburn Univ, Dept Entomol & Plant Pathol, 301 Funchess Hall, Auburn, AL 36849 USA. [de-Bashan, Luz E.; Hernandez, Juan-Pablo] Northwestern Ctr Biol Res CIBNOR, Environm Microbiol Grp, Calle IPN 195, La Paz 23096, Bcs, Bolivia. [Mayali, Xavier; Weber, Peter K.] Lawrence Livermore Natl Lab, Nucl & Chem Sci Div, Livermore, CA 94551 USA. [Bebout, Brad M.; Detweiler, Angela M.; Prufert-Bebout, Leslie] NASA, Ames Res Ctr, Exobiol Branch, Moffett Field, CA 94035 USA. [Detweiler, Angela M.] Bay Area Environm Res Inst, Petaluma, CA 94952 USA. RP Bashan, Y (reprint author), Bashan Inst Sci, 1730 Post Oak Court, Auburn, AL 36830 USA. EM ybb0001@auburn.edu OI Hernandez, Juan/0000-0003-1175-0109 FU Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACYT-Basic Science) [164548]; Bashan Foundation, USA; NASA's Exobiology Program NASA; LLNL by the DOE-OBER [SCW1039]; US Department of Energy at the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Funding was provided in parts by: Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACYT-Basic Science-2009, grant 164548), by The Bashan Foundation, USA, by grants from NASA's Exobiology Program NASA to BMB and at LLNL by the DOE-OBER-funded Biofuels Science Focus Area Grant SCW1039. We thank Christina Ramon at LLNL for the assistance with SEM analyses. At CIBNOR, we thank Edgar Amavizca and Ariel Cruz for the technical assistance in scanning electron microscopy and Paulina Adams for the general technical assistance. Work at LLNL was performed under the auspices of the US Department of Energy at the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is contribution 2015-007 from the Bashan Institute of Science, USA. NR 64 TC 5 Z9 5 U1 17 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2211-9264 J9 ALGAL RES JI Algal Res. PD APR PY 2016 VL 15 BP 179 EP 186 DI 10.1016/j.algal.2016.02.019 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA DH0DK UT WOS:000372452500021 ER PT J AU Juarez, E de Jesus, ER Nieto-Camacho, A Kaufhold, S Garcia-Romero, E Suarez, M Cervini-Silva, J AF Juarez, Esmeralda Ronquillo de Jesus, Elba Nieto-Camacho, Antonio Kaufhold, Stephan Garcia-Romero, Emilia Suarez, Mercedes Cervini-Silva, Javiera TI The role of sepiolite and palygorskite on the migration of leukocyte cells to an inflammation site SO APPLIED CLAY SCIENCE LA English DT Article DE Leukocyte immunological functions; Shifting from pro- to anti-inflammatory conditions AB Sepiolite and palygorskite have shown beneficial health effects but understanding human cell-clay interactions has yet to become unveiled. This paper reports on the effects of sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain) on the infiltration of human blood leukocytes to an infiltration site. Quantification of human blood leukocyte cells under pro- and anti-inflammatory conditions was conducted, and cells visualized in an Axioscope (Carl Zeiss; Oberkochen, Germany). Images were recorded with an Axiocam Mrm monochromatic camera and ZEN Pro software (Carl Zeiss). The distribution of human blood leukocyte cells at the inflammation site varied before and after adding the clay. The relative proportion of PMN-to-monocytes(MN) (PMN/MN) exposed to the inflammatory activity by 12-O-tetradecanoylphorbol-13-acetate (PA) changed in the presence of sepiolite (TPA + sepiolite) or palygorskite (TPA + palygorskite) either after 4 or 24 h, namely, 0.60, 2.5, and 2.33; and 433,1.53, and 2.8, respectively. PMN/MN values compared in the presence of TPA or TPA and palygorskite, however decreased sharply in the presence of TPA and sepiolite. Proposedly, decreases in PMN/MN values caused by adding sepiolite may alter PMN and MN immunological functions, by lessening the destruction extent of invasive bacteria via phagocytosis and the conversion of MN to macrophages. Proposedly, limiting a conversion of MN to macrophages impedes resolving inflammation because of an incomplete digestion of aged cells. Evidently, shifting from pro- to anti-inflammatory conditions due to the addition of the clay altered the mechanism of infiltration of different leukocyte cells to an inflammation site. Finally, the presence of few macrophages at the inflammation site was attributed to resolution of inflammation, whereby macrophages participated in anti-inflammatory mechanisms leading to the return to homeostasis in tissues. (C) 2016 Elsevier B.V. All rights reserved. C1 [Juarez, Esmeralda] Inst Nacl Enfermedades Resp, Dept Invest Microbiol, Mexico City, DF, Mexico. [Ronquillo de Jesus, Elba; Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Av Vasco de Quiroga 4871, Mexico City, DF, Mexico. [Nieto-Camacho, Antonio] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Mexico City 04510, DF, Mexico. [Kaufhold, Stephan] BGR Bundesansaltfur Geowissensch & Rohstoff, D-30655 Hannover, Germany. [Garcia-Romero, Emilia] Univ Complutense Madrid, Dept Cristalog & Mineral, E-28040 Madrid, Spain. [Garcia-Romero, Emilia] Univ Complutense Madrid, Consejo Super Invest Cient, Inst Geociencias, E-28040 Madrid, Spain. [Suarez, Mercedes] Univ Salamanca, Dept Geol, E-37008 Salamanca, Spain. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Cervini-Silva, Javiera] NASA Astrobiol Inst, Mountain View, CA USA. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Av Vasco de Quiroga 4871, Mexico City, DF, Mexico. EM jcervini@correo.cua.uam.mx FU Universidad Autonoma Metropolitana [UAM-C 33678] FX The authors thank Jaime Ortega Lechuga (Universidad Autonoma Metropolitana -Cuajimalpa), Daniela Rodriguez Montano (Unidad de Histologia, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico), and Natascha Schleuning (Bundesansaltfur Geowissenschaften and Rohstoffe, BGR) for technical assistance; and Universidad Autonoma Metropolitana for support (Grant No. UAM-C 33678). NR 10 TC 2 Z9 2 U1 3 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-1317 EI 1872-9053 J9 APPL CLAY SCI JI Appl. Clay Sci. PD APR PY 2016 VL 123 BP 315 EP 319 DI 10.1016/j.clay.2016.01.034 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Mineralogy SC Chemistry; Materials Science; Mineralogy GA DH4MG UT WOS:000372759500036 ER PT J AU Callini, E Atakli, ZOK Hauback, BC Orimo, S Jensen, C Dornheim, M Grant, D Cho, YW Chen, P Hjorvarsson, B de Jongh, P Weidenthaler, C Baricco, M Paskevicius, M Jensen, TR Bowden, ME Autrey, TS Zuttel, A AF Callini, Elsa Atakli, Zuleyha Oezlem Kocabas Hauback, Bjorn C. Orimo, Shin-ichi Jensen, Craig Dornheim, Martin Grant, David Cho, Young Whan Chen, Ping Hjorvarsson, Bjorgvin de Jongh, Petra Weidenthaler, Claudia Baricco, Marcello Paskevicius, Mark Jensen, Torben R. Bowden, Mark E. Autrey, Thomas S. Zuettel, Andreas TI Complex and liquid hydrides for energy storage SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID REVERSIBLE HYDROGEN STORAGE; N-H SYSTEM; LITHIUM ALUMINUM-HYDRIDE; SOLVENT-FREE SYNTHESIS; METAL BOROHYDRIDES; THERMAL-PROPERTIES; NANOCONFINED LIBH4; ALKALI-METAL; CHLORIDE-SUBSTITUTION; SODIUM-BOROHYDRIDE AB The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements. C1 [Callini, Elsa; Zuettel, Andreas] Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn ISIC, EPFL Valais Wallis, Lab Mat Renewable Energy, Sion, Switzerland. [Callini, Elsa; Atakli, Zuleyha Oezlem Kocabas; Zuettel, Andreas] EMPA Mat Sci & Technol, Uberlandstr 129, CH-8600 Sion, Switzerland. [Hauback, Bjorn C.] Inst Energy Technol, Dept Phys, N-2007 Kjeller, Norway. [Baricco, Marcello] Univ Turin, Dept Chem, Turin, Italy. [Baricco, Marcello] Univ Turin, NIS, Turin, Italy. [Paskevicius, Mark; Jensen, Torben R.] Aarhus Univ, Interdisciplinary Nanosci Ctr, Dept Chem, Ctr Mat Crystallog, Langelandsgade 140, DK-8000 Aarhus C, Denmark. [de Jongh, Petra] Univ Utrecht, Debye Inst Nanomat Sci, Univ Weg 99, NL-3584 CG Utrecht, Netherlands. [Chen, Ping] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China. [Bowden, Mark E.; Autrey, Thomas S.] Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. [Cho, Young Whan] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Future Convergence Res Div, Hwarangno 14 Gil 5, Seoul 136791, South Korea. [Dornheim, Martin] Helmholtz Zentrum Geesthacht, Dept Nanotechnol, Mat Technol, D-21502 Geesthacht, Germany. [Grant, David] Univ Pk, Nottingham NG7 2RD, England. [Orimo, Shin-ichi] Tohoku Univ, Inst Mat Res, WPI Adv Inst Mat Res, Sendai, Miyagi, Japan. [Jensen, Craig] Univ Hawaii, Dept Chem, 2545 Mall, Honolulu, HI 96822 USA. [Hjorvarsson, Bjorgvin] Dept Phys & Astron, Mat Phys, POB 516, S-75120 Uppsala, Sweden. [Weidenthaler, Claudia] Max Planck Inst Kohlenforsch, Dept Heterogeneous Catalysis, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany. RP Zuttel, A (reprint author), Ecole Polytech Fed Lausanne, Inst Chem Sci & Engn ISIC, EPFL Valais Wallis, Lab Mat Renewable Energy, Sion, Switzerland.; Zuttel, A (reprint author), EMPA Mat Sci & Technol, Uberlandstr 129, CH-8600 Sion, Switzerland. EM andreas.zuettel@epfl.ch RI Dornheim, Martin/B-4391-2009; ORIMO, Shin-ichi/A-4971-2011; Baricco, Marcello/B-4075-2013; Institute (DINS), Debye/G-7730-2014; de Jongh, Petra/A-4761-2009; OI Paskevicius, Mark/0000-0003-2677-3434; Dornheim, Martin/0000-0001-8491-435X; ORIMO, Shin-ichi/0000-0002-4216-0446; Baricco, Marcello/0000-0002-2856-9894; de Jongh, Petra/0000-0002-2216-2620; Grant, David/0000-0002-6786-7720; Jensen, Torben Rene/0000-0002-4278-3221; Hjorvarsson, Bjorgvin/0000-0003-1803-9467 FU Federal Office of Energy in Switzerland "Advanced Complex Hydrides (ACH)" [SI/500597]; CCEM research through HyTech project; CCEM research through SCCER "Heat & Electricity Storage'' programme; Danish National Research Foundation; Center for Materials Crystallography [DNRF93]; Danish Council for Strategic Research (project HyFill-Fast); Danish Research Council for Nature and Universe (Danscatt) FX Financial support from the Federal Office of Energy in Switzerland for the Project No. SI/500597 "Advanced Complex Hydrides (ACH)" and the IEA Task 32 participation are acknowledged. This work was financially supported by CCEM research through the HyTech project and the SCCER "Heat & Electricity Storage'' programme. The work was supported by the Danish National Research Foundation, Center for Materials Crystallography (DNRF93), the Danish Council for Strategic Research (project HyFill-Fast) and the Danish Research Council for Nature and Universe (Danscatt). We are grateful to the Carlsberg Foundation and Energistyrelsen, EUDP. NR 237 TC 6 Z9 6 U1 36 U2 89 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD APR PY 2016 VL 122 IS 4 AR 353 DI 10.1007/s00339-016-9881-5 PG 22 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DG7JF UT WOS:000372259900094 ER PT J AU Glazoff, MV AF Glazoff, Michael V. TI Synchrotron EXAFS and XANES spectroscopy studies of transition aluminas doped with La and Cr for catalytic applications SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article AB Transition aluminas doped with Cr find widespread application in the dehydrogenation catalysis industry, while La-stabilized transition aluminas are used extensively for high-temperature application as catalytic supports (Wefers and Misra in Oxides and hydroxides of aluminum, Alcoa Laboratories, Pittsburgh, 1987). In this work, detailed synchrotron XAFS spectroscopy studies were conducted to shed light upon the atomic mechanisms of surface and subsurface reconstructions and/or catalytic support stabilization of doped aluminas. It was demonstrated that in four transition aluminas doped with Cr, it is the atoms which are mostly in the state of oxidation Cr3+ and enter nanoparticles of Cr-bearing phases (Cr2O3 in the case of gamma- and chi-alumina). In the transition series aluminas: "gamma-chi-theta-eta-alumina,'' the change of properties (in particular, the dramatic increase in dehydrogenation catalytic activity and catalyst longevity and the coloration of samples) takes place because of the reduction in the average size of Cr clusters and their appearance on the Al2O3 surface, probably responsible for change in catalytic activity. It was demonstrated that in the samples of gamma- alumina doped with La any substantial change in the local coordination of the La atoms takes place only upon heating up to 1400 degrees C. This makes the La-stabilized gamma- alumina a perfect catalytic support for the numerous applications, e.g., catalytic three-way conversion of automobile exhaust gases. This change manifested itself in the form of increased La-O bond lengths and the La coordination number (from 8 to 12). Furthermore, it was demonstrated that the local environment of La in this new La-bearing phase cannot be explained in terms of the LaAlO3 formation. The absence of the La atoms in the second coordination sphere favors monoatomic distribution of La atoms on grain boundaries, proving that only very small amount of this rare earth material is required to achieve full stabilization. It is inferred that the tendency of La atoms to get surrounded by oxygen atoms, and also the impossibility of going into the alumina bulk, could be a major reason of the increased thermal stability of gamma-alumina doped with lanthanum. C1 [Glazoff, Michael V.] Idaho Natl Lab, Adv Proc & Decis Syst, MS 3710,POB 1625, Idaho Falls, ID 83415 USA. RP Glazoff, MV (reprint author), Idaho Natl Lab, Adv Proc & Decis Syst, MS 3710,POB 1625, Idaho Falls, ID 83415 USA. EM Michael.Glazoff@inl.gov OI Glazoff, Michael/0000-0001-7938-6222 FU US Department of Energy [DE-AC07-05ID14517] FX The author would like to express his sincere gratitude to Prof. Valeria V. Vavilova, of Moscow Institute of Metallurgy, for help in collecting X-ray absorption data, and to Dr. John W. Novak, Jr., (PIDC), for his corrections and valuable recommendations. A sincere gratitude is extended to Dr. Alexander Lebedev, of Moscow State University, for help in the processing of the obtained XAFS spectra. Access to the Novosibirsk Synchrotron Facility (Russian Academy of Sciences) for EXAFS and XANES spectroscopy work is also gratefully acknowledged. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 16 TC 0 Z9 0 U1 8 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD APR PY 2016 VL 122 IS 4 AR 386 DI 10.1007/s00339-016-9737-z PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DG7JF UT WOS:000372259900127 ER PT J AU Sheppard, DA Paskevicius, M Humphries, TD Felderhoff, M Capurso, G von Colbe, JB Dornheim, M Klassen, T Ward, PA Teprovich, JA Corgnale, C Zidan, R Grant, DM Buckley, CE AF Sheppard, D. A. Paskevicius, M. Humphries, T. D. Felderhoff, M. Capurso, G. von Colbe, J. Bellosta Dornheim, M. Klassen, T. Ward, P. A. Teprovich, J. A., Jr. Corgnale, C. Zidan, R. Grant, D. M. Buckley, C. E. TI Metal hydrides for concentrating solar thermal power energy storage SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID HYDROGEN STORAGE; CALCIUM HYDRIDE; ALLOY HYDRIDES; COMPLEX ANIONS; H SYSTEM; HEAT; MG; MAGNESIUM; TEMPERATURE; KINETICS AB The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost of concentrating solar thermal power. We focus on the underlying technology that allows metal hydrides to function as thermal energy storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room temperature and as high as 1100 degrees C. The potential of metal hydrides for thermal storage is explored, while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature TES are also addressed. C1 [Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.] Curtin Univ, Hydrogen Storage Res Grp, Dept Phys Astron & Med Radiat Sci, Fuels & Energy Technol Inst, GPO Box U1987, Perth, WA 6845, Australia. [Paskevicius, M.] Univ Aarhus, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus, Denmark. [Paskevicius, M.] Univ Aarhus, Dept Chem, DK-8000 Aarhus, Denmark. [Felderhoff, M.] Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470 Mulheim, Germany. [Capurso, G.; von Colbe, J. Bellosta; Dornheim, M.; Klassen, T.] Helmholtz Zentrum Geesthacht, Dept Nanotechnol, Max Planck Str 1, D-21502 Geesthacht, Germany. [Ward, P. A.; Teprovich, J. A., Jr.; Corgnale, C.; Zidan, R.] Savannah River Natl Lab, Clean Energy Directorate, Aiken, SC 29808 USA. [Grant, D. M.] Univ Nottingham, Dept Mech Mat & Mfg Engn, Nottingham NG7 2RD, England. RP Sheppard, DA (reprint author), Curtin Univ, Hydrogen Storage Res Grp, Dept Phys Astron & Med Radiat Sci, Fuels & Energy Technol Inst, GPO Box U1987, Perth, WA 6845, Australia. EM drew.sheppard@gmail.com RI Dornheim, Martin/B-4391-2009; Klassen, Thomas/H-3393-2012; Humphries, Terry/A-2042-2014; Capurso, Giovanni/P-1047-2016; OI Dornheim, Martin/0000-0001-8491-435X; Klassen, Thomas/0000-0002-9521-3273; Humphries, Terry/0000-0003-1015-4495; Capurso, Giovanni/0000-0002-5117-1593; Grant, David/0000-0002-6786-7720; Paskevicius, Mark/0000-0003-2677-3434 NR 104 TC 6 Z9 6 U1 7 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 EI 1432-0630 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD APR PY 2016 VL 122 IS 4 AR 395 DI 10.1007/s00339-016-9825-0 PG 15 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA DG7JF UT WOS:000372259900136 ER PT J AU Pfund, DM Anderson, KK Detwiler, RS Jarman, KD McDonald, BS Milbrath, BD Myjak, MJ Paradis, NC Robinson, SM Woodring, ML AF Pfund, D. M. Anderson, K. K. Detwiler, R. S. Jarman, K. D. McDonald, B. S. Milbrath, B. D. Myjak, M. J. Paradis, N. C. Robinson, S. M. Woodring, M. L. TI Improvements in the method of radiation anomaly detection by spectral comparison ratios SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Anomaly detection; Gamma-ray spectroscopy; Radiation monitoring ID GAMMA-RAY SPECTRA; SPECTROMETRY; OPTIMIZATION; SEARCH AB We present a new procedure for configuring the Nuisance-rejection Spectral Comparison Ratio Anomaly Detection (N-SCRAD) method. The procedure minimizes detectable count rates of source spectra at a specified false positive rate using simulated annealing. We also present a new method for correcting the estimates of background variability used in N-SCRAD to current conditions of the total count rate. The correction lowers detection thresholds for a specified false positive rate, enabling greater sensitivity to targets. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Pfund, D. M.; Anderson, K. K.; Detwiler, R. S.; Jarman, K. D.; McDonald, B. S.; Milbrath, B. D.; Myjak, M. J.; Robinson, S. M.; Woodring, M. L.] Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. [Paradis, N. C.] US Navy Space & Naval Warfare Syst Command, 53560 Hull St, San Diego, CA 92152 USA. RP Pfund, DM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM david.pfund@pnnl.gov RI Jarman, Kenneth/B-6157-2011 OI Jarman, Kenneth/0000-0002-4396-9212 FU U.S. Department of Energy by Battelle [DE-AC05-76RL01830]; U.S. Defense Threat Reduction Agency [DTRA10027-10507] FX Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830.; This work is being supported by the U.S. Defense Threat Reduction Agency, under Interagency Agreement DTRA10027-10507. This support does not constitute an expressed or implied endorsement on the part of the Government. DISTRIBUTION A: Approved for public release: distribution unlimited (Ref. DTRA# PA-15-589/NT-15-786). NR 25 TC 1 Z9 1 U1 1 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD APR PY 2016 VL 110 BP 174 EP 182 DI 10.1016/j.apradiso.2015.12.063 PG 9 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA DG9CR UT WOS:000372380900024 PM 26807839 ER PT J AU Greeley, MS Adams, SM Elmore, LR McCracken, MK AF Greeley, Mark S., Jr. Adams, S. Marshall Elmore, Logan R. McCracken, Mary K. TI Influence of metal(loid) bioaccumulation and maternal transfer on embryo-larval development in fish exposed to a major coal ash spill SO AQUATIC TOXICOLOGY LA English DT Article DE Coal ash; Redear sunfish; TVA; Selenium; Arsenic; Mercury ID WATTS BAR RESERVOIR; FLY-ASH; SELENIUM BIOACCUMULATION; LEPOMIS-MACROCHIRUS; FATHEAD MINNOW; MERCURY; TENNESSEE; KINGSTON; RISK; METHYLMERCURY AB In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m(3) of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill - the largest in U.S. history - we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish (Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emory and Clinch Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9-53 and 6.7-9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2-3.2 mg/kg d.w. for whole bodies and 3.6-4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Results from this and related studies associated with the Kingston coal ash spill are consistent with proposed USEPA fish-based water quality criteria for Se, and to date continue to suggest that long-term exposures to sediment containing residual ash may not present a significant chronic risk to fish populations exposed to this major coal ash release. (C) 2016 Elsevier B.V. All rights reserved. C1 [Greeley, Mark S., Jr.; Adams, S. Marshall; Elmore, Logan R.; McCracken, Mary K.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Greeley, MS (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. EM greeleyms@ornl.gov; marshalladams3@comcast.net; Loganelmore63@gmail.com; mccrackenmk@ornl.gov RI Greeley, Mark/D-2330-2016 OI Greeley, Mark/0000-0002-6088-5942 FU U.S. Department of Energy [DE-AC05-00OR22725]; TVA FX Oak Ridge National Laboratory is managed by UT Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. The authors are appreciative of the support of TVA in sponsoring this study and for providing invaluable assistance with the collection of fish samples. Thanks are owed to two anonymous reviewers who provided useful comments and suggestions on the manuscript, Neil Carriker, Tyler Baker, and Rick Sherrard of TVA, Daniel Jones of ARCADIS, and current and former colleagues at ORNL including Craig Brandt, Allison Fortner, Teresa Mathews, Mark Peterson, Brenda Pracheil, Karen Sabo, John Smith, Jay Tenney, and Kristin Ward. Special thanks also to John Smith for assistance with the site map. NR 65 TC 0 Z9 0 U1 8 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-445X EI 1879-1514 J9 AQUAT TOXICOL JI Aquat. Toxicol. PD APR PY 2016 VL 173 BP 165 EP 177 DI 10.1016/j.aquatox.2015.12.021 PG 13 WC Marine & Freshwater Biology; Toxicology SC Marine & Freshwater Biology; Toxicology GA DH3MA UT WOS:000372689900017 PM 26874676 ER PT J AU Nelson, KR Schroeder, AL Ankley, GT Blackwell, BR Blanksma, C Degitz, SJ Flynn, KM Jensen, KM Johnson, RD Kahl, MD Knapen, D Kosian, PA Milsk, RY Randolph, EC Saari, T Stinckens, E Vergauwen, L Villeneuve, DL AF Nelson, Krysta R. Schroeder, Anthony L. Ankley, Gerald T. Blackwell, Brett R. Blanksma, Chad Degitz, Sigmund J. Flynn, Kevin M. Jensen, Kathleen M. Johnson, Rodney D. Kahl, Michael D. Knapen, Dries Kosian, Patricia A. Milsk, Rebecca Y. Randolph, Eric C. Saari, Travis Stinckens, Evelyn Vergauwen, Lucia Villeneuve, Daniel L. TI Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow SO AQUATIC TOXICOLOGY LA English DT Article DE Adverse outcome pathway; Cyprinid; Endocrine disruption; Swim bladder; Fish early life stage ID ADVERSE OUTCOME PATHWAYS; EARLY FISH DEVELOPMENT; PIMEPHALES-PROMELAS; XENOPUS-LAEVIS; SWIMBLADDER INFLATION; CONCEPTUAL-FRAMEWORK; DANIO-RERIO; END-POINTS; ZEBRAFISH; HORMONES AB In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1 mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14 dpf, was impacted. Specifically, at 14 dpf, approximately 50% of fish exposed to 1 mg MBT/L did not have an inflated anterior swim bladder. In fish exposed to MBT through 21 or 22 dpf, the anterior swim bladder was able to inflate, but the ratio of the anterior/posterior chamber length was significantly reduced compared to controls. Both abundance of thyroid peroxidase mRNA and thyroid follicle histology suggest that fathead minnows mounted a compensatory response to the presumed inhibition of TPO activity by MBT. Time-course characterization showed that fish exposed to MBT for at least 4 days prior to normal anterior swim bladder inflation had significant reductions in anterior swim bladder size, relative to the posterior chamber, compared to controls. These results, along with similar results observed in zebrafish (see part II, this issue) are consistent with the hypothesis that thyroid hormone signaling plays a significant role in mediating anterior swim bladder inflation and development in cyprinids, and that role can be disrupted by exposure to thyroid hormone synthesis inhibitors. Nonetheless, possible thyroid independent actions of MBT on anterior swim bladder inflation cannot be ruled out based on the present results. Overall, although anterior swim bladder inflation has not been directly linked to survival as posterior swim bladder inflation has, potential links to adverse ecological outcomes are plausible given involvement of the anterior chamber in sound production and detection. (C) 2016 Elsevier B.V. All rights reserved. C1 [Nelson, Krysta R.; Schroeder, Anthony L.; Ankley, Gerald T.; Degitz, Sigmund J.; Flynn, Kevin M.; Jensen, Kathleen M.; Johnson, Rodney D.; Kahl, Michael D.; Kosian, Patricia A.; Randolph, Eric C.; Saari, Travis; Villeneuve, Daniel L.] US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Mid Continent Ecol Div, 6201 Congdon Blvd, Duluth, MN 55804 USA. [Schroeder, Anthony L.] Univ Minnesota Twin Cities, Water Resources Ctr, 1985 Lower Buford Circle, St Paul, MN 55108 USA. [Blackwell, Brett R.; Milsk, Rebecca Y.] US EPA, ORISE, Res Participat Program,Mid Continent Ecol Div, Off Res & Dev,Natl Hlth & Environm Effects Res La, 6201 Congdon Blvd, Duluth, MN 55804 USA. [Blanksma, Chad] US EPA, Badger Tech Serv, Off Res & Dev, Natl Hlth & Environm Effects Res Lab,Mid Continen, 6201 Congdon Blvd, Duluth, MN 55804 USA. [Knapen, Dries; Stinckens, Evelyn; Vergauwen, Lucia] Univ Antwerp, Dept Vet Sci, Zebrafishlab Vet Physiol & Biochem, Univ Pl 1, B-2610 Antwerp, Belgium. RP Schroeder, AL (reprint author), US EPA, Off Res & Dev, Natl Hlth & Environm Effects Res Lab, Mid Continent Ecol Div, 6201 Congdon Blvd, Duluth, MN 55804 USA. EM aschroed@crk.umn.edu OI Knapen, Dries/0000-0003-0472-8114 NR 39 TC 1 Z9 1 U1 7 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-445X EI 1879-1514 J9 AQUAT TOXICOL JI Aquat. Toxicol. PD APR PY 2016 VL 173 BP 192 EP 203 DI 10.1016/j.aquatox.2015.12.024 PG 12 WC Marine & Freshwater Biology; Toxicology SC Marine & Freshwater Biology; Toxicology GA DH3MA UT WOS:000372689900019 PM 26852267 ER PT J AU Kuang, BY Lin, P Hu, M Yu, JZ AF Kuang, Bin Yu Lin, Peng Hu, Min Yu, Jian Zhen TI Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Organosulfates; Secondary organic aerosol; Sulfation; Chinese aerosols ID SECONDARY ORGANIC AEROSOL; RESOLUTION MASS-SPECTROMETRY; HUMIC-LIKE SUBSTANCES; ATMOSPHERIC AEROSOLS; CHEMICAL-COMPOSITION; AMBIENT AEROSOL; SOUTH CHINA; HONG-KONG; ISOPRENE; SULFATE AB Organosulfates (OSs) have been detected in various atmospheric environments, but their particle size distribution characteristics are unknown. In this work, we examined their size distributions in ambient aerosols to gain insights into the formation processes. Size-segregated aerosol samples in the range of 0.056-18 mu m were collected using a ten-stage impactor at a receptor site in Hong Kong in both summer and winter and in Nansha in the Pearl River Delta in winter. The humic-like substances fraction in the size-segregated samples was isolated and analyzed using electrospray ionization coupled with an Orbitrap Ultra High Resolution Mass Spectrometer. Through accurate mass measurements, similar to 190 CHOS and similar to 90 CHONS formulas were tentatively identified to be OS compounds. Among them, OS compounds derived from isoprene, alpha-/beta-pinene, and limonene and alkyl OSs having low double bond equivalents (DBE = 0,1) and 0-2 extra O beyond those in -OSO3 were found with high intensity. The biogenic volatile organic compounds-derived OS formulas share a common characteristic with sulfate in that the droplet mode dominated, peaking in either 0.56-1.0 or 1.0-1.8 mu m size bin, reflecting sulfate as their common precursor. Most of these OSs have a minor coarse mode, accounting for 0-45%. The presence of OSs on the coarse particles is hypothesized to be a result of OSs on small particle (<0.32 mu m) coagulating with coarse particles, as the abundance ratios of OS to non-sea-salt sulfate present on the coarse particles were similar to those on particles <0.32 mu m. Among a few pairs of CHONS and CHOS that could be linked up through hydrolysis of a nitrooxy group in the CHONS form (e.g., m/z 294: C10H16O7NS- vs. m/z 249 C10H17O5S- from alpha/beta-pinene, differing by (+H2O-HNO3)), the CHONS compounds had an enhanced coarse mode presence. This could be interpreted as a result of slower hydrolysis of the CHONS compounds on the alkali coarse particles. The low DBE alkyl OS compounds have a dominant droplet mode at the Hong Kong site, but a more significant coarse mode presence was observed for CnH2n+1O4S-, CnH2n-1O4S-, and CnH2n-1O5S- formulas in the Nansha site, possibly suggesting site-specific mixed secondary and primary sources for these formulas. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Kuang, Bin Yu; Lin, Peng; Yu, Jian Zhen] Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Hong Kong, Peoples R China. [Hu, Min] Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. [Yu, Jian Zhen] Hong Kong Univ Sci & Technol, Div Environm, Hong Kong, Hong Kong, Peoples R China. [Lin, Peng] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99532 USA. RP Yu, JZ (reprint author), Hong Kong Univ Sci & Technol, Dept Chem, Hong Kong, Hong Kong, Peoples R China.; Hu, M (reprint author), Peking Univ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China. EM minhu@pku.edu.cn; jian.yu@ust.hk RI Lin, Peng/G-4867-2016; Yu, Jian/A-9669-2008 OI Lin, Peng/0000-0002-3567-7017; Yu, Jian/0000-0002-6165-6500 FU Research Grants Council of Hong Kong [621312]; Natural Science Foundation of China [21177031]; China Ministry of Science and Technology [2013CB228503]; National Basic Research Program FX This study was partly supported by the Research Grants Council of Hong Kong (621312), Natural Science Foundation of China (21177031), National Basic Research Program with China Ministry of Science and Technology (2013CB228503). We thank Dr. Qijian Bian for MOUDI sample collection and analyzing ions and Ms. Zhongsi Huang for analyzing the HULIS content. NR 49 TC 6 Z9 6 U1 22 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD APR PY 2016 VL 130 SI SI BP 23 EP 35 DI 10.1016/j.atmosenv.2015.09.024 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA DG9CU UT WOS:000372381200004 ER PT J AU Tibiletti, T Hernandez-Prieto, MA Matthijs, HCP Niyogi, KK Funk, C AF Tibiletti, Tania Hernandez-Prieto, Miguel A. Matthijs, Hans C. P. Niyogi, Krishna K. Funk, Christiane TI Deletion of the gene family of small chlorophyll-binding proteins (ScpABCDE) offsets C/N homeostasis in Synechocystis PCC 6803 SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS LA English DT Article DE Small chlorophyll-proteins; High light protection; Pleiotropic effects; C/N metabolism; Cyanobacterium (Synechocystis sp strain PCC 6803) ID CAB-LIKE-PROTEINS; SP STRAIN PCC; INORGANIC CARBON LIMITATION; DNA MICROARRAY ANALYSIS; CYANOBACTERIUM SYNECHOCYSTIS; PHOTOSYSTEM-II; SP PCC-6803; ANABAENA-DOLIOLUM; IDENTIFYING DIFFERENCES; NITROGEN-METABOLISM AB In the family of chlorophyll binding proteins, single helix small CAB-like proteins (SCPs) are found in all organisms performing oxygenic photosynthesis. Here, we investigated the function of these stress-inducible proteins in the cyanobacterium Synechocystis sp. PCC 6803. We compared physiological, proteome and transcriptome traits of a Photosystem I (PSI) deletion strain, which constitutively induces SCPs, and a PSI-less/ScpABCDE(-) without SCPs. The SCP mutant cells were larger in size, showed irregular thylakoid structure and differed in cell surface morphology. Deletion of scp genes strongly affected the carbon (C) and nitrogen (N) balance, resulting in accumulation of carbohydrates and a decrease in N-rich compounds (proteins and chlorophyll). Data from transcriptomic and metabolomic experiments revealed a role of SCPs in the control of chlorophyll biosynthesis. Additionally, SCPs diminished formation of reactive oxygen species, thereby preventing damage within Photo system II. We conclude that the lack of SCP-function to remove free chlorophyll under stress conditions has a large impact on the metabolism of the entire cell. (C) 2015 Elsevier B.V. All rights reserved. C1 [Tibiletti, Tania; Hernandez-Prieto, Miguel A.; Funk, Christiane] Umea Univ, Dept Chem, SE-90187 Umea, Sweden. [Matthijs, Hans C. P.] Univ Amsterdam, Dept Aquat Microbiol, Inst Biodivers & Ecosyst Dynam, Amsterdam, Netherlands. [Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Tibiletti, Tania] Aix Marseille Univ, BVME, LGBP, F-13009 Marseille, France. [Hernandez-Prieto, Miguel A.] Univ Sydney, Sch Biol Sci, ARC Ctr Excellence Translat Photosynth, Sydney, NSW 2006, Australia. RP Funk, C (reprint author), Umea Univ, Dept Chem, SE-90187 Umea, Sweden. EM Christiane.Funk@chem.umu.se OI Hernandez-Prieto, Miguel Angel/0000-0001-7950-1526 FU Swedish Energy Agency; Umea University; Howard Hughes Medical Institute; Gordon and Betty Moore Foundation [GBMF3070] FX The work was supported by the Swedish Energy Agency (to C.F.) and Umea University (to C.F. and T.T.). K.K.N. was funded by the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through grant GBMF3070). The authors report no conflict of interest NR 92 TC 1 Z9 1 U1 3 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2728 EI 0006-3002 J9 BBA-BIOENERGETICS JI Biochim. Biophys. Acta-Bioenerg. PD APR PY 2016 VL 1857 IS 4 BP 396 EP 407 DI 10.1016/j.bbabio.2015.11.011 PG 12 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA DH3GN UT WOS:000372675600009 PM 26646103 ER PT J AU Zhang, HM Zhang, SH Stewart, P Zhu, CH Liu, WJ Hexemer, A Schaible, E Wang, C AF Zhang, Hong-mei Zhang, Shu-hua Stewart, Polite Zhu, Chen-hui Liu, Wei-jun Hexemer, Alexander Schaible, Eric Wang, Cheng TI Thermal stability and thermal aging of poly(vinyl chloride)/MgAl layered double hydroxides composites SO CHINESE JOURNAL OF POLYMER SCIENCE LA English DT Article DE Poly(vinyl chloride); Layered double hydroxide; Thermal stability; TGA-FTIR ID HYDROTALCITE-LIKE COMPOUNDS; PVC RESIN; BASE PROPERTIES; TG-FTIR; NANOCOMPOSITES; BEHAVIOR; DEGRADATION; PERFORMANCE; PYROLYSIS; CARBONATE AB MgAl-LDH (layered double hydroxides) were prepared with CO(NH2)(2), NH4Cl and NH3 center dot H2O by the coprecipitation method, respectively. Corresponding composite membranes were prepared by the coating method. LDHs were characterized by WAXS, CO2-TPD and SEM. The morphology of the PVC/LDHs composite membranes were characterized by means of SEM. The thermal stability of the membranes was analyzed by air aging box and TGA-FTIR. The SEM results show that nano-particles can be compatible with poly(vinyl chloride) (PVC) matrix homogeneously by the stirring-ultrasound blend method with two steps. Furthermore, the air aging box results proved that MgAl-CO(NH2)(2)-LDH has the best effect on thermal stability of PVC. TGA-FTIR results show that MgAl-CO(NH2)(2)-LDH could adsorb more HCl that resulted from the degradation of PVC and improve the pyrolysis temperature of the first degradation stage by 15 K compared with PVC. C1 [Zhang, Hong-mei; Zhang, Shu-hua] Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China. [Stewart, Polite; Zhu, Chen-hui; Hexemer, Alexander; Schaible, Eric; Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Liu, Wei-jun] Shanghai Univ Engn Sci, Coll Mech Engn, Shanghai 201620, Peoples R China. RP Zhang, SH (reprint author), Shanghai Univ Engn Sci, Coll Chem & Chem Engn, Shanghai 201620, Peoples R China.; Wang, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM zhangsh@sues.edu.cn; cwang2@lbl.gov RI Wang, Cheng/A-9815-2014 FU Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [De-AC02-05CH11231] FX The authors gratefully thank beamline 7.3.3 at the Advanced Light Source of Lawrence Berkeley National Lab, supported by the Director of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. De-AC02-05CH11231. NR 38 TC 0 Z9 0 U1 14 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0256-7679 EI 1439-6203 J9 CHINESE J POLYM SCI JI Chin. J. Polym. Sci. PD APR PY 2016 VL 34 IS 5 BP 542 EP 551 DI 10.1007/s10118-016-1778-4 PG 10 WC Polymer Science SC Polymer Science GA DH1HB UT WOS:000372533900003 ER PT J AU Brown, JA Zikry, MA AF Brown, Judith A. Zikry, M. A. TI Coupled infrared laser-thermo-mechanical response of RDX-PCTFE energetic aggregates SO COMPUTATIONAL MECHANICS LA English DT Article DE Energetic materials; Crystal plasticity; Electromagnetic-thermo-mechanical coupling; Defects; Hot spot formation ID FINITE-STRAIN PLASTICITY; CYCLOTRIMETHYLENE TRINITRAMINE; CRYSTALLINE MATERIALS; SOLID EXPLOSIVES; SINGLE-CRYSTALS; INITIATION; IGNITION; PREDICTION; IMPACT; ELECTROMAGNETISM AB A computational approach is developed to investigate the coupled phenomena of high frequency electromagnetic (EM) wave propagation, laser heat absorption, thermal conduction, and inelastic dynamic thermo-mechanical deformation in heterogeneous energetic materials. The method is used to study hot spot formation in RDX-PCTFE aggregates subjected to high strain rate loads and infrared laser irradiation. The approach couples Maxwell's equations with a dislocation density-based crystal plasticity formulation within a nonlinear finite-element approach to predict and understand thermo-mechanical response due to the interrelated effects of dielectric heating, adiabatic heating, thermal decomposition, and heat conduction. RDX crystalline interfaces and orientations, polymer binder, inelastic strains, dislocation-density evolution, and voids significantly affected the coupled EM-thermo-mechanical response. EM and thermo-mechanical mismatches at interfaces between RDX crystals, binder, and voids resulted in localized regions with high electric field and laser heat generation rates, which subsequently led to hot spot formation. It is predicted that incident laser intensity and plastic shear strain localization are the dominant mechanisms that lead to hot spot formation. C1 [Brown, Judith A.; Zikry, M. A.] N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. [Brown, Judith A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RP Zikry, MA (reprint author), N Carolina State Univ, Dept Mech & Aerosp Engn, Raleigh, NC 27695 USA. EM zikry@ncsu.edu FU US Office of Naval Research [N00014-10-1-0958] FX This material is based on work supported by the US Office of Naval Research as a Multi-Disciplinary University Research Initiative on Sound and Electromagnetic Interacting Waves under Grant No. N00014-10-1-0958. NR 50 TC 0 Z9 0 U1 4 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-7675 EI 1432-0924 J9 COMPUT MECH JI Comput. Mech. PD APR PY 2016 VL 57 IS 4 BP 611 EP 628 DI 10.1007/s00466-015-1241-3 PG 18 WC Mathematics, Interdisciplinary Applications; Mechanics SC Mathematics; Mechanics GA DG7YO UT WOS:000372299800006 ER PT J AU Tran, AP Dafflon, B Hubbard, S AF Anh Phuong Tran Dafflon, Baptiste Hubbard, Susan TI iMatTOUGH: An open-source Matlab-based graphical user interface for pre- and post-processing of TOUGH2 and iTOUGH2 models SO COMPUTERS & GEOSCIENCES LA English DT Article DE iTOUGH2; TOUGH2; Matlab-based GUI; Pre- and post-processing; Initial and boundary conditions; Visualization AB TOUGH2 and iTOUGH2 are powerful models that simulate the heat and fluid flows in porous and fracture media, and perform parameter estimation, sensitivity analysis and uncertainty propagation analysis. However, setting up the input files is not only tedious, but error prone, and processing output files is time consuming. In this study, we present an open source Matlab-based tool (iMatTOUGH) that supports the generation of all necessary inputs for both TOUGH2 and iTOUGH2 and visualize their outputs. The tool links the inputs of TOUGH2 and iTOUGH2, making sure the two input files are consistent. It supports the generation of rectangular computational mesh, i.e., it automatically generates the elements and connections as well as their properties as required by TOUGH2. The tool also allows the specification of initial and time-dependent boundary conditions for better subsurface heat and water flow simulations. The effectiveness of the tool is illustrated by an example that uses TOUGH2 and iTOUGH2 to estimate soil hydrological and thermal properties from soil temperature data and simulate the heat and water flows at the Rifle site in Colorado. (C) 2016 Elsevier Ltd. All rights reserved. C1 [Anh Phuong Tran; Dafflon, Baptiste; Hubbard, Susan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Tran, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM APTran@lbl.gov RI Hubbard, Susan/E-9508-2010; Dafflon, Baptiste/G-2441-2015; Tran, Anh Phuong/G-1911-2015 OI Tran, Anh Phuong/0000-0002-7703-6621 FU Subsurface Science Scientific Focus Area - U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX This material is based upon work supported as part of the Subsurface Science Scientific Focus Area funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research under Award number DE-AC02-05CH11231. The authors would like to thank Stefan Finsterle for reading and providing useful suggestions to improve the manuscript. NR 9 TC 1 Z9 1 U1 5 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-3004 EI 1873-7803 J9 COMPUT GEOSCI-UK JI Comput. Geosci. PD APR PY 2016 VL 89 BP 132 EP 143 DI 10.1016/j.cageo.2016.02.006 PG 12 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA DH1QQ UT WOS:000372560400013 ER PT J AU Williams, M Backhaus, T Bowe, C Choi, K Connors, K Hickmann, S Hunter, W Kookana, R Marfil-Vega, R Verslycke, T AF Williams, Mike Backhaus, Thomas Bowe, Craig Choi, Kyungho Connors, Kristin Hickmann, Silke Hunter, Wesley Kookana, Rai Marfil-Vega, Ruth Verslycke, Tim TI PHARMACEUTICALS IN THE ENVIRONMENT: AN INTRODUCTION TO THE ET&C SPECIAL ISSUE SO ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY LA English DT Editorial Material ID PERSONAL CARE PRODUCTS; VETERINARY MEDICINES; PIMEPHALES-PROMELAS; AQUATIC TOXICITY; RISK-ASSESSMENT; DRINKING-WATER; FISH; EXPOSURE; POPULATION; SERTRALINE C1 [Williams, Mike; Kookana, Rai] CSIRO Land & Water, Floreat, SA, Australia. [Backhaus, Thomas] Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden. [Bowe, Craig] Ohio Univ, Dept Sci, Ironton, OH USA. [Choi, Kyungho] Seoul Natl Univ, Sch Publ Hlth, Seoul, South Korea. [Connors, Kristin] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Hickmann, Silke] German Environm Agcy, Environm Risk Assessment Pharmaceut, Dessau Rosslau, Germany. [Hunter, Wesley] US FDA, Ctr Vet Med, Rockville, MD 20857 USA. [Marfil-Vega, Ruth] Amer Water, Belleville, IL USA. [Verslycke, Tim] Gradient, Cambridge, MA USA. RP Williams, M (reprint author), CSIRO Land & Water, Floreat, SA, Australia. EM mike.williams@csiro.au RI Williams, Mike/I-1724-2013; Kookana, Rai/A-5170-2012; OI Kookana, Rai/0000-0002-0477-3284; Connors, Kristin/0000-0002-4887-8408 NR 54 TC 0 Z9 0 U1 7 U2 23 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0730-7268 EI 1552-8618 J9 ENVIRON TOXICOL CHEM JI Environ. Toxicol. Chem. PD APR PY 2016 VL 35 IS 4 BP 763 EP 766 DI 10.1002/etc.3394 PG 4 WC Environmental Sciences; Toxicology SC Environmental Sciences & Ecology; Toxicology GA DH0RB UT WOS:000372490300001 PM 27003718 ER PT J AU Wang, K Kulkarni, A Lang, M Arnold, D Raicu, I AF Wang, Ke Kulkarni, Abhishek Lang, Michael Arnold, Dorian Raicu, Ioan TI Exploring the Design Tradeoffs for Extreme-Scale High-Performance Computing System Software SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Distributed systems; high-performance computing; key-value stores; simulation; systems and software AB Owing to the extreme parallelism and the high component failure rates of tomorrow's exascale, high-performance computing (HPC) system software will need to be scalable, failure-resistant, and adaptive for sustained system operation and full system utilizations. Many of the existing HPC system software are still designed around a centralized server paradigm and hence are susceptible to scaling issues and single points of failure. In this article, we explore the design tradeoffs for scalable system software at extreme scales. We propose a general system software taxonomy by deconstructing common HPC system software into their basic components. The taxonomy helps us reason about system software as follows: (1) it gives us a systematic way to architect scalable system software by decomposing them into their basic components; (2) it allows us to categorize system software based on the features of these components, and finally (3) it suggests the configuration space to consider for design evaluation via simulations or real implementations. Further, we evaluate different design choices of a representative system software, i.e. key-value store, through simulations up to millions of nodes. Finally, we show evaluation results of two distributed system software, Slurm++ (a distributed HPC resource manager) and MATRIX (a distributed task execution framework), both developed based on insights from this work. We envision that the results in this article help to lay the foundations of developing next-generation HPC system software for extreme scales. C1 [Wang, Ke; Raicu, Ioan] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Kulkarni, Abhishek] Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA. [Lang, Michael] Los Alamos Natl Lab, Los Alamos, NM USA. [Arnold, Dorian] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. RP Wang, K (reprint author), IIT, Dept Comp Sci, Chicago, IL 60616 USA.; Kulkarni, A (reprint author), Indiana Univ, Dept Comp Sci, Bloomington, IN 47405 USA.; Lang, M (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA.; Arnold, D (reprint author), Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. EM kwang22@hawk.iit.edu; adkulkar@cs.indiana.edu; mlang@lanl.gov; darnold@cs.unm.edu FU U.S. Department of Energy [DE-FC02-06ER25750]; US National Science Foundation (PRObE) [CNS-1042543]; National Science Foundation [NSF-1054974]; Office of Science of U.S. Department of Energy [DEAC02-06CH11357] FX This work was supported by the U.S. Department of Energy under contract DE-FC02-06ER25750, and in part by the US National Science Foundation under award CNS-1042543 (PRObE). This work was also in part supported by the National Science Foundation grant NSF-1054974. This research also used resources of the ALCF at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DEAC02-06CH11357. NR 58 TC 0 Z9 0 U1 1 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD APR PY 2016 VL 27 IS 4 BP 1070 EP 1084 DI 10.1109/TPDS.2015.2430852 PG 15 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DH2WB UT WOS:000372646700012 ER PT J AU Mittal, S Vetter, JS AF Mittal, Sparsh Vetter, Jeffrey S. TI A Survey of Techniques for Modeling and Improving Reliability of Computing Systems SO IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS LA English DT Article DE Review; classification; reliability; resilience; fault-tolerance; vulnerability; architectural vulnerability factor; soft/transient error; architectural techniques ID ARCHITECTURAL VULNERABILITY FACTOR; DATA CACHE RELIABILITY; ERROR PROTECTION; SOFT ERRORS; LEAKAGE POWER; PERFORMANCE; MEMORY; ENERGY; TECHNOLOGY; FAILURES AB Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made 'reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. This paper provides a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based on their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. We believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems. C1 [Mittal, Sparsh; Vetter, Jeffrey S.] Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA. [Vetter, Jeffrey S.] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Mittal, S; Vetter, JS (reprint author), Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37830 USA.; Vetter, JS (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM mittals@ornl.gov; vetter@ornl.gov OI Mittal, Sparsh/0000-0002-2908-993X FU U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). NR 114 TC 8 Z9 8 U1 3 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1045-9219 EI 1558-2183 J9 IEEE T PARALL DISTR JI IEEE Trans. Parallel Distrib. Syst. PD APR PY 2016 VL 27 IS 4 BP 1226 EP 1238 DI 10.1109/TPDS.2015.2426179 PG 13 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA DH2WB UT WOS:000372646700023 ER PT J AU Choudhary, A Roy, CJ Dietiker, JF Shahnam, M Garg, R Musser, J AF Choudhary, Aniruddha Roy, Christopher J. Dietiker, Jean-Francois Shahnam, Mehrdad Garg, Rahul Musser, Jordan TI Code verification for multiphase flows using the method of manufactured solutions SO INTERNATIONAL JOURNAL OF MULTIPHASE FLOW LA English DT Article DE Multiphase flows; Code verification; Method of manufactured solutions; Order of accuracy; Two-fluid model ID COMPUTATIONAL FLUID-DYNAMICS; BOUNDARY-CONDITIONS; SOLVERS; VALIDATION; SIMULATION; SCHEMES AB Code verification is the process of ensuring, to the extent possible, that there are no algorithm deficiencies and coding mistakes (bugs) in a scientific computing simulation. Order of accuracy testing using the Method of Manufactured Solutions (MMS) is a rigorous technique that is employed here for code verification of the main components of an open-source, multiphase flow code - MFIX. Code verification is performed here on 2D and 3D, uniform and stretched meshes for incompressible, steady and unsteady, single-phase and two-phase flows using the two-fluid model of MFDC Currently, the algebraic gas-solid exchange terms are neglected as these can be verified via techniques such as unit-testing. The no-slip wall, free-slip wall, and pressure outflow boundary conditions are verified. Temporal orders of accuracy for first-order and second-order time-marching schemes during unsteady simulations are also assessed. The presence of a modified SIMPLE-based algorithm in the code requires the velocity field to be divergence free in case of the single-phase incompressible model. Similarly, the volume fraction weighted velocity field must be divergence-free for the two-phase incompressible model. A newly-developed curl based manufactured solution is used to generate manufactured solutions that satisfy the divergence-free constraint during the verification of the single-phase and two-phase incompressible governing equations. Manufactured solutions with constraints due to boundary conditions as well as due to divergence-free flow are derived in order to verify the boundary conditions. (C) 2015 Elsevier Ltd. All rights reserved. C1 [Choudhary, Aniruddha; Shahnam, Mehrdad; Garg, Rahul; Musser, Jordan] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Choudhary, Aniruddha; Roy, Christopher J.] Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. [Dietiker, Jean-Francois] W Virginia Univ, Corp Res, Morgantown, WV 26506 USA. RP Choudhary, A (reprint author), Virginia Tech, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA. EM aniruddhac@gmail.com RI Choudhary, Aniruddha/D-6551-2017 OI Choudhary, Aniruddha/0000-0003-1358-7296 FU National Energy Technology Laboratory (NETL) through URS Corp. [4000.3.671.052.002.411]; U.S. Department of Energy FX The authors would like to thank Dr. Tingwen Li of NETL, Morgantown, WV, and Dr. Aytekin Gel of ALPEMI Consulting, LLC., Phoenix, AZ for numerous discussions over the period of this study. The MFIX verification study was supported by the National Energy Technology Laboratory (NETL) through URS Corp. (Grant no. 4000.3.671.052.002.411). This research was supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education. The authors also acknowledge Advanced Research Computing at Virginia Tech for providing computational resources and technical support that have contributed to the results reported within this paper (URL: http://www.arc.vt.edu). NR 42 TC 1 Z9 1 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0301-9322 EI 1879-3533 J9 INT J MULTIPHAS FLOW JI Int. J. Multiph. Flow PD APR PY 2016 VL 80 BP 150 EP 163 DI 10.1016/j.ijmultiphaseflow.2015.12.006 PG 14 WC Mechanics SC Mechanics GA DG9BX UT WOS:000372378900012 ER PT J AU Kisslinger, LS Liu, MX McGaughey, P AF Kisslinger, Leonard S. Liu, Ming X. McGaughey, Patrick TI D Production in p-p and d-Au Collisions SO INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS LA English DT Article DE D-meson production; P-p collisions; D-Au collisions; Quark fragmentation AB This is an extension of our previous work on J/I, I-'(2S), Iyen(n S) production in p-p and A-A collisions to the production of , with the main new aspect being the fragmentation probability, , which has been calculated almost two decades ago. The rapidity cross sections for production from both p-p and d-AU collisions is estimated. C1 [Kisslinger, Leonard S.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Liu, Ming X.; McGaughey, Patrick] Los Alamos Natl Lab, Div Phys, P-25, Los Alamos, NM 87545 USA. RP Kisslinger, LS (reprint author), Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. EM kissling@andrew.cmu.edu OI Liu, Ming/0000-0002-5992-1221 FU Pittsburgh Foundation; DOE [W-7405-ENG-36, DE-FG02-97ER41014] FX This work was supported in part by a grant from the Pittsburgh Foundation, and in part by the DOE contracts W-7405-ENG-36 and DE-FG02-97ER41014. NR 15 TC 0 Z9 0 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0020-7748 EI 1572-9575 J9 INT J THEOR PHYS JI Int. J. Theor. Phys. PD APR PY 2016 VL 55 IS 4 BP 2026 EP 2030 DI 10.1007/s10773-015-2842-5 PG 5 WC Physics, Multidisciplinary SC Physics GA DG7PU UT WOS:000372277000010 ER PT J AU Oyserman, BO Noguera, DR del Rio, TG Tringe, SG McMahon, KD AF Oyserman, Ben O. Noguera, Daniel R. del Rio, Tijana Glavina Tringe, Susannah G. McMahon, Katherine D. TI Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis SO ISME JOURNAL LA English DT Article ID BIOLOGICAL PHOSPHORUS REMOVAL; POLYPHOSPHATE-ACCUMULATING ORGANISMS; POLY-BETA-HYDROXYBUTYRATE; COLLAGEN-LIKE PROTEIN-1; ESCHERICHIA-COLI; ACTIVATED-SLUDGE; RALSTONIA-EUTROPHA; CRYSTAL-STRUCTURE; BIOFILM FORMATION; GLYCINE-CLEAVAGE AB Previous studies on enhanced biological phosphorus removal (EBPR) have focused on reconstructing genomic blueprints for the model polyphosphate-accumulating organism Candidatus Accumulibacter phosphatis. Here, a time series metatranscriptome generated from enrichment cultures of Accumulibacter was used to gain insight into anerobic/aerobic metabolism and regulatory mechanisms within an EBPR cycle. Co-expressed gene clusters were identified displaying ecologically relevant trends consistent with batch cycle phases. Transcripts displaying increased abundance during anerobic acetate contact were functionally enriched in energy production and conversion, including upregulation of both cytoplasmic and membrane-bound hydrogenases demonstrating the importance of transcriptional regulation to manage energy and electron flux during anerobic acetate contact. We hypothesized and demonstrated hydrogen production after anerobic acetate contact, a previously unknown strategy for Accumulibacter to maintain redox balance. Genes involved in anerobic glycine utilization were identified and phosphorus release after anerobic glycine contact demonstrated, suggesting that Accumulibacter routes diverse carbon sources to acetyl-CoA formation via previously unrecognized pathways. A comparative genomics analysis of sequences upstream of co-expressed genes identified two statistically significant putative regulatory motifs. One palindromic motif was identified upstream of genes involved in PHA synthesis and acetate activation and is hypothesized to be a phaR binding site, hence representing a hypothetical PHA modulon. A second motif was identified similar to 35 base pairs (bp) upstream of a large and diverse array of genes and hence may represent a sigma factor binding site. This analysis provides a basis and framework for further investigations into Accumulibacter metabolism and the reconstruction of regulatory networks in uncultured organisms. C1 [Oyserman, Ben O.; Noguera, Daniel R.; McMahon, Katherine D.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. [del Rio, Tijana Glavina; Tringe, Susannah G.] US DOE, Joint Genome Inst, Walnut Creek, CA USA. [McMahon, Katherine D.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. RP McMahon, KD (reprint author), Univ Wisconsin, Dept Civil & Environm Engn & Bacteriol, 5525 Microbial Sci Bldg,1550 Linden Dr, Madison, WI 53706 USA. EM kdmcmahon@wisc.edu OI McMahon, Katherine D./0000-0002-7038-026X FU US National Science Foundation [CBET-0967646]; UW-Madison Graduate School; Office of Science of U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the following individuals for insightful discussion and friendly reviews of draft manuscripts: Christopher Lawson, Francisco Moya and Travis Korosh. We thank Alisha Truman, Mitch Heffernan, Antonio Garcia and Lianne Estrella for assistance with bioreactor operation. KDM acknowledges funding from the US National Science Foundation (CBET-0967646) and the UW-Madison Graduate School. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 2 Z9 2 U1 11 U2 29 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD APR PY 2016 VL 10 IS 4 BP 810 EP 822 DI 10.1038/ismej.2015.155 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DG8WJ UT WOS:000372364000003 PM 26555245 ER PT J AU Hiras, J Wu, YW Eichorst, SA Simmons, BA Singer, SW AF Hiras, Jennifer Wu, Yu-Wei Eichorst, Stephanie A. Simmons, Blake A. Singer, Steven W. TI Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage SO ISME JOURNAL LA English DT Article ID GREEN-SULFUR BACTERIUM; ALTERNATIVE COMPLEX-III; YELLOWSTONE-NATIONAL-PARK; COMPLETE GENOME SEQUENCE; MOLECULAR SIGNATURES; RHODOTHERMUS-MARINUS; MICROBIAL GENOMES; HOT-SPRINGS; SP NOV.; COMMUNITY AB Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes. C1 [Hiras, Jennifer; Wu, Yu-Wei; Eichorst, Stephanie A.; Simmons, Blake A.; Singer, Steven W.] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Hiras, Jennifer; Wu, Yu-Wei] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Eichorst, Stephanie A.] Univ Vienna, Div Microbial Ecol, Vienna, Austria. [Simmons, Blake A.] Sandia Natl Labs, Biofuels & Biomat Sci & Technol Dept, Livermore, CA USA. [Singer, Steven W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Singer, SW (reprint author), Lawrence Berkeley Natl Lab, Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM SWSinger@lbl.gov RI Eichorst, Stephanie A/A-1079-2017; Wu, Yuxin/G-1630-2012 OI Eichorst, Stephanie A/0000-0002-9017-7461; Wu, Yuxin/0000-0002-6953-0179 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was performed as part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. Metagenomic sequencing was conducted by the Joint Genome Institute, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank Susannah Tringe, Tijana Glavina Del Rio and Stephanie Malfatti of the Joint Genome Institute for their assistance in obtaining and processing metagenomic sequencing data. We would also like to thank Professor Thomas E Hanson (University of Delaware) for helpful comments on the manuscript. NR 69 TC 5 Z9 5 U1 5 U2 18 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD APR PY 2016 VL 10 IS 4 BP 833 EP 845 DI 10.1038/ismej.2015.158 PG 13 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DG8WJ UT WOS:000372364000005 PM 26325358 ER PT J AU Perisin, M Vetter, M Gilbert, JA Bergelson, J AF Perisin, Matthew Vetter, Madlen Gilbert, Jack A. Bergelson, Joy TI 16Stimator: statistical estimation of ribosomal gene copy numbers from draft genome assemblies SO ISME JOURNAL LA English DT Article ID SEQUENCING DATA; RNA; QUANTIFICATION; BACTERIA; ARCHAEA AB The 16S rRNA gene (16S) is an accepted marker of bacterial taxonomic diversity, even though differences in copy number obscure the relationship between amplicon and organismal abundances. Ancestral state reconstruction methods can predict 16S copy numbers through comparisons with closely related reference genomes; however, the database of closed genomes is limited. Here, we extend the reference database of 16S copy numbers to de novo assembled draft genomes by developing 16Stimator, a method to estimate 16S copy numbers when these repetitive regions collapse during assembly. Using a read depth approach, we estimate 16S copy numbers for 12 endophytic isolates from Arabidopsis thaliana and confirm estimates by qPCR. We further apply this approach to draft genomes deposited in NCBI and demonstrate accurate copy number estimation regardless of sequencing platform, with an overall median deviation of 14%. The expanded database of isolates with 16S copy number estimates increases the power of phylogenetic correction methods for determining organismal abundances from 16S amplicon surveys. C1 [Perisin, Matthew; Vetter, Madlen; Gilbert, Jack A.; Bergelson, Joy] Univ Chicago, Dept Ecol & Evolut, 1101 E 57th St, Chicago, IL 60637 USA. [Perisin, Matthew; Bergelson, Joy] Univ Chicago, Comm Microbiol, Chicago, IL 60637 USA. [Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Biosci Dept, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gilbert, Jack A.] Marine Biol Lab, Woods Hole, MA 02543 USA. [Gilbert, Jack A.] Zhejiang Univ, Coll Environm & Resource Sci, Hangzhou 310003, Zhejiang, Peoples R China. RP Bergelson, J (reprint author), Univ Chicago, Dept Ecol & Evolut, 1101 E 57th St, Chicago, IL 60637 USA. EM jbergels@uchicago.edu OI Vetter, Madlen/0000-0002-6437-8497 FU Department of Education GAANN fellowship; NIH Genetics & Regulation training grant; DOE [DE-AC02-06CH11357]; NSF [MCB0603515]; James S. McDonnell Foundation [220020237] FX We thank John Wilmes and Stefano Allesina for helpful discussions, and the Center for Research Informatics at the University of Chicago for computational resources. MP was supported by a Department of Education GAANN fellowship and a NIH Genetics & Regulation training grant. This work was supported by grant DOE DE-AC02-06CH11357 to JAG and grants NSF MCB0603515 and James S. McDonnell Foundation 220020237 to JB. NR 16 TC 2 Z9 2 U1 2 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD APR PY 2016 VL 10 IS 4 BP 1020 EP 1024 DI 10.1038/ismej.2015.161 PG 5 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA DG8WJ UT WOS:000372364000021 PM 26359911 ER PT J AU Negi, S Barry, AN Friedland, N Sudasinghe, N Subramanian, S Pieris, S Holguin, FO Dungan, B Schaub, T Sayre, R AF Negi, Sangeeta Barry, Amanda N. Friedland, Natalia Sudasinghe, Nilusha Subramanian, Sowmya Pieris, Shayani Holguin, F. Omar Dungan, Barry Schaub, Tanner Sayre, Richard TI Impact of nitrogen limitation on biomass, photosynthesis, and lipid accumulation in Chlorella sorokiniana SO JOURNAL OF APPLIED PHYCOLOGY LA English DT Article DE Microalgae; Chlorella sorokiniana; Photobioreactor; Lipid production; Biofuels; Photosynthesis ID BIODIESEL FEEDSTOCK PRODUCTION; BIOFUEL PRODUCTION; WASTE-WATER; MICROALGAE; PRODUCTIVITY; GROWTH; LIGHT; BIOSYNTHESIS; OPTIMIZATION; CULTIVATION AB Induction of oil accumulation in algae for biofuel production is often achieved by withholding nitrogen. However, withholding nitrogen often reduces total biomass yield. In this report, it is demonstrated that Chlorella sorokiniana will not only accumulate substantial quantities of neutral lipids when grown in the absence of nitrogen but will also exhibit unimpeded growth rates for up to 2 weeks. To determine the physiological basis for the observed increase in oil and biomass accumulation, we compared photosynthetic and respiration rates and chlorophyll, lipid, and total energy content under ammonia replete and deplete conditions. Under N-depleted growth conditions, there was a 64 % increase in total energy density and a similar to 20-fold increase in oil accumulation relative to N-replete growth leading to a 1.6-fold greater total energy yield in N-depleted than in N-replete cultures. We propose that the higher energy accumulation in N-depleted cultures is due to enhanced photosynthetic energy capture and conversion associated with reduced chlorophyll levels and reduced self-shading as well as a shift in metabolism leading to the accumulation of oils. C1 [Negi, Sangeeta; Friedland, Natalia; Subramanian, Sowmya; Sayre, Richard] New Mexico Consortium, Los Alamos, NM 87544 USA. [Barry, Amanda N.; Sayre, Richard] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Sudasinghe, Nilusha; Holguin, F. Omar; Dungan, Barry; Schaub, Tanner] New Mexico State Univ, Ctr Anim Hlth Food Safety & Biosecur, Las Cruces, NM 88003 USA. [Pieris, Shayani] Missouri Baptist Univ, Dept Biol, St Louis, MO 63141 USA. RP Sayre, R (reprint author), New Mexico Consortium, Los Alamos, NM 87544 USA.; Sayre, R (reprint author), Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. EM rsayre@newmexicoconsortium.org RI Negi, Sangeeta/J-3634-2015; OI Negi, Sangeeta/0000-0002-1437-4201; Sayre, Richard/0000-0002-3153-7084; Barry, Amanda/0000-0002-7992-0322 FU U.S. Department of Energy [DE-EE0003046]; Center for Animal Health and Food Safety at New Mexico State University FX We thank Paige Pardington for her help in assisting with the photobioreactors during this experiment. This work is supported by the U.S. Department of Energy under contract DE-EE0003046 awarded to the National Alliance for Advanced Biofuels and Bioproducts for RTS and TS and by the Center for Animal Health and Food Safety at New Mexico State University for TS. NR 33 TC 3 Z9 3 U1 6 U2 36 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-8971 EI 1573-5176 J9 J APPL PHYCOL JI J. Appl. Phycol. PD APR PY 2016 VL 28 IS 2 BP 803 EP 812 DI 10.1007/s10811-015-0652-z PG 10 WC Biotechnology & Applied Microbiology; Marine & Freshwater Biology SC Biotechnology & Applied Microbiology; Marine & Freshwater Biology GA DG7IB UT WOS:000372256900010 ER PT J AU Ujhazi, B Csomos, K Sturgeon, C Beca, F Silver, JN Gilbert, JA Sangwan, N Wesemann, D Fasano, A Notarangelo, LD Walter, JE AF Ujhazi, Boglarka Csomos, Krisztian Sturgeon, Craig Beca, Francisco Silver, Jared Nathan Gilbert, Jack A. Sangwan, Naseer Wesemann, Duane Fasano, Alessio Notarangelo, Luigi D. Walter, Jolan E. TI FEATURES AND MECHANISMS OF MUCOSAL IMMUNE DYSREGULATION IN A MOUSE MODEL OF LEAKY SCID DUE TO HYPOMORPHIC RAG MUTATIONS SO JOURNAL OF CLINICAL IMMUNOLOGY LA English DT Meeting Abstract CT CIS Annual Meeting on Immune Deficiency and Dysregulation North American Conference CY APR 14-17, 2016 CL Boston, MA SP Clin Immunol Soc C1 [Ujhazi, Boglarka; Csomos, Krisztian; Walter, Jolan E.] Massachusetts Gen Hosp Children, Div Pediat Allergy Immunol, Boston, MA USA. [Ujhazi, Boglarka; Csomos, Krisztian; Walter, Jolan E.] Harvard Univ, Massachusetts Gen Hosp, Sch Med, Ctr Immunol & Inflammatory Dis, Boston, MA USA. [Sturgeon, Craig; Fasano, Alessio] Massachusetts Gen Hosp, Ctr Celiac Res, Mucosal Immunol & Biol Res Ctr, Boston, MA 02114 USA. [Sturgeon, Craig; Fasano, Alessio] Massachusetts Gen Hosp Children, Div Pediat Gastroenterol & Nutr, Boston, MA USA. [Beca, Francisco] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Med Oncol, 44 Binney St, Boston, MA 02115 USA. [Silver, Jared Nathan; Wesemann, Duane] Brigham & Womens Hosp, Dept Med, Div Rheumatol Immunol & Allergy, 75 Francis St, Boston, MA 02115 USA. [Silver, Jared Nathan; Wesemann, Duane] Harvard Univ, Sch Med, Boston, MA USA. [Gilbert, Jack A.; Sangwan, Naseer] Univ Chicago, Dept Surg, Argonne Natl Lab, Biosci Div, 5841 S Maryland Ave, Chicago, IL 60637 USA. [Notarangelo, Luigi D.; Walter, Jolan E.] Harvard Univ, Sch Med, Div Immunol, Boston Childrens Hosp, Boston, MA USA. NR 0 TC 0 Z9 0 U1 1 U2 1 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0271-9142 EI 1573-2592 J9 J CLIN IMMUNOL JI J. Clin. Immunol. PD APR PY 2016 VL 36 IS 3 MA 4597 BP 306 EP 306 PG 1 WC Immunology SC Immunology GA DG6AT UT WOS:000372165300176 ER PT J AU Goue, OY Raghothamachar, B Yang, Y Guo, JQ Dudley, M Kisslinger, K Trunek, AJ Neudeck, PG Spry, DJ Woodworth, AA AF Goue, Ouloide Y. Raghothamachar, Balaji Yang, Yu Guo, Jianqiu Dudley, Michael Kisslinger, Kim Trunek, Andrew J. Neudeck, Philip G. Spry, David J. Woodworth, Andrew A. TI Study of Defect Structures in 6H-SiC a/m-Plane Pseudofiber Crystals Grown by Hot-Wall CVD Epitaxy SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Silicon carbide; large tapered crystal; lateral expansion; hot-wall chemical vapor deposition; x-ray topography; stacking faults ID 4H-SIC SINGLE-CRYSTALS; HEATED FLOATING-ZONE; RAMAN-SCATTERING; STACKING-FAULTS; DIODES AB Structural perfection of silicon carbide (SiC) single crystals is essential to achieve high-performance power devices. A new bulk growth process for SiC proposed by researchers at NASA Glenn Research Center, called large tapered crystal (LTC) growth, based on axial fiber growth followed by lateral expansion, could produce SiC boules with potentially as few as one threading screw dislocation per wafer. In this study, the lateral expansion aspect of LTC growth is addressed through analysis of lateral growth of 6H-SiC a/m-plane seed crystals by hot-wall chemical vapor deposition. Preliminary synchrotron white-beam x-ray topography (SWBXT) indicates that the as-grown boules match the polytype structure of the underlying seed and have a faceted hexagonal morphology with a strain-free surface marked by steps. SWBXT Laue diffraction patterns of transverse and axial slices of the boules reveal streaks suggesting the existence of stacking faults/polytypes, and this is confirmed by micro-Raman spectroscopy. Transmission x-ray topography of both transverse and axial slices reveals inhomogeneous strains at the seed-epilayer interface and linear features propagating from the seed along the growth direction. Micro-Raman mapping of an axial slice reveals that the seed contains high stacking disorder, while contrast extinction analysis (g center dot b and g center dot bxl) of the linear features reveals that these are mostly edge-type basal plane dislocations. Further high-resolution transmission electron microscopy investigation of the seed-homoepilayer interface also reveals nanobands of different SiC polytypes. A model for their formation mechanism is proposed. Finally, the implication of these results for improving the LTC growth process is addressed. C1 [Goue, Ouloide Y.; Raghothamachar, Balaji; Yang, Yu; Guo, Jianqiu; Dudley, Michael] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Kisslinger, Kim] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11793 USA. [Trunek, Andrew J.; Neudeck, Philip G.; Spry, David J.; Woodworth, Andrew A.] NASA, Glenn Res Ctr, 21000 Brookpark Rd,MS 77-1, Cleveland, OH 44135 USA. RP Goue, OY; Raghothamachar, B; Yang, Y; Guo, JQ; Dudley, M (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA.; Kisslinger, K (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11793 USA.; Trunek, AJ; Neudeck, PG; Spry, DJ; Woodworth, AA (reprint author), NASA, Glenn Res Ctr, 21000 Brookpark Rd,MS 77-1, Cleveland, OH 44135 USA. EM ouloide.goue@stonybrook.edu; balaji.raghothamachar@stonybrook.edu; yu.yang@stonybrook.edu; jqguo123@gmail.com; michael.dudley@stonybrook.edu; kisslinger@bnl.gov; Andrew.J.Trunek@nasa.gov; Neudeck@nasa.gov; David.J.Spry@nasa.gov; Andrew.A.Woodworth@nasa.gov FU NASA Glenn Research Center; US Department of Energy (DOE) [SAA3-1048, DE-EE0001093/001]; NASA Postdoctoral Program Fellowship - NASA Vehicle Systems Safety Technologies Project in the Aviation Safety Program; US DOE [DE-AC02-76CH00016]; US DOE, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Work supported by NASA Glenn Research Center and the US Department of Energy (DOE) Vehicle Technology Program via Space Act Agreement (SAA3-1048) (DOE IA # DE-EE0001093/001) monitored by Susan Rogers (DOE), and NASA Postdoctoral Program Fellowship supported by NASA Vehicle Systems Safety Technologies Project in the Aviation Safety Program. SWBXT work was carried out at Stony Brook Topography Facility (Beamline X19C) at the NSLS, Brookhaven National Laboratory, which is supported by the US DOE under Grant No. DE-AC02-76CH00016. HRTEM work carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Raman scattering performed by Nicholas Heller. NR 25 TC 0 Z9 0 U1 5 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD APR PY 2016 VL 45 IS 4 BP 2078 EP 2086 DI 10.1007/s11664-015-4185-7 PG 9 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA DH1KW UT WOS:000372543900013 ER PT J AU Hrma, P Kruger, AA AF Hrma, Pavel Kruger, Albert A. TI High-temperature viscosity of many-component glass melts SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Glass-melt viscosity; Glass melting; Nuclear waste glass; Viscosity models ID EQUATION; MODEL; LIQUIDS AB In this article, we argue that 1) the activation energy for viscous flow becomes independent of temperature when the viscosity of molten glass is sufficiently low at high enough temperatures, such as those that exist in a glass melting furnace, and 2) the intercept of the linear function In eta versus T-1 (eta is the viscosity and T is the temperature) is independent of glass composition. This hypothesis, which is hardly new and is well supported by experimental data, allows minimization of the number of fitting parameters. A new dataset of meticulously measured viscosities of a large composition region of simulated nuclear waste glasses that recently became available provided an excellent opportunity to test this hypothesis to verify it again. Also, we used this dataset to demonstrate that some popular functions designed for representing the high-viscosity segment (where the activation energy changes with temperature) are not recommendable for approximating the low-viscosity segment (where the activation energy is constant). Fitting such functions produces overparameterization and leads to physically meaningless (or at least esthetically unsatisfactory) outcomes, or, if the functions are constrained by the glass-transition viscosity and the high-temperature asymptote, the result is a significant lack of fit. (C) 2016 Elsevier B.V. All rights reserved. C1 [Hrma, Pavel] Pacific NW Natl Lab, Richland, WA 99354 USA. [Kruger, Albert A.] US DOE, Off River Protect, Richland, WA 99352 USA. RP Hrma, P (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM pavel.hrma@pnnl.gov FU U.S. Department of Energy's Waste Treatment and Immobilization Plant [M0ORV00020]; DOE [DE-AC05-76RL01830] FX This work would not been done without inspiration by Mary Nelson, a student curious about application of statistical methods to waste glass development. We are grateful to John Vienna for making the VSL dataset available to us in an electronic form. We would also like to express our deep gratitude to our colleagues Mike Schweiger, Dong-Sang Kim, Jaehun Chun, Matt Chou, Tony Jin, and many others for their interest and helpful discussions. Special thanks to Scott Cooley for his many comments and suggestions. Finally, many thanks to Jarrod Crum, who thoroughly evaluated the dataset with scatterplots and histograms, so we could continue our work with greater confidence. The This work was managed by Albert A. Kruger with funding authorized by the Federal Project Director William F. Hamel, Jr. of the U.S. Department of Energy's Waste Treatment and Immobilization Plant (Work Order M0ORV00020). Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. NR 27 TC 2 Z9 2 U1 3 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD APR 1 PY 2016 VL 437 BP 17 EP 25 DI 10.1016/j.jnoncrysol.2016.01.007 PG 9 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA DH3IN UT WOS:000372680800004 ER PT J AU Tkac, P Vandegrift, GF AF Tkac, Peter Vandegrift, George F. TI Recycle of enriched Mo targets for economic production of Mo-99/Tc-99m medical isotope without use of enriched uranium SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Mo-99; Enriched molybdenum; Accelerator; Production; Purification; Recycle ID TC-99M; DIVERSIFICATION; MO-99; AVAILABILITY; CYCLOTRON AB A new recycle process for recovery of enriched Mo-98 or Mo-100 used for production of Mo-99/Tc-99m medical isotope was developed. In this process, Mo is precipitated from spent NorthStar Mo/Tc generator solution containing similar to 200 g/L Mo as K2MoO4 in 5 M KOH using acetic acid and then washed with nitric acid. High purification factors from potassium were achieved, and typical Mo recovery yields were similar to 95 %. The recycle process was performed with up to 260 g of Mo per batch and can be easily implemented for processing of up to 400 g of Mo. C1 [Tkac, Peter; Vandegrift, George F.] Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Tkac, P (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tkac@anl.gov FU U.S. Department of Energy, NNSA's Material Management and Minimization office [DE-AC02-06CH11357] FX Work supported by the U.S. Department of Energy, NNSA's Material Management and Minimization office, under Contract DE-AC02-06CH11357. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC. The authors also thank Yifen Tsai for performing ICP-MS analysis and Vakhtang Makarashvili for performing MCNPX calculations for side-reactions study. NR 34 TC 0 Z9 0 U1 3 U2 3 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD APR PY 2016 VL 308 IS 1 BP 205 EP 212 DI 10.1007/s10967-015-4357-1 PG 8 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA DG7MQ UT WOS:000372268800024 ER EF